Deparfment of the Triferior:
U. S. NATIONAL MUSEUM.
$-25-$

PROCEEDINGS

OF THE

UNITED STATES NATIONAL MUSEUM.

Vol. III.
 1880.

PUBLISHED UNDER THE DIRECTION OF THE SMITHSONIAN INSTITUTION.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1881.

TABLE OF CONTENTS.

Page.
Bean, Tarleton IH. Description of a Now Hake (Phycis Earlii), from South Carolina, and a Note on the Occorrence of Phycis regius in North Carolina 69
Check-List of Duplicates of North American Fishes distributed by the SmithsonianInstitution in behalf of the United States National Maseum, 1877-'8075
Cattie, S. TH. On the Genitalia of Male Eels and their Sexual Characters 280
Endlich, Fred. MI. List of Species and Varieties of Minerals in the National Mnseum of the United States in 1879 333
Garman, Samuel. Syopsis and Descriptions of the American Rhincbatidoe 516
Gilbert, Charles II. (See under Jordan and Gilbert.)
Gill, Theodore. On the Identity of the Genus Leurynnis Lockington, with LycodopsisCollett247
Goode, G. Brown. Descriptions of Seven Now Species of Fishes from Deep Soundings on the Southern New England Coast, with Diagnoses of Two Undescribed Genera of Flounders and a Genus related to Merlucius 337
Fishes from the Decp Water on the South Coast of New England obtained by the United States Fish Commission in the Summer of 1880 467
The Frigate Mackerel (Auxis Rochei) on the New:England Coast. 532
Notacanthus phasganorus, a New Species of Notacanthide from the Grand Banks of New- foundland 535
May, O. P. On a Collection of Fishes from Eastern Mississippi 488
Heilprin, Angelo. On Some Now Species of Eocene Mollusca from the Soutbern United States. 149
Jordan, David S. Notes on a Collection of Fishos from East Florida, obtained by Dr. J. A. Henshall 17
Notes on a Collection of Fishes from Saint John's River, Florida, obtained by Mr. A. H. Curtiss 22

- Note on a Forgotten Paper of Dr. Ayres, and its Bearing on the Nomenclature of the Cyprinoid Fishes of the San Francisco Markets 325
Note on "Sema" and "Dacentrus" 327
Description of a New Species of Caranx (Caranx beani), from Beaufort, North Caro- 486lina
Sordan, David S., nud Gilbert, Charles II. Notes on a Collection of Fishes from San Diego, California 23
Description of a New Flounder (Xystreurys liolepis), from Santa Catalina Island, Cali- fornia 34
- Description of a New Bay (Platyrhina triseriata), from the Coast of California. 36
Description of a New Species of "Rock Cod" (Sebastichthys serriceps), from the Coast of California 38
On the Occarrence of Cephaloscyllium laticeps (Duméril) Gill on the Coast of Califor- 40nia
On the Oil Shark of Southern California (Galeorhinus galeus) 42
Description of a New Flounder (Pleuronichthys verticalis), from the Coast of California, with Notes on Other Species. 49
Notes on Sharks from the Coast of California. 51
On the Generic Relations of Platyrhina exasperata 53
Description of a New Species of Sebastichthys (Sebastichthys miniatus), from Monterey Bay, California. 70
Description of a New Species of "Rock-fish" (Sebastichthys carnatus), from the Coast, of California 73
Description of a New Species of Ray (Raia stellulata), from Monterey, California 133
Description of New Species of Xiphister and Apodichthys, from Monterey, California... 135
Description of Two Now Species of Sebastichthys (Sebastichthys entomelas and Sebastich. thys rhodochloris), from Monterey Bay, California. 142
Description of a New Agonoid Fish (Brachiopsis xyosternus), from Monterey Bay, California. 152
- Description of a New Flounder (Hippoglossoides exilis), from the Coast of California... 154
Page.
Jordan, David S., and Gilbert, Charles Th. Description of a New Species of Ray (Raia rhina) from the Coast of California 251
Description of Two New Species of Fishes (Ascelichthys rhodorus and Scytalina cerdale) from Neah Bay, Washington Territory 264
Description of Two New Species of Scopeloid Fishes (Sudis ringens and Myctophum crenulare), from Santa Barbara Channel, California 273
-Description of Two New Species of Flounders (Parophrys ischyurus and Hippoglos- soidcs classodon), from Puget Sonnd 276
- Description of Seven New Species of Sebastoid Fishes, from the Coast of California 287
Description of a New Embiotocoid (Abcona aurora), from Monterey, California, with Notes on a Ficlated Species 299
Description of a Now Flounder (Platysomatichthys stomias), from the Coast of Califor- nia. 301
Description of a New Embintocoid Fish (Cymatogaster rosaceus), from the Coast of Cali-fornia.303
Description of a New Species of Deep. Water Fish (Icichthys Lockingtoni), from the Coastof California305
Description of a New Embiotocoid Fish (Ditrema atripes), from the Coast of California.. 320
Description of a New Scorpænoid Fish (Sebastichthys maliger), from the Coast of Cali-fornia322
- Description of a New Scorpænoid Fish (Sebastichthys prorigcr), from Monterey Bay, California 327
Description of a New Agonoid (Agonus vulsus), from the Coast of California. 330
Description of a New Species of Hemirhamphus (Hemirhamphus rosce), from the Coast of California 335
Description of a New Species of Notidanoid Shark (Hexanchus corinus), from the PacificCoast of the United States.352
Description of a New Speries of Nemichthys (Nemichthys avocetta), from Puget Sound 409
Description of a New Species of Paralepis (Paralepis coruscans), from the Straits of Juan de Fuca 411
- List of the Fishes of the Pacific Coast of the United States, with a Table showing the Distribution of the Species 452
On the Generic Relations of Belone exilis Girard 459
Notes on a Collection of Fishes from Utah Lake 459
- Description of a New Species of Rock-fish (Sebastichthys chrysnmelas), from the Coastof California465
Lawrence, Gcorge N. Description of a New Species of Bird of the Family Turdida, from the Island of Dominica, W. I 16
Description of a New Species of Parrot of the Genas Chrysotis, from the Island of Do-minica254
——— Description of a New Species of Icterus, from the West Indies 351
Lockington, W.N. Remarks on the Species of the Genus Chirus found in San Francisco Market, including one hitherto undescribed 53
Description of a New Fish from Alaska (Uranidea microstoma) 58
Description of a New Species of Agonida (Brachyopsis verrucosus), from the Coast ofCalifornia60
Description of a New Genins and Some New Species of California Fishes (Icosteus cenig- maticus and Osmerus attenuatus) 63
Description of a New Chiroid Fish (Mryriolepis zonifer), from Monterey Bay, California.. 248
Description of a New Sparoid Fish (Sparus brachysomus), from Lower California284
Note ou a New Flat-fish (Lepidopsetta isolepis), found in the Markets of San Francisco.. 325
Description of a New Species of Prionotus (Prionotus stephanophrys), from the Coast ofCalifornia529
Rathbun, IRichard. The Littoral Marine Fanna of Provincetown, Cape Cod, Massachn- setts. 116
Ridgway, Robert. Revisions of Nomenclature of Certain North American Birds. 1
A Catalogue of the Birds of North America 163
Catalogue of Trochilides in the Collection of the United States National Musenm. 308
Ryder, John A. On Camaraphysema, a New Typo of Sponge 269
—_ List of the North American Species of Myriapods belonging to the Family of the Lysio- petalide, with a Description of a Blind Form from Luray Cave, Virginia 524
Smith, 1 Bosa. On the Occurrence of a Species of Cremnobates at San Diego, California. 147
Smith, S. H. Preliminary Notice of the Crustacca dredged in 64 to 325 fathoms off the South Coast of Now England, by the United States Fish Commission, in 1880 413
Swan, James CT. The Surf Smelt of the Northwest Coast, and the Method of Taking Them by the Quillchute Indians, West Coast of Washington Tcrritory 43
The Enlachon or Candle-fish of the Northwest Coast 257
Vervill, A.E. Notice of Recent Additions to the Marine Invertebrata of the Northeast-ern Coast of America, with Deseriptions of New Genera and Species and Critical Remarkson Others
Part II.-Mollusca, with Notes on Annelida, Echinodermata, etc., collected by the UnitedStates Fish Commission356
Part III.-Catalogue of Mollusca recently added to the Fanna of Sonthern New Lugland 405
White, C. A. Note on the Occurrence of Productus giganteus in California 48
Note on Acrothcle 47
Description of a New Cretaccons Pinna from New Mexico 47
Note on the Occurrence of Strieklandia Salteri and S. Davidsoni in Georgia 48
Description of a very large Fossil Gasteropod, from the State of Puebla, Mexico 140
Descriptions of New Invertebrate Fossils from the Mesozoic and Cenozoic Rocks ofArkansas, W yoming, Colorado, and Utah157

united states national musecha.
 1580.

REVISYONS OF NOMENCLATURE OF CEIR'TAEN NOIRTIM AMEIBICAN HEIEDS.

By ROBEETT RIDGUAY.

The following emendations of nomenclature apply both to species enumerated in the latest published list of North American bindsCones's "Check List,"* and others not contained therein. These two series are therefore included in separate categories, the former having, for convenience of reference, the corresponding number of the "Check List" prefixed to each name.

It is deemed inexpedient to give here a list of the species to be added to the Smithsonian Catalogue of 1859, t for the reason that they are sufficiently distinguished by the absence of the concordant number following each name, in the revised list following this paper.

a. Species given in Coues's Сheck List.

4b. Turdus aONALASCHKAE, \ddagger Gmel.-In my report on the ornithology of the fortieth parallel expedition I used the name "guttutu, Pallas," as the earliest name certainly applicable to this species; but I now believe that Gmelin's name, Turdus aonalaschkae, based upon the Unalascha Thrush of Pennant (Aretic Zoology, II, 1. 338) and Aoonalashlik Thrush of Latham (Synopsis, II, i, p. 23), is the one which should be msed. As in the case of Muscicapa guttutu, Pall., there can be no doubt whatever that the western Dwarf Thrnsh (Turdus momus, Auct., nec And.!) is the very species which these authors described under the above names. Turdus aonalaschkue being, therefore, the proper name for the Hermit Thrushes collectively, the Middle and Lastern Province forms should be called, respectively, T. aonulaschlac auluboni aud T. aonulaschkac pallasi. With regard to the last, it is very evident that

[^0]Proc. Nat. Mus. S0——1 Mareli d8, 1880.

Turdus manus, Aud., was based npon a small specimen of the eastern Hermit Thush, since Audubon distinctly says so in his account of the smposed species. The name momus antedates pallasi ; but the latter having been used, in a restricted sense, exclusively for the eastern race, while mames has been almost wholly applied, of late years, to the small west-coant form now to be called T. aonalaschliae, it seems best to diseard the name nams altogether and adopt for the eastern birds that of pallasi, as mext in order of date.
61. Helontea swainsoni, Aul.-According to Agassiz, the correct orthography of the generic name of this species (if to be separated from Helmitherus) is Helonere and not "Helinaia"" as spelled by Audulon. (Of. Newton, P. Z. S., 1879, p. 555.)

144\%. Lencosticte griseinucha (Brandt) Bp.-The present indiations are that this form does not intergrade with L. tephrocotis, but, on the contrary, is a well-defined species of very constant characters confined strictly to that portion of the Alaskan coast west of the one hundred and thirty-fifth degree of west longitude.

146 a. Eyiothns linaria, "var. fuscescens."-No examples referable to the so-called fuscescens having ever been takeu in winter; while the particular stage originally so named is represented by birds in highly intensified midsummer dress from carious portions of subarctic America (the interior of the continent and coast of Alaska, as well as Labrador), the inference is natural that "fuscescens" represents simply the midsummer phmage of the common species. (Of. Cones, Birds of the Northwest, 1874, p. 115.)

146b. Elyiothus canescens cxilipes (Cones) Ridgw.-There is every probability that $2 \mathbb{L}$. canescens is a quite distinct species, since it occurs in almost every district inhabited by E. linaria (especially in the Nearetic Region), and camot therefore be a geographical race of the same species. D. canescens and E. linaria holbölli are the large boreal races breeding in Greenland; A. canescons cxilipes and E. linaria proper are the smaller continental forms.

159 a. Passerculus anthinus, Bp.-This seems to be quite distinct from P. samdwichensis, and probably more nearly relatel to-

160 a. Passerculus Guttatus, Lawr., which proves to be very distinct from P. rostratus.

165 a (Appendix). Ammodromus nigrescens, Ridgw.-As has already been insisted by Mr. Maynard (see Am. Sportsman, V. Jan. 16, 1875, p. 248), this bird is very probably distinct specifically from A. maritimus.
169. Melospiza fasciata (Gm.) Scott.-We can see no valid reason why Ginelin's name for this species should not be used instead of Wilson's, bestowed upon it nearly a quarter of a century later. (Cf. Scott,

Am. Nat., 1876,1 . 17.) The recognizable forms of this species should therefore be known as (169a) M. Fasciata fallax, (169b) M. FASCiATA guttata, ($169 e$) M. FASCIATA rufina, ($169 d$) M. FASCIATA heermanni, and ($169 e$) M. ${ }^{\text {FFASCIATA SAMUELIS (samuelis antedating gouldii). }}$
$169 f^{\prime}$. Melospiza Cinerfa (Gm.)Rirlgw.--Through the explonations of Messrs. Dall, Tumer, and Nelson, the fama of Unalashka has of late years been very thoroughly investigated, and we are thus able to identify the "Cinereous Finch" of Pennant (Arct. Koology, Il, p. 68) upon whirh Gmelin based his Fringilla cinerea (S. N., I, ii, p. 922) with the species which Professor Baird afterward named Melospiza insignis (Trans. Chicago Acad., I, i, p. 319, pl. 29, fig. 2). Through the sume means it becomes equally certain that the Oonctrstia Buntiny of Pemnant and Latham (Emberize unalaseheensis, Gm., S. N., I, ii, p. S75) is, as some anthors have long maintained, the bird usually called Passerella townsendi (Aud.). The known forms ot Passerelle having been proven by Mr. Henshaw to intergrade, and therefore, to constitute mere geographical races of a single species, they should be known by the following names:-
188. P. iliaca (Merrem) Sw.
"189"a. P. iliaca unalaschcensis (Gm.) Riglgw.
189 a. P. iliaca sehistacere (Baird) Hensh.
—. P. iliaca megaihyneha (Bairl) Hensh.-
the latter-connecting unalaschcensis with schistacea, but peentiar in the extremely robust bill and other characters-not being given in the "Cheek List."

170 a (Appendix). Peucta arizonte. Ridgr.--There is rery strong probability of this being quite distinct, specifically, from P. cestivalis. (See Proc. UT. S. Nat. Mns., 1. 1sis, p. 12- foot-note.)
17. Spizella montand (Fonst.) Ridgw.-Forster's name of montana applied to this species in 17 à antedates Gmelin's name monticola (17SS), and, there being no objection to it otherwise, should be substituted for it.

180 a. Spizella maEwERI, Cass.-Thus far there appears not the slightest evidence that this bird shond be referred to \mathbb{S}. pallida. The respective habitats of the two orerlap 'quite considerably, and they may always be easily distinguished by the markings of the head.
191. Spiza americana (Gm.) B].-In 1558 Professor Baird rejected the gencric name Spiza for this species, for the reason that, although it "Was first used in "onnection with Emberizn "mericana," it was "so mixed up with trpes of sereral other modrru genera as to render it mencertain whether to apply it to one rather than to another"--at the same time remarking that "if Spiza pointed more mmmistakably to the E. americant it might, perhaps, be necessary to adopt it." ("Pirds N. Am.," p. 494.) Upon referring to the "Specchio Comparativo," where Bonaparte next, after its institution, mentions his genns Spiza, I find, in the
foot-note on p. 47, that he distinctly names E. americana as the type of the genus ("Reconoscemmo inoltre, che quest' uccello [E. melanocephala] è il perfetto aHalogo della Fringilla americana TIPO DI QUEL Sottogenre"). Four years later, however, Bonaparte proposed the name Euspiza for the same type ("Saggio," p. 141), but according to recognized rules this later name becomes simply a synonym of Spiza, as does also Cabanis's name Euspinu, the latter substitued for Euspiza (Mus. Hein., I, 1. 133), under the misapprehension that the type of the latter was the Em beriza melanocephala of Scopoli (see M. H., p. 130)-a species not only generically diistinct from E. americanu, Gmel., but moreover hardly a member of the same subfamily.
201. Phonipara ZenA (Linn.) Bryant.-_"Fringilla bicolor," Linn., S. N., ed. $12(1766)=F^{\prime}$. zena, Linn., S. N., ed. 10 (1758).
206. Pipilo fuscus mesoleucus (Baird) B. B. \& R.-The Arizona form of this species is very easily distinguishable from the true fuscus of Mexico, the latter being without the rufous cap of mesoleucus, the colors in general darker, etc.

212b. Agelcers Tricolor (Nutt.) Bp.-Totally distinct from A. phoeniсеия.
233. Pica rustica hudsonica (Sab.) Baird.-The earliest available name for the Emopean Magpie appears to be Corvus rusticus, Scopoli (1769), which considerably antedates "melanoleuca, Vieill." (1818), and is now adopted by Emropean anthorities. ($C f$. Dresser, Birds of Europe, pt. xxii.) The American bird, therefore, if to be separated subspecifically from the Enropean (for which there certainly seems sufficient reason), should be named as above.

239 (Appendix). Perisoreus obscurus, Ridgw.-Since the original description of this bird was published Mr. Henshaw has obtained additional specimens, and, by an examination of them, together with the types, has adopted Mr. Sharpe's conclusion (Cat. B. Brit. Mus., III, p. 105) that the form in question is a distinct species, an opinion in which I at present wholly agree. Not so, howerer, with capitalis, Baird, which Mr. Sharpe treats in the same manner; the latter unquestionably grades directly into P.canadensis, and consequently, notwithstanding it is a Fery strougly marked form, should be called P. canadensis capitalis.

The Perisoreus obscurus is of much more restricted range than was at first supposed, and probably docs not extend much, if any, north of Sitka. The examples allnded to in Hist. N. Am. B. (Vol. II, p. 302), as coming" from "north of Sitka and in the Yukon territory," and which were stated to "ineline toward the var. canadensis," are in reality referable to P. canadensis, of which they constitute a separable race, distinguished by the less extent and dingy or smoky tinge of the frontal
white patch and generally darker colors. This new race may be characterized as follows:

Perisoreus Canadensis fumprons, Ridgw.
Ch.-Similar to canadensis proper, hut colors darker and more dingy throughout, and the white of the forchead obscured, or even sometimes almost wholly obliterated, by a wash of smoky gray or brown.
Hab.-Coast of Alaska.
265. Caprimulgus vocifcrus, Wils.-I can see no reason whaterer for removing this bird from the gems Caprimulgus. The type of "Antrostomus" is the C. carolinensis, Gmel., which differs from all the other Caprimulgi (so far as I am aware) in possessing fine lateral filaments to the rictal bristles, so that, in case this character be deemed sufficient, the genus Antrostomus may stand, if restricted to the single species possessing this feature. (Cf. Proc. U. S. Nat. Mus., I, p]. 142, 143, pls. i, ii.)
266. Phal anoptiluts muttalli (Aud.) Ridgw.-This species is decidedly peenliar in the combination of its salient points of structure, having a lengthened, naked tarsms, like Nyctidromus, a characteristically velrety plumage, short, even tail, and unique wing-formula; features which, taken together, render it a very well-marked genus, which may be characterized as follows:-

Phalenoptilus, gen. nov.

Ch.-Differing from Caprimulgus and "Antrostomns" in the short, even tail (much shorter than the wing), and lengthened, perfectly naked tarsus (longer than the middle toe), the first quill shorter than the fourth, and the plumage with a peculiar, velvety, motl-like surface.
Type, Caprimulyus nuttalli, And.
As stated on pages 142, 143, Proceedings of the United States National Museum, Vol. I (1875), the characters supposed to separate the American Antrostom i from the Old World species of Caprimulgus, particularly the type of the latter genus (C. europeus, L.), are wholly intangible, with the exception of A. carolincnsis, which lias mime lateral filaments to the rictal bristles, these being in all other species perfectly smooth, or simple. On the other hand, the Coprimulgus muttulli of Audubon has so many decirled peculiarities of structure that it is somewhat a matter of smprise that its place in the gemus "Autrostomus" has not been questioned ere this. In fact, P. muttalli is quite as distinct in its external strncture from " A." rociferus and its allies as is the Nyctidromus albicollis. The mere prominent differences of structure in these forms may readily be seen by comparison of the birds themselves, or by examination of the outline drawings of plates 1 and 11 of the volume of the "Proceedings" referred to above.
268. Chorleiles Acuirpennis texensis (Lawr.) B. B. \& R.-The Chordeiles texensis of Lawrence is merely a slighty different northern form
of C. ncutipennis (Bodd.) Cass., of South America. (See Sclater, P. Z. S. 1866; p. 132, and Hist. N. Am. B., II, pp. 400, 407.)
$26 i^{-}$. Chordeiles popetue (Vieill.) Bairl.-Brisson's name rirginianus was not restricted to this species mitil many years after the institution of Vieillot's name popetue: the latter, therefore, notwithstanding its barbarms ehanacter, is, by all the rules, entitled to retention.
269. ('ypseless saxatilis (Woodh.) Ritgw. -This spegies agrees so very closely in details of structure with O. melba, Limn, that there seems to be 110 good reason for separating it genericaly from the genus Cypselus, unless C. melbe also is removed to another gemus. The type of Panyptila being the Cypselus cayamensis, Gmel., the elimination of C. saxatilis does not, of course, affect the validity of the latter genus, as properly restricted; still, there is not mnch more difference of form between "Pampptila" cayemensis and C. saxatilis than between C. melba and C. apus, the latter being the type of Cypselus. C. apus has the feet much weaker and the tarsus much more densely feathered than C. melba; C. suxatilis is nearly intermediate in this respect, though coming much nearer to C. melba.
273. Basllinva xantusi (Lawr.) Elliot.--See Elliot's "Synopsis of the Trochilide*" ", p. 227.
284. Trogon Ambiguus, Gould.-The species described in "Birds of North America," and figured in the atlas to that work, is the present one, and not T. mexicamus. The latter is chiefly distinguished by the absence of white bars on the tail-feathers, which are uniform black underneath, except the laroad white tip.

295 . Xenopiuds ulbolarvatus (Cass.) Bal.-In addition to the very tangible external characters pointed ont by Professor Baird in his characterization of a subgenus Tenopieus (B. N. Am., p. S3), may be mentioned the fact that the tongne is scarcely extensile, its tip, when fully protruded, reaching only $\frac{3}{4}$ of an inch beyond the tip of the bill, or just the same as in Sphyropieus thyroidens, while in Picus villosus harrisi the protrusion amounts to $2 \frac{2}{2}$ inches, or $1 \frac{3}{4}$ inches more! (See Orn. 40th Parallel, pp. 546,548 , and 552 , under lists of specimens of the above species.)
301. Picoides tridactylues americamus (Brehm) B. B. \& R.-As pointed out in "History of North American Birds" (Vol. II, pp. $529-$ 534), the differences between the American and European white-backed species of this genus are very slight, and by no means sufficient to warrant, specific separation. The common form should therefore be known as above, and the Rocky Mountain race, if deemed sufficiently distinct, as-

[^1]301 a. Picoides tridactilus dorsalis (Bairl) B. B. \& R.
314. Colaptes auratus mexicanus (Sw.).

The above combination becomes absolutely necessary in riew of the indisputable and wholesale intergradation of the anratus and mexicames types of this species. In the present case is afforded an excellent example of the difficnlties in the way of consistent nomenclature, whether binomial or trinomial.
316. Aluco flemmens pratincola (Bonap.) Ridgw.-Professor Newton has, we think, clearly demonstrated* that the proper type of the Linnean genus Strix is not S. flemmen, but S. stridula, subsequently made the type of Savigny's geuns Syrnium ; and that Aluco, Fleming (1828), should stand as the generic name of the Barn Owls. Andubon's name, "americana" (1839), for the American Barn Owl is antedated by pratincola, Bouap. (1838), which should, in consequence, stand as the subspecific name for this form.

318b. Scops asio maccalli (Cass.) Coues.-In the "Proceedings of the U. S. Nat. Mus." for 1878 (Vol. I, pp. 109-111), I formally referred the "Scops asio var. cnano" of Lawrence to S. macealli, Cassin, and in a foot-note on p. 111 refer Mr. Sennett's specimens to the latter. This fact, howerer, seems to have been overlooked by both Dr. Cones and Mr. Sennett, who, in their last paper, continue to eall the variety " S. asio enano." \dagger
320. Asio wilsoniamus (Less.).-Brisson's gems Asio appears to be unquestionably that which should be applied to the long-eared owls, and has long since been adopted by some authorities. Admitting that the short-eared species (Strix accipitrina, Pall.) cannot be separated generically, it would have to be called-
321. Asso accipitrinus (Pall.) Newton.
323. Strix nebulosu, Forst.-Professor Nerston's very correct conclusion that the proper trpe of the Limmean genus Strix is the S. stridula, necessitates the above change in the generic name of this American congener of that species.

The Floridan birds of S. nebulosa I find to be so different from northern examples as to well merit subspecific separation. In his memorable work on the birds of East Florida (Bull. Mus. Comp. Zool., I. p. 340) Mr. Allen refers to the much darker color of Floridan specimens, but apparently overlooks the naked toes. It is with pleasure that I dedicate this race to one who has done such eminent service not only to the ornithology of Florida, but to the science in general.

[^2]CH.-Similar to typical nebulosa, but toes wholly destitute of feathers or bristles, jeing perfectly bare to the extreme base; colors darker than in nebulosa, with less ochraceons, the tail scareely barred on the basal half, and the bars on the breastinuch more distinet, as well as narrower and more continnons.
Hab.-Florida (Clearwater).
The above eharacters I find to be constant in a series of three specimens (two of and one f) sent to the National Museum by Col. S. T. Walker, of Clearwater, Florida. Not only are the toes perfectly bare, but the feathers clothing the tarsi are much shorter than in northern nebulosa, thus causing the legs to appear much more slender. The only feathering on the toes consists of a small pointed strip on the outer side of the first phalanx of the middle toe, reaching about to the second joint.
324. Strix occidentalis (Xant.) Ridgw.

Assuming that the Great Grey Owls are sufficiently distinct generically from the foregoing, they should be known as-
322. Scotiaptex einercum (Gmel.) Swains., and [322 a.] Scotiaptex cinereum lapponicum (Retz.) Ridgw
236. 'surnia ulula FUNEREA (Linn.) Rich. \& Sw.-In the 10 th edition of "Systema Nature" Linnæus describes on the same page (93) Strix funerea and S. ulula, in the order here given; the former being based on "Fu. suec. $51, "$ the "ulula flammeata, Frisch. ar. t. 9 " being doubtfully quoted; "Habitat in Europa." S. ulula is based upon "Fn. suec. ã2-Ulula, Gesn. av. 773 , Aldr. ornith, 1. 8, c. 6 ; Will. ornith. 68, t. 13, Ray. av. 26, n. 4;" the habitat also "in Europa." In neither case would the diagnoses given determine the species independent of the references. In the 12 th edition, however, S. ulula is mentioned first, with the same diagnosis and habitat, but with additional or more explicit references. S. funerea follows, with an additional diagnosis which reuders the species unmistakable, and a reference to "Strix canadensis," Briss. av. I, p. 518, t. 37, f. 2, which we know to be the American Hawk Owl. Furthermore, there is added to the habitat "America septentrionali." It is therefore difficult to decide which of the two names has priority as the specifie designation. If the S. funerea is to be regarded the same in both editions, then this name, as occurring first on the page, would be entitled to that claim; but there is nothing whatever in the account of Strix fucrea of edition 10 to show that it is anything more than the European Hawk Owl; or, in other words, the same as the species called on the same page S. ulula. As the matter stands, we prefer to take funerea of 1766 as the earliest date of the name as applied to the American birt, and to call the species S. ulula, the latter name being of certain application in the 10th edition, while it precedes funerea in the $12+\mathrm{h}$.
347. Faleo fusco-cererulescens, Vieill.-See Sharpe, "Catalogue of the Accipitres in the British Museum," I, p. 400.
353. Buteo abbreviatus, Cabau.-See Sharpe, as above, p. 163, who, however, refers it to the gemms "Tuchytriorchis." See, also, Sclater \mathbb{E} Salvin's "Nomenclator Avium Neotropicalinm," 1. 118.
363. Polyborus CHeriway (Jacq.) Caban.—See Sharpe, t. e., p. 33. This species appears to be quite distinct from P. tharus.
364. Pseddogrypirus californiamus (Shaw) Ridgw.-Concerning the ralidity of this gemms, see Bull. Nutt. Orn. Club., April, 1880, p. - .
366. Catharista (atrater, Bartr.).-If the name atrata, as now almost universally applied to this species, is to be aceredited to Bartram, it has priority over all the synonyms; but if we are to reject Bartram's names on account of his frequent " lapses" from hinomialism, or his equally bad practice of omitting descriptions (which, however, is not the case with regard to his mention of the present species), then urubu of Vieillot (1809) takes precedence over atrata of Wilson (1812), which comes next in order of date.
368. Columba erythrina, Licht.-Although there is no law compelling the adoption of a museum name, I prefer to do so in this case rather than propose a new one, since Lichtenstein's name erythrind is a very appropriate one. The name by which this species has usually been knownC. "flavirostris, Wagler"-is "glaringly false," and, therefore, to be rejected, according to the rules of the British Association.* It is true that the bill sometimes appears yellowish in the dried skin, but in life it is always some shade of purple or pink, whitish at the extremity. Whatever it may be, it is impossible to identify McCall's C. solitarius with this species. If his description was really penned tiom a specimen, his bird has not yet been rediscovered, no known North American Pigeon corresponding at all closely with his description. In any event it cannot be the present species, which never has "brilliant retlections" on either neck or breast, nor the back or maler wing-coverts "light-red color."

37S. Ortalis vetula macealli (Baird) Rirgw.-In regard to this emendation of the generic name, see Wharton, "The Ibis," Oct., 1879, p. 450. I find the Texan birds easily distinguishable from Mexican examples (true vetulu).
380. CANACE conadensis (Linn.) Reich.-None of the American grouse usually referred to Tetrao resemble at all closely the type of the latter genus, T. urogallus, Linn. They appear, in fact, nearly as distinct firom Tetrao proper as are Bonuse or Pedioectes, or other recognized American genera. It seems searcely advisable, however, to admit a genus "Dendragapus" for the special accommodation of C. obscura in its varions forms.
396. Charadrius Dominicus, Miill.-Miiller's name for the American Golden Plover, dating 1776 , should take precedence over folvus, Gmel., bestowed twelve years later (1788), as the name of the species. The Asiatic form should therefore be called C. dominieus fillous (Gmel.)

[^3]400 bis (Appendix). Egialitis curonica (Gin.) Gray.*-This sup. posed new species proves to be the Lesser Ringed Plover of the Old Workl, Le. curonica (Gm.) (xray, the principal synonyms of which are the following. It may be considered doubtful whether the specimen really was obtamed near San Francisco, as stated on the label.
Charalrius curouicus, Gnel., S. N., I, 1782, 6.2.
Eginlitis entoucus, (iray, C'at. Brit. 13, 186:3, 141.-Marting, Handb. Brit. B. 187: , 1:4.
Charalrius philippiuns, Latı1., Ind. Orm., II, 1790, 745.
Charudrius fiuviatilis, Becust., Naturg. Vög. Dentschl., 1809, 42:.
Charadrius minor, Meyer \& Wolf, 'Tasch. Vög. Dentschl., 1810, 324.
Charadrius iutermedius, Méxétr., Catal. - , 53.
Charadrius zouatus, Swains., B. W. Afr., II, -_, :235, pl. 25.
Agialitis microrhynchus, Ridgw., Am. Nat., VIII, Feb. I874, 109 ("San Francisco, Cal.").
408. Himantopus mexicanus (Miiller) Ord.-Miiller's name dates 1776 ; thirty-one years earlier than migricollis, Vieill.
413. Scolopax Rusticula (Limn.) Wharton.-See "The Ibis," Oct., 1879, р. 453.

442 bis (Appendix). Numenius tahitiensis (Gm.). -The earliest name for the bird afterwards named Numenius femoralis by Mr. Peale is Scolopax tahitiensis, Gmel. (S. N., I, ii, 17SS, 1. 656, n. 62).
448. Ajaja rosen (Briss.) Ridgw.-The American Spoonbill being a very distinct generic type, for which Reichenbach proposed (in 18.53) the name Ajuja, it becomes necessary to change the specific name also. There is not, unfortumately, any post-Limman synonym for this species, with the exception of "Platen' mexieana, Willonghby'" as used by Gambel in 1849 (Jour. of Philad. Acad., 1, p. 222). (Gaublel, however, gives no deseription; and, moreover, since the name "mexicana" is simply quoted from Willonghby, it seems best to adopt Brisson's very appropriate name of rosea, in justice to the accurate and complete description of the species in the work of that anthor.
454. Hydranassa tricolot: (Miill.) Ridgw.-If the Herons are to be subdivided at all, it seems quite necessary to recognize the generic name whieh, in 1S5S, Professor Baird proposed for this species (B. N. Am., p. 660), the earliest designation of which is Ardea tricolor, Miiller (1776).
455. Dichmomanassa rufa (Borlı.) Ridgw.-.See Bull. U. S. Geol. and Geog. Survey Terr., vol. iv, no. 1, p. 246.
460. Botaurus Lentiginosus (Montag.) Stephens.-This appears to be the earliest desiguation of the species.

466 a (Appendix). Rallus obsoletus, Ridgw.-This proves to be quite distinet from R. elegans, being, in fact, more nearly related to R. longirostris (sive "crepitans").
472. Gallimula yalenta (Licht.) Bp.—Qnite distinct specifically from G. chloropus, Lath.
473. Ionornis martinica (Limı.).-This speeies has usually been referred to either Porphyrio, Briss., or Porphyruha, Blyth, but it is exceedingly distinct generically from both these types, partieularly the former. The generic name Ionornis, instituted for its special reception, by Reichenbach in 1853 (Nat. Syst., p. xxi), seems to be the earliest one available.
488. Anas boscas, Linn.—See Wharton, "The Ibis," Oct., 1879, p. 453).
$489 a$ (Appendix). Anuts fitlvigula, Ridgw.-This bird proves very distinet from A. obscura.
526. Pelecamus erythrorifynchus, Gmel.-This name antedates "trachyrhynchus, Lath.," by two years, and, being no less appropriate, there is no valid reason why it shonld not be retained. ($O f$. Bull. Nutt. Orn. Club, Jan., 1880, p. 36.)
525. Sulte leucogastra (Bodd.) Salvin.-See Salvin, Trans. Zool. Soc. Lond., IX, ix, 1875, 496.
529. Phalacrocorax dilophus cincimatus (Brandt) Ridgw.This is simply the large northrestern form of P. Nilophus, no more entitled to specific separation than var. floridamus, which represents the opposite extreme of size.

In regard to the generic name of the Cormorants, it appears that we will have to use Phalucrocorux, Briss., instead of Graculus, the latter, properly applied, having for 1ts type the Corrus graculus, Limn., = Gracula pyrrhocorux, Seop. (Conf. Sharpe, Cat. Passerif. Brit. Mns., p. 146, foot-note.)

547 b. Larus occidentalis, Aud.
548 a. Larues Californicus, Latrr.
549. Latus brachyrifyciuts, Rich.

The above appear to be quite well-defined and distinct species; the first more nearly related to L. affinis, Reimh., than to argentatus; the seeond much nearer to L. cuehimums, Pall., than to delawarensis.
581. Osstfraga gigentea (Gmel.) Homb. \& Jacq.-A very distinct genus from Fulmarus.
580. Pinebetrila fuliginosa (Gmel.) Coues.-Appears to be sufficiently distinct generically from Diomedea.
583. Priocelda tenuirostris (Aud.) - - This bird seems sufficiently distinct generically from Fulmariss, and has been made the type of Priocella, by Hombron \& Jaequinot (Compt. Rend., XVIII, 1844, p. 357.)
595. Priofinus molamurus (Bomi.) -- -This species is the type of the genus Priofinus, Homb. \& Jacq. (t. c. p. 355).
600. Puffinus auduboni, Finseh.-The Procellaria obseura of Ginel. has been determined by Dr. Finsch (see P. Z. S. 1872, p. 111) to be a Pacific Ocean species, distinguished from the Puffinus obscurus of recent authors by its white underwing-coverts and other characters. Dr. Finsch therefore proposed for the Atlantic species the name auduboni, as above.
601. Puffinis gavia (Forst.) Finsch.-See Giglioli \& Salvadori, Ibis, 1869, p. 66; Finsch, Jour. fuir Orn., 1872, p. 256.
603. Puffinus griseus (Gmel.) Finsch.-Of. Finsch, Jour. fuir. Orn., 1874, p. 209 ; Salvin, Rowley's Orn. Misc., iv, 1876, p. 236.
619. Lunds cirrhata, Pall.-Sufficiently distinct generically from the species of Fratcrcula.
623. Simorhynchus pyGMeus (Gmel.) Ridgw.-The Alca pygmea of Gmelin is unquestionably the young of this species, afterward named "S. cassini" by Dr. Coues. Alca kamtschatica, Lepechin, is the same species in adult (winter?) plumage.

b. Species and Subspecies not in Coues's Check Lis't.

Siurus vevius votabilis, Grinnell, MS.
Ch.-Similar to S. narius, but moth larger. Wing, 3.25; tail, 2.50; bill, from nostril, .50; depth at base, .25; tarsns, .83; middle toe, .56. Above dark grayish brown, the feathers of the pilenm with indistinctly darker centres. Beneath yellowish white, the throat thiekly spotted, and the breast and sides heavily streaked with hackish dusky; a supereiliary stripe of pale fulvous, hardly extending back to the end of the auriculars. Lores erossed by a distinct streak of blaek. Centre of the abdomen immaculate; lower tail-eoverts with central streaks of grayish dusky ; lining of the wing smoky gray. Bill browuish black, the mandible growing lighter brown basally. Fuet horn-color.

Hab.-Black Jills, W yoming (Mus. G. B. Grinneil).
The plumage of this bird is in all respects, so far as I can see, quite identical with that of ordinary darker plumaged specimens of S. navius, except that the superciliary stripe does not extend so far back and the streaks on the breast are broader; the former character may be merely apparent, however, and owing to the manner of skiuning.

Parus cinctus, Bodd.-In acerediting this species to the North American fauma, ou the strength of specimens collected in Alaska by Mr. Lucien M. Turner*, I inadvertantly called it "P. sibiricus, Gmel.," at the time overlooking the priority of the name cinctus.

Myiarchus mexicanus (Kamp) Lawr.
Tyrannula mexicana, Kaup, P. Z. S., Feb. 11, 1851,51. \dagger
Myiarchus mexicanus, Lawr., Ann. Lyc. N. Y., IX., 1869, 202 (nee Baird, B. N. Am., 1858, p. 179).
P? Tyrannula cooperi, Kaup, l. c. (Mexico). \ddagger
Myiarchus cooperi, Baird, B. N. Am., 1858, 180 (based on the above).
Myiarchus erythrocercus, Scl. \& Salv., P. Z. S. 1868, 631, 632 (Tobago \& Venezuela). Myiarchus yucatancnsis, Lawr., Pr. Philad. Acad. 1871, 235.
Myiarchus oberi, Lawr., Aum. N. Y. Acad. Sci., I, 1877, 48 (Dominica, W. I.).
Disclaiming any desire to prolong the discussion inaugurated by me in Vol. I of these Proceedings (p. 139), I however feel called upon, by Mr. Senmett's comments in his "Further Notes on the Ornithology of the Rio Grande" (Bull. U. S. Geol. \& Geog. Surrey, Vol. V, No. 3, pp. 402-404), to offer a few additional remarks on the subject.

The synonymy of Myiarchus mexicanus (Kaup) Lawr., as given above, includes all the binomial synonyms of the species in question, so far as I am aware; and in view of Mr. Sclater's positive declaration (P. Z. S. 1851, p. 84) that "Tyrannula mexicana of Kaup is identical with Myiarchus cooperi of Baird," I do not see how we can avoid using Kaup's name for the species. Mr. Sclater's opinion certainly cannot be set aside, for he made actual comparison of Kaup's type specimen with the very examples which Professor Baird called M. cooperi, and found them "identical."

The name erythrocercus, Scl., was proposed three years before Mr. Sclater made this discovery, and was, moreover, based on examples from Tobago, Veneznela, and Bahia, and was described as "similar to 11. cooperi [i. e., moxicanus, Kaup], but much smaller," etc.

In 1871, Mr. Lawrence, being apparently unaware of Dr. Sclater's identification of '6. mexicanus, Kaup, with Professor Baird's M. cooperi, and accepting the latter's identification of mexicanus with his (L.'s) cincrascens of later date, redescribed the Mexican bird as M. yucatanensis; and in 1877, on the ground of certain differences of plumage and size, separated (from M. "erythrocereus") the specimens from the Lesser Antilles (Dominica) by naming them MI. oberi.

[^4]Such is, in brief, the history of the case. The point at issue, however, is whether specimens of this species from the Rio Grande Valley in Texas are to be referred to mexicamus proper or to an assumed race, "erythrocercus." The species was originally introdiced to the United States fanma muler the name " M. crinitus erythroccreus (Scl. \& Salv.) Cones" (Bull. U. S. Geol. \& Geog. Surv. Ter., Vol. IV, No. 1, p. 32), and was subsequently mentioned by the present writer as "M. erythrocercus var. cooperi" (Proc. U. S. Nat. Mus., I, 1875, p. 138), both of which I believe to be incorrect-the former on acconnt of the reference of the species to M. crinitus, and, probably, in the use of the name erythrocercus instead of mexicanus; the latter, becanse erythrocercus is the subsequent name, and cannot, therefore, be used for the specific designation, while cooperi is also rery doubtfully referable to this species. In order, however, to present the case as briefly and clearly as possible it will be necessary to diseuss the several points separately.

First, as to the reference of this species to erimitus: I do not see how this can possibly be done withont bringing in also M. cinerascens and M. stolidus (see Mist. N. Am. B., Vol. II, p. 331); and even then I much donbt whether crinitus and mexicanus ever intergrade, since I have examined many scores of specimens, but lave yet to find a specimen that is truly intermediate.* There is, however, in Southwestern Mexico a very small race of mexieanus, which can be distinguished from cinerascens only by the extension of the rufous of the reteices to the extreme tip of the imuer web, they being in every other respect apparently quite identical. There are several such examples in the national collection, obtained in Tehuantepec by Professor F. Sumichrast.

Second: It is much to be regretted that neither Dr. Kimp nor Dr. Sclater give measmrements of the type specimens of T. moxicamus, since we might then readily determine whether this name belongs to the large or the small race of the species as occurring in Mexico. Since, however, Dr. Sclater remarks that "it (the said type) is eertainly rather smaller in dimensions than two of my skins of this species (i.e., " M. cooperi," Baird), and has the bill smaller"; and that "a third specimen in my collection, which I also refer to the (so-called) M. cooperi of Bairl, agrees very well with it in general dimensions, and has the bill even slightly smaller," it appears very evident that Kitup's T. mexieana was not based on one of the very large individuals of this species, but one of medium size, corresponding to the Rio Grande specimens. Further than this, the individual variations among Mexican specimens of this species affect only the size and proportions, not colors-at least not to any especially noticeable extent.

Third : I find upon re-examination of all the material in the national

[^5]collection (embracing numerous specimens leceived since my last paper was written), that specimens from the patrie of erythrocercus proper (Venezuela, Tobago, Bahia, and other parts of South America) dre uniformy darker colored than the smaller Mexican examples, thongh they may fully equal them in size. This darkness of color is carried to an extreme degree in Antillean specimens, and constitntes, so far as I am able to see, the sole distinguishing chancter of Mr. Lawrence's "M. oberi," as compared with the continental forms of the species en masse.

Finally, I therefore conclnde that, whatever may be the character of Central American specimens (of course they are intermediate), or whether the name mexicana is to be applied to the larger or smaller race of the Mexican bird (and the odds are strongly in favor of the latter), that (1) the name erythroccreus shonld, if to. be used at all, be restricted to examples agreeing strictly with the South American "race," since it is subsequent in date to mexicamus; and (2) that the Rio Grande birds are probably exactly like the type of the latter:*

Nyetidromus albicollis (Gmel.) Burm.- As explained some years since by Dr. Sclater (see P. Z. S. 1861, p. 10, and 1866, 1. 144), the earliest name for this species is Caprimulgus allicollis Gmel. (S. N., I, ii, 178s, p. 1030), the C. americanus of Linnæns, quoted by Mr. Cassin (Proc. Philad. Acad. 1851, pp. 179, 180) and some other anthors (see Mr. Sennett's two lists) being unquestionably a Jamaican speeies belonging to quite a different genus (Siphonorhis americana). All the synonyms and the more important references are given in my notes in Dr. Merrill's paper (Proc. U. S. Nat. Mus., 1, pp. 143 and 144).

Iache latirostris (Sw.) Elliot.-This species, introdnced to the fama of the United States by Mr. Henshaw (cf. Anerican Sportsman, v, Feb. 20,1875, p. 325 ; Zoology Wheeler's Exp., Orn., p. 380) muler the name of Circe latirostris, should be hereafter known by the above name, the genus Circe being previously employed in another branch of zoology (see Elliott, Synopsis of the Trochilide, p. 234).

Nomonys, gell. hov.
Ch. -Similar to Erismatura, but differing from all the speefes of that genus in the form of the maxillary unguis, which is similar to that of Fulix and allied genera, the same being in Erismatura the most pecnliar and important generic character.

Type, Anas dominica, Linn.
Altogether the most distinctive feature of the gemus Erismatura consists in the remarkably peenliar conformation of the maxillary unguis,

[^6]or nail of the upper mandible. This, viewed from above, is extremely small, narrow, and linear, the broader terminal half being bent very abruptly downward aud backward, so as to be visible ouly from in front or below. With the sole exception of Anas dominica, Linn., all the species usually referred to this.gems agree strictly with the type, Anas leucocephala, Scopp, notwithstanding other characters are more or less variable. Anas dominica, Linn., has the nail of normal form, or very much like that prevailing among the ducks geuerally, and on this account should be separated generically from Erismatura.

DESCRIPTION OF A NEW SPECIES OE HERD OF THE FAMELI TURDIDAE, FROII THE ISLAND OF DOIIINICA, W. Y.

By GEO. N. HAWRENCE.

Margarops dominicensis.
Margarops herminieri, Lawr. nee Lafr., Proc. U. S. Nat. Mus., vol. I, p. 52.
Male.-The entire upper plumage is of a rich dark brown, the crown is darker and has the edges of the feathers of a lighter shade; tail aud quill feathers of a darker brown than the back; axillars and under wing-coverts white; the lores are blackish brown; the feathers back of the eyes and the ear-coverts have narrow shaft streaks of pale rufous; the feathers of the neek and apper part of the breast are of a warm dark brown, those of the chin and middle of the throat with light rufous centres, those of the lower part of the neck aud the upper part of the breast have also light rufous centres, but in addition each feather has a light terminal spot; on the lower part of the breast and ou the sides the feathers have white centres, bordered strikingly with brown ; the markings of the breast-feathers are squamiform in shape, those of the sides lanceolate; the abdomen is white, a few feathers on the upper part are very narrowly margined with brown; under tail-coverts brown, terminating with white; outer feather"s of thighs brown, the inner whitish ; "iris tea-color;" there is a naked space around the eye; bill yellow, with the basal half of the upper mandible dusky ; tarsi and toes pale yellow.

Length (fresh), 9 inches; wing, 5 ; tail $3 \frac{1}{2}$; tarsus, $1 \frac{3}{4}$; bill from front, $\frac{15}{16}$, from gatp, $1 \frac{1}{8}$.

Type in United States National Museum.
Mr. Ober sent five specimens of this form from Dominica, all males and closely resembling each other. It is probable, as in the allied species, that the females do not differ in plumage materially from the males.

Mr. Ober's collection from Dominica contained three species of Margarops which I never had seen before. These were referred to known species, two of them, I think, correctly; but the one which is the subject of this article I now find was erroneously considered to be M. herminieri, Laff. I supposed these species would be the same as those recorded
from the neighboring islands, as they agreed well with the descriptions given of them, and there were $n o$ available specimens to compare with.

As soou as I had finished the examination of the birds of each island collected by Mr. Ober, they were placed in a box by themselves, and not disturbed again except for an occasional comparison. The collection from Gnadelonpe, containing specimens of the true M. herminieri, Lafr., was not received until more than a year after that from Dominica. These specimens I labelled M. herminieri, Lafr., as a matter of course, they being from the locality of the type. The difference between the birds from the two islands was not oloserved at that time, as no comparison was made.

This winter, having occasion to review the species of Margarops, I got the specimens from the different islands together for the first time, and at once saw that the species from Dominica was quite distinct from the Gnadeloupe bird. It differs from M. herminieri, Lafr., in being less in length, of a more robust form, the bill stouter, and the tail shorter; the brown coloring thronghont is much darker and of a ruddy cast, instead of olivaceous; the centres of the feathers on the throat and upper part of the breast are much more mfous, and have black spots at their ends; the abdomen is pure white, whereas in M. herminieri the lower part of the breast and the abdomen are covered with lanceolate-shaped markings, which are very striking, each feather being white, with a strongly defined brown border; only a very small space on the lower part of the abdomen is white; M. herminieri has the white ends of the under tail-coverts edged narrowly with pale brown ; in the new species they are white without borders, and it has the tarsi and toes stronger and paler in color than those of M. herminieri.

February 1, 1880.

NOTES ON A COLLECTEON OF FISIIES FRON EAST FLOREDA, OEBTAINEDIEY DIR, T. A. HENEMELX,

By DAVID S. JORDAN, M. D.

Juring the past winter (1878-979) a collection of fishes was made for the writer by Dr. J. A. Henshall, of Cynthiana, Ky., in the streams and inlets of Eastern Florida. The number of species obtained was not large, lont the specimens were preserved in excellent condition, and among them are several of interest. Two species (Gerres plumieri and Umbrina broussoneti) had not been previonsly recorded from the coast of the United States. Three others were, at the time of collection, new to science. One of these has been lately described, under the name of Jordanella florida, by Messis. Goode and Bean. The others have been already noticed by me in these proceedings as Zygonectes rubrifrons and Zygonectes henshalli.

Proc. Nat. Mus. S0-2

The marine species were obtained from Indian River and from the neighboring coast; the cyprinodonts, centrarchids, and other fresh or brackish water species ehiefly from San Sebastian River and tributaries.

DIODONTIDE.

1. Chilomycterus geometricus (Schneid.) Kanp.

URANOSCOPIDA.

2. Astroscopus y-græcum (C. \& V.) Gill.

A single fine specimen of this beantiful speries. Dr. Henshall informs me that this specimen in life exhibited strong electrical powers, these powers apparently having their seat in the naked skin on the top of the head. So far as I know, such phenomena have not hitherto been ascribed to any fish of this family. I therefore put this statement on record, in hopes that subsequent observers of this rare fish may be able to verify it.

ECHENEIDID.E.

3. Echeneis naucrates L.

A single specimen, with 22 laminæ in the disk.

CARANGIDA.

4. Selene argentea Lac.

Numerous fine large specimens. Specimens lately deseribed from the Pacific coast under the name of Argyriosus pacificus, Lockington, appear to belong to this species.
5. Carangus chrysus (Mitch.) Girard.
6. Chloroscombrus chrysurus (Linn.) Gill.
7. Oligoplites occidentalis (L.) Gill.

Several fine specimens of this highly interesting species. The character of five (instead of seven) dorsal spines, assumed to distinguish Oligoplites from Scombroides Lac. (Chorinemus C. \& V.), is perhaps of insufficient value for generic distinction. Some of the species of Scombroides have, however, the dermal productions really scale-like, instead of the irregular linear imbedded ridges found in Oligoplites. This character may for the present, until all the species of the group are examined, be held to distinguish the latter genus.

SCI ENID E.

8. Umbrina broussoneti Cuv. \& Val.

Two fine specimens of this West Indian species were obtained by Dr. Henshall. These are the first yet recorded from the United States. The species is not included in Goode's Catalogue of Bermudan Fishes, nor
in any of Poey's lists of the fishes of Cuba. It is, therefore, an important addition to our fanna. This specimen agrees very fully with Giinther's deseription of Umbrina broussoneti, and with Cuvier and Valenciennes's deseription of Umbrina coroides. C. \& V.'s description of U. broussoneti gives the number of rays in the dorsal fin as X. I, 25. My specimens have D. X. I, 28.

GERRID \mathbb{E}.

9. Gerres plumieri Cuv. \& Val.

A single fine specimen of this beantiful species. It has not been previously recorded from the coasts of the United States.

SPARIDA.

10. Lagodon rhomboides (L.) Holbr.

PRISTIPOMATIDE.

11. Lutjanus caxis (Schneider) Poey.

A single fine specimen.

CENTRARCHIDA.

12. Micropterus pallidus (Raf.) Gill \& Jordan.

Dr. Léon Vaillant (Mission Scientifique an Mexique: ined.) divides this species provisionally into two, adopting the name "Micropterus salmoides" for the ordinary form, and that of Micropterus muecensis (Baird \& Girarl) for the southwestern form (Texas and Mexico). Accorling to him the two are externally identical, but M. nuecensis is distinguished by the presence of a small patch of teeth on the tongue, the tongue being entirely smooth in the ordinary form.

I have examined a number of specimens in regard to this point.
I find lingual teeth in the following specimens:
(1.) Two specimens, one large one small, from the Falls of the Ohio.
(2.) One small specimen from a tributary of White River at Bloomington, Ind.
(3.) One specimen (in the musemm at Paris) from Texas.

I find them absent in the following :
(1.) Several specimens in Henshall's collection from Indian River.
(3.) Specimen from Neuse River.
(3.) Specimens from White River at Indianapolis.
(4.) Speeimens from Lake Erie.

The presence of these teeth evidently does mot depend on age, and apparently not on sex. It may be a specific feature, but I am inclined at present to think it only a feature of individual rariation. I have not seen such teeth in the small-mouthed black bass.
13. Chrenobryttus viridis (C. \& V.) Jor.

14. Lepomis pallidus (Mitch.) Gill \& Jor.

The recent rejection of the name "pallidus" for this species by my friend Professor Goode (Proc. U. S. Nat. Mus. 1879, 139) is due to his having overlooked the fact that Mitchell has a Labrus pallidus as well as a Bodianus pallidus in his Memoir on the Fishes of New York. The latter, as Professor Goode observes, is Bairdiclla argyroleuca; the former is Lepomis pallidus.
15. Lepomis punctatus (Cuv. \& Val.) Jor.
(Lepomis apiatus Cope.)
Several fine specimens.
16. Enneacanthus obesus (Baird) Gill.
(Ir'ytus fasciatus Holbrook $=$ Bryttus obesus Baird?).
"Enneacanthus milnerianus Cope" is included in Goode's list (Proc. U. S. Nat. Mus., II, 1879, 114) of the fishes of Florida. This species appears in my list of valid species of Centrarchide in Bulletin X of the National Museum. It is a nominal species, and came into the lists in this way: While my paper in Bulletin X was passing through the press, Professor Cope kindly sent me the proof-sheets of a paper on the fishes of the Saint John's, which has since appeared in the Proc. Am. Philos. Soc. In this paper a new species with the above name was described. This species, however, Professor Cope saw fit to suppress in the publication of the paper, he having identifed it with Enneacanthus fasciatus.

MUGILIDE.

17. Mugil brasiliensis Agassiz. White Mullet.

Our other common species of Mrugil, the striped mullet, Mugil plamicri and Mugil lineatus of anthors, is doubtless the species for which the name of Mugil albula L. should be retained.

SCOMBERESOCIDE.

18. Hemirhamphus unifasciatus Ranz.

CYPRINODONTIDAE.

19. Jordanella floridæ Goode \& Bean.

Many specimens of this interesting species were obtained by Dr. IIenshall. The females differ from the males chiefly in the lower vertical fins.
20. Zygonectes rubrifrons Jordan.

Numerous specimens.
21. Zygonectes henshalli Jordan.

Still more abundant. This species and the preceding are rery closely related, and are both nearly intermediate between Zygonectes and Fundulus. The enrent generar related to Fundulus are separated by characters of very dubious value.
22. Fundulus sp .

A small specimen with pale cross-bars; not suitable for identification.
23. Gambusia patruelis B. \& G.

Two specimens, agrecing with the descriptions of Gambusia kolbrooki of Girard and Giinther, and with Girarl's figure of Gambusia patruelis. The two species are probably identical. The black bars on the candal and the oblique suborbital blotch are characteristic color-marks.

CATOSTOMIDA无。

24. Erimyzon goodei Jordan.

Many specimens.

SILURIDÆ.

25. Amiurus erebennus Jordan.

Many small specimens.

ANGUILLID AE.

26. Anguilla rostrata (Le Sueur) DeK.

A comparison of these Florida specimens with a series of eels from Venice renders it evident that our American eel is not identical with Anguilla vulgaris of Europe, as I with others have supposed.

In our species the beginning of the dorsal is notably more posterior than in the Emopean one. In Venetian specimens the distance from the suont to the base of the dorsal is contained $3 \frac{2}{5}$ times in the total length of the fish. In Florida specimens the same distance is contained harely 3 times in the total length.

The sane difference is expressed differently but correctly by Dr. Giinther (Cat. Fish Brit. Mus., VIII, 24). He ascribes to A. vulgaris the character of-
"The length of the hearl is nearly equal to the distance between the commencements of the dorsal and anal fins."

And to A. bostoniensis (rostrata)-
"The length of the head is conspicnonsly more than the distance between the commencements of the dorsal and anal fins."

The band of vomerine teeth also appears to extend farther back in A. vulgaris than in A. rostrata.

NOTES ON A COLILECTION OF FIGHES FRON SAINT TOEIN'S RIVERE, HIORIDA, QETAINED HY IIR.A. HI. CUIRTISS.

Hy DAVID S. JORDAN.

A small collection of fishes from Saint John's River was sent to Prof. П. E. Copeland and myself some years ago by Mr. A. H. Curtiss. As this collection contains some specimens of interest, a list is here given:

1. Siphonostoma sp. (Synguathus Auct.).

Two specimens of a variety or species of this genus, apparently undescribed, are in this collection. I have specimens of three types, subspecies, or species of Siphonostoma from our Atlantic coast, which may be thus compared:

	a. fuscum Storeŕ. (Wuod's Hole, Mass.)	b. louisiance Gthr.? Beautort, N. C.	Saint John's River, Fla.
Dorsal rays	35; 38; $40 \ldots$	33; $37 \ldots \ldots \ldots$	30; 31.
lings.	$18+37 \ldots \ldots .$.	Shorter than hearl. (f).	Shorter
Dorsal fin Dorsal fin	Lark-spotted at base.	Dusky at base or plain..	Very high in females;
Base of dorsal fin.	On $4+5$ rings	On 3+5 rings.	On $3+5$ rings.
Muzzle..................	Shorterthan rest of head.	Mneh longer than rest of head; longest in females.	Shorter than rest of head.
Distance from snout to frout of dorsal.	3 times in total length ..	$2 \frac{1}{3}$ in length.............	$2 \frac{1}{2}$ in length.
Head contaiued........	9 times in length	7 times in length........	
Tail.	$\frac{2}{3}$ longer than rest of body	$\frac{1}{6}$ longer than rest of body.	$\frac{1}{2}$ longer than rest.
Belly in females........	Scarcely carinate.......	Scarcely carinate.......	With a sharp black ca. rina. Color darker and body stonter than in the others.

These characters are all evidently subject to much rariation. If these are true species, they differ from each other little more than the two sexes of the same form differ.

It seems to me that the specific names fuscus, fasciatus, viridescons, and peckianus are all based on individuals like those above noted from Wood's Hole.
2. Aphoristia plagiusa (L.) Jor. \& Gill.
3. Chloroscombrns chrysurus (L.) Gill.
4. Archosargus probatocephalus (Wallb.) Gill.
5. Lagodon rhomboides (L.) Holbr.
6. Micropterus pallidus (Raf.) Gill \& Jor.
7. Epinephelus sp.? (One very Joung specimen.)
8. Orthopristis fulvomaculatum (Mitch.) Gill.
9. Gobiosoma alepidotum (Lac.) Grl.
10. Chirostoma sip.
11. Hemirhamphus unifasciatus Ranz.
12. Fundulus sp.
13. Mollienesia latipinna Le Sueur.
3.4. Brevoortia tyrannus (Latrobe) Goode.
15. Megalops thrissoides (Bloch) Günther (Scales).
16. Lepidosteus osseus (L.) Ag. (Scales).

NOTES ON A COKIECTION OE WISEIES EIEGVI SAN DEEGO, CRL= -HORENMA.

By DAVID S. JORDAN aEIC CEIAREESM. GELBER'T.

The writers have spent the greater part of the month of Jammary, 18S0, in the collection and study of fishes at San Diego, Cal., in the interests of the United States Fish Commission. As some of the speeies obtained are new to science, and others new to the United States fama, it is thought advisable to present an annotated list in advance of the publication of a more extended report.

HIPPOCAMPID E.

1. Hippocampus ingens Girard.

One large specimen seen.

SYNGNATHID Æ.

2. Syngnathus leptorhynchus Girard.
(Syngnathus arundinaceus Girard.)
Not uncommon.

PLEURONECTIDE.

3. Paralichthys maculosus Girard.

Very abundant. There seems to us no doubt of the correctness of Lockington's identification of the "Uropsetta californica" with this species. The candal fin in the adult is somewhat double concave; in the young the middle rays are more produced. This species is both dextral and sinistral. Out of twenty-six examples examined in reference to this point fifteen were found to be sinistral and eleveu dextral.
4. Citharichthys sordidus (Girard) Giinther.

Not common; one specimen seen.
5. Hypsopsetta guttulata (Girard) Gill.

Common.

SOLEIDA.

6. Aphoristia atricauda sp. nov.

Body oblong-lanceolate, anteriorly somewhat blunt, regularly narrowed behind and ending in a point, the snout rather abruptly truncate, eyes and color on the left side. Eyes very small, nearly even behind, the upper eye the larger and extending farthest forwad. A single nostril in front of the interorbital space and apparently a single smaller one below it. Month moderate, extending to opposite the eye, somewhat
turned toward the eyed side; lips large, not fringed, the upper with a small blackish papilla in adrance of lower eye. This is apparently normal, but it may be a detached piece of skin, hardened by the alcohol. Upper jaw sea reely produced, not forming a hook. Teeth small, on the blind side only, the edge of the jaw on the eyed side forming a smooth ridge.
Gill-ppenings narrow, not extending up to the level of the mouth. Scales rery small, ctenoid, pretty regular over the body, much smaller on the head, the rows of seales rendered very distinct by black dots, the stripes converging towarls the snout. Scales on the two sides of the body similar. No lateral line on either side. About 105 seales (100 to 110) in a longitudinal series from the head to the tail; 45 to 50 in a cross-series.

Dorsal fin beginning on the head, continnons with the anal aromd the tail. Ventral fin of the colored side only present, nearly on the ridge of the abrlomen, and separated from the anal by an interval half longer than the eleft of the month. Rays of the middle parts of the dorsal aud anal fins with a fleslyy border at base on the blind side.

Dorsal rays about 100 ; aual rays 80 ; no distinct caudal fin.
Coloration brownish olive, with vertical dark half-bars, irregular in size and position, some of them coming down from the back and others up from the belly, these posteriorly neally meeting, but anteriorly alternating. Streaks of dark points along the rows of scales, these forming very distinct longitudinal streaks. Posterior part of dorsal and anal broadly edged with black. Right side plain white.

Measurements.

Inches.
Length 4.8

Depth (proportion of length).....-... 275
Lengtli of head ... 18
Diameter of eye.. 02
lnterorlital space................................-... 01
Cleft of mouth..-..............-... 06

Distance from shout to dorsal... . 085
Distance from snout to anal.. 25

Height of anal... . 085
Leugth of candal... . 08
Length of ventral.. . 05
Interval between ventrals and anal... . 085
Depth of gill-opening-... . 095
This species is known to us from a single specimen taken by a Chinese fisherman, Ah Sam, in the Bay of San Diego. This specimen is now in the collection of the United States National Musenm, No. - - . In form and number of scales, fin-rays, ete., it resembles Aphoristia ornata from the West Indies, but the ventral fin is remote from the anal.

BATRACHID A.

7. Porichthys porosissimus (C. \& V.) Giinther.

Very common.

BLENNIID风.

8. Heterostichus rostratus Girarl.

Found in the "kelp" outside the harbor.
9. Gibbonsea elegans Cooper.

A single specimen taken in the rock•pools on Point Loma.
10. Hypleurochilus gentilis (Grd.) Gill.

With the preceding, and more common.

GOBIID \mathbb{E}.

11. Gillichthys mirabilis Cooper.

Exceedingly abundant in the shallow waters of the bay. Only small specimens seen, the maxillary in these being much less developed than in the adult.

COTTIDAE.

12. Leptocottus armatus Girard.

Common iu the Bay of San Diego.
13. Oligocottus analis Grd.

Allied, but not closely, to Artedius quadriseriatus Lockington.
Body compressed, especially behind, not much depressed anteriorly; head comparatively small, scarcely depressed, narrowed and rather pointed anteriorly, its outline triangular as viewed from above; snont strongly decurved in profile; month moderate, horizontal, the lower jaw inchded; maxillary reaching to opposite posterior margin of pupil; premaxillary anteriorly below the level of the eye; eyes large, high up, close together, as long as the snout, $3 \frac{1}{2}$ in head, their diameter double the "width of the deep interorbital space, which has a deep lengthwise groose; nasal spines prominent ; a deep cross-furrow behind them, which forms with the interocular furrow a V-shaped figure; preopercle with a blunt process, on which is a spine directed upwards and outwards; no scales on the head; no other spines on the head.

Branchiostegals 6. Gill membranes broadly united, without isthmus.
First dorsal beginning in front of the posterior edge of the operele, its first two spines : et elose together at base, diverging above, and shorter than the third.

Dorsal fins contiguous, but not united, neither of them specially elevated; pectoral fin reaching beyond front of anal, its lower rays with the skin thickencd, and projecting much beyond the membranes; candal fin slightly rounded; anal papilla very conspienous.

Fin rays: D. IX 16; A. 13-14; V. I, 3; P. 16; C. 10 t.

Posterior part of body covered with minute, imbedded, non-imbricate, pectinate scales, which cover most of the posterior part of the body above and cease anteriorly behind the mitdle of the spinons dorsal in front and at the posterior third of the soft dorsal behind; some scales also along the region of the lateral line anteriorly; a series of somewhat larger but still minute scales at base of dorsal, one below each ray, and another along lateral line; anteriorly, cirri take the place of the peetinations on the scales.

No prickles on the skin. On the head and anterior parts of the body are very many long white, simple, bifid or trifid cirri, so that the living fish appears almost "woolly" with them. Some of these cirri on the nasal bones; a patch between and behind the eyes; the whole top of the head sparsely covered; two or three on the posterior edge of the maxillary; edge of the cheeks fringed with them as with a gray beard. A conspicuous row of them along the lateral line, which ceases somewhat behind the beginning of the scaly area. A row of cirri along the base of the spinous dorsal extending to about the seventh ray of the spinous dorsal. Many seattering cirri between the dorsal and lateral line. Skin of head with many mucons pores.

Body dark, clear olive-green, with about five irregular bars of darker greenish; much mottled and spotted, some of the spots above clear blue, some rusty red, and the most of them blackish. A dark bar at base of candal; lower part of sides with round black spots posteriorly. Fius all with cross-bars made of dark spots and lighter areas.

Measurcment of largest specimen--from Point of Rocks.
Total length 4 inches.
Leugth to base of caudal 3.45 inches.

Leugth of head (percentage of length to base of caudal).............................. . 30
Depth of body25
Least depth of body 095
Diameter of eye 07
Width of head 20
Depth of head 17
Length of maxillary 12
Distance from snout to dorsal 27
Length of first dorsal 27
Length of second dorsal 37
Height of first dorsal 12
Ileight of second dorsal 15
Length of aual 30
Height of anal 13
Length of pectoral 33
Length of ventral 29
Length of caudal 20
Length of longest cirri 04
Leugth of anal papilla 05

This description is drawn from two adult examples taken at Point of Rocks, near San Diego, just south of the line of Mexico, and from about
fifteen examples of various sizes taken at the "mussel beds" on Point Loma, near San Diego. These are numbered --? in the musenm collection. It inhabits enp-shaped pools in the rocks between tide-marks lurking in the Coralliact, and may be canght at low tide. Its quick movements when alarmed render this, however, a matter of some difficulty.
14. Scorpænichthys marmoratus Grd.

Occasionally taken in the kelp.

SCORP ENID A.

15. Sebastapistes guttatus (Girard) Gill.

Not uncommon.
16. Sebastichthys atrovirens Jor. \& Gilb. MSS.

Occasionally taken in the kelp.

17. Caulolatilus princeps (Jenyns) Gilb.

Common in the kelp.

SCOMBRIDE.

18. Sarda chilensis (C. \& V.) J. \& G.

Abundant off shore in the fall.

PERCIDÆ.

19. Paralabrax clathratus Grd.

Frequent.
20. Paralabrax maculofasciatus (Steindachner) Gill.

Common in the bay.
21. Stereolepis gigas Ayres.

Occasionally taken off the coast.

SPARID \mathbb{E}.

22. Girella nigricans (Ayres) Gill.

The young common in the rock-pools.

SCI ENIDE.

23. Cynoscion magdalenæ (Steindachner) Jor. \& Gilb.

Common in the bay of San Diego.
24. Menticirrus elongatus (Günther) Gill.

A large species of Menticirrus, probably Umbrina elongata of Günther, is taken occasionally in the bay. We have obtained one specimen.
25. Corvina saturna (Girard) Steindachner.

Not uncommon.
26. Roncador stearnsi (Steindachner) Jor. \& Gilb. (gen. nov.).

Common. This species, having a serrated preopercle and only villiform teeth in either jaw, is not a Corvina as that genus is understood by many recent writers. Its relations are rather with Scicenops occllatus, with which it is, however, hardly congeneric. We propose to consider it as the type of a distinct genus or subgenus, for which the name Roncador, applied to it by the Italian fishermen, may be adopted. This word appears also in the Latin name of a related species, Umbrina ronchus.

Roncador, gen. nov. Allied to Corvina and Scianops.
Body moderately elongated, the head dcep, the profile declivous, lower jaw included; both jaws with a broad band of villiform teeth only; no enlarged tecth or canines; pseudobranchiæ present; preopercle strongly and evenly dentate posteriorly, entire below; spines strong, the second of the anal very robust, but not very long; caudal fin lunate, air-bladder large.

This species, Roncudor stearnsi, is as readily distinguished by the black pectoral spot as its relative, Scicenops ocellatus, is by the black spot on the caudal.

EMBIOTOCIDE.

27. Embiotoca jacksoni Ag.

Common.
28. Amphistichus argenteus Ag.

Occasional.
29. Ditrema furcatum (Grd.) Günther.

Common.
30. Hyperprosopon arcuatum Gibbons.

Not uncommon.
31. Cymatogaster aggregatus Gibbons.

Very abundant.
32. Abeona minima (Gibbons) Gill.

Occasional.

LABRID x.

33. Pimelometopon pulcher (Ayres) Gill.

Very abundant in the kelp outside the bay.

SPHYR ÆNIDÆ.

34. Sphyræna argentea Girard.

Very abundant outside the bay in the fall.

ATHERINIDA.

35. Chirostoma californiense (Girard) Gill.

Exceedingly abundant.
36. Atherinops affinis (Ayres) Steindachner.

Scarcely less common.
37. Leuresthes tenuis (Ayres) Jor, \& Gill. (gen, nov.)

Leuresthes, gen. nov., allied to Atherinops Steindachner, but with the teeth wanting or reduced to slight or deciduons asperities. In the specimens which we have obtained of this species no teeth whatever are observable.

The much greater width of the posterior portion of the premaxillary in Chirostoma, Atherinops, and Leuresthes serve to distinguish these genera from Atherina, in addition to the differences in the form of the month. Labidesthes Cope has, like Atherina, a slender premaxillary, but the mouth is curved and the jaws much produced forwards. The group called by Girard Heterognathus has likewise a broad premaxillary. It is probably not separable generically from Chirostoma, although the lower jaw is much stronger and some teeth are present on the romer.

Leuresthes tenuis is occasionally taken in San Diego Bay, but it is much less abundant than the others and attains a smaller size.

MUGILID风.

38. Mugil mexicanus Steindachner.

Very abundant in San Diego Bay. Our specimens have the anal III, 8 , instead of III, 7, as stated by Dr. Steindachner.

SCOMBERESOCID A.

39. Hemirhamphus sp. incert.

The young of a species of Hemirhamphus is rery abundant in San Diego Bay. We are at present unable to identify it with any of the known species, but having seen no specimens orer four inches long, we
do not think proper to describe it as new. The rays both in dorsal and anal are 14 or 15 ; the lower jaw is contained 4 times in the total length. It is allied to H.pleii and H. unifaseiatus, but it is probably distinct from both.
40. Belone exilis Girard.

Occasionally taken. One specimen seen.

CYPRINODONTIDE.

41. Fundulus parvipinnis Girard.

Very common in the Bay of San Diego.

ALBULIDA.

42. Albula vulpes (L.) Goode.

This species visits the bay at intervals, in considerable schools. Seve eral specimens were obtained.

CLUPEID A.

43. Clupea sagax Jenyns.

Very abundant in San Diego Bay. The very largest are nearly plain in coloration. The ordinary specimens have a very distinct series of romnd, blackish spots along the sides of the back, with smaller ones above it, which form stripes along the rows of seales.
44. Clupea mirabilis Girard.

Very abundant in San Diego Bay. The vomerine teeth in this species are very few and often not to be found. It should not be generically separated from the preceding.

ENGRAULID.

45. Engraulis delicatissimus Girard.

Very common.
46. Engraulis ringens Jenyns.

Very common.

MURENID压.

47. Gymnothorax mordax (Ayres) Jor. \& Gilb.

Not rare in rock-pools. This species is extremely puguacious, striking at a stick after the fashion of a snake. It is also very tenacious of life.

Length of tail almost exactly equal to that of the rest of the body, head forming one-seventh of the total length; snont short, narrow, and pointed, occipital region becoming fleshy and much elevated with age; dorsal fin beginning immediately in front of the gill openings.

Tube of the anterior nostril half as long as the eye; the posterior nostril with a slight membranous expansion, not forming a tube; diameter of eye contained $\frac{21}{2}$ times in the length of the snout, being placed nearly above the middle of the gape; gill opening slightly longer than the eye.
Sides of the upper jaw with two series of teeth posteriorly; the outer series small, close-set, somewhat triangular in form, slightly recurved, immovable; the inner series similar in form, but much larger, depressible, the series not extending so far back as the outer and consisting of about five teeth; the two series separated by a well-defined groove; in front of these, and contimous with the outer series, are three nearly fixed knife-shaped teeth, the posterior the larger, next a movable tooth similar to the last fixed one but smaller, and three small fixed teeth in front. On the middle line of the vomer are three depressible, fang-like, arrow-shaped teeth, the first rather smaller than the largest lateral teeth, the other two subequal and considerably larger, the posterior one very freely movable. These teeth are subject to some variation in different individuals, and are seldom quite alike on both sides of the same fish.

In the lower jaw is a single series corresponding to the fixed series in the upper jaw. These are similarly enlarged in front, where the series is partly duplicated and some of the teeth are movable. The teeth in the lower jaw are broader and more directed backwards than those in the upper jaw.

MYLIOBATID A.

48. Myliobatis californicus Gill.

(Rhinoptera vespertilio Girard.)

The commonest of the numerous sting rays in San Diego Bay.

DASYBATIDAE.

49. Pteroplatea marmorata Cooper.

Common in San Diego Bay. Probably distinct from P. hirundo, haring a narrower disk and shorter tail, with distinet dermal fold above and below.
50. Urolophus halleri Cooper.

Common. This species is certainly not identical with U. torpedinus, in the synonymy of which species it is placed by Dr. Giinther. Its skin is entirely smooth. It is probably a valid species, more nearly allied to U. cruciatus than to U. torpedinus.
51. Dasybatis dipterurus sp. nov.

Allied to Dasybatis centrurus and D. pastinaca.
Disk rhomboid, slightly broader than long; auterior margins nearly straight forwards, meeting in a very obtuse angle; postexior margins curved; lateral augles romnded. Tail nearly half longer than disk, with
a conspicnous cutaneous fold below and a smaller but erident one above. Upper jaw considerably curved, with a slight convex protuberance in front, which fits into a slight emargination in the lower jaw, which is convex, its outlines corresponding to the curves of the upper jaw. Bands of teeth wider in front than laterally. Inside of mouth behind the lower jaw with three fleshy processes. Teeth about $\frac{21}{23}$; about 8 in a cross-series in the upper jaw and 10 in the lower.

Color light brown, somewhat marbled with darker, but without distinet spots; tail blackish; belly white.

Skin everywhere perfeetly smooth in all the specimens seen.

This species is known to us from four female specimens taken in San Diego Bay. These range in length from 18 to 24 inches, and are therefore but partially grown. Several other specimens, some of them larger, have been seen in a pile of refuse fish thrown away by the Chinese fishermen. These were, however, too far gone for preservation or description.
52. Platyrhina exasperata sp. nov.

Disk rhombic, about as broad as long, the snout prominent, but bluntish at the tip, the angle made by the anterior margins of the pectorals rather less than a right angle, but the suont itself rounded at the tip. Anterior margin of peetorals nearly straight.

Eyes rather large; nasal ridges well separated, little converging, not meeting anteriorly. Mouth rather narrow, slightly convex forward. Teeth about $\frac{32}{2}$. Nostrils with a large anterior flap, which projects backwards and covers a narrower posterior flap.

Ventral fins separate, entire, their outer margin slightly convex.
Tail depressed, with a broad lateral fold; dorsal fins comparatively
large; eandal fin well developed; under side of tail flattened witl: a blunt medial ridge.

Under side covered with a fine shagreen, like the skin of a shark, the roughnesses being triangular and closely set, depressible backwards; the skiu below much as in Rhinobatus, but the prickles higher aud sharper, the skin much rougher than in the latter genus.
The branchial region, from the nostrils to the pelvic bones, is entirely smooth, except the lower lip, which has a band of close-set prickles. A small tract in the middle of the pelvic area is prickly, and most of the abdomen proper, back to a point in front of the vent; the anterior and outer three-fourths of the pectorals below and about half the rentrals anteriorly and exteriorly also rough, as is the whole snout below, in front of the nostrils; whole lower surface of the tail and the surface of the fins rongh with shagreen.

Abore, the entire surface is covered with elose-set stellated prickles of different sizes, largest on the base of the pectorals, and smallest about the eyes and on the outer edges of the fins.

Besides these are several stout, bluntish, slightly recurvel spines, with stellate bases, placed as follows: One at the upper anterior angle of the eye and two behind it, the posterior the larger; a large spine on the back at the shoulder-girdle, in front of which are two or three on the median line, and a series on the middle line of the back of 10 to 12 ; two more on the tail between the dorsal fins; two series on the shouldergirdle, the inner of two, the outer of two to four. No other large spines on the body. No claw-like spines are present on the peetorals in the male examples seen, all of which are, however, immature.

Measurements.

This species is very abundant in the Bay of San Diego, where about twenty examples of both sexes, all very similar in size, were obtained.
This species of the Asiatic genus Platyrhina in the waters of theUnited States is a very interesting addition to our fama.

RHINOBATIDE.

53. Rhinobatus productus Ayres.

Very common.

GALEORHINIDA.

54. Mustelus californicus Gill.

Abundant. This species appears to be identical with the Atlantic Mustehes canis, itself indistinguishable from Mustelus hinnulus Blainville, of the Mediterranean.
55. Triacis semifasciatus Grd.

Not uncommon.

56. Galeocerdo sp?

The jaws of a large shark, with the teeth similar in both jaws, triangnlar, oblique, deeply notehed on the onter margin, and all strongly serrate, are preserved by $M r$. Pitcher, of San Diego. The shark was taken near San Diego, but south of the Mexican line. The width of the month is about a foot. I suppose this to have been a species of Galeocerilo.

HETERODONTIDA.

57. Heterodontus francisci (Gri.) Jor. \& Gilb.

Common.

EIEOM SANTA CATHEINA USLANT, CALIEOESNA.

NYSTREURYS LIOLEPIS, gen. et sp. nov.
Generic ciraracters.-Subfamily Mippoglossina, allied to Hippoglossina, Mippoglossoides, and Paralichthys (Pseudorhombus). Eyes and color on the right sile; month large, oblique, with the teeth developed on both sides, stout, unequal, bluntish, in a single series; gill-rakers few, .short, thick, almost triangular; scales small, cyeloid, membraneous, oblong in form; lateral line simple, arched over the pectorals; candal fin double-truncate, the angles rounded; dorsal fin begiming over the eye; aual fin preceded by a feeble antrorse spine ; veutrals lateral ; body oblong, moderately deep, rather thin.

This geuns differs from Hippoglossoides in the arched lateral line, and from Hippoglossina in the eycloid seales and in its dextral habit. From most of the related genera it is separated by the few stout short gillrakers.

Specific characters.-Form broadly elliptical, the profile continnous with the curve of the back; ventral outline from chin to past the ventrals nearly straight, the rest of the ontline corresponding to the dorsal outline. Head moderate, shortish; mouth very oblique, not so large as in Paralichthys maculosus; the premaxillaries on the level of the pupil when the month is closed, the maxillary reaching to the posterior border of the eye; maxillary broad ; teeth in a straight row, wide apart, unequal, conical, and blunt at tip, their number abont $\begin{aligned} & 14+15 \\ & 13+12\end{aligned}$. Teeth in the lower jaw irregularly atternating large and small. In the upper jaw similar, but smaller and less obvionsly alternating. The middle tooth on the blind side in the upper jaw the largest.

Eyes large, close together, the lower slightly anterior; nostrils of right, side above and in front of lower eye; upper nostrils tumed over on the blind side; posterior nostrils largest, with a conspicuons flap. Interordital space a narrow, elevated ridge, covered with very small scales; a few scales on the posterior part of the maxillary, none on the mandible.
Preopercle with its posterior margin free, little movable; cheeks aml opercles densely covered with small, oblong, excloid scales. Branchiostegals 7.

Gill-rakers short, blunt, triangular, scarcely one-fourth as long as the eye, their edges slightly dentate. There are abont 7 of the large oncs on the middle and lower part of the gill-arch, some rudiments above. (There are about 24 long and slender gill-rakers in Paralichthys maculosus.)
Lateral line withont dorsal branch, with a hroad curve above the pectorals. Scales quite small, oblong, cycloid, thin and nembraneons; little imbricated except behind, and somerhat imbedded in the skin. with some smaller supernumerary seales, especially below; scales much smaller on the thoracie region than on the sides. Scales of right and left sides similar. A series of small scales extending up cach ray of the vertical fins.

Lateral line with about 123 scales, pierced by tnbes; number of rows of seales perhaps a little greater than the nmber of trubes.

Dorsal fin beginning just in adrance of the middle of the pmpil, its first ray slightly turned toward the blind side; sone of the anterior rays furcate; most of the rays simple; the fin rather low in front, gradually becoming higher to a point near the middle of the body, thence regulanly diminishing behind, the last ray being near to the base of the eandal; the caudal pedunde very short ; anal fin similar, its highest ray opposite the highest of the dorsal; a weak antrorse spine at heginning of annl; rentrals shortish, reaching past front of anal; pectoral of right side about as long as head, that of left side half as long. Candal din somewhat donble-truncate, with romnded angles, the middle rays being produced.

Fin-rays: Dorsal, 82 ; anal, 64; rentrals, i.
Extreme length 11.50 inches.
Length to base of candal fin 9.90 inches $=1.00$
Greatest depth 41
Least depth 105
Length of candal pedmele 065
Length of head 23
Width of interorbital area 017
Length of smont 04
Length of maxillary 10
Length of mandible 11
Diameter of orbit 065
Distance fiom snont to dorsal 075
Length of hase of dorsal 77
Greatest height of dorsal 10
Distance of anal from suont $3 \cdot$
Length of hase of anal 69
Height of longest ray 11
Lenoth of candal 13
Lengtla of pectoral (right side) 24
Length of ventrals 085

The typical example of this species was taken on a hook on the west side of the island of Santa Catilina, Los Angeles County, California.

'THECOASTOFCALIEORNEA.

HY DAVHD S. DORDAN AND CHARERS IT. GHLBERT.

PLATYRHINA TRISERIATA.

Disk broad-orate, broader than long; the snont very bluntly rounded, not projecting; the angle formed anteriorly by the pectorals very obtuse; anterior margins of the pectorals slightly convex ; tail stout, in form intermediate between Raia and Rhinobatus, its width at base abont equal to the length of the snout and a little more than the interorbital width ; tail much longer than the disk, not much depressed, its sides rertical, its lower lateral edges with broad horizontal fold, a slight groove above on each side of the median series of spines.

Dorsal fins similar, higher than long, the anterior far behind the end of the claspers; the posterior free margin of both fins very convex, not forming an angle. Cautal fin large, well developed both above and below, its ontline entire, eliiptical. Ventral fins with their margins entire, the claspers well developed. Pectoral fins extending forward to a point but little short of the tip of the shome.

Rostral ridges wide apart at base, rapidly convergent, inclosing a triangular area; a slight translucent space separates this from the opaque pectorals; eyes small, wide apart, the broad spiracles close behind them.

Mouth broad, its width equal to the distance from its front margin to the t_{p}, of the snout; a deep crease passing around the month behind, in front of which the lower lip has three folds of skin. Upper lip not developed, a strong fold of skin passing from the angle of the month on either side to the inner angle of the nostrils, thence straight across, joining its fellow on the opposite side, these folds enclosing a depressed, subtriangular, \square shaped area, which is bounded behind by the curved outline of the upper jaw. In this depression are three transrerse cross-folds of skin. Nostrils broader than the interval between them, with a free fold behind, which is prolonged forwards and inwards in the middle, the rest of the fold being turned backward. Anterior edge of nostrils with a broad flap, the outer edge of which is much prolonged, overlapping the posterior flap, the inner edge covering the imner angle of the nostril.

Both jaws strongly and somerhat regularly curved. Teeth numerons, rather sharp, about $\frac{60}{6}$, about twelve in a cross-series. Gillopenings very narrow.

Skin everywhere covered with a rather fine shagreen, almost precisely as in Rhinobatus productus. The asperities are smaller below, and coarser on the outer anterior margin of the pectorals, where there are also two or three irregular rows of sharp, eurved, backward-directed spines. Four strong spines on the tip of the snont, forming a rhombic figure; four or five strong, bluntish spines around each eye, above and in front, the one at the upper anterior angle the largest.
A series of 22 very strong spines along the median line of the back and tail, and two more on the tail between the dorsal fins. On each side of the tail above is a similar series of ten spines, the first opposite the end of the base of the rentrals, the last opposite the front of the first dorsal; a single strong spine on the outer edge of the shoulder-girdle and two between the spine and the dorsal series.

Color almost exactly as in Rhinobatus productus. Olive-brown above, whitish beneath, the rertical fins paler. Rostral area and edges of peetorals somewhat translucent. No sharp markings of any kind anywhere.

Measurements.
Extreme length 17.90 inches.Length of disk.7.95 inches $=1.00$
Width of disk 1. 09
Width of tail at base 20
Distance between onter humeral spines 36
Length of branchial area 15
Width of branchial area in front 34
Width of branchial area behind 28
Distance between outer edges of nostrils 11
Width of month 20
Width of interorbital area 165
Length of eye 06
Leugth of snout from ofe $\therefore 25$
Length of snout from mouth 23
Lengeth of nostrils 07
Winth of anterior nasal tlap 06
length of nasal lap, 04
Distance from snott to first dorsal 1.505
length of base of first dorsal 095
Height of first dorsal 18
Interval between dorsals 15.5
Length of second dorsal 10
Height of second dorsal 19
Height of caudal 175
length of upper portion of caudal 455
Distance from snout to end of base of pectoral 83
Length of base of ventrals 23
Width of ventrals 20
Length of claspers 36

The type of this species, an adult male, was taken at Santa Barbaria, Cal., February 8, 1880, by A. Larco, an Italian fishermen. It is numbered - in the collection of the United States National Musemm. Mr. Larco states that this species is not uncommon about Santa Barbara in spring and summer.

This species is probably related to Platyrhina sinensis, but it has little afinity with Platyrinina exasperata, already described by us, from San Diego. In color, form of tail, and character of the dermal covering it resembles the Rhinobatide, and its aftinities with Syrrhina, of the latter "family," are evident.

UESCIEHPTEON OF A NEW SPECTES OE "EEOCK COD) (SERSASTICIL-

Body rather robust, heavy forwards, compressed behind, the candal pedmele short and rather slender. Head large. Month large, rather oblique, the maxillary reaching to opposite the middle of the eye; the premaxillary anteriorly on the level of the orbit; jaws abont equal, in the closed month; teeth, as usual, in viliiform bands on the jaws, vomer, and palatines.

Top of head with the spinous ridges rery thick and strong, their tips bluntish, turned upward and outward; the spines on each side placed nearly in a right line, so that the alge of the crown seems somewhat regularly serrated.

The following pairs of spines are present: nasal, preocnlar, supraocular, tympanic, oceipital, and muchal. The coronal spines (found in S. auriculatus and S. ruber) are wanting in this species, as are the postocular spines (usually present in S. pinniger). Interorbital space between the spines narrow, flat, and coarsely scaled (the elevated ridges found in S. nigrocinctus being wanting). The tympanic spines are
stronger than in related species. The nuchal spines are as usual placed elose behind the occipital.

Preorbital bone rather broad, with a single obsolete spine directed downward. Preopercle with five rather short and bluntish spines, the second the larger, the three lower quite small. Opercle with two bluntish, diverging spines. A blmut spine on the shoulder girdle above the pectorals; two sharp supraseapular spines. Subopercle and lower edge of opercle each with a blunt point. Preorbital scaly below. Maxillary naked.

Eye rather large, its diameter abont one-quarter the length of the head.

Gill-rakers clavate, short, stiff, compressed, armed with bristly teeth above and within. There are about thirty of them in all, those nearest the middle of the arch longest and most perfect, the others gradually growing smaller and incomplete. About half of them have the posterior edge free. The longest is about one-third the length of the eye ($\frac{1}{6}$ in S. melanops; $\frac{3}{5}$ in S. pinniger). In form they are midway between the tuberele-like gill-rakers of "Selastosomus" (S. melanops) and the long and slender gill-rakers in "Sebastomus" (S. pimiger, flavidus, auriculatus, etc.).

Branchiostegals 7, the gill membranes, as in other species, little united, without isthmus.

Seales moderate, essentially as in S. faseiatus and related speeies. Lateral line with 55 seales.

Dorsal fin with strong spines, the fourth to seventh highest and subequal, the lowest more than half the height of the highest. Soft dorsal rather higher than any of the spines. Candal fin broad, rounded. Anal fin with the second spine robust, about as long as the third and much stronger, the soft rays high.

Pectoral broad and rounded, its base deep, nearly one-thirl the length of the head, its lower rays thickened as in S. melanops, its tips reaching just past the rent. Ventrals falling just short of the frout of anal.

Fin rays: D. XII, 1, 13; A. III, 5.
General color dark olive, blackish on the head and back, the sides somewhat yellowish; sides of body with black cross-bands which are somewhat oblique; these bands are nsually distinct, but are sometimes nearly obsolete in dark-colored examples. The first band rims downward from front of dorsal across base of pectoral; the second from near the middle of spinons dorsal to behimd the ventrals; the third from the posterior part of the dorsal to the rent; the fourth and fitth above the anal, and the sixth at base of eandal. Another black bar extends across the scapular region and the opercular spines, and two bands radiate from the eye, obliquely downward and backward. Belly dusky greenish; fins blackish, with a strong olive tinge.

Lips, mouth, front and lower part of the hearl, with a strong wash of
coppery red, this color fading out on the thoracic region. Base of fins and different parts of the body sometimes with obscure small whitish spots.

Measurements.
(No. ——, Tnitel States National Museum, from Santa Barbara.)
Extreme length 10. 40 inches.
Lengtli to base of caudal 8.70 inches $=1.00$
Greatest deptli 38
Least depth 11
Length of head 35
Diameter of eye 085
Length of snont 10
Width of interorbital area 055
Length of smpraocular ridge 05
Length of occipital ridge 06
I ength of maxillary 18
Distance from suont to dorsal 325
Length of base of dorsal 57
Height of longest spine 13
Height of longest ray 15
Length of base of anal 135
Height of second spine 14
Height of longest ray 22
Length of candal 205
Width of base of pectoral 11
Length of pectoral 265
Length of ventral 24

This species is found in great abmodance about the island of Santa Catalina, where eight examples were obtained by the writers. Another was taken at Santa Barbara, where the species is considered rare by the fishermen. It seems to be intermediate between the still rougherheaded S. nigrocinctus, on the one hand, and the smoother S. fasciatus and S. melanops on the other.

MEEETH) GHLL, ON THEECOASTONCALHEORNAA.

While we were engaged in making eollections on the coast of Los Angeles County, California, a shark was described to us by a Wilmington fisherman as having the habit when canght of filling himself with air "till he was big as a barrel," so that if thrown back in the water he would float away on the surface, belly upward, ete., exactly after the fashion of the species of Tetrodon. On cross-questioning, the fisherman assured us that the animal was a genuine shark, with the month underneath and many sharp teeth, and that he had frequently taken them near Wilmington.

At last one of these animals was brought in to us by a fisherman
named Vicente Leonardo, who took it in a gill-net off Santa Catalina Island. It proved to be a species of the genus Cephuloscyliium Cill, and apparently identical with the type of the genus (Scyllium laticeps Duméril). This species has been hitherto recorded, so far as we know, only from Tasmania.
The following is a description of our specimen (No. —_, United States National Museum):
Head short and broad, broader than long, and not half as deep as broad; snout very blunt, not projecting much beyoud the month ; eyes oblong, small, the spiracles behind them well developed; no nictitating membrane ; nasal openings not conflnent, their flaps separated by a broad space, the breadth of which is two-thirds the length of the snout; nasal flaps conspicuons, withont cirrns; mouth rery broad, not strougly curved, with only a trace of labial fold at the angle ; skin at the angle of the month thin, smooth, pale, and raised into little cross-folds.
Teeth similar in both jaws, small, sharp, with a long central cusp aud a small basal cusp ou each side. About four series of teeth. Teeth $30+30$
$27+27^{\circ}$
First dorsal beginning over middle of ventrals; second dorsal beginning behind front of anal and emding a little before end of anal ; base of pectorals low and horizontal, the last two gill openings above them. Candal tin short.

Color dark grayish-brown, with five pairs of dark bars across the back, their form inregnlar ; the central pair bomded by straight lines and forming a cross-shaped figure; middle part of each fin blackish ; entive surface of body and fins covered with round black spots of different sizes, these larger and less nmmerous on the belly; on the sides are also whitish spots, smaller and less mumerons than the black ones.

This specimen was a female, with the ova nearly ripe. The stomach when received by us was much intlated. The intestines contained nmmerous specimens of a small gasteropod shell.

Other fishermen about Witmington tell me that they take this shark oceasionally, about two or three times a year, and that when fully inlated it is half as broad as long, a statement not hard to believe.

A fisherman at Santa Barbara, Mr. A. Larco, tells me that he also knows this shark. He has in his possession two egg-cases, with the eggs, which he says were taken from one of this species. These eggcases are "wheel-barrow shaped," like the egg-cases of rays, and provided with long tendrils.

Measurements.
Length ... 3 inches $=1.00$

Greatest width (partly distended)...

Greatest winth of head 15

Length of branchial area
Width of moutlu. 14
Diameter of eye 03
Distance from snont to first dorsal 6:
Length of base of rirst dorsal 08
Distance between dorsals 09
Length of base of second dorsal 05
Height of second dorsal 065
Length of base of anal 065
Height of anal 0ه
Length of candal 18
Length of pectoral 21
Length of ventral 11
ON THEE OIL-SHARE OF SOUTEIEIEN CALIEOIENHA (GALEOREIENUS CAIIEUS).
Ey DAVID S. JORDAN and CEIATELES H. GHLBERTT.

Along the coast of Southern California a large species of shark appears in the spring in great schools. At certain places along the coast, especially about Newport Landing, in the southern part of Los Angeles County, the pursuit of this shark becomes a matter of considerable economic importance. They are taken easily with a hook, and sometimes great numbers of them may be surrounded and bronght in with a seine. They are valued for their livers and fins. A single liver when the animals first arrive, in March, will yield a gallon of oil. As much as 4,000 gallons of this oil have been procured at Newport in a single season. The fins of this species are sold to the Chinamen, who find them a great delicacy, and pay for them $12 \frac{1}{2}$ cents a pound.

The present writers have succeeded in obtaining one of these "oilsharks," and find the species to be the European tope, Galeorhimus galeus (Galeus camis and vulgaris of anthors). It is singular that our only knowledge of the occurrence of this species on the west coast of America till now has been the indication by Dr. Giinther of the presence in the Bri"ish Museum of "o. Young. San Francisco. From Mr. Gruber's collection." Yet, in the waters of California south of Point Conception it is donbtless more numerons in individuals than all other species of sharks combined.

Measurements of an adult male oil-shark.

Length 63 inches $=1.00$
Depth (greatest) 14
Leagth of head 18
Length of snout (below, from mouth) 075
Length of smont (from eye) 08
Width of mouth 07
Length of spivacle 0075
Diameter of eye 025
Distance from snout to first dorsal 33
Length of base of tirst dorsal 073
Ifeight of first dorsal 075
Distance between dorsals 25
Length of second dorsal 0.45
Height of second dorsal 04
Length of anal 035
Leugth of caudal 21
Distance from ventrals to peetorals 25
Length of pectorals 15
Length of ventrals 045
 OF WASEHENGTON TEREMTMEEY.

By JATIES G. SWNAN.

$$
\text { Neeai Bay, Wash., September 22, } 1879 .
$$

Thirty miles south of Cape Flattery, at the entrance to Fuca Strait, Washington Territory, is the Quillehute River, a small stream emptring into the Pacific Ucean near some rocky islets, the largest of which, named by the Indians "Alikistet," and by the whites "Janes Island," is a laudmark for the entrance to the little bay or cove, on the shore of which is the principal village of the Quillemine Indians, who collect and dry for winter use a very choice varicty of smelt (IIypomesus olidus), which I have named the surf-smelt, from its peenliar halit of depositing its spawn among the shingle of the beach, coming in with the surf in incredible numbers, and in this respect somewhat resembling the capelin (Mallotus rillosus) of New Brunswick.

The surf-smelt closely resembles the common smelt in shape, size, and the peculiar cucumber-odor, but differs in having its belly eovered with a coating of yellow fat, which imparts an oily appearance to water where the fish have been cleaned or washed, and makes them the very perfection of pan-fish.

During the month of Angust, 1879, I was at the Quillehute Indian village from the 17 th to the $22 d$, with United States Indian Agent Charles Willoughby, and had an ample opportunity to witness the halits of the surf-smelt and their capture by the natives. These Indians take them by means of a peculiar-shaped hand-net of a parallelogram form at top, five feet long, twenty inches wide, and from four to five feet deep, with a curred handle.

The specimen net which I send is made of the fiber of the common stinging nettle (Urtica dioiea L.), which grows in lnxmions abundance on the northwest coast near Indian villages and deserted camps. A specimen of the prepared fiber is also sent with the net.

The method of preparing the nettle by the Quillehte Indians, after gathering a quantity and stripping off the leaves and twigs, is to dry the stalks in the sun or on a frame in the lotge, near, but not directly orer, the fire.

When properly dried, each stalk is split open and the shice or woody part broken by the hand and peeled off from the outside skin or fiber. This fiber is then spmer twisted into threads or twine, ly rolling between the paln of the hand and the bare leg, a process at which the women are very expert.

The Indians at present know nothing of the process of rotting the plant and breaking it to get rid of the shive, or of the process of hackling the fiber, and as their method is so slow and laborious, they are abandoning the use of the nettle as a textile plant, and use twine, which they either purchase ready made, or manufacture from cotton threads raveled out from tlour-sacks and spun by hand, or from jute, which they procure from old gnmy-bags which have been thrown away by the whites.

I think if they conld be taught the process of rotting the nettle and preparing the fiber as the farmers of Kentucky prepare hemp or flax, that they would soon be able to furnish a valuable article of commerce which would pay them well for their labor.

The net I send will show the twine made by this most primitive of all methods, and indicate the many purposes for which it may be made arailable, but in order to be profitable it should be prepared in quantities like flas, or hemp. which it greatly resembles.

The net sititch or knot for making the mesh was not tanght them by white men, but has been known by the coast Indians for ages.

Nearly thirty years ago I saw the salmon-nets of the Chinook Indians at the moutl of the Columbia River. The knowledge and use of nets antedates the advent of the first white man, but in the mamfacture of the fiber and the twine they seem to have retained the most primitive ideas, and never have advanced. What little twine they now mannfacture is made exclusively by the old women.

The peenliar shape of the net, and the eurred handle, are to enable Indians to best use them in the surf. A stiaight handle could not be userl.

The surf-smelt are usually most plentiful during the month of August, and come in such vast numbers that the water seems to be filled with them. Captain Carroll, of the steamer Alexander Duncan, plying between the Colmmbia River and Puget Sound, informed me that, on the 24 th of Angust, while on his passage from Astoria to Neeah Bay, he ran throngh a school of smelts between Point Grenville and Quillehnte which extended nearly forty miles, and at night their track was made visible by a bright phosphorescent light which emanated fiom them. I noticed the same luminous appearance in the surf in Quillehute Cove during each night that I remained there.

The smelts come in with the flood tide, and when a wave breaks on the beach they crowd up into the very foam, and as the surf recedes nany will be seen flapping on the sand and shingle, but invariably returning with the undertow to deeper water.

An examination showed the pebbles to be incrusted with spawn, and as ail the smelts I cooked were males, I conchuded that the females had first come in and cast their spawn and were succeeded by the males, who deposited their milt. I handled and noticed a great many, and cooked several dozens on two successive days, but did not notice a single female. This might have been purely accidental, and perhaps at another time the eatch would have proved all females.

On the finst appearance of the fish, the Indians rush into the surf and press the onter edge of the net down firmly on the sand or shingle, the swash of the breaker forcing the smelt into the net. Then, as the water recedes, they turn round quickly and hold the net so that the undertow will force more smelts into it. In this way I saw them take at least a bushel at a single scoop.

In their immense numbers, these smelts resemble the eulachon. (Osmerus pucificus) or candle-fish, which are taken in such enormous quantities at Nass River, iu British Columbia, near the sonthern bound ary of Alanka.

After every scoop, the Indian, if successful, empties its contents on the beach, where the squaws and children quickly gather them into baskets, and carry them to the houses, where they are strung on strips of cedar bark and hung up to dry. The method of stringing them is to take each one separately and pass a half hitch with the bark around the head just back of the gills. This keeps each fish separate, and enables them to dry better.

The Quillehutes still retain the ancient superstition, formerly so prevalent anong the coast tribes, relative to their fish, that the first ones must not he sold or given away to be taken to another place, nor must they be cut transversely, but split open with a mascle-shell.

I was fortunate in obtaining quarters in the house of an Indian who had a cooking-store, where we cooked our rations as suited us. One of the Indians of our party obtained some smelts, which he boiled for supper, cooking them in the Quillehute style; he gave me some, which I fried. No sooner did the Quillehutes learn that I was cooking some of their fisln than two of the head chiefs, Howeattl and Klakistokar, came to see what I was doing, as they feared I would cut the fish with a knife; hut I fried them whole, and when they saw me take the nice crispy smelts with my hand and eat them entire, withont aid of knife or fork, they grimed forth their satisfaction, and allowed me to purchase as many as I wished to take away. But of salmon they would neither give or sell. The fall run of the Salmo canis and Salmo proteus had just commenced to come, and while they gave us all we conld eat of their own cooking, in their orm honses, they refused to sell or give a single fish to be taken away. They fully believed that if we took any salmon into our canoe, all the salmon would desert the Quillehnte River and follow us to Necall Bay, and if we had ent the smelts or salmon with a knife, they all would immediately disappear in the ocean and never return.

I was unable to procure even a specimen of the salmon, but obtained enough smelts to forward some excellent specimens to Washington.

Very respectfully, your obedient servant,
JAMES G. SWAN.

> Prof. Spencer F. Baird,
> United Stutes Commissioner Fish and Fisheries, Smithsonian Institution, Washington, D. C.
P. S.-I omitted to mention that the surf-smelt are common in all the salt water of Puget Sound, but I have not heard of an instance where they run up fresh-water streans to spawn, like the eastern smelt.
J. G. S.

NOTE ON THE OCCUREENCE OF PRODUCTUS GYGANTEUS IN CAL. HEDRNIA.

By C. A. WHITTE.

Among a small collection of fossils sent to the National Musenm by Mr. Ludwig Kumlien, of the United States Fish Commission, from the valley of McClond River, Shasta County, California, are three or four large examples of Productus, which I an unable to distinguish from P. giganteus Martin sp., the well-known type species of the genns as it is extensively known in Eúropean strata. Thes are preserved in a hard, dark-colored, argillaceons rock, which is partly metamorphosed, and they are, therefore, somewhat imperfect; but portions of them show the characteristics of the species very plainly. The largest of these Californian examples was, when perfect, quite equal in size to the larger European examples of P. giganteus, having had a transverse diameter near the hinge of not less than 140 millimeters, or $5 \frac{1}{2}$ inches.

A small collection of fossils was sent by mail from the same locality in 1877 by Mr. Livingston Stone, the species of which were recognized as of Carboniferons age, but P. giganteus was not among them, although the later collections indicate that they occur in the same strata. These associated forms of both collections are too imperfectly preserved for specific determination, but the genera Fenestella, Streptorhynchus, Spirigera Camarophoria, Allorisma, and Enomphalus are more or less satisfactorily recognized. They all together plainly indicate the Carboniferous age of the strata from which they come, which fact was also previonsly known throngh the reports of Trask and Whitney.

This, so far as I am aware, is the first diseovery of P. giganteus in American strata. It is not a little remarkable that it should be found in the western portion of the continent and not in the middle and eastern portions, where the Carboniferons system is so well developed, and where several Enropean species of Carboniferons brachiopoda are recog. nized.
Iroceedings Nat. Mus., 1880. C. A. White.

PRODUCTUS GIGANTEUS.

Fig. 1, on Plate - -, represents one of the examples referred to, the prineipal portion of the figure showing a natural cast of the dorsal valre, with the umbonal portion of the rentral valve. In this figure the full leugth of the shell from back to front is not shown, but it is represented in the accompanying diagram, Fig. 2.

Whashington, D. C., December 3, 1879.

NOTE ON ACBOTHELE.

By C. A. WHiLTE.

Among the fossils collected from Primordial strata at Antelope Spring, Southern Utal, by Mr. G. K. Gilbert and Mr. E. E. Howell, who were then connected with the explorations and surveys west of the 100 th mexidian, were a number of examples of a discinoid brachiopol. This form I described and fign.ea* under the name of Acrotretu? salusithu, referring it to that genus provisionally. Noue of the examples were in a condition to show all the generic characters clearly, but certain features in these shells indicated their possession of important differences from any genns then established and led me to suggest that they prol)ably represented a new generic type. In the same year, 1876 , Prof. (1 . Linnarsson, of Stockholm, Sweden, publishedt a new generic form from the Primordial roeks of Sweden, under the name of Acrothele, which plainly includes Acrotreta? subsidua Whitc. Prefessor Limnarsson des eribed two Swedish species under this generic name (A. coriacea and A. granulata), and in 1879 he published a third speeies under the name of A. intermedia, \ddagger but A. subsidua is at present the only known American species. It is not unlikcly, however, that some of the American species heretofore referred to Discina will be found to belong to Acrothele.

Washington, D. C., February 1, 1880.

DESCREPTEON OF A NEW CELESACEOUS EINNA FHOM NET MEXECO.

By C. A. WHITTE.

Pinna stevensoni.
Shell large, elongate-triangular in marginal outline; valves motlerately convex; the convexity being slight and nearly uniform posteriorly, but much greater toward the front, where it amonnts to an obtuse median angularity upon each valve, and whese a transserse section of the shell has an approximately regular rhombic outline; upper border

[^7]straight or neally so ; lower border slightly courex and longer than the upper border; posterior border neady straight or slightly convex, truncating the shell obliquely downward and backward, meeting the upper border at a more or less distinct obtuse angle and the lower border by au abrupt curve. Surface marked by abundant coarse lines and imbrications of growth, which traverse the shell in slightly curved lines corresponding with the posterior border, and is apparently without trace of any radiating lines or ribs.

Entire length from beak to postero-basal extremity about 215 millimeters; brealth, firm the postero-forsal extremity to the base, measured at right angles with the upper border, 95 millimeters.

This shell is so mike any described Ameriean species that no detailed comparison with any of them is necessary; but it is so closely related to l'. legeriensis d'Orbigny, from the department of Sarthe, France, that it is not without some hesitation that I have decided to propose a separate specifie name. I have never had an opportunity to examine any of the few examples of P. legeriensis that have keen discovered, and my comparisons are therefore only with the deseription and figures of WOrbigny, in Pal. Française, Vol. III, p. 257, pl. 334. From these it appears that our shell differs from P. legeriensis in the following particulars. The angle of divergence of the upper and lower margins is not so great, in consequence of which the breadth of the shell is not proportionally so great; the curve by which the posterior border meets the lower border is more abrupt, and the greatest transverse diameter of the shell is near the median line instead of being much below it, as it is represented to be in P. legeriensis. The internal median grooves upon each valve, and also the undulatious of the lower border, mentioned by dorbigny, appear to be entirely wanting in our shell.

Position and locality.-Cretaceous strata; about $1 \frac{1}{2}$ miles southiwestward from Fort Wingate, Northern New Mexico, where it was collected by Mr. James Stevenson, in whose honor the specific name is given.

Washington, D. C., February 15, 1880.

By C. A. WHITTE.

A few months ago Lient. A. W. Vogdes, United States Army, gave me a few fragmentary fossils from a collection which he had then lately made at Taylor's Ridge, in the town of Ringgold, Catoosa Comety, Georgia. The other fossils of this collection and the geology of the region referred to were disenssed by Lientenant Vogdes in the December, 1879, number of the American Journal of Science and Arts, pp. 475-17i. He there refers, and doubtless correctly, the horizon from which he obtained the fossils he gave me to that of the Clinton Group
of New York. They are in the condition of natural casts in fine-grained sandstone, but I have quite satisfactorily identified a dorsal valce of Strieklandinia salteri and one of S. davidsoni Billings. If these two species are correctly identified, as they appear to be, their discosery in Georgia is especially interesting, because they have hitherto been found only in strata of the island of Anticosti; and also of the indication which they and their associates in the two regions named afford as to the equivalency of the Georgia, Clinton, Anticosti strata in America; and Upper Llandovery strata of Great Britain.

Wasmington, D. C., February 15, 1880.

Pleuronichthys verticalis sp. nor.
Form broad orate, the outlines regular; head small, somewhat constrieted behind the upper eye; eyes large, but smaller than in P. quadrituberculatus. Interorbital ridge narrow; a small tuberele or prominence in front of the upper eye; a large one in front of upper edge of lower; another larger and sharper at interior edge of the interocular space; another at the posterior edge of the interocular spine ridge. This latter is developed into a long, sharp, triangular spine, which is nearly as long as the pupil, and is directed backwards. A prominent tubercle at the posterior lower angle of the upper eye. Upper edge of opercle somewhat meren, but no other tubercles present.

Month small, as in other species; the lips thick, with lengthwise plica.

Teeth in a broad band on the left (blind) side of each jaw ; no teeth on the right side in either jaw. Gill-rakers very small, weak, and flexible, about ten in number. Scales essentially as in the other species, small, cycloid, imbedded, and scarcely imbricated. Lateral line nearly straight, with an accessory branch which extends to the middle of the dorsal fin.

Dorsal fin beginning on the blind side at the level of the premaxillary, there being but about four of its rays on the left side of the median line. Vertical fins less elevated than in the other species, the longest rays of the dorsal about half the length of the head. Anal fin preceded by a spine. Candal peduncle short and deep. Candal fin elongate, rounded behind. Pectoral short, nearly equal. Ventrals moderate, reaching aual spine.
Fin ray̧s: D. 65; A. 45.
Color dark olive-brown, with round grayish spots, the body and fins mottled with blackish.

Proc. Nat. Mus. 80

- 4

May 6, 1880.

The type, No. United Ștates National Muscum, was taken in a trawl-net outside of the Golden Gate, and was procured by us in the San Francisco market.
There are apparently three species of the genus Pleuronichthys, as restricted by Gill, in the waters of California.

One of these is the common species in the San Francisco markets at present, being taken in some abundance in the trawl-nets off Point Reyes and the Farallones. This species is the Pleuronichtlyys conosus of Lockington's Memoir (Proc. U. S. Nat. Mus. 1879, 97), and, as Lockington suggests, it is probably identical with the Pleuronectes quadrituberculatus of Pallas. For this form we accept provisionally the name quadrituberculatus.

A second species occurs farther south, two specimens having been procured by us at Santa Catilina Island, and one at San Luis Obispo. This form answers better than the preceding to Girard's deseription of his Plenronichtlhys cœenosus, and it may for the present be identified with it. The specimen noticed by Lockington as "No. 4," "with the dorsal not contimed downward nearly so far as the others," perhaps belongs to this species.

The third species is P. verticalis, described above.
The species may be readily separated, so far as we have observed, by the following characters:

* Dorsal fin beginning on the level of the lower lip, abont ten of its anterior rays being on the left side; ocular region with four or more blunt prominenees or tubercles, arranged as follows: one in front of uppereye, another at each end of the interorbital ridge, the posterior largest, but not spine-like, one behind the latter, and one or two more behind the upper eye; upper part of operele uneven ; lower jaws with a band of teeth on the right side similar to that on the left side, but narrower; fins high, D. 72, A. 46....Quadrituberculatus.
** Dorsal fins beginning on the level of the upper lip, only four or five of its rays being on the left side of the median line.
\dagger Posterior prominence of interocular ridge developed as a strong backwarddirected spine; tubereular prominences present about the upper eye; no teeth on right side of lower jaw ; fins rather low, D. 65, A. $45 \ldots$. Verticalis.
$\ddagger \ddagger$ Posterior prominence of interocular ridge scareely elevated; other deular tubereles obsolete; tecth ?; tius ligh, D. 68, A. 48
. Cexosus.

Measurements.

	Terticalis.	Quadrituberculatus.
Fxtreme leagth, in inches.	9.20	11.85
Leagth to base of caudal, in inches $=1.00$.	$7.50=1.00$	9. $20=1.00$
Cody, greatest depth	. 54	. 62
Bodr, least depth of tail	. 14	. 13
Head, length....	. 24	. 28
llead, diameter of orbit	. 07	. 083
Dorsal, distance from first ray to median 1	. 055	. 11
Dorsal, greatest height	. 13	. 19
Anal, greatest height	. 13	. 18
Caudal, length	. 255	. 28
'ectoral, length	. 135	. 18
Ventral, length	. 11	. 11

A sceond example of Tystrourys liolepis, taken at Santa Barbara, is sinistral. The species is, therefore, like l'aralichthys maculosus and Platichthys stellatus, both dextral and sinistral. In the scoond example the small accessory scales are extremely numerons.
Two more examples of the species, noticed by us as Platysomatichthys stomius, have been obtained in trawl-nets from near the Farallones. This species is apparently not congeneric with Plutysomatichthys hippoglossoides, differing in the long and slender gill-rakers and the ctenoid seales, as well as in the dentition, narrow interorbital space, and other minor details. The large teeth in both jaws, and the small teeth in the outer row in the upper jaw, are distinctly arrow-shaped, being abruptly widened toward the tip, thence acutely triangular.
We propose to consider this species as the type of a distinct gemns, which may be termed Atheresthes, from the arrow-shaped teeth. It may be thus defined:
Atheresthes gen. nov.
Eyes and color on the right side. Body long and slender, closely compressed, tapering into a long and slender caudal peduncle. Mouth extremely large, oblique, the long and narrow maxillary extending beyond the eye. Both jaws with two irregular series of mequal, sharp teeth, which are anteriorly long and slender, posteriorly short. All the long teeth of both jaws, and the outer series of small teeth in the upper jaw, arrow-shaped. Some of the anterior teeth freely depressible. Interorbital space narrow. Gill-rakers long and strong, numerons. Seales comparatively large, ciliated, thin, and readily deciduons, those on the blind side similar, smooth. Lateral line without arch. Fins low and rather fragile, the dorsal beginning over the eye, its auterior rays low. Candal lunate; no anal spine. Pectorals and ventrals small, the latter both lateral.

Type, Platysomatichthys stomias Jor. \& Gilb.

NOTHSON SEIATES FEOTI THECOASTOECAYIHOIENIA By DAVID S. JORDAN amd CHAS. H. GILIBERT.

The following species of sharks, not hitherto recorded from the Pacific coast of the United States, have been observed by the writers during the present winter (1880) :

1. Isurus oxyrhynchus Rafinesque. (?)

The jaws of a species of Isurus were obtained by us at San Pedro, the shark having been taken off' Santa Catilina Island. The teeth agree essentially with those of Isurus oxyrhynehus (Lamna spallanzani of authors). Isurus glaucus has, however, also the same dentition, hence we are unable exactly to determine the species.
2. Carcharodon rondeleti Mïller $\mathbb{\&}$ Henle.-Man-eater Shark.

A large individual of this species was lately harpooned at the whaling station of Point Carmelo, near Monterey. Its jaws, now in the possession of Mr. A. C. Keating, a druggist at Monterey, are about two feet across.

Schools of this species are said to be occasionally noticed in the open sea from Monterey southward.
3. Cetorhinus maximus (Liunæus) Blainville.-Basking Shark; Ground Shark.

An individual of this species, 31 feet in length, was taken March 25 by the whalers at Monterey, and another somewhat larger on March 26. Several others were noticed, but only two were secured. We are told that eighteen or tweuty years ago several of them were taken at Monterey, since which time few or none have been noticed in the bay.
4. Carcharhinus glaucus (L.) Blainville.-Blue Shark.

A roung individual of this species, taken in San Francisco Bay, is in the inusemm of the California Academy of Sciences. A "Blue Shark" is found in the open sea along the southern coast of California, but I do not know whether it is this species.
5. Galeorhinus galeus (L.) Blainville.

As already noticed, this species is the most abundant shark of Southern California. It is common at Santa Barbara, and I am told is not unfrequently taken at Monterey.
G. Galeocerdo tigrinus Miiller \& Henle.-Man-eater Sharh.

As already noticed by us, jaws of an individual of this species were seen by us at San Diego, near which place the animal was obtained.
7. Cephaloscyllium laticeps (Duméril) Gill-GGound Shark.

The occurrence of this species at San Pedro has been already noticed by us. At Santa Barbara it is, next to Triacis semifasciatus, the most abundant of the sharks. It is there taken daily in the lobster-pots set for the "craw-fish" (Palimurus interruptus). Its habit of inflating itself, when caught, by swallowing air, is rery remarkable.
8. Pleuracromylon lævis (Risso) Gill.

Two specimens of this species have been obtained by us at Monterey. One of them, a female, taken March 26 , had the soung about 8 inches long, each of them connected by a long umbilical cord to a placenta which is attached to the uterus. The occurrence of this shark, in connection with its relative, Mustelus himnulus (vulgaris, canis, etc.), on the Pacific coast, is very interesting.

March 26, 1880.

ON TEEE GHNEEEC REEATIONS OE PLATEREEENA EXASEEEATA,

By DAVID S. JORDAN and CHARLES HI. GHEBERT.

A short time since a small ray was deseribed by the present writers, from San Diego, under the name of Platyrhina exasperata. (Proe. U.S. Nat. Mus. $1880,-$.) Soon after a second species was described by us, from Santa Barbara, as Pletyrhina triseriata. (Proc. U. S. Nat. Mus. $1880,-$-.)

The two species are certainly not congeneric. The former species has the skin above covered with stellated prickles of different sizes, and resembles the gemus Raia. The latter is covered over by a uniform fine shagreen, and resembles the species of syrrhina and rhinobatus. So far as we ean aseertain from the description given by Duméril and Giinther of Platyrhina sinensis and Platyrhina schonleini, these two species agree with Platyrhina triseriata in the character of the dermal covering, as well as in form of body. We propose therefore to consider Platyrhina exasperata as the type of a distinct genus, Zapteryx, distinguished from Platyrhina by the presence of detached, unequal, stellated prickles on the skin above, instead of the uniform shagreen covering found in Platyrhina, and from Ratia by the eonvex outline of the ventrals and by the greater development of the dorsal and caudal fins. In Ruia the ventrals are always emarginate.
Marcil $26,1880$.

Hy W. N. LOCKINGTON.

Four species of the genus Chirus occur in the markets of this city. The two most abundant of these are C. constellatus and C. guttatus Grd. Of the others, one is C. pictus Grd., while the other has until now remained undescribed.
C. pictus is separated from the others by some sufficiently obvious external characters, beside those of color, as will be evident from the subsequent remarks, but the writer is unable to find any constant character except that of the coloration by which to distinguish the other three species.

As, however, he has now seen several hundred examples of C. guttatus and C. constellatus, and a large number of both the other species, and as, notwithstanding the considerable rariation in the size, number, and position of the marking of each species, neither on any occasion shows the slightest tendency to approach the pattern of another, he submits that in this group the pattern of the coloration may be considered specific.

Difficult though it may be to prove upon paper the distinctness of these forms, there do not exist on this coast any other four species belonging to one group which can be so unerringly separated by the eye.

Diagnosis.

C. pictus.

This form is more inconstant in the number of its fin-rays and in the coloration than any of the others.

Six specimens now before me vary as follows in the rays of the dorsal and anal:
No. 1. Locality, San Francisco market........... D. XX, $\frac{1}{2 y}$; A. 21
No. 2. Locality, San Francisco market............ D. XXI, $\frac{1}{21} ;$ A. 22
No. 3. Locality, San Francisco market........... D. NXI, $\frac{1}{2^{2}} ;$ A. 21
No. 4. Locality, Kadiak Island, Alaska........... D. XLX, $\frac{1}{21}$; A. 21
No. 5. Locality, San Franciseo market........... D. NIX, E_{2}^{1}; A. 21
No. 6. Locality, Kadiak Island, Alaska.. D. XVIII, $\frac{1}{2 / 2} ;$ A. 24
The color of all the species changes rapidly on exposure to air or immersion in alcohol.

No. 2, when fresh, was of a brilliant green upon the belly and lower part of the flanks, deepening into brown above, and blotehed with bright purple. After exposure, the ground tint becomes first reddish, and finally dull purplish brown, while the purple blotches gradually fade into dirty white.

The dorsal and anal are blotehed like the body, and the pectorals barred with the same tints.

In all the examples examined, the ventrals are shorter than the peetorals, and fall considerably short of the rent; and the lowest pair of lateral lines unite much nearer to the ventrals than to the vent.

I can perceive no constant difference between specimens from Alaska and those fonnd in our market. The most ordinary number of rays in the first dorsal appears to be nineteen.

No. 1 differs from all the others in the total absence of brighter blotches upon the sides, but the pectorals are barred, and all other characters coincide.

Chirus constellatus.

First dorsal, in all the individuals examined, with twenty-one rays,
and rentrals overpassing pectorals and reaching nearly or quite to the vent.

Lowest lateral line usuially forking about midway between rentrals and vent.
Pectoral spotted all over with light and dark spots.
Common in the bay of San Francisco.

Chirus guttatus.

First dorsal with twenty or twenty-one rays, ventrals and pectorals usually about even posteriorly and scarcely reaching to the rent; position of the fork of the lowest lateral line somewhat variable.
Spots on sides bright orange when fresh, but becoming dark on exposure to air or alcohol.

Chirus maculo-seriatus nov. sp.
D. XXI, $\frac{1}{43}$; A. $22-23$; P. 19; V. $\frac{1}{3}$; C. (principal rays) 15; L. lat. 110.

Body elongate, compressed, the greatest height about one-fifth of the length (eaudal included); greatest thickness, at opercles, about threefourths of the greatest height; depth of caudal peduncle about $\frac{10}{2} \frac{0}{7}$ of the greatest deptli; head about one-fourth of total length.

Dorsal outline rising at an angle of about 20°, with a slight curve to the origin of the dorsal, or to about its fifth ray, whence it descends gradually in a straight line to the caudal pedunele, which is wedgeshaped, increasing in width towards base of tail.

Abdominal outline descending slowly to the scapular gindle, thence nearly level to anal; anal base sloping upwards with a slight eurve.

Snout longer than orbit; interocular width slightly less than length of orbit; forehead slightly curved transversely, summit of ascending premaxillary processes rising slightly above the profile of the snout.

Anterior nostril with the edges raised into a short tube.
Eyeslateral, elliptical; a fimbriated flap over the orbit.
Jaws subequal, the upper slightly projecting; posterior extremity of maxillary reaching slightly beyond anterior margin of orbit, that of mandible below the center of the pupil.

Cardiform teeth in both jaws, in several rows in front, diminishing to a single series at the sides, the outer row larger than the others; a patcle of similar teeth upon the vomer, and oceasionally a few on the anterior part of the palatines, a character which certainly cannot be of generic value in this group. Branchiostegals six; gill-openings continuous below, no isthmus; gill-rakers obsolescent, transverse.

Dorsal arising above the flap of the opercle, slightly in front of the pectoral base, deeply notched; the first dorsal strongly arched on its upper margin; the first ray much shorter than the second; the other rays increasing in height to about the fourth, thence diminishing to the twentieth, which is considerably shorter than the marticulated ray at the commencement of the second portion of the dorsal.

Second dorsal lower than the first, the rays increasing to about tho
fourth; upper margin straight, slightly diminishing in height to the mineteenth ray, four last rays diminishing rapidly.

Anal commencing even with the second dorsal, and cotorminons and similar to it; rays increasing to the third; last ray short.

Candal slightly emarginate on posterior margin, with numerous accessory rays ruming some distance up the profile of the candal pedunele; principal rays twice bifurcate. Vent somewhat in advance of the aual.
Pectorals rom derl, central rays longest, their tips abont even with the nineteenth dorsal spine; rays simple; base vertical.

Ventrals inserted well behind the pectorals, beneath the sixth dorsal spine; secoud ray longest, its tip slightly overpassing the vent; three longest rays overpassing the pectoral.

Lateral lines five on each side, two above and two below the principal line.

The uppermost on each side commence close together on the occiput, run along the dorsal base outside the first row of scales, and cud at the fourteenth ray of the soft dorsal.

The second commences on the oeciput, and is continued to the base of the uppermost principal caudal ray.
The third commences on the scapular region, runs parallel with the dorsal ontline till it becomes median mon the candal peduncle, and is continued sume distance upon the caudal.

The fourth commences slightly in front of the pectoral base, and contimes parallel to the abdominal outline to opposite the serenteenth anal ray.

The fifth pair are united into a median abdominal line at a point about half way between the vent and the axil of the ventrals; anterior to this point the single line runs forward to the pectoral girdle; posterior to it each division runs parallel with the anal base, and ends at the base of the lowest principal caudal ray.

Scales ctenoid, rather larger on the anterior portion of the body than on the posterior; the ciliation obsolete on the scales of the side of the head. Suborbital stay squamose. Snout, preorbital, and interoperculum scaleless. Membrane between caudal rays sealy.

Pectoral base scaly ; some small seales at base of rays of first dorsal; second dorsal with small scales between the rays for about half its height. Anal scaleless.

Color, in alcohol, brown, blotched with yellowish blotehes in longitudinal series.

This hitherto undescribed species is tolerably common in the markets of San Francisco at some seasons of the year.

When fresh, the series of blotches along the sides are bright orange and bright maroon.

A type specimen is in the National Museum.

Table of measurements.

The proportions of the two specimens measured differ considerably, No. 2 being much deeper in proportion to its length than No. 1, and haring its greatest depth imnediately over the rentrals, instead of at the origin of the dorsal.

In cousequence of the more clongate form, the insertions of the rentrals and of the pectorals are relatively farther back in No. 1 than in No. 2.

Similar differences of proportion exist in C. constellatus, and it is evident that no weight ean be attached to proportion in distinguishing these species.

Neither is it advisable, in view of individual differences obserred, to attach much significance to the length of the ventrals, or to the position of the fork of the lowest lateral line.
C. maculo-seriatus is by no means searce in our markets, but is less abundant than guttatus and constellatus.

An example of this form is in the National Museum at Washington, numbered

 T(1)
Hy W. N. LOCKINGTON.

Uranidea microstoma.
Body long and low, little compressed.
Head depressed, rather small, wider than deep; anterior portion of body about equal in width and depth, somewhat llattened on back near head, and gradually becoming more and more compressed posteriorly.

Dorsal ontline regularly archerl, its highest point at origin of first dorsal; abdominal outline nearly straight in some examples.

Head about $4 \frac{3}{5}$ to $4 \frac{1}{6}$; breadth of same $5 \frac{1}{3}$ to $4 \frac{1}{2}$ times in the total length; orbit abont 5 , snout 4 to $3 \frac{1}{2}$ times in the length of the head.

Eyes directed upwards, elliptical, the orbits not elevated above the general surface; interorbital width nearly equal to the transverse diameter of the orlbit.

Mouth short, small compared with others of the genus; posterior extremity of maxillary a little beyond the front margin of the orbit; mper margin of maxillary hidden behind the preorbital in the closed month, except the short, broad, posterior extremity, which is free.

Lower jaw shorter than the npper, and closing within it.
A broad band of villiform teeth in front of both jaws.
Tecth on vomer, none on palatines.
Subopercular spine much developed, directed forwards; preoperculum ending in a single sharp, straight spine ; branchiostegals 5.

First dorsal commencing a little behind the pectoral base, low, the upper margin nearly straight; height less than that of second dorsal, the rays nearly equal in length.

Second dorsal commencing above the vent, first ray shorter than the second; upper margin a straight line, the height of the fin diminishing regularly but slowly posteriorly.

Anal shorter than second dorsal, commencing opposite the third and ending opposite the seventeentli ray of that fin; anteriorly rounded, the rays increasing to the fourth, thence somewhat diminishing posterionly; depth greater than the height of the second dorsal.

Pectoral wedge-shaped, seventh ray longest; rays fleshy, simple; tip of seventh ray reaching about to the vent.

Ventrals inserted a little behind insertion of pectorals, the tips not reaching the rent, consisting of one spine and four rays; sccond, third, and fourth rays longest.

Candal slightly convex on its posterior margin when expanded; the rays twice bifurcate, first bifureation at abont a third of their length from the base.

Vent not separated from the anal fin by any considerable space; rays simple.

Lateral line deflected downwards suddenly at posterior extremity of second dorsal, thence posteriorly along center of caudal peduncle, and anteriorly parallel to dorsal outline; pores simple, $3 \tilde{3}-37$.

Body scaleless, entirely smooth.
Color olivaceous above, lighter below; upper portion maculated with darker; fins with small dark spots on the membrane; a dark band aeross caudal.
Two specimens (Nos. 1 and 3) from fresh water, near Saint Paul's, Kodiak, collected loy W. J. Fisher. In No. 1 the dorsals are separated by a considerable space; in No. 3 by a smaller space. One of these is in the United States National Museum, numbered -.

Numerous specimens from the Alentian Islands, collected by Captain Greenebaum, present no difference except in the more or less complete union of the dorsals, and their smaller size. The latter are probably half grown.

As the fin-rays and other characters agree closely, I am inclined to think the separation of the dorsals either an individual character, or one due to greater age.

Mr. Fisher's examples were obtained in fresh-water lakes formed by the melting snows, and communicating with the ocean ouly by slallow outlets. This species differs from those of the genus found in the United States by its smaller month, lower fins, and the four soft rays in the ventrals. In all these respects it resembles the European Uranidea gobio.

Dimensions.

DESCREPTHON OF A NEWV SPETKEA OE AGONEDRE (EBEACHEXPSES

Hy W. N. LOCKINGTON.

Brachyopsis verrucosus.
D. VII-IX, 7-S. A. 10-11. P. 14-15. V.1-3. C. 2-10, 2. Lateral scutes, $31-36$.

Form elongated, slender, lateral dorsal ontline rising very gradnally from the snout to above the base of the pectoral; central part of the upper orbital margin elevated above the line of the forehead and oceipnt, as is also the tip of the lower jaw and front portion of the snont, so that there is a not very conspicuous depression in front of the eye.

From the lighest point the dorsal outline descends gradually to the elongated and narrow caudal peduncle.

Abdominal outline from posterior extremity of mandible to caudal peduncle straight.

Greatest height abont 11; greatest width $7-7 \frac{1}{2}$; length of head $4 \frac{1}{2}-4 \frac{11}{1}$ times in total length to tip of candal (mouth closed); greatest depth about $1 \frac{1}{2}$ in greatest width; depth of caudal peduncle about $3 \frac{3}{4}$ times in the greatest depth.

Mouth oblique, the lower jaw projecting considerably beyond the upper, its tip entering into the dorsal ontline, and its posterior extremity reaching to a vertical from the anterior margin of the pupil.

Mandible half or nearly half the length of the head.
Maxillary short, broad posteriorly, and set at a more oblique angle than the mandible, below which the lower angle of its posterior margin projects when the month is closed, while the entire leugth of its upper margin is hidden beneath the preorbital in the closed mouth; a short and slender barbel at its posterior extremity.

Entire length of upper jaw less than $\frac{1}{3}$ that of head.
Teeth uniform in both jaws, villiform, very small, in a band which is widest in front, but divided in the center.

A patch of similar but even finer teeth (perceptible to the touch, but scarcely to the eye) on vomer, and another on cach palatine.

Eyes directed laterally and somewhat upwards, oval, their longitudinal diameter a little less than the length of the snout, and about $4 \frac{1}{6}-4 \frac{1}{3}$ in the length of the side of the head; interorbital area sunken, its width about 5 times in the length of the head.

Snout a little longer than the longitudinal diameter of the eye; two short backward-directed spines on its summit, slightly posterior to the line of the tubes of the nostrils.

Preorbital large, with several small spines on its lower margin.
Supraorbital margin set with small spines, and rising in its posterior portion to a spinulose crest.

Lower orbital margin prominent, a pair of spines at its posterior extremity, the hinder the larger.

Preopereulum with a spinulose longitudinal ridge, ending in a back-ward-directed spine; a second smaller spine below this, at angle; lower limb with two flat angular projections.

Operculum striate, with a ridge, ending in a spine, on its upper part.
Occipital and lateral ridges of upper surface of head prominent, spinulose or denticulated above, but without spines; lateral ridges each formed of three shorter ridges; no pit on occiput.
Gill-membranes continnous below, without isthmus; branchiostegals five, large.

Pectoral very long, boldly rounded on its posterior and lower margins, broad; the upper rays slightly increasing to about the sixth, the five lowest decreasing rapidly. Tips of the longest rays reaching nearly to or beyond the sixth dorsal ray, or to the back of the thirtecnth or fourteenth dorsal sente. Longest rays about equal in length to the head. Rays simple, base slightly oblique.

Ventrals inserted ou the plane of the upper pectoral axil, longer than the pectorals, their greatest length about 4 times in the total length, and consisting of a spine and two rays, the spine attached to the first ray, which is of considerable length, but shorter than the second, the tip of which extends beyond the second anal ray. Membrane between the two rays broad; the second ray fringed with a membrane along its internal margin.

First dorsal commencing at about the eighth dorsal seute and terminating at the sixteenth. First spine shorter than the second, the next five about equal in length, the remainder diminishing rapidly. Height of the longest spines somewhat exceeeding the depth of the body below the fin.

Second dorsal about equal in height and similar in form to the first, arising at about the nincteenth dorsal scute, and terminating at or near the twenty-seventh. First ray shorter than the second, the next four nearly equal, the remainder falling rapidly.
Anal commencing directly below the last ray of the first dorsal, and coterminous with the second dorsal, its lower margin nearly straight, and its depth rather less than the height of the second dorsals.

The last rays of the dorsals and anal are joined to the body by membrane.

Posterior margin of caudal convex ; aceessory rays few.
Dorsal scutes 35-36, the two series approaching and uniting a little behind the second dorsal; about seven sentes between the point of junction and the caudal.

Each scute produced posteriorly into a large spine bent backwards, and frequently denticulated upon its auterior or outer edge. Behind tho point of junction of the two dorsal rows the spines are in closely coupled pairs.

Lateral series of scates each consisting of $31-36$ plates, each armed with a spine similar to those above described.

Ventrul series containing 29-31 plates, the last three or four single, the remainder forming a double series similar to the dorsal scries, but with less conspicuous spines.
The ventral series commences at the axils of the ventral fins, and the lower surface between these fins and the gill-openings is oceupied by several large, separate, subcircular, strongly striated scales or plates, those rmming along the margin of the gill-openings placed closer together, and forming a series of about seven.

Abont seven pairs of subcircular scales, not striated, or only slightly striated, are scattered along the acutely triangular space behind the ventrals, between the two ventral series of scutes, which do not fairly meet each other anterior to the anal fin. An elongate naked area behind the pectorals, separating the lower lateral from the ventral series.

Some small seales in the space between the mandibles, and a series of small, elerated, and sharp-pointed scales along the curve of the pectoral base.

Vent not far behind the base of the ventrals.
The center of the interocular space, the area between the occipital ridges, some spaces on the lateral aspect of the head between the more prominent parts of the bones, and the areas between the large scales in front of the ventral are set with numerons prickles, a few of which also occur in the intermandibular area.

Similar prickles are numerous on the anterior portion of the trunk, ocenpying the spaces between the parallel dorsal and upper lateral series of scutes; those of the upper surface end at the first dorsal, those of the upper lateral surfaces at the posterior extremity of the same fin. Behind these points the scuta of these surfaces closely interlock.

Lateral line continuous; a pore between each pair of scutes; pores simple.

Color.-After exposure to alcohol, the upper and lateral surfaces of the body are banded alternately with dull yellowish and olivaceons brown; pectorals whitish on their basal portion, a dark spot on the upper and another on the lower edge excepted, and dark on their terminal part, the margin of the dark color rumning obliquely from the center of the first to the tip of the eleventh ray.

Ventrals with a large black spot on the membrane inside the first ray, and two small spots near the tip of the membrane. Abdomen yellowish white.

When somewhat fresher, the dirty yellowish tint of the ventrals was bright orange yellow, and the black of that fin was more positive, so that it is probable that in life the colors of the whole body were much brighter than they are now.
The total length of the specimens examined, from tip of lower jaw (mouth closed) to tip of caudal, varied from 5.68 inches to 6.65 inches.

Actuai measurements of the parts are not given, as the proportions vary but little.

Several examples were collected November 26,1879 , at a depth of ten fathoms, in Drake's Bay, 35 miles north of San Francisco, by Mr. Voy, who has presented them to the State University, Berkeley, Cal.
One of the types is in the United States National Muserm, mumbered -.

This species is referred to the genus Brachyopsis, proposed by Dr. Gill for the reception of Agonus rostratus.

This genus is distinguished from Agonus by the projecting lower jaw and consequent comparatively large terminal mouth, and by the absence of an isthmus.

 TENUATUN)。

By W. N. LOCEENGTON.

Fam. BLENNIDE(?).
ICOSTEUS.
Body much compressed. Teeth in a single row in both jaws, close-set, sharp. No teeth on vomer, palatines, or pharyngeals. Gill-openings contimons under the throat, composed of flexible rays, the anterior simple.

A single long dorsal fin; anal similar. Base of pectorals fleshy. Ventrals thoracic in position. Lateral line with groups of spines. Pseudo branchie.

Body scaleless throughout; fins beset with spimules along the rays.

Icosteus ænigmaticus.

Body much compressed throughout; head thicker than any portion of the body. Dorsal outline rising rapidly to the origin of the dorsal; thence more slowly in a regular curve to about the center of the lengtl of the body; thence curving gradually downward to the caudal peduncle. Abdominal ontline regularly curved.

Upper and lower outlines of caudal peduncle concave, the peduncle widening posteriorly to support the fin-shaped caudal.

Greatest depth about $3 \frac{1}{2}$ times in total length ; length of head about 5 times in total length; eye 6 ; snout more than 3 ; interorbital width about $2 \frac{1}{2}$ times in the length of the head; caudal peduncle about $5 \frac{1}{2}$ times in the greatest depth.

Nostrils simple, elongate-elliptical; eyes lateral, their diameter less than the length of the snout; month-opening rather large, horizontal, or nearly so ; tip of the intermaxillary below the lower margin of the eye; margin of upper jaw formed of the intermaxillaries only ; maxilla-
ries narrow throughout, not hidden beueath the preorbital; posterior extremity of the maxillary extending to a little beyond a vertical from the center of the ese.

Teeth in jaws in a single row, numerous, fine, sharp-pointed, closely and regularly set, those in the upper jaw smaller than those in the luwer. No tecth on vomer or palatines. No pharyngeal teeth present.

Gill-rakers flexible, ferr, about half as long as the diameter of the eye on the first branchial arch, diminishing on each successive arch.

Gill-openings coutinuous under the throat ; branchiostegals six.
Dorsal commencing at a vertical above the pectoral axil, and consisting of $52-55$ rays, all soft and flexible, but some of the anterior ones unbranched. Anterior portion of dorsal low, the rays gradually, mereasing in height posteriorly, the base of the fin terminating opposite to that of the anal, at about $1 \frac{1}{2}$ times the least width of the caudal peduncle from the origin of the candal fin; but the longest rajs (last bitt two or three) extending backwards almost to the origin of the central ceaudal rays. None of the dorsal rays bifurcate more than once.

Anal commencing opposite the 24 th-27th dorsal ras ; similar to and about equal in depth to the height of the posterior portion of the dorsal, consisting of $37-40$ rays, most of them once bifureate; its base terminating opposite to that of the dorsal, and its longest posterior rars extending backwards even with those of the latter ; three last anal rays diminishing rapidly iu length.

Some of the anterior anal rays appear to be unbranched.
Candal elongate, fan-shaped, the central rays longest, and the posterior margin greatly rounded. Posterior part of caudal peduncle expanded, and forming the larger half of an ellipse, around which the rays are set; the central ones straight, the outer ones curving outward and backward. Accessory rays numerous; principal rays twice bifurate.
Pectorals with a fleshe base, having a curved posterior border from which the rays radiate, forming a fan-shaped fin; the central rays longest, the others diminishing regularly on both sides. All the rays straight; the seven or eight central ones twice, the others once, bifureate.

Ventrals inserted a little behind the base of the pectorals, narrow, consisting of a short (spinous?) and four long rays.

Lateral line conspicnons, curving downwards above the pectoral until, a little posterior to the origin of the anal, it reaches the median line of the trunk, along which it continues till it dies out upon the fleshy base of the caudal.

Groups of small spines along the entire lengtl of the lateral line, the number of spines in each group variable. About 120 groups of spines in the smaller example. No seales upon any portion of the body or fius, but the latter rendered rough by asperities or small spinules; a single series along the base of each ray, and a series along each of its branches.

Color.-Purple spots and blotches of irregular shape upon a yellowishbrown ground ; the spots largest upon the dorsal region, and becoming
smaller and more numerous near the lateral line. The region above and behind the pectorals beset with numerous purple spots, smaller than those above the lateral line. Beneath the lateral line, on the posterior part of the body, there are no spots, except along the line of the anal; but probably"this is the result of exposure to alcohol, which has caused the disappearance of most of the spots from the smaller specimen, the color of which, when fresher, was like that of the larger.
Throat and greater portion of gill-membranes without blotehes, but sown with dark points, which oceur also over the whole of the body and the interior of the mouth. Fleshy bases of candal and pectorals with sereral purple blotches. Fins darker than the body, and showing traces of blotehes of a deeper tint, especially upon the caudal.

Vertebre numerous; vertebral column highly flexible and soft.
Cranial bones tolerably firm, those of the face and opereles, \&e., highly flexible.
Entire body characterized by a lack of firmness, as it can be donbled up as readily as a piece of soft, thick rag. Swim-bladder large.
I append measurements of the two specimens, but many of these must be regarded as approximate only, in consequence of the distortion arising from the soitness of texture of the fish, together with that consequent upon cutting them open shortly after they were first procured.
In the larger specimen the ventrals are partly destroyed, and the tips of many of the dorsal and anal rays are wanting.
The shape of the head in the two examples is very different, doubtless owing to the flexibility of the bones. In the larger the snout is bluff", almost perpendicular, the dorsal outline rises rapidly to the origin of the dorsal, and the tip of the premaxillaries is far below the eye; while in the smailer the dorsal outline slopes regularly from the tip of the snont, which is almost level with the lower margin of the eye, to the origin of the dorsal.

Dimensions.

		No. 2.
Total length, to tip of candal.		$11 \frac{1}{3}$
Greatest depth (approximate)...............		$3 \frac{1}{5}$
Depth of peluncle of tail where narrowest Length of head		碞
Diameter of eye...........		
Interorbital width		$\frac{15}{15}$
Length of upper jaw		
Length of snout.		${ }_{8}$
Tip of snout to origin of dorsal		3^{31}
Length of base of snont..-...........		61
Interral bet ween dorsal and candal..		
Tip of mandible to anal fin		$5 \frac{1}{8}$
Length of anal base.....		${ }_{0}^{88}$
Origin of dorsal to upper axil of peetoral		$\stackrel{3}{2}$
Upper axil of pectoral to tip of snout Length of peetorals		$2 \frac{1}{3}$
Length of ventrals.		15
Number of dorsal rays		52 or 53
Number of aual rays.		37
Number of groups of spines in lateral line		Cirea 180

These two individuals, together with a third of smaller size, and certainly of another species, were procured in the market of San Francisco by W. G. W. Harford, in 1876. The fishmonger called them "deep-sea fish," and said that he had never seen the kind before. No others have appeared in the market since. A smaller example is in the museum of the State Unisersity, Berkeley, and was procured in Washington Territory.

The relations of this fish are probably with the Blennioid fishes. It can, however, hardly be referred to any of the current families, and should perhaps form the type of a separate one.

Osmerus attenuatus.
Osmerus elongatus Lockington, Rep. Commissioners Fisheries State of Cal, 1879, p. 43; not Osmerus elongatus Ayers, Proc. Cal. Acad., Vol. I, p. 17.

D. 1-10. A. 17. P.14. V.1-S.

Form elongate, fusiform, dorsal outline rising gently to a point just behind the origin of the pectoral, thence almost straight to dorsal, thence tapering regularly to the candal peduncle. Abdominal outline straight from the posterior extremity of the maxillary to the ventrals, thence inclining upwards slowly to the caudal peduncle.

Greatest depth $7 \frac{2}{3}-8 \frac{3}{4}$ times; head $4 \frac{1}{3}$ to nearly 5 times in the total length; eye about 4 times in the length of the head; snout about the same length as the eye; caudal pedunce $22_{5}^{2}-23$ times in the greatest depth.

Viewed from above, the forehead and snont diminish in width anteriorly.

Nostrils conspicuous, divided by a thin partition, simple, sitnated on a line from the top of the pupil to the tip of the snont, and about halfway between the latter and the anterior margin of the orbit.

Eyes large, subcircular, entirely in the anterior half of the head; upper orbital margins raised, but the interorbital space between these margins flat transversely.

Mouth large, the commissure straight and ascending anteriorly at an angle of about 30°, the tip of the upper jaw horizontal with the center of the pupil, and the posterior extremity of the maxillary on a vertical line from the posterior margin of the pupil; mandible straight on its lower border, its tip projecting beyond that of the upper jaw.

Dentition tolerably strong, on jaws and palatines. Teeth of upper jaw in a single row, numerous, small, slender, those in front inclined forward, a large tooth at the symphysis.

Lower jaw with a double row of slightly recurved teeth in front, the - outer extending only about one-fifth of the length of the sides of the mandible, the inner row extending along the sides, and consisting of larger teeth, than the onter or than those of the upper jaw; the largest situated along the sides, and much wider apart than those of the upper jaw.

Iuner palatine row of numerous small teeth; outer palatine series
rery variable in its development, but usually consisting of few rather large teeth, increasing in size forwards, the anterior tooth sometimes quite a large canine. Teeth in front part of tongue in a single series on each side, with a single terminal tooth; all the teeth large and curved, the terminal tooth largest. A large pateh of several rows of villiform teeth on the base of the tongue, marked off by a constrietion from the terminal pateh.

Gill-rakers long and slender, those of first pair of branchial arches half as long as the eye, the others diminishing gradually. Branchiostegals seven.

Angle of preoperenlum a little more than a right angle, both the posterior and the inferior margins nearly straight. Posterior margin of gill-cover forming a bold and almost regular curve, its most posteriorly producel portion oceupied by the suboperculum.

Pectoral of fourteen rays, the third or fourth longest, narrow, the rays bifurcate. Tips of the pectorals distant from the ventrals more than the length of the ventrals.

Teutrals not greatly shorter than the pectorals; the rays bifurcate, their tips not reaching to the anns; insertion of ventrals about one seale in advance of that of dorsal.
Dorsal of one spine and ten bifureate rays, highest in front, the height about twice the length of the base; the second ray slightly longer than the first, the last longer than the spiuc. Anal commencing at about the posterior third of the total length, and consisting of serenteen branched rays, the first very short, the second nearly equal to the third and longest, the fourth nearly equal to the third, thence descending gradually.

Caudal deeply emarginate, almost forked; rays $11-10-9-\frac{8}{10}$, prineipal rays several lines branched.

Lateral line not very distinct, running along the center of the silvery band of each side. Scales rather large, their exposed portion forming a diamond-shaped pattern, each diamond about twice as deep as long. Head sealeless.

No scales upon the fins.
Adipose fin faleate, rather large.
Color of the fresh fish.-Light greenish gray on the back, the pattern of the scales marked by a series of black dots around the edge of each; these die out upon the silvery lateral line. A very bright silvery line along the side, reaching one scale above lateral line; the upper boundary of this boand distinct, the lower fading into the silvery-white of the belly. Operculum and suboperculum bright like the lateral band, except above, where they become greenish gray like the back; snout and cheeks darker greenish gray than the back. Lower jaw with black points below and on the sides, closer together toward the tip. Fins spotted with dark points. Forchead between eyes almost black; eyes silvery; pupil black.

Locality, San Franc̣isco.

The whole fish is highly transparent when fresh, the outline of the brain being clearly visible through the occiput.

From Osmerus thateichthys, which at first sight nearly resembles it, this species may be distinguished by the following characters: The slightly greater length and more tapering form of the swout, when viewed from above; the straight lower jaw, which in O. thaleichthys is considerably curved upwards toward the tip; the gradual declivity of the upper outline of the head, which in the latter species is straight with the line of the back; the larger eyes; the different arrangement of the teeth; the more elongated boll, much less curvate along the abdominal outline; and the much greater distance between the tips of the pectorals and the base of the ventrals.

Dimensions.

Nos. 1, 2, and 3 are alcoholie specimens; the others were measured while fresh.
The comparatively elongate form of this fish induced me to believe that this species must be O. elongatus Ayres (Proc. Cal. Acad. Sci., I, $17,1854)$, but as the latter ichthyologist transmitted examples of his species to Washington, and these examples were examined by Girard, and foud by him to be identical with his Osmerus pretiosus $(=$ Argentina prctiosa Grd. $=$ Hypomesus olidtus (Pallas) Gill), there is no doubt that the foregoing is an undescribed species.
There are thus four species of Microstomatide on the Pacific coast, United States, viz, Thaleichthys pacificus, Hypomesus olictus, Osmerus thaleichthys, and O. attenuatus. The first of these does not occur in the markets of Sim Francisco, but is sent down packed in salt from the Columbia River, also to some extent in oil, under the name of "Columbia River sardines." The other three are brought into the markets in a fresh state. Hypomesus olictus grows to the largest size, and is most highly esteemed of the three. Osmerus attenuatus is tolerably aboudant in the markets during the spring and summer months.

DESCRIPTEON OF A NEE HHAKE (PHICIS EARELKII), FROM SOUTII HN NOIRTH CAEOLINA.

Ry TARLETON H. REAN.

1. Phycis earllii Bean.

The United States National Museum has just received from Mr. R. E. Earll three specimens of a species of Phycis which differ from all the other recognized eastern American species. It is quite unlike P. temuis, P. chuss, and P. chesteri, since none of the rays of the first dorsal are produced. In the shape of the anterior dorsal and the general form of the body it resembles P. regins, from which, however, it may be at once distinguished by its much smaller scales. From P. DcKayi Kaup it is well separated by the structure of its anterior dorsal, and by having the ventrals shorter than the head. The species differs also from P. rostratus Gthr. in having a much greater number of scales between the anterior dorsal and the lateral line.

Mr. Earll secured these fish in the market of Charleston. They were numbered 131 in his collecting invoice, and are catalogued as numbers 25207,25208 , and 25209 of the Mnseum Register. The speeies is dedicated to its discoverer, who first collected it and called attention to its specific distinctness from the four known east coast forms.

Descriphion.-The species is short and stout, resembling in this respect P. regius. The greatest height of the body equals twice the length of the longest ray of the anterior dorsal, and is contained 5 times in the total length, candal included. The length of the head is contained 33_{3}^{2} times in the length of the body, measmed to the origin of the middle candal rays. The length of the snout equals the distance between the eyes. The length of the upper jaw equals half that of the head. The length of the eye is contained nearly twice in length of snout, $6 \frac{1}{2}$ times in length of head, and nearly 4 times in the length of the postorbital part of the head. The lower jaw is as long as the npper, but is received within it. The maxilla extends somewhat behind the vertical through the posterior margin of the eye. The barbel is $\frac{1}{3}$ as long as the upper jatr, or nearly so. Both jaws and the head of the vomer are armed with teeth in villiform bands, as in other species of the gemms.

The peetorals are as long as the postorbital part of the head.
The ventrals extend nearly to the rent, and their length is contained 4 times in the distance from the tip of the snout to the end of the second dorsal.

The distance of the anal from the tip of the snout nearly equals the length of the anal base.

The origin of the anterior dorsal is directly over the axil of the pectoral ; the dorsals are subcontinuous; none of the lays of the anterior
dorsal are produced, and none of them are longer than the longest rays of the second dorsal. The longest anal ray is not much more than half as long as the longest dorsal ray, and equals half the length of the pectorals. The length of the anterior dorsal base is about equal to that of the snout; the second dorsal base is about $2 \frac{1}{2}$ times as long as the ventral fin.

The length of the middle candal rays is contained 8 times in the total length without candal.

The typical specimens are 13 inches, $13 \frac{1}{2}$ inches, and 14 inches long, respectively.
Radial formula.-B. VII; D. 10, 60-63; A. 53-54; P. 15.
There are 21 or 22 rows of scales between the anterior dorsal and the lateral line, and about 155 along the lateral line.

Color:-Brown, with some light spots on the second dorsal and the sides; the anal fin and the two dorsals margined with darker brown.
2. Phycis regius (Wall.) Jor. \& Gilb.

Col. Marshall McDonald, among numerous interesting forms of southern fishes, has recently secured 6 specimens of this species of Phyeis, which were taken in a hanl seine, March 26, 1880, at the month of the Cape Fear River, in North Carolina. These are numbered 90 in his collecting invoice. Phycis regius has not been recorded so far south before; specimens have been taken in York liver, a tributary of Chesapeake Bay. The discovery of two gadoids as far south as the Cape Fear and Charleston is quite unexpected.
U. S. National Museum,

Washington, April 9, 1880.

DESCRIPTION OF A NEW SPECEES OF SEBASTHCHTRIYS (SEIBASTECYTHYS MENYATUS), HEONH MONTEIEIY BAY, CALEEOENEA.

HE DAVID S. JORDAN and CHARLES YH. GHLIEERT.

Sebastichthys miniatus sp. nov.
Allied to Sebastichthys pimniger Gill.
Body oblong, the form much as in S. pimiger and S. atrovirens; the caudal peduncle rather stouter than in pinniger. Head moderate, somewhat pointed, the profile not very steep. Mouth rather large, the max: illary reaching to opposite the middle of the pupil, the premaxillary in front on the level of the lower edge of the pupil. Lower jaw projecting somewhat beyond the upper, with a rather conspicuons symphyseal knob, which is larger than in pinniger. Middle of lower jaw elevated, so that the mesian teeth are much raised, and fit into an emargination
of the upper jaw. This eleration is much more marked in the present species thau in pimiger.

Head more completely scaly than in related species, the seales also rougher, the scales on the mandible, snont, preorbital, and head generally being fully ctenoid. In S. pinniger the scales on nearly all parts of the head are cycloid. Mandible scaled even to the symphyseal knob. Interopercle fully scaled; most of the branchiostegals with series of scales. • Maxillary, preorbital,'and tip of snent fully scaled. P'reorbital with a narrow neck, and two distinct spines, the neek less than onefourth the diameter of the eye, which is of moderate size, about is in pinniger.

Spinous ridges on top of head low and small. The following pairs of spines are present: Nasal, preocular, supraocular, postocular, tympanic, and occipital, six pairs in all.

Interorbital space very broad and almost flat, a slight depression on each side of the supraocular ridge, between which depressions is a slight convexity.

In S. pinniger the interocular space is notably narrower, and both depressions and concavity are more marked. Space between occipital ridges slightly convex. In S. pinniger this is slightly concave.

Preopercular spines rather long and sharp, the secoml the longest and sharpest, the spines radiating and having less of a backward direction than iu S. pinniger.

Opercular spines sharp. Spines on subopercle and interopercle moderate. Two suprascapular spines and a rudiment of a third.
Scales large, in about 47 transverse rows; the accessory scales few.
Dorsal fin low, rather deeply emarginate, essentially as in S. pinniger, but both spines and soft rays somewhat higher, the latter a little higher than the spines. Caudal fin lunate. Anal fin rather high, the second spine about as long as the third and rather stouter, little more than half the height of the soft rays. Pectoral fin moderate, as in pimiger, the tip reaching about to the vent, the base rather narrow, and the rays not fleshy. Ventrals, as in pimiger, very long, reaching past the rent almost to the begiming of the anal.

Dorsal rays XlII, 14; A. III, 7.
Gill-rakers, as in pinniger, very long and slender, about $10+22$ in number, the longest about $\frac{2}{3}$ the diameter of the eye.

Color darker than in pinniger, deep red, strictly speckled with dusky. Above bright deep vermilion, mottled with flesh-color on the sides, the belly light red. Back and sides everywhere with clusters of black dots, so that the whole body has a dusky shade. Top of head and back with vaguely defined cross-blotches made of dark points on snont, interorbital space, oceiput, under fourth dorsal spine, under eighth dorsal spine, one umler first soft ray, last soft ray, and base of candal. Three obscure orange stripes radiating from the eye. Maxillary with a red streak.

Lips red, mottled with blackish. Under side of head light red, mottled with darker. Inside of month red.

Fins all bright vermilion; spinous dorsal spotted with olive-gray below, the membrane posteriorly edged with blackish; soft dorsal spotted below with blackish, a vertical dark olive streak on each membrane; other fins tipped with blackish, the membranes more or less dotted. No black bloteh on the spinous dorsal; no distinct pale streak along the lateral line.

The coloration of Sebastichthys pinniger, whieh has thus far never been described, is as follows:

Ground color light olive-gray, profnsely blotched with bright clear orange-red, the red shades predominating above, the pale below. Belly nearly white. Top of head with cross-blotches and marblings of orange, alternating with pale. Sides of the head flesh-colored, with three bright orange bands radiating from the eye; maxillary with orauge touches. Lips pale, tinged with blackish. Inside of mouth pale.

Dorsal fin with the membranes bright orange, a large blach blotch occupying the membranes between the seventh and tenth dorsal spines; this spot is usually distinct, but in old examples it is sometimes obsolete. Pectorals light red, mottled with yellowish. Other fius all bright orange, without dusky tips, slightly mottled with paler at base. Lateral line rumning in a distinct continuous light-gray streak, which is not crossed by the red markings.
S. miniatns was first known to us from two specimens taken at Santa Barbara. These were provisionally considered as representing a variety of pimmiger, but after the examination of an extensive series of specimens from Monterey Bay we were forced to the conclusion that the deep-red forms, although nearly allied to S. pinniger, belong to a distinct species. The difference in color is very marked and the two species may be separated at sight. In life any of the numerous species of this genus may be at once recognized by the color alone, a feature which, cireumstances of age and surroundings being equal, is in this group remarkably constant.

This species reaches the same size as S. pinniger, and is brought with it to the San Francisco market, but in much less abundance.

In the deseription already published by us of Sebastiehthys proriger the specimen measured as "S. pinniger" belongs to the present species.

Measurcments.

	Miniatus. (Monterey.)	Pinniger. (Monterey.)
Extreme length, in inches.	11.00	16. 80
Length to base of eaudal $=100$		
Body: Greatest depth	35.	37.5
Least depth of tail	12.3	11.8
Head:		37.5
Length of snout		
Diameter of eye	. 095	. 095
Width of interorbital are	. 08	. 085
Occipital spine.	. 075	. 07
Supratacular spine.....	. 007	. 024
Least width of preorbit	17.5	17.
Longest gill-raker.	.05	.063
Dorsal:		
Mighest (fifth) spine	17.3	${ }_{18 .}^{16.5}$
Anal:		
Length of base	15.5	
Sceond spine...	13.5	
Third spine.	9.14 .8	21.5
Caudal, middere ray.	17.	15.
Pectoral:		
Width of lase	0.5	
Length...i.		
Dorsal rays...	X1i1, 14	XiII, 14
Anal rays.	111, 7	111,
Scales in lateral	42	

Hy MAVEDS. TORDAN and CHAREES IH. GILEERET。

Sebastichthys carnatus sp. nov.
Allied to Sebastichthys nebulosus Ayres.
Body rather short and deep, tapering rapidly to a rather slender caudal peduncle. Mead short, bhntish, the profile straight and steep. Mouth low and rather short, the maxillary extending to rather behind the posterior edge of the eye, which is rather small and elevated. Premaxillary entirely below the level of the eye, which is rather small and elevated. Mouth nearly horizontal, the jaws abont equal, the lower jaw slightly shortest in the closed mouth. No prominent symphyseal knob.

Scales on the head rather rougher than in S. nebulosus; the lower jaw, maxillary, space in front of eye, and nasal region naked, as in nebulosus.

Top of head with the spinous ridges well developed, but somewhat lower than in S. nebulosus; otherwise very similar. The following pairs are present: Nasal, preocular, supraocular, tympanic, and occipital, five in all. The oceipital spines especially are lower and narrower than in nebulosus.

Preopercular spines small and bluntish, the uppermost rather broader than the second, which is the longest. Opercular and suprascapular spines two each, rather short and broad. A slight spine on interopercle and subopercle.

Gill-rakers, as in nelulosus. short, compressed, somewhat clavate, the middle ones longer and somewhat crooked.
Spinous dorsal always higher than in ncbulosus, the highest spines rather higher than the soft rays, the membranes more deeply incised than in nebulosus, but less than in maliger. Caudal fin truncate. Anal fin moderately high, the second spine stronger and slightly longer than the third, about two-thirds the height of the soft rays. Pectoral fins rather short, about reaching to the vent, their bases very broad, as in related species, and the lower rays thickened and fleshy. Ventrals reaching vent.
Scales in 53 transverse rows; the accessory seales rather mumerous.
Dorsal, XIII, 12; anal III, 7; pyloric cœea 8; vertebræ $12+15$.
Pattern of cceration almost exactly identical with that of S. nebulosus, but the shade of color very different.

In S. carnatus the light gromid color is clear flesh color or pinkish, ofteu tinged with grayish purple; the light shades on the head purplish. The dark shades are yellowish-brown, usually tinged with greenish.

In S. nebulosus the light ground color is more restricted, and its hue is usually a clear warm brownish-yellow with orange mottlings, varying to dusky orange-brown, below often tinged with olive. The dark shades are olive-black, varying to olive-brown. The light shades of S. ncbulosus are often nearly identical with the dert shades of S. carnatus.

In both species the pattern is a light gromud color, with dark blotches, the dark color predominating above. Membraue between third and fourth spines always pale, this color forming a bloteh at the base of these spines, aud then extending obliquely downwards and backwards, joining the ventral color. In front of this light area on the sides is a narrow oblique dark one, in front of which in turn is a light one, which begins at the angle of the operele and divides, passing around the pectorals and uniting below them.

A light blotch muder the eighth dorsal spine extending up on the fin; also another at the junction of the two dorsals, and still another under the last ray. Under each of these blotches irregnlar undulating light areas extend down the sides, either continuous or as detached blotehes. The pale dorsal blotches correspond in position to the pink dorsal spots of rosaceus, constellatus, oculatus, and chlorostictus, and to pale areas found in fasciolaris, vexillaris, maliger, and other species.

Head above with cross-shades and bands radiating from the eye. Fins with the general patteru of color of neighboring parts of the body.

This species is very closely related to S. nebulosus, and from it cannot always be readily distinguished except by the color. Like S. nebulosus, it is one of the smaller species, seldom reaching a length of much over a foot. It is very abundant in the Bay of Monterey, forming a large proportion of the "rock-fish" slipped from Monterey to the San Franciseo market. S. ncbulosus occurs in the same waters, and the examination of great numbers of examples of both sexes and all ages has
convinced us that, although closely related, the two forms are permanently distinct. Whether hereafter to be regarded as a species or as a "subspecies," the form is a peculiar one, and as such worthy of a Lame.

Measurements.

	Carnatus. (Monterey.)	Nebulosus. (Monterey.) (Monterey.)
Extreme length, in inches.	10.50	11. 50
Length to base candal $=100$.	8.90	9.85
Body:		
Greatest depth.	38.	36.5
Head:		11.5
Length.	36.	36.
Diameter of ejo	8.5	9.
Length of snont	9.5	10.
Length of preocular rilge.	3.5	3.5
Length of supraocular ridge	5.	5.
Length of oceipital ridge..	6.	6.
Least width of preorbital	2.5	3.
Width of interorbital space		6. 3
Length of maxillary	18.	18.
Length of longest gill-raker	2.8	2.
Dersal:		
Length of base......	57.	63.
Height of fifth spine	20.	16.
Height of membrane betwee	11.	11. 2
Height of longest soft ray..	15.8	15.5
Anal: Length of base		
Height of second spine	16.5	13.
Meight of third spine	14.5	13.1
Height of longest ray .-	20.	17.5
Caudal, length of middle rays	20.5	16.3
Puetoral:		
Length . ${ }_{\text {Width }}$ of hase	25.	26.8 10.5
Wentral, leugth of	11.	${ }_{21.5} 10$.
Dorsal rays	XIII, 13	XIII, 34
Anal rays	III, 7	III, 7
Number of transverse rows of se	43	45

April $\because, 1880$.

CHECK-LIST OF DUPEICATES OF NBERTII ATEETECAN EINEIES

Prepared by TARLETON H. BEAN.

LOPHIIDE.

1. Lophius piscatorius Linn.

Lophius americanus Storer, Hist. Fish. Mass., 1867, p. 101, pl. xviii, fig. 2. 22311. Gloucester, Massachusetts.

ANTENNARILDE.

2. Pterophryne histrio Liun.

Ptcrophryne lovigata (Ci1v.) Gill, Cat. Fish. E. Coast N. A., 1873, p. 14. 20662. Wood's Holl, Massachusetts (3).

DIODONTIDE.
3. Diođon hystrix Linn.
23779. Bermuda.
4. Chilomycterus geometricus (Linn.) Kaup.
9448. East coast of United States.
14752. Noank, Connecticut.
19460. Eastern shore of Virginia.
19674. Beanfort, North Carolina.
19719. Fort Macon, North Carelina.
19767. Fastern shore of Virrinia.
20074. Coast of New England.
21634. Newport, Rhede Island. 22911. Eastern ceast of United States. 22912.
5. Tetrodon turgidus Mitch.

Chilichthys turgidus Gill, Cat. Fish. E. Coast N. A., 1873, p. 15.

10740.	Wood's Holl, Massachusetts.
14037.	Noank, Connceticut.
14746.	" ${ }^{\text {" }}$
14747.	" 6
14748.	" ${ }^{\prime \prime}$
14749.	" ${ }^{4}$
14750.	$"$ "
14828.	" ${ }^{4}$
14972.	Eastern coast of United States.
17596.	Noank, Connecticut.
17597.	" ${ }^{\text {a }}$
17598.	" "
17599.	14
17600.	4

1760I.	Noank, Connecticut.	
17602.	$"$	$"$
17603.	$"$	$"$
17604.	$"$	$"$
17605.	$"$	$"$
17600.	$"$	$"$
17607.	$"$	$"$
19461.	Eastern shore of Virginis	
19765.	$"$	$"$
19829.	Wood's Holl, Massachusetts.	
20230.	Eastern coast of United States.	
21444.	Cohasset Narrows, Massachusetts.	
22718.	Eastern coast of United States.	
23147.	"	

- BALISTIDE.

6. Alutera Schoepfii (Wall.) Goode \& Bean.

Alutera cuspicauda Gill, Cat. Fish. E. Coast N. A., 1873, p. 15.
Ceratacanthus aurantiacus Gill, op. cit., p. 15.

14745.	Wood's Holl, Massachusetts.	18745.	Wood's Holl,	Massachusetts.
16601.	Menemsha Bight, Massachusetts.	18746.	16	,
16314.	Wood's Holl, Massachusetts.	18747.	"	"
16567.	" "	18748.	"	"
18715.	" ${ }^{\prime \prime}$	18749.	- ${ }^{\circ}$	"
18716.	"	18750.	${ }^{4}$	${ }^{6}$
18717.	" ${ }^{\prime \prime}$	18751.	${ }^{4}$	${ }^{6}$
18718.	" ${ }^{4}$	18752.	"	${ }^{6}$
18719.	" "	18753.	"	"
18734.	" ${ }^{\prime \prime}$	18863.	"	"
18735.	16	19251.	"	"
18736.	" ${ }^{\text {a }}$	19280.	"	${ }^{6}$
18737.	" ${ }^{\prime \prime}$	19282.	"	"
18738.	"	19718.	Fort Macon, N	North Carolina.
18739.	" 0	20691.	Newport, Rho	de Island.
18740,	" ${ }^{6}$	21644.	"	"
18741.	" ${ }^{6}$	21649.	"	"
18742.	" ${ }^{6}$	22937.	Eastcrn coast	of United States.
18743.	" ${ }^{\prime \prime}$	22738.	"	*
18744.	"			

7. Monacanthus setifer Bennett.

Stcphanolcpis setifer Gill, Cat. Fish. E. Coast N. A., 1873, p. 15.

18893. 18894.	Wood's Holl, Massachnsetts.	18908.	Wood's Holl, Massachusetts.
18895.	"	18909.	" ${ }^{4}$
18896.	"	18910.	"
18896.	*	18911.	" ${ }^{4}$
18897.	$4{ }^{4}$	18912.	$1{ }^{\prime \prime}$
18898.	" "	18913.	" ${ }^{4}$
18899.	$4{ }^{14}$	18914.	" 0
18900.	" ${ }^{\circ}$	18915.	" ${ }^{\prime \prime}$
18901.	$4{ }^{\prime \prime}$	18916.	" ${ }^{\prime}$
18902.	"	18917.	"
18903.	" "	18946.	".
18904.	" ${ }^{4}$	21545.	
18905.	$4{ }^{46}$	21631.	Newport, Rhodo Island.
18906.	" "	23144.	Wood's Holl, Massachusetts.
18907.	" *		

8．Balistes capriscus Linn．
21650．Nowport，Rhode Island．
【 22739．Eastorn coast of United States．
9．Balistes vetula Linn．
22731．Eastern coast of United States．

SYNGNATHID压．

10．Syngnathus fuscus Storer．

18919.	Wood＇s Holl，Massachnsetts．	18932.	Wood＇s	chusetts
18920.	＂ 4	18933.	${ }^{6}$	＊
18921.	$4{ }^{4}$	18934.	4	4
18922.	$4{ }^{46}$	18935.	4	4
18923.	4 ＊	18936.	${ }^{6}$	4
18924.	$4{ }^{4}$	18937.	＂	${ }^{4}$
18925.	6 ＊	18938.	4	46
18926.	4 ＊	18939.	${ }^{6}$	． 6
18927.	46	18940.	4	${ }^{6}$
18928.	46	18941.	＂	4
18929.	64	18942.	4	＊
18930.	46	18943.	64	46
18931.	14			

GASTEROSTEID压．

11．Gasterosteus aculeatus L．

13397．Wood＇s Holl，Massachusetts． 19831．＂＂
21455．＂4

23162．Wood＇s Moll，Massachusetts． 24433．Wilmington，Delaware．

12．Gasterosteus pungitius L．
23161．Wood＇s Holl，Massachusetts．
｜24460．Wood＇s Holl，Massachusetts
13．Gasterosteus pungitius L．sub．sp．brachypoda Bean．

21767．American Marbor，Cumberland Gulf．｜21770．American Harbor，Cumberland Gulf． | $21769 . ~ " ~$ | | |
| :--- | :--- | :--- |

14．Apeltes quadracus（Mitch．）Brevoort．
13404．Wood＇s Holl，Massachusetts．

13413.	$"$	$"$
13418.	$"$	

16110．Wood＇s Holl，Massachasetts．		
17753．	＂	＂
19832.	＂	＂
23160.	＂	＂

SOLEIDA．

15．Solea vulgaris Quensel．
22734．England．
16．Achirus lineatus（Linn．）Cuv．

7280．Washington，Distriet of Columbia．
10365．Potomac River．
19984．New Bedford，Massachusetts．
15091．Tompkinsvillo，Now York．
15350．Eastern coast of United States．
15628．New York Market．
19759．Eastern coast of the United States．
19876．Potomac River．

19877．Potomac River．
$19878 . \quad 1$
19016．Eastern coast of the United Statea．
20199．Newport，Rhodo Island．
$20756 . \quad$＂
22621．Potomac River．
23472．Chesapeake Bay．
24249．Providence，Rhode Island．

PLEURONECTIDE.

17. Pseudopleuronectes americanus (Walb.) Gill.

14691.	Portland, Maine.	14726. 14797.	Wood's Holl, Massachusetts,
14692.	* ${ }^{6}$	$14727 .$	
14693.	" 0	14728.	$6{ }^{6}$
14694.	" 16	14729.	16 -6
14695.	40	14730.	$4{ }^{46}$
14696.	$4{ }^{6}$	14731.	$6{ }^{6}$
14697.	4 "	14732.	$6{ }^{66}$
14699.	" 6	14733.	$6{ }^{64}$
14700.	$4{ }^{4}$	14734.	46
14701.	" ${ }^{4}$	14735.	66
14702.	" $"$	14738.	66
14704.	Wood's Moll, Massachusetts.	14739.	66
14706.	" ${ }^{\text {a }}$	14740.	41
14707.	" 4	14741.	$4{ }^{4}$
14708.	40	17231:	46
14709.	$4{ }^{4}$	17232.	46
14710.	$4{ }^{46}$	17233.	16
14711.	" ${ }^{4}$	17234.	46
14712.	4 "	17235.	64
14714.	$4{ }^{46}$	17236.	$6{ }^{61}$
14716.	16	17237.	16 6
14717.	$4{ }^{4}$	17238.	46
14718.	46	17239.	4 "
14719.	14	17240.	4 "
14721.	" 4	20868.	New York Market.
1472 2.	" 6	20874.	Washington Mk't, from Portland, Me.
14723.	" 6	20953.	Bucksport, Maine.
14724.	$6{ }^{6}$	22730.	Eastern Coast of United States.
14725.	4 16	23179.	Gloucester, Massachusetts.

18. Limanda ferruginea (Storer) Goode \& Bean.
19. Halifax, Nova Scotia.
$21033 . \quad$ "، "
20. Salem, Massachusetts.
21. Gloucester, Massachusetts.
22. Gloncester, Massachusetts.
23. Milk Island Trap, Gloucester, Mass.
24. Halifax, Nova Scotia.
25. Gulf of Maine.
26. Pleuronectes glaber (Storer) Gill.

14657.	Portland, Maine.	14683.	Portland, Maine.
14638.	" ${ }^{\text {c }}$	14684.	" ${ }^{4}$
14660.	" 6	14685.	" "
14661.	"	17163.	" ${ }^{4}$
14662.	"	17164.	" ${ }^{1}$
14663.	" ${ }^{4}$	17165.	"
14665.	"، "	17166.	" 4
14666.	" ${ }^{4}$	17167.	" "
14667.	" "	17168.	" ${ }^{4}$
14668.	"	17169.	" 6
14660.	" "	17170.	" ${ }^{4}$
14670.	" "	17171.	" ${ }^{4}$
14671.	" "	17172.	" 6
14672.	" ${ }^{4}$	17173.	" ${ }^{4}$
14673.	" ${ }^{\prime \prime}$	20903.	Washington Market.
14677.	" ${ }^{\prime \prime}$	20904.	" "
14679.	" "	20954.	Bucksport, Maine.
14680.	" "	22241.	Washington Market, from Portland, Me.

20. Glyptocephalus cynoglossus (Linn.) Gill.
21. Massachusetts Bay.
22. Le Have Bank.
23. Halifax, Nova Scotia.
24. " "
25. Mouth of Harbor, Halifax, N. S.
26. Halifax, Nova Scotia.
27. Le Have Bank.

21817.	Gloucester, Massachusetts.
21821.	$"$
21908.	$"$
22694.	Milk Island Trap, Gloucester, Mass.
23141.	Massachusetts Bay.
24632.	Chebucto Head, Nova Scotia.

21. Lophopsetta maculata (Mitch.) Gill.

$\begin{aligned} & 14633 . \\ & 14634 . \end{aligned}$	Wood's Moll, Massachusetts.	$\begin{aligned} & 17154 . \\ & 17155 . \end{aligned}$	Noank, Conuecticut.
14636.	" "	17156.	" ${ }^{4}$
14638.	Portland, Maine.	17157.	" "
14639.	Noank, Connecticut.	17158.	" ${ }^{\prime \prime}$
14640.	" "	17159.	" "
14641.	" ${ }^{\prime \prime}$	17160.	Charleston, South Carolina.
14642.	" ${ }^{\prime}$	17161.	Noank, Counceticut.
14643.	" ${ }^{\prime}$	17162.	" "
14644.	" "	19429.	Wood's Holl, Massachusetts.
14647.	" 4	19753.	Eastern coast of United States.
14648.	" "	22313.	Gloncester, Mussachusetts.
14649.	" "	22372.	Wood's Holl, Massachusetts.
14652.	، ${ }^{6}$	22693.	Gloucester, Massachusetts.
14653.	" ${ }^{4}$	22735.	Lastern coast of United States.
14654.	" ${ }^{\prime}$	22759.	Wood's 以oll, Massacliusetts.
14655.	" "	23763.	Off Cape Cod, Massachusetts.
16002.	Wood's Holl, Massachusetts.	24221.	Gloucester, Massachusetts.
17151.	Eastport, Maine.	24262.	Vineyard Sound, Massachusetts.
$17152 .$	Noank, Connecticut.	24349.	Provincetown, Massachusetts.

22. Citharichthys spilopterus Gthr.?
23. Crisfield, Maryland.
24. Hippoglossoides platessoides (Fabr.) Gill.

21009.	Ifalifax, Nova Scotia.	23142.	Massachnsetts Bay.
21021.	" ${ }^{\text {a }}$	23920.	Sable Island.
21023.	" "	24602.	Massachusetts Bay.
21037.	" ${ }^{\text {a }}$	24606.	Halifax, Nova Scotia.
21045.	" ${ }^{\text {a }}$	24607.	" "
21046.	Off Halihas, Nova Scotia.	24609.	" "
21052.	Halifax, Nova Scotia.	24611.	" ${ }^{\prime \prime}$
21064.	" "	24612.	" ${ }^{6}$
21065.	" ${ }^{\prime}$	24619.	" ${ }^{6}$
21785.	Gloncester, Massachusetts.	24621.	" "
21818.	" ${ }^{\text {a }}$	24627.	" "
29288.	Lat. $42^{\circ} 49^{\prime} \mathrm{N}$., Lon. $62^{\circ} 55^{\prime} \mathrm{W}$.	24633.	" "
22629.	Gloucester, Massachusetts.	24634.	" "

24. Pseudorhombus dentatus (Linn.) Gthr.

Chanopsetta ocellaris (DeKay) Gill.
Cheenopsetta dentata (Storer) Gill.
14628. Noank, Connecticut.
$\begin{array}{lll}14629 . & " \\ 14630 . & "\end{array}$
16029. Wood's Holl, Massachusetts.
16318. " "
17114. Charleston, South Carolina.
18442. Saint John's River, Florida.

18443.	$"$	$"$
18444.	$"$	$"$
18445.	$"$	$"$
18446.	$"$	

18447.	Saint John's River, Florida.
1853.	Kinston, North Carolina.
18532.	"
19397.	Wood's Holl, Massachusetts.
19398.	""
19501.	Beaufort, North Carolina.
20982.	Charleston, South Carolina.
21279.	Saint John's River, Florida.
22717.	Eastern coast of Uuited States.
22908.	"
23528. Crisfield, Maryland.	

23528. Crisfield, Maryland.
23529. Pseudorhombus oblongus (Mitch.) Gthr.

Cheenopsetta oblonga (Mitch.) Gil.
10677. Wood's Holl, Massachusetts.

10678.	4	6
10679.	6	6
10682.	6	64
10683.	4	4
10716.	6	46

14624. Noank, Connecticut.

14625.	$"$	$"$
14626.	$"$	$"$

14627. " "
14628. Wood's Holl, Massachusetts.
14629. Provincetown, Massachusetts.
14630. Hippoglossus vulgaris Flem.
14631. Jeffrey's Bank. 124242. Jeffrey's Bank.

macruride.

27. Macrurus Bairdii Goode \& Bean.
28. Grand Banks.
|24313. Gloucester, Massachusetts.
29. Macrurus Fabricii Sundeval.
30. Lat. $42^{\circ} 46^{\prime}$ N., Lon. $63^{\circ} 45^{\prime} \mathrm{W}$.
31. Off coast of New England.
32. Lat. $43^{\circ} 53^{\prime}$ N., Lon. $59^{\circ} 05^{\prime} \mathrm{W}$.
33. Off coast of New England.
34.
35. Sablo Island Bank.
36.
37. Off coast of New England.

22873 . " "
22875 " "
29876. 6
23054. Banquereau.

```
23055. Banquereau.
23057. Lat. 440 20' N., Lon. }5\mp@subsup{7}{}{\circ}5\mp@subsup{7}{}{\prime}\textrm{W}
23058. "
23059. "
23060. " "
23061. " "
23909. Off coast of New England.
24285. "% "
24286. 6 *
24702. "
24703. " *
```

29. Pollachius carbonarius (Linn.) Bonn.

14615.	Eastport, Maine.	21794.	Gloucester, Massachusetts.
14616.	" ${ }^{\text {a }}$	22690.	"
14617.	" ${ }^{4}$	22796.	" "
14618.	" ${ }^{4}$	24219.	" ${ }^{\prime}$
14621.	4	24451.	Wood's Holl, Massachusetts

30. Gadus morrhua Linn.
31. Noman's Land.
32. Wood's Holl, Massachusetts.
33. Gloucester, Massachusetts.
$23156 . \quad$ "
$23166 . \quad$ "
34. Provincetown, Massachusetts.
35. Provincetown, Massachusetts.
36. "
$24347 . \quad$ "
37. " "
38. Gloncester, Massachnsetts.
39. Wood's Holl, Massachusetts.
40. Microgadus tomcodus (Wall.) Gill.
41. Wool's Moll, Massachusetts.

10779.	$"$	$"$
13015.	$"$	$"$
13019.	$"$	"
13835.	$"$	4

14009. Noank, Connecticut.
14010. Eastport, Maine.
14011. 6 "
14012. " "
14013. Portland, Maine.
14014. Wood's Holl, Massachnsetts.

14398 . " "
$14599 . \quad$ "
14600 . " "
14601. " 4
14602. "
$14603 . \quad$ "

14605.	"	${ }^{6}$
14606.	"	"
14607.	*	4
14608.	16	${ }^{6}$
14609.	4	${ }^{6}$
14610.	4	6
17611.	16	*
17746.	4	c6
20595.	14	*
21454.	6	06
22221.	16	${ }^{6}$
23158.	16	${ }^{\prime \prime}$
24445.	*	6
24457.	"	4
24513.	16	${ }^{6}$

32. Phycis chuss (Walb.) Gill. 22630. Gloucester, Massachusetts.
33. Phycis tenuis (Miteh.) DeǨay.
34. Eastport, Maino.
35. Wood's Holl, Massachusetts.
36.
37. Eastport, Maine.
38. Portland, Maino.
$14576 . \quad$ "
145% " "
$14578 . \quad$ "
$14582 . \quad$ "
39. " "
$14504 . \quad$ " "
40. " "
41. Wood's Holl, Massachusetts.
42. " "
43. " "
44. " "
45. " "
46. Wood's Holl, Massachusetts.
47. Eastern coast of Cnited States.
48. Halifax, Nova S'cotia.
49. Lat. $42^{\circ} 42^{\prime}$ N., Lon. $64^{\circ} 20^{\prime}$ W.
50. Gluncester, Massachusetts.
51. " "

21816 . " "
22321. " "
29631. " "
$22653 . \quad$ " "
22701. New England.
34373. Provincetown, Massachusetts (14).
2443. Wood's Holl, Massachusetts.
24464. " "
-4574. " "
24610. Halifax, Nova Scotia.
34. Phycis regius (Walb.) Jorkan \& Gilbert.
16845. New Iork Aquarium. 20923. East eoast of Uuited States.
16847. East coast of United States.
35. Onos (Rhinonemus) cimbrius (L.) Goode \& Bean.
23149. Gloucester, Massachusetts.
23180. Halifax, Nova Scotia.
23761. Provincetown, Massachusetts.
36. Haloporphyrus viola Goorle \& Bean.
23062. Lat. $44^{\circ} 20^{\prime}$ N., Lon. $57^{\circ} 57^{\prime} \mathrm{W}$. $23063 . \quad$ "
23918. Grand Banks.
24251. Lat. $43^{\circ} 41^{\prime} \mathrm{N}$., Lon. $59^{\circ} 15^{\prime} \mathrm{W}$.
24301. Lat. $44^{\circ} 13^{r}$ N., Lon. $58^{\circ} 02^{\prime}$ W.
24713. Lat. $43^{\circ} 17^{\prime}$ N., Lon. $51^{\circ} 25^{\prime} \mathrm{W}$.
24714. Grand Banks, western edge.
24746. Banquereau.
24747. Lat. $59^{\circ} 04^{\prime} \mathrm{N} .$, Lon. $43^{\circ} 56^{\prime} \mathrm{W}$.
37. Lota maculosa (LeS.) Rich.
11019. Sandusky, Ohio.
$\begin{array}{lll}11020 . & " & " \\ 11022 . & " & " \\ 11024 . & " & "\end{array}$
11201. Alpena, Michigan.

1120 . " "
11203. " "
12452. Apostle Island, Lake Superior. 12466.
15860. New Fork Market.
16637.
$16638 . \quad$ "
16639.
16640.
17782. Sandusky, Obio.
$17783 . \quad$ " "
19793. Alpena, Michigan.
22926. Lake Superior.

MERLUCIIDE.

38. Merlucius bilinearis (Mitch.) Gill.

LYCODIDE.

39. Lycodes Vallii Reinh.
40. East Banquereau.
41. Zoarces anguillaris (Peck) Storer.
42. Eastport, Maine.

14554.	$"$	$"$
14556.	$"$	$"$
14557.	Portland, Maine.	
14558.	"	"
14559.	"	"
21784.	Gloncestcr, Massachusetts。	
22632.	"	"
20658.	$"$	"
22695.	6	6

CRYPTACANTHID E.

41. Cryptacanthodes maculatus Storer.
42. Eastern coast of United States.
43. Gloncester, Massachusetts.
44. Fishing Banks, off New England.
45. Fishing Bauks, off Niew England.
24710.66 24737 . 66 es

XIPHIDIONTIDE.

42. Murænoides gunnellus (L.) Goode \& Bean.

Jruronoides mucronatus (Mitch.) Gill.
13129. Wood's IIoll, Massachusetts.
13432. " "
13438. " "
13848. Eastport, Maine.
16503. Eastern coast of United States.
19827. Wood's Holl, Massachusetts.
19847. Wood's Holl, Massachnsetts. 22812. 23164. New Bedford, Massachasetts. 23165. Wood's Holl, Massachusetts. $24926 . \quad$ "

ANARRHICHADID E.

43. Anarrhichas lupus L.
44. East coast of United States. 23907. " "
45. Lat. $42^{\circ} 10^{\prime}$ N., Lon. $66^{\circ} 30^{\prime} \mathrm{W}$.
46. 8 miles S. E. Gloucester, Massachusetts. 24699. 5 miles S. S. E. Gloucester, Massachusett3. 24700 .
47. Anarrhichas minor Olafsen.
48. Lat. $44^{\circ} 30^{\prime}$ N., Lon. $57^{\circ} 10^{\prime} \mathrm{W} ., 250$ fths. | 24237. Lat. $43^{\circ} 52^{\prime} \mathrm{N} .$, Lon. $59^{\circ} 09^{\prime} \mathrm{W} ., 200$ fths.
49. Anarrhichas latifrons Steenstrup \& Hallg.
50. Lat. $42^{\circ} 27^{\prime}$ N., Lon. $64^{\circ} 20^{\prime}$ W., 280 fathoms.
51. Banquereau, 300 fathoms.
52. East const of United States.
53. Lat. $42^{\circ} 53^{\prime}$ N., Lon. $59^{\circ} 09^{\prime}$ W., 200 fths.
54. Lat. $43^{\circ} 33^{\prime}$ N., Lon. $52^{\circ} 06^{\prime}$ W., 150 fths.
55. Lat. $43^{\circ} 33^{\prime} \mathrm{N}$., Lon. $52^{\circ} 06^{\prime} \mathrm{W}$., 140 to 160 fathoms.

BLENNIIDE.

46. Blennius crinitus.
47. Bermuda.
48. Labrosomus nuchipinnis (Q. \& G.) Poey.
49. Bermuda. | 21946. Bermuda

BATRACIID E .
48. Batrachus tau Limn.
6823. East coast of United States.
10711. Wood's Jull, Massacliusetts.
$10743 . \quad$ " "
$10744 . \quad$ "
14512. Noank, Connecticut.
14543. "

14544 . 6
$14545 . \quad$ "
14546 . " "
14548. " "
14549. " "

14550 . " 6
$14551 . \quad$ " 6
10550. Wood's Holl, Massachusetts.
17210. Noank, Connecticut.
17211. "
17212. " "
17213. " "
17214. " "
17215. " "
17216.4
17217. 4 "
$17218 . \quad$ " 6
$17219 . \quad 4$
17609. Wood's Holl, Massachusetts.
19758. East coast of United States.
20632. Wood's Holl, Massachusetts.

22760 *
20005. Santa Barbara, Califoruia 2.333. Monterey, Califormia.
24814. San Diego, California.

URANOSCOPIDA.

50. Astroscopus anoplus (C.\& V.) Brevoort.
51. Eastern United States.

CYCLOPTERIDE.

51. Cyclopterus lumpus Linn.
52. Newport, Rhode Island.
| 23051. Gloucester, Massachusetts.
GOBIID庣。

52. Gobius soporator.

21935. Bermuda.
21936. Eleotris.

19880 \&
\{ 19882)
54. Dormitator.

19881 ?

TRIGLIDEA.

55. Dactylopterus volitans (Linn.) Lac.

56. Prionotus evolans (L.) Gill.
57. Wood's Holl, Massachusctts.

13581.	"	"
14334.		

14535. Noank, Connecticut.
14536. " "
14537. " "

14538 . " "
14539. " " "
14955. Wood's Holl, Massachusetts.
16004. "
16008. " "
16009.4
16011. " $"$
16593. " "
$18368 . \quad$ " \quad "
18870. " "

$18872 .$	6 "
18873.	" 6
18874.	" 4
18575.	" 6
18876.	"
18877.	"
18878.	*
18879.	" 6
19307.	"
19308.	"
19310.	" 6
20703.	Newport, Rhode Island.
21442.	Wood's Holl, Massachusetts.
21652.	Newport, Rhode Island.
22713.	East coast of United States.
$22750 \text {. }$	Wood's Holl, Massachusetts.
22754.	d6 ،

57. Prionotus carolinus (Linn.) C.\& V.

1452s. Noank, Connecticut.

17145. Noank, Connecticut.		
17146.	"	"
17147.	"	"
17148.	"	"
17149.	"	"
17150.	"	
19341.	Wood's Holl, Massachusetts.	
19342.	"	"
19343.	"	"
19344.	"	"
19345.	"	"

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
19346. Wood's Holl, Massachusctts.

19347.	**	"
19348.	"	6
19319.	*	${ }^{6}$
19350.	16	*
19352.	*	6
19353.	4	${ }_{6}$
19354.	*	*
19356.	"	6
19357.	16	*
19358.	16	6
19400.	4	"
19401.	66	6

19403. Wood's Holl, Massachusetts.
19404. " "
19405. "
$19406 . \quad$ "
19406. 6
19407. "
19408. "
19410.4
$19415 . \quad$ " \quad "
19409. Cohasset Narrows, Massachusetts.
19410. Crisfield, Maryland.

AGONIDE.

58. Aspidophoroides monopterygius (Bloch) Storer.
59. Massachusetts Bay.
| 24336. Provincetown, Massachusetts.

COTTIDE.

59. Cottus octodecimspinosus Mitch.
60. Portland, Maine.
$14515 . \quad$ "
$14516 . \quad$ "
14518 . "
14519 . "
14520 . " "
61. " "

14523 . " "
14525 . 4
14526 . 4
19186. Wood's Holl, Massachusetts.
19187.
19188. Wood's Holl, Massachusetts.
$19189 . \quad$ "
19190. " "
19191. " "
19192. " 6
19193. " "
19194. "6
$19195 . \quad$ "6
19749. Coast of Massachusetts.
21036. Halifax, Nova Scotia.
21507. Salem, Massachusetts.
22266. Gloucester, Massachusetts.
60. Cottus æneus Mitch.
10365. Wood's Holl, Massachusetts.
10367. "
13516. "
13522. "
$13525 . \quad 6$
13530 . "
13541. " "
15093. 'Tompkinsville, New York.
16185. Noank, Connecticut.
20883. Wood's Holl, Massachusetts.
$20889 . \quad$ " "
21457 . 4
22766 . 6
61. Cottus scorpius L., subsp. grönlandicus C. \& V.

Cottus groenlandicus Cuv. \& Val.
14507. Portland, Maine.

14509 . "
$14510 . \quad$ "
14.511. Eastport, Maine.
21506. Salem, Massachusetts. 22314. Gloucester, Massachusetts.
22648. * *
62. Cottus scorpioides Fabr. 21744. Cumberland Gulf.
| 22331. Cumberland Gulf.
63. Centridermichthys uncinatus (Rhdt) Guinth.
24340. East coast of United States.
64. Gymnacanthus pistilliger (Pall.) Gill MSS.
21732. Disco Island, Greenland.
| 21741. *Niantilic Harbor, Cumberland Gulf. 21735.

66
4

HEMITRIPTERIDE.

65. Hemitripterus americanus (Gmel.) Storer.

$\begin{aligned} & 14497 . \\ & 14499 . \end{aligned}$	Eastport, Maine. "	$\begin{aligned} & 20956 \\ & 21010 . \end{aligned}$	Bucksport, Maine. Halifax, Nova Scotia.
14500.	Portland, Maine.	21026.	6
14.502.	" ${ }^{\text {a }}$	21035.	${ }^{6}$
14503.	6 "	21508.	Salem, Massachusetts.
14504.	Noank, Connceticut.	21616.	Newport, Rhode Island.
14505.	Wool's Iunll, Massachasetts.	21795.	Gloucester, Massackusetts.
11959.	Coast of Massachusetts.	22269 .	"6 "
16438.	Boston, Massachusetts.	$2 \because 83$.	06
16314.	Nantueket, Ihode Island.	22315.	66
103.78.	" ${ }^{\text {a }}$	22957.	4 "
16594.	Wood's ILoll, Massachasetts.	22655.	68
19112.	" 6	22699.	63
19113.	6	22839.	" "
19114.	- 4	22843.	Wood's Holl, Massachusetts.
19748.	6 "	24368.	Graud Banks.
20696.	Newport, Rliode Island.		

SCORPENID.

66. Sebastes marinus Linn.

Scbastes vivipamıs Kröyer.

14172.	Eastport, Maine.	21792.	Gloucester, Massachusetts.
14473.	" 6	21811.	" "
14474.	" 6	22267.	6 "
14476.	4 a	22.98.	East coast of United States.
11477.	4 4	22390.	" "
11478.	"	22651.	Gloucester, Massachusetts.
14479.	64	22700.	6 "
14430.	16 6	22882.	East coast of United States.
14481.	16	23092.	" 6
14486.	66	23143.	Massachusetts Bay.
14488.	" 6	23774.	"
14489.	" 6	23775.	"
14490.	16	23911.	Banquereau.
14495.	" 6	24637.	Halifax, Nova Scotis.
14196.	6 "		
21620 .	Lat. $42^{\circ} 42^{\prime}$ N., Lon. $64^{\circ} 20^{\prime}$ W., 270 to 300 fathoms.		

67. Sebastomus melanops (Grd.) Gill. 21582. Washington Territory.

SCARIDE.
68. Scarus radians Val.
21373. Bermuda.
| 21882. Bermndin
69. Pseudoscarus vetula (Schn.) Gill.
21850. Dermuda.

LABRIDE.

70. Chœrojulis radiatus (L.) Goode.
71. Lermuda.
72. Tautoga onitis (Linn.) Gthr.

10598.	Woorl's Holl, Massachusetts.	17613.	Wood's Iloll, Massachasette.
10599.	" 6	17614.	" "
10643.	" 6	17615.	6 *
13630.	" 6	17616.	" *
14446 .	" 6	17618.	" 6
14453.	Noank, Connecticut.	17619.	46
14454.	" *	17620 .	" ${ }^{4}$
14455.	4 ${ }^{4}$	$176: 1$.	" 6
14456.	" 4	17629.	$6{ }^{6}$
14457.	" 4	22725.	$4{ }^{4}$
14458.	" 6	22769.	" "
14459.	"6 6	22914.	Massachusctts Lay.
14460.	64	29915.	"
144 l .	Wood's Holl, Massachusetts.	92916.	*
14462.	6 6	24438.	Wood's Holl, Massachusctts.
14463.	$4{ }^{4}$	24444.	" ${ }^{\text {a }}$
14464.	** ${ }^{4}$	21447.	4 "
14466.	6 6	24455.	3 "
14467.	$4{ }^{4}$	24473.	" "
17610.	" 4	24507.	$4{ }^{4}$
17611.	* 6	24519.	46
17612.	" *	24572.	" "

72. Tautogolabrus adspersus (Walb.) Gill.

10745.	Wood's Holl, Massachusetts.	17555.	Noank, Commecticut.
10746.	4: *	17556.	* "
14431.	Portland, Maine.	17557.	46
14432.	" ،	17558.	$6{ }^{6}$
14433.	16	17559.	" 4
14434.	16	17560.	" 4
14435.	" 6	17561.	$6{ }^{4}$
14436.	" 6	17562.	64
14438.	46	17563.	" 6
14439.	" 6	17564.	" ${ }^{6}$
14440.	46	17617.	Wood's Moll, Massachusetts.
14441.	6 6	17623.	Noank, Comnecticut.
14.42.	46	17624.	" ${ }^{\text {a }}$
14443.	" 6	17625.	" 6
14444.	64	17626.	" ${ }^{4}$
14445.	16	17627.	46
14446.	Noank, Connecticut.	17628.	$4{ }^{4}$
14447.	" 6	17629.	" 6
14448.	" 6	22652.	Gloucester, Massachusetts.
14449.	4 "	22742.	" ${ }^{\text {a }}$
14450.	4 "	29767.	Wood's Holl, Massachasetts.
14452.	46	23908.	Provincetown, Massachusetts .
16034.	Wood's Holl, Massachusetts.		

73. Oxyjulis modestus (Grd.) Gill.
74. Santa Barbara, Califormia.
| 17027. Santa Barbara, California.

POMACENTRIDE.

74. Glyphidodon saxatilis (L.) C. \& V

10333.	Bermuda
16856.	"
18207.	"
1820 S.	"
18209.	"
18210.	"
18211.	"
18212.	

18213.	Bermuda.
18214.	$"$
18215.	$"$
18216.	$"$
18217.	$"$
18218.	$"$
21984.	$"$

75. Heros.
76. West coast of Central America. | 19910. West coast of Central America.

EMBIOTOCIDE.

76. Embiotoca Jacksoni Ag.
77. Santa Barbara, California. 22255. California. 17049 . " "
78. Tænictoca lateralis (Ag.) A. Ag.
79. Presidio, California.

22556 . Califoruia.

```
22250. California.
22304.
```

78. Holconotus rhodoterus Ag.
79. Presidio, Califoruia.
80. Humboldt Bay.
81. Sau Diego, California.
82. Santa Barbara, California.
83. Santa Cruz Island, Calitomia.

17030. Santa Barbara, California		
17031.	$"$	$"$
17032.	$"$	$"$
17033.	$"$	4
20340.	Califormia.	

CHATODONTIDE.

79. Sarathrodus bimaculatus (Bloch) Poey.

18197.	Bermuda.	18202	Bermuda.
18198	6	18203.	4
18199.	16	18204.	6
18200	6	18205.	6
18:01.	4	18206.	66

80. Holacanthus ciliaris Lae.
81. Bermuda.
82.
83. Bermuda.
84.

TRICHIURID风.

81. Trichiurus lepturus Linn.
82. Beaufort, North Carolina.
83. North Carolina. 19677.
84. Charleston, South Carolina.
85. Pensacola, Florida.
86. Southern coast United States.

SCOMBRIDE.

82. Scomber scombrus Linn.

10604. 10605.	Washington Market, from New Eng.	$\begin{aligned} & 18993 . \\ & 18994 . \end{aligned}$	Wood's Holl, Massachusetts.
10650.	Wood's Moll, Massachusetts.	18995.	" 6
10651.	"6 6	18996.	" *
13593.	" 6	18997.	" "
13504.	6 "	18998.	$6{ }^{6}$
13595.	" ${ }^{6}$	18999.	"
13597.	6 "	19000.	" ${ }^{\text {a }}$
14429.	Portland, Maine.	21808.	Gloncester, Massachusetts.
16224.	Wood's Holl, Massachusetts.	23769.	Provincetown, Massachusctts.
16443.	New York Market.	24463.	Wood's Holl, Massachusetts.
16494.	Wood's Holl, Massachusetts.	24506.	" 6
18989.	" ${ }^{6}$	24514.	6
18990.	46 "	24568.	4 6
18991.	6، 6	24594.	" "
1899\%.	" "	25183.	Gloucester, Massachusetts.

83. Scomber pneumatophorus De la Roche.
84. Provincetown, Massachusetts.
85. Sarda pelamys (L.) Cuv.
86. New York.
87. Noank, Connecticut.
88. " "
89.
90. Noank, Connectient.
91. Mouth Potomac River.

2ytr8. East coast United Statos.
22778 .
| 21557. Wood's Holl, Massachusetts.
86. Cybium maculatum (Mitch.) Cuv.
23118. Washington Market.

CARANGIDE.

87. Vomer setipinnis (Mitch.) Ayres.
88. New Tork Market.
89. East coast United States.
90. Newport, Rhodo Island.
91. Wood's Holl, Massachusetts.
92. Argyreiosus vomer (Linn.) C. \& V.

195u6. Beaufort, North Carolina.
89. Decapterus punctatus (Ag.) Gill.

90. Trachurops crumenophthalmus (Bloch) Gill.

18685.	Tood's Moll, Massachusetts.	18.00.	Wood's Holl, Massachasetts.
18686.	"	18701.	" ${ }^{6}$
18687.	* ${ }^{6}$	18702.	" 4
18688.	14	18703.	" ${ }^{4}$
18689.	"	18704.	6 6
18690.	" 6	18725.	" 6
18691.	4 "	18726.	" ${ }^{6}$
18692.	" 6	18727.	" 6
18693.	146	18728.	"6 66
18694.	" ${ }^{6}$	18729.	" ${ }^{4}$
18695.	4 *	1898..	" 0
18696.	" ${ }^{4}$	18983.	" ${ }^{4}$
18697.	46	21638.	Newport, Rhode Island.
18698.	" 6	29368.	Wood's Holl, Massachasetts.
18699.	4 "	22784.	" 6

91. Carangus pisquetus (C. \& V.) Gri.

Paratractus pisquetus (C. \& V.) Gill.

92. Carangus hippos (L.) Gill.

	Wuod's Koll, Massachusetts.		Wood's Moll, Massachusetts.
14390.	"6 6	18790.	* 66
14391.	66	18791.	66
14392.	66	18792.	66
14393.	64 66	18793.	66
14394.	66 66	18794.	46
14395.	66 6	18795.	66 6
14396.	66 64	18796.	46
14398.	66 66	18797.	66
14100.	66	18798.	66 64
18779.	66 66	18799.	64
18780.	66 66	18800.	66 -6
18781.	66 66	18801.	66
18782.	66 66	18802.	66
18783.	646	18803.	64
88784.	66 66	19492.	Beaufort, North Carolina.
18785.	66	20842.	Newport, Rhode Island.
18786.	66	21654.	66
1878%	66	24923.	Wood's Holl, Massaclusetts.
18788.	66		

93. Bleplaarichthys crinitus (Akerly) Gill.

13088.	4	66
16113.	66	- 66
16.520.	66	66
19981.	Mauritins.	
19985.	${ }^{6}$	
19986.	66	
19987.	6	

$\begin{array}{ll}\text { 19988. Mauritins. } \\ 20205 . & \text { Newport, Rhode Island. } \\ 20682 . & \text { Wood's Holl, Massachusetts. } \\ 20705 . & \text { " } \\ 20750 . & \text { Newport, Rhode Island. } \\ 21640 . & \text { "" } \\ 22752 . & \text { Wood's Holl, Massachusetts. }\end{array}$
94. Trachynotus carclinus (L.) Gill.
16249. New York Market.
18808. Wood's Holl, Massachusetts.

18809.	"	"
18810.	$"$	$"$
18811.	$"$	$"$
18812.	"	"
18813.	"	"
18814.	"	"
18815.	"	"
18816.	"	"
18817.	"	
18818.	"	

18822. Wood's Holl, Massachusetts.		
18823.	$"$	$"$
18824.	$"$	$"$
18825.	$"$	$"$
18826.	$"$	$"$
18827.	$"$	$"$
18828.	$"$	$"$
18829.	$"$	$"$
18830.	$"$	$"$
18831.	$"$	
18832.	"	
22322.	East coast of United States.	
22737.		
22768.	Wood's Holl, Massachusetts.	

95. Seriola zonata (Mitch.) C. \& V.

Halatractus zonatus (Mitch.) Gill.
10402. Wood's Moll, Massachusetts.

1299 ". "
15095.
12999. " "
$\begin{array}{lll}14384 . & 6 & \text { " } \\ 14385 . & " & 6\end{array}$
$\begin{array}{lll}14385 . & \text { " } \\ 14387 . & \text { " }\end{array}$
$14388 . \quad$ "
14953. East coast of Tnited States.

16ase. Wood's I oh, Massaclusetts.
16393.
16543. New Bedford, Massachusetts.
16569. Wood's Moll, Massachusetts.
18965. "

18966 . " 6
18967 . "
189G8. " 6
1.9018.

$19274 .$	6 "
19365.	66
19366.	" 4
19307.	$4{ }^{4}$
19368.	6 6
19369.	" "
19370.	"6 6
19371.	$6{ }^{6}$
19372.	4 6
19374.	1
19303.	" "
20197.	Newport, Rhode Islaud.
20646.	Wood's Iloll, Massachusetts.
20650.	"
20743.	Newport, Rhode Islaud.
21636.	" 6
22774.	Woodi's Moll, Massachusetts.

CORYPHENIDE.

96. Coryphæna Sueuri C. \& V.
97. New Fork Market.

STROMATEIDE.

97. Palinurichthys perciformis (Mitch.) Gill.

14055.	Wool's Holl, Massachusetts.	19288.	Wood's Holl, Massachusetts.
16080.	Off Nomau's Laud.	19289.	" "
16081.	"	19290.	"
16082.	"	19291.	" ${ }^{\prime \prime}$
16083.	"	19292.	" ${ }^{6}$
16984.	"	19305.	" "
16085.	"	19750.	East coast of United States.
16086.	'6	20704.	Newport, Ihode Island.
16087.	"	22650.	Gloncester, Massachusetts.
16088.	"	22746.	Fishing banks off coast of Maine.
16089.	"	22013.	East coast of United States.
16090.	"	24252.	Gloucester, Massachusetts.
16337.	Wood's Holl, Massachusetts.	24253.	"
16516.	New York Market.	24375.	"
19285.	Wood's Holl, Massachusetts.	24418.	" ${ }^{4}$
19286.	"6	24431.	" ${ }^{6}$
1928%.	" "	24432.	" ${ }^{\text {a }}$

98. Poronotus triacanthus (Peck) Gill.

$\begin{aligned} & 10705 . \\ & 10706 . \end{aligned}$	Hoot's Holl, Mas "
13249.	" ${ }^{\text {c }}$
13267.	" ،
13270.	" ،
13271.	" ${ }^{\text {a }}$
13275.	" ${ }^{4}$
13276.	"
1327 .	" ${ }^{\prime}$
13279.	" ${ }^{\text {c }}$
14358.	" ${ }^{\text {c }}$
14360.	" ${ }^{\prime}$
14361.	" ${ }^{\prime}$
14362.	"
14364.	Noank, Connecticut
14367.	" "
14368.	" "

14369.	Noank, Connecticut,	
14370.	$"$	$"$
14371.	Eastport, Maine.	
14372.	$"$	$"$
14373.	$"$	$"$
14374.	$"$	$"$
14375.	$"$	$"$
14376.	$"$	$"$
14377.	$"$	$"$
14378.	"ortland, Maine.	
14379.	$"$	
14381.	$"$	$"$
14382.	$"$	$"$
14383.	Norfolk, Virginia.	
14939.	Wood's Moll, Massachusetts.	
14944.	Whated States.	
14931.	East coast of United	

14369. Noank, Connecticut,
14370. Eastport, Maine.
$\begin{array}{lll}14372 . & " & " \\ 14373 . & "\end{array}$
14371. " "
14372.

$\begin{array}{lll}14377 . & 66 & 64 \\ 14378 & 6 & 66\end{array}$
14370. Portland, Maine.
14939. Norfolk, Virginia.
14944. Wood's Holl, Massachusetts.
14951. East coast of United States.

15082.	Tompkinsville, New York.
16459. 17188.	Wood's Holl, Massachusetts.
17189.	Noank, Connceticut.
17190.	" ${ }^{\text {a }}$
17191.	"
17192.	" "
17193.	" "
17194.	"
17195.	" "

```
17196. Noank, Connceticut,
17197. " "
17198. " "
20651. Wood's Moll, Massachusctts.
21667. Banquereau.
23155. Wood's Holl, Massachusetts.
24259. Off coast of Maine.
24260. Vineyard Sound.
24927. Gloucester, Massachusetts.
```

99. Pepriius alepidotus (L.) Cuv.

Peprilus Gardenii (Bl. Schn.) Gill.
12871. Off coast of Florida.
15372. Washington Market.
15373.
19499. Beaufort, North Carolina
22924. Norfolk, Virginia.

LATILIDE.

100. Lopholatilus chamæleonticeps Goode \& Bean.
101. Lat. $40^{\circ} 10^{\prime} \mathrm{N}$., Lon. $70^{\circ} 56^{\prime} \mathrm{W} ., 75$ fathoms.

BERYCIDE.

101. Holocentrum sogo Bloch.

18071.	Bermuda.	18080.	Bermuda.
18072.	$"$	18081.	"
18073.	$"$	18082.	"
18074.	$"$	18083.	$"$
18075.	$"$	18084.	"
18076.	"	18085.	$"$
18077.	"	18086.	"
18078.	"	2189.	"
18079.			

SCIENID※.

102. Cynoscion carolinensis (C. \& V.) Gill.
103. Saint John's River, Floridan
104. Norfolk, Virginia.
105. " "
106. Fort Macon, North Carolina.
107. Beaufort, North Carolina.
108. Beanfort, North Carolina. 19654. " " 19713. Fort Macon, North Carolina.
109. Off coast of North Carolina.
110. Near Charleston, South Carolina
111. Cynoscion regalis (Bloch) Gill.

12804.	Norfolk, Virginia.	18886.	Wood's Holl, Massa	chusetts.
14356.	Wood's Holl, Massachusetts.	18887.	"	"
16323.	" 6	18888.	"	،
16429.	" ${ }^{\prime \prime}$	18889.	"	"
16548.	" ${ }^{\prime \prime}$	18890.	"	"
18880.	" ${ }^{\prime \prime}$	18891.	"	"
18881.	"	18892.	"	"
18882.	" ${ }^{4}$	18948.	"	"
18883.	" ${ }^{4}$	22367.	"	"
18884.	"	23195.	"	"
18885.	*	23508.	Norfolk, Virginia.	

104. Pogonias cromis Lac.
105. Suint John's River, Florida.

17005.	4	"
17906.	"	${ }^{6}$
17907.	"	4
17908.	${ }^{6}$	"
17909.	*	4
17910.	4	"
17911.	"	"
17912.	"	"
18303.	4	4
18405.	6	*
18406.	"	16

18407. Saint John's Rirer, Florida.		
18408.	$"$	$"$
18409.	$"$	$"$
18410.	$"$	$"$
18411.	$"$	
18484.	"	
19040.	Florida.	
19041.	$"$	"
19764. Southeast coast United States.		
22779.	"	
24690.	Near Charleston, South Carolina.	

105. Liostomus obliquus (Mitch.) De Kay.
106. New York Market.
107. Nouth of Saint John's River, Florida.
18333 . Saint John's River, Florida.
108.

1844. Saint John's River, Florida.		
18450.	"	"
19055.	$"$	"
21283.	"	
2484.	Tood's Holl, Massachusetts.	
24688.	Near Charleston, South Carolina.	

106. Bairdiella argyroleuca (Mitch.) Gill.

Bairdiella punctata (L.) Gill.
3370. Southeast coast of United States.
17755. Brunswick, Georgia.
18050. Mouth of Saint John's River, Florida.
18335. Saint John's River, Florida.

10\%. Sciænops ocellatus (Limn.) Gill.
18317. Saint John's River, Florida.
19495. Beautort, North Carolina.
19655.
18505. Saint John's River, Florida.
$18506 . \quad$ "
18507 . " "
18508 "
$18512 . \quad$ " 22027.
23169. South Carolina.
108. Menticirrus nebulosus (Mitch.) Gill.

109. Menticirrus littoralis (Holbr.) Gill.

19081.	Florida.	19087.	Florida.
191782.	6	19088.	ぃ
19083.	4	19089.	4
18084.	6	19090.	4
19085.	6	19091.	4
19086.	46		

110. Micropogon undulatns (L.) C. \& V.

18332. Saint John's River, Florida.	"	18495. Saint John's River, Florida.		
18493.	"	"	22740.	East eoast of United States
18494.	$"$	$"$	22033.	$"$

85. Orcynus pelamys (L.) Poey. 27364. Bermuda. | 21881. Bermuda.
86. Haploidonotus grunniens Raf.
87. Mississippi Valley.
88. Sandusky, Ohio.

11040 " " "
11081. Ausable River, Michigan.

12:79. Cincinnati, Ohio.
12955 " "
12286. "
12287. " "
12288. " "
17768. Detroit, Michigan.
17769. Sandusky, Ohio.

17770.	Sandusky, Ohio.	
17771.	6	6
17772.	6	6
17773.	6	6
17774.	6	6
17775.	6	4
17776.	6	66
17777.	6	6
17778.	6	6
17779.	6	6
17780.	4	6
17781.	6	6

GERRIDE.
113. Diapterus gula.

21896.	Bermuda.	23580.	Bermada.
23557.	"	23581.	"
23562.	"	23582.	*
23564.	"	23583.	"
23567.	"	23.84.	"
23568.	,	23586.	"
23569.	"	23587.	"
23570.	"	23588.	"
23571.	"	23590.	"
23576.	"	23591.	6
23579.	\cdots	23592.	*

114. Diapterus Lefroyi Goode.

Eucinostomus Lefroyi Goode.

18157.	Bermuda.	18165.	Bermuda.
18158.	"	18166.	"
18159.	"	18107.	"
18160.	"	18168.	"
18161.	"	18169.	"
18162.	"	18170.	"
18163,	،	18171.	"
18164.	"	18172.	"

115. Pimelepterus Boscii Lac.

10338.	Bermuda.		18187.	Bermuda
18173.	"		18188.	,
18174.	"		18189.	"
18175.	"		18190.	"
18176.	"	-	18191.	"
18177.	"		18192.	"
18178.	"		18193.	*
18179.	"		18194.	"
18180.	"		18195.	"
18181.	"		18196.	"
18182.	"		20177.	4
18183.	${ }^{6}$		21000.	"
18184.	"		23547.	"
18185.	"		23548.	${ }^{6}$
18186.	4			

SPARIDE.

116. Lagodon rhomboides (L.) Holbrook.

17899.	Saint John's İiver, Florida.	18457	Saint John's Rirer, Florida
17900.	い 6	18458	い 6
17901.	"	18459	" "6
18343.	14	18460	" 4
18344.	" "	18461	"
18345.	"	18462.	-6 "
183 ± 6.	16	19134.	Florida.
18451.	" ${ }^{6}$	19687 .	Fort Macor, North Carolina.
18452.	"	19716.	"
18453.	6 16	21280	Saint John's River, Florida.
18454.	16	21569.	Charleston, South Carolina.
184.50.	" 6	21570.	" "
18456.	" "	24284 .	East coast of United States.

117. Archosargus probatocephalus (Walb.) Gill.

18399.	Saint John's River, Florida.	
18400.	$"$	$"$
18401.	$"$	$"$
18402.	$"$	$"$
18403.	"	$"$
18404.	$"$	$"$
18413.	$"$	$"$
18414.	"	"
18415.	"	
18416.	21546.	Charlestou, South Carolina.
22729.	East coast of United States.	

118. Stenotomus aigyiops (L.) Gill.

- 5940. East coast of United States.

10652.	Wood's Itoll, Massachusetts.	14347 .	" 6
10668.	" 36	14348 .	" ${ }^{4}$
10702.	16	14349.	" 6
12922.	" 6	14350.	" 6
12923.	16	14351.	" 4
14326.	" ${ }^{4}$	14359.	" 4
14327.	$6{ }^{6}$	14964.	" 4
14328.	" 6	14965.	" 6
14329.	" 4	16007.	" 4
14330.	4	16030.	" 6
14331.	4 46	16042.	"6
14332.	" 6	16049.	" ${ }^{4}$
14333.	" "	17186.	" 6
14335.	" "	17187.	" "
14336.	14	-1436.	Cohasset Narrows, Massachasetts.
14337.	46	22758.	Wood's Holl, Massachusetts.
14338.	" ${ }^{6}$	29925.	East coast of United States.
14339.	4 "	24468.	Wood's Moll, Massachusetts.
14340.	" ${ }^{4}$	24491.	" "
14341.	$6{ }^{4}$	24508.	"* ${ }^{4}$
14342.	" 4	24512.	$4{ }^{4}$
14344.	" 6	24545.	" 4

119. Sargus Holbrookii Bean.

20979. Charleston, South Carolina.
20980. Charleston, Sonth Carolina. 29s70. Now York Market.
,
20981. Calamus megacephalus (Sw.) Poey. 21893. Bermuda.
20982. Pagrus argenteus Schn.?
20983. Off Charleston, South Carolina.
20984. Pristipoma fulvomaculatum (Mitch.) Gthr.
20985. East coast of United States. | 23507. Norfolk, Virg nia.
20986. Hæmylum xanthopterum C.\& V.

18219.	Bermuda.	18232. 18.33.	Bermuda.
18221.	"	18234.	"
18222.	"	18235.	"
18223.	"	18236.	"
18224.	"	18237.	"
18225.	"	18238.	"
18226.	"	18239.	"
18227.	"	18240.	"
18228.	"	18241.	"
18229.	"	18242.	"
18230.	"	20179.	"
18231.	"	21372.	،

124. Hæmylum flaviguttatus Gill.
125. Colima.

125. Hæmylum.

19639. Florida.
19640. Lutjanus caxis (Schn.) Poey.

18101.	Berrauda.	18110.	Bermuda.
18102.	"	18111.	"
18103.	"	18112.	"
18104.	"	18113.	"
18105.	"	18114.	"
18106.	"	18115.	"
18107.	"	18116.	"
18108.	18117.	"	
18109.		22798.	"

127. Lutjanus Blackfordii Goode \& Bean.
128. Southern coast of United States.
129. Rhomboplites aurorubens (C. \& V.) Gill.
130. Charleston, South Carolina. 121571. Charleston, South Carolina.

CENTRARCHIDE.

129. Micropterus salmoides (Lac.) Gill.
130. Potomac River.
131. Bay City, Michigan.
132. Alpena, Michigan.
133. Charlestown, New Hampshire.
$12309 . \quad$ " "
134. " "
135. Norfolk, Virginia.
136. Potomac River.
137. New York Market.
138. Holyoke, Massachusetts.
139. Sandusky, Ohio.
140. " "
141. " "
142. Bay City, Michigan.
143. Potomac River.
144. Micropterus pallidus (Raf.) Gill \& Jordan.

10380. Norfolk, Virginia.	"	15664.	New York Market.	
10381.	"	16910.	Tangipahoa Rirer, Mississippi.	
11072.	Sandusks, Ohio.	"	"	
12297.	Cincinnati, Ohio.	"	16911.	"
12298.	"	16913.	"	"
12472. Sandusky, Ohio.	16914.	"		

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
17925. Saint John's River, Florida.
17968. Wilmington, North Carolina.
18438. Saint John's River, Florida.
18439.
1844θ.
19032 . " "
19033. " " "
19035. Saint John's Iiver, Florida. 19036.
$19037 . \quad$ "
19038. " "
19039. Jacksonville, Florida.
21278. Saint John's River, Florida.
24812. North Carolina.

131. Ambloplites rupestris (Raf.) Gill.

4173. Rochester, Wisconsin.
4174. Lake Champlain.
4175.
4176. Yellow Creck, Ohio.
4177. Racine, Wisconsin.
4178. Cleveland, Ohio.
4179. "
4180. Yellow Creek, Ohio.
4181. Red River, British America.
4182. Sandusky, Ohio.
4183. Sandusky, Ohio.
4184.

11016.6

11:18. Alpera, Michigan.
12415. Santusky, Ohio.
16919. Tangipahoa liver, Mississippi.
19622. Sandusky, Ohio.
$23183 . \quad$ "
24666. Aux Plaint's, Ilinois.
132. Acantharcus pomotis (Bd.) Gill.
17844. New Jersey.
20353. Trenton, New Jersey.
24654. Watson's Creek, New Jersey.
133. Chænobryttus gulosus (C.\& V.) Gill.

Choenobryttus viridis (C. \& V.) Jordan.
18384. Saint John's River, Florida. 18385. 18387. " " 18514. "، " 18515. " " $18516 . \quad$ " 18517. " " 18519. " " 18520. " " 18591. " " 19096. " " 19097.

24809.
134. Apomotis cyanellus (Raf.) Jordan.
20052. Cumberland River, Tennessee.
135. Lepomis auritus (L.) Gill.
4220. Florida.
6246. Sing Sing, New York.
7757. " "
7775. औ
8099. Rivers of east coast of United States.
136. Lepomis pallidus (Mitch.) Gill \& Jordan.

11066.	Sandusky, Ohio.	19123.	Saint John's River	Florida.
11069.	" "	19125.	"	"
11070.	"، ${ }^{4}$	19126.	"	"
11217.	" 6	19127.	"	"
12469.	" ${ }^{\text {a }}$	19128.	"	"
19109.	Saint John's liver, Florida.	19129.	"	"
19113.	" ${ }^{\text {a }}$	19181.	"	"
19114.	" ${ }^{\text {a }}$	19132.	"	"
19116.	" ${ }^{4}$	19133.	"	"
19118.	" ${ }^{\prime \prime}$	24762.	North Carolina.	
19119.	" ${ }^{\prime}$	24763.	"	

137. Lepomis punctatus.
138. Saint John's River, Florida.
139. " "

18363 " "
18305 " "
18366 " "
18375.

18377.	Saint John's River, Florida.	
18464.	$"$	$"$
18473.	$"$	$"$
18477.	$"$	$"$
18480.	$"$	$"$
23170.	Slorida.	

138. Xenotis sanguinolentus (Ag.) Jordan.
139. Tangipahoa River, Mississippi.
140. Xenotis peltastes (Cope) Jordan.
141. Racine, Wisconsin. | 2266. Michigan,
142. Xystroplites heros (B. \& G.) Jordan.
143. Saint Louis, Missouri.
144. Eupomotis aureus (Walb.) Gill \& Jordan.

11063.	Sandusky, Ohio.	18269.	Washington Market.
11064.	" "	18270.	"
11065.	"	18271.	"
12952.	South Hadley Falls, Massachnsetts.	1827.	.
14941.	Washington Market.	18273.	"
14942.	"	18274.	"
14962.	"	18275.	"
18260.	"	18276.	"
18261.	"	1827.	"
18262.	"	19631.	"
18263.	${ }^{6}$	20304.	Havre de Grace, Maryland.
18264.	"	22863.	Potomac River, Washington, D. C.
18265.	"	24668.	Aux Plaines, Illinois.
18266.	"	24768.	Washington Market, from North Caroliza.
18267.	'6	24810.	" "
18268.	"	24877.	" "

142. Eupomotis speciosus (Holbr.) Gill.
143. Saint John's River, Florida.
18369 . " "
144. " "

18373 . " "
18383. " "
18469. " "
18478. " "
19103.
" "

19106.	Saint John's River, Florida.	
19107.	"	"
19108.	"	"
19110.	"	"
19115.	"	"
19117.	"	"
19120.		

143. Enneacanthus margarotis Gill \& Jordan.

20494. Watson's Creek, Mercer County, New Jersey.
20495. Enneacanthus obesus (Baird) Gill.
20496. San Francisco Market, California.
20497. Centrarchus irideus (Bosc.) C. \& V.
20498. Tarborough, North Carolina.
20499. Washington Market, from N. Carolina. 24662. North Carolina.
$24676 . \quad$ " 24677. " 24748. Washington Market, from N. Carolina.
20500. Washington Market, from North Carolina. 24750 . "
20501. "
20502. " " $24766 . \quad 4$ * 24808. "
20503. Pomoxys nigromaculatus (LeS.) Girard.

10382. 10386.	Norfolk, Virginia.	$\begin{aligned} & 18524 . \\ & 18525 . \end{aligned}$	Kinston, North Carolina
11007.	Sandusky, Ohio.	18526.	" "
11011.	"	19312.	Licking River, Ohio.
11160.	" ${ }^{\prime}$	19313.	" "
12805.	Norfolk, Virginia.	19314.	" ${ }^{\prime \prime}$
17903.	Saint John's River, Florida.	19315.	" ${ }^{\prime \prime}$
17964.	Wilmington, North Carolina.	19317.	" ${ }^{\prime \prime}$
17965.	" ${ }^{\text {a }}$	19318.	" ${ }^{\prime \prime}$
17967.	" "	19319.	" ${ }^{\prime \prime}$
17969.	" ${ }^{4}$	19320.	" ${ }^{4}$
17970.	" ${ }^{\text {" }}$	23181	Sandusky, Ohio.
18350.	Saint John's River, Florida.	24767	Washington Market.
18351.		24891.	

147. Pomoxys annularis Raf.

23182. Mississippi Valley.

SERRANIDE.

148. Epinephelus striatus (Bloch) Gill.

18088. Bermuda.	18095.	Bermuda.	
18089.	$"$	18096.	$"$
18090.	$"$	18097.	$"$
18091.	$"$	18098.	"
18092.	$"$	1899.	$"$
18093.	$"$		
18094.			

149. Epinephelus guttatus (Gmelin) Goode.

12709.	Bermuda
18113.	$"$
18119.	$"$

```
19644. Florida.
20182. Bermuda.
\(21883 . \quad\) "
```

150. Epinephelus morio (Cuv.) Gill.
151. Bermuda.
152. Centropristis atrarius (Linn.) Barn.

$\begin{aligned} & 10642 . \\ & 10667 . \end{aligned}$	Wood's Holl, Massachusetts.	$\begin{aligned} & 17181 . \\ & 17182 . \end{aligned}$	Noank, Connectient.
14321.	Noank, Connecticnt.	17183.	" 4
14329.	" 4	17184.	$4{ }^{4}$
14323.	\checkmark "	17241.	Wood's Holl, Massachusetts.
14324.	Wood's Holl, Massachusetts.	19300.	" 6
14325.	" 6	19417.	14
16026.	"4	19511.	Beaufort, North Carolina.
16574.	"6	19641.	Florida.
17174.	Noank, Connecticut.	19828.	Wood's Holl, Massachusetts.
17175.	" "	21440.	Cohasset Narrows, Massachusetts.
17176.	" 6	22378.	Wood's Holl, Massachusetts.
1717% 。	46	22800.	"6 "6
17178.	66	22959.	East coast of United States.
17179.	16	24584.	Wood's Holl, Massachusetts.
17180.	4		

152. Diplectrum fasiculare (C.\& V.) Holbrook.
153. Off Charleston, South Carolina.

ETHEOSTOMATIDE.

153. Percina caprodes (Raf.) Girard.
154. Mcadville, Pennsylvazia.
155. Tacine, Wisconsin.

1202 . "
$1 \geqslant 23$. Wisconsin.
1246. Columbus, Ohio.
1264. Westport, New Fork.
1306. Poland, Ohio.
1317. Poland, Ohio.
1369. Yellow Creek, Ohio.
1394. Madrid, New York.
8145. Ohio.
9662. "
9731. Potomac River.
20407. Pennsylvania.
154. Diplesium blemnioides (Raf.) Jordan.
1307. Black River, Ohio.

PERCIDE.

155. Perca fluviatilis.

Perca amerieana Schrank.

7118.	Sandusky, Ohio.	14976.	Washington Market.
7239.			
7281.	Ohio.	15334.	"
7344.	Sandusky, Ohio.	15335.	"
7345.	" "	15336.	"
7430.	" "	15337.	"
7441.	Ohio.	15338.	"
7178.	"	15339.	"
7-78.	"	15340.	"
8094.	"	15341.	"
8713.	Ecorse, Michigan.	15342.	"
\& 331.	"	15343.	"
8832.	" "	15344.	"
\&883.	Saudusky, Ohio.	15345.	"
10327.	" "	15346.	"
10330.	Deep Lake, Illinois.	15347.	"
11001.	Sandusky, Ohio.	15348.	"
11003.	" "	15402.	Chapman's Landing, Maryland.
11004.	" "	18527.	Kinston, North Carolina.
11005.	" "	18528.	
11149.	" ${ }^{\text {a }}$	19450.	Potomac River.
11150.	" "	19491.	"
11176.	Van Hutton Lake, Michigan.	19779.	"
12321.	Washington Market.	19781.	Sandusky, Ohio.
12324.	"	1978.	" "
12325.	"	19783.	" ${ }^{\text {a }}$
12947.	South Hadley Falls, Massachusetts.	20550.	nlinois.

156. Stizostethium vitreum (Mitch.) Jordan \& Copeland.

Stizostethium americanum (Cur.) Gıd.

157. Stizostethium canadense (Smith) Jordan.

20238. Memphis, Tennessee.

LABRACIDE.

158. Morone americana (Gmel.) Gill.

1750.	Sing Sing, New York.	15471.	Chapman's Landing, Maryland.
10633.	Potomac River.	15472.	
10634.	"	17127.	Noank, Connecticut.
10690.	"	17128.	" "
10729.	Wood's Holl, Massachasetts.	17129.	" "
10 ¢з3.	"	17130.	" "
13354.	" "	17242.	Potomac River.
14319.	" "	17243.	"
15323.	Washington Market.	17244.	"
15324.	"	17245.	"
15325.	"	17246.	:
15326.	"	17247.	"
15327.	"	17248.	"
15328.	"	17249.	"
15329.	"	17250.	"
15330.	"	22308.	Nerr Fork Market.
15331.	"	24925.	Wood's Holl, Massachusetts.
15332.	"		

159. Roccus lineatus (B1. Schn.) Gill.
160. Wood's Holl, Massachusetts.
161. Norfolk, Virginia.
162. Washington Market.
163. "
$19323 . \quad$ "
164.
165.
166.
167.
168.
169.

$19330 . \quad$ "
19331. "
19332.
$19333 . \quad$ "
19334. Washington Market 19335.
$19336 . \quad$
19337. $19338 . \quad$ " 19339. 1944. Potomac River. 19613. Holyoke, Massachusetts. 22714. East coast of United States. 22726. " " 22960. 4 *
23117. Washington Market.
24807. North Carolina.
24846. Washington Market.
160. Roccus chrysops (Raf.) Gill*
9142. Sandusky, Ohio.

11000 . 6
11051. 6 6
12468. Sandusky, Ohio. 19620.
161. Paralabrax clathrata Girard.
17037. Santa Cruz Island, California. | 17038. Santa Barbara, California,

EPHIPPIID A.

162. Parephippus quadratus (Guin.) Gill.
163. Beaufort, North Carolina.

POMATOMID 玉.

163. Pomatomuss saltatrix (Linn.) Gill.

10768. Wood's Holl, Massachusetts.
10769. Noank, Connecticut.
10770. " "
10771. "
$14314 . \quad 6$
10772. 6
10773. Wood's Holl, Massachusetts.
$14318 . \quad$ "
10774. New York Market.
10775. Wood's Holl, Massachusetts.
10776. " "
10777. Menemsha Bight, Massachusetts.
10778. Wood's Holl, Massachusetts.
10779. Noank, Connecticut.
10780.
10781. Noank, Connectient.
10782.

17589 . 4

17590 . 4
17591. " "
17592. " "
$17593 . \quad$ " \quad "
$\begin{array}{lll}17594 . & \text { " } \\ 17595 .\end{array}$
18491. Saint Joln's River, Florida
$18492 . \quad$ "
19054.
19301. Wool's Holl, Massachusetts.
22719. East coast of Cnited States.
22762. Wood's Holl, Massachusetts

AMMODYTIDE.

164. Ammodytes americanus De Kay.
165. Wood's Holl, Massachusetts.
166.
167. Nantucket, Rhode Island.

19830.	Wood's Holl, Massachusetts.	
19842.	"	"
22841.	"	"

ECHENEIDIDE.

165. Echeneis naucrateoides (Zueiew).
166. Newport, Rhode Island. -0843. " "
167. East coast of United States.
168. East coast of United States. 22918.

SPHIRNNIDE.

166. Sphyræna borealis De Kay.
167. Wood's Holl, Massachusetts.

18755.	"	"
18756.	"	"
18757.	"6	"
18753.	"	6
18759.	"	"
18760.	"	"
18761.	"	"
18762.	6	6
18763.	"	"
18764.	"	"
18765.	"	"
18766.	"	"

18767.	Wood's Holl, Massachusetts.	
18768.	"	"
18769.	"	"
18770.	"	"
18761.	"	"
18772.	"	6
18773.	"	"
18774.	"	"
18775.	"	"
18776.	6	6
18777.		

MUGILIDÆ.

167. Mugil albula Linn.

Mugil lineatus Mitch.			
14930.	North Carolina.	15322.	Washington Market.
15307.	Washington Market.	18568.	Wood's Holl, Massachusetts.
15308.	${ }^{\prime}$	18569.	" "
15309.	"	18570.	" 4
15310.	${ }^{6}$	18571.	6 6
15311.	"	1857 .	6 6
15312.	${ }^{6}$	18804.	$4{ }^{4}$
15313.	6 6	18805.	6
15315.	66	18806.	"
15316.	${ }^{6}$	18807.	"
15317.	6	$2163 \overline{ }$	Newport, Rhode Island.
15318.	6	22387.	Wood's Holl, Massachusetts.
15319.	6	22777.	6 6
15320.	6	24510.	4 "
15321.	6	24697.	Near Charleston, South Carolina.

168. Mugil brasiliensis Ag.
169. Wood's Holl, Massachusetts.
170. Mugil cephalotus Cuv. \& Val.
171. Honolulu, Hawaii.

ATHERINIDE.

170. Chirostoma menidium (L.) Gill.

Christoma notata (Mitch.) Gill.

171. Belone longirostris (Mitch.) Gill.

172. Belone hians.

21424. New Tork Market.
21425. Belone latimanus Poey.
21426. Wood's Moll, Massachusetts.
| 21421. New York Market.

SCOMBRESOCID.E.

174. Hemirhamphus Pleii Val.

18132.	Bermuda.	18138.	Bermuda.
18133.	4	18139.	6
18134.	64	18140.	46
18135.	${ }^{4}$	18141.	66
18136.	46	18142.	66
18137.	4	18143.	46

175. Scombresox saurus (Walb.) Flem.

Scomberesox scutellatus LeS.
19196. Wood's Holl, Massachusetts. 19197.
19203. Cape Cod, Massachusetts.
19204. " "
19205.

19206.	Capo Cod, Massachusetts.
19207.	$"$
19208.	$"$
19845. Wood's Holl, Massachusetts.	

176. Esox lucius Linn.
177. Sandusky, Ohio.
178.

11143.4
177. Esox nobilior Thompson.
11028. Sandusky, Ohio.
| 11029. Sandusky, Ohio.
178. Esox americanus Gmelin.
1587. Piermont, New Iork.
4814. New York.
15711. New Fork Market.
15716. New York Market.
20359. Trenton, New Jerser.
24771. Long Island, New Yorko

ESOCID风.

12942. South Hadloy Falls, Massachusetts.
12943. New York Market.
12944. Sandusky, Ohio.
12945. Esoz reticulatus LeS.
12946. Norfolk, Virginia.
12947. " "
12948. South Hadley Falls, Massachusetts.
12949. Washiugton Market.
12950. Norfolk, Virginia.
12951. Norfolk, Virginia. 24848. Washington Markez 24892. 24896.

UMBRIDE.

180. Umbra limi (Kirt.) Günth.

Melanura limi (Kirt.) Ag.
8807. Northield, Inlinois.
| 9288. Racine, Wisconsin
131. Dallia pectoralis Bean.
6661. Saint Michael's, Alaska.

CYPRINODONTID庣.

132. Cyprinodon variegatus Lac.

17706.	Noank, Connecticut.	17719.	Noank, Connecticut.
17707.	" "	17720.	" ${ }^{\text {a }}$
17708.	40	17721.	" 4
17709.	$4{ }^{6}$	17722.	" 6
17710.	4	17724.	$6{ }^{6}$
17711.	46	17725.	4 *
17712.	46	17726.	6 *
17713.	16	17727.	46
17714.	6 6	17728.	$6{ }^{6}$
17715	46	17729.	4 *
17716.	41	17730.	" "
27717.	$4{ }^{4}$	24581.	Wood's Holl, Massachusetts.
17718.	4 4		

183. Fundulus pisculentus (Mitch.) Val.

184. Fundulus parvipinnis.

24883. San Diego, Califormia.
24884. Hydrargyra majalis (Walb.) Vil.
24885. Wood's Holl, Massachusetts.

17657.	66	6
17658.	4	6
17659.	6	6
17660.	6	6
17661.	6	6
17662.	4	6
17663.	4	4
17664.	4	4
17665.	4	4

17669.	Wood's Holl, Massachusetto	
17670.	$"$	$"$
17671.	$"$	$"$
17672.	$"$	$"$
17673.	$"$	$"$
17674.	$"$	$"$
17675.	$"$	$"$
17676.	$"$	$"$
17677.	$"$	$"$
17678.	$"$	$"$
17679.	$"$	

PERCOPSIDE.
186. Percopsis guttatus Ag.
6901. Lake Superior. 8746. " "
24772. Lake Superiop

SYNODONTIDA.
187. Synodus fœtens (Linn.) Gill.
19507. Beaufort, North Carolina

MICROSTOMIDE.

188. Mallotus villosus (Miller) Cuv.
189. Halifax, Nora Scotia.
| 24924. Wood's Holl, Massachusetts.
190. Osmerus mordax (Mitch.) Gill.

191. Osmerus pacificus.
192. Naas Fiver, Oregon.
| 23185. Fraser River, British Columbia

COREGONIDN.

191. Thymallus tricolor Cope.
192. Ausable River, Michigan.
193. 6 6
194. 64

11088 . 6
11091.66
$11092 . \quad$ 6
$11093 . \quad 4$

192. Argyrosomus Artedi (LeS.) Hoy.
A. clupeiformis (Mitch.) Ag .
6813. Great Lakes.
11162. Sauduskr, Olio.
10801. Sandusky, Ohio.

106 proceedings of united states national museum．

193．Argyrosomus Artedi（LeS．）Hoy var．sisco Jor．
21501．Geneva Lake，Wisconsin．

SALMONIDE．

194．Salmo salar Linn．var．sebago Girard．
10543．Grand Lake，Maine．
12370．Sebes Pond，Maine．
195．Salmo irideus Gibbons．

22336.	McCloud River，California．	22430.	McCloud River，Califormia
22338.	＂${ }^{\text {a }}$	22431.	＂
22353.	16	22432.	＂＂
22354.	＂ 6	22454.	＂${ }^{4}$
22356.	＂${ }^{\text {a }}$	22455.	い
22359.	＂ 4	22456.	4 ＂
29361.	46	22457.	＂ 4
22402 ．	California．	22458.	＂ 4
22404.	＂	22459.	＂${ }^{4}$
22405.	＂	22460.	＂ 4
22406.	＂	22462.	14
22419.	McCloud River，California．	22463.	＂ 4
22420 。	＂${ }^{\text {a }}$	22464.	＂
22421.	＂ 6	22465.	＂${ }^{\text {a }}$
22422.	4 ＂	22470.	＂ 4
22423.	＂ 6	22471.	＂
22424.	＂4＊	22473.	Clackamas River，Oregon．
22425.	$4{ }^{4}$	22474.	McClond River，California．
22426.	0 ＊	22475.	＂
22427.	4 ＂	22476.	＂
22428.	4 ＊	22484.	Clackamas River，Oregon．
22429.	＂＂	22485.	＂

196．Oncorhynchus quinnat（Rich．）Gthr．

22335.	MeCloud River，California．	22434.	McCloud River，	California
22340.	6 4	22435.	66	66
23345.	46	22436.	4	66
22393.	46	22437.	16	61
22394.	66	22438.	4	61
22395.	46	22440 。	66	66
22396.	64	22441 ．	4	6
22410.	66	22444.	4	14
22411.	46	22445 ．	46	66
22412 ．	16 6	22447.	48	46
2×413.	66	22448.	46	16
2 2 414.	46	$2 \Omega 449$	6	46
22415.	46	22481.	66	16
22416.	66	22489	6	4
22417.	46	22483.	46	66
20418.	66	23153.	California．	
22433.	46			

197．Salvelinus fontinalis（Mitch．）Gill \＆Jor．

3613．Madrid，New York．
6820．Sing Sing，New York．
7064.

7988．Madrid，New York，

16098．Luzerne County，Pennsylvania 16099．＂＂
21581 New York Market．

198．Salvelinus oquassa（Girard）Gill \＆Jor．
19521．New York Market．
199. Salvelinus Bairdii (Suckley) Gill \& Jor.
15533. McCloud River, California.
29337.
22355. Clackamas River, Oregon.
22357. Clackamas River, Oregon.
22469. MeCloud River, California.

ALEPIDOSAURIDE.

200. Alepidosaurus ferox Lowe.

92:94. Off Gloncester, Massachnsetts. 29640. " 6
2.241. Le Have Bank, 200-250 fathoms.
24243. Lat. $43^{\circ} 06^{\prime}$ N., Lon. $61^{\circ} 18^{\prime}$ W., 200 fths.
24244. Western part Le Mave Bank, 120 fathoms. 24296. Lat. $42{ }^{\circ} 37^{\prime}$ N., Lon. $62055^{\prime} \mathrm{W} ., 200$ fathoms. 24297.

HYODONTID Æ.

201. Hycdon tergisus LeS.

11058. 11170.	Sandusky, Ohio. " ،	$\begin{aligned} & 12450 . \\ & 12451 . \end{aligned}$	Ecorse, Michigan.
11221.	Cincinnati, Ohio.	12474.	Yellowstone River.
12255.	6 "	12475.	"
12256.	66	12476.	6
12257.	" "	12478.	Pompey's Pillar.
12258.	"	12480.	Tellowstone River.
12.59.	46	18564.	Sandusky, Ohio.
12261.	66	18566.	Ecorse, Michigan.
12262.	66	18567.	" 6
12263.	66	22961.	${ }^{6}$

ALBULIDE.

202. AlbuIa vulpes.

Albula conorhynchus Bl. Schn.

18144.	Bermuda.	18153.	Bermnda.
18145.	"	18154.	"
18146.	"	18155.	"
18147.	"	18156.	"
18148.	"	19788.	"
18149.	"	21560.	New Xork Market.
18150.	"	21648.	Newport, Rbode Island.
18151.	"	21859.	New Bedford, Massachusetts.
18152.	"	21863.	New London, Connecticut.

203. Elops saurus Linn.

15573.	New York Market.	19637	Florida.
15574.	い	19649	Fort Macon, North Carolina.
15580.	"	19851.	Wood's Holl, Massachusetts.
16852.	New Bedford, Massachusetts.	19874.	"
18573.	Wood's Holl, Massachusetts.	21559.	New York Market.
18574.	"	22955.	،
18375.	" ${ }^{\prime \prime}$	24802.	"
18576.	" ${ }^{\text {a }}$	24803.	"

DUSSUMIERIDA.

204. Etrumeus teres (DeKay) Brevoort.
205. Wood's Holl, Massachnsetts.

CLUPEIDE.

205. Brevoortia tyrannus (Latrobe) Goodc.

Brevoortia menhaden (Mitch.) Gill.

10698. I 4302.	Wood's Holl, Massachusetts.	$\begin{aligned} & 18420 . \\ & 18421 . \end{aligned}$	Saint John's River, Florida.
14303.	" 6	18422.	" "
14304.	" 6	18423.	6 "
14305.	4 "	18424.	" "
14306.	Noank, Comnecticut.	18425.	" "
14307.	a ${ }^{\text {a }}$	18426.	" "
14308.	"	18427.	" 6
14309.	" ${ }^{16}$	18428.	" ${ }^{6}$
14948.	"	18429.	" 6
16012.	Wood's Moll, Massachusetts.	18431.	4 "
16014.	" ${ }^{4}$	19043.	" "
16016.	"	19045.	$" \quad$ "
18417.	Saint John's River. Florida.	22801.	Wood's Moll, Massaehusetts.
18418.	" ،	24434.	Yorktown, Virginia,
18419.	" 6	24465.	Wood's Holl, Massachusetts

206. Brevoortia patronus Goode.
207. Pensacola, Florida.
208.
209. Pensacola, Florida. 22825.
210. Alosa sapidissima (Wils.) Linsly.
211. New Bedford, Massachusetts.
212. Potomac River.
213.
214.
215. South Hadley Falls, Massachusetts.

12945.	$"$
12946.	$"$

14292. Noank, Connecticut.
$\begin{array}{lll}14293 . & \text { " } & \text { " } \\ 14294 . & \text { " }\end{array}$
14293. Portland, Maine.
$14296 . \quad$ "
$14297 . \quad$ "
14294. " "

14299 "

```
14500. Portland, Maine.
14301. "6 "
14847. Noank, Connecticut.
14931. Neuse River, North Carolina.
14934. Washington Market.
18513.
19209. "
20469. South Hadley Falls, Massachusetts.
20472.
20970. Aroca, North Carolina.
21225. Graresend Bay, New Kork.
21414. Avoea, North Carolina.
22953. East coast of United States.
23107. Aroca, North Carolina.
```

208. Opisthonema thrissa Gill.
209. Eastern shore of Virginia.
210. Pomolobus æstivalis (Mitch.) Goode \& Bean.
$P . p s e u d o h a r e n g u s$ (Wils.) Gill (in part).
211. Wood's Holl, Massachusetts.
| 23175. Wood's Holl, Massachusetts.
212. Pomolobus vernalis (Mitch.) Goode \& Bean.
P. pseudoharengus (Wils.) Gill (in part).
213. Noank, Conneetieut.
214. Cohasset Narrows, Massachusetts.
215. Wood's Holl, Massachusetts.
216.
217. Wood's Holl, Massachusetts.
218. " "
219. "
220. Pomolobus pseudoharengus (Wilson) Gill.

Under this name, which is now known to hare been bestowed upon the two distinct species immediately preceding it in this list, a number of specimens were distributed in 1877. Pomolobus vernalis may be at
once separated from P ．cestivalis by its larger eye and higher fins．The catalogne numbers of the mixed lot follow．

212．Pomolobus mediocris（Mitch．）Gill．

5470．New Bedford，Massachusetts．
10624．Potomac River．
10646．Wood＇s Holl，Massachusetts．
10647.
10671.

10688．Potomac River．
12500．Norfolk，Virginia．
12802 ．＂
15：37．Potomac River．

16753．Potomac River． 18432．Saint John＇s River＇，Florida． 18433.

19456．Potomac Rirer．
19715．Fort Macon，North Carolina， 19751．East coast of United States． 19785.

19871．New Bedford，Massachusetts．

213．Clupea harengus Linnaus．

14217.	Eastport，Maine．	14259.	Wood＇s Holl，Massachusetts．
14218.	＂ 6	14757.	Eastport，Maine．
14220.	16	14758.	＊い
14230.	16	17567.	＂ 6
14232.	＂ 6	17568.	64 46
14235.	＂ 6	17569.	＂ 6
14238.	Portland，Maine．	17570.	46
14.41.	＂ 6	17571.	16
14こ42．	＂ 6	17572．	＂ 6
11245.	＂ 6	17573.	＂＂
14248.	＂ 6	21687.	Ipswich Bay，Massachusetts．
14251.	＂	22366.	Wood＇s Holl，Massachusetts．
$\begin{aligned} & 14256 . \\ & 14257 . \end{aligned}$	Wood＇s Holl，Massachusetts．	24526.	＂${ }^{\text {a }}$

DOROSOMID．E．

214．Dorosoma cepedianum（Lac．）Gill．

$\begin{aligned} & 12314 . \\ & 12315 . \end{aligned}$	Washington Market．	$\begin{aligned} & 17138 . \\ & 17139 . \end{aligned}$	Potomac River．
12803.	Norfolk，Virgiaia．	17140.	16
14991.	Potomac River．	17171.	${ }^{6}$
15073.	New Iork Market．	18435.	Saint John＇s River，Florida．
17131.	Potomac River．	18436.	い い
17132.	＂	18437.	4 ＂
17133.	6	18529.	Kinston，North Carolina．
17134.	4	18530.	＂
17135.	6	19873.	East coast of United States．
17136.	＂	24678.	Washington Market．
17137.	66	24975.	

ENGRAULIDE．

215．Engraulis vittatus（Mitch．）Bd．\＆Girard．
19003．Wood＇s Holl，Massachnsetts．

19004.	＂	＂
19005.	＂	＂
19006.	＂	＂
19007.	＂	＂
19008.	＂	＂
19009.	＂	＂
19010.	＂	＂

19011．Wood＇s Holl，Massachusetts．		
19012．	＂	＂
19013.	＂	＂
19014.	＂	＂
19015.	＂	＂
19016.	＂	＂
19017.	＂	＂

CATOSTOMIDE.
216. Myxostoma macrolepidota (LeS.) Jor.
24850. Washington Market. , 24898. Washington Market. 24895.
217. Erimyzon sucetta (Lac.) Jor.
18245. Potomac River.
18.46 .

18247 .
18248 .

$|$| 18249. | Potomac River. |
| :---: | :---: |
| 18250. | $"$ |
| 18251. | $"$ |
| 2489% | Washington Market. |

218. Hypentelium nigricans (LeS.) Jordan.

Catostomus nigricans LeSueur.
7679. Yellow Creek, Ohio.
8303. Anx Plaines, Illinois.
8763. " "
9152. Illinois.
15357. Susquehanna River, PennsyIvania.
19868. Yellow Creek, Ohio.
19870.
219. Catostomus commersonii (Lac:) Jordan.
6853. Port Huron, Wisconsin.
7677. Cleveland, Ohio.
7706.
7777. Wisconsin.
7781. "
8409. Tellow Creek, Ohin.
8440. Racine, Wisconsin.
8457. Port Huron, Wisconsin.
8501. Detroit River, Michigan.
8728. Huron River, Wisconsin.
8870. Alabama.
8984. Cleveland, Ohio.
9054. Racine, Wisconsin.
9059. Ohio.
9170. Western States.
9207. Lake Champlain.
9393. Ecorse, Michigan.
$9646 . \quad$ "
20097. Sing Sing, New York.
20241. Near Richmond, Indiana.

20:68. Root River, Wisconsin.
24849. Washington Market.

220. Catostomus longirostrum LeS.

8437. Essex County, New York.

CYPRINIDE.

221. Hybopsis amarus (Grd.) Cope.
222. Chapman's Point, Maryland.
223. Luxilus cornutus (Mitch.) Jordon.
224. Fellow Creek, Ohio.
225.
226. Susquehanna River, Pennsylvania. 19850. Aux Plaines River, Illinois.
227. Aux Plaines River, Illinois.
228. Semotilus corporalis (Mitch.) Putnam.
229. Westport, New York.
230. Root River, Wisconsin.
231. Westport, Lake Champlain.
232. Black River, Ohio.
233. Black Warrior River, Alabama.
234. Racine, Wisconsin.
235. Quebec, Canada.
236. Semotilus bullaris (Raf.) Jordon.

Semotilus rhotheus Cope.
Semotilus argenteus (Storer) Putnam.
7823. New England, and New York.

8775.	$"$	$"$
8979.	$"$	$"$
8985.	$"$	$"$
9107.	$"$	$"$
9645.		

12933.	South Hadiey Falls, Massachasetts.
15404.	"
19848.	New England and New Fork.
19869.	Sing Sing, New York.
22857.	Schoodic Lake, Maine.

22857. Schoodic Lake, Maine.
22858. Ceratichthys biguttatus (Kirt.) Girard.
22859. Black River, Ohio.
22860. Bainbridge, Pennsylvania.
22861. Rhinichthys cataractæ (C. \& V.) Jordan.

Rhinichthys nasutus (Ayres) Ag.
8505. Carlisle, Pennsylvania.
227. Notemigonus americanus (L.) Jordon.

9247.	Washington Market.	18329.	Saint John's	River, Florida.
11074.	Sandusky, Ohio.	18330.		
1115.	" "	18331.	"	${ }^{4}$
11153.	" "	19063.	"	"
11154.	" "	19064.	"	"
17792.	" "	19065.	"	"
17793.	" "	19066.	"	"
17794.	" "	19067.	"	"
17795.	" "	19068.	"	"
18323.	Saint John's River, Florida.	19069.	"	"
18324.	" ${ }^{\text {a }}$	23109.	Avoca, North	Carolina.
18325.	" "	23110.	"	"
18326.	" "	23111.	"	"
18327.	" ${ }^{\text {a }}$			

228. Exoglossum maxillingua (LeS.) Haldeman.
229. New Tork to Ohio and Maryland. 9044.
230. • Bainbridge, Pennsylvania.
231. Idus melanotus Heckel.
232. Druid Hill Ponds, Baltimore, Maryland.
233. Carassius auratus (Linn.) Bleeker.
234. Washington Market.
235.

1829 . "
18993.
18294. Washington Market.
18297.
20965. New" York Market.
231. Cyprinus carpio Linn.
29964. Druid Hill Ponds, Baltimore, Md. 22966.
22968. Druid Hill Ponds, Baltimore, Md. 22969.

SILURID※。

232. Ichthælurus punctatus (Raf.) Jordan.

1540.	Cincinnati, Ohio.	
8882.	Michigan.	
11118.	Sandusky, Ohio.	
11123.	"	"
12247.	Cincinnati,	Ohio.
12248.	$"$	$"$
12249.	$"$	$"$

12250. Cincinnati, Ohio.
12251. " "
12252. " "
12253. " "
12254. " "
12255. Saint John's River, Florida.
| 21270. Saint Joln's River, Florida.
12256. Washington Market.
$23191 . \quad$ "
$24851 . \quad$ "
12257. "
12258. Havre de Grace, Maryland.
12259. Philadelphia, Pennsylvania.
12260. Amiurus lophius Cope.
12261. Huntington, Maryland. | 15830. Huntington, Maryland.
12262. Amiurus natalis (LeS.) Gill var. lividus (Raf.).
12263. Western and Southern United States. 1 922. Westernand Southern United States. (7).
12264. Amiurus vulgaris (Thomp.) Nelson var. ælurus (Grd.).
12265. North Red River, Minnesota.

112 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM．
238．Amiurus catus（L．）Gill．
A miurus nebulosus（LeS．）Gill．

1433.	Sing Sing，New York．	18283.	Washington Market．
1479.	Chesapeake Bay．	18284.	＂
8444.	Washington Market．	18285.	＂
8695.	＂	18286.	＂
9085.	＂	18987.	＂
9730.	Philadelphia，Pennsylvania．	$18 \div 88$.	＂
9732.	Washington Market．	18289.	＂
12949.	South Hadley Falls，Massachusetts．	19453.	Potomac River．
15353.	Bainbridge，Pennsylvania．	20378.	South Hadley Falls，Massachusetts．
18278.	Washington Market．	20454.	Wilkes Barre，Pennsylvania．
18279.	＂	22108.	Washington Market．
$18: 80$.	＂	23186.	Putomac River．
18281.	＂	23189.	＂
18282.	＊	24852.	Washington Market．

239．Amiurus melas（Rai．）Jordan \＆Copeland．

| 1497．Northfield，Illinois． | 1525．Patapsco River． |
| :--- | :--- | :--- |
| 1514．Raciue，Wisconsin． | 7597．Cook County，Illinois． |

240．Noturus insignis（Rich．）Gill \＆Jordan．
Noturus marginatus Baird．

1470．James River，Virginia．
15354．Bainbridge，Pennsylvania．
18012 ．＂
18016.

```
19454. Potomac River.
23187. い
23196. *
```


241．Noturus exilis Nelson．

1438．South Grand River，Missouri．

242．Noturus gyrinus（Mitch．）Raf．

1430．Near Piermont，New York．

243．Ariopsis felis（L．）Gill \＆Jordan．

22751．？
CONGRIDA．
244．Conger oceanica（Mitch．）Gill．
19495．Beaufort，North Carolina．
｜22797．East coast of United States．

ANGUILLID平。

245．Anguilla rostrata（LeS．）De Kay． Anguilla bostoniensis（LeS．）De Kay．

$\begin{aligned} & 13583 . \\ & 13584 . \end{aligned}$	Wood＇s Holl，Massachusetts．
13586.	＂ 6
13589.	＂${ }^{4}$
13590.	＂${ }^{\text {a }}$
14051.	Noank，Connecticut．
14183.	＂ 6
14184.	6 6
14185.	＂ 6
14186.	＂ 6
14188.	$4{ }^{6}$
14191.	＂ 6
14194.	6 ＂
1；195．	＂ 6
14196.	6 6
14200.	66
14202.	4 6
14203.	＂
$\begin{aligned} & 14211 . \\ & 14216 . \end{aligned}$	Wood＇s Moll，Massachusetts． Eastport，Maino．

$\begin{aligned} & 16115 . \\ & 16146 . \end{aligned}$	Wood＇s Holl，Massachusetts．
17220.	Noank，Connecticut．
17221.	＂＂
17222.	＂ 6
17223.	616
17224.	06
17225.	$4{ }^{6}$
17226.	＂${ }^{6}$
17227.	＂ 6
17228.	＂ 4
17259.	6 6
17230.	＂
20766.	Grand Lake Stream，Maine．
22654.	Gloucester，Massachusetts．
22711.	＂${ }^{4}$
22910.	＂
24422.	＂＂
25093.	Wood＇s Holl，Massachusetts．

16115．Wood＇s Holl，Massachusetts．
$16146 . \quad$＂＂
17221．＂＂
17222．＂＂
17223.4

17224．＂ 6
17230．
＂ 4
17228．＂＂
17030．＂
20766．Grand Lake Stream，Maine．
22654．Gloucester，Massachusetts．

29010－ 6
24422 ＂ 6
25093．Wood＇s Holl，Massachusetts

SIMENCHELYIDA．

246．Simenchelys parasiticus Gill．

21675. 21676.	Le Have Bank．
21849.	Western Bank， 200 fathoms．
21862.	Banquereau．
22791.	Grand Banks．
22794.	Lat． $43^{\circ} 25^{\prime}$ N.
22888.	Grand Banks．
23071.	Lat． $44^{\circ} 17^{\prime}$ N．，Lon． $58^{\circ} 10^{\prime} \mathrm{W} ., 120 \mathrm{ftbs}$.
23072.	6 い い
23075.	Banquereau．
23076.	Lat． $43^{\circ} 18^{\prime}$ N．，Lon． $60^{\circ} 24^{\prime \prime}$ W．， 250 fths．
24370.	Lat． $43^{\circ} 15^{\prime}$ N．，Lon． $50^{\circ} 20^{\prime}$ W．， 200 fths．

24384．Lat． $42^{\circ} 48^{\prime}$ N．，Lon． 63° W． 130 fathoms．
24385．Lat． $42^{\circ} 37^{\prime} \mathrm{N}$ ．，Lon． $62^{20} 55^{\prime} \mathrm{W}$ ．， 200 fathoms．
24386．Lat． $43^{\circ} 05^{\prime}$ N．，Lon． $61^{\circ} 03^{\prime} \mathrm{W}$ ．， 150 fathoms．
24387．Lat． $44^{\circ} 12^{\prime}$ N．，Lon． $58^{\circ} 56^{\prime}$ W．， 230 fathoms．
24388．Lat． $43^{\circ} 27^{\prime}$ N．，Lon． 60° W．， 150 fathoms．
24395．Lat． $44^{\circ} 02^{\prime}$ N．，Lon． $59^{\circ} \mathrm{W} ., 300$ fathoms．
24414．Lat． $43^{\circ} 42^{\prime} \mathrm{N}$ ．，Lon． $59^{\circ} 10^{\prime} \mathrm{W}$ ．， 300 fathoms．
24426．Lat． $42^{\circ} 37^{\prime}$ N．，Lon． $66^{\circ} 55^{\prime}$ W．， 200 fathoms． 24427.

24428，Lat． $44^{\circ} 12^{\prime}$ N．，Lon． $58^{\circ} 56^{\prime}$ W．， 230 fathoms． 24429．Lat． $43^{\circ} 27^{\prime}$ N．，Lon． 60° W．， 150 fathoms．
24733．Lat． $43^{\circ} 48^{\prime} \mathrm{W} .$, Lon． $59^{\circ} \mathrm{W} ., 300$ fathoms．

MURENIDÆ。

247．Muræna sanctæ－helenæ．
20183．Bermuda．

SYNAPHOBRANCHIDÆ．

248．Synaphobranchus pinnatus（Gronow）Gthr．

21083．Le Have Bank
21684.
21685.

21848．Western Bank， 200 fathoms．
21860．Le Have Bank， 150 fathoms．
21868．Lat． $43^{\circ} 23$ N．，Lon． $60^{\circ} 40^{\prime}$ W．， 280 fths．
21871．Lat． $59^{\circ} 50^{\prime}$ N．，Lon， $43^{\circ} 25^{\prime}$ W．， 300 fths．
22792．Lat． $42^{\circ} 47^{\prime}$ N．，Lon． $63^{\circ} 10^{\prime} \mathrm{W}$ ．
22889．Grand Banks．
29892．Grand Banks， 200 fathoms．
22893． 30 miles S．N．W．light of Sable Island．
23077．Lat． $43^{\circ} 53^{r}$ N．，Lon． $58^{\circ} 51^{r}$ W．，$\because 50$ fths．
23078．Lat． $43^{\circ} 53^{\prime}$ N．，Lon． $58^{\circ} 51^{\prime}$ W．， 950 fths．
23080．Near George＇s Bank．
23083．Banquereau．

23145．Banquereau．
23146．Lat． $44^{\circ} 29^{\prime}$ N．，Lon． $57^{\circ} 09^{\prime}$ W．， 250 fathoms． 24209．Banquereau．
24210.

24216．Lat， $44^{\circ} 30^{\prime}$ N．，Lon． $57^{\circ} 08^{\prime}$ W．， 200 fathoms．
24271．Lat． $49^{\circ} 41^{\prime} \mathrm{N}$ ．，Lon． $59^{\circ} 15^{\prime} \mathrm{W}$ ．， 200 fathoms．
24272．Lat． $42^{\circ} 41^{\prime} \mathrm{N} .$, Lon． $62^{\circ} 58^{\prime} \mathrm{W} ., 200$ lathoms．2 ．
24352．Lat． $4^{\circ} 30^{\prime}$ N．，Lon． $57^{\circ} 08^{\prime}$ W．， 200 fathoms．
24353．Lat． $47^{\circ} 20^{\prime}$ N．，Lun． $50^{\circ} 48^{\prime}$ W．， 48 fathoms．
24383．Lat． $43^{\circ} 25^{\prime}$ N．，Lon． 40° W．， 180 fathoms．
24390．Lat． 44° N．，Lon． $58^{\circ} 30^{\prime}$ W．， 160 fathoms．
24430．Lat． $43^{\circ} 05^{\prime}$ N．，Lom． $61^{\circ} 03^{\prime} W^{\prime}, 150$ fathoms．
24734．Sonthern part of Western Bank．
24735，Grand Banks，Lat． 44° ．

AMIID Æ．

249．Amia calva Linnæus．
3227．Falls of the Missouri．
6702．Mississippi Valley．
9502.

11017．Sandusky，Ohio．
11018．＂＂
11134．＂＂
11135．＂＂
11137．＂＂
$11139 . \quad$＂
11141．＂＂
12495．＂＂
16584．New York Market．

18545.	Mississippi Valley．
18546.	$"$
18547.	$"$
18548.	$"$
18549.	$"$
18550.	$"$
18551.	$"$
18552.	$"$
18553.	＂
18555.	Aroca，North Carolina
23104.	

LEPIDOSTEIDAE．

250．Lepidosteus osseus（Linn．）Ag．

3236．Potomac River．
6785．Mississippi Valley．
9510.
$9512 . \quad$ ．
10637．Potomac River．
10717.

12493．Detroit，Michigan．

15366．	Potomae River．
15449.	$"$
15450.	$"$
15451.	＂
15452.	
18298.	Saint Johis＇s Fiver，Florida．
18533.	Kinston，North Carolina．

18523．Kinston，North Carolina．

114 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM．

18556.	Potomac River．
18558.	$"$
18559.	＂
18560.	$"$
18561.	＂
18562.	＂
19048.	Florida．
19444.	＂
19445.	＂
19446.	$"$

19875．Potomac River． 22496. －
23102．Avoca，North Carolina
25149．Potomac River．
25151．＂
$25153 . \quad$＂
25154．＂
25155.
$25158 . \quad$ い

251．Lepidosteus platystomus Rafinesque．

9505．Great Lakes and W．to Rocky Mts．｜12497．Great Lakes and W．to Rocky Mta

POLYODONTIDN．

252．Polyodon folium Lac．

ACIPENSERID无．

253．Acipenser oxyrhynchus Mitchell．

19897．Potomac River．
20336．＂
22703 ．

22956．Potomac River．
$22957 . \quad$＂

254．Acipenser ruthenus Linneus．
22974．Baltimore，Maryland．
255．Scaphirhynchops platyrhynchus（Raf．）Gill．
2565．Cincinnati，Ohio．
3246．Republican River，Kansas．
3255．Cincinnati，Ohio．
12236. ＂

12237．＂＂
12238. ＂
$12239 . \quad$＂＂
12240 ．＂＂
12241．＂＂
12242．い い

12244.	Cincinnati，Ohio．	
12245.	$"$	＂
12461.	＂	＂
12463.	＂	＂
12473.	Yellowstone River．	
15476.	Madison，Indiana．	
15478.	＂	＂
15479.	＂	＂
22158.	Mt．Carmel，Illinois．	

CHIMERIDE．

256．Chimæra plumbea Gill．
21805．Lat． $43^{\circ} 51^{\prime}$ N．，Lon． $59^{\circ} 05^{\prime} \mathrm{W}$.
21858．Le Have Bank，
21904．Banquereau．
$22642 . \quad$ い
22667．Grand Banks．
23912．Banquereau．
23913.

> 23914. Lat. $43^{\circ} 32^{\prime}$ N., Lon. $60^{\circ} 21^{\prime}$ W., 250 fathoms. 24287. Lat. $42^{\circ} 37^{\prime}$ N., Lon. $62^{\circ} 55^{\prime}$ W., 200 fathoms. 24303. Lat. $44^{\circ} 15^{\prime}$ N., Lon. $58^{\circ} 52^{\prime}$ W., 250 fathoms. 24304. Lat. 44° N., Lon. $58^{\circ} 30^{\prime}$ W., 160 fathoms. 24305. " " 24306. Fishing Banks.

DASYBATID压。

257．Dasybatis centrurus（Mitch．）Gill，MSS．
22938．

RAIIDE.

258. Raia eglanteria Lac.

22270. Gloucester, Massachusetts. 22661.
22271. Raia erinacea Mitch.

14156.	Wood's Holl, Massachusetts.	
14159.	"	"
14160.	"	"
14161.	"	"
14165.	"	"
14169.	"	"
14172.	"	"

260. Raia ocellata Mitch.
261. Wood's Holl, Massachusetts.
262. Gloucester, Massachusetts.
$24226 . \quad 6$
24227.6
263. Raia radiata Donovan.
264. Halifax, Nova Scotia.
265. " ${ }^{6}$

21048 " "
21502. Salem, Massachusetts.
21815. Gloucester, Massachusetts. 22271. 22995. Off Gloucester, Massachnsetts. 22312. Gloucester, Massachusetts.
24203. Provincetown, Massachusetts.
14176. Wood's Moll, Massachnsetts.
22320. Glouccster, Massachusetts.
22386. Noank, Connecticut.
22887. East coast of United States.
22954. " "
24358. Provincetown, Massachusetts.
24229. Gloncester, Massachusetts. 24230.
24248. Provincetown, Massachusetts.
22662. Gloucester, Massachusetts. 24310. Provincetown, Massachusetts. 24354.
24608. Off coast of Nova Scotia.
24631. " 6
25193. Wood's Holl, Massachusetts.
25210. Gloncester, Massachusetts.

ODONTASPIDIDE.

262. Eugomphodus littoralis Gill.
263. East coast of United States.

SPHYRNIDE.

263. Sphyrna zygæna (L.) Miill. \& Henle. 22942. East coast of United States.
264. East coast of United States.

GALEORHINIDE.

264. Eulamia obscurus (LeS.) Gill.
265. Wood's Holl, Massachusetts.
266.
267.
268. Mustelus canis (Mitch.) DeKay.
269. East coast of United States.
270. Beesley's Point, New Jersey.
271. Noank, Connecticut.
272. " "
14754.0
273. Wood's Hol; Massachasetts.

16028 . " "
$16213 . \quad$ "
16214.
$16215 . \quad$ い
$16242 . \quad 14$
$16243 . \quad$ "
16244
6
19423. Wood's Holl, Massachasetts. 19424.
16245. Wood's Holl, Massachusetts.
$16246 .{ }^{4}$
16247. 4 "
16248 . *
16580 . 4
19257. "4
19425. " "
19426. "
21854. Nowport, Rhode Island. 22712. East coast of United States. 22941.
"
23163. Wood's Holl, Massachusetts.

SPINACIDE.

266. Squalus acanthias Linneus. Squalus americanus (Storer) Gill. 19275. Wood's Holl, Massachusetts. 19276 . " " 10277. " " 19278. " " 19279.

> 19921. Eastport, Maine.
> 19923. " "
> 21855. George's Bank.
> 22316. Gloucester, Mrassachusetts.
> 22660. "
267. Centroscyllium Fabricii (Rhdt.) Miill. \& Henle.
21622. Lat. $42^{\circ} 40^{\prime}$ N., Lon $63^{\circ} 50^{\prime}$ W., 250 fthe.
21686. George's Bank.
21836. Off Gloucester, Massachusetts.
22281.
22637. Le Have Bank.
22743. Lat. $43^{\circ} 56^{\prime}$ N., Lon, $59^{\circ} 04^{\prime}$ W.
22744. Banquereau.
22749. Sable Island Bank.
22878. Lat. $44^{\circ} 33^{\prime} \mathrm{N}$., Lon. $53^{\circ} 48^{\prime} \mathrm{W}$.
29879. Lat. $44^{\circ} 23^{\prime}$ N., Lon. $53^{\circ} 25^{\prime}$ W., 200 fths .
22880. Lat. $44^{\circ} 38^{\prime}$ N., Lon. $57^{\circ} 09^{\prime}$ W., 200 fths.

```
23065. Banquerean.
23066.
23067. L.at. 440 20' N., Lon. }5\mp@subsup{7}{}{\circ}5\mp@subsup{7}{}{\prime}\textrm{W}
24257. Lat. }4\mp@subsup{3}{}{\circ}2\mp@subsup{5}{}{\prime}\mathrm{ N., Lon. 600 W., 250 fathoms.
24300. Lat. 420 37' N., Lon, 620}5\mp@subsup{5}{}{\prime}\textrm{W}.,200\mathrm{ fathoms.
24392.
24705. Lat. }4\mp@subsup{3}{}{\circ}2\mp@subsup{7}{}{\prime}\mathrm{ N., Lon. }5\mp@subsup{1}{}{\circ}4\mp@subsup{7}{}{\prime}\textrm{W}.,200\mathrm{ fathoms.
24706. "
25105. Grand Banks.
25106. "
25111. Lat. }4\mp@subsup{2}{}{\circ}4\mp@subsup{6}{}{\prime}\mathrm{ N., Lon. }6\mp@subsup{5}{}{\circ}1\mp@subsup{8}{}{\prime}\textrm{W}.,200\mathrm{ fathoms.
```

268. Centroscymnus cœlolepis Bocage \& Capello.
269. Lat. $42^{\circ} 40^{\prime} \mathrm{N}$. Lon. $63^{\circ} 50^{\prime} \mathrm{W}$., 260 fths. 21833. Grand Banks.
270.
271. Banquereau.
272.
273. Graud Banks, 200 fathoms.
274. Banqucrean.
275. Lat. $43^{\circ} 25^{\prime}$ N., Lon. $60^{\circ} \mathrm{W} ., 180$ fathoms.
276. Lat. $42^{\circ} 15^{\prime} \mathrm{N}$., Lon. $58^{\circ} 52^{\prime} \mathrm{W} ., 250$ fathoms.
277. Lat. $42^{\circ} 37^{\prime}$ N., Lon. 62055^{\prime} W., 200 fathoms.
278. Lat. 44° N., Lod. $52^{\circ} 50^{\prime} \mathrm{W} ., 250$ fathoms.

MYXINIDE.

269. Myxine glutinosa Linnæus.
270. Le Have Bank.
271. Lat. $44^{\circ} 45^{\prime}$ N., Lon. $53^{\circ} 54^{\prime}$ W., 400 fths. 22895. Lat. $45^{\circ} 03^{\prime}$ N., Lon. $54^{\circ} 30^{\prime}$ W., 85 fths. 22896. Grand Banks.
272.
273. Eastern part of George's Bank, 46 fths. 23086.
274. Lat. $44^{\circ} 18^{\prime}$ N., Lon. $58^{\circ} 24^{\prime}$ W., 150 fathoms. 23088. Grand Banks.
275. Lat. $44^{\circ} 17^{\prime}$ N., Lon. $58^{\circ} 10^{\prime}$ W., 120 fathoms. 23090.
276. Grand Banks.
277. Bauquereau.
278. Lat. $44^{\circ} 30^{\prime}$ N., Lon. $58^{\circ} 07^{\prime}$ W., 200 fathoms. Washington, May 1, 1880.

THE LITTORAK DIARINE EAUNA OR LROVINCETOWN, CAPE COD, MASSACHUSETTES.

By RICHARD RATHUEUN.

The species enumerated in the following list were, unless otherwise stated, all collected by the United States Fish Commission during the summer of 1879 . As the list, however, represents only a few days' collecting, at intervals when the steamer was not available for dredging purposes, it must be considered as far from complete, especially as regards the smaller forms, while no attempt has been made tn include the groups of Entomostraca, Foraminifera, \&c. Considering the faet that very little has yet been published concerning the shore animals of this region, I feel justified in offering the list in its present imperfect form in
order to supply more definite information as to the so-called boundary line separating the Northern and Southern New England famer.

Rock exposures are entirely wanting abont the outer extremity of Cape Cod, and the sandy areas which compose the most of that region are generally of so pure a character as to ofter little inducement to animal life in the way of food. The littoral fauna of Provincetown and vicinity is therefore less rich in species than a more diverse region would be. Nevertheless a more diligent search than has hitherto been instituted would undoubtedly result in the finding of many species additional to those given below. Prof. H. E. Webster, who spent the entire summer of 1879 in collecting and studying especially the shore aunelids abont Provincetown, obtained many new forms not included in this list.

The localities examined in 1879 were about as follows: The inner beach of the cape in front of the town of Provincetorn, from the dike on the south to Wood End on the north and from high-water to low-water mark, including the eel-grass areas lying directly off the beach and the broad sand-flats in front of and behind it; the inner beach at Long Point; the piles of the wharves, especially those at the ends of the long steamboat and railroad wharves; and the outer beaches at Wood End, Race Point, \&c. A few interesting species obtained at Wellfleet by Professor Webster are included in the list, and I am also indebted to him for material from about Provincetown. The identifications of species are only partly mine. Prof. A. E. Verrill furnishes the lists of worms and Nudibranchs; Prof. S. I. Smith has kindly identified the Amphipods and more difficult Decapods; and Mr. Sanderson Smith the more critical speeies of Mollusks. Mr. O. Harger has also examined the Isopods. In addition to the species contained in the list, a species of Chironomus in the larval stage was found abundantly on the shore, and one or more species of mites were common among Hydroids. Of the one hundred and fifty-seven species included in the list, all but twenty-one were previonsly known to range both to the north and south of Cape Cod. Of the species whose range has been extended, thirteen belong properly to the fauna of Southern New England and seven to that of Northern New England. The southern species are as follows: Pallene empusa, Pimixa chatopterana, Gebia affinis, Moera levis, Microdeutopus grandimanus, Amphithoë longimana, Chelura terebrans, Caprella geometrica, Leptochelia algicola, Sigalion arenicola, Sthenelais picta, Anthostoma robustum, and Leptosynapta roseola. The northern species are: Leptochelia caca, Praxilla zonalis, Tetrastemma vermiculus, Planocera elliptica, Embletomia fuscata, Stiliger fuscata, and Edwourdsia sulcatu. The only new littoral species discovered by the Commission, so far as the collections have been worked up, is Eduardsia pallida.

Excepting in a few necessary instances the synonymy of the species has been omitted, but references have been given in nearly all cases to American publicatious in which the synonymy and range of the several species and other information concerning them are discussed.

New Haven, Conn., April 8, 1880.

PYCNOGONIDA.

Pallene empusa Wilson, Trans. Conn. Acad. Arts and Sciences, vol. v, p. 9, pl. iii, figs. $\mathfrak{2} a$ to $2 g$, 1878. - P'hoxichilidium maxillare Smith, Inv. of Vineyard Sound, p. 544, 1874 (non Stimpson).

Found amongst the eel-grass, low water to $\frac{1}{2}$ fathom. Former localities: Vineyard Sound (U. S. F. C., 1S71) and Noank, Conn. (U. S. F. C., 1874).

merostomata.

Limulus Polyphemus Latreille. Smith, Inv. V. S., p. 580, 1874.

Very common along the entire inner shore of the cape, in the ricinity of Provincetown. The living specimens were usually encountered partly buried in the sand, near low-water mark. They sometimes attain a very large size in this region, but the majority of the specimens seen were from small to medium size and females. All the larger specimens collected were males. The cast skins or exuvire were sometimes so abundant that they nearly made up the little ridge of débris running aloug the upper part of the beaches.

Two specimens, both females, were obtained in the act of molting; one was living, the other dead. In the case of the latter the operation of throwing oft the old skin had advanced considerably, allowing us to measure accurately the increase in the size of the carapax for the past year. Of the exllvia, the greatest width of the carapax was 57^{mm}; length of carapax along the median line, 35^{mm}; distance between the tips of the spines sturmounting the compound eyes, 31.5^{mm}; length of compound eye, 3.5^{mm}. The carapax of the newly expanded animal had a width of 67^{mm}; length, 45^{mm}; distance between the spines of compound eyes, 43^{mm}; length of compound eye, 5 mm . The living specimen had only broken slightly through the outer skin, so that but one measurement could be made without destroying it. The width of the old carapax was 124^{mm}, of the new 141^{mm}; but as the latter had suffered contraction in alcohol, it must have been larger originally.

DECAPODA.

Gelasimus pugnax Smith, Trans. Conn. Acad., vol. ii, p. 131, 1870; ibid., vol. v, p. 33 , 1879; Inv. V. S., p. 545, 1874.
Very abundant on the salt marshes and upper part of the beaches, between the town and Wood End Light. Also found at the same place by Prof. S. I. Sinith and Mr. O. Harger, in 1872.

Gelasimus pugilator Latreille. Smith, Trans. Conn. Acad., vol. ii, p. 136, 1870; ibid., vol. v, p. 33, 1879; Inv. V. S., p. 545, 1874.
A fer specimens only of this species have been noticed from Provincetown; they were found on the beach near the dike in 1872, by Smith and Harger.

Pinnixa chætopterana Stimp., Ann. Lyc. N. H., New York, vol. vii, p. 235, 1860.
Wellfleet, 1879 ; collected by Prof. H. E. Webster, who found it in
 town.

Platyonichus ocellatus Latr. Smith, Iuv. V. S., p. 547, 1874; Trans. Conn. Acad., vol. v, p. 33, 1879.
Extremely abundant everywhere along the inner slore, in the vicinity of Provincetown, at low water and deeper. Large numbers were observed to be molting during August and the last of July, and fresh exuviæ were very common all throngh the latter half of the summer. One small specimen obtained while molting, and preserved in alcohol, afforded the following measurements: lengtlı of carapax in the exuvia, 35^{mm}; width, 42^{mm}; length of freshly expanded carapax, partly contracted in alcohol, $3 \mathrm{~S}^{\mathrm{mm}}$; width, 47 mm . The largest specimen taken on the shore measured: length of carapax, 71^{mm}; width, 86^{mm}. On August 16 , and during one or more suceeeding days, the joung were seen swimming at the surface in comitless numbers, but how far from the shore they extended was not determined; they were very plentiful about the end of the long steamboat wharf. They varied in length of carapax from about 11^{mm} to 16 mm . September 3 they were again abundant, but less so than on the former oceasion, and they remained nearer the shore, or at least closer to the bottom. At this time they were from 18^{mm} to 23^{mm} long.

Carcinus mænas (Linné) Leach. Smith, Trans. Conn. Acad., vol. v, p. 34, 1879.C. granulatus Smith, Inv. V. S., p. 547, 1874.

Collected by Smith and Harger, 1872.
Panopeus depressus Smith, Proc. Bos. Soc. N. H., vol. xii, p. 283, 1859; Inv. V. S., p. 547, 1874 ; Trans. Conn. Acad., vol. v, p. 37, 1879.

Collected by Smith and Harger, 1872.
Panopeus Sayi Smith, Proc. Bos. Soc. N. H., vol. xii, p. 284, 1859 ; Inv. V. S., p. 547, 1874 ; Trans. Conn. Acad., vol. v, p. 37, 1879.
Found abundantly in the eel-grass off the dike, and also collected by Smith and Harger, 1872.

Cancer irroratus Say. Smith, Trans. Conn. Acad., vol. v, p. 38, 1879.
Common; shore, at low water.
Libinia emarginata Leach. Sinith, Trans. Conn. Acad., vol. r, p. 45, 1879.-L. ccnaliculata Smith, Inv. V. S., p. 548, 1874.
Very abundant at low water, Provincetown; several very large males were also obtained from Wellfleet Harbor, the largest measuring: length of carapax, 113^{mm}; width, excluding spines, 103^{mm}.

Eupagurus longicarpus (Say) Stimp. Smith, Inv. V. S., p. 549, 1874; Trans. Conn. Acad., vol. v, p. 47, 1879.
Very abundant.

Gebia affinis Say. Smith, Inv. V. S., 1. 549, 1874.
This species was not collected at Provincetown, but was obtained from the flats at Wellfleet by Prof. H. E. Webster, in 1879, and seems to be abundant there. This is the first time it has been recorded from the north side of Cape Cod.

Crangon vulgaris l'abr. Smith, Inv. V. S., p. 550, 1874; Trans. Conn. Acad., vol. v, p. 55, 1879 .
Very common along the shore.
Palæmonetes vulgaris (Say) Stimp. Smith, Inv. V. S., p. 550, 1874; Trans. Conn. Acad., vol. v, p. 88, 1879.
Only a very few specimens of this species were collected, although it was diligently sought for. These were found in the eel-grass in front of the town and off the dike.

SCHIZOPODA.

Mysis stenolepis Smith, Inv. V. S., p. 551, 1874; Trans. Conn. Acad., vol. v, p. 103, 1879.

A few specimens only were collected; they were from the eel-grass in front of the town.

AMPHIPODA.

Orchestia agilis Smith, Inv. V. S., p. 555, 1874.
Very abundant on the beaches, under dead sea-weeds, etc.
Talorchestia longicornis (Say) Smith, Iuv. V. S., p. 556, 1874.
Very abundant on both the outer and inner beaches, burrowing deeply into the sand, about high-tide level.

Talorchestia megalopthalma (Bate) Smith, Inv. V. S., p. 556, 1874.
Associated with the preceding.
Hyale littoralis (Stimp.) Smith, Inv. V. S., p. 556, 1874.
Collected in 1879; and also in 1872, by Smith and Harger.
Calliopius læviusculus (Kroy.) Boeck. Smith, Inv. V. S., p. 557, 1874.
Found upon the beach at Long Point among stranded sea-weeds.
Gammarus locusta (Linné) Fabr., Systema Entomologia, 1775. Gould, Inv. Mass., ed. I. p. 334, 1841. Smith, Bull. U. S. Nat. Mus., No. 15, p. 139, 1879.-G. ornatus Edwards, Ann. des Sei. Nat., tome xx, p. 367, 1830; Hist. Nat. des Crust., tome iii, p. 47, 1840. Smith, Inv. V. S., p. 557, 1874.
Only a few specimens of small size were obtained from the eel-grass in varions places. The scarcity of this species at Provincetown is probably due to the absence of rocks and of much rock-weed, which together form its favorite grounds. A comparison of European with American specimens has enabled Professor Smith to establish the identity of G. ornatus and G. locusta.

Gammarus annulatus Smith, Inv. V. S., p. 557, 1874.
Shore and flats at low water, and eel-grass; abundant.
Gammarus mucronatus Say, Journ. Phila. Acad., vol. i, p. 376, 1818. Smith, Inv. V. S., 1. 559, 1874.

Shore and flats at low water; very abundant.
Mœra levis Smith, Inv. V. S., p. 559, 1874.
In the eel-grass off the dike. Not hitherto recorded from north of Vineyard Sound.

Microdeutopus grandimanus Smith.-Autonoë grandimana Bruz., Skand. Amphip. Ganm., p. 26, 1859.-Microdeutopus minax Smith, Inv. V. S., p. 562, 1874.
On the shore at low water, in the cel-grass off the dike, and among the sea-weeds on the piles of the wharves. Formerly known on the American coast only from Vineyard and Long Island Sounds.

Amphithoë longimana Smith, Inv. V. S., p. 563, 1874.
Found at low water and in the eel-grass in one-half fathom. Previously known only from south of Cape Cod.

Corophium cylindricum (Say) Smith, Inv. V. S., p. 566, 1874.
Eel-grass, one-half fathom.
Chelura terebrans Philippi. Smith, Proc. U. S. Nat. Mus., vol. ii, p. 232, 1879.
Abundant in old submerged piles of wharves, associated with Limnoria lignorum and Teredo navalis. First recorded from America in the paper of Professor Smith referred to above, but previously found by him at Wood's Holl in 1875.

Caprella geometrica Say, Journ. Acad. Nat. Sci., Phila., vol. i, p. 390, 1818. Smith, Inv. V. S., p. 567, pl. v, fig. 20, 1874.
In the cel-grass, one-half fathom, and also obtained from floating seaweeds in Provincetown Harbor. Hitherto recorded from sonth of Cape Cod only, but discovered by the Fish Commission at Quahog Bay, Maine, in 1873.

ISOPODA.

Jæra albifrons Leach. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 158, 1879.—Jera copiosa Stimpson, Mar. Inv. Grand Manan, p. 40, 1853. Harger, Inv. V. S., p. 571, 1874.

Very abundant on the shore between tides, under loose stones and other objects; and also in the eel-grass in very shallow water.

Chiridotea cœca (Say) Harger, Am. Journ. Sci., III, vol. xv, p. 374, 1878.
Shore, low water; only a fow specimens collected.
Idotea irrorata (Say) Edwards. Harger, Inv. V. S., p. 569, 1874; Proc. U. S. Nat. Mus., vol. ii, p. 160, 1879.—Idotea tricuspidata Desm., Dict. des Sci. Nat., tome xxviii, p. 373, 1823.

Very abundant on the shore, on piles of wharves, in the eel-grass, and swimming at the surface amougst floating sea-weeds.

Idotea phosphorea Harger, Inv. V. S., p. 569, 1874.
Occasionally fomd swimming at the surface in Provincetown Harbor, and also upon the beach, with stranded sea-weeds.

Epelys trilobus (Say) Smith, Inv. V. S., p. 571, pl. vi, fig. 28, 1874. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 160, 1879.
Moderately abundant; shore, between tides, and in the eel-grass, onehalf fathom; only specimens of small to medium size were met with.

Sphæroma quadridentatum Say. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 161, 1879.
Abundant, but only specimens of small size were obtained; low water and between tides on the shore and flats, and upon eel-grass, in one-half fathom.

Limnoria lignorum (Rathke) White. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 161, 1879.

In piles of old wharves, in company with Leptochelia algicola and Chelura terebrans.

Leptochelia algicola Harger, Proc. U. S. Nat. Mus., vol. ii, p. 162, 1879.—Paratanais alyicola Harger, Am. Journ. Sci., III, vol. xv, p. 377, 1078.
Very abundant at low water, on eel-grass, in one-half fathom, and in old piles, associated with Limnoria lignorum and Chelura.

Leptochelia cœca Harger, Proc. U. S. Nat. Mus., vol. ii, p. 164, 1879.
A single specimen only of this species was recognized among the shore collections.

CIRRIPEDIA.

Balanus balancides (Linné) Stimp., Mar. Inv. of Grand Manan, p. 39, 1853. Smith, Inv. V.S., p. 579, 1874.
Common on piles of wharves, on shells, stones, and wood on the beaches, and occasionally found on floating fucus. On the piles it was usually of small size, but on stones lying on the beaches it often exceeded half an inch in diameter.

Lepas fascicularis Ellis and Sol. Smith, Inv. V. S., p. 579, 1874.
On floating fucus in the harbor.
ANNELIDA.
Lepidonotus squamatus Leach. Verrill, Invertebrate Animals of Vineyard Sound, p. 581, pl. 10, figs. 40, 41, 1874.

On the piles of wharves.
Harmothoe imbricata Malmg. Ver., Inv. V. S., p. 582, 1874.
Piles of wharves.
Sigalion arenicola Ver., Proc. U. S. Nat. Mus., vol. ii, p. 167, 1879.
Shore, in sand, at low water.
Sthenelaís picta Ver., Inv. V. S., p. 582, 1874; Proc. U. S. Nat. Mus., vol. ii, p. 167, 1879.
Shore, in sand, at low water.

Nephthys ciliata Rathke. Ver., Inv. V. S., p. 583, 1874.
Shore, in said.
Phyllodoce cateuula Ver., Inv. V. S., p. 587, 1874.
Piles of wharves.
Eulalia pistacia Ver., Inv. V. S., p. 584, 1874.
Piles of wharves.
Autolytus cornutus A. Ag., Jour. Bos. Soc. N. H., p. 392, 1863. Ver., Inv. V. S., p. 590 , pl. 13, figs. 65, 66, 1874.

Piles of wharves, and among eel-grass near the beach.
Nereis limbata Ehlers. Ver., Inv. V. S., p. 590, pl. 11, fig. 51, 1874.
Shore, in sand, and among eel-grass.
Nereis virens Sars. Ver., Inv. V. S., p. 590, pl. 11, figs. 47-50, 1874.

* Shore, in sand.

Lumbrinereis fragilis A. and E. Ver., Inv. V.S., p. 594, 1874 (Lumbriconereis). Shore, in sand.

Lumbrinereis tenuis Ver., Check List, p. 8, 1879; Inv. V. S., p. 594, 1874 (Lumbriconereis).
Shore, in sand.
Arabella opalina Ver., Check List, p. 8, 1879; Inv. V. S., p. 594, pl. 13, figs. 69, 70,1874 (Lumbriconereis).
Shore, in sand.
Goniada gracilis Ver., Proc. U. S. Nat. Mus., vol. ii, p. 174, 1879.-Eone gracilis Ver., Inv. V. S., p. 596, 1874.
Shore, in sand.
Rhynchobolus dibranchiatus Ver., Inv. V. S., p. 596, pl. 10, figs. 43, 44, 1874.
Shore, in sand.
Anthostoma fragile Ver., Inv. V. S., p. 598, 1874. Shore, in sand.

Anthostoma robustum Ver., Inv. V. S., p. 597, pl. 14, fig. 76, 1874. Shore, in sand.

Scolecolepis viridis Ver., Inv. V. S., p. 600, 1874.
Shore, in sand.
Polydora ciliatum Clapar. (8) Ver., Inv. V. S., p. 603, pl. 14, fig. 78, 1874.
Shore, in sand.
Cirratulus grandis Ver., Inv. V. S., p. 606, pl. 15, figs. 80, 81, 1874.
Shore, in sand.
Notomastus luridus Ver., Inv. V. S., p. 610, 1874.
Shore, in sand.

Notomastus filiformis Ver., Inv. V. S., p. 611, 1874.
Shore, in sand.
Praxilla zonalis Ver., Proc. Am. Ass. Adv. Sci., 1873, p. 384.
Shore, in sand.
Clymenella torquata Ver., Inv. V. S., p. 608, pl. 14, figs. 71-73, 1874.
Shore, in sand.
Cistenides Gouldii Ver., Inv. V. S., p. 612, pl, 17, figs. 87, $87 a, 1874$.
Shore, in sand.
Nicolea simplex Ver., Inv. V. S., p. 613, 1874.
Piles of wharf, and eel-grass.
Scionopsis palmata Ver., Inv. V. S., p. 614, 1874.
Piles of wharf.
Polycirrus eximius Ver., Inv. V. S., p. 616, pl. 16, fig. 85, 1874.
Shore, in sand, and piles of wharf.
Fabricia stellaris Blainv.-Fabricia Leidyi Ver., Inv. V. S., p. 619, 1874.
Piles of wharf.
Hydroides dianthus Ver., Check List, p. 11, 1879; Inv. V. S., p. 620, 1874 (Serpula).
On piles of wharves, and incrusting living and dead shells of Pecten irradians, Ensatella americana, Littorina littorea, Anomia glabra, \&e.; also on fucus and other objects; especially abundant in the vicinity of the dike.

Spirorbis borealis Daud. Ver., Inv. V. S., p. 621, 1874.
On fucus growing on the piles and floating at the surface; abundant.
Clitellio irrorata Ver., Inv. V. S., p. 622, 1874.
Shore, in sand, near high-water mark.
Halodrillus littoralis Ver., Inv. V. S., p. 623, 1874.
On the beach, under dead sea-weeds near high-water mark.

GEPHYREA.

Phascolosoma Gouldii Dies. Ver., Inv. V. S., p. 627, pl. 18, fig. 93, 1874.
Shore, in sand.

ENTEROPNEUSTA.

Balanoglossus aurantiacus Ver., Inv. V. S., p. 627, 1874.
Shore, in sand.

NEMERTINA.

Tetrastemma dorsalis M'Int. Ver., Am. Journ. Sci., vol. x, p. 40, 1875.
Piles of wharves.
Tetrastemma vermiculus Ehr. (?) Ver., Proe. U. S. Nat. Mus., p. 184, 1879. Piles of wharves.

Lineus viridis Ver., Am. Journ. Sci., vol. x, p. 40, 1875; Inv. V. S., p. 628, 1874 (Ň̄mertes).
Piles of wharves.
Cerebratulus ingens (Leidy) Ver., Check List, p. 12, 1879; Inv. V. S., p. 630, 1874 (Meckelia).
Shore, in sand.
Cerebratulus roseus (Leidy) Ver., Check List, p. 12, 1879; Inv. V. S., p, 630, 1874 (Mcckelia).
Shore, in sand.

TURBELLARIA.*

Planocera elliptica Gir., Proc. Bos. Soc. Nat. Hist., p. 251, 1850.
Piles of wharves, and on the shore under bits of wood, \&c.
Bdelloura candida Gir. Ver., Inv. V. S., p. 634, 1874.
Parasitic on Limulus Polyphemus.

CEPHALOPODA.

Ommastrephes illecebrosa (Les.) Ver., Inv. V. S., p. 634, 18874.-O. sagittatus Binney, in Gould, Inv. Mass., ed. 1I, p. 510, 1870.
This species is caught in Provincetown Harbor during the summer and early fall in considerable numbers, to use for bait, and is often stranded upon the beaches at low tide. Prof. S. I. Smith and Mr. Osear Harger, while at Provincetown in 1872, noticed large numbers of this squid about the docks, killing and eating young mackerel. Their observations on the habits and appearance of the creature made at that time are given in the report of the United States Fish Commission for 1871-72, pp. 441, 442, 1874.
Loligo Pealei Les. Binney, in Gould, Inv. Mass., II, p. 514, 1870. Ver., Inv. V. S., p 635, 1874.
This species was not encountered at Provincetown by the Fish Commission, but it is represented in the collection of Mr. J. H. Blake, of that place, by two pens taken from specimens caught in the harbor, in July, 1879. It is not abundant north of Cape Cod, although several speeimens were procured at Amnisquam, on the north side of Cape Ann, by Professor Hyatt, in 1878, and it has also beeu previously noticed from Massachusetts Bay.

GASTEROPODA.

Ilyanassa obsoleta (Say) Stimp. Ver., Inv. V. S., p. 641, 1874. Gonld, Inr. Mass., II, p. 302, 1870 (Nassa).
Very common on many of the inner beaches, and extending up to hightide level. It is especially abundant in places where the brackish water from ponds runs down the face of the beach as it is left uncovered by the tide.

[^8]Purpura lapilius (Linné) Lam. Gould, Inv. Mass., II, p. 360, 1870. Ver, Inv. V. S., p. 642, 1874.

Shore, rare.
Anachis avara (Say) Perkins. Ver., Inv. V. S., p. 643, 1874. Gould, Inv. Mass., I, p. 313,1841 ; II, p. 356, 1870 (Columbella).
Rare; only a single specimen was found by the writer, but others have collected it at Provincetown.

Astyris lunata (Say) Dall. Ver., Iuv. V. S., p. 645, 1874.-Columbella lunata Gould, Inv. Mass. , II, p. 359, 1870.
Abundant in the eel-grass in front of the town and off the dike.
Lunatia heros (Say) Adams. Gould, Inv. Mass., II, p. 338, 1870. Ver., Inv. V. S., p. $646,1874$.
Very common along the entire inner shore, and often picked up dead on the outer beaches.

Neverita duplicata (Say) Stimp. Gould, Inv. Mass., II, p. 345, 1870. Ver., Inv. V. S., p. 646, 1874.

Abundant, associated with Lunatia heros.
Littorinella minuta (Totten) Stimp. Ver., Inv. V. S., p. 653, 1874. Gould, Inv. Mass., II, p. 298, 1870 (Rissoa).
Common, shore at low water.
Skenea planorbis (Fabr.) Forbes and Hanley. Gould, Inv. Mass., II, p. 296, 1870. Ver., Inv. V. S., p. 655, 1874.
Common on the shore, with Tottenia gemma, Littorinella minuta, \&c., and also on the piles of wharves.
Littorina littorea (Linn6) Johnston. Gould, Inv. Mass., II, p. 308, 1870.
Very abundant on the shore, on piles of wharves, and on eel-grass which is more or less exposed at low tide. Just off the dike it occurs on the eel-grass in countless numbers, and, in common with all the other species of shells in that vicinity, is frequently covered with the white calcareous tubes of Hydroides dianthus.

Littorina ruđis (Maton) Gould, Inv. Mass., I, n. 257, 1841; II, p. 304, 1870. Ver., Inv. V. S., p. 651, 1874.-L. tenebrosa Gould, Inv. Mass., I, p. 259; II, p. 306.

This is an exceedingly common species on the shore.
Littorina palliata (Say) Gould, Inv. Mass., I, p. 260, 1841; II, p. 309, 1870. Ver., Inv. V.S., p. 652, 1874.

Common on the shore and on piles of wharves among sea-weeds.
Lacuna vincta (Mont.) Turton. Gould, Inv. Mass., II, p. 302, 1870. Ver., Inv. V. S., p. 652, 1874.

On the eel-grass, shallow water; not found in much abundance.

Bittium nigrum (Totten) Stimp. Gould, Inv. Mass., II, p. 321, 1870. Ver., Inv. V. S., p. $648,1874$.

Very abundant amongst the eel-grass, in shallow water in front of the town, and off the dike, and also on the beaches, where it often occurs in immense numbers.

Crepidula fornicata (Linn6) Lamarek. Gould, Inv. Mass., II, p. 271, 1870. Ver., Inv. V.S., p. 649, 1874.
Common, especially in the vicinity of the dike, on shells of Pcetcn and Ensatella.

Crepidula plana Say. Gould, Inv. Mass., II, p. 272, 1870. Ver., Inv. V.S., p. 650, 1874.
Common off the dike, and also found elsewhere.
Crepidula convexa Say. Gould, Inv. Mass., II, p. 273, 1870. Ver., Inv. V. S., p. 650, 1874.

Abundant off the dike, adhering to the surfaces of living and dead shells, to Limulus, and other objects.

Acmæa testudinalis (Mïller) Forbes and Hanley. Ver., Inv. V. S., p. 661, 1874. Gould, Inv. Mass., II, p. 267, 1870 (Tectura).
Rare, shore; variety alveus also found.
Odostomia bisuturalis (Say) Gould, Iuv. Mass., II, p. 327, 1870. Ver., Inv. V. S., p. $656,1874$.
Not uncommon; eel-grass off the dike, and elsewhere.
Odostomia trifida (Totten) Gould, Inv. Mass., I, p. 274, 1841; II, p. 328, 1870. Ver. Inv. V. S., p. 656, 1874.
Associated with the last, and about equally common.
Odostomia dealbata Stimp. Gould, Inr. Mass., II, p. 327, 1870. Ver., Inv. V. S., p. 656, 1ヶ74.
A single specimen only was obtained from the eel-grass off the dike.
Melampus lineatus Say, Am. Coneh., p. 85, 1822.-Melampus bidentatus Say. Gould, Inv. Mass., II, p. 467, 1870. Ver., Inv. V. S., p. 662, 1874 (non Mont.).
Abundant, shore, between tides.
Onchidoris, sp.
An undetermined species of this genus was obtained from sea-weeds on the inner beach at Long Point.
Tergipes despectus Ald. and Han. Ver., Inv. V. S., p. 667, 1874.-Aolis (Tergipcs) despecta Gould, Inv. Mass., II, p. 248, 18~0.

From hydroids, on piles of wharves, and sea-weeds of beach.
Embletonia fuscata Gould, Inv. Mass., II, p. 251, 1870.
Found among the filamentous green alge in little rills of water on the beaches and sand-flats.

Stiliger fuscata Bergh. Ver., Prelim. Check List, p. 23, 1879.-Calliopera (\%) fuscata Gould, Inv. Mass., II, p. $250,1870$.
Associated with Embletonia fuscata.

LAMELLIBRANCHIATA.

Teredo navalis Linné. Gould, Inv. Mass., II, p. 28, 1870. Ver., Inv. V. S., p. 669, 1874.
Very abundant in the piles at the outer end of steamboat wharf, and in other situations. A few years ago about forty feet of the above-mentioned wharf was so weakened by the borings of this shell-fish that it completely gave way under the weight of a ship's load of merchandise stored upon it.

Teredo megotara Hanley. Gould, Inv. Mass., II, p. 30, 1870. Ver., Iuv. V. S., p. 670, 1874.

At Provincetown, in cedar buoys (Gould).
Teredo dilatata Stimp. Gould, Inv. Mass., II, p. 32, 1870. Ver., Inv. V. S., p. 670, 1874.

From pine buoy attached to lobster pots, at Provincetown (Gould).
Ensatella americana (Gould) Ver., Am. Journ. Sci., vol. iii, pp. 212, 284, 1872; Inv. V. S., p. 674, 1874.-Solen americanus Gould, Inv. Mass., II, p. 42, 1870.

Many dead adult shells and living young were collected on the sandflats at low water.

Mya arenaria Linné. Gonld, Inv. Mass., II, p. 55, 1870. Ver., Inv. V. S., p. 672, 1874.
Very abundant on the shores and flats; especially so on the broad flats between the town and Wood End Light House, where, in the clean sands, the shells are often of a nearly pure white.

Lyonsia hyalina Con. Gould, Inv. Mass., II, p. 64, 1870. Ver., Inv. V. S., p. 672, 1874.
Quite common at low water on the inner shore at Provincetown, and in the inlet behind Race Point Light House. It was also picked up in extreme abundance on the outer beach at Race Point.

Cochlodesma Leanum (Say) Couth. Gould, Inv. Mass., II, p. 68, 1870. Ver., Inv. V.S., p. 673, 1874.

Dead shells in fresh condition were collected on the outer beach at Race Point, but not on the inner.

Spisula solidissima (Dillw.) Gray.-Mactra solidissima Gould, Inv., Mass., II, p. 73, 1870. Ver., Inv. V. S., p. 680, 1874.

Living young aud adult dead shells were frequently found on the shore at low water.

Ceronia arctata (Con.) Adams. Gould, Inv. Mass., II, p. 80, 1870. Ver., Inv. V. S., p. 679, 1874.

Many living specimens were obtained by Prof. H. E. Webster in the inlet behind Race Point Light House and on the outer beach near the same place; not known from the inner shore.

Cumingia tellinoides Con. Gould, Inv. Mass., II, p. 79, 1870. Ver., Inv. V. S., p. 679, 1874.
Not found by the Fish Commission, but several dead shells were collected on the inner beaches by Mr. J. H. Blake, of Cambridge, and Dr. Crocker, of Provincetown.

Angulus tener (Say) Adams. Ver., Inv. V. S., p. 677, 1874. Gould, Inv. Mass., II, p. 97, 1870 (Tellina).

Abundant on the shore, low water.
Venus mercenaria Limé. GonId, Inv. Mass., II, p. 133, 1870. Ver., Inv. V. S., p. $681,1874$.
Rare on the beaches at Provincetown, but very common farther south on the inner shores of the cape, especially in the neighborhood of Wellfleet, where they attain a large size and have the purple coloration of the interior of the shell more than usually intense and widespread.

Tottenia gemma (Totten) Perkins. Ver., Inv. V. S., p. 682, 1874.
Very abundant on the beaches in company with Skenea planorbis and Littorinella minutu, and also found amongst the cel-grass. The small dark-colored shells of this species are frequently scattered over the white beaches in the greatest profusion, appearing like coarse grains of black sand. But, being lighter than the sand, they are readily blown along by the wind until they collect in large numbers in the lee of any prominence that may present itself, and in the furrows of the beaches. In such places as these several handfuls of pure shells, with little admixture of sand, may often be scooped up. The first specimens of this species obtained by General Totten, its earliest describer, were from the beach at Provincetown.

Lævicardium Mortoni (Con.) Perkins. Ver., Inv. V. S., p. 683, 1874. Gould, Inv. Mass., II, p. 143, 1870 (Liocardium).
Low water, rare.
Cryptodon Gouldii (Phil.) Adams. Gould, Inv. Mass., II, p. 100, 1870. Ver., Inv. V. S., p. $686,1874$.

Dead shells frequently found along the beaches; probably lives in shallow water close to the shore, but not dredged in Cape Cod Bay in less than thirteen fathoms, at which depth it was very abundant.

Solemya velum Say. Gould, Inv. Mass., II, p. 48, 1870.-Solenomya relum Ver., Inv. V. S., p. 688, 1874.
A few dead valves only were picked up on the inner beaches.
Astarte castanea Say. Gonld, Inv. Mass., II, p. 117, 1870. Ver., 1nv. V. S., p. 685, 1874.

Found abundantly in Provincetown Harbor, west and north of the light-house, at low-water mark (Gould). Although searched for at this locality in 1879 , no specimens were discovered; a very low tide is probably required to uncover them. Mr. J. H. Blake says they are also common low down on the inner shore, near Wood Lind Light. Proc. Nat. Mus. S0-9

JuHy 2, 1880.

Argina pexata (Say) Gray. Ver., Inv. V. S., p. 692, 1874. Gould, Inv. Mass., II, p. 147, 1870 (Arca).

Collected on the beach at Provincetown (S. I. Smith, 1872).
Mytilus edulis Linné. Gould, Inv. Mass., II, p. 183, 1870. Ver., Inv. V. S., p. 692, 1874.

Very abundant, shore, piles of wharres, attached to floating fucus, \&c.
Modiola plicatula Lam. Gould, Inv. Mass., II, p. 188, 1870. Ver., Inv. V. S.. p. 693, 1874.

Very abundant on the flats near high-water mark.
Crenella glandula (Totten) Adams. Gould, Inv. Mass., II, p. 194, 1870. Ver., Inv, V. S., p. 695, 1874.

A few fresh, but not living, shells were obtained from the beaches at low water. Provincetown, at low water (Stimpson, Shells of N. England). This species was first known to Totten, its describer, from Prorincetown.

Pecten irradians Lam. Gould, Inv. Mass., II, p. 199, 1870. Ver., Inv. V. S., p. 695, 1874.

This species was formerly very abundant in front of the town, in the patches of eel-grass just below ordinary low-tide level, but at present the full-grown shells are rarely found there. They are, however, still very plentiful off the dike in similar situations. The adult shells rest on the ground amongst the eel-grass, which at low water becomes thickly matted above them, generally quite concealing them. Young shells usually adhere to the eel-grass by their byssus.

Anomia glabra Ver., Am. Journ. Sci., vol. iii, p. 213, 1872; Inv. V. S., p. 69t, 1874.1. ephippium, electrica, squamula, Gould (non Linné).

Abundant on the flats in front of the dike, but generally of small size, attached to dead shells of Pecten irradians, Ensatella americana, \&c.

TUNICATA.

Molgula manhattensis Ver., Am. Journ. Sci., vol. i, p. 54, 1871; Inv. V. S., p. 699, $18 \pi 4$.
Abundant near high-tide level, amongst the grass in the pools left on the shore at low tide; attached to eel-grass and to floating sea-weeds. Also thrown up in immense numbers on the outer beach at Race Point during heary storms.

Botryllus Gouldii Ver., Am. Journ. Sci., vol. i, p. 211, 1871; Inv. V. S., p. 702, 1874. Growing on ecl-grass in shallow water and on floating sea-weeds, \&e.

BRYOZOA.

Crisia eburnea Lamour. Ver., Inv. V. S., p. 707, 1874.

Very abundant on fucus and eel-grass, often associated with Bugula turrita; on eel-grass everywhere in shallow water from the dike to Long Point, and on fucus growing on the piles and floating at the surface.

Tubulipora serpens (Linné) Flem., Brit. Anim., p. 529, t. Johnston, Hist. Brit. Zö̈ph., p. 275, 1847.-T. fabellaris Ver., Inv. V. S., p. 708, 1874.
Found very abundantly on the eel-grass in shallow water, forming small rounded clusters.

Flustrella hispida (Fabr.) Gray.-Alcyonidium hispidum Smitt. Ver., Inr. V. S., 1. 708, 1874.

Incrusting floating fucns in the harbor, and probably also oceurring on the sea-weeds of the piles.

Vesicularia, sp.
One or two small specimens of a Vesiculariu with crieping stem, possibly V. uva Smitt, were found upon fucus growing upon the piles.

Bugula turrita (Desor) Ver., Inv. V. S., p. 712, pl. xxxiv, figs. 258, 259, 1874.
Very abundant on piles of wharves, eel-grass in shallow water, aud on floating fucus; associated with Crisia eburnea.

Electra pllosa (Linné) Fisch., t. Ver., Preliminary Check List Mar. Iur. Atl. Coast, p. 29, 1879.-Membranipora pilosa Farre, Phil. Trans., p. 412, 1837. Ver., Inv. V.S., p. 712, 1874.

Incrusting fucus, laminaria, eel-grass, \&e, floating in the harbor, and stranded on the beaches.

Cribrellina puncturata Smitt, Floridan Bryozoa, part II, p. 24, 1873.-Escharipora punctata Smitt, Öfvers: af K. Vetens.-Akad. Förh., 1868, appendix, p. 4. Ver., Inv. V. S., p. $713,1874$.
On eel-grass, one-half fathom, rare.
Hippothoa hyalina (Linné) Smitt, Floridan Bryozoa, part II, p. 40, 1873.-Mollia hyalina Smitt, Öfvers. af K. Vetens.-Akad. Förh., 1868, appendix, p. 16. Ver., Inv. V. S., p. 713. 1874.
On floating fucus and eel-grass in the harbor, and on the beaches.
Lepralia americana Ver., Am. Journ. Sei., III, vol. ix, p. 415, pl. vii, figs. 4, 5, 1875.-Lepralia Pallasiana Ver. Inv. V. S., p. 713, 1874 (with query; non Busk).
Very common; incrusting fucus and other sea-weeds on the piles, aud also growing on eel-grass in shallow water.

ECILNODERMATA.

Leptosynapta Girardii (Pourtales) Ver., Inv. V. S., p. 716, 1874.
This species is common everywhere about Provincetown, on the sandy beaches between low-tide and half-tide levels, but it is most abundant on the sandy flats abont midway between the town and Wood End Light House, where large areas are left dry for a considerable time at low water. It also occurs in abundance on the sand-flats inside of Race Point Light House, on the outer shore.

Leptosynapta roseola Ver., Inv. V. S., p. 716, 1874.
Provincetown beach, and sheltered inlets back of Race Point, on the onter side of Cape Cod, buried in the sand at low water, and associated
with L. Girardii. Collected at the latter place by Prof. H. E. Webster and Mr. Benedict. Hitherto known only from New Haven, Comn., and Vineyard Sound (Verrill).

Asterias Forbesii (Desor) Ver., Am. Jonrn. Sci., vol. xi., p. 418, 1876; Proc. Bos. Soc. Nat. Hist., vol. x, p. 345, 1866; Inv. V. S., p. 718, 1874.-A. arenicola Stimp., Proc. Bos. Soc. Nat. Hist., vol. viii, p. 268, 1862. Ver., ibid., vol. x, p. 339, 1866; Iuv. V. S., p. 718, 1874.-Asteracanthion berylinus Ag., A. Ag., Mem. Mus. Comp. Zoül., vol. v, No. 1, p. 94, pl. ix, 1877.
Very abundant along the shore above and below low-water mark, and on piles of wharves, but always of comparatively small size. A comparison of the specimens from Provincetown with those obtained from Gloucester in 1878 shows more or less constant differences to exist between the two. In the former the spines are generally longer and more acute, sometimes cven quite slender, and the pedicellaris appear to be somewhat more numerous, and to vary greatly in their arrangement. These differenees are, however, of very slight value in this exceedingly variable species.

Asterias vulgaris Stimp., MSS. Packard, Can. Nat., Dec., 1863. Ver., Proc. Bos. Soc. Nat. Hist., vol. x, p. 347, 1866; Inv. V. S., p. 718, 1874.
Below low-water mark at the outer ends of the long wharves.
Amphipholis elegans Ljung. Ver., Inv. V. S., p. 720, 1874.-Amphiura squamata Lyman, Illust. Cat. Mus. Comp. Zoöl., No. I, p. 121, 1865 (non Delle Chiaje, t. Ljung.).
Only a few specimens of this Ophiuran were obtained; they were from the cel-grass in very shallow water.

ANTHOZOA.

Metridium marginatum M.-Edw. Ver., Inv. V. S., p. 738, 1874. Common on the mooring posts in the harbor (J. I. Blake).

Edwardsia sulcata Ver., Mem. Bos. Soc. N. H., vol. i, No. I, p. 29, 1864. Sand, at low water.

Edwardsia pallida Ver., Proc. U. S. Nat. Mus., vol. ii, p. 198, 1879.
In sand, at low water.

ACALEPHた.

Clytia Johnstoni (Alder) Hincks. Ver., Inv. V. S., p. 725, 1874.
On floating fucus thrown up on inner beach of Long Point.
Campanularia flexuosa Hincks. Ver., Inv. V. S., p. 726, 1874.
Abundant on fucus of piles of wharves, \&c.
Obelia geniculata (Linn6) Allman. Ver., Inv. V. S., p. 727, 1874.
On floating fucus stranded on Long Point beach, inner shore.
Obelia dichotoma (Linne) Hincks. Ver., Inv. V. S., p. 728,1874.
Very abundant on eel-grass, one-half fathom.

Sertularia pumila Linne. Ver., Inv. V. S., p. 732, 1874.
Very common, and growing principally on fucus, on piles of wharres; also on floating fucus in the harbor. A very robust variety was collected from fucus stranded on the outer beach at Race Point.

DESCRIPTION OF A NE WPECEES OER RAY (RAIA STELIULATA) FIBOM MONTEREY, CALIEORNIA.

By DAVID S. JORDAN inil CHAREES IH. GILBERT.

Raia stellulata sp. nor.
Allied to Raia radula Delaroche. Disk much broader than long, anteriorly broadly arched, and convex, the tip of the snont very slightly exserted. Anterior margin of pectorals undulated, convex anteriorly, then concave. Length of snont from eyes a little more than twice the width of the interocular space, which is concave, less than the distance between the onter angles of the spiracles. Breadth of disk equal to the distance from the tip of the tail to the shonlder-girdle. Length of tail equal to the distance from its root to the middle of the interocular area.

Male everywhere above rough with stellate prickles, the base of the pectorals being almost smooth. Along the middle region of the back and the whole mpper surface of the tail is a band of close-set, rather low prickles, with broad, very distinctly stellate bases. An clongate patch of stont, recurved spines on the anterior part of the pectorals, and farther back the usual series of claw-like spines found in the males of all species. Stont spines above the eye, a few in the middle of the shoulder, and along the middle line of the tail. Sides of the tail without large prickles. Lower side smooth, except around the month.

Female everywhere above rough with stellate prickles, the anterior region, middle of back, and upper surface of tail most so. A median row of strong spines on the tail above, and six on the scapular region. A series of strong spines over the eye. A lateral row of rather strong prickles on the tail. Body smooth below, except anteriorly.

Tail flat below, with a conspicnons lateral fold. Dorsal fins low, their height equal to the interorbital space, separated by a space considerably shorter than their base. Candal fin reduced to a very small fold, as in the "genus" Uraptera, to which this species would be referred in Miiller $\&$ Henle's arrangement.

Mouth somewhat arched. Teeth not very sharp, tricuspid, abont $\frac{35 \text { to } 40}{35}$. Nasal tlaps slightly fringed externally. Distance between nostrils abont equal to the distance from them to the tip of the snont.

Color grayish-brown, everywhere mottled with light and dark colors, the markings sharp and distinct. Numerous black spots of all sizes, some of them ocellated. A black spot about as large as the eye at the
base of each pectoral, each surrounded by a pale ring and in turn by another dark one. Head with black cross-bars. The two sexes entirely similar in color.

This species is not uncommon in the Bay of Monterey. We have obtained eight examples, which agree with each other very elosely. One of these is a female, abont 18 inches in leagth, in which the ovaries are immature. The other females are abont 30 inches in length, and the ovaries are fully matured, containing eggs. The males are about 30 inches long, likewise bearing evidences of maturity. These specimens are now in the United States National Museum. This species is readily distinguished from the two others known from the Pacific coast by its obtuse snout and its rough skin.

The Raia binoculata Girard is the common skate of the Pacifie coast, and is bronght in in large numbers to the San Franciseo markets. In color it is uniform light brown, with a black ring near the base of each peetoral, and usually a dusky crescent on each ventral. The pectoral ocellus is often obseure, and sometimes can hardly be traced in preserved examples; in living speeimens it is generally conspicuous.

The skiu in the male is entirely smooth above, except the anterior edge of the pectorals, the bony part of the snont, and the larger spines on the front part of the pectorals, the supraoeular region, a few (one to six) on the scapular region, and a series along the median line of the tail. There are two or three detached spines usnally along the side of the tail. The elaw-like pectoral spines are also present. The females have, in addition, a lateral series of spines on the tail and some prickles on the posterior part of the peetorals, the larger spines found on the pectorals of the male being wanting. The aetual length of the snout in R. binoculuta is not much greater than in R. stcllulata, but its form is different, the disk being anterionly acuminate, bounded by concave lines, its length being more than three times the interocular space. Male and female examples of this species, with ripe eggs, or welldeveloped elaspers, are about two feet long.

Still another ray is known to us from a female example from Monterey about 30 inches in length. It agrees with R. binoculata in every respect, except in the form of the snout, which is extremely long, aeuminate, and pointed, its length nearly four times the interorbital width. The anterior outline of the disk on each side of the snout forms a nearly uniform concave curve, it being searcely at all undulated. These differences are shown by the appended table of measurements. We consider this at present a variety of Raia binoculata, although such variations in the length of the snout are umnsual in the same speeies.

Still another form is known to us from two examples, a male and a female, each about 6 feet in length, taken at Monterey. This form must be coasidered as the Raia cooperi Girard, as the very imperfect description of the latter speeies agrees in all essential respects with these specimens.

Raia cooperi has the snont acutely produced, rather more so than in R. binoculata, thongh less than in the rariety referred to, the distance from the eye to the tip of the snout being about twice the interorbital width. The length of the disk is $\frac{7}{8}$ its width; the tail is $\frac{2}{3}$ the length of the disk. The female is covered above with small stellate prickles, which are larger over the eye, on posterior edge of pectorals, on ventrals, the middle line of the back, and on the tail. Prickles on tail in several series. Differentiated spines present only orer eye and on tail. The male is nearly smooth, its spines essentially as in R.binoculutu. Color brown, with paler blotches; a large, obscure, blackish blotch at base of pectoral. This species has scarcely a trace of eaudal fin, and is therefore likewise an "Urapterct" Its teeth are about $\frac{44}{40^{\circ}}$. Whether this Raia cooperi is a distinct species or merely very old individuals of Raia binoculata we are now unable to decide. There are no important differences, except such as might accompany increased age.

Table of measurements.

Monterey, Cal., April 7, 1880.

DESCRIPTHONS OF NEW SPECHES OF NHPIISTER AND APODICHTHIS, TRETH MONTEREX, CALIFORNEA.

By DAVID S. JORDAN and CEIAERES HI. GHLBEIET,

1. Xiphister chirus sp. nov.

Body elongate, somewhat compressed, formed as in Xiphister mucosus (Xiphidion mucosum Girard). Head short, convex in profile, not depressed above the eyes. Houth small, oblique, the maxillary extending to opposite middle of pupil. Ese small, as long as snout, about 5 in head. Lower jaw slightly projecting. Teeth strong, the anterior caninelike, bluntish; four cauines in lower jaw, six or more in the upper, similar
to the posterior teeth, but somewhat enlarged. Lateral teeth of lower jaw short, blunt, the series extending behind the anterior camines. Lips full, the upper protractile. Head naked. Gill membranes united, without isthmus.

Body covered with minute seales, the usual three parallel lateral lines ruming without union from the head to the tail. Each of these, as in other species, with a series of simple, transverse, alternating, short branches at right angles, and each with one or two open pores. These branches correspond in the outer lines each to a dorsal or anal ray. Middle line farther from each of the outer lines than these are from the dorsal or anal. A short dorsal line, similar to the lateral lines aud similarly branched, extending from the occiput to the first dorsal spine. An abdominal line on each side of the belly. These gradually converge anteriorly and meet on the breast. They are not connected with the lower lateral line. In the other species of the genus the lower lateral line sends a branch to the abdominal line.

The vertical fins are similar in all the species, the dorsal of low sharp spines only; the anal similar, but composed of soft rays, both slightly joined to the caudal.

Dorsal fin beginning close behind the pectoral, at a distance from the opercular angle not greater than the diameter of the eye. Anal beginning about a head's length nearer the snout than the base of the candal, or about $\frac{1}{2}$ head's leugths nearer snout than end of candal.

Pectoral fin quite small, lut several times larger than in any of the other species, larger than the eye, its length about equal to the distance between the middle and lower lateral lines.

Fin rays: D. LXX; A. 50; P. 14.
Color olive-brown, yellowish below; the sides everywhere with mar. blings of different shades of brown, mostly in the form of vertical bars. Some round black spots along the back and upper part of the sides; a black spot behind opercles. Head brown abore, yellowish below; a narrow black streak from eye directly backward across the temporal region. Numerous black spots on sides of head, but no radiating bands. Dorsal and anal fins with black spots; pectorals plain yellowish, a conspicuous dark axillary spot; caudal plain reddish.

This species differs from the others of the genus in the large pectorals, the absence of anterior union of the lower lateral and the abdominal lines, in the position of the first rays of dorsal and anal, in the presence of more than two canines in the upper jaw, and in the coloration, the sides of the head being withont stripes and the caudal plain. .

It is known to us from about twelve examples taken at the Point of Los Pinos, near Monterey. It inhabits rocks at the extreme low-tide mark, and is abundant chiefly among the masses of mussels which cover the outermost rocks exposed to the wash of the waves. Like the other species of the genus, it is rery active and makes its way readily out of water over damp rocks and algæ. It seems to reach a smaller size than the other species.

2. Xiphister rupestris sp. nov.

Besides the foregoing species, which is distinguishable at sight from Xiphister mucosus, a second species oceurs in great abundance among the rocks about Monterey. This species is more nearly allied to . T. mucosus, agreeing with it in form of body, mouth, teeth, and arrangement of the lateral lines; differing in the eoloration of the head, in the number of dorsal and anal rays, in the insertion of the dorsal and anal fins, and in the size of the pectoral fins. A description of these points will suffice, without the enumeration of features common to all the species of the genus.

The life eoloration of Xiphister mucosus is blackish green, beconing pale green on the belly and sides of the head; toward the tail the blackish is eommonly broken with much olivegreen in various patterns; a transverse light-greenish bar at base of eaudal, which extends to the dorsal and anal fins. Radiating backward from the eye are three olivebrown streaks, these much lighter in the eenter and edged above and below with blaekish, outside of which is sometimes a streak of light green. These streaks all merge baekward in the olive-green of the head. The upper streak from the eye toward the occiput is generally obsolete or small and indistinct; the middle streak is wedge-shaped, with the edges straight or nearly so; it is but slightly more than onethird the length of the head; the third streak terminates before reaching the margin of the preoperele. A very old example, over a foot loug, has a diffuse yellow blotch ou the back anteriorly.

In Xiphister rupestris the life coloration is olive-brown or reddish brown, uniform or varionsly marked and shaded with lighter; a light olivaceous bar at base of eaudal, exteuding on dorsal and anal; behind this a blackish area; the tip of the candal usually pale. Three long, well-defined streaks radiating backward from the eye, these strexks uniform black, overlaying the olive eheeks, aud abruptly margined with very light olice; the upper streak is more distinct than in . . mucosus; the central streak proceeds straight backward from the eye, half the breadth of the cheeks, at which point it is broadest; it is then narrowed and bent abruptly downward; both the middle and lower streak reach the margin of the preopercle, the length of the middle streak being three-sevenths that of the head.

In Niphister mucosus the dorsal fin begins anteriorly, nearly as in Tiphister chirus, the distance from its origin to the occiput being less than that from the occiput to the tip of the snout. The origin of the anal fin is nearly midway from the snont to the tip of the catudal, it being nearer the snont than the tip of the candal fin by from one-third to twothirds the length of the head. The fin rays are pretty constantly D. LXXIII, A. 48. The pectoral fin is as long as the eye.

In Xiphister rupestris the dorsal fin begins farther back, the distance from its origin to the occiput being one-third greater than the distance from. the occiput to the smout. The aual fin begins much in advance of the
middle of the body, the distance from the first ray to the tip of the caudal exceeding the distance to the snont by nearly twice the length of the head. The fin rays are very constantly D. LXVI, A. 50. Pectoral fin very short, its length less than the diameter of the eye (about three-fifths).
These two species are extremely and equally abondant about Monterey, especially on the Point of Pines. They live under rocks in the sand, in crevices of rocks, and in masses of alga between tide-marks. They are very active, making their way readily on laud, and remaining out of water in damp places for hours without incourenience. We have procured upwards of a hundred speeimens of each species, and find the distinctive characters, although few, to be very constant.

Siphistcr cruoreus (Xiphidium cruoreum Cope, Proc. Am. Philos. Soc., 1873), from Alaska, is apparently either identical with Tiphister mucosus or closely allied to it. The description agrees better with mucosus than with rupestris.
The systematic position of the genus Xiphister deserves a moment's notice. Professor Gill has referred it to a family, "Tiphidiontide," distinguished from "Stichwide" chiefly by the absence of pyloric coeca, and from "Celvedichthyide" by the short intestinal canal, the absence of pyloric coca, and the absence of soft rays in the dorsal.

As a matter of fact, the intestinal canal in Tiphister is but little sherter than in Cebedichthys. It has five or six well-developed pyloric crect. Whatever may be the value of the family "Stichaidce," the writers do not believe that Cebedichthys, Xiphister, and Apodichthys are representatives of distinct families. The lateral line of Cebedichthys, by the way, corresponds to the upper lateral line of Siphister, and like it has for its whole leugth a series of short lateral branches ending in open pores.

Table of measurements.

	X. chirus.	X. mucosus, 1.	X. mucosus, 2.	I. rupestris, 1.	I. rupes. tris, 2.
Total length, inches.	4.08	10.90	6. 70	7.08	6. 25
Length to base of eaudal $=100$.	3.90	10.40	6.40	6.75	6. 10
Body: Greatest depth	10	12.9		10	
Least depth...		4.3	3.8		
Head:					
Greatest length.	14	13.7	14	15.4	15
Length of maxillary...		5.7	5	6.3	
Diameter of orbit.	2.5	1.7		2	
Dorsal:					
Distance from snout.	15.5	16	15	21	21.5
Height....		3		3	
Anal, distance from snout	43	51.5	51.5	44.5	43
Caudal, leugth..-		4.7			
Pectoral, length.		1.7		1.5	
Pecteral, width	2.5			1	
Dorsal rays...	70 50	-73		66 50	

3. Apodichthys fucorum sp. nov.

Allied to Apodichthys flavidus Girard, but differing in the form of the anal spine, in the smaller number of fin-rays, and in the smaller size of the pectoral fins.

Form of head and body and dentition as in Apodichthys fluridus. Mouth very oblique, the maxillary reaching the vertical from the center of the pupil. Dorsal fin beginning at a point considerably nearer the nape than the latter is from the end of the snout. Anal spine smull, its length about one-fifth that of the head, transcorsely very convex in firont, and slightly concave or groovcd behind. Pectoral fins very small, about one-fifth the length of the head. Anal fin begimning nearer base of caudal than tip of snout by abont three times the length of the head. Dosal, very constantly, LXXXIII; A. 35 .

In Apodichthys flavilus the dorsal begins as much behind the nape as the latter is behind the tip of the snout. The anal spine is very large, two-fifths the length of the head, and deeply cxcuvatcd on its anterior surface and very convex behind, the spine being very thin and with sharp edges, resembling a quill-pen.

Pectoral fins larger, about two-fifths the length of the head. Anal beginning nearer base of candal than tip of snout by twice the length of the head. Fin ravs: D. ŇCIII; A. 40.

The life coloration of Apodichthys fucorum is either bright olive-green or brownish red, becoming in alcohol either bright straw color or vermillion; a row of dark spots exteuding along axis of body, these sometimes with light-bluish center, and counected by a very narrow dark streak. Generally a dark streak downward from eye, but no other markings about the head.

The ground-color of these fishes, whether red, green, yellow, or brown, has no significance in specific distinction. As with many other species of rock-fish, they take the color of their surroundings. When in masses of Fucus, this species is always olive-green; when among Chondrus, or other red-brown algæ, it is colored like the plants. We lave seen Ohgocottus maculosus (which species is ordinarily brownish, mottled, the belly blne) dark grayish red in pools lined with Corallina, deep crimson when surrounded by brighter algæ, plain gray in pools with granite bottoms and no plants, and of the most intense grass-green when taken from among fromds of Ulva. Other fishes imitate exactly the brown branches of the kelp (Macrocystis). Thus the mames flavidus, vircscons, and sanguineus have been successively applied to differently colored examples of Apodichthys flavidus.

Our specimens of the latter species are orange-red, everywhere dusted with minute punctulations. A few pale round spots on axis of body posteriorly. A narrow get-black bar downward and backward from eye, falling behind the maxillary ; a shorter black streak from eye toward oceiput. Anal fin obliquely barred with brownish.

Apodichthys fucormm is exceedingly abundant abont the Point of Los

Pinos, near Monterey. It is found mostly in masses of Fucus attached to rocks between tide-marks, and it is often found at low tide at a considerable distance from any water, kept damp by the masses of alge. Sometimes a dozen of them can be shaken from a bunch of alge attached to a dry rock. It is, like the species of Tiphister, very active, moving over stones or sand, and showing less anxiety abont the presence of its native element than any ather fish known to us. The very numerous typical examples are all of nearly the same size as the one measured below. It probably does not attain so great a size as Apodichithys flavidus.

We have little doubt that Professor Gill is right in uniting flavidus Girard, virescens Ayres, and sanguineus Gill as one species. Whether inornatus Gill is different or net we do not know. At any rate, its number of fin-rays (D. XC, A. 38) will separate it from A. fucorum.

Table of measurements.

	A. furcorum.	A. Jtavidus.
Extreme length, in inches	4.35	8.90
Length to hase of candal $=100$	${ }_{9.5}^{4.10}$	
Heail: ${ }^{\text {Heatest depti..... }}$		
Length .	10	
Distance from snout to nap		
Dorsal, distance from snout	13	11.5
Distance from snout......		
Height ot spine.	2	4
Leugth of pectoral.	2	4
Dorsal rays		
al rays.	${ }^{35}$	

Monterey, Cal., April 7, 1880.

DESCRIPTION OF A VERY LARGE FOSSEL GASTEREOPOD FIROM THE STATE OF PUEHEA, MEXICO.

By C. A. WHITE.

The United States National Museum has received from Mr. H. B. Acton, through the Hon. J. W. Foster, United States minister to Mexico, the very interesting fossil shell which is described in the following paragraphs. Mr. Acton says, in a letter accompanying the specimen, that it was obtained from the strata upon which are located the Zapotitlan Salt Works, which works are about six miles sonthwestward from the town of Tehnacan, in the State of Puebla, Mexieo, and about 115 miles inland from the Gulf coast. He gives the elevation of that locality as 6,500 feet above the level of the sea.

Only one example of this speeies has been received, and it is accompanied with examples of no other species. Fragments of the imbedding rock, which is a dense bluish limestone, have been carefully examined, and aithough they were found to contain unmerous fragments of
fossil shells, not any of them were sufficiently well preserved to indicate even their generic relations. No satisfactory information has been obtained concerning any geological observations that may have been made in that region, which might convey a knowledge of the geological age of the strata of the locality from which the fossil in question was obtained, and I am therefore under the necessity of relying wholly upon the testimony afforded by the fossil itself. The genus to which I have referred it has litherto been known only in roeks of Cretacens age; and there appears to be no good reason to doubt that the strata from which this Mexican shell was obtained belong also to that period.

Genus TYLOSTOMA Sharpe.

Tylostona prifcers (sp. nov.).

(Plate II, figs. 1 and 2.)

Shell very large, general form rhombic-ovate, inflated; spire moderately extended; volutions five or six, convex, having an ill-lefined narrow shouldering at the distal or upper portion, adjacent to the suture; umbilicus none, suture impressed; aperture ovate-semilunate, large, its length equal to more than two-thirds the full length of the shell; outer lip forming an approximately regular curve from near the suture to the anterior portion of the aperture, which, althongh broad, is somewhat produced; margin of the outer lip only slightly sinuate; inner lip bearing a broad, moderately thin callus, its ontline somewhat strongly sinwate and its margin narrowly flexed along its anterior portion.

Surface marked by the ordinary lines of growth.
Length from the apex to the front margin of the aperture, 220 millimeters; greatest breadth, 160 millimeters; length of aperture, 150 millimeters. (Mnseum, No. 8864.)

This is much the largest fossil gasteropod that has ever been found in North American Mesozoic strata; and it is excelled in size by only comparatively few of its class that have since existed.

It has much the general aspect of a Lunatia, but it is referred withont much hesitation to the genus Tylostoma Sharpe. This last-named genus is regarded by some malacologists as having affinities with the Tectibranchiata, near Pterodonta ; but I agree with Stoliezska and Zittel in referring it to the Pectinibranchiata, and placing it near Lunatia in the Naticidre. It is true that all the characteristics of Tylostoma, as enumerated by Sharpe and characteristic of most if not all the species which have been referred to that genus, are not clearly observable upon the only example of this species that has been discovered; but being plainly without an umbilicus, or any umbilical perforation, in connection with its other characteristics, it cannot be referred to any other recognized genus of the Naticidæ. The condition of our example is not such as to show clearly whether or not the outer lip was thickened at the time of the death of the mollusk.

The rarices or alternate swellings, characteristic of Tylostoma, are present, but not so conspicuons upon this example as they are upon some species of the genus, especially upon T. mutabilis Gabb, another Mexican Cretaceous form; but they are quite as conspicuons as they are shown to be in the published figures of Sharpe's type species, T. torrubice. These varices or swellings are more apparent in our example by an apical than by a lateral view of it, but their presence is indicated in fig. 2 upon the ultimate and penultimate whorls.

Although size cannot generally be relied upon as a specific character, the extraordinary dimensions of this shell separate it clearly from any other known form with which it might be otherwise in danger of being confounderl. The only fossil species which resemble it, or even approximately approach it in size, are the Natica pedernalis and N. pree-grandis of Roemer, from the Cretaceous of Texas; but both these species evjdently belong to a group that is now generally referred to Lunatia, or Euspira ; and the largest known examples of either of these forms have searcely more than half the dimensions of the example here deseribed.

STRCM Mr

By DAVED S. JORDAN and CHARLES H. GILBERTR.

Sebastichthys entomelas sp. nov.
Allied to S. oralis (Ayres).
Body oblong, rather elongate, the back regularly but not strongly arched, contracted to a rather slender caudal peduncle. Head moderate, the profile less steep than in related species, but the tip of the snout blunter than in ovalis. Mouth small, the short maxillary extending to below the middle of the eye. Lower jaw projecting, its tip entering the profile, but considerably less protruding than in oralis. Palatine teeth few.

Preorbital very narrow, withont spine. Eye rather large, about 4 in length of head, less than the interorbital space, which is strongly conrex, especially in its middle part.

Nasal spines minute. Preocular spine broad, triangular, rather prominent, more conspicuous than in moluncps, but much less so than in ocalis. Supraocular ridge little developed, its spine minute, sharp, concealed by the scales. Postocular spine present, minute, similarly concealed. No tympanic spine. Occipital ridges scarcely developed, concealed by the scales, without distinct spine at tip. In ocalis all these spines, though small, are distinct. In favidus there is no trace of any spines on the cranium, and the ridges are little developed.

Preopercular spines rather small, directed backwards, the two lower obsolete. Opercular spines small, two suprascapular spines. Scales on
top and sides of head very small, present on maxillary, mandible, preorbitat, and snout.

Scales on borly small, in about 63 transverse series.
Gill-rakers unmerous, long and slender, their length about half the diameter of the eye.

Dorsal spines very low and slender, the fin moderately emarginate, the membrane joining the last spine at about two-fifths its height. Soft dorsal long and low, the soft rays about as high as the highest spines, a little more than one-third the length of the head. Caudal forken. Anal low, its second spine stronger than third, but scarcely higher, less than two-thirds the height of the first soft ray. Pectoral fins moderate, not reaching vent, their tips beyond tips of rentrals, their base $3 \frac{1}{2}$ in length of head.

Fin rays: D. XHI, 15; A. III, 8.
Color rather dull olive-green. Sides with obscure round rusty spots. Belly, lips, and lower parts tinged with creamy. Obscure light and dark shades across cheeks. Traces of two or three obscure dark vertical bars. Dorsal dusky, with reddish shades. Candal dusky, the rays olive. Other fins dusky, with creamy reddish at lase. Lower half of pectoral distinctly reddish.

Peritoneum jet-black.
This species is known to us from five specimens taken in deep water outside of Monterey Bay, in company with S. ocalis, rubrivinetus, elongatus, etc. It is known to the Portugnese fishermen as "Budu." Its relations are probably most intimate with ovalis, which differs in the following respects:

Ovalis is much deeper and more oval in form, with the back considerably more elerated, and the profile much more steep, the lower jaw more protruding. The mouth reaches to the posterior edge of the pupil. The preocular ridge is very strong, forming a large triangular protuberance ending in a spine; small supraoenlar, postocular, tympanic, and occipital spines are present, the tympanic spine very minute, but constant. The dorsal fin is very low, the noteh between the spinous and soft parts extremely shallow, the membrane joining the last spine at more than two-thirds its height, the height of the spinous and soft portions about equal. The second anal spine is considerably the longest and strongest, scarcely lower than the soft rays. The pectoral fins are long, reaching to the vent.

Anal rays, III, 7, or III, S.
The color of this species when adult is olivaceons, strongly tinged with pale creamy red, especially below. The membrane of both dorsals are covered with many small round black spots. Some of these are usually present on the body. The upper fins are greenish, the lower more yellowish, and most of them are more or less dusky-edged. Candal fin rather dark.

Peritoneum black.

The remaining species of this type, melanops, simulans, and flavidus, differ in the absence of any distinct spines on the cranium, as well as in color, form, and other peculiarities. Melanops has the preocular ridge considerably developed, and occasionally ending in a spine. The others have this ridge obsolete. The mouth in simulans and flaridus is considerably larger than in the other species. In melanops and simulans the fins are slaty black, like the body. In flavidus they are olivaceous, the candal being distinctly brownish yellow (hence the popular name of Yellow-tail). The peritonenm in flavidus is pure white, in melanops somewhat dusky.

Sebastichthys rhodochloris sp. nor.
Allied to S. rosaceus (Girard).
Body oblong, more elongate than in rosaceus, the back less elevated, the profile less steep. Mouth comparatively large, but rather smaller than in rosaceus, the maxillary not reaching beyond posterior border of pmpil. Jaws about equal in the closed month, the lower with a small symphyseal prominence. Preorbital narrow, with two blnutish projections. Eye very large, longer than the long snout, $3 \frac{1}{2}$ in head.
Spinons ridges on top of head very high, slender, and sharp, more elerated than in rosaceus, chlorostietus, and constellatus, and sharper. Nasal, preocular, supraoeular, postocular, tympanie, and oecipital spines present, as in most of the red species. Supraocular ridge long and prominent. Postocular and tympanic spines close behind it, sharp and large. Intcrorbital space very narrow, its width even posteriorly less than length of supraocular spine (in rosaeeus considerably more). Interorbital.space with two longitudinal ridges, sharp and conspicnous, not covered by the scales, the very narrow interspace between them strongly coneave, the spinons ridges strongly divergent behind.

Preopercular spines sharp, directed backward, the three upper long and pointed, more developed than in rosaceus, less radiating than in chlorostietus. Two sharp suprascapnlar spines. Opercular spines short and sharp.
Gill-rakers about as in rosaeeus and chlorostietus, moderately long and slender, much shorter than in cealis or pinniger, but longer than in nebulosus and ruber, the longest gill-raker about one-fourth the diameter of the eve.
Dorsal fin still lower than in rosaceus, the membranes little emarginate, the longest spine about $2 \frac{2}{3}$ in head (in rosaceus 21 2 . Emargination of dorsal moderate. Soft rays low, the highest about equal to the highest spine. Caudal fin slightly emarginate.

Second anal spine proportionately longer than in any other of our species, very strong, curved, its length about equal to that of the maxillary or the base of the soft dorsal, or about half the length of the head. It is higher than the soft rays of the anal. Pectoral fins reaching past tips of the ventrals nearly to the anal.
D. XIII, 14; A. III, 6.

Scales moderate, in 58 transverse series, the small accessory scales very numerons.

Gromud-color bright clear rose-red, without any trace of purplish. Region above the lateral line with much deep gieen, in the form of reticulating straks. Below the lateral line the green gives place to bright golden yellow, which is similarly mixed with the red. Top of head with cross-bands of green and red, green streaks radiating from the eye, one to snont, one along maxillary, three across clecks and opereles, and one across temporal region.

Four bright pale pink spots on the sides of the back, arranged as in rostecus, constellatus, and chlorostictus; the color brighter than in these species, and entirely devoid of the purplish ring which is found in rostens; one spot is under the fourth dorsal spine, one near the lateral line maler eighth dorsal spine, one under junction of spinous and soft rays, and me mon!er the last soft ray. The first and thind of these spots are each surrounded by a distinct ring of green. Another pink suot on the tip of the opercle. A distinct pale area behind eye. Dorsal with the rays red and the membranes olive-green. Caudal and anal with the rays red and the membranes golden. Pectorals red, dashed with olive. Tentrals red. Under parts of head and the inside of the month pale red, minspotted.

In S. rosuceus the red on head above, and around the pink spots on the sides, is distinctly purple-red. The yellow or olive on the back and sides blends with the red instead of forming distinet reticulations, and there is little if any green on the back or fins. The lateral line is clear red, usually not crossed by the olive marks.

Sebastichthys rhodochloris oceu's in abundance in the deep waters of the Bay of Monterey. It is a small fish, like S. rosaceus, and rarely reaches a weight of more than a pound. It is known to the fishermen of Monterey by the name of "Fly-fish," S. rosaceus being called "Corsair."

One fisherman who procured a number of them for us, on being told that his "Fly-fish" was very much like the "Corsair", smmmed up, the relationships of the two as follows: "You bet it is like it, but it is a different kind of fish."

The following species of "rock-fish" were obtained by us in Monte. rey Bay. The names used by the fishermen of Monterey are appended. Most of these are evidently names in nse for other species at the Azores, transferred to species of Californian waters:
S. pancispinis Meron, Tom-cod, Jack-fish.
S. flavidus Yellow-tail.
S. simulams
S. melanops Pesce Pretre (Priest-fish, from its color).
S. entomelas Buda.
S. ovalis . Vinva (Widow).
S. atrovirens

Garrupa (Vera).
S. pinniger Fliaum.
S. miniatus

Rasher.
S. auriculatns
S. proriger
S. elongatus Reña.
S. vexillaris Yellow Garrupa.
S. chlorostictus................ Pesce Vermiglia.
S. rhodochloris. Fly-fish.
S. rosaceus Corsair.
S. constellatus Bagre.
S. ruber Tambor.
S. rubrivinctus

Spanish Flag.
S. rostrelliger Garripa.
S. maliger
S. carmatus

Red Garrupa.
S. nebulosus
S. fasciolaris

Spotted Garrupa.
S. serriceps

Tree-fish.
Table of measurements.

	Entomelas (Monterey).	Ovalis (Monterey).	Melanops (Sta. Barbara).	Flavidus (Mionterey).	Rhodochloris (Monterey).	Rosaceus (Monterey).
Extreme length, inches.	12	13	12. 25	14. 90	9. 10	8. 85
Length to base caudal, inches $=100$.	10	11	10.10	12.05	7.90	7. 55
Body: Grentest heicht	29.5	35	36	33.8	34	36
Least height..			11	11.5		
Head:						
Length	30.5	32	31.6	36.5	39.5	35
Diameter of eye.	7.8	8	7.3	8.5	12	10
Maxillary	12.5	11.5	13	16	18.5	19.5
Width interorbital area.	8.7	8	9.5	9.3	5	${ }^{6}$
Longest gill-rakers	5	5	3.8	-	3	3.5
Supraocular spine ...						5
Occipital spine..........					7.5	7
Dorsal: ${ }^{\text {a }}$,						
Height highest spine	12	13	${ }_{15}^{11.3}$	13. 7	15	16
Highest soft ray...	12. 5	12	15	17	15	15.5
Height 12th spine.....	4	8				
Height membrane 12th spine	3.5	5.5				
Anal:						
Second spine	9.5	12.5	8	9.5	19	17
Third spine...	9	11.5	10	10.7	13.5	15
Longest ray.............	14	14.5	17.5	20	17	19
Candal: Midde rays						
Middle rays	14	14.5	17	19.3		
External rays	21	19	23	29.5		
Pectoral: Width base.	8	9	29	27	9	9.5
Length	27	31	29	27	27	27.5
Ventral, length...............	18	20	20.5	22.5	21.5	20

Santa Cruz, Cal., April 15, 1880.

HIECG6, CAIITCIINHA.

By IEOSA SMHTII.

Three specimens of a small scaly Blemy found in those rocky tidepools which are heavily lined with alge, on March 6, 1880.

This Blenny is evidently of rave ocenrrence, this one point being at present its only known habitat on the Pacific coast of the United States, and these three specimens the only ones I conld promere. It is accompanied by Oligocottus analis, which in this vicinity is abmodant in all rock-pools, by Gibbonsia eleyans of a dull color, and by Hyplenrochilus gentilis.

These specimens were provisionally identified as belonging to Cremnobates monophthalmus (Giinther) Steindachner (Anehenopterus monophthalmus Giinther, Cat. Fishes Brit. Mus., iii, 275), a species hitherto known from three examples from the Pacific coast of Central America. My specimens differ from Giinther's description in the following partieulars: The dorsal fin is continuous, the membrane of the third spine joining the fourth near its summit in two examples, at its first thirsl in the other. The lead is proportionally shorter, forming two-ninths of the total length instead of one-fourth, and the body is less elongate, its depth forming one-fifth the total length instead of one-sixth. The characters of the San Diegan form of this genus agree more closely with Steindachner's description of Cremnobates affnis (Ichthyologische Beitrïge, v, 178), a species considered by its describer as doubtfully distinct from C. monophthalmus. C. affinis is known from one individual taken on the West Indian island of St. Thomas, the proportions and coloration of which accord with my specimens, but this species also has the membrane from the third dorsal spine joining the fourth at its base ("die Membrane des dritten letzten Strahles setzt sich an die Basis des folgenden ersten Stachels des zweiten Dorsales an").

If the specimens from San Diego prove to be of a distinct species, which seems probable, they will be separated from those already known by the single merely enarginate dorsal fin, instead of two separate fins. In any event, the genus Cremnobates fmmishes an interesting addition to the fanna of onr Pacific coast.

Cremnobates integripinnis sp. nov.
Descriptioni-The body is oblong, compressed. The head is lass than the fourth of the total length, which measures two inches and an eighth. Gape of month oblique, the maxillaries reaching a vertieal line intersecting posterior rim of orbit. Hear conical, thickish, with the orbits placed far forward, small fringed tentacles on their smperior margins, a tentacle on posterior margin of anterior nostril, and palmate tentacles on occiput. A cusp or spine on operele.

Dorsal continuous, composed wholly of spines of nearly equal height
thronghout, the first and second spines a little higher than the third, which is rather higher than the fourth, the third and fourth somewhat separated, but connected by membrane nearly as high as that connecting fourth and fifth, the other spines gradually increasing in height backward. The three anterior spines less stiff than the others.

The two anal spines are connected by a membraue to the soft part of that fin, the anterior insertion of which is about midway between tip of suout and base of caudal. The caudal is posteriorly rounded, its interradial membrane being emarginate; the membrane of the last dorsal spine joins the base of the first ray of the caudal, while the latter is free from anal, the free tips of which extend beyond base of caudal.

Pectorals fan-like, their extremities reaching a vertical line intersecting vent. Branchiostegal membranes continuous under throat. Body covered with conspicuous cycloid scales, which are smaller on the belly. No scales on head or fins.

Lateral line of thirty-eight seales, begiming on the scapular region, running anteriorly very high, abruptly curving around pectorals, and pursuing a straight course on the median line of the side to the tail.

Teeth rather stroug, conical, in a narrow band; a single series of rather strong teeth on vomer.

Color varies in three individuals: one is a dark brownish gray; auother, of equal size ($2 \frac{1}{8}$ inches long), is lighter; while a third, of $1 \frac{1}{2}$ inches in length, is lavender in color. The markings are similar on all my specimens, each being maculated and obscurely barred with a darker shade of its own color; the dorsal region is always darkest, and each individual has an ocellated spot, black, with narrow pale edging on posterior portion of dorsal fin. Dorsal and anal fins each with narrow pale edging. Pectoral fins reddish violet at base, with a black crescent around it, the rest of the fin pale, with dark cross-bars. Ventrals barred. Candal with a dark bar at base, the rest of the fin translucent, with narrow dark bars formed of spots.

Table of measurements.
Length:
Total, in iuches ... 2.05
To base of candal, in inches.. $100=1.70$
Body, greatest depth
Head:
Length
Diameter of cye 7.5
Length of maxillary 11
Dorsal fin:
Total length 80
Distance from snout 21
Length of anterior part 9
Height of first spine 6
Height of second spine 7
Height of third spine. 4
Height of fourth spine 3
Height of highest spine 7.5
Height of membrane connecting third and fourth spines 1.8
Anal fin, distance from suout 4.7
Caudal, length 18
Pectoral, length 24
Ventral, leugth 17
Fin rays:
Dorsal XXXII
Anal II, 20
Scales in lateral line. 38The specimens lave been presented to the United States NationalMuseum.
San Diego, Cal., April 10, 1880.

ON SOME NEW SPECIES OF EOCENE MOLIUSCA FROM THE SOUTEIEIEN UNTTEID STATES.

By ANGELO HEHLPRIN.

A part of the species herein described have been for several past years among the collections of the United States National Musenm. Those which are mentioned as coming from Texas were collected by Mr. G. W. Marnoch, who sent them some years ago to Dr. C. A. White, and were by the latter gentleman presented to the National Mnseum. The number following the description of each species is that by which it is recorded in the museum register.

PLEUROTOMA, Lam.
Pleurotoma pagoda, n. sp.
Plate, fig. 1.

Ventricose; whorls about nine, the body-whorl nodulated on its most convex portion (nearly central), the nodulation consisting of a single series of sharp, obtnsely-pointed, and flattened spines or nodes, which frequently appear double by the crossing of an impressed line over their basal portion; upper volutions with a similar series of nodes almost immediately above the sutural line, and gradually dwindling off into a crenulation; upper surface of the whorls concave, faintly striated, the sinual ruge indicating but a faint sinus; lower surface with numerous welldeveloped revolving lines, which show a tendency to alternate. Aperture exceeding the spire in length, considerably contracted at about its center.

Length, $1 \frac{1}{2}$ inch. (No. 1505.)
Eocene of Alabama.
This species in its general appearance greatly resembles certain forms of Fusus, and a comparison of more mmerous specimens may show it to belong to that genus, although the ornamentation of the whorls, as well as the simual indication, more clearly point to Plewrotoma. The
only two specimens in the collection have the outer lip fractured, and I am therefore unable to pronounce conclusively upon the presence of a triue notch.

$$
\begin{aligned}
& \text { Pleurotoma venusta, n. sp. } \\
& \text { Plate, fig. \%. }
\end{aligned}
$$

Slender, aemminate; whorls about nine, courex, ornamented by numerous fine revolving lines, which on the body-whorl are disposed in pairs; one deeply impressed line margins the majority of the volutions immediately below the suture; sinuated lines of growth not prominent; spire and aperture of about equal length.
Length, $1 \frac{1}{4}$ inch. (No. 1509.)
Jackson, Miss.
Pleurotoma platysoma, u. sp.

$$
\text { Plate, fig. } 3 .
$$

Whorls? in number, flattened, each volution following the other almost in direct continuation without any prominent sutural division, and ornamented with numerous revolving lines, which on the caudal portion of the body-whorl tend to alternate, a fine line interposing itself between the more prominent ones; aperture probably a little more thau one-third the length of the entire shell; notch deep, sigmoidal.

Length, 2 iuches? (No. 8916.)
Atascosa County, Texas.

EUCHEILODON, Gabb.

Eucheilodon creno-carinata, n. sp.

$$
\text { Plate, fig. } 4 .
$$

Whorls subscalariform, flattened above, the angulation formed by a doubly crenulated carina; volutions ornamented by numerous revolving, profoundly elevated strie, which are decnssated by the much finersinuated lines of growth; the upper or flattened portion with a prominent beaded line bordering the suture, and two (a finer and a coarser line) intermediate ones between the same and the carina; onter lip grooved within, and probably sharply crenulated by the terminations of the revolving stria; columella with abont eleven beads, which decrease in size from above downwards. Aperture nearly equal in length to the spire?

Length of fragment, 1 inch. (No. 8921.)
Jackson, Miss.
SCALARIA, Lam.
Scalaria unilineata, n. sp.
Plate, fig. 5.
Whorls about nine in number, convex, with numerous very faint, almost invisible, revolving lines, and much more prominent transverse

ones (about 24 on the body-whorl); two very distinct revolving lines on the last volution, the upper one placed at about the middle, the lower one subcarinating it (only the upper of these two lines is seen on the remaining whorls, appearing there as a central line); base striated by revolving lines, and radially by the continuations of the transverso lines; apperture elliptical, somewhat produced distally.

Length, $\frac{3}{4}$ inch. (No. 8920.)
Jackson, Miss.
FUSUS, Lam.
Subgenus Strepsidura, Swainson.

Fusus marnociil, n. sp.

Plate, fig. 6.
Volutions seven or eight, the earlier three or four convex, the remainder flattened; body-whorl subangulate; suture impressed; aperture less than one-half the length of shell, the eanal sharply twisted; columella with a pseudo-fold following the curve of the canal. The whorls in the single specimen before me are destitute of ornamentation, but some traces of the former existence of revolving lines are apparent.

Length, $\frac{4}{5}$ inch. (No. 8917.)
Atascosa County, Texas.
Named after Mr. G. W. Marnoch, throngh whom this and other species of older Tertiary Texas fossils have been obtained.

TEREBRA, Lam.

Terebra plicifera, 11. sp.
 Plate, fig. 8.

Turreted; whorls? in number, flattened, rapidly decreasing in size from the hase upwards, and ormamented by mmerons broad and promineutly defined plice, having a sigmoidal flexme; an impressed line on the upper portion of each volution produces a sulbsutural ring or band, over which the plice and orresponding sulei are continned, and which occasionally tends to become double from the presence of a second impressed line. Body-whorl with two elerated revolving lines on its basal angulation; base raliately and longitudinally striated; aperture? (broken in all specimens).

Length? (No. 8919.)
Atascosa County, Texas.

CRASSATELLA, Lam.

Crassatella Declivis, n. sp.
Plate, fig. 9.
Very inequilateral, somewhat inflated anteriorly, the posterior dorsal margin descending very obliquely to the extremity, which is subermei-

152

form; anterior margin descending rather abruptly, obtusely rounded; basal margin somewhat sinuons posteriorly. Surface deeply suleated for the greater portion, the sulei mainly disappearing on the umbonial slope, where they give place to finely crowded strix; apex acute; muscular impressions impressed; margin minutely crenulated.

Length, 13 inches. (No. 2490.)
Aquia Creek, Virginia.
April 20̆, 1880.

DESCRIPTEON OE A NEW AGONOED FISHE (IBABATYOPSIS KYOSTERNUS), FIEOM DHONTEEEY IBAY, CALIEOIRNLA.

Brachyopsis xyosternus sp. nov.

Form of head and body as in Braciyopsis verrucosus Lockington. Body elongate, depressed, broadest at the shoulders, thence tapering rapidly to the snout, and gradually and evenly to the tail. Snont broad, obtuse, depressed, its sides parallel. Month terminal, very oblique, the lower jaw much the longer, its tip projecting upward above the upper profile of the snout. Mandible very broad, its greatest depth one-third its length, maxillary reaching to half way between front of orbit and pupil. A long barbel three-fourths the diameter of the orbit at its end. Premaxillaries anteriorly above the level of the pupil. Jaws with bands of villiform teeth. Vomer and palatines with slight asperities. Nasal spines present. No spines on top of cranium. Interorbital space broad, concare, from the elevation of the smpraocular ridges. Preorbital with two spines. A sharp spine on the suborbital at lower posterior margin of eyc. Preopercle with four processes, the upper one a sharp spine. Opercle striate, without spine. Top of head and the upper parts of the body without the small prickles which are found in B. verricosus. Occipital pit obsolete.

No isthmus, the gill membrane mited across the breast. No slit be hind the last gill.

Body with the nsual eight series of long keeled plates. Each keel terminating in a strong spine hooked backward, strix radiating in every direction from the spine.

Dorsal series of plates 32,6 before the spinous dorsal, 6 along its base, 4 between the two dorsals, 5 along the base of the soft dorsal, and 11 behind it. The two dorsal series uniting immediately behind the soft dorsal, the resultant single series round, with radiating striæ, the keeand spine obsolete. The two abdominal series similarly unite close behind the anal fin.

The plates in the upper lateral series diminish in size forward, becoming very small anteriorly. The lower lateral series becomes broader forwards as the other series decreases. It terminates abruptly opposite
the origin of the serond dorsal. In the lower lateral series are 29 plates, in the abdominal series 30,10 before the anal, \mathcal{S} along its base, and 11 behind it.

Brast without distinct plates, but entircly covered with minute tubercles) each of which has a central spine. A series of five plates in fiout of the base of the peetorals, four of them armed with hooked spines.

Fin rass: D. VI-6; A. 8; V. I, 2.
Lowest rays of pectorals not so short as in B. verrucosus, the lowermost two-thirds the length of the longest (in B. verrucosus two-seventh.s). Pectorals barely reaching front of anal.

Ventrals much shorter than in B. verrucosus, the tips reaching slightly more than half the distance to the anal fin (beyond front of anal in B. verrucosus). Inuer ray of ventrals very little longer than the outer, the connecting membraue narrow (very broad in cerrucosus). Vent but little behind ventrals.

Coloration.-Upper parts dusky; mandible, cheek, and suboperele silvery. Belly pale, with reddish tint. Lower half of pectoral reddish at base, the rest of the fin thickly dusted with black points. Ventrals reddish. Dorsal membrane immaculate, the rays punctulate with black. Caudal blackish. Anal rendish anteriorly, dusky behind.

This species is related to Brachyopsis verrucosus, lately deseribed by Mr. Lockington, differing, however, in several important respects, especially (a) in the presence of small prickles on the breast instead of the large wart-like plates characteristic of verrucosus, (b) in the short ventral fins, (c) the absence of small prickles on the plates of the body, (d, the smaller mumber of plates, (c) the shorter vertical fins, (f) the long maxillary barbel, and (g) the deep mandille.

Brachyopsis verrucosus is comparatively common in the open water between Point Reyes and the Farallones, and is frequently brought in in the trawl-nets. Brachyopsis xyosternus is thus far known only from a specimen found on the beach at Santa Cruz by Dr. C. L. Anderson, and presented by him to the Uuited States National Minseum.

The genus to which these two species belong is well separated from Agomes by the absence of an isthmus, as well as by the entirely different form of the mouth and anterior portion of the head. Whether they are congeneric with the type of Brachyopsis Gill (Agomes rostratus Tilesius, from Kamtschatka) is yet to be proven.

Table of measurements.

	Xyosternus, Santa Cruz.	Verrucosus, Punta Reyes.
Extreme length, in inches	5. 20	6.45
Length to base of caudal $=100$	4.40	5. 55
Body, greatest depth.	11 (ca)	12
Head:		
1)istance from snout to nap	${ }_{17}^{22} 5$	24.5
Greatest width.............	17.5	10.5
Interorbital width		5
Length of snout.	4.2	6

Table of measurements-Continned.

	Terrucosus, Punta liejes.
Head:	
Length of maxillary	7.5
Leneth of mandible	12
Depth of mandible	\cdots
1)iameter of orbit	6
Length of maxillary barbel	1
Dorsal (spinous) :	
Distance trom snout	25.5
Greatest height	
Length of base $\left\{\begin{array}{l}\text { to ent of membran } \\ \text { to last spine }\end{array}\right.$	$\begin{aligned} & 11 \\ & 19 \end{aligned}$
Dorsal (soft) :	
Length of base $\left\{\begin{array}{l}\text { to end of membrane. } \\ \text { to last ray }\end{array}\right.$	13.5
Height of longest ray	
Anal:	52
隹 5 to end of membrane	52
Leugth of base $\{$ to last ray	24
Ileight of longest ray	10
Caudal, lengt l	16.5
Pectoral, length	24.5
Ventral:	
Distance from snout	
Length	29.5
Dorsal mass.	IX-7
Anal rays	11
P'etoral rays.	14
Ventral rays	I, ${ }^{2}$
Nualer of tubes in lateral line.	37
Number of plates in dorsal series	35
Number of plates in lower lateral series	35

Santa Cruz, Cal., April 20, 1880.

DESCEREPTAON OE A NEW THOENBER (HEEPEOAKOSSOIDES EXYLIS), WROPI THE COASTO CHEIECRNEA.

Hy DAVID S. JOREDAN amd CHAREES MI. GHEBEERT.

Hippoglossoides exilis sp. nov.
Eyes and color on the right side. Body elongate, comparatively slender, 1 ather closely compressed; the dorsal outline more curved than the ventral, and neither strongly arched; the body tapering backwards into a slender candal peduncle, which is considerably longer than deep. Greatest depth about one-third the length to base of candle.

Head moderate, not obtuse, the ontine of the snout contimuous with the deseending profile of the back. Month not large, very oblique, the upper jaw with its margin on each side concave, the lower jaw correspondingly convex. Lower jaw slightly protruding, with a distinct symphyseal knob. Maxillary rather narrow, its posterior end obliquely truncate, not extending quite to opposite the middle of the pupil. Premaxillary anteriorly on the level of the interorbital space.

Teeth all conical, the upper jaw with t wo distinct series; outer series of teeth smaller than in the other species of Hippoglossoides, not large anteriorly, and becoming quite small posteriolly. Teeth of the inner series quite small, closely and evenly set. Lower jaw with a single
series of elose-set teeth, much smaller than in the onter series of the upper jaw.

Byes large, the lower somewhat in advance of the upper, their diameter two-serenths of the length of the head. The upper eye with some rertieal range, but not encroathing on the dorsal line.

Interorbital space a very narrow sharp ridge, with three rows of small seales, a slight ridge comnecting it with the lateral line. A series of mucous pores around lower eye behind. About S seales in a series obliquely across the cheeks.

Gill-rakers rather slender, shorter than in the other species of this genus, but similar in form, compressed, toothed on the inner edge, somewhat eurved forwards. About 10 of them below the augle of the arch, the longest not one-third the diameter of the eye.

Scales comparatively large, very much larger than in the other species of Hippoglossoides, thin, almost membranaceous, and somewhat readily decidnons, their edges conspicuonsly ctenoid, but much less rough than in $I I$. jordani. In the latter species the seales are of much firmer texture, and their cilia are spine-like and stiff. The character of the seales is similar to that of Atheresthes stomias, which this species also simmlates in form and color. Scales on the head entirely similar to those on the loody, but somewhat smaller. Those on left side also similar, but less strongly ctenoid. They are, however, considerably rougher than on the blind side in related species.

Lateral line very mominent, its tubes coarse. It is straight behind, slightly and regularly lising anteriorly, without trace of arch or conresity.
liays of both dorsal and anal fins extensively sealy on both sides. Scales extending high up on all the fins. Scales 16-71-18 (4シー-125-43 in Hippoglossoides jordani).

Fins low, rather fragile, the rays set well apart.
Dorsal tin begiming immediately in front of the pupil, its anterior rays very low, the highest rays much behind the middle of the fin, the in height much less than the length of the eandal peduncle, and but little more than the diameter of the ere.

Anal fin similar to the dorsal, but rather higher, preceded by a spine which is shorter than in H. jordani.

Candal fin long, somewhat pointed, the middle rays musually produced.

Pectoral fins small, little more than half the length of the head, that of the left side less than a third. Ventral fins both lateral, small, not reaching to the anal spine.

Fin rays: D. 78 ; A. $6 \geq$; V. 6.
Color pale olivaceons brown, rendered darker by black punctulations, which form an edging around each scale, sometimes with a few rery faint bronze spots. Fins somewhat dusky, especially the candal and
pectoral; dorsal and anal edged with yellowish anteriorly ; ventrals with considerable light yellow.

This species is known to us from upwards of a hundred specimens taken in sweep-nets between the Golden Gate and Point Reyes.

All the specimens are small, ranging from 8 to 12 inches in length. Its abundance, in the San Francisco market at least, seems to be confined to the month of April.

Its relations are not intimate with the two species of this genus previously known-H. plutessoides of the North Atlantic and M.jordani of the North Pacific. From both it differs in the elongate form, much larger scales, fewer fin rays, smaller teeth, \&c. With H. jordeni, which inhabits the same waters, it agrees in scarcely any respect, excepting in the characters of the genus Hippoglossoides, i. e., the large month, conical teeth, ctenoid scales, simple, straight, lateral line, convex caudal, dextral eyes, \&c.

Table of measurements.

	Exilis.	Jordani.
Extreme length, in inches	10.25	9.08
Length to base of caudal, in inches $=100 .$.	8.40	7. 70
Body:		
Greatest height.	33	41
Least height..............	8.2	9.8
Length of caudal peduncle.	12. 5	8
Head:		
Greatest length	25.5	28.5 1.50
Width of interorbital area	. 50	1. 50
Length of snout.	3.7	3.8
Length of orbit.	9.3	
Length of maxillary	9	11
Length of mandible	11.5	14
Length of longest gill-raker.	2	3
Dorsal: Distance from snout		
Distance from snout Greatest height		${ }_{11.5}^{9}$
Anal:		
Distance from snout	35	
Height at longest ray	9. $\overline{0}$	10.5
Candal:		
Length of middle rays.	20.5	${ }_{17}^{17.5}$
Length of outer rays..	17	
Pectoral:		
Right side, length. Left side, length ..	14 8	15.5
Ventral, right side, length	7.5	8
Dorsal rays	78	94
Anal rays..	62	73
Seales in lateral line	71	125
Scales in transverse row above lateral line	16	42
Scales in transverse row below lateral line	18	43

San Francisico, Cal., April 21, 1880.

OIRADO, ANEETAKH.

Hy C. A. WHITE.

The fossils described in the following paragraphs are among the collections of the National Musemm. All except one speeies liwe been selected for description from among the collections that were made under the auspices of the surveys formerly in charge, respectively, of Professor Powell, Dr. Mayden, and Captain Wheeler. Two of them, Callianassa ulvichi and S'pirorbis dichlunti, are embraced in a small Ccllection of Cretaceous fossils sent to the National Musemm from near Li ${ }^{\text {- }}$ tle Rock, Ark., by Mr. E. O. Ulrich, of Cincimati, Ohio.

MOLLUSCA.

 CONCHIFERA.
Genus PTERIA Scopoli.

Subgenus OXYTOMA Meek.

Pteria (Onftoma) EREcta (sp. nov.).

Avicula linguiformis White, 1876 (not Shmard), Powell's Rep. Geol. Uinta Mts., p. 95.
Shell rather small, appearing to be nearly erect, but the axis is slightly oblique 10 the hinge-line; both valves convex, but the right one less convex than the left; hinge-line long, much longer than the axial length of the shell; posterior wing large, its extremity acutely angnlar and moderately lrominent; anterior wing comparatively large, prominent, obtusely pointed, defined from the body of the shell by a simms or furrow in both valves, the direction of which forms a slightly obtuse or nearly right angle with the hinge-line; front, exclusive of the anterior wing, nearly perpendicular the margin forming a nearly regular curve from the front all the way aromed to the posterior side, where it is flexed with a backward curve to meet the extremity of the hinge-line; mombones somewhat prominent, especially that of the left valve. Surface having a nearly smooth appearance, but the lens reveals the presence of somewhat regularly disposed concentric limes.

Length of hinge-line, 32 millimeters; axial length of the shell, 26 millimeters. (Museum No. S771.)

This shell was formerly referred by me (loc. cit.) to the Avicula lingui. formis of Shmmard, but it differs from that spenies by having larger wings, a much longer hinge-line, and a much less obligue axis. It may be compared with P. (O.) salinensis White, Proc. U. S. Nat. Mus., rol. ji, p. 296, pl. 5 , figs. 1 and 2 ; but it differs in being less robust, having
proportionally larger wings, narrower body, and a more nearly erect axis.
Position and locality.-Lower Potato Valley, Sonthern Utah, where it was obtained by Prof. J. W. Powell from Cretaceons strata.

Genus SOLEMYA Lamarck.

Solemya bilix (sp. nov.).

Shell about two and a half times as long as high, broader anteriorly than posteriorly; both ends romded, the posterior one more narrowly so than the other; both dorsal and basal margins gently convex or nearly straight; test thin and fiagile; valves moderately convex from above downward, the greatest convexity in that direction being near the dorsum; beaks, laving the usual ineonspicnons charaeter common to the gems, situated near the posterior end; ligament necessarily short, but apparently well developed, and resting upon a fulcrum of support of the usial character in each valve. Surface bright and, besides the usual lines of growth, marked by munerons faint radiating lines, which are visible to the massisted eye, but are satisfactorily seen only under a lens, nearly uniformly distributed over the whole surface, but upon the middle portion they are arranged in pairs.
Length, 20 millimeters; height at the broadest part, which is in front of the middie, 8 millimetres. (Musem No. 8913.)

This is plainly a characteristic species of Solemya, but the only fossil species with which it need be compared is S. subplicata Meek \& Hayden, from the Fox Hills Cretaceons of the Upper Missouri. It differs from that species in being proportionally broader in front, in the charaeter and uniformity of distribution of its radiating strie, and in wanting the subplicate character of the front portion. The extension of the epidermis has not been observed, but in other respects this species may le compared with the living S. colum Say in general form, and in the pairing of its radiating lines.

Position and locality.-Cretaceous strata, associated with Mactra holmesii (= Cyrent? holmesii Meek), abont four miles north of Golden, Colo, where it was obtained by Mr. W. H. Holmes. These strata were formerly supposed to belong to the Lignite series (Laramie), but they are marine Cretaceons, as I have shown in An. Rep. U. S. Geol. Sur. Terr. for 1877, pp. 193-196.

Genus LUCINA Bruguière.

Lucina profunda (sp. nov.).

Shell subcircular or subpentahedral; valves not very convex; posterior side trumate, narrower than the anterior; basal border having its margin more abruptly convex at its middle than towards the front and rear; dorsal margin short, nearly straight; front margin having a nearly
regular curve; beaks small, submedially located, distinct but incouspicnous: umbonal ridge slightly developed, curved, passing near the dorsal and posterior borders. Surface marked by the nsual concentric lines of growth.

Length, 20) millimeters; height, from base to beaks, 18 millimeters. (Museura No. 8362.)

This speries is readily recognizable by its comparatively narrow posterior side, its deeply convex basal border, and slight convexity of the ralves.

Position and locality.-Cretaceous strata, Monument Creck, Colorado, where it was obtained by Dr. A. C. Peale.

GASTEROPODA.

Genus PLANORBIS Guettard.

Planorbis equalis (sp. nor.).

Shell rather small, coiled nearly in a plane, apparently sinistral; whorls apparently 4 or 5 , in close contact but only slightly involute, broadly couvex upon the periphery, but their sides more narrowly conrex, their transverse diameter greater than that which corresponds with the plane of the coil.

Surface marked by a considerable number of revolving raised lines or slight angulations, which are crossed by the usual lines of growth.

Diameter of the full coil of the largest example discovered, 6 millimeters. (Museum No. S909.)

This is apparently the only species of typical biumbilicate Planorbis that has yet been diseorered among the fossil fresh-water fame of the Western region, and it therefore needs no detailed eomparison.

Position and locality.-Green River Gromp, Eocene, Henry's Fork of Green River, Southern W yoming.

Subgenus GYRAULUS Agassiz.

Playorbis (Gyraulus) militaris (sp. nov.).

Shell very small, dextral, depressed convex aboye, umbilicate belor; volutions two and a half to three and a half, convex on all sides except the imer, which is very narrowly flattened against each preceding coil; suture decply impressed both above and below; surface marked by comparatively coarse lines of growth.

Diameter of the full coil of the larger examples in the collection, a millimeters. (Musemm No. 8594.)

This form was noticed but not named by me in vol. iv, U. S. Expl. $\mathbb{\&}$ Sur. West of the 100th Merid., p. 210 . At that time I was not satisfied as to the mature condition of these shells, but by careful examina-
tion of a larger number of examples there seems to be no reason for donbt upon that point.

The subgenus Gyraulus has not heretofore been published as occurring among our large fossil pulmonate molluscan faume of the West, but at least two other species probably exist there, one in the Bear River (Laramie) strata, and the other in those of the Green River Group.

Position and locality.-Head of Soldiers' Fork, Utah, where they were obtained by one of the parties of the survey in charge of Lientenaut Wheeler. The true age of the strata is not at present definitely known, but it is understood to be either that of the upper portion of the Laramie or the lower portion of the Wahsatch Group.

Genus LIMN EA Lamarck.

Subgenus LEPTOLIMNEA Swainson.

Liminea (Leptolimnea) minuscula (sp. nov.).

Shell rather small, moderately attenuate; spire much longer than the aperture; volutions six or seren, moderately convex, the distal border very narrowly appressed against each preceding coil; aperture small, elongate, subovate; colnmellar fold distinct, but not large. Surface marked by distinct lines of growth, but no revolving lines have been detected.

The only two examples of this species that have been diseovered are broken, but the full length of the larger one is estimated at 9 millimeters; diameter of last volution, 3 millimeters; length of aperture, $3 \frac{1}{2}$ millimeters. (Museum No. 8907.)

Position and locality.-From strata belonging to either the basal portion of the Green River Group or the upper portion of the Wahsatch Group, about three miles east of Table Rock Railroad station, Southern Wyoming, where it is associated with Planorbis cirratus White, and also a small Limurid that is probably referable to Acella Haldeman.

Genus HELIX Linnæus.

Subgenus PATULA Haldeman.

Helix (Patula) sepulta (sp. nov.).

Shell convex above; umbilicus moderately wide; volutions about six, convex upon all sides except the inner; suture impressed; surface regularly but minutely ribbed, the ribs having the same direction as the lines of growth.

All the examples discovered are distorted by pressure, but the diameter of the full coil of the largest example was about 12 millimeters and its full height about 7 millimeters. (Mluseum No. S908.)

Position and locality.-The coal-bearing series of strata at Eranston, Wyo., where it is associated with II. evanstonensis White and other forms. These strata belong either to the upper part of the Laramie or the lower portion of the Walsatch Group.

ARTICULATA. VERMES.

Genus SPIROR13IS Lamarck.

SPIRORBIS? DICIHAUTI (Sp. nov.).
Shell discoid, one side being nearly flat and the other broadly umbilicate; volutions about five, partially embracing but all of them visible, somewhat rugose but increasing in size with considerable regularity; peripheral side of the rolutious flattened or gently convex, having a single revolving raisedrline along its middle aud another similar one at each border, where it sharpens the angularity between the laterai and peripheral sides; outer portion of both the lateral sides of the volutions concave, and the inuer portion convex, giving the last-named portion a greater transverse diameter than the outer portion, the larger part of which is embraced by the next succeeding rolution; aperture small, round, and apparently, but not really, contracted. The cavity being round, the outer portion of the test only partakes of the irregularity described, and seems to have' been deposited as an eucrustation upon the first-formed imer portion, that of adjacent rolutions seeming to blend, obscuring the suture. Besides a considerable degree of rugosity, the surface shows under the lens a peculiar granular or rather an etched appearance.

Greatest diameter of the full coil of the largest example discovered, 9 millimeters; greatest diameter of the outer volution, near the aperture, $2 \frac{1}{2}$ millimeters. (Museum No. 9073.)

In size and general aspect this species resembles S. rotulus Morton sp., from the Cretaccous of New Jersey, but althougli doubtless congeneric, it differs from that species in the character of its surface ormamentation, and in having a round instead of quadrangular aperture. This shell is referred to the shell-bearing worms and not to the mollusea on account of the peculiar character of the test. It probably does not strictly belong to the genus Spirorbis, but it is regarded as at least a closely related form.

Position and locality.-Cretaceous strata near Little Rock, Ark., where it was obtained by Mr. E. O. Ulrich, and also by Mr. H. E. Dickhant, in whose honor the specific name is given.

CRUSTACEA.

Genus CALLIANASSA Leach.

Callianassa ulricmi (sp. nov.).

Hand quadrate, flattenerl; inner face less convex than the outer; both upper and lower edges acute, the lower one more so than the upper, and finely erenulate; fixed finger slender, plain, its transwerse section sub-
triangular, gently curved, shorter than the hand; movalle finger larger and stronger than the fixed one, having a moderately strong prominent ridge upon the inner side, between the front end of which and the extremity of the finger there is sometimes a distinct tooth. Surface nearly smooth, but some examples are granulate about the middle of both sides of the hand, and several small foramina are observable along the upper margin of the movable finger.
Length of hand, 13 millimeters; breadth, 10 millimeters; thickness, 4 millimeters. (Museum No. 8910.)

Position and locality.-This species has been sent to the United States National Museum by Mr. E. O. Ulrich, in whose honor the specific name is given. He obtained it from Cretaceous strata near Little Rock, Ark. Associated with it, besides certain characteristic Cretaceous mollusea, there are several separate movable fingers which plainly belong to another decapod crustacean; but although complete in themselves, they constitute too small a portion of the animal to satisfactorily base a specitic description upon them.

A CATALOGUE OF THE BILEDS OF NORTII ATEEICA.

By REOBERT IRIDGWAY.

INTRODUCTION.

During the interval of twenty-one years which has elapsed since the publication of the last Smithsonian catalogue,* a great advance has naturally been made in our knowledge of North American ornithology; and so numerous and important are the changes which have resulted, through additions of new species, rectifications of synonymy, etc., that a new list seems desirable to take the place of the old one.

The total apparent number of species given in the old catalogue has been increased ouly from 738 to 764 , a slight numerical discrepancy which it is necessary to explain. From the catalogue of 1859 there have been eliminated no less than 62 names, which are either not entitled to a place in the North American fauna or which have been degraded to varietal or sub-specific rank, the number of the species in the latter case being here simply duplicated as many times as there are varieties of a species. To offset this large reduction, 59 valid new species have been described since 1859 , and 77 added, or restored, to the fama, the accessions thus numbering 127 species, or 65 more than the eliminatious. The forms cousidered to be of merely subspecific rank number 160, which, added to the 764 valid species recognized, gives a total of 924 definable forms composing the North American avian fauna, as now understood. \dagger

It is found impracticable to here distinguish, in all cases, between

[^9]species which are truly or peenliarly North American and those which are more properly visitants from other countries; but in the case of those whose oceurrence appears to be accidental or occasioual, the number preceding the name is inclosed in brackets. Of the latter class, species which there is good reason to believe did not reach our limits through natural means (i. e., those escaped from confinement) have been,' in every case, carefully excluded, as have likewise all introduced species.

It has been deemed best, in view of the recent discoveries along our southwestern border, to retain as North American all the species (less than a dozen in number) treated by Professor Baird in Volume IX, Pacific Railroad Reports ("Birds of North America"), and likewise given in the old catalogne, on account of their having been obtained just across the boundary, in Northern Mexico; their discovery within our limits being quite certainly onls a question of time and investigation. For the same reason, the remaining few of Giraud's "Sixteen New Species of Texan Birds"* are also included. Neither are we prepared to relinquish several Audubonian species which at the present time are known only from the descriptions and figures by their discoverer (e. g., Regulus cucieri, Perissoglossa [?] earbonata, Dendroca montana, and Wilsonia minuta, as well as other better-known species which are given by Audubon on his oun authority (e. g., Chrysomitris "magellanica" $=C$. notata, and Endocimus ruber).

Several species peculiar to the islands of Socorro and Guadalupe, off the coast of northwestern Mexico and Lower California, respectively, together with the few forms peculiar to the latter peninsula, are regarded as truly North American, their affinities, with perhaps only two exceptions (i. c., Comurus holochlorus and Polyborus lutosus), being strictly "Nearctic."
The greatest difficulty encountered in the compilation of this work has been in the way of distinguishing between valid "species" and those forms to be regarded as geographical races of merely subspecific rank. The greatest care has been taken in all doubtful cases of this kind, and previous conclusions (pulbished in "History of North American Birds" \dagger and elsewhere) carefully reconsidered, with the aid of all the material accessible, including many specimens not previonsly in hand. This reconsideration of the subject has, in not a few cases, resulted in a reversal of former opinion, specimens from important localities not before represented often deciding the point one way or the other. Every form whose characteristics bear ummistakably the impress of climatic or

[^10]local influences, gradually less marked toward the habitat of another form, with which it thus intergrades ; and all forms which certain?s: intergrade, no matter how widely distinct the opposite extremes may appear (e. g., Colaptes cturatus and mexicanus), together with intergrading forms whose peculiarities are not explained by any known "law" of variation, have been reduced to subspecific rank. On the other hand, where the difference between allied forms is slight, but at the same time absolutely constant, and not coincident with a difference of habitat (e.g., certain of the small Thrushes and the varions forms of Junco), specific rauk is upheld. There are some forms which future investigation, based upon adequate material, may decide to be of different rank from that accorded them here. We cheerfully acknowledge our fallibility, lut at the same time would say that we have endeavored to be as conscientious and consistent as possible, giving the rank of each form as it appears in the light of our preseut knowledge, independent of previous conclusions.
Smithsonian Institution, January 22, 1880.

CATALOGUE.

1. HYLOCICHLA MUSTELINA (Gmel.) Baird. Wood Thrush. [148.]
2. HYLOCICELLA FUSCESCENS [STEPh.] Baird. Wilson's Thrush. [151.]
3. HYLOCICHLA ALICLA BAIRD. Gray-cheeked Thrush. [154.]
4. HYLOCICHLA USTULATA (Nutt.) Baird. Russet-backed Thrush. [152.]

4a. HYLOCICHLA USTULATA SWAINSONI (Caban.) Ridgw. Olive-backed Thrush. [153.]
5. HYLOCICHLA UNALASHIK屋 (Gmel.) Ridgw. Dwarf Thrush. [150.]
5a. HYLOCICHLA UNALASHKR AUDUBONII (BAIRD) RIDGW. Rocky Mountain Hermit Thrush. [149a.]
5b. HYLOCICHLA UNALASHIz压 PALLASI (CAbAV.) Ridgw. Hermit Thrush. [149.]
[6.] TURDUS ILIACUS LinN. Red-wing Thrush.
7. MERULA MIGRATORIA (Linn.) Sw. \& Rich. American Robin. [155.]
\% a. MERULA MIGRATORIA PROPINQUA RIDGW. Western Robiu.
8. MERULA CONFINIS (BAIID) RIDGW. Saint Lucas Robin.
9. HESPEROCICHLA NATIA (GMEL.) BaIRd. Varied Robin. [156.]
10. OREOSCOPTES MONTANUS (TOWNS.) BAIRD. Sage Thrasher. [255.]
11. MIMUS POLYGLOTTUS (Linn.) Boie. Mockingbird. [253, $253 a$.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 167
12. GALEOSCOPTES CAROLINENSIS (Linn.) Caban. Catbird. [254.]
13. HARPORHYNCHUS RUFUS (Linn.) Caban. Brown Thrasher. [261,261a.]
$13 a$. HARPORHYNCHUS RUFUS LONGIROSTRIS (LAFR.) CouFs.
Mexican Brown Thrasher. [260.]
14. HARPORHYNCHUS CINEREUS Xantus. Saint Lucas Thrasher.

14a. HARPORHYNCHUS CINEREUS BENDIREI (Coues) Hensh. Bendire's Thrasher.
15. HARPORHYNCHUS CURVIROSTRIS (SW.) CABAN.

Curve-billed Thrasher. [259,259a.]
15a. HARPORHYNCHUS CURVIROSTRIS PALMERI RIDGW. Palmer's Thrasher.
16. HARPORHYNCHUS REDIVIVUS (Gamb.) CAbAN.

Californian Thrasher. [256.]
16a. HARPORHYNCEUUS REDIVIVUS LECONTEI (LAWr.) COUES.
Leconte's Thrasher. [257.]
17. HARPORHYNCHUS CRISGALIS HENRY. Red-vented Thrasher. [258.]
18. HARPORHYNCHUS GRAYSONI BAIRD. Socorro Thrasher.
19. CINCLUS MEXICANUS Swains.

American Water Ouzel. [164.]
[20.] CYANECULA SUECICA (Linn.) Breum.
Blue-throated Warbler.
[21.] SAXICOLA GENANTHE (LINN.) BECHST. Stone Chat. [157.]
22. SIALIA sialis (linn.) Halden

Bluebird. [158.]
23. SIALIA MEXICANA Swains.

Californian Bluebird. [159.]
24. SIALIA ARCTICA Swains.

Rocky Mountain Bluebird. [160.]
25. MYIADESTES TOWNSENDI (AUd.) Caban.

Townsend's Solitaire. [235.]
26. PHAINOPEPIA NITENS (Sw.) SCL.

Black-crested Flycatcher. [234.]
27. POLIOPTILA CFRULEA (Linn.) Scl.

Blue-gray Gnatcatcher. [232.]
28. POIIOPTILA PLUMBEA BARD.

Plumbaous Gnatcatcher. [283.]
29. POLIOPTILA MELANURA LAWR. Black-capped Gnatcatcher. [284.]
30. Rsgulus Calendula (Linn.) Licht.

Ruby-crowned Kinglet. [161.]
31. REGULUS OBSCURUS RidGW.

Dusky Kinglet.
32. REGULUS CUVIERI AUd.

Cuvier's Kinglet. [163.]
33. REGULUS SATRAPA LICHT.

Golden-crowned Kinglet. [162.]
$33 a$. REGULUS SATRAPA OLIVACEUS BAIRD.
Western Golden-crowned Kinglet.
[34.] PHYLLOSCOPUS BCREALIS (Blas.) DRESSER.
Kemnicott's Warbler.
35. CHAMEA FASCIATA Gamb.

Ground Tit. [274.]
36. LOPHOPHANES BICOLOR (LINN.) Bp.

Tufted Titmouse. [285.]
37. LOPHOPHANES ATROCRISTATUS CASS.

Black-crested Titmouse. [286.]
38. LOPHOPHANES INORNATUS (GAMb.) CASS.

Plain Titmouse. [287.]
39. LOPHOPHANES WOLLWEBERI BONAP.

Wollweber's Titmouse. [288.]
40. Pafus montanus, Gamb.

Mountain Chickadee. [294.]
41. PARUS ATRICAPILLUS LINN.

Black-capped Chickadee. [290.]
41a. PARUS ATRICAPILLUS SEPTENTRIONALIS (HARRIS) ALLEN.
Long-tailed Chickadee. [289, 289a.]
41b. PARUS ATRICAPILLUS OCCIDENTALIS (BAIRD) Cotes.
Oregon Chickadee. [291.]
42. PARUS CAROLINENSIS AUD.

Carolina Chickadee. [293.]
43. PARUS MERIDIONALIS ScL.

Mexican Chickadee. [292.]
[44.] PARUS CINCTUS BoDd.
Siberian Chickadee.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
45. PARUS HUDSONICUS FORST.

Erudsonian Chickadee. [296.]
46. PARUS RUPESCENS Towns.

Chestnut-backed Chickadee. [295.]
46a. PARUS RUFESCENS NEGLECTUṠ, RIDGW.
Californian Chickadee.
47. PSALTRIPARUS IMINIMUS (Towns.) Bp.

Least Tit. [298.$]$
48. PSALTRIPARUS̃ PLUMBEUS BAIRD.

Lead-colored Tit. [299.]
49. PSALTRIPARUS MELANOTIS (Hartl.) Bp.

Black-eared Tit: [297.]
50. AURIPARUS FLAVICEPS (Sundev:) Baird.

Yellow-headed Tit: [300.]
51. SITTA CAROIINENSIS GȦEL.
(9. White-bellied Nuthatcḥ. [977.]
$51 a$. SITTA CAROLINENSIS-ACULEATA (CASs.) ALLEN.
Slender-billed Nuthatch. [278.]
52. SITTA CANADENSIS Linn.

Red-bellied Nuthatch. [279.]
53. SITTA PUSILLA Lath.

Brown-headed Nuthatch. [280.]
54. SITTA PYGMEA VIG.

Pigmy Nuthatch. [281.]
55. CERTHIA FAMILIARIS RUFA (BARTR.) RIDGW.

Brown Creeper. [275.]
55a. CERTHIA FAMILIARIS MEXICANA (GLOGEI:) RidGW.
Mexican Creeper. [276.]
56. CAMPYLORHYNCHIUS BRUNNEICAPILLUS (Lafr.) Gray.

Cactus Wren. [262.]
57. CAMPYUORHYNCHUS AFFINIS XANTUS.

Saint Lucas Cactus Wren.
58. SALPINCTES OBSOLEtUS (Say) Caban.

Rock Wren. [264.]
58a. SALPINCTES OBSOLETUS GUADALUPENSIS Ridgw. Guadalupe Rock Wren.
59. CATHERPES MEXICANUS (Sw.) BAIRD.

Mexican White-throated Wren. [263.]
59a. CATHERPES MEXICANUS CONSPERSUS RIDGW.
White-throated Wren.

170 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
60. THRYOTHORUS LUDOVICIANUS (GM.) BP.

Carolina Wren. [263.]
$60 a$. THRYOTHORUS LUDOVICIANUS BERLANDIERI (COUCH) COUES.
Berlandier's Wren. [266.].
60 . THRYOTHORUS LUDOVICIANUS MIAMENSIS RIDGW.
Florida Wren.
61. THRYOMANES BEVJICKI (AUD.) BAIRD.

Bewick's Wren. [267.]
61a. THRYOMANES BEWICKI SPILURUS (VIG.) BAIRD.
Californian Bewick's Wren.
61b. THRYOMANES BEWICKI LEUCOGASTER BAIRD. Texan Bewick's Wren.
62. THRYOMANES BREVICAUDA RIDGW.

Guadalupe Wren.
63. TROGLODYTES AËDON, Vieill.

House Wren. [270, 272.]
63a. TROGLODYTES AËDON PARKMANNI (AUd.) COUES. Western House Wren. [271.]
64. TROGLODYTES INSULARIS BAIRD. Socorro Wren.
65. ANORTHURA TROGLODYTES HYEMALIS (VIELLL.) CoUES. Winter Wren. [273.]
6ja. ANORTHURA TROGLODYTES PACIFICUS (BAIRD) RIDGW. Western Winter Wren.
66. ANORTHURA ALASCENSIS (BAIRD) COUES.

Alaskan Wren.
67. TELMATODYTES PALUSTRIS (Wils.) Baird. Long-billed Marsh Wren. [268.]
67a. TELMATODYTES PALUSTRIS PALUDICOLA BAIRD Tule Wren.
68. CISTOTHORUS STELLARIS (Licht.) CABAN.

Short-billed Marsh Wren. [269.]
[69.] MOTACILLA ALBA Linn.
White Wagtail.
[70.] BUDYtes fiava (Linn.) Gray. Yellow Wagtail.
71. ANTHUS LUDOVICIANUS (GM.) Licחt. American Titlark. [165.]
[72.] ANTHUS PRATENSIS (Linn.) Bechst. European Titlark.
73. NEOCORYS SPRAGUEI (AUD.) SCL

Sprague's Titlark. [166.7
74. MNIOTILTA VARIA (Linv.) Vieill.

Black-and-white Creeper. [167a.]
74a. MNIOTILTA VARIA BOREALIS (Nutt.) Ridgw.
Small-billed Creeper. [167.]
75. PROTONOTARIA CITREA (BODD.) BAIRD.

Prothonotary Warbler. [169.]
76. HELON H^{2} SWAINSONI AUd.

Swainson's Warbler. [179.]
77. HELMITHERUS VERMIVORUS (GMEL.) Bp.

Worm-eating Warbler. [178.]
78. HELMINTHOPHAGA BACHMANI (AUd.) CABAN.

Bachman's Warbler. [182.]
79. HELMINTHOPHAGA PINUS (Linn.) Baird.

Blue-winged Yellow Warbler. [180.]
80. helminthophaga lawrencei Herrick.

Lawrence's Warbler.
81. HELMINTHOPHAGA CHRYSOPTERA (LINN.) BAIRD.

Golden-winged Warbler. [181.]
82. HELMINTHOPHAGA LEUCOBRONCHIALIS Brewster. White-throatea Warbler.
83. HELMINTHOPHAGA LUCI挋 Cooper.

Lucy's Warbler.
84. HELMINTHOPHAGA VIRGINIA BAIRD.

Virginia's Warbler. [183a.]
85. HELMINTHOPHAGA RUFICAPILLA (WILS.) BAIRD. Nashville Warbler. [183.]
86. HELMINTHOPHAGA CELATA (SAy) Baird.

Orange-crowned Warbler. [184.]
86a. HELMINTHOPHAGA CELATA LUTESCENS RIDGW.
Luteous Warbler.
87. HELMINTHOPHAGA PEREGRINA (WiLs.) BAIRD

Tennessee Warbler. [185.]
88. PARULA AMERICANA (LinN.) Bp.

Blue Yellow-backed Warbler. [168.]
80. PARULA PITIAYUMI INSULARIS (Lawr.) Ridgw.

Socorro Warbler.
89a. PARULA PITIAYUMI NIGRILORA COUES.
Sennett's Warbler.

172 Proceedings of united states national museum.
90. PERISSOGLOSSA TIGRINA (Gmel.) Batrd.

Cape May Warbler. [206.]
91. PERISSOGLOSSA CARBONATA (Aud.) Baird. Carbonated Warbler. [207.]
92. PeUCedramus olivaceus (Giraud) Coues. Olive-headed Warbler.
93. DEIVDRGEA TaStIVA (Gmel.) Batrd. Summer Yellow Bird. [203.]
94. DENDRGEA CFERULESCENS (Linv.) BARD. Black-throated Blue Warbler. [193.]
95. Dendrgeca coronata (Linn.) Gray. Yellow-rump Warbler. [194.]
96. DENDRCECA AUDUBOINII (Towns.) Baird. Audubon's Warbler. [195.]
97. DENDRGECA MACULOSA (GMEL.) BARD. Blạck-and-yellow Warbler. : [204.]:
98. Dendrceca cherulea (Wils.) Batrd. Cerulean Warbler. [201.]
99. DENDRCSGA PENNSYLVANICA (LINN.) BARD. Chestnut:sided Warbler. [200.].
100. DENDRGCA CASTANEA (Wils.) Baird. Bay-breasted Warbler. [197.]

> 101. DENDRCECA STRIATA (Forst.) Bamp. Black-poll Warbler.- $[202$.

102. DENDRGCA BLACKBURNI屋 (GM.) BAIRD.
Blackburnian Warbler. [196.]
103. DENDRGECA DOMINICA (Linn.) Baird. Yellow-throated Warbler. [209.]

103a. DENDRGECA DOMINICA ALbILORA BAIRD. White-browed Yellow-throated Warbler.

104. DENDRGCA GRACITB Coves. Grace's Warbler.

105. DENDRGCA NIGRESCENS (Towns.) Baird. Black-throated Gray Warbler. [192.]
106. DENDRGEA CHRYsOPaRIA Scl. \& Salv. Golden-cheeked Warbler.
107. Dendrceca virens (Gaiel.) Batrd. Black-throated Green Warbler. [189.]
108. DENDRCECA TOWNSENDI (Nutr.) Batrd. Townsend's Warbler. [191.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
109. DENDRGEA OCCIDENTALIS (Towns.) Bamd.
110. DENDRGECA KIRTLANDI BAIRD.

Kiirtland's VWarbler. [205.]
111. DENDRGECA PINUS (Wils.) BAIRD. Pine-creeping Warbler. [198.]
112. DENDRCGCA MONTANA (Wils.) Baird. Blue Mountain Warbler. [199.]
113. DENDRGSA PAIIIARUM (GMEL.) Baird. Red-poll Warbler. [208.]

113a. DENDRGECA PALMARUM HYPOCHRYSEA RIDGW. Yellow Red-poll Warbler.
114. DENDRGECA DISCOLOR (ViEILL.) BAIRD. Prairie Warbler. [210.]
115. SIURUS AURICAPILLUS (LINN.) SWANS. Golden-crowned Thrush. [186.]
116. SIURUS NAVIUS (Bodd.) Coues.

Small-billed Water Thrush. [18̃.]
116a. SIURUS N®VIUS NOTABILIS Grinnell.
Grinnell's Water Thrush.
117. SIURUS MOTACILTA (Vieill.) Coues.

Large-billed Water Thrush. [188.]
113. OPORORNIS AGILIS (Wils.) Baird.

Connecticut Warbler. [174.]
119. OPORORNIS FORMOSA (Wils.) BaIRD.

Kentucky Warbler. [175.]
120. GEOTHLYPIS PHILADELPHIA (THLS.) BAIRD.

Mourning Warbler. [172.]
121. GEOTHLYPIS MACGILLIVRAYI (AUd.) BAIRD.

Macgillivray's Warbler. [173.]
122. GEOTHエYPIS TRICHAS (Linn.) CAban.

Maryland Yellow-throat. [1\%0.]
123. ICTERIA VIRENS (LinN.) Baird.

Yellow-breasted Chat. [176.]
123a. ICTERIA VIRENS LONGICAUDA (Lawr.) Coces.
Long-tailed Chat. [177.]
104. WILSONIA MITRATA (GMEL.) Bp.

Hooded Warbler. [211.]
125. WIISOIVIA PUSILIA (Wils.) Bp. Black-capped Yellow Warbler. [213.]

174 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
125 a. WILSONIA PUSIllLa PILEOLATA (Pall.) Ridgw. Pileolated Warbler.
120. WILsonia minuta (Wils.) Ridgw.

Small-headed Flycatcher. [212.]
127. WILSONIA CANADENSIS (Linn.) Coues.

Canadian Flycatching Warbler. [214,215.]
128. SETOPHAGA RUTICILLA (Linn.) SWAins.

American Redstart. [21\%.]
129. SETOPHAGA PICTA Swains.

Painted Redstart. [218.]
130. SETOPHAGA MINIATA SWAINS.

Red-bellied Redstart. [219]
131. CARDILLINA RUBRIFRONS (Giraud) Scl. Red-faced Warbler.
132. ERGATICUS RUBER (Swains.) Baird.

Red Warbler. [216.]
133. BASILEUIERUS CULICIVORUS (LICHT.) BONAP.

Brasier's Warbler.
134. BASILEUTERUS BELLII (GIraud) Scl. Bell's Warbler.
135. VIREOSYLVIA OLIVACEA (Linn.) Bonap. Red-eyed Vireo. [240.]
136. VIREOSYLVIA AGILIS FLAVO-VIRIDIS (CASS.) RIDGW.

Yellow-green Vireo. [241.]
137. VIREOSYLVIA CARIDRIS BARBATULA (CABAN.) RIDGW. Black-whiskered Vireo. [243.]
138. VIREOSYLVIA PHILADELPHICA CASS. Philadelphia Vireo. [244.]
139. VIREOSYLVIA GILVA (Vieill.) Cass.

Warbling Vireo. [245.]
139a. VIREOSYLVIA GILVA SWAINSONI BAIRD.
Western Warbling Vireo.
140. LANIVIREO FLAVIFRONS (Vieili.) BAIRD.

Yellow-throated Vireo. [252.]
141. LANIVIREO SOLITARIUS (Vieill.) Baird. Blue-headed Vireo. [250.]
141a. LANIVIREO SOLITARIUS CASSINI (XANTUS) Ridgw. Cassin's Vireo. [251.]

141b. LANIVIREO SOLITARIUS PLUMEEUS (Courb) All. Plumbeous Vireo.
PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 175
142. VIREO ATRICAPILLUS Woodir.
Black-capped Vireo. [247.]
143. VIREO NOVEBORACENSIS (Gmel.) Bp. White-eyed Virco. [248.]
144. VIREO HUTTONI CAss.
Hutton's Vireo. [249.]
145. VIREO BELLII AUD.
Bell's Vireo. [246.]
146. VIREO PUSILLUS Coues.
Least Vireo.
147. VIREO VICINIOR Coues. Gray Vireo.
148. LANIUS BOREALIS Vieill.
Great Northern Shrike. [236.]
149. LANIUS LUDOVICIANUS LINN.
Loggerhead Shrike. [237.]
149a. LANIUS LUDOVICIANUS EXCUBITORIDES (Sw.) COUEs.White-rumped Shrike. [238.]
149 b. LANIUS LUDOVICIANUS ROBUSTUS BAIRD.
Large-billed Shrike.
150. AMPELIS GARRULUS LINN.
Northern Wax-wing. [232.]
151. AMPELIS CEDRORUM (Vieill.) Baird.Cedar Wax-wing. [233.]
PROGNE SUBIS (LiNN.) Baird.Purple Martin. [231.]
152a. PROGNE SUBIS CRYPTOLEUCA BAIRD.Cuban Martin. [231 a.]
153. PETROCHELIDON LUNIFRONS (SAY) Lawr.Cliff Swallow. [226.]
154. HIRUNDO ERYTHROGASTRA BODD.Barn Swallow. [225.]155. TACHYCINETA BICOLOR (Vieill.) Caban.White-bellied Swallow. [227.]
156. TACHYCINETA THALASSINA (Swains.) CAbAN.Violet-green Swallow. [228.]
157. COTILE RIPARIA (Linn.) Boie.Bank Swallow. •[229.]
158. STELGIDOPTERYX SERRIPENNIS (AUD.) BAIRD.
Rough-winged Swallow. [230.]

176 proceedings of united states national museum.
159. CERTHIOLA BAEAMTNSIS REICHENB.

Bahaman Foney Creeper. [301.]
160. DUPHOIJA ELEGANTISSIMA (Bp.) Gray.

Blue-headed Euphonia. [224.]
161. PYRANGA RUBRA (LiNN.) Vielll.

Scarlet Tanager. [2:0.]
162. PYRAIJGA IUDOVICIAINA (Wils.) Bp.

Western Tanager. [223.]
163. PYRANGA HEPATICA SWALNS.

FIepatic Tanager. [222.]
164. PYRAIJGA RESTIVA (LinN.) Vieill.

Summer Redbird. [221.]
164a. PYRAIJGA RESTIVA COOPERI RIDGW. Cooper's Tanager.
165. HESPERIPHONA VESPERTINA (COOPER) BP.

Evening Grosbeals. [303.]
166. PINICOLA ENUCLEATOR (LiNn.) Vieill.

Pinc Grosbeak. [304.]
[167.] PYRREIULA CASSINI BAIRD.
Alaskan Bullfinch.
168. CARPODACUS PURPUREUS (Gm.) Baird.

Purple Finch. [305.]
168a. CARPODACUS PURPUREUS CALIFORNICUS BAIRD.
Californian Purple Finch. [306.]
169. CARPODACUS CASSINI BAIRD.

Cassin's Purple Fincl. [307.]
170. CARPODACUS FRONTALIS (SAy) GRAy.

Fiouse Finch. [308.]
170 a. CARPODACUS FRONTAIIS RHODOCOLPUS (CABAN.) RidGW.
Crimson House Finch.
171. CARPODACUS AMPIUS RIDGW.

Guadalupe House Finch.
172. LOZZIA CURVIROSTRA AMERICANA (Wils.) COUES.

American Crossbill. [318.]
172a. LOXIA CURVIROSTRA MEXICANA (Strickl.) Bardd.
Mexican Crossbill. [318a.]
173. LOXIA LEUCOPTERA GM.

White-winged Crossbill. [319.]
174. LEUCOSTICTE GRIGEINUCHA (Brandt) Baird.

Aleutian Rosy Finch. [323.]

175．LEUCOSTICTE TEPHROCOTIS SWANS．
Gray－crowned Rosy Finch．［322．］
175a．LEUCOSTICTE TEPHROCOTIS LITTORALIS（BaiRd）COUES． Gray－headed Rosy Finch．

176．LEUCOSTICTE ATRATA Ridgw．
Black Rosy Finch．
177．LEUCOSTICTE AUSTRALIS Allen． Brown－capped Rosy Finch．

178．届GIOTHUS CANESCENS GOULD．
Mealy Redpoll．［321．］
178a． ．G IOTHUS CANESCENS EXILIPES（Coues）RIDGW．
White－rumped Redpoll．
179．䦭GIOTHUS LINARIA（Linn．）Caban．
Common Redpoll．［320．］
179a．屈GIOTHUS LINARIA HOLBOLLI（Bremm）RIDGW．
Greater Redpoll．
180．出GIOTHUS BREWSTERI RIDGW． Brewster＇s Linnet．

181．ASTRAGALINUS TRISTIS（Linn．）Cab． American Goldfinch．［313．］

182．ASTRAGALINUS PSALTRIA（SAY）COUES． Green－backed Goldfinch．［314．］

182a．ASTRAGALINUS PSALTRIA ARIZON 压，CoUES． Arizona Goldfinch．［315．］

182b．ASTRAGALINUS PSALTRIA MEXICANUS（Sw．）Coues． Mexican Goldfinch．

183．ASTRAGALINUS LAWRENCEII（CASS．）BP． Lawrence＇s Goldfinch．［316．］

184．CHRYSOMITRIS NOTATA（DU BUS）Br． Black－headed Goldfinch．［310．］

185．CHRYSOMITRIS PINUS（Wils．）BP． Pine Goldfinch．［317：］

186．PLECTROPHANES NIVALIS（Linn．）MEyER． Snow Bunting．［325．］

187．CENTROPHANES LAPPONICUS（Linn．）CAban． Lapland Longspur．［326．］
188．CENTROPHANES PICTUS（SWains．）Caban． Smith＇s Longspur．［32\％．］

189．CENTROPHANES ORNATUS（Towns．）CAbaN． Chestnut－collared Longspur．［328，329．］
Proc．Nat．Mus． $80-12$
Aug．2i， 1850 ．

190. REYNCHOPHANES MACCOWNI (LAWr.) BARD

McCown's Longspur. [330.]
191. CENTRONYX BAIRDII (AUd.) BAIRD.

Baird's Bunting. [331.]
192. PASSERCULUS PRINCEPS Maynard. Ipswich Sparrow.
193. PASSERCULUS SANDWICHENSIS (GMEL.) BAIRD. Sandwich Sound Sparrow. [333.]

193a. PASSERCULUS SANDWICHENSIS SAVANNA (Wils.) RIDGW. Savannah Sparrow. [332.]

193b. PASSERCULUS SANDWICHENSIS ALAUDINUS (Br.) RIDGW: Western Savannah Sparrow. [335.]
194. PASSERCULUS ANTHINUS Bonap. Titlark Sparrow. [334.]
195. PASSERCULUS GUTTATUS Lawr. Saint Lucas Sparrow.
196. PASSERGULUS ROSTRATUS (Cass.) Baird. Large-billed Sparrow. [336.]
197. POCECETES GRAMINEUS (GM.) BARD. Grass Finch. [337.]
$197 a$. POGECETES GRAMINEUS CONPINIS BAIRD. Western Grass Finch.
198. COTURNICULUS PASSERINUS (VIIS.) Bp.

Yellow-winged Sparrow. [338.]
198a. COTURNICULUS PASSERINUS PERPALLIDUS RIDGW.
Western Yellow-winged Sparrow
199. COTURNICULUS HENSLOWI (Avd.) Bp.

Henslow's Sparrow. [339.]
200. COTURNICULUS LECONTEI (AUd.) Bp.

Leconte's Sparrow. [340.]
201. AMMODROMUS CAUDACUTUS (GM.) Swains.

Sharp-tailed Finch. [341.]
201a, AMMODROMUS CAUDACUTUS NELSONI ALLEN. Nelson's Sharp-tailed Finch.
202. AMMODROMUS MARITIMUS (Wils.) Swains.

Sea-side Finch. [342.]
203. AMMODROMUS NIGRESCENS RIDGW. Black-and-white Sea-side Finch.
204. CEONDESTES GRAMMICA (SAy) BP. Jark Finch. [344.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 179
204a. CHONDESTES GRAMMICA STRIGATA
Western Lark Finch.
205. ZONOTRICHIA QUERULA (NUTT.) GAMB.
Harris's Sparrow. [348.]
203. ZONOTRICEIA LRUCOPHRYS (FORST.) SWAINS. White-crowned Sparrow. [345.]
207. ZONOTRICHIA GAMBELI (Nutt.) Gamb. Gambel's White-crowned Sparrow.

207a. ZONOTRICHIA GAMBELI INTERMEDIA RIDGw.
Intermediate White-crowned Sparrow. [346.]
208. ZONOTRICHIA CORONATA (Pall.) Barrd.

Golden-crowned Sparrow. [347.]
209. ZONOTRICHIA ALBICOLLIS (Gm.) Bp.

White-throated Sparrow. [349.]
210. SPIZELIA MONTANA (FORST.) RIDGW.

Tree Sparrow. [357.]
211. SPIZELLA DOMESTICA (Bartr.) COUES. Chipping Sparrow. [359.]

211 a. SPIZELLA DOMESTICA ARIZONAF (CoUES) RidgW.
Western Chipping Sparrow.
212. SPIZELLA PALLIDA (Sw.) Br.

Clay-colored Sparrow. [360.]
213. SPIZELLA BREWERI CASS.

Brewer's Sparrow. [361.]
214. SPIZELLA PUSILLA (Wils.) Bp.

Field Sparrow. [358.]
215. SPIZELLA ATROGULARIS (CABAN.) BD.

Black-chinned Sparrow. [362.]
216. JUNCO AIKENI Ridgw.

White-winged Snowbird.
217. JUNCO HYEMALIS (LinN.) Scl.

Black Snowbird. [354.]
218. JUNCO OREGONUS (Towns.) SCL.

Oregon Snowbird. [352.]
219. JUNCO ANNECTENS BAIRD.

Pink-sided Snowbird.
220. JUNCO CANICEPS (Woonir.) BaIRd.

Gray-headed Snowbird. [353.]
221. JUNCO DORSALIS MENry.

Red-backed Snowbird. [351.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM．

> 222. JUNCO CINEREUS (Swains.) Caban.
> Mexican Snowbird. [350.]
22\％．JUNCO INSULARIS RIDGW．
Guadalupe Snowbird．

224．AMPHISPIZA BILINEATA（Cass．）Coues．
Black－throated sparrow．［355．］
225．AMPHISPIZA BELLII（CASs．）Coues．
Bell＇s Sparrow．［356．］
225 a．AMPHISPIZA BELLII NEVADENSIS RIDGW．
Sagebrush Sparrow．
226．PEUCZA RSTIVALIS（Licht．）Caban．
Bachman＇s Finch．［370．］
226a．PEUC尻A FSTIVALIS ILIINOENSIS RIDGW。
Oak－woods Sparrow．
227．PEUC届A ARIZON不 RIDGW．
Arizona Sparrow．
228．PEUCZIA CASSINI（WOODH．）BAYRD．
Cassin＇s Sparrow．［371．］
299．PEUC．ÆA CARPALIS Coues．
Rufous－winged sparrow．
230．PEUCTIEA RUFICEPS（CASS．）BAIRD．
Rufous－crowned Sparrow．［372．］
230 a．PEUCTEA RUFICEPS BOUCARDI（Scl．）B．B．\＆R。
Boucard＇s Sparrow．
231．MELOSPIZA FASCIATA（Forst．）SCOTT．
Song Sparrow．［363．］
231a．MELOSPIZA FASCIATA FALIAX BARD．
Mountain Song Sparrow．［367．］
2316．MELOSPIZA FASCIATA HEERMANNI BAIRD．
Heermann＇s Song Spariow．［364．］
231 c．MELOSPIZA FASCIATA SAMUELIS BAIRD． Californian Song Sparrow．［343，365．］
231 d．MELOSPIZA FASCIATA GUTTATA（NUTT．）BARD． Rusty Song Sparrow．［366．］

231e．MELOSPIZA FASCIATA RUFINA（Brandt）Baird． Sooty Song Sparrow．

232．MELOSPIZA CINEREA（Gm．）Ridgw．
Aleutian Song Sparrow．
233．MELOSPIZA PALUSTRIS（Wils．）BAIRd．
Swamp Sparrow．［369．］
234. MELOSPIZA LINCOLNI (AUd.) Baird. Lincoln's Finch. [368.]
235. Passerella iliaca (Merrem) Sw. Fox-colored Sparrow. [374.]

235a. PASSERELLA ILIACA UNALASHKENSIS (GM.) RIDGW. Townsend's Sparrow. [375.]

235b. PASSERELIA ILIACA MEGARHYNCHA (BAIRD) RIDGW. Thick-billed Sparrow. [376a.]

235 c . PASSERELLA ILIACA SCHISTACEA (Baird) Allen. Slate-colored Sparrow. [376.]
236. EMBERNAGRA RUFIVIRGATA LAWR.

Texas Sparrow. [373.]
237. PIPILO ERYTHROPHTHALMUS (LiNN.) Vieill. Chewink; Towhee. [391.]
$237 a$. PIPILO ERYTHROPHTHALMUS ALLENI COUES. Florida Towhee.
238. PIPILO MACULATUS ARCTICUS (Swains.) Coues. Northern Towhee. [393.]

238a. PIPILO MACULATUS MEGALONYX (BAIRD) COUES. Spurred Towhee. [394.]

233 . PIPILO MACULATUS OREGONUS (Bell) Coues. Oregon Towhee. [392.]

238c. PIPILO MACULATUS CONSOBRINUS RLDGW. Guadalupe Towhee.
$238 d$. PIPILO MACULATUS CARMANI BAIRD.
Socorro Towhee.
239. PIPILO CELORURUS (TOWNS.) BAIRD.

Green-tailed Towhee. [398.]
240. PIPILO FUSCUS MESOLEUCUS (BAIRD) RLDGW. Cañon Towhee. [397.]

240 a. PIPILO FUSCUS ALBIGULA (Baird) CoUes.
Saint Lucas Brown Towhee.
240b. PIPILO FUSCUS CRISSALIS (Vig.) Coués.
Californian Brown Towhee. [396.]
241 PIPILO ABERTI Baird.
Abert's Towhee. [395.]
242. CARDINALIS VIRGINIANUS (Briss.) Bp.

Cardinal Grosbeak. [390.]
242a. CARDINALIS VIRGINIANUS IGNEUS (BAIRD) Coues.
Saint Lucas Cardinal.

182 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

> 243. PYRRHULOXIA SINUATA BONAP. Texan Cardinal. [389.]
24. ZAMELODIA LUDOVICIANA (Linn.) Coues.

Rose-breasted Grosbeak. [380.]
245. ZAMELODIA MELANOCEPHALA (Swains.) Coues. Black-headed Grosbeak. [381.]
246. GUIRACA CBremLea (Linv.) Swains. Blue Grosbeak. [382.]
247. PASSERINA PARELLINA (Br.) RidgW. Blue Bunting. [383.]
243. PAGSERINA CYANEA (Linn.) Gray. Indigo Bunting. [387.]
249. PASSERINA AMOENA (SAy) Gray. Lazuli Bunting. [386.]
250. PASSERINA VERSICOLOR (Bonap.) Gray. Varied Bunting. [385.]
251. PASSERINA CIRIS (Linn.) Gray. Painted Bunting; Nonpareil. [384.]
252. SPERMOPHILA MORELETII PUCHERAN. Morelet's Seedeater. [388.]
253. PEONIPARA ZENA (Linn.) Biyant. Black-faced Seedeater.
254. SPIZA AMERICANA (Gm.) Bonap. Black-throated Bunting. [378.]
255. SPIZA TOWNSENDI (AUD.) RDGW. Townsend's Bunting. [379.]
256. CALAMOSPIZA BICOLOR (Towns.) BoNap. Lark Bunting. [377.]
257. DOLICHONYX ORYZIVORUS (LinN.) Swains. Bobolink. [399.]
258. MOLOTHRUS ATER (Bodo.) Gray. Cowbird. [400.]
258a. MOLOTHRUS ATER OBSCURUS (GMEl.) Coues. Dwarf Cowbird.
259. MOLOTHRUS mineds (Wigl.) Caban. Bronzed Cowbird.
260. XANTHOCEPHALUS ICTEROCEPFALUS (BONAP.) BD.

Yellow-headed Blackbird. [404.]
261. AGEL 姩US PHGENICEUS (Linn.) Vieill. Red-and-buff-shouldered Blackbird. [401.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSBUM.
261a. AGEL x US PHCENICEUS GUBERNATOR (Wagl.) Coues.
Red-and-black-shouldered Blackbird. [402.]
262. AGEL, IUUS TRICOLOR (NUTT.) BP.

Red-and-white-shouldered Blackbird. [403.]
263. STURNELLA MAGNA (Linn.) SWAINS. Meadow Lark. [406.]

263a. STURNELLA MAGNA MEXICANA (Scl.) RidgW. Mexican Meadow Lark.
264. STURNELLA NEGLECTA AUD. Western Meadow Lark. [407.]
265. ICTERUS VULGARIS DAUD.

Troupial. [408.]
266. ICTERUS AUDUBONII Giraud.

Audubon's Oriole. [409.]
267. ICTERUS WAGLERI SCL.

Wagler's Oriole. [412.]
268. ICTERUS PARISORUM BONAP.

Scott's Oriole. [411.]
269. ICTERUS CUCULLATUS Swains.

Hooded Oriole. [413.]
270. ICTERUS SPURIUS (Linn.) Bp. Orchard Oriole. [414.]
271. ICterus Galbula (Linn.) Coues. Baltimore Oriole. [415.]
272. ICTERUS BULLOCKI (SWains.) Bp. Bullock's Oriole. [416.]
273. SCOLECOPHAGUS FERRUGINEUS (Gm.) Swains. Rusty Blackbird. [41\%.]
274. SCOLECOPHAGUS CYANOCEPHALUS (WAGL.) CARAN. Brewer's Blackbird. [418.]
275. QUISCALUS MACRURUS SWAINS.

Great-tailed Grackle. [419.]
276. QUISCALUS PALUSTRIS Swans.

Mexican Boat-tailed Grackle.
277. QUISCalus Major Vieill.

Boat-tailed Grackle. [420.]
278. QUISCALUS PURPUREUS (Bartr.) Leicht.

Purple Grackle. [421.]
278a. QUISCALUS PURPUREUS AGLBEUS (Baird) Cours Florida Grackle. [422.]

278b. QUISCALUS PURPUREUS RENEUS Ridgw.
Bronzed Grackle.
[279.] STURNUS VULGARIS Linn.
European Starling.
æ0. CORVUS CORAX CARNIVORUS (Bartr.) Ridgw.
American Raven. [423, 424.]
281. CORVUS CRYPTOLEUCUS Couch.

White-necked Raven. [425.]
282. CORVUS FRUGIVORUS Bartr.

Common Crow. [426.]
282a. CORVUS FRUGIVORUS FLORIDANUS (Batd) Ridgw. Florida Crow. [427.]
2826 CORVUS FRUGIVORUS CAURINUS (Bard) Ridgw. Northwestern Fish Crow. [428.]
283. CORVUS OSSIFRAGUS Wils. Fish Crow. [429.]
284. PICICORVUS COLUMBIANUS (Wils.) Br. Clarke's Nutcracker. [430.]
285. GYMNOCITTA CYANOCEPHALA MAX. Maximilian's Nutcracker; Piñon Jay. [431.]
286. PICA RUSTICA HUDSONICA (SCOP.) BAIRD. Black-billed Magpie. [432.]
287. PICA NUTTALLI AUD.

Yellow-billed Magpie. [433.]
288. PSILORHINUS MORIO (Wagl.) Gray.

Brown Jay. [444.]
289. CYANOCItta CRISTATA (Linn.) Strickln Blue Jay. [434.]
290. Cyanocitta stelleri (Gm.) Caban. Steller's Jay. [435.]
290a. CYANOCItTA Stelleri frontalis Ridgw. Blue-fronted Jay.
2903. CYANOCITTA STELLERI ANNECTENS (Bamd) Ridgw. Black-headed Jay.

290 c. CYANOCITTA STELLERI MACROLOPHA (BAIRD) RIDGW. Long-crested Jay. [436.]
291. APHELOCOMA FLORIDANA (Bartr.) Caban. Florida Jay. [439.]
292. APHELOCOMA WOODHOUSEI (BAIRD) RIDGW. Woodhouse's Jay. [438.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
293. APHELOCOMA CALIFORNICA (Vig.) Caban. California Jay. [437.]
294. APHELOCOMA ULTRAMARINA COUCHII BAIRD. Couch's Jay. [441.]
295. APHELOCOMA SORDIDA ARIZON 压 RIDGW. Arizona Jay. [440.]
296. ZANTHURA LUXUOSA (Less.) Bp. Green Jay. [442.]
297. PERISOREUS CANADENSIS (LINN.) Bp. Canada Jay. [443.]
$297 a$. PERISOREUS CANADENSIS CAPITALIS BAIRD. White-headed Jay.
297b. PERISOREUS CANADENSIS FUMIFRONS RIDGW. Smoky-fronted Jay.
293. PERISOREUS OBSCURUS RIDGW. Oregon Jay.
[299.] ALAUDA ARVENSIS LINN. Sky Lark.
300. EREMOPHILA ALPESTRIS (FORST.) BOIE. Shore Lark. [302.]
$300 a$. EREMOPHILA ALPESTRIS LEUCOL AMMA COUES. White-throated Shore Lark.

300 b. EREMOPHILA ALPESTRIS CHRYSOLAMA (WAGL.) COUES. Mexican Shore Lark.
301. MILVULUS FORFICATUS (Gm.) Swains. Scissor-tailed Flycatcher. [123.]
[302.] MILVULUS TYRANNUS (LINN.) Bp. Fork-tailed Flycatcher. [122.]
303. TYRANNUS DOMINICENSIS (Gm.) REICH. Gray Kingbird. [125.]
304. TYRANNUS CAROLINENSIS (LINN.) TENM. Kingbird; Bee Martin. [124.]
305. TYRANNUS MELANCHOLICUS COUCHII BAIRD. Couch's Kingbird. [128, 129.]
306. TYRANNUS VERTICALIS SAY. Western Kingbird. [126.]

30\%. TYRANNUS VOCIFERANS Swains. Cassin's Kingbird. [127.]
303. PITANGUS DERBIANUS (KaUP) SCL. Mexican Pitangus.

186 próceedings of united states national museum.
309. MYIOZETETES TEXENSIS (Giraud) Scl.

Giraud's Flycatcher.
310. MYIODINASTES LUTEIVENTRIS BONAP.

Henshaw's Flycatcher.
311. MYIARCTIUS MEXICANUS (KAUP) LAWr.

Mexican Great Crested Flycatcher. [132.]
312. MYIARCHUS CRINITUS (Linn.) Caban.

Great Crested Flycatcher. [130.]
313. MYIARCHUS CINERASCENS LAWR.

Ash-throated Flycatcher. [131.]
314. MYIARCHUS LAWRENCEI (Giraud) Bard.

Lawrence's Flycatcher. [133.]
315. SAYORNIS FUSCUS (GMel.) Baird.

Phœbe Bird; Pewee. [135.]
316. SAYORNIS SAYI (Bonap.) Bamd. .

Say's Pewree. [136.]
317. SAYORNIS NIGRICANS (SWAINS.) BP.

Black Pewee. [134.]
318. CONTOPUS BOREALIS (Swains.) Baind.

Olive-sided Flycatcher. [137.]
319. CONTOPUS PERTINAX Caban.

Coues's Flycatcher.
320. CONTOPUS VIRENS (Linn.) Caban.

Wood Pewee. [139.]
321. CONTOPUS RICHARDSONII (Sw.) BaIRd.

Western Wood Pewee. [138.]
322. EMPIDONAX FLAVIVENTRIS BAIRD.

Yellow-bellied Flycatcher. [144.]
323. EMPIDONAX DIFFICILIS BAIRD.

Western Yellow-bellied Flycatcher. [144a.]
324. EMPIDONAX ACADICUS (Gmel.) Baird.

Acadian Flycatcher. [143.]
325. EMPIDONAX PUSILLUS (Swains.) Bd.

Little Flycatcher. [141.]
325 a. EMPIDONAX PUSILLUS TRAILLII (AUd.) BAIRD.
Traill's Flycatcher. [140.]
326. EMPIDONAX MINIMUS BAIRD.

Least Flycatcher. [142.]
327. EMPIDONAX HAMMONDI (XINTUS) BD.

Hammond's Flycatcher. [145.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
328. EMPIDONAX OBSCURUS (Swalns.) Baird.

Wright's Flycatcher. [146.]
3:9. EMPIDONAX FULVIFRONS (Giraud) Scl.
Fulvous Flycatcher.
$3: 9$ a. EMPIDONAX FULVIFRONS PALLESCENS COUES.
Buff-breasted Flycatcher.
330. PYROCEPHALUS RUBINEUS MEXICANUS (SCL.) COUES.

Vermilion Flycatcher. [147.]
331. ORNITHION IMBERBE (SCl.) Couls.

Small-billed Flycatcher.
PACHYRHAMPHUS MAJOR (BONAP.) SCL.
Thick-billed Flycatcher. [121.]
333. HADROSTOMUS AGLAIF (Lafr.) CAB.

Rose-throated Flycatcher. [120.]
334. EUGENES FUEGENS (Swains.) Gould.

Refulgent Hummingbird.
335. TROCHILUS COLUBRIS LinN.

Ruby-throated Hummingbird. [101.]
336. TROCHILUS ALEXANDRI Bounc. \& Muls.

Black-chinned Hummingbird. [102.]
337. CALYPTE COST屋 (Bourc.) Gould.

Costa's Hummingbird. [106]
338. CALYPTE ANN共 (Less.) Gould.

Anna's Hummingbird. [105.]
339. SELASPHORUS PLATYCERCUS (SWAINS.) BP.

Broad-tailed Hummingbird. [104.]
340. SELASPHORUS RUFUS (GMEL.) AUD.

Rufous Hummingbird. [103.]
341. SELASPHORUS ALLeNI Hensh.

Allen's Hummingbird.
342.
346.
347. BASILINNA XANTUSI (Lawr.) Elliot.

Xantus's Hummingbird.
348. Iache Latirostris (Swains.) Elliot.

Broad-billed Hummingbird.
349. CYPSELUS SAXATILIS WOODH.

White-throated Swift. [107.]
350. CYPSEIJOIDES NIGER BOREALIS (Kennerly) Ridaw. Black Swift. [108.]
351. CHATURA PELAGICA (Linn.) Baird.

Chimney Swift. [109.]
352. CHETURA VAUXII (Towns.) De Kay.

Vaux's Swift. [110.]
353. ANTROSTOMUS CAROLINENSIS (GM.) GOULD.

Chuck-will's-widow. [111.]
354. CAPRIMULGUS VOCIFERUS (Wils.) Bp. Whip-poor-will. [112.]
355. PHAL死NOPTILUS NUTTALLI (AUD.) RIDGW. Poor-will. [113.]
356. NYCTIDROMUS ALBICOLLIS (GM.) BURM.

Parauque Goatsucker. [116a.]
357. CHORDEILES POPETUE (Vieill.) Bd. Nighthawk. [114.]
357 a. CHORDEILES POPETUE HENRYI (CASS.) Allen.
Western Nighthawk. [115.]
357 b. CHORDEILES POPETUE MINOR (CABAN.) RIDGW. Cuban Nighthawk.
358. CHORDEILES ACUTIPENNIS TEXENSIS (LAWR.) RIDGW. Texan Nighthawk. [116.]
359. CAMPEPHILUS PRINCIPALIS (Linn.) Gray.

Ivory-billed Woodpecker. [72.]
360. PICUS VILLOSUS Linn.

Hairy Woodpecker. [74.]
360 a. PICUS VILLOSUS LEUCOMELAS (BODD.) Ridgw.
Great White-backed Sapsucker.
360 b . PICUS VILLOSUS HARRISI (AUD.) ALLEN.
Harris's Woodpecker. [75.]
361. PICUS PUBESCENS LINN.

Downy Woodpecker. [76.]
361 a. PICUS PUBESCENS GAIRDNERI (AUD.) CoUES.
Gairdner's Woodpecker. [77.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 189
362. PICUS QUERULUS WILS.

Red-cockaded Woodpecker. [80.]
363. PICUS SCALARIS WAGL.

Texan Sapsucker. [79.]
$363 a$. PICUS SCALARIS LUCASANUS (Xant.) RidgW.
Saint Lucas Sapsucker.
364. PICUS NUTTALLI GAMb.

Nuttall's Woodpecker. [78.]
365. PICUS STRICKLANDI Malit. -

Strickland's Woodpecker.
366. XENOPICUS ALBOLARVATUS (CASS.) BAIRD.

White-headed Woodpecker. [81.]
367. PICOIDES ARCTICUS (Swains.) Gray.

Black-backed Three-toed Woodpecker. [82.]
368. PICOIDES TRIDACTYLUS AMERICANUS (Brehm) Ridgw.

Banded-backed Three-toed Woodpecker. [83.]
368 a. PICOIDES TRIDACTYLUS DORSALIS (BAIRD) RIDGW. Striped-backed Three-toed Woodpecker. [84.]
369. SPHYRAPICUS VARIUS (LiNn.) Baird.

Yellow-bellied Woodpecker. [85.]
$369 a$. SPHYRAPICUS VARIUS NUCHALIS BAIRD.
Red-naped Woodpecker. [86.]
369 . SPHYRAPICUS VARIUS RUBGR (GM.) RIDGW.
Red-breasted Woodpecker. [87.]
370. SPHYRAPICUS THYROIDEUS (CASS.) BaIRD.

Black-breasted Woodpecker. [88,89.]
371. HYLOTOMUS PILEATUS (Livn.) Baird.

Pileated Woodpecker; Logcock. [90.]
372. CENTURUS CAROLINUS (L.) Bp.

Red-bellied Woodpecker. [91.]
373. CENTURUS AURIFRONS WAGL.

Golden-fronted Woodpecker. [92.]
374. CENTURUS UROPYGIALIS BAIRD.

Gila Woodpecker. [93.]
375. MELANERPES ERYTHROCEPHALUS (LINN.) SW.

Red-headed Woodpecker. [94.]
376. MELANERPES TORQUATUS (Wils.) BoNap.

Lewis's Woodpecker. [96.]
377. MELANERPES FORMICIVORUS (Sw.) Bp.

Californian Woodpecker. [95.]

3\%7 a. MELANERPES FORMICIVORUS ANGUSTIFRONS BAIRD.
Narrow-fronted Woodpecker.
378. COLAPTES AURATUS (LiNN.) Sw.

Yellow-shafted Flicker. [97.]
378a. COLAPTES AURATUS HYBRIDUS (Baird) Ridgw. "Hybrid" Flicker. [98 a.]
378b. COLAPTES AURATUS MEXICANUS (Sw.) Ridgw. Red-shafted Flicker. [98.]
379. COLAPTES CHRYSOIDES (MALH.) BAIRD. Malherbe's Flicker. [99.]
380. COLAPTES RUFIPILEUS RIDGW. Guadalupe Flicker.
381. MOMOTUS C.ARULEICEPS Gould. Blue-capped Motmot. [119.]
389. CERYLE ALCYON (Linn.) Boie. Belted Kingfisher. [117.]
333. CERYLE AMERICANA CABANISI (Tschudi) Coues. Texan Kingfisher. [118.]
384. TROGON AMBIGUUS Gould. Coppery-tailed Trogon. [65.]
385. GEOCOCCYX CALIFORNIANUS (LESS.) BAIRD. Road-runner; Chaparral Cock. [68.]
386. COCCYZUS SENICULUS (Latii.) Vieill. Mangrove Cuckoo. [71.]
387. COCCYZUS AMERICANUS (Linn.) Bp. Yellow-billed Cuckoo. [69.]
388. COCCYZUS ERYTHROPHTHALMUS (WILS.) BAIRD. Black-billed Cuckoo. [70.]
389. CROTOPHAGA ANI LINN. Savannah Blackbird. [66,67.]
390. CROTOPHAGA SULCIROSTRIS SWAINS. Groove-billed Crotophaga.
391. RHYNCHOPSITTA PACHYRHYNCHA (SWAINs.) Bp. Thick-billed Parrot. [64.]
392. CONURUS CAROLINENSIS (LiNN.) KvHL.

Carolina Parakeet. [63.]
393. CONURUS HOLOCHLORUS BREVIPES BAIRD. Socorro Parakeet.
394. ALUCO FLAMMEUS AMERICANUS (AUd.) RidGw. American Barn Owl. [47.]
395. ASIO AMERICANUS (Stepf.) Sharpe.

American Long-eared Owl. [51.]
296. Asio ACCIPITRINUS (Pall.) Newton.

Short-eared Owl. [52.]
397. STRIX NEBULOSA Forst.

Barred Owl. [54.]
39\%a. STRIX NEBULOSA ALLENI Ridgw. Florida Barred Owl.
393. STRIX OCCIDENTALIS (XANT.) Ridgw. Spotted Owl.
399. ULULA CINEREA (Gmel.) Bp. Great Gray Owl. [53.]
[399a.] ULULA CINEREA LAPPONICA (RETZ.) Ridgw.
Lapland Owh.
400. NYCTALE TENGMALMI RICHARDSONI (Bp.) Ridgw.

Richardson's Owl. [55.]
401. NYCTALE ACADICA (GMEL.) Bp.

Saw-whet Owl. [56,57.]
402. SCOPS ASIO (Linn.) Bp.

Little Screech Owl. [49.]
402 α. SCOPS ASIO FLORIDANUS RIDGW.
Florida Screech Owl.
402b. SCOP's ASIO MACCALLI (CASs.) Ridgw.
Texan Screech Owl. [50.]
402c. SCOPS ASIO MAXWELLIA RIDGW.
Rocky Mountain Screech Owl.
402d. SCOPS ASIO KENNICOTTII (Elliot) Ridgw.
Northwestern Screech Owl.
403. SCOPS TRICHOPSIS WAGL.

Mexican Screech Owl.
404. SCOPS FLAMMEOLUS (Licht.) Scl.

Flammulated Screech Owl.
405. BUBO VIRGINIANUS (Gm.) Bp.

Great Horned Owl. [48.]
$405 a$. BUBO VIRGINIANUS SUBARCTICUS (Hoy) RIDGW.
Western Horned Owl.
405b. BUBO VIRGINIANUS ARCTICUS (Swains.) CAss.
Arctic Horned Owl.
405c. BUBO VIRGINIANUS SATURATUS RIDGW.
Dusky Horned Owl.

```
406. NYCTEA SCANDIACA LINN.
                            Snowy Owl. [61.]
```

407. SURNIA FUNEREA (Linn.) Rich \& Sw.
American Hawk Owl. [62.]
[407a.] SURNIA FUNEREA ULULA (Linn.) Ridgw.
Europeau Hawk Owl.
408. SPEOTYTO CUNICULARIA HYPOGAA (BONAP.) Ridgw.
Burrowing Owl. [58,59.]
408a. SPEOTYTO CUNICULARIA FLORIDANA RIDGW.
- Florida Burrowing Owl.
409. GLAUCIDIUM GNOMA Wagl.
California Pigmy Owl. [60.]
410. GLAUCIDIUM PHAL忍NOIDES (DAUD.) SCL. \& SALV.
Ferruginous Pigmy Owl.
411. MICRATHENE WHITNEYI (COOPER) COUES.
Whitney's Pigmy Owì.
412. HIEROFALCO GYRFALCO CANDICANS (Gm.) RidGW.
White Gyrfalcou. [11.]
412a. HIEROFALCO GYRFALCO ISLANDUS (GM.) Ridgw.
Iceland Gyrfalcon. [12.]
412b. HIEROFALCO GYRFALCO SACER (FORST.) RIDGW.
McFarlane's Gyrfalcon.
412 c. HIEROFALCO GYRFALCO OBSOLETUS (GM.) RIDGW.
Labrador Gyrfalcon.
413. HIEROFALCO MEXICANUS POLYAGRUS (CASS.) RIDGW.
Prairie Falcon. [10.]
414. FALCO PEREGRINUS NXAVIUS (GM.) RidGW.
American Peregrine Falcon; Duck Hawk. [5,6.]
414 a. FALCO PEREGRINUS PEALEI Ridgw.

Peale's Falcon.
415. FALCO ALBIGULARIS DaUd.

Chestnut-thighed Falcon. [8.]
[416.] RSALON REGULUS (Pall.) Blyth. European Merlin.
417. FSALON COLUMBARIUS (Linn.) KAUp. Pigeon Hawk. [7.]

417a. 盾SALON COLUMBARIUS SUCKLEYI RIDGW. Black Merlin.
418. ASALON RICHARDSONII RIDGW.

Richardson's Merlin.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. $19: 3$
419. RHYNCHOFALCO FUSCO-CBRULESCENS (Yibill.) Ridgw.

Aplomado Falcon. [9.]
420. TINNUNCULUS SPARVERIUS (Linn.) Vieill. Sparrow Hawk. [13.]
$420 a$. TINNUNCULUS SPARVERIUS ISABELLINUS (SWAINS.) RIDGW. Isabelline Sparrow Havk.
421. TINNUNCULUS SPARVERIOIDES (Vig.) Gray. Cuban Sparrow Hawk.
[422.] TINNUNCULUS ALAUDARIUS (Gar.) Gray.
European Kestril.
423. POLYBORUS CHERIWAY (Jacq.) Caban.

Caracara Eagle. [45.]
424. POLYBORUS LUTOSUS RIDGW.

Guadalupe Caracara.
425. PANDION HALIAËTUS CAROLINENSIS (GM.) RIDGW.

American Osprey; Fish Hawk. [44.]
426. ELANOIDES FORFICATUS (LINN.) Ridgw.

Swallow-tailed Kite. [34.]
427. ELANUS GLAUCUS (Bartr.) Cours.

White-tailed Kite. [35.]
428. ICTINIA SUBCBIRULEA (Bartr.) Coues.

Mississippi Kite. [36.]
429. ROSTRHAMUS SOCIABILIS PLUMBEUS RIDGW.

Everglade Kite. [37.]
430. CIRCUS HUDSONIUS (Linn.) Vieill.

Marsh Hawk. [38.]
431. ACCIPITER COOPERI BONAP.

Cooper's Hawk. [15, 16.]
432. ACCIPITER FUSCUS (GMel.) Bp.

Sharp-shinned Hawk. [17.]
433. ASTUR ATRICAPILLUS (Wils.) Bp.

American Goshawk. [14.]
433 亿. ASTUR ATRICAPILEUS STRIATUEUS RIDGW.
Western Goslawk.
434. ANTENOR UNICINCTUS FIARRISI (AUD.) RIDGW.

Harris's Hawle. [46.]
[435.] BUTEO VULGARIS Leacif.
European Buzzard.
436. BUTEO BOREALIS (Gm.) Vieill.

Red-tailed Hawk. [23.]
Proc. Nat. Mus. $80-13$
$19 \pm$ PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
4:16a. BUTEO BOREALIS IRRIDERI Hoopes.
ISrider's Hawls.
436 b. BUTEO BOREALIS CALURUS (Cass.) Ridgw.
Western Red-tail. [20,24.]
436c. BUTEO BORRALIS LUCASANUS RIDGw.
Saint Lucas Red-tail.
$436 d$. BUTEO BORTAITS SOCORROENSIS RIDGW. Socorro Red-tail.
437. BUTEO COOPERI CASS.

Cooper's Henhawk. [29.]
438. BUTEO HARLANI AUD.

Harlan's Hawk. [22.]
439. BUTEO LINEATUS (Gar.) Jard.

Red-shouldered Hawk. [25.]
439a. BUTEO LINEATJS ELIGGANS (Cass.) Ridgw.
Red-bellied Hawk. [26.]
440. BUTEO ABBREVIATUS CAbaN.

Zone-iailed Hawk.
441. Buteo aibicaudatus Vieill.

White-tailed Hawk.
442. BUTEO SWVANSCIVI BONAP.

Swainson's Hawk. [18, 19, 21, 28.]
443. BUTEO PENNSYLVANICUS (Wils.) Bp. Broad-winged Hawk. [27.]
444. URUBITINGA ANTERRACINA (Licht.) LAFr. Mexican Black Hawk.
445. AStURINA NITIDA PIAGIATA (Licht.) Ridgw.

Mexican Goshawk. [33.]
446. ONYCHOTES GRUBERI RIDGW. Gruber's Hawk.
447. ARCHIBUTEO LAGOPUS SANCTI-JOHANNIS (GMEL.) RIDGW.

American Rough-legged Hawls. [30,31.]
448. ARCHIBUTMO FRRRUGINEUS (Licht.) Gray.

F'erruginous Rough-leg. [32.]
449. AQUILA CHRYSAËTUS CANADENSIS (LINN.) RIDGW.

Golden Eagle. [39.]
450. thrasaëtus harpyia (Linn.) Gray.

Harpy Eagle.
451. HALIMËTUS LEUCCCEPHALUS (LiNN.) SAVIG. Bald Eagle; Gray Eagle. [41,43.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 19.
459. HALIFËtus ALbiCilla (LinN.) Leach.

Gray Sea Eagle. [42.]
4J3. PSEUDOGRYPHUS CALIFORNIANUS (SIIAW) RiDGW.
Californian Condor. [\%.]
454. CATHARTES AURA (Linn.) Illig.

Turkey Buzzard. [1.]
455. CATHARISTA ATRATA (Wils.) Less.

Black Vuiture; Carrion Crow. [3.]
456. COLUMBA FASCIATA SAY.

Band-tailed Pigeon. [445.]
45\%. COLUMBA RRYTHRINA LICIT.
Red-billed Pigeon. [440.]
458. COLUMBA IBUCOCEPHALA LINA.

White-crowned Pigeon. [447.]
459. ECTOPISTES MIGRATORIA (LINN.) SW.

Passenger Pigeon. [448.]
460. ZENBDURA CAROLINENSIS (LINN.) BP. Mourning Dove. [451.]
461. ZENRPDURA GRAYSONI BAIRD.

Socorro Dove.
469. ZENFEDA AMABILIS BP.

Zenaida Dove. [449.] .
463. ENGYPTILA ALBIFRONS (BP.) COCES. White-fronted Dove.
464. MELOPELIA LEUCOPTERA (L.) BP.

White-winged Dove. [450.]
46j. CHAMAPRIIA PASSERINA (L.) SwANN. Ground Dove. [453.]
466. SCARDAFELYA INCA (Less.) Bp.

Scaled Dove. [452.]
467. GEOTRYGON MARTINICA (Gm.) Bp.

Key West Dove. [454.]
463. STARNCENAS CYANOCEPHALA (LINN.) Bp. Blue-headed Dove. [455.]
469. ORTALIS VETULA MACCALLI (BMind) Ridgw. Chachalaca; Texan Guan. [450.]
470. MELEAGRIS GALLOPAVO LNN.

Mexican Turlzey. [45ะ.]
470 a. MELEAGRIS GALIOPAVO AMERICANA (Bartr.) COUEs.
Wild Turkey [45̃.]
471. Canace obscura (Say) Br.

Dusky Grouse. [459.]
471a. CANACE OBSCURA FUK,IGINOSA RIDGW.
Sooty Grouse.
471b. CANACE OBSCURA RICHARDSONII (Dougl.) Bard.
Richardson's Grouse.
472. Canace canadensis (Live.) Bp.

Canada Grouse; Spruce Partridge. [460.]
472a. CANACE CANADENSIS FRANKLINI (Dougl.) Baird
Franklin's Grouse. [461.]
473. BONASA UMBELLUS (Linn.) Steph.

Ruffed Grouse. [465.]
473a. BONASA UMBELLUS UMBELIOIDES (Dougl.) BAIRD.
Gray Ruffed G̣rouse. [465a.]
473b. BONASA UMBELiLUS SABINEI (Dougl.) Coues.
Orcgon Ruffed Grouse. [466.]
474. Lagopus albus (Gir.) Aud.

Willow Ptarmigan. [467, 470.]
475. LAGOPUS RUPESTRIS (Gir.) Leach.

Rock Ptarmigan. [468.]
476. LAGOPUS LEUCURUS Sw. White-tailed Ptarmigan. [469.]
477. CUPIDONIA CUPIDO (Livv.) Baird. Prairie Hen. [464.]
477a. CUPIDONIA CUPIDO PALLIDICINCTA RIDGW. Lesser Prairie Hen.
478. PEdicecetes phasianellus (L.) Elliot. Northern Sharp-tailed Grouse.
478a. PEDIGGCETES PHASIANELLUS COLUMBIANUS (Ord) Couea, Common Sharp-tailed Grouse. [463.]
479. Centrocercus urophasianus (Bp.) Swalis. ${ }^{\circ}$ Sage Cock. [462.]
480. ORTYX VIRGINIANA (L.) Bp. Bob-white ; American Quail. [471.]
480%. ORtYX VIRGINIANA FLORIDANA Coues. Florida Quail.
490b. ORtYX VIRGiniANA texana (Lawr.) Coues Texan Quail. [472.]
481. OREORTYX PICTA (Dolgl.) Baird.

Mountain Quail. [473.]

Proceedings of united states national museujr. 197
481a. OREORTYX PICTA PLUMIFERA (Gould) Ridgw.
Plumed Quail.
482. LiOPHORTYX CALIFORNICA (Sinaw) Bp.

Californian Quail. [474.]
483. LOPHORTYX GAMBELI Nutt.

Gambel's Quail. [475.]
481. CALIIPEPLA SQUAMATA (Tig.) GRAY.

Scaled Quail. [476.]
485. CYRTONYX MASSSINA (Less.) Gould.

Massena Quail. [47\%.]
486. ARDEA OCCIDENTALIS AUD.

Great White Heron; Würdemann's Heron. [488,489.]
487. ARDEA HERODIAS LINN.

Great Blue Heron. [40\%.]
[488.] ARDEA CINEREA LINN.
Common European Heron.
489. HERODIAS ALBA EGRETTA (Gmel.) Ridgw.

American Egret. [4E6,486 t.]
490. GARZETTA CAINDIDISSIMA (GMEL.) BP.

Snowy Heron. [485.]
491. DICHROMANASSA RUFA (BoDd.) Ridgw.

Reddish Egret; Peale's Egret. [482, 483.]
492. HYDRANASSA TRICOEOR LUDOVICIANA (Wils.) Ridgw.

Louisiana Heron. [484.]
493. FLORIDA C正RULEA (LINN.) BAird.

Little Blue Heron. [490.]
494. BUTORIDES VIRESCENS (Linn.) Bp.

Green Heron. [493.]
495. NYCTIARDEA GRISEA NFIVIA (Bodd.) AIIEN.

Black-crowned Night Heron. [495.]
496. NYCTHERODIUS VIOLACEUS (Linn.) Reich.

White-crowned Night Heron. [496.]
497. BOTAURUS LENTIGINOSUS (Montag.) Steph.

American Bittern. [492.]
498. ARDETTA EXILIS (Gmil.) Gray.

Least Bittern. [491.]
499. MYCTERIA AMERICANA LINN. Jabiru.
500. TANTALUS LOCULATOR LINN.

Wood Ibis. [497.]

198 PROCEEDINGS OF UNITİD STATES NATIONAL MUSEUM.
501. EUDOCIMUS ATBUS (T INN.) WAGL.

White Ibis. [499.]
502. IUDOCIMUS RUBER (LINN.) WAGL.

Scarlet Ibis. [493.]
503. PLEGADIS FALCINTLIUUS (LNN.) KAUP.

Glossy Ibis. [500.]
504. PLEGADIS GUARAUNA (LinN.) Ridgw.

White-faced Glossy Ibis. [500a.]
505. AJAJA ROSEA (BRISS.) RIDGW.

Roseate Spoonbill. [501.]
[506.] HIEMATOPUS OSTRALEGUS LINN.
European Oystercatcher.
507. HRMATOPUS PALIIATUS TEMM.

American Oystercatcher. [512.]
508. HFMATOPUS IVIGER PALL.

Black Oystercatcher. [513.]
509. STREPSILAS INTERPRES (Linn.) Illig.

Turnstone. [515.]
510. STREPSILAS MELANOCEPHALA Vig。

Black Turnstone. [516.]
511. APFRIZA VIRGATA (Gmel.) Gray.

Surf Bird. [511.]
[512.] VaneiluUs CRISTATUS Meyer.
Lapwing.
5.3. SQUATAROLA HELVETICA (LINN.) CUV:

Black-bellied Plover. [510.)
[514.] CHARADRIUS PLUVIAIIS LINN.
Golden Plover.
515. CHARADRIUS DOMINICUS MÜLL.

American Golden Plover. [503.7
[515a.] CHARADRIUS DOMINICUS FULVUS (GMEL.) RIDGF.
Pacific Golden Plover.
516. OXYECHUS VOCIFERUS (LiNN.) REICI.

Killdeer. [504.]
517. سGIALITIS SEMIPALIMATA (BONAP.) CABAN.

Semipalmated Plover. [507.]
515. FGGALITIS HIATICULA (LINN.) BoIE.

Ringed Plover.
[519.] FGIALItis CURONICA (Ginel.) Gray.
Little Ringed Plover.

Proceedings of united states national Museuni i 193
520. REGIALITIS MELODA (ORD) Bp.

Piping Plover. [508.]
520a. AEGIALITIS MELODA CIRCUMCINCTA RIDGW.
Belted Piping Plover.
521. RGIATITIS CANTIANA NIVOSA (CASS.) RIDGW.

Snowy Plover. [509.]
522. OCHTHODROMU:S WILSONIUS (ORD) REICH.

Wilson's Plover. [506.]
523. PODASOCYS MONTANA (TOWNS.) COUES,

Mcuntain Plover. [505.]
[594.] SCOLOPAX RUSTICULA LINN.
European Woodcock.
525. Phitohela minor (Gmel.) Gray.

American Woodcoch. [522.]
[506.] GALLINAGO MEDIA Leacil.
English Snipe.
526a. GALIINAGO MEDIA WILSONI (TEMM.) RwGW.
Wilson's Snipe. [523.]
527. MACRORHAMPHUS GRISEUS (GMel.) Leach.

Red-breasted Snipe; Gray Snipe. [524.]
527 a. MACRORHAIMPHUS GRISRUS SCOLOPACEUS (SAY) COUES.
Red-bellied Snipe; Greater Gray-back. [525.]
528. MICROPALAMA HIMANTOPUS (BONAP.) BAIRD.

Stilt Sandpiper. [536.]
529. TRINGA CANUTUS LinN.

Knot; Robin Suipe. [526.]
530. ARQUATELIA MARITIMA (BRÜNN.) BAUD.

Purple Sandpiper. [528.]
531. ARQUATEIILA COUESII RIDGW.

Aleutian Sandpiper.
532. ARQUATELLA PTILOCNBMIS (Coues) Ridgw.

Prybilov Sandpiper.
[533.] ACTODROMAS ACUMINATA (HORSF.) RIDGW. Sharp-tailed Sandpiper.
534. ACTODROMAS MACULATA (VIEILL.) COUES.

Pectoral Sandpiper. [531.]
535. ACTODROMAS COOPERI (BAIRD) COUES.

Cooper's Sandpiper, [527.]
586. ACTODROMAS FUSCICOLIIS (Viehll.) Ringw Bonaparte's Sandpiper. [533.]
${ }^{9} 00$ PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
537. ACTODROMAS BAIRDII CoUES.

Baird's Sandpiper.
538. ACTODROMAS MINUTILLA (Vieill.) BP.

Least Sandpiper. [532.]
[539.] PELIDNA ALPINA (LiNn.) BoIE.
European Dunlin.
539a. PELIDNA ALPINA AMERICANA CASS.
Red-backed .Sandpiper. [530.]
[540.] PELIDNA SUBARQUATA (Guld.) Cuv. Curlew Sandpiper. [529.]
541. EREUNETRS PUSIILUS (LINN.) CASS.

Semipalmated Sandpiper. [535.]
541a. RREUNETES PUSILLUS OCCIDENTALIS (LAWR.) COUES.
Western Sandpiper.
542. CALIDRIS ARENARIA (LINN.) ILLIG。

Sanderling. [534.]
543. LIMOSA FEDOA (LINN.) ORD.

Marbled Godwit. [547.]
544. LIMOSA LAPPONICA NOVAR-ZEALANDIA Grax. Pacific Godwit.
545. LIMOSA HREMASTICA (Linn.) COUES.

Hudsonian Godwit. [548.]
[546.] LIMOSA FGOCEPHALA (LINN.) LEACH. Black-tailed Godwit.
[547.] TOTANUS GLOTTIS (Linn.) Becist.
Green-shank. [538.]
548. TOTANUS MELANOLEUCUS (GMEI.) Vieill.

Greater Yellow-legs; Tell-tale. [539.]
549. TOTANUS FLAVIPES (Gmel.) Vieill. Yellow-legs. [540.]
550. RHYACOPHILUS SOLITARIUS (Wils.) CASS. Solitary Sandpiper. [541.]
[551.] RHYACOPHILUS OCHROPUS (LINN.) RIDGF. Green Sandpiper.
552. SYMPHEMIA. SEMIPAIMMAA (GMel.) Harti. Willet. [537.]
553. HETEROSCELUS INCANUS (GMEL.) CoUEs. Wandering Tattler. [54\%.]
[554.] MACHETES PUGNAX (LiNn.) Cuv.
Ruff. [544.]
proceedivás of united states national museum．こo1
555．BARTRAMIA LONGICAUDA（BECIST．）Bp．
Bartram＇s Sandpiper；Field Plover．［545．］
556．TRYNGITES RUFESCENS（Vieill．）Caban．
Buff－breasted Sandpiper．［546．］
55\％．TRINGOIDES MACULARIUS（LINN．）GRAY．
Spotted Sandpiper．［543．］
558．NUMENIUS LOIVGIROSTRIS Wils．
Long－billed Curlew．［549．］
л⿰氵9．NUMENIUS HUDSONICUS Lath．
Hudsonian Curlew．［550．］
560．NUMENIUS BOREALIS（Fonst．）LATH．
Eskimo Curlew．［551．］
［561．］NUMENIUS PHROPUS（LinN．）Lath．
Whimbrel．
［562．］NUMENIUS TAhitiensis（Gmel．）Cass．
Bristle－thighed Curlew．
563．PHALAROPUS FULICARIUS（Linn．）Bp．
Red Phalarope．［521．］
564．LOBIPES HYPERBOREUS（LINN．）Cuv．
Northern Phalarope．［520．］
565．STEGANOPUS WILSONI（SAB．）COUES．
Wilson＇s Phalarope．［519．］
566．RECURVIROSTRA AMERICANA GMLl．
American Avocet．［517．］
567．HIMANTOPUS MEXICANUS（MÜLL．）ORD．
Black－necked Stilt．［5i18．］
568．PARRA GYMNOSTOMA WAGL．
Mezican Jacana．
569．RAL工US ELEGANS Aud．
Red－breasted Rail．［542．］
570．RALLUS OBSOLETUS RIDGW．
Californian Clapper Rail．
571 RALIUS LONGIROSTRIS CREPITANS（GMem．）RIDGW．
Clapper Rail．［553．］
571a．RALLUS LONGIROSTRIS SATURATUS HENSH．
Louisiana Clapper Rail．
5\％2．RALLUS VIRGINIANUG LiNn．
Virginian Rail．［554．］
［5\％3．］PORZANA MARUETTA（Leache）Bp． Spotted Crake．

202 Proceedings of united states national museum.
574. PorzaiNa Carolifina (Linv.) Baird.

Sora Rail. [555.]
575. PORZANA NOVRBORACBNSIS (GMEl.) Balrd.

Little Yellow Rail. [55\%.]
5i6. PORZANA JAMAICENSIS (GMel.) Baird.
Little Elacik Rail. [556.]
$5 \approx 6 a$. PORZANA JAMAICENSIS COTURNICULUS BARD.
Farallone Rail.
[577.] CREX PRATENEIS Bechst.

- Corn Crake. [558.]

5i8. IONORNIS MARTINICA (Linn.) Reictu
Purple Gallinule. [561.]
579. GALLINULA GALEATA (Licit.) Bp.

Florida Gallinule. [560.]
580. FULICA AMERICAINA Gmel.

American Coot. [559.]
581. ARAMUS PICtUS (Dartr.) Coues.

The Limplsin. [481.]
583. GRUS Americaiva (Liny.) Temar.

Whooping Crane. [478.]
583. GRUS CANADENSIS (Linn.) Temm.

Sandhill Crane. [4₹9.]
584. GRUS FRATERCULUS Cass.

Little Crane. [480.]
585. PHGENICOPTBRUS RUBER LINT.

American Flamingo. [502.]
[586.] OLOR CYGNUS (Linn.) Bp.
European Swan.
[587.] OLOR MINOR (Pall.) Br.
Bewick's Swan.
583. OLOR Americanus (Siarpless) Bp.

Whistling Swan. [501 a.]
589. OLOR BUCCINATOR (Rici.) Wagl.

Trumpeter Swan. [56.]
590. ChEN CRRULDSCENS (Linn.) Ridgw.

Blue-winged Gcose. [564.]
591. Chen hyperboreus (Pall.) Bone.

Snow Goose. [563.]
591a. Chen hyperboreus albatus (Cass.) Rid.
Lesser Snow Goose [ü゙3a.]
proceedings of dnited states national museum.
592. CHEN ROSSII (BAIRD) RIDGW.

Ross's Snow Goose.
[503.] ANSER ALBIFRONS GMEL.
European White-fronted Goose.
$593 a$. ANSER ALBIFROINS GAMEDII (Hartl.) Coles.
American White-fronted Goose. [505, 566.$]$
594. BERNICLA CANADENSIS (LINN.) BONE.

Canada Goose. [567.]
594a. BERNICLA CANADEISIS HUTCHINSI (SW. \& RICH.) WOODII. Hutchins's Goose. [569.]

594b. BERNICLA CAINADENSIS LEUCOPARIA (Brandt) CAss. White-cheeked Goose. [563.]

534c. BERNICLA CANADENSIS OCCIDENTALIS (BAIRD) DALL \& BANN. Larger White-cheeked Gcose. [50\% a.]
595. BERINICLA BRENTA (Pall.) Sterif.

Brant. [500.]
596. BERNICLA IfIGRICAIJS (Lawr.) Cass. Elack Brant. [5~1.]
[59\%.] BERNICLA LEUCOPSIS (TEMM.) BoIE. Baruacle Goose. [5г2.]
593. PHiLACTE CANAGICA (Sevast.) Bannist. Emperor Goose. [573.]
599. DENDROCYGITA AUTUIMINALIS (LINN.) Eyt. Black-bellied Tree Duck. [5\%4.]
600. DFiNDROCYGNA FULVA (Garl.) Burm. Fulvous Tree Duck. [575.]
601. ANA.S BOSCAS Linv.

Mallard. [576.]
602. ANAS OBSCURA Gmel.

Black Duck. [5\%7.]
G03. ANAS FULVIGULA Ridgw.
Florida Black Duck.
604. CHAULELASMUS STREPERUS (LIN.) GRAT.

Gadwall. [584.]
605. DAFILA ACUTA (Linn.) Bonap.

Pintail. [5\%8.]
[606.] MARECA PENEIOPE (LiNN.) SELBY:
Widgeon. [586.]
60ヶ. MARECA AMERICANA (Gmel.) Steph.
Baldate. [585.]
$20 t$ proceedings of united states national museum
608. spatula clypeata (Linn.) Boie.
" Shoveller. [583.]
609. QUERQUEDULA DISCORS (Linn.) Stepir. Blue-winged Teal. [581.]
610. QUERQUEDULA CYanoptera (Vieill.) Cass.

Cinnamon Teal. [582.]
[611.] Nettion Crecca (Linx.) Kaup. English Teal. [580.]
612. Nettion Carolinansis (Guel.) Baird. Green-winged Teal. [579.]
613. AIX SPONSA (Linn.) Boie.

Wood Duck; Summer Duck. [587.]
614. FULIX MARILA (Linn.) Bairid. Scaup Duck. [588.]
615. FULIX AFFINIS (Eyt.) Baird. Little Blackhead. [569.]
616. FULIX COLIARIS (Dovov.) Baird.

Ring-billed Blackhead. [590.]
617. Aythy Vallisiseria (Wils.) Boie. Canvas-back. [592.]
618. AYthYa AmERICANA (Eyt.) Bp. Redhead. [591.]
619. CLANGULA ISLANDICA (Gxel.) Bp.

Barrow's Golden-eye. [594.]
620. CLANGULA GLAUCIUM ambricana (Br.) Ridgw. American Golden-eye. [593.]
621. CLANGULA ALbeOLA (Linx.) Stepi. Butterball; Bumehead. [595.]
622. Histrionicus minutus (Linx.) Dresser.

Harlequin Duck. [596.]
623. Harel.da glactalis (Liny.) Leaci. Long-tailed Duck; Old Squawr. [597.]
624. Camptolimmus labradorius (Gmel.) Gray. Labrador Duck. [600.]
625. POLYSTICTA STELLERI (Pall.) BRandt.

Steller's Duck. [598.]
626. Lampronetta fischeri brandt.

Fischer's Eider. [599.]
627. SOMATERIA MOLISSIMA (Linn.) Boie.

Common Eider.

62\% a. SOMATERIA MOLIISSIMA DRESSERI (SHALPE) CouEs.
American Eider. [606.]
623. SOMATERIA V-NIGRA GRAY.

Pacific Eider. [607.]
629. SOMATERIA SPECTABILIS (LiNn.) Boie.

King Eider. [603.]
630. ©EDEMIA AMERICANA SW. \& RICH.

American Scoter. [604.]
[631.] MELANETTA FUSCA (Linn.) Boie.
Velvet Scoter.
632. MELANETTA VELVETINA (Cass.) Bard.

American Velvet Scoter. [601.]
633. PELIONETTA PERSPICIILATA (LinN.) KAUP.

Surf Duck. [602.]
G34. ERISMATURA RUBIDA (Wils.) Br.
Ruddy Duck. [609.]
635. NOMONYX DOMINICUS (LiNN.) RIDGW.

Black Masked Duck. [610.]
636. MERGUS MERGANSER AMERICANUS (CASS.) RIDGW.

American Sheldrake. [611.]
637. MERGUS SERRATOR LINN.

Reন-breasted Sheldrake. [612.]
638. LOPHODYTES CUCULLATUS (Linn.] Reich.

Hooded Sheldralze. [613.]
639. TACHYPETES AQUILA (Linn.) Vieill.

Frigate Pelican. [619.]
640. PELECANUS ERYTHRORHYNCHUS GMEL.

American White Pelican. [615.]
641. PELECANUS PUSCUS Linn.

Brown Pelican. [616.]
649. PHALACROCORAX CARBO (LINN.] Bp.

Common Cormorant. [020.$]$
643. PHALACROCORAX DIEOPHUS (Sw. \& Ricn.) Nutt.

Double-crested Cormorant. [623.]
643a. PHALACROCORAX DILOPHUS FLORIDANUS (AUD.) RIDGT.
Florida Cormorant. [694.]
6436. PHALACROCORAX DILOPHUS CINCINNATUS (BRANDT) RIDGW White-crested Cormorant. [6?2.]
644. PHALACROCORAX MEXICANUS (Brandt) RidGW.

Mexican Cormorant. [625.]

206 PROCEEDINGS OF UNITED STATES NATIONAL MUSELYI.
645. PHALACROCORAX PENICILIATUS (BRANDt) HeERM.

Brandt's Cormorant. [626.]
646. PHALACROCORAX VIOLACEUS (Gmel.) RidgW.

Violet-green Cormorant. [627.]
646a. PHALACROCORAK VIOLACBUS RESPLENDENS (AUD.) RILGW.
Baird's Cormorant.
647. PHALACROCORAX BICRISTATUS PALL.

Red-faced Cormorant.
648. PHALACROCORAX PERSPICILLATUS PALL. Pallas's Cormorant. [621.]
649. PLOTUS APJHINGA Linn.

American Anlinga; Snake Bird. [628.]
650. sula bassana (Linn.) Briss.

Gannet. [617.]
651. SULA CYANOPS Sundev. Blue-faced Gannet.
652. SULA LEUCOGASTRA (Bodd.) Salv. Booby Gannet. [618.]
653. SULA PISCATOR (LINN.) Bp. Red-footed Booby.
654. PHAËTHON FLAVIROSTRIS BRAND't. Yellow-billed Tropic Bird. [629.]
655. PHAËTHON ATHEREUS LINN. Red-billed Tropic Bird.
656. RHYNCHOPS NIGRA LINN.

Black Skimmer. [697.]
65\%. PAGOPHILA TBURNEA (Phipps) KAUP. Ivory Gull. [676, 677.] .
658. RISSA TRIDACTYLA (LinN.) Bp. Kittiwake Gull. [672.]
658a. RISSA TRIDACTYLA KOTZBUEI (BP.) CoUES. Pacific Kittiwake.
659. RISSA BREVIROSTRIS Brandt. Red-legged Kittiwake. [674,675.]
660. LARUS GIAUCUS Brünv.

Glaucous Gull; Burgomaster. [656.]
661. LARUS LEUCOPTERUS FAbEr. White-winged Gull. [658.]
662. LARUS GIAUCESCENS LICITT. Glaucous-winged Gull. [657, 659.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM
663. LARUS MARINUS LINN.

Great Black-backed Gull. [6c0.]
664. LARUS OCCIDENTAIIS AUD.

Western Gull. [662.)
[66i.] LARUS AFFINIS REINif.
Siberian Gull.
6G6. LARUS ARGENTATUS BRÜNN.
Herring Gull.
666a. LARUS ARGENTATUS SIVITHSONIANUS COUES.
American Herring Gull. [661.]
667. LARUS CACHINNANS Pall.

Pallas's Herring Gull.
668. JARUS CALIFORNICUS Lawr.

Californian Gull. [663.]
669. LARUS DELAWARENSIS ORD.

Ring-billed Gull. [664.]
670. LARUS BRACHYREIYNCEUS RICH.

Short-billed Gull. [664a, 665, 673.]
[671.] LARUS CANUS LINN.
Mew Cull.
672. LARUS HEERMANNI CASS.

Heermann's Gull. [666.]
673. LARUS ATRICILLA LINN.

Laughing Gull. [667.]
674. LARUS FRANIKLINI Sw. \& Ricir.

Franklin's Gull. [668,669.]
675. LARUS PHILADRLPFIIE (Ond) Gray.

Bonaparte's Gull. [670.]
676. RHODOSTETEIA ROSE \triangle (MACGILL.) BRUCH.

Ross's Gull. [(678.]
67\%. IEEIVA SABINEI (J. Sabine) Leach.
Sabine's Gull. [680.]
678. CREAGRUS FURCATUS (NEb.) Bp.

Swallow-tailed Gull. [679.]
679. Sterna angulca Montag.

Gull-billed Tern. [681.]
680. STERNA CASPIA Pall.

Caspian Tern. [682.]
681. STERNA REGIA GAMD.

Royal Terv. [683.]

Proceedings of united states national museum.
682. STERNA EEEGANS Gand.

Elegant Tern. [684.]
683. STERNA CANTIACA ACUFLAVIDA (CAbOT) RIDGW.

Cabot's Tern. [685.]
684. STERNA TRUDEAUI AUD.

Trudeau's Tern. [687.]
685. STERNA FORSTERI NUTT.

Forster's 'Tern. [691, 686.]
686. STERNA FLUVIATILIS NAUM.

Common Tern. [689.]
687. STERNA MACRURA NaUM.

Arctic Tern. [690, 693.]
688. STERNA DOUGALLI Montag.

Roseate Tern. [692.]
689. STERNA ALEUTICA BAIRD.

Aleutian Tern.
690. STERNA ANTILLARUM (Less.) Coues.

Least Tern. [694.]
691. STERNA FULIGINOSA Gmel.

Sooty Tern. [688.]
692. STERNA ANRSTHETA SCOP. Bridled Tern.
693. HYDROCHELIDON LARIFORMIS SURINAMENSIS(GMEL.)RidGW. Black Tern. [695.]
[694.] HYDROCHELIDON LEUCOPTERA (Weisn. \& Schinz) Boie.
White-winged Black Tern.
695. ANOUS STOLIDUS Linv.

Noday Tern. [696.]
696. MEGALESTRIS SKUA (BRÜNN.) RIDGW.

Skua Gull. [652.]
697. STERCORARIUS POMATORHINUS (TEMM.) ViEILf

Pomarine Jaeger. [653.]
698. STERCORARIUS PARASITICUS (LINN.) SCHEFF.

Richardson's Jaeger. [654.]
699. STERCORARIUS BUFFONI (BOIE) Coues.

Long-tailed Jaeger. [655.]
700. DIOMEDEA NIGRIPES AUD.

Black-footed Albatross.
701. DIOMEDEA BRACHYURA TEMM.

Short-tailed Albatross. [631.]
［702．］DIOMEDEA CULMINATA Gould．
Yellow－nosed Albatross．［632．］
703．PHCEBETRIA FULIGINOSA（GMEL．）BP．
Sooty Albatross．［ 63% ．］
704．OSSIFRAGA GIGANTEA（GM．）REICH．
Giant Fulmar．［6：3．］
705．FULMARUS GHACIALIS（LINN．）ATEPH．
Fulmar Petrel．［6：\％）．］
705u．FULMARUS GLACIALIS PACIFICUS（AUn，）Bp．
Pacific Fulmar．［ $0 ; 3.0$
\％0．7b．FULMARUS GLACIALIS RODGERSI（CASs．）COUES．
Rodger＇s Fulmar．
70\％．PRIOCELLA TENUIROSTRIS（IUD．）RIDGW．
Slender－billed Fulmar．［6：37．］
ふル．PRIOFINUS MELANURUS（BONN．）RIDGW．
Black－tailed Shearwater．
［70飞．］PUFFINUS KUHLII（BOIE）BP．
Cinereous Shearwater．［651．］
709．PUFFINUS MAJOR FABEI：
Greater Shearwater．［647．］
710．PUFFINUS CREATOPUS（＇OOPEI．
Pink－footed Shearwater．
［711．］FUFFINUS ANGIORUM TEmm．
Manx Shearwater．［649．］
712．PUFFINUS AUDUBONII FINSCH．
Dusky Shearwater．［650．］
\％13．PUFFINUS GAVIA（FORs．）FINscir．
Black－vented Shearwater．
714．PUFFINUS 玉ULICINOSUS STMCKL．
Siooty Shearwater．［648．］
715．PUFFINUS GRISEUS（1ヵM．）FINSCH． Dark－bodied Shearwater．

716．PUFEINUS TENUIROSTRIS TEMM． Slender－billed Shearwater．

71\％．CESTRELATA HESITATA（TEMM．）COUEs． Black－capped Petrel．［ 63 3 ．］
［71ヶ．］CESTRELATA BULWERI（JARW．\＆SELBY）COUES． Bulwer＇s Petrel．
［ 19.$]$ DAPTION CAPENSIS（LINN．）STEMH．
Pintado Pecrel；Cape Pigeon．［ $5 ; 3 \%$ ．］

720. HALOCYPTENA MICROSOMA COUES.

Least Petrel.
721. PROCELLARIA PELAGICA LINN.

Stormy Petrel; Mother Carey's Chicken. [645.]
722. OCEANITES OCEANICA (Kuml) Coues.

Wilson's Petrel. [644.]
CYMOCHOREA LEUCORRHOA (VieIll.) Coues.
Leach's Petrel. [64.]
CYMOCHOREA MELANIA (1ir.) Coues.
Black Petrel. [643.]
;25. CYMOCHOREA HOMOCHROA CouEs.
Ashy Petrel.
726. OCEANODROMA FURCATA (Gmel.) Br.

Fork-tailed Petrel. [640.]
7id. OCEANODROMA HORNBYI (Gray) Bp.
Hornby's Petrel. [641.]
72\%. FREGETTA GRALL.ARIA (Vieill.) Br.
White-bellied Petrel. [646.]
729. 压CHMOPHORUS OCCIDENTALIS (LAWI.) COUES.

Western Grebe. [704.]
730. $\not \approx C H M O P H O R U S C L A R K I I ~(L A W r) ~ C o U E S .$.

Clark's Grebe. [705.]
731. PODICEPS HOLBÖLLI REINH.

American Red-necked Grebe. [702,703a.]
73\%. DYTES CORNUTUS (Gm.) Kaup.
Horned Grebe. [706.]
[733.] DYTES AURITUS (LinN.) Ridgw.
Eared Grebe. [70z.]
733a. DYTES AURITUS CALIFORNICUS (Lawr.) Ridgw.
American Eared Grebe. [707.]
734. TACHYBAPTES DOMINICUS (Linn.) Coues.

St. Domingo Grebe. [708a.]
735. PODILYMBUS PODICEPS (LINN.) LAWR. Thick-billed Grebe. [709.]

7:\%. COLYMBUS TORQUATUS BRÜNN.
Loon. [698.]
73\%. COLYMBUS ADAMSI GRAY.
Great White-billed Loon.
738. COLYMBUS ARCTICUS LINN.

Black-throated Diver. [699.]
739. COLYMBUS PACIFICUS Lawr.

Pacific Diver. [700.]
740. COLYMBUS SEPPENTRIONALIS LINN.

Red-throated Diver. [701.]
741. ALCA IMPENNIS Linn.

Great Auk. [710.]
742. UTAMANIA TORDA (Linn.) Leach.

Razor-billed Auk. [711.]
743. FRATERCULA ARCTICA (LINN.) Steph.

Common Puffin. [715, 716.]
743a. FRATERCULA ARCTICA GLACIALIS (LEACH) RIDGW.
Large-billed Puffin. [714.]
744. FRATERCULA CORNICULATA (Naum.) Gray.

Horned Puffin. [713.]
745. LUNDA CIRRHATA 1'ALL.

Tufted Puffin. [712.]
746. CERATORHINA MONOCERATA (PAli..) CASS.

Horn-billed Puffin. [717,718.]
747. PHALERIS PSITTACULA (Pall.) TEMM.

Parrot Auls. [7:5.]
748. SIMORHYNCHUS CRISTATELLUS (PALL.) MERREM.

Crested Auk. [719, 720.]
749. SIMORHYNCHUS PYGM居US (GMEL.) RIDGW.

Whiskered Auk. [721.]
750. CICERONIA PUSILLA (Pall.) Ridgw.

Least Auk. [722, 723.]
751. PTYCORHAMPHUS ALEUTICUS (Pall.) Brandt.

Cassin's Aulz [7:2.]
752. ALLE NIGRICANS LINK.

Sea Dove; Dovekie. [738.]
753. SYNTHLIBORHAMPHUS ANTIQUUS (GM.) COUES.

Black-throated Guillemot. [7:36.]
754. SYNTHLIBORHAMPHUS WURMIZUSUME (TLMM.) COUES. Temminck's Guillemot. [$7: 3 \%$.]
755. BRACHYRAMPHUS MARMORATUS (GM.) Brandt.

Marbled Guillemot. [73:, 73:3.]
756. BRACHYRHAMPHUS KITTLITZI BRANDT.

Kittlitz's Guillemot. [7:35.]
75\%. BRACHYRHAMPHUS HYPOLEUCUS XANTUS.
Xantus's Guillemot.

212 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
758. BRACHYRHAMPHUS CRAVERI (SALVAD.) Coues.

Craver's Guillemot.
759. BRACHYRHAMPHUS BRACHYPTERUS BRANDT.

Short-winged Guillemot. [734.]
760. URIA GRYLLE (Linn.) Brënn.

Black Guillemot. [726.]
761. URIA COLUMBA (Pall.) Cass.

Pigeon Guillemot. [727.]
76\%. URIA CARBO (Pall.) Gray.
Sooty Guillemot. [728.]
763. LOMVIA TROILE (Linn.) Brandt.

Common Guillemot. [729, 730.]
763 a. LOMVJA TROILE CALIFORNICA (Bryant) Coues. California Guillemot.
764. LOMVIA ARRA (PALL.) Bp.

Thick-billed Guillemot.
764a. LOMVIA ARRA BRUNNICHI (SCH.) RIDGW.
Brunnich's Guillemot. [731.]

APPENDIX.

The following tables are intended as a condensed analysis of the changes which have taken place in North American ornithology since 1859, with other items of interest in the same connection.

Catalogue No.

4. Cathartes burdovianus, Cassin Not North Americh?
5. F'alco nighiceps, Cassin $=$ No. 414.
6. Accipiter mexicanus, Straihs. $=$ No. 431.
7. Buteo balrihe, Moy $=$ No. 442 , young.
8. Buteo inshenates, Cassin $=$ No. 44:, melanistic.
9. Buteo moxtanus, Nuttall $=$ No. 436b, lighter phase.
10. Buteo oxypterus, Cassin $=$ No. 442 , yougg.
11. Archibuteo lagopes, Gray $=$ No. 447, light phase.
12. Haliaëtus pelageus, Siebold. Not North American.
13. Hababitus wasinngtoni, Jard. $=$ No. 451, yomg female.
14. Nyctale albhfrons, Cassih = No. 401, young.
15. Athenle cuniculahia, Bon, The true cunicularia is a South American form.*
16. Crotophaga rughrustris, Sw. $=$ No. 3×9.
17. Campephlus hmperhals, Gray. Not North American.
18. Sphypopicts whlmanonif, Baird = No. 370, adult male.
19. Lanporxis mango, Swains. Not North American. [$=$ L. violicauda (Bodd.) Ell.]
20. Tyrannus melancholicus, Vieill. Not North American.

16ia. Var. Meiothla loxihbostris, Baird. \dagger
171. Geothlipss velatus, Cab. Not North American.
215. Myhomoctes bonapabter, Aud. $=$ No. 127, young.

シ39. Collymo elegans, Bairl. An Asiatic species (Lanius lahtora, Sykes.).
242. Vibeo virescens, Vieill. $=$ No. 135?
$253 a$. Var. Mnucs cacbates, Bairl. Not separable from polyglottus.
259e. Harpohifychets vetula, Bairl = No. 15.
201te. Harpormynchus moxgicauda, Bairl. Scarely separahle from rufus.

2ata. Var. Yabus albescens, Bairl = No. $41 a$.
209. Caheodacus hammornhous, Wagl. Not North American?
311. Chirsomithes stanley1, Bonalp. Not North Americall. [=C. barbata (Mol.).]

31\%. Chirsomitris ramelel, Bonap, Not North American.
3:4. Leucosticte abctous, Bonap. No shfïcient evidence of oceurrence in North Amerta.
329. Plectrophanes melanomus, Bairl $=$ No. 189.
365. Melospiza gouldif, Baird $=$ No. $2: 31 c$.
405. Truplalis militaris, Bonap. Jot North American.

[^11]Catalogue No.
424. Convts cimaloth, Wagl. $=$ No. 280.
470. Latiofus ammeicantis, Amd. $=$ No. 475.
45^{2}. Demeghetta pealif, Baid $=$ No. 491, white phase.
$486 a$. Heromias mgretta v . californica $=$ No. 489.
488. Ardea wutidemannh, Bairl $=$ No. $4 * 6$, colored phase.
494. Butorides biunnescens, Bairt. Not North American.
514. Haematorus atele, Viellot. Nol North American.
565. Anser froxtalls, Baird = No. 593 , young.
603. Pelionetta trowbridgif, Bairl = No. 633.

605 . Oidehila bimaculata, Baird $=$ No. 632, young.
630. Dhomebea exulans, Lim. Not North American.
659. Laris chalcohtebues, Lawr. $=$ No. 699.
665. Larits suckleyt, Lawt. $=$ No. fir0, young.

669 . Ciroicocephalus cucullatus, Br. $=$ No. 674, young, second year.
671. Chieofcucepmalus minutus, Brach. Not North American.
673. Risea seitenthionalis, Lawr. $=$ No. 670, celult.
675. Rissa nivea, Bruch = No. 659.
677. Pagophla beachytaresi, Hölb. = No. 67%.
686. Sterna havelle, Aul. $=$ No. 685, winter plumuge.
693. Sterna pikel, Lawr. $=$ No. 687, young.
703. Podiceps chstatus, Lath. Nol North American?

703a. Poniceps cooperi, Lawr. = No. 731, young.
716. Sagmatorimina lableadobla, Cas. $=$ No. 74.5, young.
718. Cerohimina suckleyt, Cassin $=$ No. 746 , youny.
720. Phalehis tetracula, Stephens $=$ No. 748 , winter dress.

72?. Phaleris moroceros, Brandt = No. 750 , summer diess.
730. Ubia hingyta, Briamich $=$ No. 7633 , individual phase.
733. Brachymhanhilus whangelil, Br. $=$ No. 755, wiuter dress.

Seven of the atove are included in Cones's "Check List of North American Birds" (1873), viz, numbers 88, 100, 309, 188, 563a, 603, 693, and 703; the "quivalent numbers of the "Cheek List" bringy, respectively, 305. 274, 141a, 450, 480a, 5184, 568, and 609-some of them hearing a difficrent naue from that giren in the smithsonian catalogue. Besides the foregoing, there are given in the "Check List" the following nutrable names:
146a. Lgiothus linama (L.) Cab, cul. fescescens, Cs. = No. 179, midsummer dress. 157 bis. C'extronyx ochmocerilalus, Aiken = No. 191, antumul plumage.
[187.] Passele domesticus, Limi. Au introduced specics.
215 (1. Lcterus spurius (L.) Bp. rar. affinis, Lawr. Not separable from I. spurius. [283.] Agybtria minemel (Bl.) --. Not North Americhen. [=A. tobaci (Gm.) Ell.] 374 a. Chamepela passehina (L.) Sw. rat. palescens, (Bd.) Cs. Chtemable race.
445 tor [appendix]. Ible thalassinus, Ridg. $=$ No. 504 , young.

b. Species and races described or added to the Morth American fanna since 1859.*

6. Turlus iliacus, Lim.-Cf. Reinhamot, Ibis, 1861, 6. (Greenland; two examples.)

Fat. Merda mhgeatoria propinqua, Ridgw.-Turdus migrutorious propinquas, Bull. Natt. Orn. Clul, ii. Jan. 18̈7, 9. (Western U. S.)
8. Merula confinis, Baird.-Turdus confinis, Review Am. B. i. 1864, 29. (Todos Santos, Cape st. Liteas.)
14. Harporiynchus cineheus, Manths.-Proc. Plilad. Acad. 1859, s98. (Cape St. Lucas.)
14a. Hardonmychus cinereus bendirer, Coues.-Am. Nat. vii. June, 1873, 330, lig. 69. (Tucson, Arizona ; C. Bendire.)

[^12]
Cataloguo No.

15a. Harporaivechus Culivhostris palmeri, Ridgw.-H. curirostrib, valr, palmeri, Ridgw. in Coucs's Key, 1ãe, 3̄̄1. (Arizona.)
18. Harbormynchuts graysont, Baird.-Cf. Latwr. Aun. Lye. N. Y. n. Feb. 1871, (Socorro I.)
 Alaska; seven examples.)
31. Regitlus obscurds, Ridgw.-R. culmalula obscurus, Bull. U. S. Geol. de Geog. Surv. Terr. ii. No. ${ }^{2}, \Lambda_{\text {pr }}$. 1, 1876,184 . (Guadalupe 1., Lower California.)
B3a. Regulus satrapa oliviceus, Baird,-R. satrapa, var, otiracens, Baird, Review Am. Birds, i. July, 1864 , 65 (in text). (Western United States.)
34. Plylloscopas borealis (Blas.) Dress.-Phyllopneuste lemmicotti, Baidr, Trans. Chicago Acarl. i. 1869, 313, pl. 30, fig. .2. (Nt. Michat's, Alaska.)
44. P'urus cinctus, Bodd.-P. sibiricus (Gm.) Ridgw. Bull. Nutt. Onn. Clnb, ii. Jan. 1-78, 37. (St. Mirhael's, Alaska; L. M. Turner.)
46a. Pabus mipescens neglectus, Ridgw.- 1 '. mfercens, β, neglectus, Proe. IT. S. Nat. Mus. i. Apr. ${ }^{2} 5,1279,485$. (Coast California.)
57. Camproomyncurs AfFinis, Xantus.-Proc. Philad. Acad. 1859, :998. (Cape St. Lncas.)
jéa. Salifinctes obsoletus guadalupensis, Ridgw.-Bull. U. S. Geol. \& Geog. Surv. Terr. ii. No. 2, Apr. 1, 1876, 1~5. (Guadalupe I., Lower Califormia.)
ida. Catherpes mexicanus conspersus, lidgw.-('. mexiemus, var conspersms, Ridgw. Am. Nat. Oct. 1<73, 602. (Middle I'rovince of IT. S.)
b0b. Thiviotiobres lubovichanus mamensis, Ridgw.-T. ludoricionus (Lath.) var. miamensis, Am. Nat. is. Ang. 1875, 469. (Miani River, E. Florida.)
(ila. Timyomanes bewichi spimurus (Vig.) Baird.-Review Am. Birds, i. 1864, 106. (Pacific slope of United States.)

61b. Timiomanes bewicki leucogaster, Baird.-Review Am. B. i. 1064, 127. (Sonthern border of U. S.)
G2. Thirgmanes mevicauda, Ridgw.-Bull. U. S. Geol. \& Geog. Surv. Terr. ii. No. : , Apr. 1, 1876, 186. (Guadalupe I., Lower California.)
64. Troglonytes insularis, Baird.- Cf. Lawr. Amin. Lyc. N. Y. x. Feb. 1ril, is, (Nocorto 1.)
65!f. Anortuura troglodytes pacificus, Baird.-T. hyemalis, var, pacificus, Review Am. 1. i. 1864, 145. (Pacitic coast U. S.)
Gf. Anohethrlat alascensis, Baird.-Troglodytes aluseensis, Trams. Chicago Acad. i. 1~69, :315, pi. 30, fig. 3. (St. (4eorge's Island, Alaska; W. H. Dall.)
Gfu. Telamtohytes palustieis paludicola, Baird.- Cistothorus pulustris, var. peIudicolu, Review Am. B. i. 1864, 14太. (Pacifie coast U. S.)
69. Motucille albu, Lisin.-Cf. Reivinardt, Ibis, 1861, 6. (Greenland.)
70. Butytes flart (Limn.) Gray.--('f. Bínin, Trans. Chicago Ac. i. 1860, :3, pl. 30, fig. 1. (St. Michat's, Alaska; Pease \& Bamister.)
76. Authens pretensis (Limı.) Bechst.-Cf. PaUlsen, ed. l[̈̈lboll, l'aun. Grönl. 1846, \$4; Reinif. Ihis, 1861, 6 (Greenland) ; B. B. \& R. Hist. N. Am. B. i. 1074, 173. (St. Mh'lat's, Alaska.)

74a, Mniotiltu raria borcalis (Nutt.) Ridgw. [See p. 213, foot-note.]
so Helminthophaga latwencei, Herriek, Proc. Philad. Acad. 18it, 2e0, pl. xv.

82. Helainthopilatia meucobronchialis, Brewster.-Am. Sportsman, v. Oet., 1874; Bull. Nott. Orn. Cluh, i. 1N76, 1, plate. (Massachusetts.)
83. Helmanthopilaga luclis, Cooper.-1'roe, Calif. Acad. Sci. July, 1e61, $1 \geqslant 0$. (Ft. Mojave, Califormia.)
86a. Helminthophaga celata lutescens, Ridgw.- H. celata, var. Intescens, Ridgw. Am. Jour. Sci. \& Arts, third ser. iv. Dec. 187: 45\%. (Pacifie coast U. S.)
89. Pabula phtayuni insularis (Lawr.) Ridgw.-P'omela insularis, Lawr. Anu. Lye. N. Y. x. Veb. lef1. (Socorro I., N. W. Mcxico.)

Catalosue No.
89a. Parmla pithayum nighlora, Comes--l'. mighilora, Bull. 1. S. Geol. \& Geog Surv. Terr. iv. 1-7̌, 11. (Ililalgo, Texas; (i. B. Somett.)
92. Pencedramus oliracens (Giraud) Cones.-Syluia oliraca, Girand, Texan Birds, 1si1, 14, pl. vii. fig. 巳. ("Texas.")-Dendrach olirafen, ILansil. Am. Sportsman, ヶ. :328, Feb. 20, 1875; Om. Wheeler's Exp. 1w75. "02\%. (S. Arizona.)
10Bu. Dendreca dominica albilora, Baid.--I. Domiuica, var. albilora, Am. Nat. vii. Oct. 1873, 605. (Mississiphi Valley, soutl to Guatemala and Honduras.)
104. Dendmeca grache, Cones.-Cf. Bamb, Review Aim. B. i. 1éfi, 210. (Ft. Whipple, Arizona; Cones.)
106. Deniheca chrysoparia, Scl. \& Salv.-Cf'. Bamb, Review Aim. B. i. 1864, 185, foot-note. (San Antonio, 'Texas; Heermann.)
113u. Dendreca palmarum hypocurysea, Ridgw.-Bull. Nutt. Om, Club, Nov. 18 ari, c.t, 85. (Atlantic States.)
116e. Siurus nevids notablels, Grimell.-Gf. Ridgw. Proc. U. S. Nat. Mns. iii. March 2^{2}, 1850, 1:. (Black Hills, Wyoming.)
12oru. Wilsonia pushla prleolata (Pall.) Ridgw.-Myiodioctes pusillus, var. pileoluta, Ridgw. Am. Jour. Sci. \& Arts, iv. Dec. 1872, 457 ; Am. Nat. vii. Oct. 1873, 607. (Pacific coast N. Am.)
131. Curdellina rulrifrons ((iiraud) Scl--Muscicapu rubrifrons, Giraud, Texan Birds, 1841, pl. vii. fig. 1. ("Texas.")-Curdellinu rubrifrons, Henshaw, Orn. Wheeler's Exp. 187.5, 211 . (Arizona.)
133. Basilenterus enlicirorus (Licht.) Bp.-Muscicapa brasicri, Girand, Texan Birls, 1841, pl. vi. fig. : 2.
134. Basileuterus bellii (Girand) Scl.-Muscicapa belli, Girand, Texan Birds, 1841, pl. iv. fig. 1.
139a. Vheeosylvia gilva swansoni, Bairl.— Fireo swainsoni, Baird, B. N. Åm. 1858, 336, in text. (Pacific coast U. S.)
141b. Lantireo solmarius plumbeus (Comes) Allen.-Tireosylvia plumbea, Cones, Proc. Philad. Acald. 1866, 73 . (Ft. Whipple, Arizona.)
146. Vireo pusillus, Cones.-Proc. Philarl. Acad. 1866, 76. (Date Creek, Arizona.)
147. Vireo vicinior, Cones.-Proc. Philad. Acad. 1866, 75. (Ft. Whipple, Arizona.)
1496. Lanuus ludovichanus nobustus, Bairl.-Collwio Ludoriciemus, var. robustus, Ant. Nat. vii. Oct. 1873, 608. (Califomia?)
164a. Pyranga estiva cooperi, Ridgw.-P'yranga cooperi, Proc. Plilad. Acad. 1869, 1:30. (s. W. Unitel States.)
167. Pypmula cassini, Baird.-P. coccimea, var. chassini, Trans. Chicago Acad. i. 1869, 316, pl. 29, fig. 1. (Nulato, Alaska; W. H. Dall.)
170u. Curpodecus froutalis rhodocolpus (Cahan.) Ridgw.-(ff. Ridgw. An. Jour. Sci. d. Arts, ᄃ. Jan. 1873, 39. (Coast of Calitormia.)
171. Cabpodacus amplus, Rifgw.-Bull. U. S. Geol. \& Geog. Surv. Terr. ii. No. 2, Apr. 1, 1876, 187. (Guadalupe I., Lower Cal. ; E. l’almer.)
175a. Leucosticte tepirocotis littoralis (Baird) Ridgw.-L. littoralis, Baird, Trans. Chicago Acad. i. 1869, 318, pl. 28, tig. 1. (Sitka, Alaska.)
176. Leucosticte atrata, Ridgw.-Am. Sportsman, Jnly 18, 1874, 241. (Colorado; C. A. Aiken.)
177. Leucheticte australis, Allen.-L. tephoootis, var. australis, Alleh. Cf. Ridgiw. Bull. Essex Inst. v. Nov. 1873, 189. (Mt. Lincoln, Colorado.)
178a. Egiotius canescens rxilipes (Cones) Ridgw.-Eyiothns exilipes, Coues, Proc. Philad. Acad. Nov. 1861, 385. (Aretic America.)
179a. Ayiothus linaria holbölli (Brehm) Ridgw.-Linarin holbülli, Brehm, Vüg. Dentschl.
180. Egiothus brewsteri, Ridgw.-Ayiothus (flavirostris var.) breusterii, Ridgw. Am. Nat. July, 1872, 433. (Waltham, Mass.)
182a. Astragalinus psaltria arizone (Cones) Ridgw.-C. mexicana, var. arizome, Conts, Proc. Philad. Acad. 1866, 80 . (Ft. Whipple, Arizona.)

Catalogre No．

195．I＇asserculus gutcatus，Lamr－Am．Ly̌．N．V．viii．J8it，473（Cipe St．Lileas）． （ f ．Coorme，Orn．（＇ial．i．1ETV， 185.
197a．Poucetes gramincas comfinis．Baisd．－1＇gramincus，var．comfinis，Baird，B．N．An． $1-58$ ， 448 ，in text．．（Western li．s．）
198a．Coterniculus passemines perialilddus，Ridgw．－C．passerimus，var．perpalli－ dus，Ridgw．iu Cones＂s＂Ker＂，187？，137．（Western U．S．）
 1875，93．（N．E．llhimois．）
203．Ammodromus nigkescens，Ridgw．－A．maritimus，var，nigrescens，Ridgw．Bull． Essex Lust．Dec．1073，192．（Indian R．，Nlorida．）
©04u．Chondestes grommion strigutus（Sw．）Riderw．
Mr．H．K．Coale，of Chicago，Ill．，has lately called my attention to cercain differences between eastern（typical）and western specimens of this species，which，upon remination of a large series，I find to be quite constant and sufficiently appreciable to warrant the recognition of a western race．Western birds being exactly like those from Mexico in those points in which they ditfer from eastem specimens，Swainson＇s name strigatus（Chondestes strigatus，Philos． Jour．i．182 ${ }^{7}, 435$ ），bascl upon the Mexican bird，is available for the western and soutbern race．

20fa．Zonothichia qambeli intermedra，Ridgw．－Z．leucophrys，var，intermedia， Ridgw．Bull．Essex Inst．Dec．1－73，19天．（Midelle Province of U．S．，north to Alaska．）
211a．Spizella socialis afizone，Colles．－S．socialis，vil．arizona，Coues，Key； 187．，143．（Ft．Whipple，Arizona．）
216．Junco Aifent，Ridgw．－J．hyemalis，val．Ailiemi，Ridifw．Am．Nat．Oct．1873，612， 614．（Mts．of Colorado；C．D．Aiken．）
219．Junco Annectens，Baird．－Om．Cal．i．1870，564．（Rocky Mts．，Ft．Bridger to Arizona and New Mexieo．）
2e3．Junco insulams，Ridgw．－Ball．U．S．Geol．\＆Geog．Smrv．Tert．ii．No．D，Apr． 1，1876，1－8．（Gnadahpe I．，Low゙er C＇al．；E．Pahner．）
 Bull．Essex Inst．Nov．1073，191．（Middle Province of U．S．）
gefid．Pelced estivilis illinofnsis，Ridgw．－I＇．illinocrsis，Bull．Nutt．Orn．Club， Oct．1859，219．（Texas to S．Illinois．）
 615．（S．Arizona．）
299．Pbucat caripalis，Cones．－Am．Nat．vii．Jme，187：322．（＇neson，Arizona；C． Bendire．）
？30a．Peucea muficers boucardi（Sel．）Ridgw．－Gf．Henshaw，Orn．Wheeler＇s Exp．1874，117．（S．Arizona amel S．New Mexieo．）
：31d．Melospiza fasciata gultatu（Nntt．）Ridgw．
This is the＂M．rufinc＂of the old catalogne．The trur M．mefina（Brandt）is a larger and darker form from Sifka，rediscovered since the publication of＂linds of North Ameriea＇ （1858）．

き31e．Melospizu fuseiatu rufua（Brantl）Ridgw．—Cf．B．B．N R．Hist．N．Am．B．ii． 15i4，29．（British Colmmbia to Sitka．）
 1869，319，pl．29．lig．\therefore ．（Kadiak，Alaska ；F＇Bischotì．）
 10\％1，36t．（Florida．）
2：8e．Pipilo maculatus consobrinus，Ridgw．－Bnll．U．※．Geol．\＆Geog．Surv． Terr．ii．No．2，Apr．1，1876，189．（Guatalupe 1．，Lower Cal．）
gobd．Pipilo maculatus cammani（Lawt．）Ridgw．－l＇ipilo cenmami，Lawh，Am， l．ye．N．Y．x．10i1．i．（Sucorvo 1．，N．W．Mexico．）

Catalogue No.
 Acarl. Nov. 1859, 305. (Cape St. Lucas.)
242a. Cardmalis virginianus igneus, Baird.-C: iguens, Balled, Proe. Philad. Acad. Nov. 1859, 305. (Cape St. Lucas.)
253. Ihonipart zena (Lim.) Bryant.—Cf. B. 13. \& R. Hist. N. An. B. ii. 1874, 93. (Key West, Florida; II. W. Henshaw.)
258a. Molothrus ater obscmus (Gmel.) Cones.-M. obscurus, Cass. Proc. Philad. 1866, 18. (Lower Califormia.)
259. Molothirus tmens (Wagl.) Cab.-Cf. Merrill, Bull. Nutt. Orn. Clnb, i. Jnly, 1876, 88. (Ft. Hown, Texas.)
263u. Sturiella magna mexicana (sol.) Ridgw.-(ff. Brewer, Bhll. Nutt. Orn. Clıh, iii. Jnły, 1878, 15:. (F't. Brown, Texas; J. C. Merrill.)
276. Quisealus palustris (Swains.) Cassin.-" (. mujor", Gambel, Jour. Philad. Acad. i. 1847, 47. (Gulf of California.) *

278b. Quiscalus versicolor aneus, Ridgw. - Q. enens, Ridgw. Proc. Philad. Acad. 1889, 134. (Mississippi Valley, Hurlson's Bay Terr., Maine, etc.)
[279.] Sturnus vulyaris, Linn.-Cf. Relnhardt, Lbis, 1861, 7. (Greenland.)
290a. Cyanocitta stelleri frontalis, Ridgw.-Cymmma stclleri, var. fromtalis, Ridgw. Am. Jour. Sci. \& Arts, third ser. v. Jan. 1873, 41, 43. (Sierra Nevada, California.)
290b. Cyanochtta stelleri annectens, Baird.-Cyumro stelleri, var. amucetens, Bairl, in B. B. \& R. Hist. N. Am. Birds, ii. 1874, 281, in text. (Northern Rocky Mts.)
297 a. Perisureus canadensis Capitalis, Bairl.- l^{\prime}. cumdensis, var. capitalis, Baiels, Bull. Essex list. V. Nov. 18i3, 193. (Rocky Momatains.)
$997 b$. Perisoretts canamensis fumiflons, Ridgw.-Proc. U. S. Nat. Mas. iii. March $22,1880,5 . \quad$ (Coast of A]aska.)
298. Pbrasorevs obscurus, Ridgw.-P. canadensis, var. obsemrus, Ridgw. Bull. Essex Inst. Nov. 1ri3, 194. (Northwest coast of U. S.)
[\%99.] Aldula aronsis, Limn.-Cf. Dresser \&. Shatpe, Bibds Emr. pt. -, and B. B. \& R. Hist. N. Am. B. ii. 1~74, 136. (Greenland and Bermuda.)

300t. Eremopilla alpestris leucoliema, Cones.-Birds N. W. 1874, 38. (Interior plains N. Am.)
300b. Lremophila alpestris chrysolamu (Wagl.) ——.-E. cormuta, var: chrysolamu, Bairn, B.N. Am. 1855, 40:3, in text. (Southwestern U. S.)
308. P'tangus derbianus (Kanp) Scl.-I'. derbyumus, Coues, The Comntry, July 13, 1-78, 184. (Lomita, Texas; G. B. Semmett.)
309. Myiozetctes texensis (Girand) Scl.-Muscicupu texensis, Graud, Texan Birds, 1841, pl. 1. ("Texas.")
310. Jiyiorlinastes luteicoulis, Bonap.-Cf. IImesilaw, Orn. Wheeler's Exp. 1875, 346, pl. xiv. (S. Arizoma.)
319. Contopus pertimax, Cab. \& Hein.-Cf. Coues, Proe. Philad. Acad. $1866,60$. (Ft. Whipule, Arizona.)
399. Empillonax fulrifrons (Girand) Scl-Muscicapa fulrifions, Ginatdy, Texau Birds, 1841,1 l. ii. ("Texas.")
329 a. Emploonax fulvirrons Pallescens (Coues) Ridgw.-Mitrephorus palleseens, Coctes, Proc. Philad. Acarl. Ie66, 63. (Ft. Whipple, Arizona.)
331. Ornithion imberbe (Scl.) Cones.- "O. inconescens", Coules, The Country, July 13, 187, 184. (Lomita, Texas; G. B. Semmett.)
331. Eugenes fulgens (Sw.) Gould.-Cf. Henshaw, Am. Nat. Apr. 1874, 241 ; Orn. Whecler's Exp. 1875, 379. (Mt. Graham, Arizona.)
341. Sielasphorus alleni, Henshaw.-Bull. Nutt. Orı. C'lub, ii. 1877, 54. (Coast of California.)

[^13]Catalogne No．
 plate．（EL I＇aso，T＇exas；．I．II．（larke．）
343．Stellula calliope，Goulk．－Culothonax calliope，Dantus，Proc．Philad．Acad．1859， 190．（Ft．Tejon，Cul．）
344．Calothorax lucifa（ぶ．）（hray．—＂Doricha enicura＂，Hexsir．Am．Sportsman，v． 328，Fob．：00，1～テ5；Orn．Wherler＇s Exp．1－75，381．Cf．Lawr．Bull．Nutt．Orn． Club，ii．Oct．18\％7，102．（Camp Bowie，Arizona．）
345．Amazilia fuscicaudata（Fras．）İikgW．－＂Pyrophana ricfferi＂，Mermile，Bull． Nutt．Orn．Cluh，i．Oct．Ieft，zR．（Ft．Brown，Texas．）（ff．Ringw．Proc．U． S．Nat．Mus．i．1～2人， 147 （synonymy and diagnosis）．
346．Amazilia yucatancusis（C＇ahot）Gould．－＂A．rervincirentris＂，Mernall，Bull．Nutt．
 Nat．Mus．i．1sí，14ふ（synomymy and diagnosis）．
347．Basimna Xantusi（Lawr．）Elliot．－Lmazilia xantusi，Lawr．Ann．N．Y．Lyc． vii．April， $1860,100(=9)$－Meliopadicat castanroctula，Lawr．t．c． 145 （＝ठ）．（Cape St．Lncas．）
348．Iuche latirostris（SW．）Eliot．－Cince latirostris，Hexsn．Am．Sportsman，V．Feb． 20，137．5；Orn．Wheeker＇s Exp．1875，3zU．（Chiracahma Mts．，S．Arizona．）
357b．Chordeiles popetue minor（Cab．）Ridgw．－Cf．B．IS A R．llist．N．Am．B．iii． 1874，520．（Miami，Florida；C．J．Maynard．）
3i0a．Picus rillosus teucomeles（Bodd．）Ridgw．－Picus leucomilex，Bodk．＇Tabl．P．E． 1783（ex．Pl．Enlum．34．，fig． $1=$ 呆 ad．）．
 Acarl．1550，20，302．（Cape．St．Lucas．）
305．Pions strichlandi，Malh．－Cf．Henshaw，Am．Sportsman，v．32n，Feh．20，1×65； Orn．W＇heeler＇s Exp．1－75， $3-9$ ．（S．Arizona．）
 （tugustifions，BuIsu，Orn．Cal．i．1r70，405．（Cape Št．Lueas．）
 Surv．Terr．ii．No．コ，A［r＇．1，1－76，191．（（inadalupe I．，Lower Cal．）
390．Crotophaye suleirostrie，Swains．－Cf．Cooes，The Combtry，July 13，1sie， 184. （Lomita，Texas；（i．B．Seumett．）

 （Clcarw：iter，心．Florida．）
 Acad．1－39，19\％．（F＇t．Trojon，（al．）
309a．Klula cineatapponica（Retz．）Ridgw．－Syrnizm lapponicum，RabgW．Bull．Nutt． Orn．Club，iii．dan．1～7 ，37．（St．Michael’s，Maska；L．M．＇Turuer．）
 Iust．Dec．1－7：206．（Floriular．）

40：d．SCOPA AsIO KENNLCOTHI，（Elliot）Cones．—S．Kirmioothi，Eidiot，Pror．Philad． Acad．186ă，fiy；1hnstr．Am．B．1－69，pl．LI．（Sitka，Nlaska；F＇．Bischofl．）
403．Scops trichopsis，Wayl．－＂S．usio，var．muculli＂，B．I．d．I．Ilist．N．Im．B．iii． 1854，50．（NuW Mexico．）
404．Scops fammeolus（Licht．）Acl．－Cf．Cooper，Omı．Cal．i．1－i゙！，420．（Ft．（rook， N．C＇alifornia．）
405a．Bubo virginitutus subacticus（Floy）Riderw．－Bubo subareticns，IIny．，Proc．I hilad． Acad．vi．1rise，2ll．（Wisconsin．）［三＂var．arcticus＂of Hist．N．Ah．13．iii． 1874，64．］
40．7）．Bubo rirginianus articus（Swains．）Cass．－Bubo articus，Swains．F．B．A．ii．18：31， $86, \mathrm{pl} .30$ ．（Interion of fir commtries．）

Catalogite No.

405c. Bebo vheginianus satubitus, Rider.-Orn. 40h Parallel, 1877, 57\%, foot-mote. (Northern coast N. Am.) [="var. pacificus" of llist. N. Am. B. iii. 6.).]
407a. Surmia funetea ulula (Limn.) Lidyw.- (f. Ribgw. Bull. Nutt. Orn. Club, iii. Jan. 1878, 38. (St. Michael's, Maska; L. M. Tumer'.)
408a. Speotyto cuniculalia floridana, Rielgw.-S. cumicularia, var. floriduma, Ridqw. Am. Sportsman, iv. No. 14, July 4, 1874, 216. (Sarasota Bay, Florida.)
410. Glaucidium phalernoides (Daud.) Scl. SE Salv.-G. ferruginemm (Max.) CoUES, Am. Nat. vi. 187ン, 370 . (Tueson, Arizona; C. Bendire.)
411. Michathene whitsiey (Cooper) Cones.-Athene whitueyi, Cooper, Proc. Cal. Acad. Sci. ii. 18is, 11s. (Ft. Mojave, S. E. California.)
412b. Hierofaleo gyrfalco sacer (Forst.) Ridgw. - F'. sucer, Fonster, Philos. Trans. lxii. 17\%:, 383, 423. (1ludson's Bay Terr.)
412c. Hierofulco suctr obsolth.s (Gm.) Ridgw.-Fulco obsoletus, Gmel. S. N. i. 1782, 268. (Hudson's bay Terr.)
 Essex Inst. Dec. 18i3, 201. (Northwest coast N. Aın.)
416. Esalon regulus' (Pall.) Blyth.-Falro asalon Newton, Man. Nat. Hist. Greenl. 1875, 1. 96. (At sea, near Greenland, lat. $57^{\circ} 41^{\prime}$ N., long. $35023^{\prime} \mathrm{W}$.)
417a. Asalon columbariús suckleyı, Ridgw.-Faleo columbarius, var. Suckleyi, Ridgw. Bull. Essex Inst. v. Dec. 1873. 201. (Northwest coast N. Ain.)
418. Esalon richardsonil, Ridgw.-Fulco (Hypotriorchis) richardsonii, Ridgw. Proc. Philat. Acad. Dec. 1870, 145. (Interior of North America.)
421. Tinuинсulus spurverioitles (Vig.) Gray. (Florida.)*

42:. Tinuиuculus alaudurius (Gim.) Gray.—Cf. Newton, Man. Nat. Hist. Greenl. 1875, 96. (Off' Cape Farewell, Greenland.)
434. Polyborus lutosus, lidgw.-Bull. U. S. Geol. \& Geog. Surv. Terr. No. 6, Dd ser. Fob. 8, $1876,459 . \quad$ (Guidalupe I., Lower Califoruia.)
433a. Aster atricalillus striatulus, Ridgw.-A. palumbarias, var. striatulus, Ridgw. in Hist. N. Am. B. iii. 1874, 240. (Wester'n N. Am.)
435. Buteo rulyaris, Leach.-Cf. Marnarv, Bull. Nutt. Orw. Chub, i. No. 1, April, 1876, ?-6. (I'ıwpaw, Mich.)
436a. Buteo borealis krineri. - "B. borealis, variety lriderii," Hoopes, Proc. Philad. Acad. 1873, 2:38, pl. v. (=juv.; Winnebago Co., Iowa.)
436c. Buteo borealis lucasanus, Ridgw.-D. borealis, var. lucusame, Hist. N. Am. B. iii. $1574,25 \kappa$, 285. (Cape St. Lucas.)

436d. Buteo borealis socohroensis.
In the "Proceedings" of the Boston Society of Natural Mistory, 1871, p. 42, Mr. Lawrence refers to a "Buteo borealis, rar. montanus, Nutt." as being very abundant on the island of Socorro, where it is the only species of hawk to be found, and where it is a "constant resident, rearing its young, and subsisting entirely on land crabs", ete. In the same paper, p . 10, Mr. Lawrence applies the same name to a hawk occurring abundantly on the Tres Marias Islands, and there subsisting "cutirely upon the Ignana lizard and rablits." In "History of North American Bixds": vol. iii, p. 285 (1874), I referved the Tres Marias bird to Buteo borealis var costaricensis, and described onr only specimen from that locality as the young of that form, although I hat not, from want of specimens, been able to compare it with the corresponding age of the Central American bird. I now have strong floubts as to its being the same as B. costaricensis, while as to the hawk found on Soeorno I regard it quite certair that it is, like the Caracara of Guadalupe (Polyborus lutosus), a species or race peculiar te that remote islam, the hirds of which are for the most part entirely local. I therefore pro pose to name. provisionally, the Socorro Hawk R. borealis socorroensis.
440. Buteo abbrcriatus, Cabamis, in Schomb. Gniana, iii. 184*, 733.-" B. zonocercus, Scl.", Coorpr, Orn. Cal. i. 1-70, 479. (Coast of California, near San Diego.)

[^14]
Catalogue No．

441．Butco albicaudatus（Vieill．）－B．albocundutus，Coues，＇The Country，i．184，July 13，18．8．（Lomita，Texas；Gr．B．Semmet）．Cff．Ridgw．Proc．U．S．Nat．， Mns．i．Oct．： 2 ，1878， 154 （synongmy and deseriptions）．
444．Lrubitinga amthracima（licht．）Nitasch．－Cf．Hexsiraw，Am．Sportsman．v．Bez， Fel．20，1875；Orn．Wheeler＇s Exp．1875，420．（Arizona．）
446．Onychotes grubeisi，Rilgw．－l＇oc．l＇hilad．Acal．Dec．1870，149．（Califormia．）
450．Thrasatus harpyia．
According to Dr．Felix L．（）swald，in the American Naturalist，1878，p．151，a specimen of the Harpy Eagle was sloot at the＂delta of the Lio Crande＂，in Texas，by Professor S．B． Buckley，State geologist of Texas．A full areount of the circmustance is given in Dr．Os－ wald＇s interesting article．I have seen somewhere record of the neturrence of this species in Louisiana，but eannot now lay hand on the refermec．Lecording to my recollection，the reeord may be found in an old number of the＂Proceedings＂of the Philadelphia Academy of Sciences，or else of the Zoölogical Society of London．
 Boston Soc．xiv．1871，：999．（Sucorvo I．）
463．Engyptila albifrons（Bp．）Cones．－Echmoptila albifirons，Coues，Bull．U．S．Geol．de Geog．Surv．Terr．iv．No．1．18゙心，te（Sonth Texas）；Ridgw．Iroc．U．S．Nat． Mus．i．Oct． 1878 ， 15 （synonymy）．
471a．Canace obscura fuliginosa，Ridgw．－C．obscura，vin．fuliginosu，Ridgw．Bull． Essex lust．Dec．1873，199．（Northwest coast，Oregon to Sitka．）
471b．Canate obscura richardsonii（Dougl．）Ridgr．－Tetratorichardsonii，＂Sabine，MSE．＂， Dougl．Linn．Trans．xvi． $1 \times 29,141$.
 Bull．Essex 1nst．Dec．1873，199．（Southwestern lrairies．）
478（u．Perlincetes phusianelhus columbianus（Ord）Ridgw．－Phasian＂s colmmbianus，Ord， Guthrie＇s Geog．©ll Am．ed．ii．1815，317．－P＇edioretes columbianus，Elliot，Pr． Ac．Nat．Sci．Philad．186： 403.
4k0a．Ortyx virginiana Flombana，Cones．－O．virgimiumus，var．floridamas，Coues， Key，1872，237．（Florida；J．A．Alleu．）
481a．Oreortyx picta plumiferu（Gould）Ridgw．－Ortyx plumifere，Gould，I＇，Z．S．1と3ї，4ン．
488．Aideu cinerct，Linn．－Cf．Reinir．Lbis，1861，9．（Greenlaud．）
499．Mycteria americuna，Limn．－Cf．Coues，Check List，1873，135．（Anstin，Texas．）
506．Hematopus ostrulegus，Linn．－（ff．Rernh．Ibis，1861，9．（Greenland．）
51～．Fauellus cristatus（Linu．）Meyer．－Cf．Rennis．Ibis，1e61，9．（Greentand．）
514．Charadrius pluviulis，Linn．－Cf．Newton，Han．Nat．Hist．Greenl．1875， 101. （Greenland．）
 Islands， 1875,179 ；Birds N．W．1074，450，foot－note．（Pryhilow Islands，Alaska．）
518．Agialitis hiaticula（Limu．）Boie．－Cf．Newton，Man．Nut．Hist．Greenl．1875， 101. （Greenland．）
519．Agialitis curouica（Gnel．）Gray．－Introdnced as＿D．mirrorhynrhus，Ridgw．，n．s．， Am．Nat．viii．Fel）．1874，109．（＂San Francisco，（＇al．＂）
5：0a．Egialitis mblodi circumcincta，Ridew．－E．melorlus，var．ciroumeinctus，Am． Nat．viii．Feb．18i4，109．（＂Llans hetween Missouri River and Rocky Mount－ ains．＂）
Fi：4．Scolopax rusticula，Limb－Cf．Ibaned，Am．Jomr．Arts A sciences，xli．May，io66， 25．（New foumbland．）
52t6．（rellinago mellu，Leach．－（ff．ReiNir．Ibis，1861，11．（Greenlamel．）
531．Arouatella Coubsir，Ridgrw－Bull．Nutt．Orn．Club，July，1－ev，160．（Aleutian－ islands and contiguons coast of Alaska．）
532．Abeuatella Pthocnbms（Cones）Ridgw．－＂Tringu crebsirostris＂，Dall，Am．Nat． viii．1873，635（St．1＇aul＇s 1．，Alaska）．－Trinye ptilocuemis，Coues，Llliott＇s Prybilov Islands， 1075 ，foot－note．

Catalogue No.
533. Actodromas ackminata (Horst.) Ridgw,-Obtdined at St. Michael's, Alaska, hy Mr. E. W. Nelson, U. S. Signal Service.

The single example forwarded by Mr. Nelson is without date or exact localit, and I have been uuable to get from him the desired information, my letter to him on the subject having doubtless miscarifed. The speeies is so important an addition to the fanna, hoverever, that it cannot be overlooked in the preseut conncction, reluctant as we are to publish a note of its ocenrence withont being able to furnish those data from the pen of Mr. Nelson himself, which would do him full justice, as the first discoverer of this Indian species on this continent.
537. Actodromas bahbdi, Coues.-Proc. Philad. Acal. 1861, 194. (Arctic America.)
539. Pelilma alpina (Linn.) Boie.-Tionga alpima, Newton, Man. Nat. Hist. Grcenl. 187̄̃, 10:3. (Greenland.)
541a. Ereundetes persllus occidentalis (Lawr.) Cones.-E. occidontalis, Lawr. Proc. Philad. Acad. 1864, 107. (Pacific coast U. S.)
544. Limose lapponiea novo-zealandia, Gray.-L. wropygialis, Barrd, Trans. Chicago Acad. i. 1869, 320, pl. 32. (Alaska.)
546. Limose ngocephala (Linu.) Leach.-Cf. Rewni. Ibis, 1861, 11. (Greenland.)
551. Lhyacophilus aehropus (Linn.) lidgw.-Cf. Brewer, Bull. Nutt. Orn. Club, iii. Jan. 1878, 49. (Nova Scotia.)
561. Numenius pheopts (Linn.) Lath.—Cf. Reinn. Ibis, 1-61, 10. (Greenland.)
56%. Numenius tuhitiensis (Gmel.) Cass.-"Nmmenius femoralis, Peale", Ridgw. Am. Nat. July, 1874, 43\%. (Karliak, Alaska; F. Bischoft.)
568 . P'ure g!mnostomu, Wagl. - Cf. Merinlle, Imll. Nutt. Orn. Clib, i. Nov. 1876, 88 (Ft. Brown, Texas); Ridgw. Proc. U. S. Nat. Mas. i. 1878, 167, pl. iii. (symonymy and descriptions).
570. Rallus obsoletus, Ridgw.-R. elegans, var. obsolctus, Ridgw. Am. Nat. viii. Feb. 1874, 111. (Coast California.)
$571 a$. Rallus longirostris saturatus, Hensh.-Cf. Ridgw. Bull. Nutt. Orin. Club, July, 1880, 140. (Lonisiana.)
573. Porzana maruetta (Leach) Bp.-"Ortygometra porzana (Linn.)", REINH. Ibis, 18\%1, 12. (Greenland.)
$576 a$. Porzana jamaicensis coturniculus, Baird.-P. jamaicensis, var. cotumiculus, Band, Am. Nat. viii. Fel. 1874, 111. (Farallone Islands, California.)
586. Olor oggmus (Limı.) Bp.—" Cygnus ferus, Ray", Reinir. Ibis, 1861, 13. (Grecnland.)
587. Olor minor (Pall.) Bp.-"Cygmus bewicki"", Sw. \&E Rich. F. B. A. ii. 1831, 465. ("1gloolik [Aretic America], lat. 66°, Jme 19, 182:3." Said to breed "on the sea-coast within the Aretic circle." The description, from specimens killed at loeality quoted above, is of the true O. minor, or Bewick's Swan.)
592. Cimen liossir (Baird) Ridgw.-Anser rossii, "Balrd, MSS.", Cass. Proc. Philad. Acad. 1861, 73. (Aretic America.)
593. Anser albifions (Gm.) ———Cf. Rernh. Ibis, 1\&61, 12. (Greenland.)
603. Anas fulyigula, Rirlgw.-A. obscura, var. fultigula, Am. Nat. viii. Fels. 1874, 111. (Florida.)

627a. Somateria mollissma dresseri (Sharpe) Cones.-S. dresseri, Sharpe, Amn. Mag. N. H. July, 1~71, 51, figs. 1, 2.
This bird has been called by all American writers S. mollissinad. The true Eider, however, has only lately been detected in America, it being the form found by Mr. Kumlien breeding abundantly on the west side of Cumberland Galf.
631. Melanetta fusca (Linn.)-Cf. Reinnandt, Vid. Medi. Nat. För. Kjobenhavn, 1859, 1. (Sonith Greenland.)
646a. Phalacrocorax violacens resplendens (Aud.) Ridgw.-Graculus bairdii, "Gruber, MSS.", Cooper. Proc. Philad. Acad. Jan. 1865, 5. (Farallone Islands.)

Catalogne No．
64\％．I＇hulacrocorux bicristutus，Pallas．－＂Gracutus bicristutus，P＇allas＂，Bairt，Trans． Chicago Acad．i．18is9，－，pl．3：3．（St．George＇s I．，Maska；W．H．Dall．）
651．Sula cyamops，Sundev．－Cf．L．hwr．l＇roc．Boston Soe．xiv．1s
653．sula piscator（Liun．）———Cf．Lawn．Proc．Boston Soc，xiv．18．2，303．（Socorto I．）
655．Phaëthon wtheremr，Limn．－Cj．Freme，Sci．l＇oc．Roy．Dubl．Soc．1e79．＊（Banks of New foundlamel，Ingust，1876．）

666a．Larus algentatus shmphsonlanus，Cones．－L．smithsomiunte，Coubs，Proc． Plilad．Acad．185：， 296. （North America．）
667．Lerus cachinnoms，l＇all．－＂Larus borealis，Bramet＂，Balrd，Trans．Chicago Acarl． i．1869，305．（St．Michatels，Mlaska；Bischofl．）
671．Larus camus，Liun．－Cf．Brewer，Bull．Nutt．Orn．Club，iii．Jan．1ブミ゙，50．（Lab－ ralor：Cones．）
689．Sterna aleutica，Baird．－Trams．Chicagn Acarl．i．1869，321，pl．31，fig． 1. （Kadiak，Alaska；Bischoff．）
 （Florida．）
 （Lake Koshkouong，Wisconsin；＇T．Kmmlien．）
 Acad，18f0，D90（North Pacific）；Bamd，Trans．Chicago Acad．i．186\％，32：, pl．： 3 ，fig． 1 （St．Georges I，Mlaska）．
710．1＇ufflnus cheatorus，Cooper．－Cf．Coules，Proc．Philarl．Acarl，1～6t，131．（Coast California．）
713．I＇ufinus guriu（Forst．）Finsch．－I＇．opisthomelas，Coues，Iroc．Philad．Acart．1864， 139．（Coast California．）
715．Puffinus grisens（Gmel．）Finsch．－Neetris ameurosoma，Cours，Proc．Plilad．Aead． 1864， 124.
716．Pufimus temuirostris，Temm．－Nectris tenuirostris，Dall \＆Bannister，Trans．Chi－ cago Aead．i．1869，303．（Kotzbue Sonnd．）
718．Astrelata buhweri（Jarl．）Gigl．\＆Salvad．－Thalussidroma buhecri，Newton，Man． Nat．Hist．Greenl．18is， 108.
720．Halocyptena mhcrosoma，Cones．－Proc．Philad．Aead．1864，78．（Coast of California．
725．Cymochorea homochioa，Comes．－Proc．Philad．Acad．1864，77．（Coast of Cill－ ifornia．）
737．Colymbus adumsi，Gray．－Proc．Zoöl．Soc．Lond．1859，167．（Alaska．）
763a．Lomvia tisoile Californica（Bryant）Cones．－Cutaractes californiens，Biryant， Proc．Boston Soc．N．H．（F＇arallone Islamk．）
764．Lomvia arru，I＇all．－Cephus arri，Pill．Zoüg．Rosso－As．ii．1811，347．（Alaska．）
c．List of Vorth American genera which hare been nescribed or added to the fauma since 1859，together with those whose numes or orthography hare been changed since that date．

1．Iflocichla，Baird，Review Am．J．i．June 2， 1864,12 （type，Turdus musteti－ mus，Gmel．）．
The Turdus musicus of Europe is a strict congener of T ．mustclinus，ant it is possible that some generic name may have been hased upon it previous to the imposition of Hylocichla．

6．Turlus，Limmens，S．N．ed．10．i． 1758,168 （type，T．viscivorus，Limu．）．
The T．iliacus，although not agreeing strictly with T ．viscivorus in details of external structure，is still hardly different enough to entitle it to soparation．It is much more like true Furdus than eithor of the other American gener：1（Hylocichla and Merula）．

[^15]Catalogue No.
7. Merula, "Leach, 1816 " (trpe, Turtus merula, Limu.).

The proper generic division of the typical thrushes is a matter of considerable ditticulty. Of the North American generic groups, Hyloeichla and Hesperoeichla of Baird are sufficiently isolated, the latter being represented by a single species only, the former by all the smaller spotted species, besitles the Song Thrush (Turdus musicte, Limn.) of Europe. I find no Ameriean species agreeing at all closely with Turdus viscivorus (the type of Turdus) in form ; and a generie division based wholly or chiefly on coloration being out of the fuestion, I find no wther alternatire than to adopt for the Rohin and other American thrushes nsually refermed to "Planestieus" of Bonaparte (1854) the name Merula, Leach (1816), there being no essential lifferenee in form between the trfe of the latter, Turdus merula, Limn. (Merula nigra, Leach) and onr Robin (T. migratorius, Limn.) ; while a number of the Ncotropical species exhibit the same soxual difference in coloration as T. merula. I would also refer to Merula the following Old World forms: Turdus pilaris, Linn. (type of A reenthornis, Kaup, 1829), Turdus atrogularis, Temm. (type of Cichloides, Kiup, 1829), Turdus torquatus, Linn. (type of Thoracocincla, Reich., 1850), with perhaps some others.
9. Hesperochenla, Baird, Review Am. B. i. July, 1864, 3: (type, Thrdes morins, Gmel.).
12. Galeoscoptes, (abanis, Mus. Hein. i. 1850, s2 (type, Muscicapa carolinensis, linn.).
19. Cinclus, Bechstein, Gemein. Naturg. 1802 (type, Sturmus cinclus, Linn.) [Cff. Baini), Review Am. B. i. 1864, 59, foot-note.]
20. ('yanecula, Brehm, Vüg. Deatschl. 1828 (type, Motrecilla suecica, Linn.).
34. Phylloscopus, Boie, Isis, 1826, 792 (type?)
50. Aumparus, Baird, Review Am. B. i. Ang. 1864, 85 (type, Eqithalus flaviceps, Sunder.).
61. Thifonanes, Selater, Cat. Am. B. 1861, 2: (type, Troglodytes bewichi, Aud.).
65. Anorthura, Rennie. Montagu's Orn. Dict. ©d ed. 1831, 570 (type, A. communis, Rennie -= Motacilla troglodytes, Linn.).
67. Telmatorlytes, Cabanis, Mus. Hein. i. 1850, 78 (type, Certhiu pulustris, Wils.).
69. Motacilla, Linniens, s. N. 1735 (tyךe, M. alba, Linn.).
70. Budytes, Cuvier, hèg. Aı. i. 1817, 371 (type, Motarilla flara, L.).
76. Helonar.-Helinain, Andnbon, Synop. 1839, 66 (type, Sylriu surtinsoni, Aud.). [Orthograplay emended by Agassiz, Nomenel. 1847. Cf. Newton, P. Z. S. 1と74, 552.]
9). Peirissoglossa, Baird, Review Am. B. i. 1864, 180 (type, Motacilla tigrina, Gm.).
92. Peucedranus, Cones, in Henshaw's Orn. Wheeler's survey, 1875, 201 (type, sylvia oliracet, Ginand).
115. Siurus.-Cf. Coues, Bull. Nutt. Oru. Club.
124. Wilsonia, Bonaparte, Comp. List. 18:3s, 23 (type, syluia mitrata, Aud.?). [C . Coues, Bull. Nutt. Orn. Chb, April, 18e0, 95.*]
131. Curdellina, "Dnlus", Bonap. Consp. i. 1850, 31: (type, Cerdellina amicta, Dubns = Muscicapa rubrifrons, Girand).
13:. Ergaticus, Bairl, Revicw Am. B. i. May, 1865, 264 (type, Setophaya rubra, Swains.).
133. Basileuterus, Cabanis, in Schomb. Guiana, iii. 1843, 66i6 (type, Sylvia vermirort, Vieill.).
135. Jircosylvia, Bonaparte, Comp. List. $1 \times 88, \geq 6$ (type, Muscictpa olicacea, Linn.).
140. Lanlvireo, Bairl, Leview Am. B. i. May : $3: 1866$, 345 (type, Fireo flavifroms, Vieill.?).

[^16]Catalogue No.
148. Lanius, Linneus, S. N. ed. 10, 1758, 93 (type, L. excubitor, Linn.). [Cf. Coues, Birds Colorado Val. i. 1878, 539.]
153. Petrochelidon, Calmanis, Mus. Hein. i. 1850, 47 (type, Mirundomelunogaster, $\mathrm{Sw} .=I^{\prime}$. swainsoni, Sel.).
155. Tuchycincta, Cabanis, Mus. Hein. i. 1850, 48 (type, Miruudo thalassina, Sw.).
157. Cohle, Boie.-Cf. Wharton, The Ibis, Oet. 1879 ; Coues, Bull. Nutt. Orn. Clulb, April, 1880,96.
158. Stelgidopteryx, Baird, B. N. Am. 1858, 319, in text (type, Mirundo serriprunis, Aul.).
167. Pyrrhula, Brisson, Orn. 1760 (type, Loxia pyrrhula, Linn. = Emberiza coccinea, Sandly.).
172. Loxia, Linneus, S. N. ed. 10, i. 1758, 171 (type, L. currirostra, Linn.).
181. Astragalinus, Cabanis, Mns. Hein. i. 1851, 159 (type, Fringilla tristis, Limm.).
187. Centrophancs, Kıup, Ent. Gesch. Eur. Thierw. $18 \div 9$ (type, Emberiza lapponica, Linu.).
190. Rhynchophanes, Baird, B. N. Am. 1858, 43 , in text (type, Plectrophancs maccowni, Lawr.).
224. Amphispiza, Cones, Birds N. W. 1874, 234 (type, Emberiza bilineata, Cass.).
244. Zamelodia, Coues, Bull. Natt. Orn. Club, v. April, 1880, 98 (type, Loxia ludorieiana, Limn.).
247. Passerina, Vieillot, Analyse, 1816, 30 (type, Tanagra eyanca, Liun.). [Cf. Coues, 1. c. 96.$]$
253. Phomipara, Bonaparte, Consp. i. 1850, 494 (type, Loxiu canora, Gmel.).
254. Spiza, Bonaparte, Obs. Wils. Orn. 1825 (part); Spece. Comp. 18.27, 47 (type, Emberiza amcricana, Gmel.!). [See antê̂, 3.]
279. Sturnus, Linnæus, S. N. ed. 10, i. 1758, 167 (type, S. vulgaris, Linn.).
285. Gymmocitta.-Cf. Coues, Bull. Nutt. Omn. Club, April, 18e0, 98.
289. Cyanocitta, Strickland, Amm. Mag. N. H. xv. 1845, 260 (type, Corrus cristatus, Lina.). [Cf. Coues, Bull. Nutt. Orn. Clul, April, I\&80, 98.]
291. Aphelocoma, Cabanis, Mns. Hein. i. 1851, D: (type, Gurrulus californiens, Vig.).
299. Alauda, Linntus, S. N. ed. 10, i. 175s, 165 (type, A. arvensis, Linn.).
308. Pitangus, Swainson, Zool. Jour. iii. 1827, 16а (type ?).
309. Myiozetetes, Sclater, ex. Sehiff.—Myiozeta, "Sehiff", Bp. Compt. Rend. xxxviii. 1854, - (type ?).-Myiozetetes, Scl. P. Z. S. 1859, 46.
310. Myiodinastes, Bonaparte, Compt. Rend. xxxviii. 1854, 65t (type ?).
331. Oruithion, Hartlanb, Jour. für Omn. 1853, 35 (type, O. inerme, Hartl.).
332. Pachyrhamphus, "Gray, 1838" (type, Pachyshynchus curiori, Evix =Tityra viridis, Vicill.).
333. Madrostomus, Cabanis, Mus. Mein. ii. Oct. 24, 1859, 84 (type, Tityru atricapilla, Vicill.).
334. Eugencs, Gould, Mon. Troch. pt. xii. 1856 (type, Trochilus fulgens, Swains.).
337. Calypte, Gould, Introd. Troch. oct. ed. 1861, 87 (type, Ormismya costu, Boure.).
342. Atthis, Reichenbach, Anfz. der Colib. 1853, 12 (type, Omismyr heloisa, Less. \& Delattr.).
343. Stellula, Gould, Introd. Troch. oct. ed. 1861, 90 (type, Trochilus calliope, Gould)
344. Calothorax, Gray, Gen. B. 1840, 13 (type, Cymanthus lucifer, Swains.).
345. Amazilia, Lesson.-Amazilis, Less. Ind. Gen. et Syn. du Gen. Troch. 18:2, p. xxvii. (type, Orthorhynchus amazili, Less.).-Amazilia, Reich. Av. Syst. Nat. 1849, pl. :39.
347. Basilinna, Boie, Isis, 1831, 546 (type, Trochilus 7eucotis, Vieill.).
348. Tacine, Elliot, Synop. Troch. March, 1879, 234 (type, Cymuthus latirostris, Swains.).
349. Cypselus, Illiger, Protr. 1811, 2:29 (type, C. upus, Linn.). [Cf. :anteî, 6.]
350. Cypseloides, Strenbel, Isis, 1848,366 (type, Cypselus fumigatur, Natt.). [(\%' Selates. P.Z.S. S. 1865, 614.]
354. Caprimulgus, Limmeus, S. N. ed. 10, i. 1858, 193 (type, C. curoparus, Linn.). [Cf Proe. U. S. Nat. Mus. i. 1878,143 ; ib. iii. 1880, 5.]

Catalogue No.
355. Pilalenoptilus, Ridgway, Proc. U. S. Nat. Mus. iii. March 27, 1880, 5 (type, Caprimulgus unttalli, Aud.).
366. Tcuopicus, Bairl, B. N. Am. 1858, 83, in text (type, Leuconerpes albolarratus, Cass.). 394. Aluco, Fleming, Phil. Zool. ii. 1828, 236 (type, Strix flammea, Liun.). [Cf. Newton, Yarrell's Brit. B. ed. 4, i. 150; Ibis, v. 94-105.]
395. Asio, Brisson, Orn. i. 1766, 28 (type, Strix otus, Linn.).
397. Strix, Linmans, S. N.ed. 10, i. 1758, 92 (type, S. stridula, Liun.). [Cf. Newton, Ibis, scr. iii. vi. 9t-105.]
399. Ululu, Cuvicr, Règ. An. i. 1817, 329 (type, Strix walensis, Pall.).

In History of North American Birds (vol. iii, pp. 28-30) I alopted for the Great Gray Owl (Strix cinerea, Gmel.) the subgeneric namo Scotiaptex, Swains., based upon this species, and on p. 8 of these Proceedings raised the same name to generic rank. A subsequent examination of strix uralensis, Pallas, however, reveals the fact that the latter is strictly congeneric witls S. cinerect and S. lapponica, and having been made the type of a genus Ulula by Cuvicr, in 1817, the latter name must take precedence over Scotiaptex, which was not founded until 1831.
408. speotyto, Gloger, Handh. Naturg. 1842, 226 (type, Strix cunicularia, Mol.).
411. Micrathene, Cones, Proc. Philad. Acad. 18066, 51 (type, Athene whitneyi, Cooper.).
412. Hierofalco, Cuvier, Règ. An. i. 1817, 312 (type, Falco candicans, Gm.).
416. Asalon, Kaup, Natiirl. Syst. 1829, 40 (type, Falco asalon, Gmel. $=$ F. regulus, Pall.)
419. Rhynchofalco, Ridgway, Proc. Boston Soc. 1873, 46 (type, Falco femoralis, Temm. $=F$ fusco-corulescens, Vieill.).
426. Elanoides, Vieillot, Nonv. Dict. xxiv. 1818, 101 (type, Fitco furcatus, Linn.).
434. Antenor, Ridgway, Proc. Boston Soc. Nat. Hist. May, 1873, 63 (type, Falco unicinctus, Temm.).
444. Urubitinga, Lesson, Rer. Zool. 1839, 132 (no type!); Lafr. in d'Orb. Dict. Hist. Nat. ii. 1842, 786 (type, Fulco urubitinga, Gm. = F. zonurus, Shaw).
446. Onfchotes, Ridgway, Proc. Philad. Acad. Dec. 1870, 142 (type, O. gruberi, Ridgw.).
450. Thrasuitus, Gray, Proc. Zool. Soc. Lond. 1837, 108 (type, Falco harpyia, Linn.).
451. Halicëtus, Savigny.-This is the original and correct orthography. [Cf. Gray, Hamll. i. 1869, 16; Coues, Bull. Nutt. Orn. Club, Apr. 1880, -.]
453. Pseudogryphes, Rilgway, in B. B. \& R. Hist. N. Am. B. iii. Jan. 1874, 337, $333^{\text {(type, I'nltur californianus, Shaw). }}$
455. Catharista, Vieillot, Analyse, 1816, 21 (type, Vultur wrubu, Vieill. $=$ V. atrata, Bartr. (ff. Ridgw. Bull. Nutt. Orn. Club, April, 1880, 80).
463. Exgmitila, Sundevall, Met. Nat. Av. Disp. Tent. 1872, 156 (type, Columba rufaxilla, Rich. \& Bern.).
467. Geotrycion, Gosse, Birls Jam. 1847, 316, foot-note (type, G. sylvatica, Gosse $=$ Columba cristata, Temm.).
469. Ortalis.-Cf. Wharton, The Ibis, Oct. 1879, 450. [= Ortalila, Merrem (false orthography).]
471. Canacc, Reichenbach, Av. Syst. Nat. 1851 (type, Tetrao canad̃ensis, Linu.).
491. Dichromanassa, Ridgway, Bull. U. S. Geol. \& Geog. Surv. Terr. iv. No. 1, Feb. 5, 1878,246 (type, Ardea rufa, Bord.).
492. Hydranassa, Bairl, B. N. Am. 1858, 660, in text (type, Ardca ladoriciana, Gmel. $=A$. tricolor, Miill.).
499. Mycteria, Linnens, S. N. i. 1758, 140 (type, M. americana, Liun.).
501. Eudocinus, Wagler, Isis, 1832, 123: (type, Scolopax rubru, Linn.). [Cf. Elliot, Ibis, 1877, 482.]
503. Plegadis, Kanp, Skizz. Ent. Gesch. 1829, 82 (type, Tantalus falciuellus, Linn.). [Cf. Sclater \& Salvin, Ibis, 1878, 112.]
505. Ajaju, Reichembach, Handb. 1851, p. xvi. (type, Platalea ajaja, Linn. $=$ P. rosea, Briss.). [Cf. Ridgway, Proc. U. S. Nat. Mus. iii. 1880, 10.]

Catalogue No.
51:. Fanclus, Meyer, Vög. Dentschl. i. 1810, 10 (ex. Linn. 1735; type, Tringa vancllus Linu.).
516. Oxyechus, Reichenbach, Av. Syst. 1853, Introd. p. xviii. (type, Charadrius vociferus, Linn.).
522. Ochthodromus, Reichenbach, 1. c. (type, Charadrius wilsonius, Ord).
523. Podasocys, Cones, Proc. Philad. Acal. 1866, 96 (type, Charadrius montanus, Towus.).
5:4. Scolopax, Limueus, S. N. ed. 10, i. 1758,145 (tspe, S. rusticula, Linn.).
530. Arquatclla, Baird, B. N. An. 1858, 717 (type, Tringa maritima, Briinn.).
533. Actodromas, Kaup, Sk. Ent. Eur. Thierw. 1829, 37 (type, Tringu minuta, Leisl.).
539. Pelidna, Cuvier, Règ. An. 1817, 490 (type, Tringa alpiua, Linn.).
547. Totanus, Bechstein, Nat. Dentschl. 180: (type, Scolopax calidris, Lim.).
554. Muchetes, Cuvier, Règ. An. 1817 (type, Tringa pugnux, Limn.). [Cf. Coues, Bull. Nutt. Orn. Club, Apr. 1880, 100.]
555. Bartramia, Lesson, 'Traité Ois. 1831, 553 (type, B. laticauda, Less. $=$ Tringa longicaud(, Bechst.). [Cf. Coues, l. c.]
564. Lobipes, Cuvier, Règ. An. 1817 (type, Tringa hyperborea, Linn.).
565. Steganopns, Vieillot, Enc. Mèth. 1823 (type, S. tricolor, Vieill. = Phalaropus wilsomi, Sab.).
568. Parra, Linneus, S. N. i. ed. 12, 1766, 259 (type, P. jacana, Linn.). [For generic characters and illustrations, see these Proceedings, vol. i. pp. 166, 167, 11. iii.]
578. Ionornis, Reichenbach, Av. Syst. 1853, 21 (type, Fulica martinicu, Linn.).
586. Olor, Wagler, Isis, 1832, 1234 (type, Cygnus musicus, Bechst. = Anas cygnus, Linn.).
590. Chen, Boie, Isis, 1822 (type, Anas hyperborea, Pall.).
593. Philacte, Bannister, Proc. Philad. Acad. Nov. 1870, 131 (type, Anas canagicus, Sewast.).
619. Clangnlı, Fleming, Philos. Jour. 18:2 (typo, Anas clangula, Linn.). [Cf. Dresser, B. Eur. pt. slvi. Dec. 1875 ; Coues, Bull. Nutt. Orn. Club, April, 1eso, 101.]
635. Nononyx, Ridgway, Proc. U. S. Nat. Mus. iii. March 27, 1880, 15 (type, Anas dominica, Linn.).
642. Phalacrocorax, Brisson, Orn. 1760 (type, Pclecamus carbo, Linn.). [Cf. Sharpe, Cat. B. Brit. Mus. iii. 1877, 143, toot-note.]
696. Megalestris, Bonaparte, Consp. ii. 1856, 206 (type, Larus catarractes, Linn. $=$ Catharacta skua, Brümn.). [Cf. Coues, B. N. W. 1874, 603, 604, where, however, Buphagus, Mohring, is adopted; but Moloring's names being inadmissible,* Megalestris, B]., "strictly its only synonym" seems the only one available.
703. Phobetria, Reichenbach, Av. Syst. Nat. 1853, pl. 26, fig. 348 (type, Diomedea fu7iginosa, Gmel.).
704. Ossifraga, Hombron \& Jacquinot, Compt. Rend. xviii. 1४4, 356 (tỵpe, Proccllaria gigfated, Gnuel.).
706. Priocella, Hombron \& Jacquinot, Compt. Rend. xviii. 1844, 35) (type, Procellaria glacialoides, smith $=P$. temuirostris, Aud.).
707. Priofimus, Hombron \& Jacquinot, Compt. Rend. xviii. 1844, 355 (type, Procellaria cinerca, Gmel. (?) $=P$. metanura, Bonn.).
717. Estrelata, Bonaparte, Cousp. ii. 1855, 188 (type, Procellaria hasitata, Temm.).
720. Halocyptena, Cones, Proc. Philad. Acad. 1864, 78 (type, H. microsomu, Coues).
721. Procellaria, Limuens, s. N. ml. 12, i. 1763, 212 (type, I. pelayica, Limı.).
 Kuhl.).
*Cf. Coues, Bull. Nutt. Orn. Club, April, 1880, p. 100, sp. 437, Jachctes pugnax.

Catalogue No.
723. Cymochorea, Coues, Proc. Philad. Acad. 1864, 75 (type, Procellaria lencorrhoa, Vieill.).
726. Oceanodromu, Reichenbach, Av. Syst. 1853, xviii. (type, Proccllaria furcata, Gmel.). 730. Achmophorus, Coues, Proc. Philad. Acad. 1832, 229 (type, Podiceps occidentalis, Lawr.).
732. Dytes, Kaup, Syst. Ent. Eur. Thierw. 1829 (type, Colymbus cornutus, Gmel.).
734. Tachybaptes, Reichenbach, Syst. Nat. Av. 1853, pl. 2 (type, Colymbus minor, Gmel.).
742. Utamania, Leach, Syst. Cat. 1816 (type, Alca torda, Linn.). [Cf. Coues, Proc. Plilad. Acad. 18:38, 18, 19.]
743. Fratercula, Brisson, Orn. 1760 (type, Alca arctica, Linn.). [Cf. Coues, Proc. Philat. Acad. 1868, 21.]
745. Lunda, Pallas, Zorgr. Rosso-As. 1811, 363 (type, Alca cirrhata, Pall.). [Cf. Coues, Proc. Philad. Acad. 1868, 26.1
746. Ceratorhina.-Cf. Coubs, Key, 1872, 341. [= Cerorhinca, Bonap. Ann. Lyc. N. Y. ii. 1828,428 (false orthography).]
748. Simorhynchus, "Merrem, —, 1819 (type, Alca cristatella, Pall. fide G. R. Gray)". [Cf. Coues, Proc. Philad. Acad. 1863,35.]
750. Ciceromia, Reichenbach, Ar. Syst. Nat. 1853, - (type, Phaleris microceros, Brandt $=$ Uria pusilla, Pall.).
752. Alle, Link, Beschr. Natur.-Samml. Univ. Rostock, 1806, 17 (type, A. nigricans, Link $=$ Alca allc, Linn.). [Cf. Coues, Bull. Nutt. Orn. Club, iv. Oct. 1879, 244.]
753. Synthliborhamphus, Brandt, Bull. Acad. St. Petersb. iis 1837 (type, Alca antiqua, Gmel.).
763. Lomvia, Brandt, Bull. Acad. St. Petersb. ii. 1837, 345 (type, Colymbus troille, Linn.). [Cf. Coues, Proc. Philad. Acad. 1868, 75.]
d. Species included in the catalogue which have not yet (according to the records) actually becn taken within the prescribed limits.
[The following species enumerated in the catalogue have not, to this date, beeu taken within the United States; but all are known to occur so near our sonthern border as to render it quite certain that their capture within onr limits is but a question of time aud investigation. There are also included in this category all the species which are peculiar to the islands of Socorro and Guadalupe and the peninsula of Lower California.]
8. Merula confinis. (Cape St. Lacas.)
14. Harpormychus cinereus. (Cape St. Lucas.)
18. Harporifyncuus graysoni. (Socorro.)
31. Regulus obscurus. (Guadalupe.)
43. Parus meridronalis. (Highlands of Mexico.)
49. Psalitriparus melanotis.* (Highlands of Mexico.)

55a. Certiha famlilaris mexicana. (Highlands of Mexico.)
57. Campylobiynciuts affinis. (Cape St. Lucas.)
$58 a$. Salpinctes obsoletus guadalupexsis. (Guadalupe.)
62. Thryomanes brevicauda. (Guadalupe.)
89. Parula pitiayumi insularis. (Socorro.)
171. Carpodacus amirlus. (Guadalupe.)
195. Passerculus guttatus. (Cape St. Lucas.)
223. Junco insularis. (Guadalupe.)

238c. Pipllo maculatus consobrinus. (Guadalupe.)
238d. Pipllo maculatus camani. (Socorro.)
240a. Pifilo fuscus albigula. (Cape St. Lucas.)

[^17]Catalogue No.
267. Icterus wagleri. (Mexico.)
288. Psilorimnus morio. (E. Mexico.)
291. Arhelocoma ulthamarina Coucimi. (E. Mexico.)

34\%. Basilinna xantusi. (Cape St. Lheas.)
363 . Picus scalaris lucasanus. (Cape St. Lucas.)
37 (t. Melanerpes formicivorus angustifrons. (Cape St. Lucas.)
380. Colaptes rufipileus. (Guadalupe.)
381. Monotus Cerleleiceps. (L. Mexico.)
384. Trogon ambiguts. (Mexico.)
393. Conurus holochlorus brevipes. (Socorro.)
415. Falco albigularis. (Whole of tropical America.)

4:4. Polyborus lutosus. (Guadalnpe.)
653. Sula piscator. (Socorro.)
655. Phethon ethercus. (Newfoundland banks; Socorro?)
460. Zenedura graysoni. (Socorro.)

Of the following species given in the catalogue no specimens are known to hare been taken within the limits of the United States, with the exception of those described and figured in Giraud's "Sixteen Species of Texan Birds" (1841)."
59. Catherpes mexicanus (=Certhia albifrons, Giraud).
130. Setopilaga miniata (=Muscicapa derkami, Girand).
132. Ergaticus ruber (= Parus leucotis, Giraud).
133. Basileuterus Culicivorus (=Muscicapa brasievi, Giraud).
134. Basileuterus bellii (=Muscicapa bellii, Giraud).
160. Eupionia elegantissima (= Pipra galericulata, Girand).

182b. Astragalinus psaltria mexicanus (=Frimgilla texensis, Girand).
309. Myiozetetes texensis (=Muscicapa texensis, Girand).
314. Myiarchus Lawrencei (=Tyranmula lawrencii, Giraud).
329. Empidonax fulvifrons (=Muscicapa fulvifions, Girand).
e. Species (chiefly Palaarctic) which occur only as stragglers or visitants in Eastern North America, or which occur regularly only in Greenland und adjacent portions of the continent. \dagger
[6.] Turdus miacus. Accidental in Grecnland.
[69.] Motacilla alba. Aecidental in Greenland.
[178.] Egiothus Canescens. Resident in Greenland.
[279.] Sturnus vulgaisis. Accidental in Greeuland.
[412u.] Hierofalco gyrfalco islandus. Resident in South Greenland.
[416.] Esalon regulus. Accidental in Greenland.
[4きッ.] Tinnunculus alaudarius, Accidental in Greenland.
[435.] Buteo vulgaris. Aceidental in Michigan? [Cf. Maynard, Bull. Nutt. Orn. Club, i. 18.]
452. Halieètus albicilla. Resident in Greenland.
[488.] Ardea cinerea. Accidental in Greenland.
[506.] Hematopus ostralegus. Aceidental in Greenland.
[514.] Cilaradrius Pluvlalis. Accidental in Greenland.
518. Egialitis hiaticula. Brecding in Greenland and west of Cmmberland Gnlf.
[524.] Scolopax rusticula. Aceidental in Newfoundland and Eastern United States. [526.] Gallinago media. Casial in Greemland and Bermudas.

[^18]Catalogue No.
[539.] Pelidna alpina. Breeds in Greenland and Hudson's Bay Territory.
[540.] Pelidna subarquata. Casual in Eastern North America (several records).
[546.] Limosa fegocepihala. Accidental in Greenland.
[547.] Totanus clottis. Accidental in Elorida.
[551.] Rifyacophilus ocmropus. Accidental in Nova Scotia.
[554.] Macietes mugnax. Casnal in Eastern North America (several records).
[561.] Numenius pheopes. Accidental in Greenland.
[5\%3.] Porzana maruetta. Accidental in Greenland.
[57\%.] Crex pratensis. Casual in Eastern North America, including Greenland.
[536.] Olor CYGNUS. Accidental in Greenland.
[587.] Olor myor. Casual (?) in fur countries.
[593.] Axser Alibifrons. Breeds in Sonth Greenland.
[597.] Bernicla levcorsis. Casual in Lastern North America.
[611.] Nettion crecca. Casual in Eastern North America.
62\%. Sonateria mollissma. Resident in Greenland and west side of Cumberland Gulf.
[631.] Melanetta fusca. Accidental in Greenland.
[665.] Lanus affinis. Accidental in Greenland.
[694.] Hydrochelidon leucoptera. Accidental in Wisconsin.
[\%11.] Puffinus anglordar. Casual (?) off Atlantic coast.
[71\%.] Estrelata hesitata. Accidental off Atlantic coast of U. S.
[718.] Estrelata bulweri. Accidental near Greenland.
7:8. Fregetta grallaria. Accidental off coast of Florida.
[733.] Dytes Auritus. Breeds in Sonth Greenland.
743a. Fratercula arctica glacialis. Resident in Greenland.
f. Palcarctic and occanic specics occurring only in Alastia and other parts of the Pacific coast.
[30.] Cyanecula suecica. St. Michael's, Alaska, Jume 5, 1850. (See p. 215.)
[34.] Pirylloscopus borealis. Breeds in Alaska.
[44.] Parus cinctus. Abundant resident in Alaska.
[20.$]$ Budytes flava. Breeds abundantly in Alaska.
[167.] Pyrrhula cassini. Resident (?) in Alaska.
[399a.] UlUla cinerea lapponica. ('asual (?) in Alaska (St. Michael's).
[407a.] Surnia funerea ulula. Casual (?) in Alaska (St. Michael's).
511. Aphriza virgata. Casual along entire Pacific coast of America.
[515a.] Cilarainiús doninicus fulvés. Regular autumnal visitant to Alaska.
[519.] Eghalitis curonica. Accidental in Califoruia (?).
[533.] Actodromas acuminata. Accidental on coast of Alaska.
544. Limosa lapronica nove-Zealandie. Abundant visitant to Alaska.
553. Heteroscelus incanus. Whole Pacific coast. (Breeds.)
[562.] Numenius tahitiensis. Accidental in Alaska (Kadiak).
[702.] Diomedea culainata. Aceidental off month of Columbia River (Audubon).
[703.] Pheebetria fuliginosa. Casnal off Pacific coast.
[704.] Ossifraga Gigantea. Accidental off Pacific coast of U. S.
706. Priocella tenuirostris. Casnal (?) off Pacific coast.
707. Priofinus melanurus. Accidental off coast of California.
710. Pufrinus creatopes. Aecidental (?) off coast of California.
713. Puffinus gavia. Casual (?) off coast of Lower California.
715. Puffinus Griseus. Casual (?) off coast of Lower California.
716. Puffinus tenuirostris. Nortl Pacific (casual?).
[719.] Daption capensis. Accidental off coast of California.
g. Palaaretic specics occurring both in Grecnland and Alaska, but not recorded from any intermediate point in North America.
Catalogue No.
[eI.] Saxicola gexanthe. Breeds in Greenland and on west side of Cumberland Gulf.
[79.] Anthus pratersis. Aceidental (?) in Greenland and Alaska.
[5I2.] Vanellus cristatus. Accidental in Greenland (and Alaska?).
[606.] Mareca penelope. Ocemrs in various parts of North America, sonth to North Carolina, and San Francisco.
h. Tiopical American species occurring only in southern portions of United States.

Eastern province, including florida and coast of texas.*
137. Vireosylyia calidris barbatula. (South Florida.) Hab. Cuba.
159. Certhola bahamensis. (Indian Key.) Hub. Bahamas.
184. Chrysomitris notata. (Accidental in Kentucky, fide Audubox.) Hab. highlauds of Mexico aud Guatemala.
253. Phonipara zena. (Key West.) Hab. West Indies in general.
265. Icterus vulgaris. (Sonth Carolina, ete.) Hab. Jamaica and northern South America.
302. Milvulus tyranmus. (Accidental in Mississippi, New Jerser, etc.) Hab. whole of tropical South America east of the Audes, Atlantic coast region of Central America (and Mexico?).
303. Tyrannus dominicensis. (Florida.) Hab. whole of West Indies.

357b. Chormelles popetee minor. (Florida.) Ihab. Cuba and Jamaica.
386. Coccyzus seviculus. (Florida, Lonisiana?) Hab. West Indies and parts of northern Sonth America.
389. Criotophaga ani. (Tortngas; near Philadelphia!) Hab. West Indies and parts of northern South America.
420a. Tinnunculus sparverius isabellinus.
421. Tinnunculus spaliverioides. (Florida.) Hab. Cuba.
429. Rostrhamus soclabilis plumbeus. (Florida.) Hab. Tropical America in general.
455. Columba leucocephala. (Florida Keys.) Hab. West Indies; Honduras.
462. Zeneda amabilis. (Florida Keys.) Hub. Greater Antilles.
467. Geotrygon martinica. (Florida Keys.) Hab. West Indies.
468. Starngenas cyanocepliala. (Florida Keys.) Hab. Cuba.
502. Eudocinus ruber. (Lonisiana?) Hab. Northern Sonth America; Jamaica.
503. Plegadis falcinellus. (Florida, straggling northward.) Hab. Eastern Hemisphere chiefly.
578. Ionornis mamtinica. (Sonthern portions in general, straggling northward.) Hub. whole of tropical America.
581. Aramus pictus. (Florida.) Hab. West Indies and Atlautic coast of Central America.
585. Phaentcoptenus nuber. (Florida Keys.) Hab. West Indies and shores of Gulf of Mexico and Caribbean Sea; Galapagos.
635. Nomonyx Dominicus. (Accidental on Lako Champlain aud in Wisconsin.) Hab. whole of tropical America.
692. Sterva anaestheta. (Florida.) Ifab. tropies generally.

T34. 'Tachybaptes dominicus. (Lower Rio Grande, in Texas.) Hab. Tropical America in general.

SOUTIWESTERN BORDER-TEXAS TO CALIFORNIA.

[The species of this list which are pecaliar to the more elevated portions of Mexico and Guatemala (including the contignous southern border of the United States) are distinguished by an asterisk (*) prefixed to the mumber. The avi-fauna of temperate Mexico is decidedly more nearly related to that of the Western Province of North America than to the tropical fama of the Mexican tierra caliente or hot coast-region. The genera of Neotropical affinities are printed in italies.]

Catalogue No.

* 13a. Harporifycius rufus longirostris. (Lower Rio Grande.)
* 15. Harporhyncuus curvirostris. (Lower Rio Grande.)
* 26. Pilainopepla nitens. (Texas to California.)
* 37. Lophophanes atiocristatus. (Lower Rio Grande.)
* 39. Lophopianes wollweberi. (New Moxico; Arizona.)
* 49. Psalthiparus melanotis. (Nevada?)
* 50. Auriparus flaviceps. (Texas to Arizona.)
* 56. Campylorhynchus brumneicapillus. (Texas to California.)
* 59. Catherpes mexicands. (Lower Rio Grande?)
* 60a. Theyothorus ludovicianus berlandieri. (Lower Rio Grande.)
* 61b. Thimomanes bewicki leucogaster. (Lower Rio Grande to Arizona.)
* 83. Helmintifophaga lucie. (Arizoha.)
* 89a. Parula insularis nigrilora. (Lower Rio Grande.)
* 92. Peucedramus olivaceus. (Lower Rio Grande? Arizona.)
*104. Dendreeca gracle. (Arizoma.)
* 106. Dendheca chirsorahia. (Texas.)
*129. Setophaga picta. (Lower Rio Grande? Arizona.)
*130. Setophaga miniata. (Lower Rio Grande?)
*131. Cardellina hubrifrons. (Lower Rio Grande? Arizona.)
*13i. Eigaticus ruber. (Lower Rio Grande?)

133. D3asilenterus culicirorns. (Lower Rio Grande?)
*134. Basileuterus bellii. (Lower Rio Grande?)
*136. Vireusylvia agilis flavo-viridis. (Lower Rio Grande?)
*142. Vireo atricapillus. (Texas.)
*147. Vireo vicinior. (Avizona; Southern California.)
134. Euphonia elcgantissima. (Lower Rio Grando?)
*163. Prranga hepatica. (New Mexico; Arizona.)
*164a. Pyranga estiva cooperi. (New Mexico ; Arizona.)
*182a. Astragalinus psaltria arizone., (Upper Rio Grande to Arizona.)
182b. Astragalinus psalteia mexicanus. (Lower Rio Grande?)
*215. Spizella atrogularis. (Lower Rio Grande to Lower California.)
*22z. Juyco cinereus. (Arizona.)
*227. Peuctea arizone. (Lower Rio Grande to Arizona.)
*230a. Peucea ruficeps boucardi. (Arizuna.)
*233. Embernagra ruficirgata. (Lower Rio Grande.),
*241. Pipilo abertti. (Arizona.)
*242a. Cardinalis virginianus igneus. (Arizona; Lower California.)
*243. Pririluloxia sinuata. (Lower Rio Grande to Lower California.)
250. Passerina versicolor. (Lower Rio Grande.)
135. Spermophila moreletii. (Lower Rio Graude.)
*258a. Molothru's ater obscurus. (Texas to Lower California.)
136. Molothrus aneus. (Lower Rio Grande.)

263a. Sturnella magna mextcana. (Lower Rio Grande.)

Catalogue No.
*266. Icterus audubonir. (Lower Rio Grande.)
${ }^{*} 268$. Icterus parisorum. (Texas to Lower California.)
*269. Icterus cucullatus. (Texas to Lower California.)
*.275. Quiscalus machurus. (Lower Rio Grande.)
*) ${ }^{\text {a }}$ G. Quiscalus palustieis. (Head of GuIf of California? coast of Louisiana.)
*\&95. Aphelocona sordida alizoñe. (Arizona.)
*:996. Xanthura Inxuosa. (Lower Rio Grande.)
*334. Eugenes fulgexs. (Arizona.)
*342. Atthis heloise. (Texas.)
*344. Calothorax lucifer. (Arizona.)
345. Amazilia fuscicaudata. (Lower Rio Grande.)
*346. Amazilia yucafamensis. (Lower Rio Grande.)
*348. Iache Latirostiels. (Arizona.)
356. Nyctidiomus albicollis. (Lower Rio Grande.)
*358. Cilordeiles acutipennis texensis. (Texas to Lower California.)
*363. Picus scalaris. (Texas to Arizona.)
*365. Picus stricklanidi. (Arizona.)
*373. Centurls aurifrons. (Lower Rio Grande.)
*374. Centurus uropygialis. (Arizona.) 383. Ceryle americana cabinisif. (Texas to Arizona.)
390. Crotopilaga sulcinostris. (Lower Rio Grande.)
*391. Rhynchopsitta Pachyriryncha. (Rio Grande Valley?)
*402b. SCOPS asio maccalli. (Texas.)
*403. Scops trichopsis. (New Mexico; Stockton, CaI. ?)
*404. SCops Flammeolus. (North to about 40° in higher western mountains.)
410. Gladclidium Phalenoides. (Texas and Alizona.)
*411. Micrathene whitneyl. (Arizona; S. E. California.)
419. Rhynchofalco fusco-cherulescens. (Texas; New Mexico.)
434. Antenor unicinctus harrisi. (Lonisiana to Lower Califormia.)
440. Buteo Abbrieviatus. (Arizona ; Southern California.)
441. Buteo albicaudatus. (S. Texas.)
444. Urbitinga anthracina. (Arizonit.)
445. Asturina nitida plaglata. (Arizona.*)
450. Thrasetus harpyia. (Lower Rio Grande; Louisiana?)

45\%. Columba mertirina. (S. Texas.)
*463. Engyptila albifrons. (S. Texas.)
464. Melopelia leucoptera. (Texas to Lower Culifornia.)
*466. Scardafella inca. (Southern Texas.)
*469. Ortulis vetula maccalli. (S. Texas.)
*470. Meleagris gallopavo. (New Mexico; Upper Rio Grande in Texas.)
483. Lopiontyx Gambeli. (W. Texas to Arizona.)
484. Callipepla squamata. (IV. Texas to Arizona.)
485. Cybtonyx massena. (W'. Texas to Arizona.)
499. Mycteria americana. (Southern Texas.)

ENTIRE SOUTHERN BORDER.
423. Polyborus cheriway.

4:\%. Elanus glaucus.
455. Catharista atrata.
465. Cilamepelia passerina.

[^19]i. Supposed valid species described by Audubon and Wilson, which have not since been met with, and of which no specimens are known to exist in collcctions.
Catalogue No.
32. Regulus cuvieri, Atd. Orn. Biog. i. 1832, 288, pl. 55 ("Banks of Schyylkill River, Pa., Jnne, 1812").—Bamd, B. N. Am. 1858, 228 ; Review, i. 18bu4, 66.B. B. \& R. Hist. N. Am. B. i. 1874, 75 , pl. 5, fig. 7.
91. Perissoglossa carbonata (Ahd.) Ridgw.-Sylvia carbonata, Aud. Orn. Biog. i. 18:31, 308, pl. 60 (Kentucky).—Dendroica carbonata, Banid, B. N. Am. 1858, 287; Review, i. 1865, 207.-Perissoglossu carbonata, B. B. \& R. Hist. N. Am. B. i. $1874,214, \mathrm{pl} .12$, fig. 3.
112. Dendrgeca montana (Wils.) Baird.-'yluia montana, Wils. Am. Orn. v. 1812, 113, pl. xliv. fig. 2 ("Blue Mts. of Pennsylvania").-Aud. Orn. Biog. v. 294 ("California").-Dendroica montana, Baird, B. N. Am. 1858, 279; Review, i. 1865, 190.-Dendrect montana, B. B. \& R. Hist. N. Am. B. i. 1874, 271.
126. Wilsonxa minuta (Wils.) Bp.-Muscicapa mimata, Wils. Am. Orn. vi. 1812, 62, pl. l. fig. 5.-Aud. Orn. Biog. v. pl. 434, fig. 3; B. Am. i. pl. 67.- Myiodioctes minutus, Baird, 13. N. Am. 1858, 293; Review, 1865, 241.—B. B. \& R. Hist. N. Am. B. i. 1874,316 , pl. 16, fig. 2.
l. List of untenable specics and races of North American birds described since 1858.

1. Helminthophaga ruficapilla var. ocularis, B. B. \& R. Hist. N. Am. B. i. 1874, 191. (Chicago, Ill.) $=$ No. 85.
(?) 2. Helminthophaga ruficapilla var. gutturalis, B. B. \& R. Hist. N. Am. B. i. 1874, 191. (East Humboldt Mts., Nevada; Ft. Tejon, Cal.) $=$ No. 85 ?
2. Helminthophaga celata var. obscura, B. B. \& R. Hist. N. Am. B. i. 1874, 192. (Georgia and Florida.) $=$ No. 86.
3. Hirumdo bicolor var. respertina, Cooper, Am. Nat. x. Feb. 1876, 91. (California.) $=$ No. 155.
4. Collyrio chemanyensis, Gregg, Proc. Elmira Acad. i. 1870, 9. (New York.) = No. 148, juv.
5. Hesperiphona vespertina var. montana, Ridgw. in B. B. \& R. Hist. N. Am. B. i. 1874, 449, pl. 22, fig. 4. (Southern Rocky Mts. and mountain regions of Mexico.) = No. 165.
(?) 7. Loxia atruta, von Homeyer, Jour. für Orn. 1879, 179. (North America.) $=$ No. 173 ? ${ }^{?}$ *
6. Lencosticte campestris, Barrd, Oru. Cal. i. 1870, 163. (Colorado.) =No. $175 a$ (individual variation).
(?) 9. Linaria brunnescens, von Homeyer, Jour. für Orn. 1879, 184. ("Lapland, Grönland, Schweden.") $\dagger=$ No. 179a?
[^20]
Catalogue No.

10. Egiothus fuscescens, Couss, Proc. Philad. Acad. 1861, 222. (Labrador.) $=$ No. 179 (midsumuer plumage).
11. Egiothus rostratus, Coues, 1. c. (Greeuland.) $=$ No. $179 a$ (midsummer plumage).
12. Centronys ochrocephalus, Aiken, Am. Nat. vii. 1873, 237. (El Paso Co., Colorado.) $=$ No. 191 (antumnal plumage).
13. Passerculus caboti, B. B \& R. Hist. N. Am. B. iii. 1874, pl. xlvi. fig. 9. (Nahant, Massachusetts.) = No. 233. [Not lescribed!]
14. Spizella evara, Coues, The Ibis, 1865, 118, 164. (Ft. Whipple, Ariz.) = No. 215, young.
15. Passerella obscura, Verrill, Proc. Boston Soc. ix. 1862, 153. (Anticosti I.) $=$ No. 235 , young.
16. Hedymeles melanocephalus var. capitalis, B. B. \& R. Ilist. N. Am. B. ii. 1874, 74. (Pacific coast of Mexico and United States.) $=$ No. 245.
17. Guiraca carulea var. eurhyncha, Coues, Am. Nat. viii. 1874, 563. (Mexico.) =No. 246.
18. Dolichonyx oryzivorus var. albinucha, Ridgw. Bull. Essex Inst. v. Nov. 1873, 192. (Missouri plains to Salt Lake Valley.) =No. 257.
19. Empidonax pyymwus, Minot, Land and Game Birds New England, 1877, -. (Near Boston, Mass.) [Avis fictita!']
20. Dryobates hyloscopus, Cab. \& Heine, Mus. Hein. iv. June 25, 1863, 69. (San Jos6, Cal.) $=$ No. 360 .
21. Dryobates homorus, Cab. \& Hein. Mus. Hein. iv. June 25, 1863, 65. (California.) $=$ No. $361 a$.
22. Picus cuvieri, Malit. Mon. Pic. i. 1861, 85, pl. 22, fig. 3. (North America.) =No. 360 , ㅇ ad.
23. Picus turati, Malif. Mon. Pic. i. 1861, 125, pl. 29, figs. 5, 6, 7. (California and Rocky Monutains.) $=$ No. 361, ㅇ ad.
24. Chamapelia passerina var. pallescens, BaIrd, Proc. Philad. Acad. 1859, 305. (Cape St. Lucas.) $=$ No. 465.
25. Pedioctetes kemnicotti, Suckl. Proc. Philad. Acad. 1861, 361. =No. 478.
26. Bonusa jobsii, Jaycox, Am. Nat.
27. Ibis thalassinus, Ridgw. Am. Nat. viii. Feb. 1874, 110. (Pacific coast of America, from California to Chili.) $=$ No. $504, j u v$.
28. Ardea cyanirostris, Cory, Birds of the Bahama Islands, 1880, 一. (Bahamas.) $=$ No. 49\%, breeding plumage.
29. Cygnus passmorei, Hincks, Pr. Linn. viii. 1864, 1. (Toronto, Canada.) $=$ No. 589, juv.
30. Bernicla barnstoni, Ross, Canad. Nat. vii. April, 1862, - $=594$, var.?
31. Bernicla lcucolcema, Muriey, Edinb. Phil. Jour. April, 1859, 226, pl. 4, fig. 1. $=594$, var.
32. Pelecanus occipitalis, Rigdw. Am. Sportsman, iv. 1874, 297. (Nevada.) = No. 640 , adult, brceding plmmage, atter loss of occipital crest, the latter replaced by dusky-grayish patch.
33. Thalassons cuspius var. inperator, Coues, Proc. Philad. Acad. 1862, 538, in text. (North America.) = No. 680.
34. Sterna portlandica, RidgW. Am. Nat. viii. 1874, 433. (Portland, Maine.) $=$ No. 687, jur., second year
35. Sterna futiginosa var. crissalis, Bamrd, Pr. Boston Soc. xiv. 1872, 285. (Socorro I., N. W. Mexico.) = No. 681.
wing-bands are merely indicated. The bill is very characteristic. It is somewhat weaker at the base than in L. hornemanni, but longer and remarkably darker in all seven specimens.
"The bird figured ly Dresser on the sccond plate (lower figure) belongs here, and is by no means the young of L. hornemanni, as supposed by Dresser."
[This description accords well in every particular with the dark summer stage of Agiothus linaria holbölli, described in 1861 by Dr. Coues as E. rostratus, the type of which came from Greealand.-R. R.]
k. List of exotic species which have been attributed to North America by various authors, but apparently without sufficient cvidence of their occurrence.*
36. Antius cervinus, Pall.-Zander, Jour. für Orn. Extraheft i. 1853, 64. (Aleutian Islands.)
37. Geothlypis aquinoctialis (Gmel.) Caban.-Sylvia delafieldii, Aud. Orn. Biog. v. 1839, 307 ("Oregon").-Trichas delafieldii, Aud. B. A. Am. ii. 1841, 81, pl. 103.Geothlypis velatus, Baird, B. N. Am. 1859, 243; Cat. 1859, No. 171.
38. Lanius laitora, Sykes.-Lanius elegans, Swains. Fann. Bor. Am. ii. 1831, 122 (fur conntries).-Nutt. Man. ii. 1832, 566. [Not Collurio elegans, Baird.]
39. Progne lencogastra, Baird.-P. chalybea, Cass. Illnstr. 1856, 246 (California, fide J. G. Bell).
40. Astragalinus yarrelli (Aud.) Caban.-Carduclis yarrelli, Aud. Synop. 1839, 117 ("California"); B. Am. iii. 1841, 136, pl. 184.-Chrysomitris yarrelli, Baird, B. Am. 1858, 421; Cat. 1859, No. 312.
41. Astragalinus barbatus (Mol.) ———Carduelis stanleyi, Aud. Synop. 1839, 118 ("California"); B. Am. iii. 1841, 137, pl. 185.-Chrysomitris stanleyi, Barrd, B. N. Am. 1858, 420 ; Cat. 1859, No. 311.
42. Hypolia arctoa (Pall.) Ridgw.-Leneosticte arctoa, Caban. Mus. Hein. i. 1851, 154 ("Rnssich-America").-Leucosticte arctous, Baird, B. N. Am. 1858, 430; Cat. 1859, No. 324.
43. Carpodacus hemorrhous (Licht.) Scl.-Baird, B. N. Am. 1858, 417, foot-note (North America ?) ; Cat. 1859, No. 309.
44. Loxia pityopsittacus, Bechst.-Cf. Nuttall, Man. Orn. Land Birds, ed. 1832, 537 ("high northern regions of America", fide Temmincк).
45. "Zonotrichia" pilcata (Bodd.) --. Fringilla mortonii, Aud. Orn. Biog. v. 312; B. Am. iii. 1841, 152, pl. 190 ("North California").
46. Cynchromus schoniclus (Linn.) Boie.-L'mberiza schonichus, Nutt. Man. Orn. Land Birds, ed. 1832, ii. 586 (" vicinity of Harrisburg in Peunsylvania", fide Audubon).
47. Melenocorypha calandra (Linn.) Boie.-Alauda calandra, Linn., Sw. \& Rich. F. B. A. ii. 1831, 244 ("fur conntries"; spec. presented by the Hndsou's Bay Co. said to be in the British Musenm).-Nutt. Man. ii. 1832, 580.
48. Trupialis militaris (Linn.) Bp.—Barrd, B. N. An. 1858, 533 ("California"); Cat. 1859, No. 405.
49. Icterus melanocepialus (Wagl.) Gray.-Cass. Illnstr. 1856, 137, pl. 21 (Texas and New Mexico).-Bamd, B. N. Am. 1858, 543 (not given as North American!); Cat. 1859, No. 410.
50. Calocitta Colliei (Vig.) Finsch.-" Pica bullockii, Wagl.", Aud. B. Am. iv. 1842, 105, pl. 229 ("woody portions of North California").-Garrulus bullockii, Nutt. Man. i. 1832, 230 ("Colnmbia R.").
51. Tyramnus melancholicus, Vieill.-Baind, B. N. Am. 1858, 176 (not given as North American); Cat. 1859, No. 129.
52. Lampornis violicauda (Bodd.) Elliot.-"Trochilus mango, Linn.", Aud. Orn. Biog. ii. 480 ; B. Am. iv. 1842, 186, pl. 251 ("Florida Keys").-Lampornis mango, Baird, B. N. Am. 1858, 130 ; Cat. 1859, No. 100.
53. Campephilus mpperialis (Gonld) Gray.-Picus imperialis, Aud. Orn. Biog. v. 313 ; B. Am. iv. 1842. 212 ("Rocky Monntains and North California).-Cass. Illustr. 1856, 285, pl. 49.-Baird, B. N. Am. 1858, 82; Cat. 1859, No. 73.

[^21]19. Hylotonus scapularis (Vig.) Ridgw.-" Picus limeatus, Linn.", Aud. Orn. Biog. v. 315; 13. Am. iv. 1842, 233 ("Columbia River").
20. Strix stridula, Linh.-S. aluco, Nutt. Man. i. 183\%, 135 (Newfoundland and Hudson's Bay).
21. Carine noctua (Scop.) Kaup.-"Strix passcrina, Linn.", Aud. Oru. Biog. v. 269.-"Surnia passerina, Liun.", Aud. B. Am. i. 1840, 116 ("Pietou, Nova Scotia").
22. Spcotyto comicularia (Mol.) -- -Athene cunicularia, CAss. in Baird's B. N. Am. 1858, 60 ("Nortlı America, west of Rocky Momntains").
23. Tilalassoetus relagicus (Pall.) Kaup.-Aquila pelagica, Pall. Zoügr RossoAs. i. 1811, 343 (Russian Ameriea, fide Steller).-Haliaëtus pelayicus, Cass. Illustr. 1856, 31, pl. 6; in Baird's B. N. Am. 1858; Baird, Cat. 1859, No. 40.
24. Sarcorhamphus gryphus (Linn.) Dum.-Cathartes gryphus, Bonar. Am. Orn. iv. 1833,318 , pl. 22.-Nutt. Man. i. 1832, 35.
25. Gyparchus papa (Linn.) Glog.-Cathartes papa, Nutt. Man. i. 1832, 40 ("from the 30th degree of north latitude to the $32 d$ in the sonthern hemisphere").
26. Cathartes burrovianus, Cass. in Baird's B. N. Am. 1858, 6 ("Lower California"); Baird, Cat. 1879, No. 4. [Cf. Ridgway, Bull. Nutt. Orn. Club, v. April, 1880, 83.]
2\%. Lophortyx elegans (Less.) Nutt.-Ortyx elegans, Nutt. Man. ed. 1840, i. 792 ("Upper California", fide Lesson).
28. Butorides brunvescens (Gundl.) Baird.-Baird, B. N. Am. 1858, 677 (in text); Cat. N. Am. B. 1859, No. 494.
29. Harmatopus ater, Viধi11.-Hヶmatopus townsendii, Aud. Orn. Biog. v. 1839, 247, pl. 427; B. Am. v. 184:, 245, pl. 3:6.-Hematopus ater, Baird, B. N. Am. 1858, 700; Cat. 18=9, No. 514.
30. "Tringa" flatyrifycila, Temm.-Nutt. Man. ii. 1832, 114 (Arctic America, fide Temminck and Bonaparte).
31. Actodronas minuta (Limm.) Kanp.-Tringa minta, Sw. \& Rich. F. B. A. ii. 1831, 385 (Nelson and Hayes Rivers; "seen abnndantly in the autumn").Nutt. Man. ii. 1834, 119.
32. Actonromas temmincki (Leisl.) Ridgw.-Tringa temminchi, Nutt. Man. ii. 1832, 119 (Arctic America).
33. Totanus calidris (Linn.) Bechst.-Sw. \& Ricii. F. B. A. ii. 1831, 391 ("Hudson's Bay"; spee. in British Musenm).-Nutt. Man. ii. 1834, 155.
34. Heliornis fulica (Bodd.) --H. surinamensis, Nutt. Man. ii. 183\%, 510 ("accidental visitor in the Middle States of the Uuion").
35. Anser segetum (Gmel.) Lonap.-Nutt. Man. ii. 1832, 348 (Canada and Hudson's Bay).
36. Cairina moschata (Linn.) Caban.-Anas moschata, Nutt. Man. ii. 1832, 403 Lower Mississippi and Gulf eoast of U. S.).
37. (Edemia nigra (Limn.) Hen.-Fuligula nigra, Nutt. Man. ii. 1832, 423 ("coast of the United States").
38. Mergellus albelles (Limi.) Selby.-Mergus albellus, Wils. Am. Orn. iii. pl. lxxi. fig. 4 (New England and New York; num erous). -Nutt. Man. ii. 1832, 467.-Aud. Orn. Biog. iv. 350; 13. Am. vi. 1843, 408, pl. 414 ("Lake Barataria, not far from New Orleans").
39. Phalacrocorax gracules (Linu.) Leach.-Nutt. Man. ii. 18:32, 484 ("South of Greenland" ; United States in winter).
40. Phalacrocorax pygmans, Pall.-Nutt. Man. ii. 1832, 487 (Northern North America, fide Bonaparte).
41. Phalaerocorax africamus (Gmel.) Dnmont.-Nutt. Man. ii. 1832, 488 ("United States", fide Audubon).
42. Lares fuscus, Linu.-Nutt. Man. ii. 1832, 302 (Greenlaud, Newfoundland, and Hudson's Bay).
43. Larus capistratus, Temm.-Nutt. Man. ii. 1832, 290 (Delaware R. and Chesapeake Bay).
44. Larus minutus, Pall.-Sw. \& Rich. F. B. A. ii. 1831, 426 (given on Sabine's authority).-Nutt. Man. ii. 1852, 289.-Chroicocephalus minutus, Lawr. in Baird's B. N. Am. 1858, 853.-Barrd, Cat. 1859, No. 671.
45. Diomedea exulans, Liun.-Nutt. Man. ii. 1832, 340 (" accidentally to the coasts of the central part of the Union").-Lawr. in Bairl's B. N. Am. 1858, 821.Bampd, Cat. 1859, No. 630.
46. Podiceps cristatus (Linn.) Lath.-Sw. \& Rich. F. B. A. ii. 1831, 410 (thronghout fur countries).-Nutt. Man. ii. 1832, 250.-Lawr. in Baird's B. N. Am. 1858, 893.-Baind, Cat. 1859, No. 703.
47. Tachybaptes minor (Linn.) Coues.-Podiceps minor, Nutt. Man. ii. 1832, 257 (Hudson's Bay).
l. Partial list of foreign birds which have been introduced to the Uniled States, and those which have been captured after escape from confinement.

SPECIES INTRODUCED WITH A VIEW TO THEIR NATURALIZATION.*

1. Passer domesticus (Linn.) Leach. European House Sparrow. The attempted naturalization of this hird has proved decidedly successful. The case is so notorious that further comment is unnecessary.
2. Passer montanus (Linn.) Stepheus. European Tree Sparrow. Has become naturalized in the vicinity of Saint Louis, Mo., but the history of its introduction is unknown. (Sce Merrill, Bull. Nutt. Orn. Club.) ${ }_{3}$
3. Alauda arvensis, Linn. Skylark. Partially naturalized in the vicinity of Cinciunati, on Long Island, and perhaps other localities.
4. Coturnix communis (Linn.) Bonn. European Quail. Introduced to various local itics in the Eastern United States, and partially naturalized.

SPECIES WHiCH Have beev Captured After escape from confinement. \dagger

1. Amadina pubro-nigra, -. Brunswick, Maine, March, 1879; Leslie A. Lee. (Alles, Bull. Nutt. Oru. Club, April, 1880, 119.) Hab. India.
2. Crithagra butyracea, - South Scituate, Mass., in midwinter. (Bretwer, Proc. Bost. Soc. xx. 271.) Hab. South Africa.
3. Ligurinus chloris (Limi.) Koch. Lowville, Lewis Co., N. Y., March 19, 1878; R. B. Hough. (Cf. Bull. Nutt. Orn. Club, Apr. 1880, 119.) Hab. Europe.
4. Carduelis elegans, Steph. Eastern Massachusetts, many captures. (Allen, Bull. Nutt. Orn. Club, Apr. 1880, 120.) Hab. Europe.
5. Serinus meridionalis, Brchn. Westeru Massachusetts, in winter. (Allen, 1, c.) Hab. Europe,
6. Corvus frugilegus, Linn. Washington, D. C., August, 1 le79.

An example of this species was seen by me in Angast, 1879, in the grounds of the Agricultural Department in Washington. It was perched in a maple tree near one of the outbuildings, was very tame, and flew laboriously, as if very recently escaped from continement. I am, as set, ignorant of the history of this specimen, nor have I since seen it.
7. Conurus xanthogenius, Bp. Hab. St. Thomas, West Indies.

An example of this species, shot in a grove near Washington, by Dr. D. W. Prentiss, is in the National Museum collection. Of course it was an escaped cage-bird.
8. Chenalofex eggrtiaca (Linn.) Steph. Carnarsie, Long Island, Jan. 3, 1877. (Akiurst, Bull. Nutt. Orn. Club, ii. Apr. 1877, 52.) Hab. Southern Europe and Africa.

[^22]Table of families of North American birds, showing number of genera and spccies of each according to the foregoing catalogue.*

	Number of the cataloguc.	$\begin{aligned} & \text { Number } \\ & \text { of gen- } \\ & \text { era. } \end{aligned}$	Number of species. \dagger
1. Turdidæ	1-18	8	$18+8=26$
2. Cinclidx	19	1	
3. [Luscinidx]	20	1	1
4. Saxicolidie .	21-24	2	4
5. Ptilogonatide	25-26	2	2
6. Srlviidæ .-. -	27-34	3	$8+1=9$
7. Chamaide	35	1	1
8. Parida	36-50	4	$15+3=18$
9. Sittidae	51-54	1	$4+1=5$
10. Certhiidie	55	1	$1+1=2$
11. Troglodstida	56-68	9	$13+9=21$
12. Motacillidre	69-73	4	5
13. Mniothitide	74-134	18	$61+8=69$
14. Vireonide	135-147	3	$13+3=16$
15. Laniidte ...	148-149	1	$2+2=4$
16. Ampelidæ	150-151	1	2
17. Hirundinidæ	15:-15	6	$7+1=8$
18. Carebione	159	1	
19. Tanagride	160-164	2	$5+1=6$
20. Fringillide	165-256	36	$91+35=126$
21. Icteride	257-278	8	$22+5=27$
22. [Sturnidre]	279	1	1
23. Corvidie ..	280-298	9	$19+7=26$
24. [Alandidie]	299-300	2	$2+2=4$
25. TTrannide	301-331	11	$31+2=33$
26. Cotingide	33:-333	9	2
27. Trocinlibe	334-348	10	15
28. Cypselidre	349-35:	3	
29. Caprimulgida	3-3-358	5	$6+2=8$
30. Picidie -- -	359-380	10	$22+10=32$
31. Monotid.e	381	1	
32. Alcerlinidae	382-383	1	2
33. Trogonide	384	1	1
34. Cuculide .	385-390	3	6
35. Psittacidie	391-393	$\stackrel{2}{2}$	3
36. Strigida -	394-411	12	$18+11=29$
37. Falconidre	412-45:	23	$41+12=53$
38. Catifartide	45:3-455	3	3
39. Columbidie	456-468	10	13
40. Cracidie	469	1	1
41. Meleagride	470	1	$1+1=2$
42. Tetraonidæ.	471-479	6	$9+7=16$
43. Perdicidie	480-485	5	$6+3=9$
44. Arileida	486-498	11	13
45. Ciconiide	499-500	2	2
46. Ibididie	501-504	2	4
47. Plataleiclæ	505	1	1
48. Hrematopodida	506-508	1	3
49. Strejsilidae . .	509-511	2	3
50. Charadriidæ	$512-503$	7	$12+2=14$
51. Ncolopacidie.	$5 \because 4-563$	21	$39+4=43$
52. Phalaroporida	$563-565$	3	3
53. Recurvirostrilie	566-567	$\stackrel{2}{2}$	$\stackrel{\square}{\sim}$
54. Parridae.	568	1	1
55. Rallicłe.	569-580	6	$1 \because+2=14$
56. Aramide	581	1	1
57. Gruidre .	582-584	1	3

[^23]Table of families of North American birds-Contimed.

	Number of the catalogue.	Number of genera.	Number of spe- cies.
58. Phœnicopteridæ	585	1	1
59. Anatidæ	586-638	30	$53+6=59$
60. Tachypetidæ	639	1	
61. Pelecanida..	640-641	1	$\stackrel{2}{7}$
62. Phalacrocoracida	642-648	1	$7+3=10$
63. Plotidix	649	1	
64. Sularidx	650-653	1	4
65. Phaëthontidæ	654-655	1	2
66. Rhynchopsidæ	656	1	1
67. Laridæ.	657-695	9	$39+2=41$
68. Stercorariida	696-699	2	
69. Procellariidæ	700-728	15	$29+2=31$
70. Policipitidx	729-735	5	$7+1=8$
71. Colymbidæ.	736-740	1	
72. Alcidæ.	741-764	14	$24+3=27$

SUMMARY.
Number of geuera.. 379
Number of species.. 764
Number of subspecies ... 160
CONCORDANCE.

No. of old catalogue.	No. of new catalogue.	No. of old catalogue.	No. of new catatogue.	No. of old catalogue.	$\begin{aligned} & \text { No. of } \\ & \text { new cat- } \\ & \text { alogue. } \end{aligned}$	No. of old catalogue.	No. of new catalogue.	No. of old catalogue.	No. of new catalogue.	No. of old catalogue.	No. of new cat alogue
1	454	35	427	69	387	102	336	135	315	167	74
2	453	36	428	70	388	103	340	136	316	$167 a$	$74 a$
3	455	37	429	71	386	104	339	137	318	168	88
4	-	38	430	72	359	105	338	138	321	169	75
5	414	39	449	73	-	106	337	139	320	170	122
6	414	40	-	74	360	107	349	140	$325 a$	171	
7	417	41	451	75	3600	108	350	141	325	172	120
8	415	42	452	76	361	109	351	142	326	173	121
9	419	43	451	77	$361 a$	110	352	143	324	174	118
10	413	44	425	78	364	111	353	144	392	175	119
11	412	45	$42: 3$	79	363	112	354	$144 a$	323	176	123
1:	$412 a$	46	434	80	362	113	355	145	327	177	123a
13	420	47	394	81	366	114	357	146	328	178	77
14	433	48	405	82	367	115	357 a	147	330	179	76
15	431	49	402	83	368	116	358	148	1	180	79
16	431	50	$402 b$	84	368 a	$116 a$	356	149	$5 b$	181	81
17	432	51	395	85	369	117	382	$149 a$	$5 a$	182	78
18	442	52	396	86	$369 a$	118	383	150	5	183	85
19	442	53	399	87	$369 b$	119	381	151	2	$183 a$	84
20	$436 z$	54	397	88	370	120	$33: 3$	152	4	184	86
21	$44 *$	55	400	89	370	121	382	153	$4 a$	185	87
22	438	56	401	90	371	122	302	154	3	186	115
23	436	57	401	91	372	193	301	155	7	187	116
24	$436 b$	58	408	92	373	124	304	156	9	188	117
25	439	59	408	93	374	125	303	157	21	189	107
26	$439 a$	60	409	94	375	126	306	158	22	190	109
27	443	61	406	95	377	127	307	159	23	191	108
28	442	62	407	96	376	128	305	160	24	192	105
29	437	63	392	97	378	129	-	161	30	193	94
30	447	64	391	98	3783	130	312	162	33	194	95
31	447	65	384	$98 a$	$378 a$	131	313	163	32	195	96
32	448	66	389	99	379	132	311	164	19	196	102
33	445	67	389	100	-	133	314	165	71	197	100
34	$4: 6$	68	385	101	335	134	317	166	73	198	111

Concordance－Continued．

No．of old cat－ alogue．	No．of new cat－ alogue．	No．of old cat－ alogne．	No．of new cat－ atogue．	No．of old rat－ alague．	$\begin{aligned} & \text { No. of } \\ & \text { new cat- } \\ & \text { alogue. } \end{aligned}$	No，of old cat－ alogue．	No，of new cat－ alogue，	No．of old cat－ alogue．	$\begin{gathered} \text { No. of } \\ \text { nev. cat. } \\ \text { alogue. } \end{gathered}$	No．ot ond cat－ alogue．	$\begin{aligned} & \text { No. of } \\ & \text { rew cat- } \\ & \text { alogue. } \end{aligned}$
199	11：	259	15	318	17\％	378	254	440	295	500	$50: 3$
200	99	2504	15	$31 * /$	1720	379	255	441	294	$500 a$	504
201	9 S	260	1：3a	$: 19$	173	3×0	24.1	442	296	501	505
202	101	261	13	320	179	381	245	443	297	502	
203	$93 \cdot$	$261 a$	13	321	178	38.2	246	444	288	503	515
$\stackrel{\square}{2}$	97	263	519	322：	175	3×3	217	445	456	504	516
205	110	20	590	32：3	17.1	384	251	446	45%	505	523
206	90	264	58	3） 1	－	385	250	447	458	506	524
207	91	265	60	335	186	386	249	448	459	507	517
208	113	266	$60 . a$	326	187	387	248	449	462	508	520
209	103	267	61	327	188	388	252	450	464	509	521
$\geqslant 10$	114	2is	67	328	189	389	243	451	460	510	513
211	124	≥ 69	68	389	1×9	390	24.4	452	466	511	511
212	126	230	63	330	190	391	238	45：3	465	512	507
$21: 3$	125	271	（i3）${ }^{\text {a }}$	331	191	392	238b	45.4	467	513	508
214	127	272	63	332	19：3a	393	2：38	45.5	468	514	－
215	12%	273	（i5）	333	193	394	2380	456	469	51.5	509
216	132	274	35	334	194	395	241	45%	$470 a$	516	510
217	128	275	5.5	335	$19: 37$	396	2406	458	470	51%	566
218	189	276	55 a	336	196	39%	240	459	471	S18	567
219	130	2%	51	337	197	398	239	460	472	519	565
20	161	\％\％	51 d	：338	195	399	25	461	$472 a$	520	564
221	164	279	52	339	199	100	258	462	475	521	563
22\％	163	280	53	3.10	200	401	261	463	4781	5\％9	525
203	162	281	54	3.11	201	402	$261 a$	464	477	523	526 c
224	160	$\stackrel{\square}{2} \times 2$	$\because 7$	342	202	$40: 3$	268	465	473	524	527
225	154	28：3	28	：34：3	2310	404	26	$465 a$	47：3	525	$527 a$
226	15%	2×4	89	344	204	405	－	466	$473 b^{\prime}$	526	529
227	155	2	36	345	206	406	263	46%	47.1	527	535
228	156	2－6	37	：346	207 a	40%	264	468	475	52 L	530
\＄39	157	287	32	347	208	408	265	469	47 i	529	540
2：30	158	288	39	310	205	409	266	470	475	58.30	5391
$2: 31$	152	2×9	$41 a$	349	209	410		471	$4-10$	231	53.4
231a	152 a	2x9a	41 a	350	220	411	268	472	$4 \times 0 b$	$5: 32$	533
232	150	290	41	351	221	412	267	473	4－1	533：	536
2：3	151	291	413	35\％	$\because 18$	$41: 3$	969	474	4×2	534	542
23.4	20	： 9%	43	：35：3	220	414	270	475	18.3	513）	5.41
2？5	25	29：3	42	354 4	21%	415	271	476	484	$5: 36$	52
2：36	14.	294	40	355	234	416	27.2	． 175	$4-5$	5337	55
2：37	149	295	46	356	205	417	27：3	45	5×3	5.38	5.47
$2: 38$	$149 a$	206	45	357	210	418	274	479	5＊	5389	545
239	－	297	49	3 SR	214	419	275	480	584	5.40	549
240	135	29 N	47	359	211	420	277	481	581	541	550
241	136	299	48	360	21：	421	278	$4 \times$ \％	491	542	553
24	－	300	50	361	213	422	こ\％	48：3	491	5.43	5.57
243	1：37	301	159	362	215	423	200	464	4192	5.4	5.54
214	13－	302	300	$36: 3$	331	424	280	450	490	5．1．5	555
245	139	30：3	16：	36.4	2：31b	105	2×1	4×6	4×4	5.46	550
246	14.5	304	166	365	$231 c$	106	2－\％	$486 a$	4－9	5.47	$55: 3$
247	14%	805	16	366	2：31d	42\％	20011	4eT	4×7	5418	545
24s	143	3015	16－a	367	2：314	428	ごって	103	4×6	549	558
249	144	307	169	368	2：34	429	2－3	4×9	426	550	$5.9)$
250	141	304	130	36%	2：3	430	2×4	490	493	551	560
231	141 a	209	－	330	226	431	25	$4!1$	492	552	569
2．\％	140	301	184	：31	\cdots	432	206	49.3	497	55.3	51
253	11	311	－	：3\％	230	$43:$	25	$4!93$	494	55.4	57
$253 a$	11	：312	－	：1\％	436	4：34	2心家	494	－	555	574
－5．4	12	：31：3	181	：314	$2: 5$	4.35	290	$4!5$	495	5.56	536
255	10	：314	$1 \times$	：35	2：354	436	$290 c$	4%	496	557	575
$\stackrel{56}{ }$	16	315	$1 \sim 0$	：376	2350	437	293	497	500	558	575
2.58	16 a	316	1×3	376	2356	430	20%	498	$50:$	559	50¢
258	17	317	10.5	337	$2: 6$	439	291	499	501	560	57 \％

Proc．Nat．Mus．S0－16

242 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
Concordance-Continued.

No. of old catalogue	$\begin{aligned} & \text { No. ot } \\ & \text { new cat. } \\ & \text { alogue. } \end{aligned}$	No. of old cat alogue.	No. of new cat. alogue.	No. of old cat-alogue-	No. of new cat alogae.	No. of old catalogae.	No. of new cat alogue.	No. of old catalogue.	No. of new catalogue.	No. of old catalogue.	No. of new cat alogue.
561	578	589	615	620	642	651	706	681	679	710	741
$561 a$	588	590)	616	621	648	652	696	682	680	711	742
562	589	591	618	62:	6433	653	697	683	681	712	745
563	591	592	617	693	643	654	698	684	68:	713	744
$563 a$	$591 a$	593	620	624	643 t	655	699	685	683	714	$743 a$
564	590	594	619	625	644	656	660	686	685	715	743
565	$593 a$	595	621	6:26	645	65%	66\%	687	684	716	745
566	593a	596	62\%	627	646	658	661	688	681	717	746
567	594	597	623	628	649	659	662	689	686	718	746
$567 a$	594 c	598	625	629	654	660	66:3	690	687	719	748
558	$594 b$	599	626	630	-	661	$664 a$	691	685	720	748
569	$594 a$	600	624	631	701	662	664	692	688	721	749
570	595	601	632	63:	702	663	668	693	687	720	750
571	596	602	633	633	703	664	669	694	690	723	750
572	597	603	633	634	704	$664 a$	670	695	693	794	751
573	598	< 604	630	635	705	665	670	696	695	725	747
574	599	605	632	636	$705 a$	666	672	697	656	726	760
575	600	606	$627 a$	637	706	667	673	698	736	727	761
576	601	607	628	638	717	668	674	699	738	738	762
577	602	608	629	639	719	669	674	700	739	789	763
578	605	609	634	640	726	670	675	701	740	730	763
579	61:	610	635	641	727	671	-	702	731	731	764
580	(111	611	636	$64{ }^{\circ}$	723	67:	658	703	-	73:	755
581	609	612	$6: 37$	643	724	673	674	$703 a$	731	733	75.5
58%	610	613	638	644	72.	674	659	704	799	73.4	759
583	608	614	-	645	721	675	659	705	730	735	756
584	604	615	640	646	728	676	657	706	732	736	753
585	607	616	641	647	709	677	657	707	$733 a$	737	754
586	606	617	650	648	714	678	676	708	733	738	752
587	613	618	652	649	711	679	678	$708 u$	734		
588	614	619	639	650	712	680	677	709	735		

INDEX TOTHE GENERA.

[The numbers refer to the first species of each genus in the catalogue.]

	Page.		Page.
Accipiter		Basilinna.-.	347
Actortromas	533	Bernicla	94
Echmophoru	789	Bouasa .	
Egialitis...	517	Botaurus	497
Egiothus.	178	Brachyrhamphus	755
※salon	416	Bubo.	405
Agclarns	261	Budytes	70
Aix	613	Buteo	435
Ajaja	505	Butorides	494
Alanda	299		
Alca	741	Calam	
Alle	75\%	Callipepla	3.4
Aluco	394	Calothorax	4
Amazilia	345	Calypte	7
Aumodromus	201	Campepli	
Ampelis	150	Campephins	9
Amphispiza	294		
Anas	601		
Anorthura.	65		
Anous.	695		
Anser	593	Cardinalis	
Antenor	434		
Anthus	$\because 1$	Carpota	
Antrostomus.	353	Catharista)
Aphelocoma	291	Cathartes	454
Aphriza	511	Catherpes...	
Arquila	449	Centrocereus	
Aramus	581	Centronyx..	1
Archibnteo	447	Centrophanes.	187
Arrlea	486	Centurus	372
Ardetta	498	Ceratorhina	746
Arquatella	530	Certhia	55
Asio ...	395	Certhiola	159
Astragalinus	181	Ceryle .	382
Astur .-....	438	Chaetura	351
Asturina	445	Chamiea	
Atthis.	3.40	Chameppelia	465
Auriparns	50	Charadrins	14
Aythya	617	Chanlelasmus	604
		Chelt.	590
		Chondestes	20.4
Bartramia	555	Chordeiles	357
Basileuterus .	133	Chrysomitris	184

Page.
750
Ciceronia
19
Cinclus 19
Circus 430
Cistothorns 68
Clangula 619
Coccyzus 386
Colaptes 378
Columba 456
Colymbus 736
Contopus 318
Conurus 392
Corvis 200
Cotile 157
Coturniculus 198
Creagrus 678
Crex 577
Crotophaga 383
Cupitonia 477
Cyanecula 20
Cyanocitta 2×9
Cymochorea 723
Cypseloides 350
Cypselus 349
Cyrtonyx 485
D.
Dafila 605
Daption. 719
Dendrocygna 509
Dendreca 93
Dichromanassa 491
Diomedea 700
Dolichonyx 257
Dytes 732
Ectopistes 459
E.
E.
Engyptila 463
Elanoïdes 426
Elanus 427
Embernagra 236
Empidonax 324
Eremophila 300
Ereunetes 541
Ergaticus 132
Erismatura 63.4
Endocimus 501
Eugenes 334
Enphonia 160
F.
414
Falco
493
Florida
843
Fratercula
Fiegetta 728
Fulica 580
Fulix 614
Fulmarus 705
Page.
Galeoscoptes 12
Gallinago 526
Gallinula 579
Garzetta 490
Geococesx 385
Geothlypis 120
Geotrygon 467
Glancidium 409
Grus 582
Guiraca 246
Gymnocitta 285
H.
Hæmatopus 506
Hadrostomns 333
Haliæëtus 451
Halocypitena 720
Harelda 623
Harporhynchus 13
Helminthophaga 78
Helmitherus 77
Helonsa 76
Herodias 489
Hesperiphona 165
Hesperocichla 9
Heteroscelus 553
Hierofalco 412
Himantopus 567
Hirnudo 154
Histrionicus 622
Hydranassa 492
Hydrochelidon 693
Hylocichla 1
Hylotomus 371
Iache 348
Icteria 123
Ieterus 265
Ictinia 428
Ionomis 578
J.
Junco 216
L.
Lagopus 474
Lampronetta 626
Lanius 148
Lanivireo 140
Larus 660
Leucosticte 174
Limosa 543
Lobipes 564
Lomvia 764
Lophodytes 638
Lophophanes 36

246 PROCEEDINGS OF UNITED S'TATES NATIONAL MUSEUM.

Page. Page.
Strix 397
Sturnella 263
Sturnus 279
Sula 650
Surnia 407
Symphemia 552
Synthliborhamphus 753
T.
609 Tachybaptes 734
25 Tachycineta 155
Tachypetes 639
Tantalus 500
Telmatodytes 67
Thrasaëtus 450
Thryomanes 61
Thryothorns 60
Timumenlus. 420
Totanns 547
'Tringa 529
Tringoides 55%
Trochilus 335
Troglodytes 63
Trogon 384
Tryngites 556
Turdus 6
Tyramms 303
U.
Ulula 399
Uria 760
Urubitinga 444
Utamania 742

Utamalia

742
Selasphorus 339
Setophaga 128
Sialia 29
Simorhynchus 748
Sitta 51
Sinrus 115
Somateria 627
spatula 608
Speotyto 408
Spermophila $25:$
Sphyrapicus 369
Spiza 254
Spizella 210
Squatarola 513
staruceuas 468
Steganopus 565
Stelgidopteryx 158
Stellula 343
Stercorarins 697
sterua 679
strepsilas 509

21
315
Scardafella 466
Scolecophagus 273
Scolopax 524
Scops . 402
Vanellus 512
Vireo 142
Vireosylvia 135
W.
Wilsonia 124
X.
Xanthocephalus 260
Xanthura 296
Хена 677
Xenopicus 366
Z.
Zamelorlia 244
Zenada 462
Zenaedura 460
Zonotrichia 205

ON THEE LDENTHTE OE THE GENLS LEURENNIS, LOCKINGTON,

 WITII HACODOPSIS, COLLITRT.
By THECODORE GIEL.

In the Proceedings of the Zoologieal Society of Loudon for 1879 (at pp. 380-381) Mr. lobert Collett has published a commmieation "On a fish of the genus Lycodes from the Pacific." The article was read at the meeting lield April 1, 1879, and published in the part (II) issued Angnst 1, 1879.

In this article Mr. Collett describes at length the speeies referred to, under the name Lycodes pucificus, and gives a figure of the head and anterior part of the body. The diagnosis is as follows:
"Vomerine and palatine teeth none. Coloration uniform yellowish grey. The body is sealy, the head and pectorals naked. The head is contained fom and six-tenths, the height of the body nine times, in the total length. Lateral line very indistinct.
"M. B. 6; D. (circa) 92 ; A. 71 ; C. (circa) I, 1; P. 18.
"Hab.-Japan (Mus. Berol.)."
At the end of the deseription Mr. Collett expresses the following opinion:
"The absence of vomerine and palatine teeth, a character quite peenliar to the species, will perhaps necessitate its remoral to a separate genns, for which I propose the name Lycorlopsis."

In the Proceedings of the United States National Museum for 1879 (at pp. 326-332) Mr. W. N. Lockington has given "Descriptions of new genera and species of fishes from the eoast of California." The signature in which it appears was issued Mareh 25, 1880.

In this article Mr. Lockington describes what is considered to be a new generic type, under the name Leurymis paucidens. The diagnosis of the genus is as follows:
"Generic characters.-Family Zoarcide, allied to Lycodes. Ventral fins present, short; no teeth on vomer and palatines; dorsal and anal fins contimed withont interruption aromel the tail; seales small, but
 the eharacter which chietly distinguishes the genns from Lycodes."

Selecting characters to compare with those mentioned in Mr. Collett's diagnosis, we have the following:
"No vomerine or palatine teeth.-Color olivaceons, the scales lighter than the skin; the color formed by numerous dark points, which are continued also mpon the head. Upper surfate of head darker, abdominal surface lishter than other portions. Sertical fins margined with black.-Scales romdish, smooth, separate, imbedded in the skin, uniform wrer the whole of the body, except upon an area on the upper surface in fiont of the dorsal, where they are smatler, and region near base of pectorals scaleless. Head scaleless-the ridges somewhat prominent.-

Length of head $4_{3}^{1}-4_{3}^{2}$ times in the total length.-Greatest depth of body from a little more than ten to a little less than eleven times.-No lateral line."
M. B. $6 ;$ D. $90 ;$ A. 70 ; P. 18.

As will be thus seen, the two fishes are certainly eongeneric, and are evidently very closely related. Even the slight diserepancies are apparently such (as in the ease of the color) as result from differenee of interpretation of the same characters. The vertieal fins in the Californian form, however, are distinctly said to be "margined with black," while in the Japanese form it is at least implied that they are not. It is quite probable, nevertheless, that even these alleged differences may be found to be rather of degree than of kind. In view, however, of the difference of distribution, it is reasouable to suppose that the tro forms will be found to be distinct, and, as the genus appears to be perfeetly valid, they will rank as species, with the following names:

1. Licodopsis pacificus.

Lycodes pacificus Collett, Proc. Zool. Soc. London, 1879, p. 381.
Hab.-Japan.
2. Lycodopsis paucidens.

Leurymnis paucidens Lockington, Proc. U. S. Nat. Mus. 1879, p. 326.
Ital.-California.

DESCRIPTION OF A NEW CHIROID WISIH, NIYRIOLEPIN ZONIEER, EIBOM MONTEEREETAY, CALIEGIENIA.

By W. N. LOCKINGTON.

Myriolepis, gen. nov. (Chiride).
Body oblong, rather stont; mouth moderate; cardiform teeth in both jaws, slightly larger anteriorly; no canines; teeth on vomer and palatines; preopercle entire; no spines about the head. Gill-openings separated by a narrow isthmus; gill-rakers short. Branchostegals seven. Psendobranchiee present. Dorsal fins two, united at base, the first with about 14 rather stiff spines, the second with as many soft rays. Anal short, of about 13 rays, without distinct spine. Scales rery small, etenoid, covering the whole surface of the body and head and the greater portion of all the fins except the first dorsal. Lateral line single.

Etymology: uopiov, myriad; $\lambda \varepsilon \pi i s$, scale.
This genus bears little resemblance to any of the previously known Chiride, its general appearance being quite Serranoid. It has, however, a bony stay conneeting the suborbital and preoperenlum, and possesses the technieal characters of the Chiride, in which group it shomld form a distinct subfamily, differing especially in the shorter anal tin without distinct spines.
Myriolepis zonifer, sp. nov.
Lower jaw slightly projecting; snont to smmit of ascending process of premaxillary inclined backwards at about 45°; forehead slightly con-
eave longitudinally; dorsal outline, from oceiput to caudal peduncle, regularly arched, the lighest point at anterior part of first dorsal; mandible straight ; abdominal ontline regularly eurved.

Greatest depth 3_{i}^{8} times, depth of caudal peduncle 12, length of head $3 \frac{y}{10}$, length of pectoral $4 \frac{11}{12}$ in total length to extremity of candal fin; orbit (longitudinal diameter) $5 \frac{1}{3}$, mandible $2 \frac{1}{5}$, interorbital width about $2 \frac{9}{10}$ in length of head.

Gape straight, maxillary extending to a little in front of the center of the pmpil, its upper edge received in a groove below the preorbital for most of its length.

Teeth of mandibles and intermaxillaries slender, sharp, recurved; in several rows in front, gradually diminishing laterally to a single row; front teeth slightly longer than lateral teeth. A few similar but smaller teeth on vomer and palatines. Upper phargngeals with a enshion of similar teeth; lower pharyngeals slender, with a patch of similar teeth in the form of a very obtuse triangle, the internal row largest.

Gill rakers short, ciliated, those on the anterior aspect of the first pair of gill-arches longer than the others.

Branchiostegale seren; gill-membranes continuous below, but attached to an isthmus thronghout the entire length of their junction exeept the posterior margin.

Nostrils just above a line joining the upper margin of the orbit with the tip of the snout, simple, elliptical, the posterior far the larger.

Eyes lateral, subelliptical, the upper margin of the orbit less curved than the lower; interorbital space wide, slightiy convex transversely.

Longitudinal diameter of orbit $1 \frac{1}{3}$ in lengtl of snont.
Opereular bones without spines or denticulations.
Pectoral base vertical; pectoral broadly lanceolate, the upper margin curved; 5th ray longest; 4th, 6th, 7th, and 8th only slightly shorter, thence diminishing rapidly downwards. Tip of pectoral abont vertical with base of 11th ras of spinous dorsal, but considerably short of the rent. Rays twice branched.

Ventrals inserted a little behind peetorals, their length $1 \frac{3}{5}$ in that of the pectorals. Rays twice bifureate.

Spinous dorsal commencing about opposite 20th scale of lateral line; first spine very short; ©l and 3 l rapidly increasing; 4th longest; thence diminishing regularly to 12 th ; 13th and 14 th direeted backwards, horizontal, their points only free; 15 th spine at base of 1st soft ray.

Third ray of solt dorsal longest, thence diminishing regularly ; rays split up at tips.

Anal commencing about opposite base of 7 th ray of $2 d$ dorsal, and preceded by two weak spines hidden in membrane. First soft ray lougest; rays split at tips.

Candal with many accessory rays and abont sixteen principal rays, so that its lateral margins are convex ; posterior border somewhat emarginate; rays much divided at tips.

Lateral line continuons to end of candal peduncle, not very conspicnous; tubes simple. From its origin to above the pectoral it curves downwards, thence follows parallel to the dorsal ontline till it reaches the candal peduncle, along which it is median.

Scales of body small, strongly etenoid, larger upon hinder part of trunk and on candal peduncle than anteriorly, and smallest on head and under pectoral base. Scales elongate, almost rectangular, but with the free margin convex, imbedded portion striated. Entire surface of gillcovers, branchiostegal rays, mandibles, maxillaries, preorbitals, and suout scaly, the only scaleless portions being the lips and the portions of the gill-membrane folded up between the rays. A shallow, scaleless groove at sides of 1 st dorsal.

The rertical fins, except the spinons dorsal, covered almost to the tips of the rays with similar but smaller seales, and the paired fins similarly covered on their exterior surfaces.

A band of small scales along some of the anterior spines of the 1st dorsal.

Dorsal region and head, to the level of the upper margin of maxillary and of pectoral fin, black; four broad transverse black stripes between pectorals and caulals.

The spaces between these bands, the abdomen, and the lower part of the head white.

The 1st band is at abont the center of the length of the pectoral, and fades out level with the lower margin of that fin; the $2 d$ is anterior to the vent, and almost encircles the body; the 30 contimes to the anal base, but is much lighter on its lower portion; while the thencireles the caudal peduncle.

A 5th but narrower black band encircles the candal base, and two black bands cross the caudal, the posterior one loroadest ; rest of caudal white. All the other fins banded or blotehed irregularly with black and white, the former predominating. The ctenoid $t \mathrm{ips}$ of the scales are white.

I have only seen a single specimen of this fish. Before the description was written it was exposed to alcohol for about two months.

It was obtained in San Fraucisco market August, 1879, and was taken in Monterey Bay.

In appearance it somewhat resembles some of the small-scaled Serranide or Rhypticide. The presence of a suborbital stay, however, shows that its affinities are really with the Chirida.

Dimensions of type (No. United States National Musnem).
Total length, to tip of candal... 11.75
Greatest depth, abont... 3.25
Greatest thickness, it opercles... 1.72
Depth of candal pedmucle, abont...-. .-.. 98

Interorbital width... 1.05
Length of smout...
Inches.
56
Longitu linal diameter of orlit
1.4%
1.4%
Length of lower jaw, in straght line
Length of lower jaw, in straght line
1.15
1.15
Length of upper jaw, in straight line
Length of upper jaw, in straight line
3.00
3.00
Tip of snout to insertion of pectoral, about
Tip of snout to insertion of pectoral, about
3.64
3.64
Tip of snont to origin of dorsal, along axis of fish
Tip of snont to origin of dorsal, along axis of fish
4.03
4.03
Tip of suont to origin of clorsal, along dorsal profile
Tip of suont to origin of clorsal, along dorsal profile
6.45
Tip of snout to origin of anal, along axis of fish
3.32
Tip of lower jaw to insertion of ventrals, along abdominal profile
90
Width of pectoral base
2.40
Length of pectorals
1.50
Length of ventrals
2.08
Length of base of 1st dorsal to Xllth spine
1.25
Height of longest (4th) dorsal spine
2.60
Length of base of 2 d clorsal
1.44
Height of longest (3d) ray of dorsal
$1.6{ }^{*}$
Length of base of anal.
1.38
Height of longest (1st) ray of amal
Fin formula.-B. 7; D. XII + 11, $\frac{1}{15}$; A. $\frac{2}{11}$; P. 18; V. $\frac{1}{5}$; C. lat.line circa 128-134.
DESCIEIPTIGN GN A NED SPECIES OF RAY, RAIA IRHENA, FROM'TERE CABAT OF CALEPOIENIA.
By DAVID S. JOREAN and CHARLES II. GILBEIE'T.

Raia rhina, sp. nov.
Disk rather broader than long, the snout very sharp and long-acmminate. Outer angle of pectoral sharp; posterior edge of pectoral nearly straight. Region from pectoral angle to snout slightly convex, then almost uniformly and strongly concare to near the tip of the snont, which tapers to a sharp point. A straight line from the snout to the tip of the pectoral passes far from the edge of the disk. Length of suont nearly four times the interorbital width.

Interorbital space quite narrow, very little concave, somewhat depressed in the middle. Nasal ridges separated for more than half their length. Supraocular ridges slightly clevated. Eyes larger and much longer than spiracles. Ventral fins deeply rmarginate. Candal fin rednced to a small fold. Dorsal fins moderate, rather close together, the interspace less than the base of the fin.

Female with the spines on the body moderately strong, arranged as follows:

Five or six rather strong spines above the eyes. Two in front of the center of the back. None along the middle line of the back until opposite the posterior end of the ventrals, where a median series begins on the tail. A lateral cambal series on each side, and two or three long shatp spines between the dorsal fins.

Ronghnesses on the skin above rather large, sharp-pointed, and evidently stellate. Those on the snont especially conspicnonsly stellate and larger than the others. These prickles are everywhere present on the
upper parts of the body, but they are not evenly distribnted, and in most regions they are placed guite wide apart. They are largest and most numerons on the nasal ridges, interorbital space, middle region of back and tail, and anterior part of pectorals. On the base and edges of the peetorals and on the ventrals the prickles are few and small. On the middle portion of the peetorals they are rather mumerons. Underside of disk everywhere prickly except along the edges of the fins; the prickles largest under the snout.

Male not seen, probably differing, as in the other species, in the sparser prickles above, in the absence of a lateral candal series, and in the presence of stonter prickles on the anterior part of the pectorals and of clawlike spines on the posterior part. Month somewhat arched. Teeth about $\frac{46}{40}$. Nasal flap rather less than half the width of the mouth.

Coloration essentially as in Retia binoculata. Light brown above, vaguely mottled with paler; the usual dark ring at the base of the pectorals most distinct in fresh examples, and probably in the young.

This species is known to us from three examples. Adult females, 26 to 29 inches in length. One from Monterey Bay and two from San Franeisco Bay. The one from Monterey was referred to in our deseription of Rata stellulata as a long-nosed form or variety of Raia binoculata.

Raia rhina, is related to Raia cooperi and Raia binoculata. From the latter it differs in the much sharper and longer snout, in the less concave interorbital space, and in the much greater roughness of the body, the small prickles, even in the female of R. binooulata, being confined to the snont, interocular space, and a portion of the median region of the back and the tail, the fins being perfectly smooth. The male has the usual patches on the pectoral fins, and the back almost or quite smooth.

From Raia cooperi, Raia rhina difieres in the much smaller size in length, the adult of Ruife cooperi reaching at least a length of more than six feet. It also differs in form, color, interorbital width, armature, \&e., as will appear from the following description of a young male example of Raia cooperi, $27 \frac{1}{2}$ inches in length, from San Francisco.
Disk broad, its widest part much behind the middle, the pectoral angle rather sharp, and the posterior edge very little convex. The anterior margin of the pectoral is at first slightly convex, then concave, then, opposite the eyes, again very slightly convex, then again slightly concave; the snout itself not very sharp, althongh long.

Interorbital space very broad and almost flat (deeply concave in R. binoculutu), only slightly depressed in the middle, the nasal ridges well separated for usually two-thirds their length. Supraocular ridge not at all elevated. Eyes quite smull, shorter than the spiracles.

Veutral fingot deeply emarginate (becoming more deeply emarginate in the adult). Uaspers, in this example (which, althongh larger thom the adults of the other species, is evidently immature), very small, searcely exserted beyond the rentral edge. Claw-like pectoral spines not yet developed. Gauda! fin wanting. Dorsal tins moderate, not far
apart, the interspace less than the length of the base. Tail with a slight lateral fold.

Spines on body small and few. Two or three very small ones over the eye, one at the center of the back, with a minnte one in front of it. None along the median line of the back, the median caudal series beginging at the base of the reutrals. These spines are quite small, int grow larger backward.
Asperities above in the form of minute prickles, somewhat stellate. These are very minute, except along the median line of the back and tail, and there they are smaller than in R. stcllulata or R. rhinco. Tail entirely prickly above. A broad band of prickles along back to interorbital space. Entire pectoral fin minutely prickly, rather coarsely so auteriorly. Nasal ridges prickly.

Ventrals mostly covered with minute prickles, as is the under side of the snout and the region around the mouth. A row of rather coarser prickles along the edge of the disk anteriorly, on the under side.

Jaws rather strongly curved. Teeth somewhat tricuspid, $\frac{48}{38}$.
Length of nasal flap about half the width of the upper jaw.
Body light brown, with many rather large, faint, round whitish spots, which are very distinct in the young. A rague blackish ring at base of pectoral.

Raia cooperi is rather common from Monterey Bay to Vancouver's Island, and probably north to Alaska. It is often brought into the markets of San Francisco with the binoculatn. We have seen examples of all sizes from six inches to six feet in length. A skin of an individual six feet in lengtlo was obtained by us at Victoria. In its stomach were two specimens of Cottus polyacanthocephalus, each a foot long. Thus far no examples of any of the other species over 212 feet in length have been noticed.

Neeah Bay, Wash., May 31, 1880.

description of a new species of paribot of the genus CHIEYSOTIS, FHOPR THIE MNIANB OE DONINICA.

By GEORGE N. LAWHENCE.

Chrysotis nichollsi.
MALE ?-The general color of the plumage is grass-green, darker above and on the breast and abdomen tinged with yellow; the feathers of the hind neek and hack are bordered rather narrowly with black, those of the wing coverts are without the black borders; the feathers of the lower part of the throat, of the upper part of the breast, and of the sides of the neck change to verditer-green on a side view and are edged with black; the bases of some of the feathers of the breast and abdomen are dull red, and they are just perceptibly edged with black; the sides are dark green ; the fore part of the head as far as upon a line with the anterior angle of the eye, lores, sides of the hearl, and the throat are of a medium shade of ultramarine-blue, lighter in color on the throat; in some lights the blue color has a grayish cast; the feathers of the top of the head are varied with bright green and aznre blne and are narrowly hordered with black; the primaries have their imer webs black, the first primary is entirely black, the second and third have their outer webs dark blne for three-quarters their length, terminating with black, the other primaries have their outer webs green for most of their length, passing into dark hhe for a short space, and ending with black; the extreme ends are narrowly margined with whitish ash; the wing speenlum is of a bright searlet red, occupying a space on the outer webs of the first three secondaries of abont three inches; there is a small yellow mark where the red joins the terminal dark blue of these feathers, which have the onter webs green at their bases; the other secondaries have their onter webs green, with a subterminal blue spot, and ending with black; the fourth secoulary has an elongated yellow mark on the middle of the onter web; all the secondaries have their inner webs black; the outer webs of the tertiaries are green, the inner are black with their ends green; the wing coverts are of the same color as the back, but the concealed portions of the inner webs of the greater coverts are black; the outer edge of the wing is dull light yellow; the quills underneath have the basal two-thirds of their length dull verditer-blue, the terminal portion is black; the under wing coverts are green; the first onter tail feather has the onter web dark blue for two-thirds its length, the terminal third is greenish yellow; the inner web is scarlet at the base for nearly half its length, which color is separated from the yellowish end by a space of dull green; the second, third, and fourth feathers differ from the first only in having the basal parts of their outer webs green; the central tail feathers are dark green, ending with dark yellowish green; upper tail coverts dark green, with their ends yellowish; the under tail coverts are yellowish green; the upper mandible is whitish-
horn color, with the sides yellowish, the under is grayish-horn color, sellowish at the base; feet blackish.

Length (skin) from end of upper inandible over the culmen, 20 inches; from top of head, 18 inches; wing, 93 ; tail, $6 \frac{3}{4}$; tarsus, 1 .

Mabitat.—Dominica, West Indies.
Type in National Mnsemm, Washington, received from Dr. H. А. Alford Nicholls.

Dr. Nicholls sent a second specinen in spinits, which was made into a skin, and on dissection proved to be a female. It does not differ materially in phmage from the other specimen, the blue of the face only appearing a little duller. It is rather smaller; the bill and feet are weaker. From a compraison of the two I think the specinen specialiy described is a male.

This new species in some respects resembles C. eyanopis (Vieill.), said to be from the Antilles, but the precise locality not known, and C. bouqueti (Bechat), from St. Lucia, all having blue heads. The first, C. cyanopis, is described as having the face dark ultramarine-blne, but it differs fiom the new species more especially in the top of the head and the chin being dark bhe, the throat and ontire under surface wine-red, and the larger wing coverts dark indigo-blne, besides minor differences. In dimensions they are much the same.

I have a fine specimen of C. bouqueti before me belonging to the Musem of Comparative Zoology, Cambridge, and kindly loaned by Professor Allen. In this the blue is nearly of the same shade as in the new species; it is a little lighter in color on the front, but the blue does not extend so fin down on the throat, the lower part of which is scarlet ; the breast and abdomen are vinous red intermixed somewhat with green; the color above is a lighter green; the black borders to the feathers of the hind neck and back are broader; the colors generally are much brighter; it is a smaller species, with weaker feet and a blackish bill; it measures from the end of the upper mandible $16 \frac{1}{2}$ inches, thongh the wings and tail fully equal in size those of C. nichollsi.

I have named this fime species as a well-merited compliment to Dr. Nicholls for his assidnous endeavors to supplement Mr. Ober's work in Dominica.

The specimens of Chrysotis were sent in March, 1879, with some other species, to Martinique, to be forwarded to the Smithsonian, but they remained there for about twelve months, and were not received in Wash. ington until May of this year. Dr. Nicholls wrote Professor Baird at that time concerning the parrot as follows:
"The 'Ciceru' (not '('icero') parrot.
"The bird was shot at Camplell, and was bonght in the market, where it was exposed for sale as food. The feathers were off the neck when bought. Skin was firmly adherent to a thick layer of fat. The specimen is searcely worth sending. I do so, howerel, as the feathers near the head are a different color to those of the Cieero parrot."

The other birds sent were as below, to which are added Dr. Nicholls's notes:

1. Eupionia flavifrons (Sparm.).
"Bird canght at head of Rosean Valley; never seen in the island until lately. Feathers of breast eurl up over the wings when the bird is at rest, and during sleep the bird is rolled up like a ball."
2. Myiadestes Genibarbis, Sw
"Sifflem montagne."
3. Elainea martinica (Linh.).
"Canght in Rosean; white feathers on head very conspicuous when bird at rest."
4. EREUNETES PETRIFICATUS (111.).
"' Bécass;' common at the mouths of the rivers during the hurricane months."
5. Charadrius virginicus, Borkh.
"'Oisean marine.' Shot in plowed land near to Roseau in November, 1878."
6. Tringa maculata, Vieill.
"'Bat-ma.' Canght in December, 1878, near to the mouth of the Rosean River."

Professor Baird has lately received from 1)r. Nicholls a letter, dated 25th May, 1880, with another consigument of birds, of which I give the names and the notes of Dr. Nicholls thereou:

1. Chrysotis nichollsi, Lawr.
"The green parrot which I have been so long trying to obtain. It is now searee and is seldom seen away from the deepest woods of the widest part of the island. It builds its nest in the forks of the highest forest trees, and it is usually seen in flocks. It is called by the natives 'perroquet,' which is simply French for parrot. As an example of the difficulty in obtaining this parrot I may mention that although I offered a good reward for a dead specimen I failed to get one. The specimen now sent was shot by a friend of mine; it was evidently a bird which had strayed from a flock."

Dr. Nicholls says of it in his letter: "It may possibly turn out to be the 'green parrot' which Mr. Ober failed to obtain."

I infer from the abore that Dr. Nicholls considered this to be different from those sent a year ago, as in his letter of that date he says: "I am sorry to say that I have been mable to obtain specimens of the green parrot, but I hope to be successful before long."

This specimen, howerer, only differs fiom the type of C. nichollsi in being smaller, with a weaker bill, which is quite dusky in color.

Dr. Nieholls may be correct in his suggestion that it is the "parrot" No. 33 of the Dominica catalogne. If so, Mr. Ober must have been misled as to its size, which he states to have been that of the Carolina parrot.
2. Nyctiardea violacea (Limi.).
"'Crabier montagne.' Caught in a dark ravine in the mountains near Rosean and brought to me alive. I kept it for more than a week, feeding it on cray-fish and land-crabs, which it devoured with avidity. It died suddenly."
3. Charadrius virginicus, Borkh.
"Golden plover. Shot on sea-beach."
4. Anous stolidus (Limn.).
"'Twa-oo.' Brought to me alive when very young and I kent it alive for nearly a year, when it was choked by a carcless chikd. It became rery tame. It used to fly on to the roof of my house and bathe in a duckpoud in the garden. I gave it fish cut into small pieces."
5. Strid flaminea var nigrescens, Lawr.
"Owl. It is, I think, different in plumage and certainly smaller than one I had some years ago. This bird was canght in the town of Rosean and brought to me. I kept it alive for several weeks, when it died suddenly. It woke up usualiy just before dark and then partook of its meal of five or six small lizards or a monse. On introducing a live lizard into its cage it darted down upon it with great quickness; it seemed to be more of a spring and a drop than anything else; it then held the animal in its claw for a minute or so and regarded it intently, then with its sharp beak it divided the spinal column just behind the head. This occurred once and again, and it would thus appear that the owl is endued with the instinct of the easiest and surest way of killing its pres. The lizard when dead was seized by the head, and by a series of jerks or turnings up of the head the owl actually threw it down its throat. If the lizard was rather large the owl would rest for a while with the tail of the reptile hanging out of its month."

I think this specimen is a male; the larger one spoken of was probably a female.
6. Tringa minutilla, Vieill.
""Bécass.' Canght near to the mouth of Rosean River."
New York, June 15, 1880.

The edlacion or candie-fish of the northwest coast.

By Janies G. SWAN.

This paper I have prepared from my own notes made during a cruise on the United States revenue-steamer Oliver Wolcott to Alaska, during the summer of 1873, as special commissioner to procure articles of Indian manufacture for the National Musemm, to be exlibited at the Centemial celebration at Philadelphia, and from information derived from Mr. Robert Tomlinson, clerk to Kincoleth Mission, Nass River, British Columbia; from Mr. Charles F. Morrison, chief trader Hudson's Bay

Company, at Fort Simpson, British Columbia; and from reports of Rer. Mr. Duncan, of Metlakatla Mission, British Columbia, made to the Church Missionary Society, at London, and to Messrs. Langley \& Co., Victoria, to whom I am indebted for the copy of Professor Redwood's report, which I give entire. The description of the Eulachon by Sir John Richardson is, I believe, the earliest, and but little can be added to it. As I have no copy of his works at hand I cannot give his description, which I regret.

JAMES G. SWAN.
Neati Bay. Clallam County, Wash., Jamuary 31, 1880.
This fish, known to scientists as the Thaleichthys pacificus, and also as Osmerus pacificus, resembles the common smelt in size and general outward appearance, and is found on Puget Sound occasionally with the sand-smelt Hypomesus olidus.
The Eulachon, however, differs from all other varieties of the smelt family by having its entire body permeated with a peculiar fat, which, on being extracted, is of the consistence and color of soft lan1, and is used largely by the natives as an article of food.

By a rectifying and deodorizing process, Messis. Langley \& Co., chemists, of Victoria, British Columbia, have succeeded in preparing an oil which appears to possess the remedial qualities of cod-liver oil in a remarkable degree, and is more agreeable to both palate and stomach. The quantity of this fatty substance is so considerable that when the fish is dried it can be set on fire like a torch and will consume its whole length like a candle, from which fact its common name of "Candle-fish" is derived. This adipose matter when first extracted, even when fresh canght, has a strong, disagreeable odor and a peculiar taste which is very mopalatable to most white persons. The fresh fish, however, has no mupleasant smell about it. It has somewhat of the same cucumber odor as the smelt, or rather an odor which resembles that of the bruised leaves of the wild syringa, Philadelphus L., which is a somewhat common shrnb on the shores of Puget Sound and other portions of the northwest coast. When fried, like the smelt it is a most delicious pan-fish, or eren when simply boiled, as the natives usually cook it, or toasted on a stick before the fire, it is most excellent and untritions food.

The Enlachon are found in limited numbers at certain seasons in the Colnmbia River, Shoal-water Bay, Gray's Marbor, and at the month of the various small streams of the coast, and also in the waters of Puget Sound, where they are taken in seines and nets with smelt and other varicties of small fish, but they are thin and poor, and not to be compared to the same varieties further nortlr. Even those taken in Fraser's River, near the boundary line between Washington Territory and British Columbia, are superior to those taken further south, and are sold in the Victoria market, where their excellence is highly prized. The few secured ou Puget Scund are sold by the fishermen as smelts. The best
kinds are canght further north, and great quantities are salted by the Hndson's Bay Company, at their trading post at Fort Simpson, British Colmonbia, and either sold in the Victoria market or shipped direct to London in tierces, barrels, and kits.

As an article of food and for the grease or fat contained in them, the Eulachon are highly prized by the Indians of Northern British Cohumbia and Sonthern Alaska, where they abound; partienlarly at the Nass River, British Columbia, where they are annnally taken in enormons quantities, and where they seem to attain their very finest condition.

The Nass River flows into Portland Iulat near the filty-fifth parallel of north latitude, near the southern boundary of Alaska, and 30 miles north-northeast of Fort Simpson, British Columbia. At its month it widens out into a bay called Nass Bay or Strait, in which are various shoals farorable for the Eulachou spawning grounds.
There are other rivers and streams in British Colnmbia and Alaska at the mouths of which Enlachon are taken, but as the Nass liiver fishery exceeds them all, and is, in fact, the principal place where the business is carried on by both whites and Indians, a description of that fishery will suffice.

The principal run of the fish reaches Nass River in the latter part of March, generally from the 16 th to the $22 d$, varying in exceptional years from the 28 th to April 4. When the season approaches the Indiaus assemble in great numbers; not only the Nishka, or natives of the Nass country, but from hundreds of miles distant, some in canoes and some overland. In former years quarrels and fights among the different tribes were common, but of late years the inflnences of the missious at Metlakatla, Kincoleth, and Fort Simpson have produced a favorable change, not only in inducing them to be more peaceful, but to lay aside their old heathen superstitions, one of which was that all the fish eaten. for the first four or five days after they commence to arrive must be either fried or toasted; no one was allowed to boil any, as they believed that if any were boiled the fish would immediately leave the river; they were also strictly forlodden to driuk water after a meal of fish, lest there should be rain which rould liuder the drying. These ceremonies are now abandoned in a great measure, and but seldom practiced at the present time.

The Eulachon only travel up the Nass River as far as the flood tides reach, which is from 15 to 20 miles from its month. For about 7 miles from Nass Strait the river is unsuited for fishing operations. From thence to the Nass Village, at the head of tide-water, is a successsion of semd-bars, and these form the spawning beds of the fish. Every available spot along the banks of the river is occupied by the Indians during the fishing season, who erect temporary wigwams for themselres.

As the fishing season approaches the arrival of the fish is anxionsly watched by the natives, as it is a season of the year in which they are generally out of food.

The fish usually swim in deep water till they reach the mouth of the river, and during their passage up the strait are followed by innmerable enemies. Porpoises, seals, dog-fish, ground-sharks, and halibut harass them in the strait, and if they rise to the surface they are attacked los clouds of gulls, ducks, and other sea-fowl.

The bishop of British Columbia, who visited the Nass River in 1863, writes concerning the fisheries:
"Such a scene of life-man life, bird life, fish life-I had never before conceived. Over the fish was an immense clond of innumerable gulls; so many and so thick were they as they hovered aiont looking for the tish that the sight resembled a heary fall of snow. The fish are canght in vast quantities. I saw hundreds of tons collected together, and the nets hauled in bushels at a time."

When the fish reach the month of the river they generally rise to the surface of the water, and are canght by the natives with a pole about 18 feet long, slightly flattened into an oar-shape at the lower end. Into one edge of this flattened blade are stuck a row of wooden pins or pieces of wire sharpened. This implement is thrust down and with both hands drawn rapidly throngh the water, and the fish are impaled on the pins:und are shaken off into the canoe in the same manner as the Indians about Puget Sound take herrings. The number of Eulathon canght in this way form a good estimate of the probable run of the fish for the season, whether they will be plentiful or not.

As soon as the fish make their appearance at the sand-bars fishing operations begin in earnest. In former years a sort of large landing net, called by the natives Banak, was used, but of late these have been discarded for porse-nets. About an hour after the tide has begun to ebib two strong poles are driveu into the sand at the bottom of the river about 12 feet apart; to these the net is attached, the mouth being kept open by inserting two small sticks across it. It is then depressed in the water until the under rim rests on the sand; the fish are drawn into the aperture by the force of the current.

The nets are generally six or eight fathoms long. A long crooked stick is used for raising the narrow eud of the net. If it contains fish it is hauled into the canoe and, by loosening a string, its contents are easily shaken ont. Sometimes the net for its whole length becomes blocked with fish. The greatest care and skill are then necessary to prevent its being carried away by the current.

Another difficulty, and the canse of much damage to the nets, is the loose ices The fish first come about the time the ice begins to break up. Of course, there are exceptions to this rule. Some years the ice remains solid mitil after the fish are caught, in which ease holes have to be cut in the ice to put down the nets; other years, again, the ice has all disappeared before the fish arrive.

When the tide begins to tlow, the nets are all taken in and all the fish canglt are thrown in heaps on the ground elose to the wigwams. With
a good run of fish, each net onght to catch about two tons each tide. When a sufficient supply of fish has been obtained they are not boiled down at once, but are left on the ground in heaps from six to ten days, arcording to the state of the weather. This is done to facilitate the boiling, as the grease separates more rapidly from the fish after a partial decomposition than when fresh. The perfume which permeates the atmosphere at this time is certainly not to be found among the extracts and essences of Lubin or limmel. As has been said of the odor of the skmuk, "it may be healthy, but is very offensive, and a little of it goes a great way." As an Irishman once remarked to me of a similar stench, "the smell of it would kill flies," which is saying a great deal for its energetic power.
After the fish have remained exposed on the ground five or six days a portion of them are strung up for drying by having their heads interwoven with thin strips of bank; they are then washed and houg on racks to dry ; they are not covered up, but are thus exposed to the atmosphere in all weathers for three or four weeks and get perfectly dried and firm, and form a chief article of food for the Indians, who either toast them over the fire or boil them. They also use them as torches. It is only necessary to set them on fire and they will continue to burn until consumed.

In extracting the grease from the fish the Indians place them in large wooden boxes and boil them by means of red-hot stones. As the grease rises to the surface it is skimmed off, and when all has risen the residue of the fish bodies is taken out and pressed to get all the still adherent portion. A ton of fish makes from $2 \pm$ to 30 gallons. This is then put in woodeu boxes and any convenient receptacle, and forms a lncrative article of trade among the natives, and is known in Sitisa aud other white settlements as small-fish grease.

Within a few years, and since the Indians have seen the "rockers" of the miners, they have introduced wooden boses, with sheet-iron bottoms. These ansirer very well, and save time, labor, and tronlle. Abont the same time a white man attempted the plan of extracting the grease by heating the fish in a basin floating in boiling water and then snbjecting it to pressure, but the attempt proved a failure. Another phan attempted was to coll-press the fish, and for the purpose a powerful serewpress was erected, but that also proved a failure. My own impression is that the grease could be successfully extracted by stemm, as is now done at the oil works at Skidgate, Queen Charlotte's Islands, in extracting oil from dog-fislı livers. Still, there may be some chemical reason why the grease yields to incipient decomposition, which may suggest some preparation which ean produce a similar result.

The ordinary price for the grease at Nass is twenty-five cents per gallon, but in seasons of scarcity the price adrances from one dollar to one dollar and twenty-fise cents per gallon, althongh the latter figure is seldom attained.

The Hudson's Bay Company salt a great quantity of these fish for export. They are simply put into casks or butts when first canght, and lightly salted. After remaining two or three days a brine is formed. They are washed in this brine, resalted, and packed in tight barrels, casks, or kits. For smoking, they are allowed to remain in brine a day or two, then strung on slender sticks, which-are passed through the eyes, and lung in the smoke. When freshly smoked they have a bright golden appearance, much like red herrings, and are most delicions cat. ing, but they are so excessively fat that they will not keep unless they are smoked quike dry. This is a tedious process, and turns the skin a dull dusty color.

There is a second ron of Eulachon in Nass River towards the end of June, but the quality is inferior, and but little grease is made from them.

The Eulachon come suddenly in countless myrials into Nass River, and after spawning depart as suddenly. They evidently pass the remainder of the year in the deep water sonth of the Alentian Islands, and make their appearance almost simultancously in Cook's Inlet and Cross Sound, Alaska, where they are very abundant, and in Nass River. They make their appearance in Fraser's River a few weeks later, but are not as fat or as plentiful as they are farther north.

As a remedial agent, Eulachou oil is considered by some of the best authorities who have tested it as equal to cod-liver oil. Others who have testel its effects only among Indiaus are in doubt of its efficacy. But it should be borne in mind that the Indians of the coast, who live exclusively on at fish diet, and on the alge and other products of the ocean, rich in iodine, bromine, and phosphates, are not so easily affected by codl liver or Eulachon oil as white people who reside in the interior, and partake of the ustal regimen of civilized life. Hence, some persons who have administered Eulachon oil to coast Iudians have been surprised at the want of success, and have hastily condemned it as worthless. A diet of new milk, fresh from the cow, would undoubtedly prove as efficacious for the coast tribes as cod-liver or Eulachon oil is for white people.
The following is a copy of a report made by Theophilus Redwood, esq., F. R. S., professor of chemistry and pharmacy to the Pharmacentical Society of London, to Messrs. Langley \& Co., Victoria, British Columbia, who kindly furnished is to me for this paper. Professor Redwood writes:
"Eulachon oil, although differing in its source from cod-liser oil, is said to resemble it in its properties, and to have been substituted for it as a remedial agent. In examining the oil, therefore, it was considered important to determine in what points it resembles and where it differs from, cod-liver oil. In taste and smell I cannot indicate any marked difference. Its tendency to congeal is much greater than that of cod-liver oil. At 50° Falur. the Eulachon oil has the consisteney of soft butter, and it does not become fluid until heated above 70° Fahr. The
portion separated by filtration at 60° remains bright at all temperatures above that point, and has a very slight yellowish tint, resembling that of the best pale cod-liver oil. When a few drops of sulphuric acid are added to a small quantity of the oil, placed in a porcelain eapsule, it assmmes a deep brown tint, withont in the first instance affording the violet color which is produced under similar circumstances by cod-liver oil. If, however, the mixture thas formed be allowed to remain exposed to the air for several hours the violet color becomes developed. If an ounce or two of the Enlachon oil be boiled with abont twice its volume of distilled water, and the water after being carefully separated and filtered be evaporated to dryness, a small quantity of a brown extractive matter will be left, which closely resembles the extract obtained under similar circumstances from cod-liver oil.
"The Eulachon oil readily saponifies with canstic alkali, and the soap, after being decomposed with acetate of lead, yields oleate of lead to ether, but the oleic acid resulting from the decomposition of this is not brown like that obtained from cod-liver oil.
"Eulachon oil, therefore, although in some respects resembling coclliver oil, differs from it in some of its chemical and physical characters. The resemblance to cod-liver oil is, however, greater than that of any other oil I am acquainted with that is not extracted from a fish liver.
"THEOPH. REDWOOD."
It would have been interesting if Professor Redwood had given the exact analysis of Enlachon oil, is that of the cod liver has been fully given in varions medical works. The student of medicine could have thus been able to have compared the two together, and have found what constitutes their medicinal value.

Professor Redwood says that the oleic acid resulting from the decomposition is not brown like that of the cod-liver oil. The brown color is owing to the presence of a peculiar substance obtained by an analysis of cod-liver oil by De Jough, and named by him gaduin, but it has not been ascertained that gaduin is in any way connected with the virtues of the oil.

It has been thonght that the action of the liver carbonizes the oil in a manner and thus renders it more susceptible of being taken up and assimilated by the systems of persons to whom it is administered. It is not improbable that the biliary principles associated with the oil are concerued in its pecular influences. Winckler has inferred from his re- ${ }^{\text {o }}$ searches that corl-liver oil is an organic whole, differing from all other fixed oils. Enlachon oil, althongh a body oil, instead of a product of the liver, scems to possess properties essentially different from all other fishoils, and future analysis may show that the curative principle of cod-liver oil does not lay in any of the canses mentioned, but in some hitherto undereloped principle, which is identical with that of the Enlachon. I find no mention of the Eulachon in the voyages of D'ortlock,

Dixon, Means, Marchard, or Vancouver, except that Means mentions them casnally as surdines, and says the Indians are as foud of them and make quite as much account of them as they do of salmon. They are found in countless myriads in the waters of Alaska Territory, but hitherto no other use has been made of them in that Territory except as an article of food for the Indians.

If some of the canneries of Alaska would try the experiment and put them up_{p} in oil similar to sardines, I predict that a luerative trade would result. No regular statisties of the Eulachon fishery have ever been kept either in British Columbia or Alaska, and the foregoing meager account of a very important food-fish is all that I have been able to procure.

Ascelichthys, genus nova.
Family of Cottide. Body rather robust, corered with naked skin. Head comparatively broad and depressed, covered with naked skin. Preopercle with a simple, strongly looked spine. Villiform teeth on jaws, vomer, and palatines. Noslit behind fourth gill. Gill membranes broadly united, free from the isthmus. No ventral fins. Spinous dorsal of low flexible spines. Other fins normally developed. This genus has the general appearauce of Oligocottus, but is distinguished at once from all the known genera of the family by the absence of the rentral fins; hence the generic name from $\alpha \sigma \kappa$ 文 $\eta^{\prime}=$, withont leg, and $i \chi 0 i=$, fish.

Ascelichthys rhodorus, sp. nov.
Body rather plamp, broad, and low anteriorly, nearly eylindrical mesially, becoming compressed behind. Head comparatively broad and low, ovate, regularly narowed forward, and rounded anteriorly. Eyes rather large, placed high, separated by a slightly concave interorbital space, narrower than the eye. Mouth rather large, nearly horizontal, the maxillary extending to opposite the posterior border of the eje. Lower jaw slightly shorter than upper. Lips rather full, the upper jaw protractile. Tecth small, in villiform bands on jaws, romer, and pala-- tines. The palatine bands long and narrow. Pseudobranchæ large. Gill-rakers almost obsolete. No slit behind the forrth gill. Branchiostegals six. Gill-membranes broadly united, free from the isthmus. A low, fringed dermal flap above the posterior part of cach eye. No other eirri anywhere, and no trace anywhere, on body or head, of dermal prickles or seales. No nasal spines. Nostrils both with short tubes, the anterior the longer.

Suborbital stay very slender, barely reaching the preopercle. Propercle with a rather short simple spine, strougly hooked npwards and in-
wards, concealed in the skin. A concealed downward-directed spine below this. A downward-directed spine on front of opercle below.

Skin comparatively thin and loose. Lateral line complete and continuons.

Dorsal fins connected by a membrane about half the height of the first dorsal. Dorsal spines low and weak, nearly uniform in height, the middle spines very slightly higher than the others, the highest less than the diameter of the eye, the two anterior close together. The spines all rery slender. The enveloping membrane very thick.

Soft dorsal nearly twice as high as the spinous part. Aual about as high as second dorsal, its rays mere robust. Pectoral fins rather broad and short, strongly procurent below, the lower rays thickened. Long. est rays reaching past vent to beginning of second dorsal. No trace of ventral fins, either externally or under the skin.

Fin rays: Dorsal IX or X-18 or $19 ;$ A. $13 ;$ P. 16.
Anal papilla very small. Six pyloric cæca. Intestines short, about as long as body, with one flexure. Stomach filled with Chiton, Patella, small Crustacea, snails, and worms.

Coloration olivaccous, usually rather dark, and shaded with greenish, but sometimes with whitish saddle-like blotches, one on each side of the head, one on preopercle, one at front of dorsal, one most conspicuous opposite the junction of the two dorsals, and two smaller ones under second dorsal. On most of the specimens these markings are but faintly indieated. Belly somerrhat dusky. Lips, in most specimens, edged with vermilion, especially the lower.

Spinous dorsal fin dusky, black in the middee and in front above, with a conspicuous edging of bright crimson. This marking is rarely faint or obsolete. Soft dorsal, anal, and candal dusky, edged with paler. Pectoral dusky, edged with paler, and slightly barred at base, especially in the paler specimens.

This species is known to us from abont 200 examples, from two to four inches in length, obtained by us at Waadda Island, in Neeah Bay, near Cape Flattery, at the entrance to the Straits of Juan de Fuca. It is found in the greatest abundance at this locality muder rocks between tide-marks. It is less active in its movements than the species of Oligocottus, and unlike them it is often found out of the water, left in damp places under the rocks by the receding tide.

The following species have been obtained by us in this locality, which is the richest in rock pool fish of any which we have anywhere seen:

Niphister macosus,
Xiphister rupestris, Xiplister chirus, Ascelichtlys rhodorns, Gobiesox reticulatus, Anoplarchus atropurpurens,

Murenoides letus, Apodichthes flavidus, Apodichthys fucorum; Oligocottus globiceps, Oligocottus maculosus, Scytalina cerdale.

Species: Ascelichthys rhodorus.

Locality	Neeah Bay.	
	Inches and 100ths.	100ths of length to base of caudal.
Extreme length	3.90	
Length to base of middle caudal rays	3.40	
Body: Greatest height.		21
Least height of tail.......)		8
Head:		
Greatest length		30
Greatest width.		27
Width of interorbital area.		
Length of suout		5
Diameter of orbit..		6
Dorsal (spinous) :		
Distance from snout Lenath of base......		
Greatest height......		412
Dorsal (soft) :		
Length of base......		34
Height at longest ray		10
Anat:		
Meight at longestray		56 9
Caudal:		
Length of middle rays		16
Peetoral: Length		24
Ventral:		
Length.....		${ }_{6}^{0}$
Dorsal		IX, 18
Anal..		13
Pectoral		16
Ventral.		0
Number of cxecal appendages		6

Scytalina, gen. nov.
Family Consrogadidre, allied to Congrogadus Giinther.
Body anguilliform, cylindrical anterions, compressed behind, covered with very small, imbedded eycloid scales. No lateral line. Head broad, with tumid cheeks, broader than body, resembling a serpent's head. Lower jaw slightly projecting. Each jaw with two strong canines in front, besides which is about one series of small, close-sef conical teeth in the lower jaw and a broad patch in the upper. A single series of small teeth on vomer and palatines. Branchiostegals six. Gillopenings rery wide, the membranes broadly connected below and free from the isthmus. Psendobranchiæ small, present. A slit behind fourth gill. Tongue largely free anteriorly. Intestines short, withont pyloric ceeca. Pectoral fins rery small. No ventral fins. Dorsal fin very low, withont spines, beginning near the middle of the body. Anal. similar, and beginning nearly opposite it. Tail rounded behind. Candal fin well developed, joined to dorsal and anal. Vent near the middle of the body. No anal papilla.

Etymology: diminntive of Seytale, a genus of serpents, in allusion to the form of the head and neck and the fang-like canines.

The relations of this genus seem to be with Congrogadus Giinther, from
which it differs in the presence of canines and in the short dorsal fin. This is the first species of the family thus far known from nortl: of the equator.

Scytalina cerdale, sp. not.
Body clongate, eylindrical anteriorly, compressed behind, covered with very small imbeded scales. No lateral line. A slight vertebral streak and three rery obscure dusky lateral streaks simulating lateral lines.

Head broader than long, with tumid cheeks and constricted neck, moch resembling the head and neek of a small smake. Form of snout subconic, the head abruptly marrowed at the eyes, below which is a slight vertical groove. Snout depressed, rounded at tip.

Interorbital space rather broad, posteriorly concave, a median wrinkle extending aloug the vertex to the muchal depression. All these de$p^{\text {ressions are a mather appent than real, being due to the tumidity of the }}$ cheeks, which encroach on the other parts.

Eyes quite small, directed almost upward, nearly even with the top of the head. Lips finll, the upper separated by a crease from the skiu of the forehead, the lower with firee margin. Skin of forehead with two or three dermal flaps on each side. In one of these the anterior mostrils and some mucons pores open. Posterior nostril near the eye, with a very small flap. Edge of lower lip sparsely fringed, below which the skin has several coarse pores with dermal flaps.

Gape of month rather wide, extending a little beyond the eyes. Lower jaw slightly projecting, its front with two strong, conic, divergent canines. Between these, and behind, along the sides of the jaw, is a series of smaller close-set conical teeth. Upper jaw with two smaller canines, closer together than those in the lower jaw. Edge of upper jaw with close-set conical teeth, apparently in a siugle row behind, widening into a broad band in front. A single series of small teeth on vomer and palatines.

Branchiostegals seren. Gill-openings very wide, the membranes broadly comected and free fiom the isthmms. Psendobrauchir small. Gill-rakers ahmost obsolete. Gills forr, a slit behind the fourth. Opercle very short, the tumid cheeks encroaching upon it.

Pectoral fins very small, a little below the asis of the body, their length a little more than the diameter of the eye. No rentral fins. Dorsal fin rery low, of sott rays only, which are short and weak, imbedded in the skin. Its insertion a little in front of first ray of anal and slightly in alsance of the middle of the body. Tail apparently isocercal, rounded behind, with a well-developed candal fin, which is romeded behind, and composed of rays longer and much sleuderer than those in the dorsal and inal. No constriction between dorsal aud anal and caudal, the rass of the former fins being joined to the latter at their full height. Juak precisely like dorsal and nearly coterminons with it. Vent immediately in front of anal. No anal papilla.

Intestinal canal a simple short tube, without cercal appendages. Air bladder obsolete, or reduced to a filny membrane. Nothing found in the stomach.

Flesh color, with mnch mottling of purplish above, in fine, ciose pattern, so that the light areas appear in the form of pale spots. Lower parts finely speckled like the back, except the belly, which is nearly plain. Jins similarly colored.

Anal nearly plain. Caudal reddish edged.
Fin rays not readily comnted. Dorsal about 41. Anal 30.
Two specimens of this species were obtained by us at Waadda Island; a third was scen, but it escaped us. It inhabits piles of shingle and small bowhers near the mark of lowest tides, and when disturbed makes its way downward with great celerity throngh small crevices into the water. The specimens taken are each about $5_{2}^{\frac{1}{2}}$ inches in length.

Table of proportional measurements.

Species: Scytalina cerdale.

BBy HOEIN A. LEYDEER.

A singular organism, which I will nawe Camaraphysema obscura, Was first observed by me on living oysters from Chesapeake Bay, attached to hydroids growing on those mollusks. The single specimen which I obtained measured less than half an inch in leugth, and consisted of a larger and smaller iudividual (person), united basally to a common attachment, constituting a corm or colony. The color was yellowish, or dirty white; the form of the branches was cylindrical, club-shaped, corered by a tough skin (ectoderm?), which was perforated at intervals, giving rise to tubular, funnel-shaped, oscular openings of exceedingly variable form, according to their condition of expansion. The margin of the funnels was entire and exceedingly thin and tough; this portion was capable of being thrown into longitudinal folds and withdramn or inverted inwards into the basal portion. 'These fommels communicated at their bases with chambers, lined, apparently, with a single layer of (ells (endoderm?). No mesodermal structures were observed, unless the single egg which I noticed in the first clearage stage. from its apparent position, is to be regarded as a prodnct of this layer.

The chambers were lined thronghout the entire organism with a similar layer of nucleated, columar cells, as was slown by a series of crosssections, but no evidence of a collar or flagelime could certainly be detected as forming the inner extremities of the cells. The embryos observed were nearly all in the blastula or morula stage of development, and appeared to lie superimposed upon the living cellular pavement of the chambers, except the one observed in the stage of first cleavage, which seemed to lie in contact with the membranous wall of its chamber. The whole organism was composed of very irregular chambers, separated from each other by an apparently almost structureless membrane, probably of an ectodermal nature. The only evidence of structure here was the presence of faint, delicate striations when the edges of the walls were transversely cut across and viewed with high powers. No spicules were to be found in any situations; no fibers, as in the genus Spongia; but the whole supporting structure consisted, as stated before, of the structureless ectodermal membraue, which was perforat and produced at intervals into the funuel-shaped oscular organs.

The chambers in the center or axis of the eylindrical body of the organism could not certainly be made ont to communicate with those next to the membranous, funnel-bearing body-wall; but these axial chambers appeared to difier in $n o$ way from the outer ones in structure. They were lined like the external chambers with cells, and, like them, contained ora in different stages of development, together with brown material, apparently dirt or remains of ingested food, which would appear to show that there was some sort of communication with the oscular fumels. Ouly once did I find what I believed to be an intereameral
demi-canal, pared in the same way with cells as the chambers themselves.

Not seeing the sponge in an absolutely fresh condition, I could not observe the action of the funnels in life; but once while the whole sponge was still in a comparatively fresh condition, and under observation in a zoophyte trough, I saw one of the inverted fumels suddenly everted and expanded to apparently its fullest extent. I was also mable to detect the slightest evidence of any other kinds of openings besides the funucls into the organism, and these were of about the same size throughout. This fact, together with others which I have stated, removes all doubt as to the sponge nature of the organism.

There is no form known to me in literature which corresponds to this in structure. Halisarca does not have a tongh membranous ectoderm, while the Physemaria have an ecto-skeletou, composed of the shells of Foraminifera. But as the existence of the Physemaria has been apparently donbted by some zoologists, the position of Camaraphysema becomes an interesting question. At any rate it may be safely placed close to the fleshy sponges, and may possibly constitute a distinct family.

The accomt now offered, while it is not as complete as might be desired, rests upon sufficient evidence to make it desirable that the fullest possible description of the organism should be put upon record for the benefit of those who may have the opportunity of extendiug or confirm. ing my interpretation of its anatomical and embryological features. While I could hardly convince myself at first that I did not have before me some one of those curions compound Ascidians of the suborder Synascidice, the absence, however, of a common cloacal cavity and any indications of a branchial apparatus or a digestive canal satisfied me that I was not dealing with a tunicate, but that I should have to look among the very lowest of the sponges for its nearest affines.

I have stated that no collar or flagellum could be detected as forming the inner extremities of the cells lining the carities. This fact does not, however, reuder it improbable that such structures exist in the living animal, as it must be borne in mind that both Bowerbank and Carter have called attention to the circumstance that the flagellate cells of sponges withdraw their collars and flagella after death. The extreme izritability of sponges is notorions, and to one who sees it for the first time would be considered remarkable, and it is not unlikely that Camaraphysema partakes of this characteristic, known to be well-nigh common to all the members of the group.
The exact locality from whence this species was derived could not be ascertained; all that the writer could learn was that the lot of oysters from whence he had obtained his speeimen had certainly been brought from the waters of the Chesapeake. It is to be hoped that more specimens will be brought to light, as the writer in inrestigating his unique specimen was obliged to sacrifice it in order to make his study as complete as possible by slicing it up into sections.

EXPLANATION OF THE FIGURE ON PRECEDING PAGE.

Fig. 1.-Embryo in the mulberry stage of development, enlarged 250 times.
Fig. 2.-Limbryo in the condition of the first cleavage, showing the nuclei and nucleoli of its eells distinctly and an egg membrane, 250 diameters.
Fig. 3.-Embryo in mulberry stage of more frequent ovoid form, 250 diameters.
Fig 4. - Part of a cross-section of the larger branch of the animal, showing the chambered character of the organism, the membranons septa, the oscular funnels in various conditions of extension, and the eggs and embryos in place; 25 diameters.
Fig. 5.-The whole animal of Camaraphysema obscura, enlarged 7 times.
F1G. 6. - A small portion of a eross-section similar to Fig. 4, showing the single layer of cells which pave the walls of the chambers, with the embryos in position in one of the latter. The strici on the ent edges of the walls of the chambers and the peenliar conformation of the osenlar fumels are indicated. Enlarged 200 times.
Fig. 7.-Fonr of the pavement cells living the ehambers, magnified 900 times, showing their melei distinctly.

Sudis ringens, sp. nov.
The type of this species is in very poor comlition, having been taken from the stomach of a Merlucius, itself found in the stomach of an Albicose (Orcyms alalonga $=$ Oreynus pacificus Cooper). The process of digestion has destroyed the adipose fin, the ventral fins, and the skin of one side, and the back part of the head is considerably mutilated. Fortmately, the anterior part of the head, with the jaws and teeth, is not at all injured, and the dorsal and anal fins are well preserved. There is, therefore, no dombt conceming the classification of the dish, and as it is the only one of its type yet fomm in the Pacific, and evidently diferent from S. hyalina, a description of it seems desirable, even though our material is not complete.

Body very slender and elongate, compressed, the depth forming about one-sixtecuth of the length. Head rather slender, anteriorly pointed and moderately depressed, so much injured behind the eyes that its exact form posteriorly cannot be ascertained. Mouth large, horizontal, the gape extending more than half the length of the head. Margin of the upper jaw formed entirely by the very slender, nearly straight premaxillaries, which are closely appressed to the long and slender maxillaries. Maxillaries extending to below the eye, nearly as far as the mandibular joint. Tip of upper jaw emarginate. Tip of lower jaw rather broad, turned up, and fitting in the noteh of the upper jaw. Premaxillaries armed with a series of small, sharp, subequal, close set teeth, which are hooked backward. A long slender canine in front on each side.

Lower jaw with abont ten sham, slender teeth on each side, these teeth very unequal, some of them short, three or four very long and canine-like. Near the firont is one fang-like tooth on each side, then a considerable interspace, behind which the others are arranged partly in two roms. Most of these teeth, especially the inner and larger ones, and the anterior eanines, are freely depressible. A long series of teeth on the palatines, one or two of the anterior teeth on each side and one or two others long, slender, and fang-like. Tongue free anteriorle, roughish, but apparently withont teeth.

Opercular bones very thin and membranaceons. Branchiostegals about seven. Gill-membranes not connected. Gil-rakers short, slarp, spine-like.

Scales nearly al! lest. The few preserved are very large, cycloid, their diameter noally a fomblh of the depth of the body.

Dorsal fin inserted somewhat behind the middle of the body, at a distance of nearly 4 times its base in front of the anal, its height a little greater than the length of its base. It is composed of $11(\mathrm{I}, 10)$ 1:ays. Adipose dorsal not preserved.

Anal fin anteriorly nearly as high as the dorsal, its posterior rays low. The number of rays apparently I, 25 , possibly I, 24 or I, 26 . Ventral fins totally obliteratel. Pectoral fins placed low, rather short, about as long as the maxillary. Caudal fin short, harrow, apparently forked.

The coloration is apparently light olive, the sides silvery, with dark punctulations. Fins plain. Peritoneum silvery, underlaid by black pigment.

Table of measurements.

This species differs from Sudis hyalina as described by Dr. Giinther (Cat. Fishes Brit. Mus., v, 420) chiefly in the dentition, canine teeth being present on the premaxillaries and palatines, as well as on the mandible. The head is also shorter and the mouth apparently larger in proportion.

Myctophum crenulare, sp. nov.

Form much compressed, deepest in front of the base of the pectorals, bluntly convex anteriorily, tapering behind. Ventral region much more arehed than dorsal. Caudal pedmele long and very slender. Head short and higl, abruptly rounded in profile, the snout very blunt. Jaws equal, the snout not projecting beyond the mouth. Maxillary vers slender, searcely widened to its tip, and not dilated, its extremity reaching beyond the eye to the margin of the preopercle.

Premaxillaries anteriorly on a level of the pupil. Teeth very small, present on all the dentigerous bones. Rami of the mandible nearly parallel, coming together in a sharp keel below.

Orbital margin above and in front with a thin membranaceous rim; that in fiont distinct and formed by the upturned edge of the preorbital. Nasal bones membranaceous, their edges upturned, forming a horizontal
groove. A groove between the frontal bones. Orbital margins separated by a groove from the preopercle. Margin of preopercle very oblique. All the membrane bones extremely thin, membranaceous. Eye large, $3 \frac{1}{3}$ in head. Gill-rakers long and slender. Head 33 in length to base of caudal ; depth 42.
Head and borly completely covered with thin membranaccous scales, those on the middle of the sides not elevated and not noticeably larger than the others. Free edges of all the scales crenulate, some of them, especially on the back, with the crenations acute, but without spines, the scales not being really ctenoid or spinous. About 45 seales in ab longitudinal series.

A phosjhorescent spot on each mandible near the symphysis, 33 pairs of spots along the belly, 6 in front of ventrals, 6 between reutrals and origin of anal, and 21 between front of anal and base of candal.

Caudal peduncle above and below with two or three backward-directed spines, which are apparently the exserted tips of rertebral processes.

Fin rays (not quite certain, the tips being frayed out): Dorsal about 12 , anal about 16 , the fins rather low.
Origin of dorsal nearer the snout than the base of candal, much behind the base of the rentrals. Ventrals short, not reaching half way to rent. Pectorals reaching base of rentrals.

Color very dark steel-blue above, silvery on sides and below, with dark metallic lnster. The nsual phosphorescent spots present, as above described. No evident cream-colored blotch on the back of tail.

Myctophum eremulare is known to us at present from a single specimen, about $1 \frac{1}{2}$ inches long, taken from the stomach of an Albicore ($O r$ cynus alulonga) in Santa Barbara Channel, July 11, 1880. It had evidently just been swallowed, and is in fairly good condition.

It belongs to that division of the genus "Scopelus" called by Dr: Giiuther "Myctophum" (Cat Fishes Brit. Mus., r, 405). As the latter name has priority over Seopelus, it must be retained as a generic name for some or all of these fishes.

Table of measurements.

Extreme length	2.20 inches
Length to base of candal..	1.80 inches $=100$
Body :	
Greatest ciepth .	. 23
Least depth of tail	
Leugth of caudal pedu	
Head:	
Greatest length	. 27
Width of interorbital.	
Length of maxillary..	
Length of snont..	
Diameter of eye.	
Dorsal, distance from snon	51
Anal, distance from snout	
Pectoral, length.	

Ventral:
Length 12
Distance from suout 39
Dorsal rays (ca) 12
Anal rays (ca) 16
Number of seales in longitudinal series. 45
Number of phosphorescent spots 33
Santa Barbara, Cal., July 15, 1880.

sound.

Parophrys ischyrus, sp. nov.
Body rhombic-oblong, less deep than in Platichthys stellatus or Lepidopsetta bilincata, and with the head more pointed and protruding, but less so than in I'arophrys vetulus. Body tapering from the middle to the head and tail, the four bounding lines but little curved and quite regular. Candal peduncle strong, compressed, and rather long. Head comparatively long, a slight angle over the eye, and the snont protruding and not obtuse. Lips full, simple. Mouth moderate, obligne, the lower jaw slightly projecting and somewhat more developed on the blind side,

Teeth about $\frac{\overline{5}+2 \overline{5}}{10+23}$ in number.
Teeth in one series, rather close set, some on both sides of the jaw. but more mmerons on the blind side, somewhat irregular in length, some of them movable. In form the teeth are somewhat compressed and incisor-like and bluntish, but not as notably so as in some related species. No teeth on vomer and palatines.

Maxillary reaching past the front of the orbit, nearly to the papil. Anterior nostril with a flap. Posterior nostril almost simple. Tongne free. Eyes rather large, the upper directed upward, the lower slightly in advance of the other. An area covered with smooth skin in and behind orbit of upper eye.

Interorbital space rather broad, somewhat elevated mesially, continuous, with a slightly marked ridge above the opercle and forking forwards, the lower branch ending in a blunt prominence.

Snont behind nostrils, interocular ridge, and posterior part of head covered with scales like those on the body, but smaller and rongher. Preorbital very narrow, naked. Sizin of head continnons over the edge of the preopercle. Gill openings above not continued forward. Gillrakers short, slemder, and weak, about 12 below the angle of the arch. Branchiostegals seven. Lower pharyugeal bones separate, each with two rows of coarse, blint teeth.

Scales moderate in size, thick and firm, adherent, not closely imbricated, anteriorly separated. Those on the tail oblong and a little im-
bedded, those on the head and anterior regions rather regularly arranged, but not close together.

Scales strongly ctenoid everywhere, each with a semicirele of six to ten upward-directed spinnles on its posterior edge. Those on the hear and body are similar, the former being a little smaller and rongher, especially behind the eyes, where they are somewhat stellate.

Left or blind side of the body uniformly scaled like the eyed side, the scales similar and almost as strongly ctenoird. Preopercle nearly smooth. Rest of head with small rongh scales, similar to those on the right side, but farther apart.

Caudal, middle part of dorsal and anal, and bases of pectorals and ventrals with small rongh scales in series, ruming up the rays on the right side. On the blind side the base of the caudal with small rough scales. Other fins naked.

Lateral line conspicnous, its seales less rough than the others ; a very slight curve anteriorly, otherwise straight. A distinct short accessory lateral line on both sides, extending to about the tenth dorsal ray. A series of pores around lower eye behind. No enlarged seales along lateral line or at the bases of the fins.
Lateral line with about 88 pores; about 80 scalesin a longitudinal series above the lateral line.

Dorsal fin beginning over the pupil, its first rays turned slightly toward the blind side, low in front, the rays regularly increasing to behind the middle of the borly, then similarly diminishing. Anal fin similarly formed, preceded by an antrorse spine. Highest rays of dorsal and anal about equal and nearly half the length of the head.

Candal fin large, somewhat donble-truncate, the middle rays prodnced Pectoral a little more than half the length of the head, that on blind side shorter. Ventrals reaching to anal. Rays of dorsal and anal all simple.

Dorsal rays, $70-76$; anal, $52-57$; ventrals, 6. Eyes and color on the right side.
Color above light olive-brown, vagnely clonded with light and dark Fins reddish-brown ; a few romdish dusky blotehes on dorsal and anal, resembling in position the black vertical bars found in Platichthys stel. latus. Pectoral and caudal tipped with dusky. Blind side white, either immaculate or else with small round rusty spots. Left side of head sometimes rusty tinged.

This species is known to us from four examples obtained with a seine in the harbor of Seattle, Washington Territory. We place it temporarily in the genus Parophrys, inasmuch as it has the techuical characters at present assigned to that gemus, i. e., the small month with bhunt miserial teeth, and the straight lateral line with its accessory dorsal branch. The character of cyeloid scales assigned to Parophrys needs modification, as in Parophrys retulus most of the scales on the cheeks and tail are slightly ctenoid.

It is, howerer, evident that there is no special affinity existing between the present species and Parophrys vetulus, and no very close relation between either and Lepidopsetta isolepis Lockington, which, by its technical characters, would be also a Parophrys. The nearest natural ally of Parophrys ischyrus is perhaps Lepidopsetta bilineata, and the present arrangement is to be accepted only until the relations of these forms can be more fully investigated.
Hippoglossoides elassodon, sp. nov.
Body obloug-elliptical, strongly compressed, the dorsal and ventral outlines regularly and pretty strongly arched. Candal peduncle moderate, about as long as deep and growing wider behind.

Head rather large, bluntish, its upper profile continuons with the outline of the back. Depression over the eve slight. Mouth comparatively large, very oblique, the upper jaw somewhat concave in outline, the lower correspondingly convex, the gape considerably wider on the blind side than on the right side. Lower jaw rather strongly protruding, with a considerable symphyseal knob. Maxillary rather narrow, reaching to opposite the middle of the pupil or beyond, the maxillary on the llind side much longer than the other. Premaxillary anteriorly on the level of the interocular space.

Upper jaw with a single series of small conical teeth, which are not very sharp. These teeth are somewhat larger in frout than on the sides, and also more widely set. Everywhere they are quite small, much smaller than in Hippoglossoides jordani, and not larger than in H. exilis. Lower jaw with a single series of rather close-set teeth similar to those in the upper jaw, or slightly larger; those on the sides smaller than the anterior teeth. Number of teeth about $\frac{35+45}{25+35^{\circ}}$

Eyes large, nearly even in front, the upper eye directed somewhat upward, but not reaching the dorsal line. Interorbital space a narrow sharp ridge, with about two rows of minute scales; 10 to 15 rows of scales in an oblique series on the cheeks. A series of mucous pores aromd lower eye behind. Preorbital narrow. Auterior nostril with a rather long flap, posterior with a slight tube

Gill-rakers long, slender, and straight, 15 to 17 below the angle of the arch, their inner margins feebly dentate. Pyloric ceca 4.

Scales small, firm, less readily deciduons even than in H. jordani, rough to the tonch, with the spinnles short and firm. Scales on head similar, but more imbedded, those on the tail larger and rongler

Scales on blind side small, mostly smooth, except on the caudal perduncle, where they are larger and rongh ctenoid, like the seales on the right side. The seales along the base of the dorsal and anal and those near the lateral line more or less etenoid. Scales along left side of head small, non-imbricate, those on the preopercle and posterior part of the cheeks becoming obsolete. The amount of ronghness on the feales kelow is subject to considerable variation.

Lateral line very prominent, as in II. exilis, the tubes coarse, their number (88 to 92) less than that of the transverse series of scales.

Scales: 41 to $50 ; 110$ to $120 ; 35$ to 44.
Lateral line slightly rising anteriorly, but without arch. No acces. sory lateral line. Rays of all the fins on the eyed side (except the posterior part of dorsal and anal) and of the caudal on the left side covered high hp with series of narrow ctenoid scales.

Fins well developed, of firm texture, the tips of the rays protruding.
Dorsal fin beginning immediately in front of the pupil, its anterior rays low, the others regularly increasing backwards to a point much behind the middle of the fin, then becoming rapidly shorter, the highest rays nearly half the length of the head and more than the leugth of the caudal peduncle.
Anal fin preceded by a spine, its highest rays opposite to or in front. of those of the dorsal and equal to them, the others rapidly shortened. Caudal long, double-truncate or convex, the middle rays considerably produced, as in H. exilis, more than in H. jordani.

Pectoral tin half the length of the head, that on blind side shorter. Ventrals moderate, reaching past front of anal, their imer rays shortened.

Dorsal rays, 77 to 84 ; anal rays, 59 to 63; ventrals, 6.
Color light olivaceons brown, nearly muform on the body. Fins grayish, obscurely and irregularly blotched with dusky. Blind side plain.

This species differs from Hippoglossoides jordani and H. exilis, the two species thms far known from the Pacific coast of the United States, in the presence of but a single row of teeth in the upper jaw. From II. jordani it further differs in the much smaller teeth, fewer fin rays, and more convex caudal. From n.exilis the small scales and firmer texture at once distinguish it. Its nearest relative is probably the Atlantie species, Hippoglossoides platessoides, which has a larger number of rays in the vertical fins.

Hippoglossoides elassodon is known to us by about 20 examples of different sizes, all obtained with hook and line from the wharves at Seattle and Tacoma, in Washington Territory.

Table of proportionate measurements．

Astoria，Oreg．，June 16， 1880.

ON THEE GENETALHA OF MAKEE REELS ANB TEEEER SEXUAL CHARE－

 Ac量配会多。＊

As is well known，Darwin \dagger has called attention to the experience of Giinther that the females of fishes are in almost all cases larger than the males．This was perhaps the reason that Syrski，in $1874, \ddagger$ in in－ vestigating the reproductive organs of eels，directed his attention more especially to the smaller indiyiduals，where he was fortunate in finding what is called by many the organs of Syrski，and also considered to be the wale genital apparatus．Afterwards，in a variety which is known

[^24]in France under the name of Anguille pimperneau, Dareste* found the same organ. It appears that ouly in one case (Anguilla bostoniensis) have living spermatozoa been found in a male eel, as we learn from a communication to the Zoologischer Anzeiger, vol. ii, No. 18, p. 15, by A. S. Packarl. The male in this case was about 430^{mm} long (17 inches). That the finding of such specimens is so very rare should not astonish us, since the young eels migrate to the deep sea, where the reproductive organs complete their development very rapidly (6 to 8 weeks), wheu spawning takes place; the old eels, the females as well as the males, dying after the reproductive act is consummated. Thongh on this aceount the spermatozoa, and in most cases their testicular mother cells, are wanting, the investigation of the histologieal structure of the organ of Syrski may still bring us somewhat nearer to the truth.

If one examines partially grown cels measuring $200-500^{\mathrm{mm}}$ in length one will find a moderate broad band in the abdominal cavity of some of them, attached at its imner margin by a narrow duplicature of the peritoneum to the air-bladder, the other margin, however, hanging free in the cavity of the abdomen. This band extends from the liver to behind the anal opening, and is covered by thousands of fat cells. A lobular organ, consisting also of fat cells, overlies the hinder portion of the alimentary canal and ovarium. I found the eggs to average 0.75^{mm} in diameter from specimens $20-50 \mathrm{~cm}$ in length. Treated with acetic acid and ammoniacal carmine solution, a large nuclens and nucleolus became visible. In other examples, although the fat lobules were present, the broad band was absent. But in exactly the same position and along the dorsal aspect of the abdominal cavity a quite thin band or strip of tissue of glass-like transparency is attached, and likewise by a fold of connective tissue (peritoneum), to the air-bladder, and extends from the liver to behind the anal opening. This band or strip of tissue is crenated along its free margin, the lobes of which measure 0.75^{mm} in length and 0.5^{mm} in depth, their convex portion depending into the abdominal cavity. In this Syrskian or lobed organ one fiuds, along the margin where it is attached, a fine canal, the efferent seminal duct, which, unon being tinged with carmine, becomes quite distinct, and which may also be demonstrated by means of injections. The histological structure of the foregoing lobulated organ was investigated by Freul. \dagger He found an areolar structure with comective tissue corpuscles, similar to the histological structure of the immature testes of fishes. My preparations had a similar appearance as long as the smaller examples were the subjects of investigation. In the largest specimens of eels with lobulated organs investigated by me ($445^{\text {mam }}$ long) I found cylindriform strings, which passed from the bases to the tips of the lobes, and were filled with cells. After repeated trials with the most different reagents, I did not succeed in clearly distinguishing a mucleus in these cells. My observations

[^25]were made with a Zeiss immersion, objective K, oculars 2 and 3. According to Jacoby,* Von Scibold saw similar strings of cells in an eel, in which the lobes were very strongly developed. These strings of cells presented to the eye the most undoabted similarity to the testicular mother cells of spermatozoa. I also believe that the strings of cells observed by me must be regarded as such. In no case did I observe any spermatozoa.

Previous to my mestigations into the histology of the testicular lobes of the eel, I occupied myself with the question whether there were not some other external characters distinguishing the sexes besides the already mentioned difference in size and length. Jacoby remarks as follows upon this point:
"1. A distinctly broader snont in the female as compared with the slender, either elongated or short, and peinted suont of specimens with the lobulated organs. .
"… A lighter coloration of the female, usually quite green on the back and yellowish or yellow on the belly, whilst the other sex is much darker green in color, often an inteuse black on the back, with always a more marked metallic luster on the sides, and usually whitish on the belly.
"3. A further and important external character is au appreciable difference in the height of the dorsal fiu (a point confirmed by me). All the females kave a distinctly higher and wider dorsal than males of the same size.
" 4 . And, finally, we may note, although not a constantly appreciable character, the greater diameter of the eye of the male. Eels with strikingly small eyes seem almost always to be females. Eels which have a Syrskian organ usually have relatively large eyes, though large-eyed females are equally common."

Jacoby then gives some measurements, the averages of a great number of eels measured by him, from which the actual value of his characters becomes apparent. I believe, nevertheless, that he attaches too much importance to some of his characters, and some others, not less important, he has not noticed at all.

Ont of a great number of cels measured by me I select the following, in which the measurements given in the parallel rows are taken from pairs the lengths of which are, as nearly as possible, the same:

[^26]| | | | | | | | 药 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm ． | mm ． | imm． | mm ． | mm． | mm． | mm ． |
| | 270 | －4 | 8 | 8 | | 35 | 6 |
| | 305 | 4.5 | 8.5 | 9 | 3.5 | 3.5 | -7 |
| | 325 | －4 | 8 | 9 | 4.5 | 37 | 7 |
| | 324 | － 5 | 9 | 10 | 5 | 39 | 8 |
| | 327.5 | －4 | 9 | 9 | 4 | $4{ }^{40}$ | 6． 5 |
| IIT | 327.5 | 5 | 10 | -10 | 5 | 40 | 7.5 |
| | 345 | －4 | 8 | 10 | 5 | 41 | |
| IV | 344 | 4.5 | $\stackrel{9}{9}$ | $+10$ | 4 | 43 | 7 |
| | 35.5 | 4 | a +9 | 9 10 | 5 +5 | 41 | -7 |
| ， | 352 | －5 | 10 +9 | 10 -95 | $+5$ | 42 $+\quad 41$ | 7.5 -7 |
| VI） | 359 | -4.5 | $+9$ | -9.5 | 5 | ＋ 41 | \square |
| VII | 3.8 | | | 10 | 5 | 42 | $+8$ |
| VII | 378 375 | ${ }_{6}^{4.5}$ | 11.5 | 10 | 5 | 43 45 | 7 +8 |
| VIII $\{$ | 389 | 4.5 | 9.5 | 10 | 5 | 4. | $+\frac{8}{7}$ |
| VIII | 380 | -5.5 | 10 | 11.5 | 4.5 | 47.5 | ＋8 |

－ 4 indicates somewhat less than $4 ;+4$ somewhat more than 4 ．
From this table the conclusion is reached that all the females have the dorsal fin ligher than those specimens of the same length presumed to be males，and that with age this dif－
 Iference becomes still more marked．

The larged－eyed character of eels with the lobulated organs has app－ peared to me to be too uncertain at feature，so much so that，according to the foregoing table of measure－ ments，the same feature might be assumed as characteristic of the females．On the other hand，I attach great importance to the broader snout of the female in contrast to the slender and pointed snout of the male．But the snout of the female is not only broader，but also more depressed，and has the eyes more prominent，a feature to which I would call special atteution，and one which I do not find in the male．In contrast，the snont of the male eel is more convex，as will be seen by comparing the accompanying ontline sketches．

If one will only notice the width or slenderness of the dorsal，and more especially the broad，depressed snout of the female，with the promi－ nent eyes，as compared with the slender，convex snout of the male，it will require little trouble to pick out the specimens from these data con－ jectured to be males．

On an average amongst twenty eels，measuring 300－500 min in length， furnished me by different fishermegn， 1 found 5 eels with lobolated organs or 25 per cent．If，however，I paid attention to the two most impor－
tant characters, namely, the relative proportions of the dorsal and snout, by their help picking out those specimens which appeared to be males, I actually found 80 to 90 per cent. of the individuals so selected to be males with the Syrskian organ.

I found it impossible to discover distinctive sexual differences of coloration; all the males and females investigated by me were of a white color ventrally, green above, with a metalic luster on the sides.

DESCRIPTION OT A NEW SPAROED FISHI (SPARUS BRACHISOMIUS), FISOM HOWEREALIEOREIA.

By W. N. LOCEINGTON.

Sparus brachysomus n. sp.
D. $\frac{12}{12} ;$ A. $\frac{3}{11} ;$ P. $15 ;$ V. $\frac{1}{5} ;$ C. $3-9-8-3 ;$ L. lat. cir. 50 .

Body compressed, high; snout and forehead rising in nearly a straight line, at an angle of about fifty degrees with the axis of the borly, to the occiput. From this point the dorsal ontline arches upwards to the third dorsal spine, then downwards in a continuons arch to the end of the dorsal fin. Abdominal ontline much less curved than the dorsal, the anal portion more curved than the anterior portion, lower jaw curved, outline between lower jaw and ventrals nearly straight.

Greatest depth $2 \frac{2}{3}$; length of hearl about $3_{\frac{1}{1}} \frac{1}{1}$; dorsal base about $2 \frac{3}{10}$; pectoral about $3 \frac{2}{3}$ times in the greatest length; snont (along axis of body) $\frac{8}{7}$; orbit $4 \frac{1}{2}$; interocular width $3 \frac{33}{6}$ in the length of the head ; least depth of caudal peduncle $5 \frac{1}{1}$ times in the greatest depth.

Posterior extremity of maxillary falling somewhat short of the anterior margin of the orbit, its upper margin concenled beneath the preorbital throughont; no prominent knob at upper extremity. Lower jaw shorter than the upper.

Nostrils simple; the posterior a large elongated slit close in front of the orbit and on a level with the lower half of the eye; the anterior a small circular foramen situated at a lower level than the posterion and about one-fomrth of the diameter of the eje in advance of it.

Interocular space considerably convex transversely, but ouly slightly so longitudinally.

Posterior margin of preoperculum straight and vertical, lower line convex, the angle of junction strongly rounded. Opereulum ending in a flat point; suboperenlum membranous at tip.

Numerous conical teeth in front of the jaws, the anterior row considerably larger than those behiud. Three rows of molars in the upper jaw, two in the lower. In the specimens examined there are 9 large incisors in the mandible, forming a bold are, the interior of which contains about five irregular rows of crowded cardiform teeth, reaching back to the anterior small molars. Upper jaw similar, with $7-10$ large incisor teeth.

Number of molars in each row of lower jaw rariable, but usually 9 on each side, those of the inner row increasing in size to the last, or to the pemultimate, which sometimes exceeds the last in size. Teeth of onter row also increasing in size posterionly, but to a less extent and less regularly, so that the hinder four molars of the inner row are much larger than their ueighbors in the outer row. The two imer rows meet at an acute angle, the anterior pair in contact.

Inner row of molars of intermaxillaries consisting of 21 teeth, of whies 6-7 form a row on each side, and increase in size to the hindermost or the one in front of it, while the remainder form a curved line of small tubercular teeth of even size along the inner side of the front of the jaw, behind the band of incisors. Outer row of molars 8 in number, similar to those of the lower jaw. Middle row formed of more mumerons (about 14) and, on the whole, smaller teeth than either of the outer rows, increasing in size posteriorly, so that, thongh the anterior five or six are very small, the posterior ones are about equal in size to the smaller teeth of the outer row. The hindmost four or five teeth of the inmer row in all cases exceed greatly in size any teeth in the other rows.

Gill-rakers consisting of clusters of pin-like, slender teeth set upon tubercles; those of the last two pairs of branchial arches largest. The principal clusters of teeth are triangular, with several roms of teeth, the largest behind, the other rows diminishing in length and in size of teeth as they succeed each other anteriorly.

Pharyngeal bones, uper and lower, covered with a dense cluster of teeth similar to those in front of the juws. The imer row of the lower pharyngeals larger than those in front, which are about four in number, and the anterior teeth rather larger than the posterior.

Dorsal commencing immediately over the pectoral base; finst spine abont one-fourth the length; second spine eleven-twentieths of length of third; fourth broken in specimen examined ; fifth slightly shorter; and the remaining spines decreasing regnlarly to the twelfth, which is less than half as long as the third.
Rays of soft dorsal twice bifurcate.
Second anal spine longer than the third and about twice as long as the first, which is inserteal a little belind the pectoral base; rays twice bifurcate.

Candal deeply and triangulately emarginate on its himder border, the free portion of the central rays about one-third the length of that of the outer rays. Onter pair of principal rays modivided, most of the others four times bifureate.

Fiftl ray of pectorals longest, fourth but little shorter, lower rays tapering rapidly, producing a rather narrow elongate fin; ruys twice bifureate.
First soft ray of ventrals longest; rays three times bifureate.
Scales large, broader than long, slightly striated and sealloped on their engaged margin, posterior margin rounded, anterior sonewhat angular, the ceuter adrancing. Scales of body subequal, operculum and
preoperculum with rather smaller seales, those of interoperculum smaller still. Margins of orbit scaleless, the scales of occiput, which are rather small, advancing to a point very slightly in advance of the anterior orbital margin. Cheeks, jaws, and fins scaleless.
Lateral line appronching gradually nearer to the dorsal outline toward the posterior portion of the body, and running a little above the center of the caudal peduncle; pores simple.
Color, in alcohol, dark brown on snout and cheeks, fading to silvery on sides and rest of body; behind the pectorals there are traces of golden reflections.

On the orbital margin, just above the posterior nostril, there is a tubercular projection of the bone.

Several specimens of this species were sent from Magdalena Bay, Lower California, by Mr. W. J. Fisher. They were unfortmately in rather bad condition, so that the tips of the rays of the soft dorsal and anal are broken off both in the example described and in others which were carbolized and dried.
One of the examples is in the National Musemm, Washington, D. C.
This species should probably be placed in the genus Calamus Poer, which includes also the Pagellus calamus of Cuv. \& Val., but as I have not Poey's work at hand I leave it in the Limæan genus Sparus.

Dimensions.

Total length from tip of snont to tip of candal lobe 14.00
Total length from tip of snout to end of middle caudal rays....................... 12.37
Greatest depth aeross pectoral base 5 . ${ }^{25}$
Depth of candal peduncle ... 1.00

Tip of suont to upper pectoral axil....... ... 3.90
Tip of snout to origin of anal ... 7.70
Tip, of snout to origin of dorsal, along dorsal outline................................. 5.55
Tip of snout to anterior axil of ventrals, along abdominal outline 4. 35
From orbit to tip of upper jaw, in straight line..25
Upper margin of orbit to level oŕ center of interocular space.................... . . 37
Longitudinal diameter of eye.. 76
Width of interocular space 92
Length of snout .. 1.69
Tip of suout to end of maxillary: .. 1.52
Length of pectorals, center ray ... 3.
Length of ventrals 2.40
Length of base of dorsal .. 6.17
Length of base of spinons dorsal .. 3. 88
Leugth of first spine of dorsal .. . 53
Length of secoul spine of dorsal ... 1.10
Length of third spine of dorsal .. 2.03
Length of fiftlı spine of dorsal. :-.. 1.97
Length of anal hase... 2.15
Length of first anal spine 45
Length of second anal spine 94
Length of third anal spine ... 73
Greatest thickness at operculum .. 1.75
Greatest distance from abdominal ontline to lateral line 4.05

DESCREPTION OF SEVEN NEW SPECHEN OF SERESTOED FESHES,

The Sebastoid fishes of the coast of California have been referred by Professor Cill to four genera: Sebastodes (type paucispinis), Sebastosomus (type melanops), Sebastomus (type rosaceus), and Scbastichthys (type nigrocinctus), the first separated by the small size of the scales, the others mainly differentiated by the degree of development in the spines of the hearl. The gemms Sebastorles we consider valid, referring to it only paucispinis, althongh the affinities between paucispinis and the group termed Scbastosomus are not remote, as is shown by the smooth head, protruding lower jaw, small scales, and longer anal fin in the latter group.

The discovery by us of numerons additional species not known to Professor Gill renders it evident to us that the gronps Sebostosomus and Sebastomus camot be maintained as genera distinct from Sebastichthys, and that, in order to recognize them as sulgenera even, a different distribution of the species must be adopted.

The Californian species known to Professor Gill are distribnted by him as follows :
Genus Sebastodes. paucispinis.
Genus Sebastosomus. melanops. simulans. flavidus. ovalis. pinniger.
Genus Sebastomus.
elongatus.
rosaceus.
ruber.
anriculatus.
nebulosus.
Genus Sebasticmtilys.
nigrocinetus.
The following arrangement expresses our present riews as to the relations of the species known to us , so far as it can be shown in a linear series.
Genus Sebastodes.
paucispinis.
Genus Sebastichthys.
Series (or subgenus) Sebastosomus.
melanops.

> | simulans. |
| :--- |
| flavidus. |
| ovalis. |

Series (or subgenus) Scbastichthys.
atrovirens.
pinniger.
elongatus.
rubrivinctus.
auriculatus.
vexillaris.
chlorostictus.
rosacens.
constellatus.
ruber.
rastrelliger.
nebulosus.
fasciolaris.
serticeps.
nigrocinctus.
Of the foregoing species we have examined a large series of all except ovalis, rubrivinctus, and nigrocinctus. All the species except nigrocinctus, ovalis, ant rubrivinctus are of frequent occurence in the San Francisco markets.

The eharacters drawn from the presence or absence of the different pairs of spinous ridges on the top of the head are among the most reliable in this group, although not hitherto accurately given by the describers of the species. Some individual irregulanitics may be observed, but these are usually readily detected.

For these spines we have adopted the following names: Nrasal: those near the nostrils; preseut in all our species of Scbastichthys. Preocular: for those above the front of the eye; present in all except flavidus and simulans. In melanops the ridge is present, but it usmally does not end in a spine. Supraocular: above the eye; present in all but simulans, melanops, and flavidus. Postocular: close behind these; present in most of the red species, usually wanting in others. Tympanic: behind the postocular, and generally present. Occipital: long ridges on the posterior part of the head on each side of the occipital crest. These ridges end in spines in all except inelanops, simulans, and flaxidus. Coronal:
a pair of distinct spinons ridges in front of the occipital ridge; present in oue species only-auriculutus. Nuchat: close behind the occipital; in one species (serviceps) large and distinct, in the others either wanting or often coalescent with the preceding.

Two suprascapular spines are present in all the species except auriculatus, which has three on cach side.

The following tahle gives the names of the spinigerous ridges on the top of the head usually present in each species, beginning with those in which the ridges are least elevated:Pairs.
Pancispinis, preocnlar, oceipital 2
Flavidus, hasal 1
Melenops, nasal and preocular 1 or 2
Simulans, nasal 1
Oralis, nasal, preocular, supraocnlar, postocular, tympanic, and oceipital 6
P'inniger, nasal, preocular, supraocular, postocular, tympanic, occipital 6
Atrovirens, nasal, preocular, supraocular, occipital, and sometimes tympanic... 4 or 5
Elougatus, nasal, preocular, supraocnlar, tympanic, occipital 5
Rustrelliger, nasal, preocular, supraocular, tympanic, occipital 5
Auriculutus, nasal, preocular, supráocnlar, tympanic, coronal, occipital, and often nuchal 7
Texillaris, nasal, preocular, supraocular, occipital, and sometimes tympanic 4 or 5
Chlorostictus, nasal, prencnlar, supraocular, postocular, tympanic, occipital 6
liubrivinctus, nasal, preocular, supraocular, tympanic, occipital 5
Rosuceus, nasal, preocular, supraocular, postocular, tympanic, oceipital 6
Constellatus, nasal, preocular, supraocular, postocular, tympanic, occipital 6
Ňebulosus, nasal, preocular, supraocular, tympanic, occipital 5
Ruber, nasal, preocular, supraocular, postocular, tympanic, occipital ${ }^{6}$
Fasciolaris, nasal, preocular, supraocular, tympauic, occipital 5
Serriceps, nasal, preocular, supraocular, tympanic, occipital, nuchal 6
Nigrocinctus, nasal, preocular, supraocular, postocular, occipital 5

The character of the gill-rakers has been hitherto unnoticed. In this regarl the species may be gromped as follows:

1. Long and slender: flacilus, simulans, ovalis, pinniger, melanops, atrovirens.
2. Long and rather strong: vexillaris, clongatus, chlorostictus, rosaceus,
3. Stout and rather short, usually not clavate, but constricted toward the tips: rubrivinctus, auriculatus, constcllatus, ruber.
4. Stout, short, compressed, and clavate: nebulosuts, fasciolaris, servi ceps, nigrocinctus.
5. Very short, broader than high: rastrelliger.

SEBASTICHTHYS ATROVIRENS sp. nov.

Allied to S. pimiger. Body oblong, not very stout, not tapering rapidly backward. Head moderate, rather pointed, its upper outìine with a slightly curved slope from the snont to the nuchal region.

Mouth moderate, not very oblique, the lower jaw little projecting, the rather slender maxillary exteuding to the posterior border of the pupil; the premaxillary below the horizon of the pupil. Maxillary largely scaly. Eye large, about three and a half times in length of head.

Proc. Nat. Mus. S0——19 Sept. 28, 1856 .

Ridges on top of head rather low, not ending in very prominent spines. The following pairs are present: Nasal, preocular, supraocular, and occipitul, four in all. Occasionally the tympanic spine is also developed, although rery small. The nasal spines are quite prominent. The preocular and superocular moderately so, but short. The occipital spines are comparatively short and low.

Preorbital bone with the neek very narrow, scarcely one-fifth the diameter of the eye, provided anteriorly with two stont spines, which projeet backwarl.

Preoperenlar spines short, but rather sharp, the second longer and slenderer thim the others, all of them pointed. Subopercle and interopercle with spines. Opercular and suprascapular spines sharp.

Interorbital space rather broad and slightly consex, widened backward, a little depressed on each side next the supraocular spine, its width less than that of the eye and more than the length of the occipital spinc.
Gill-rakers long and slender, but stouter, rongher, and shorter than in S. pimiger, 9 above the angle and abont 22 below; the longest twofifths the diameter of the eye, about half the interorbital space.

Scales on the head rather large, abont 15 in a cross-series on the checks above the suborbital stay. Preorbital scaly.
Scales on bodlylarge and somewhat more regularly arranged than usual. Accessory scales present, but not numerons; 52 transverse series of seales.
Dorsal spines moderate, the fifth and sixth spines highest, the others regulanly shortened each way, the twelfth about as long as the first, the membrane joining the thirteenth less than half way up; the highest spine rather less than hall' the length of the head and lower than the soft rays, which are rather high. Caudal slightly rounded.

Anal fin short and high, its spines slender, the second shorter than the third, and not much stronger. Pectorals long and narrow, reaching past the vent and nearly to the beginning of the anal, their length seven-eighths that of the head, their base quite narrow, less than the diameter of the eye. Ventrals long, reaching just past the vent.
D. XII, I, 14; A. III, 7.

Color similar to that of S. rastrelliger, but paler, nsually olive-green, marbled with darker; belly pale yellowish green; fins olivaceous. Sometimes this species is quite dark, but it never shows red tints either on loody or fins.
This species is closely related to \mathbb{S}. pinniger, from which it differs in the absence of the postocular and tympanic spines and in the coloration, S. pimiger being always chiefly orange-red. Externally it resembles S. a astrelliger most, but it may be known at once from the latter species by the long gill rakers and narrow pectorals.
S. atrovirens is very abundant from Point Concepcion as far as San Diego. About Catilina Island it is the most abundant species of the
genus. It is frequently seen in the San Francisco markets. It reaches a leugth of about 15 inches, and is usmally known as Garmpa or Grouper.

Sebastichtilys retbrivinctus sp. nov.

Body robust, rather deep and compressed, tapering behind to a slender candal peduncle.

Head long, acute in profile, there being a nearly straight slope from a bony prominence in front of the spinous dorsal to the tip of the lower jaw. Month rather large, oblique, the lower jaw strongly projecting. Maxillary broad, scaleless, extending to opposite the middle of the exe; anterior edge of premaxillary on the level of the lower border of the eye.

Ridges on top of head quite low, five pairs of them ending in spines, which are bluntish and depressed. Nasul, preocular, supraocular, tympanic, and occipital spines present. In one example the nasal spines are covered by the skin. Ocular ridges not much elevated.

Interorbital space flattish, narrow, not so broad as the eye, not widened behind, covered with rather sparse, almost cycloid, scales. Two long froutal ridges extend the length of the iuterorbital space. These are covered with bare skin. Behind and between these are two shorier ridges occmpying the place of the coronal ridges found in S. auriculatus. These two are covered by naked skin, and do not end in spines. Tympanic spines well developed. Occipital ridges long, curved, diverging behind.

Suborbital stay very prominent, its tip nearly reaching the preopercle.
Preopercle with five rery strong spines, the three uppermost very long and sharp, the second the longest. Suboperele and interoperele entire. Opercle above with two sharp, long spines. Suprascapular with two strong spines. Preorbital very wide, its neck two-fifths the diameter of the eye, with one sharp spine and a large prominence, which msmally euds in a spine also.

Eye extremely large, its diameter 33 in length of head.
Gill-rakers rather short, rather robust, much compressed, toothed on the imer margin, the longest about one-fourth the length of the eye. Gill-rakers $S+20$ in number, abont $4+16$ of them being free.

Scales on head all small and thiu, mostly cycloid, the minute accessory scales extremely munerous. Scales of body smoother than usual, the accessory scales numerons on the posterior part and on the muchal region, where the seales generally are smaller and more crowded than on the flanks.

Dorsal spines robust, rather high, the fifth the lighest, not quite half the length of the head; those behind rapidly shortened to the twelfth; the twelfth spine lower than the first and much less than half the height of the fifth, its membrane joining the thirteenth spine below its modlle. Soft rays about equal in height to the spines. Candal fin very slightly emarginate. Anal rather low, its second spine much longer and stronger than the third, both robust. Pectorals moderate, not reaching vent;
the base moderate, nearly equal to the diameter of the eye. Ventrals not reaching tips of pectorals.
D. XIII, 14; A. III, 7. Scales in about 48 transverse series.

Color very pale rose-red, almost white, with cross-bars of a deep, intense crimson-red, these bands broadest on the back. One of the bands runs aeross the eje, snout, suborbital, and maxillary, with indistinct bomdaries; the next across the nuchal region and front of dorsal and opercle; the next across the middle of the spinous dorsal, including the rentrals and the posterior hall of the pectorals; another across the soft dorsal and anal; another across the base of the candal, the fin itself being deep rose color. The other fins share the color of that part of the body against which they lie.

This species is known from two examples, cach about one foot long, taken on a reef in Santa Barbara Channel, by J. Weinmiller, February $14,1880$.
Afterwards about eight others, larger than the original types, were taken in deep water near Monterey. It is known to the fishermen as the "Spanish Flag," and is the most brilliantly colored large fish on the Pacific coast.

Its relations to the other red species are not intimate.

SEbastichthys vexillaris sp. nov.

Body stont and compressed; the back clevated; the form rather deeper and more elliptical than in the other red species. Head moderate; the mofile moderately acnte. Month rather large, moderately oblique, the broad maxillary usually extending to a point somerhat belind the orbit. Premasillary auteriorly on the level of the lower edge of the pupil. Jaws subequal, the lower somewlat projecting, but withont sympliyseal knob; the upper jaw not emarginate.

Ridges on top of head long and low, rather broader and lower than in the other red species; their spines rather depressed. The following pairs of spines are present, four or tive in all: Nusal, preoenlar, supraocular, occipital, and sometimes tympanic. The nasal spines are prominent; the preocular spines are quite conspicuous and extend well backward; the supraocular ridge is depressed and broad, its spine triangular'; the occipital spines are rather long and diverge backward. In some specimens a tympanic spine is present, which is wanting in the others. The iuterorbital space is broad and flattish, broader than in related species, about eqnal to the diameter of the orbit. It is occupied by two raised ridges, which are covered by the scales. In large specimens these ridges are quite obsemre.

Preopercular spines moderate; some of them usually divided into two, three, or four at tip, the middle one the largest. The degree of division of these spines is quite variable, but at least the middle spine is usually divided.

Posterior border of the interopercle with a strong spine, above which
are one to three conspicuons spines on the subopercle. Opercle with two diverging spines, above which are two supraseapular spines.

Eye moderate, high up, 4 to $4 \frac{2}{2}$ in head. Preorbital with the neck very broad, with two bluntish downward directed spines in front, its narrowest portion two-fifths the diameter of the eye. Suborbital stay short and rather weak. Maxillary and preorbital with fine seales.

Gill-rakers rather long and strong, compressen, toothed on the imer margin, shorter than in atrocirens, the longest slightly clavate, about half the length of the eye; the number about $\frac{8}{19}$, nearly all of them free.

Scales moderate, with few accessory smaller ones, in 55 transverse series.

Dorsal spines very strong and high, aboat as in chlorostictus, higher than in any other species; the first about half as long as the eye; the fourth the highest, more than half the length of the head, and much higher than the soft rays. The twelfth spine is a little higher than the first, and its membrane joins the thirteenth about half-way up. Membrane of spinons dorsal rather more deeply incised than in other species. Soft dorsal rather high, but lower than the spines.

Anal spines much smaller than in rosuceus, ete.; the second not longer than the third, and not much stronger; about two-thirds as high as the soft rays. Soft rays of aual high. Caudal trmeate. Pectoral shorter than head, not reaching the rent; its base rather broad.

Ventrals moderate, not reaching vent.
D. XIII, $16 ;$ A. III, 6.

Color rather bright and pale, yellowish red, becoming lighter belor, the reddish and fellowish forming large and inegular areas, sometimes one shade predominating, sometimes the other. A pink cross-blotch on the back at the base of the second and third dorsal spines. Upper parts of the head mostly pink, with broad olive shades ruming backward, one on the lower lip, one on the maxillary, one from preorbital region downward, one from the eye backward and domnward across the cheeks, and another across the operenlar spines. Fins all pinkish red; the membranes olive. Top of head usually with alteruating cross-shates of pinkish and yellowish. In some specimens the yellowish shades are replaced by light olive. Others are quite red; others still are quite brownish. The spots on the back show a tendency to the rosy spots found in constellatus and rosacens.
This species was first known to us from two specimens taken on a reef in Santa Barbara Chamel. A single example was afterwards noticed in the musem of the California Acatemy of Sciences, and numerous others have been since obtained in the San Francisco markets, where it is very common. It reaches a larger size than its relatives, chlorostictus and constellutus, found in the same markets, and, like them, it has been confounded by previous observers with rosaceus and auriculatus. It may be known from its relatives by its high dorsal spines, low
anal spines, and the smaller number of ridges on the top of the head. its relations are probably more near to S. nebulosus than to the other red species.

Sebastichithys chlorostictus sp. nov.

Body oblong, tapering into a rather slender candal peduncle, the back not much elevated. Head moderate, the profile rather steep, with a nearly even slope.

Mouth large, oblique, the maxillary reaching to behind the pupil, the premasillary in front below the level of the large eye. Jaws equal in the closed month, the tip of the lower fitting into the emarginate upper jaw; a rather conspicuons symphyseal knob. Preorbital sinuate, usually with two or three flat spines.

Ridges on top of head rather sharp and high, ending in sharp spines. These ridges are longer than in nebulosus and serriceps, and much less elerated. These ridges are much higher than in vexillaris; about as in constellutus.
The following pairs of spines are present: Nasal, procular, supraoctlar, postoculur, tympunic, and occipital-6 pairs.

Interorbital space concave, with two rather prominent ridges.
Preopercular spines rather sharp, the second longest and slenderest; the lower bluntish, but well developed. Operenlar spines sharp; suprascapular spines well derelopet. A spine on interopercle and on subopercle.

Gill-rakers long and rather strong, not clavate, the longest abont twofifths the climeter of the eye. They are longer than in any other of the red group, rather longer than in vexillaris. Scales on head less developed than in S. constellatus; the snout wholly free from scales. Maudible nearly or quite naked. Scales on body moderate, in about 5 ã transverse series.

Dorsal spines very high, nearly as high as in rexillaris; the fouth highest, one-third higher than the soft rays, which are also considerably elevated.
Dorsal fin rather deeply emarginate; candal fin emarginate; anal fin not very high, its second spine much higher and stronger than the third, about as high as the soft rays. Pectorals with moderate base reaching beyoul tips of ventrals, about to vent.
D. XIII, 14; A. III, 6.

Color rather light olivaccons above, and pinkish orerlaid with golden on the sides. Head light red and golder. Three romndish light spots placel is in constellatus and rosaceus, but much less distinct. There are $n 0$ small light spots on the body. The upper parts of the body, from just below the lateral line, are closely covered with small round spots of a clear olive-green. These spots are most distinct on the back and the top of the head. On the sides of the boty, just above and below the lateral line, these spots form two continnous series, following the course
of the lateral line. Eres above with green spots. Fins nearly plain red; the dorsal spotted with olive.

This species is known to us from numerous specimens obtained in the San Fimeiseo market, taken in deep water at Monterey. It is not rare, but it has been hitherto confonded with rosaceus, from which it may be known at once by the green spots and the great height of the dorsal.

SEBASTICHTHIS CONSTELLATUS Sp. hov.

Body rather robnst, heary forwards, tapering into a rather slender cautal peduncle. Head rather pointel in profile, the slope nearly straight from the tip of the snout to the base of the dorsal.

Mouth large, obligne, the lower jaw slightly projecting beyond the emarginated tip of the upper jaw. A conspicuous knob just beyond the symphysis of the lower jaw.

Maxillary very broad, extending to beyond the line of the pupil, its middle part with many small scales; premasillary in front just below the level of the eye.

Ridges on top of the head well developed, rather high and marrow, ending in moderate spines. The following pairs are present: Nasal, proocular', supraocular, postocular, tympanic, and occipital. The interorbital area has two prominent ridges covered by the seales, and not ending in spines. Behind these is a deep concavity. The nasal spines are bluntish, the preocular shar, the supraomlar ridge rather short, the postocular and tympanic similar to each other. The occipital ridgo is long, curved, ending in a sharp spine. Two supraseapular spines. Preopercle with its first and third spines triangular, bluntish, the second long and sharp, the fourth and fifth reduced to bluntish prominences. Opercle with two strong spines above. Slight spines on the subopercle and interoperele.

Prembital wide, its neck about one-third the diameter of the orbit, its edge lobed, withont spines.

Eye large, $4 \frac{1}{2}$ in head.
Muzzle and preorbital scaled to the tip of the snout more completely than in other species, mandible sealy.

Gill-rakers short, very thick, compressed, clavate, with a'tuft of spinelike teeth at tip, the longest of them abont one-fifth the diameter of the eye, their number $3+24$ free ones, besides rudiments. Scales strongly ctenoid, the accessory seales largely developed; 53 transverse series.

Dorsal spines rather strong, rather low, the fourth the longest, a little more than one-third the length of the head. Twelfth spine rather short, shorter than the first, its membrane joining the thirteenth spine about hall-way up.

Soft dorsal rather low, abont equal to the spines.
Anal with the second spine robust, curved, considerably longer than the third, higher than the soft rays. Caudal very slightly emarginate.

Pectorals reaching beyond tips of ventrals, about to vent, their length two thirds that of the head.
D. XIII, I:3; A. III, 6 .

Head densely covered with small seales; a series across the eheeks along the uper edge of the suborbital stay usually numbering 30 to 40 , the increased number being due to the greater development of the accessory scales.
Color rather light, bright orange-red, the back olive shaded, the belly yellowish. Cheeks with red and yellowish shades. Head and body everywhere closely covered with small roundish pale spots. The spots above are light rose color; below are nearly white and larger. Four or five roundislı rose-colored spots on the back, besides some mottlings of a similar shade. The first spot, often obscure, under the fourth dorsal spine; the next near the lateral line under the eighth dorsal spine; the next close to the junction of the two parts of the dorsal ; the fourth under the end of the soft dorsal; a fifth sometimes near the base of eighth dorsal spine. Opercular flap with a rosy spot. Fins light reddish, shaded with olive, or nearly miform. Dorsal speckled at base with light and dark.
This beautiful species was first noticed by us in Santa Barbara Channel, where a single example was obtaned. It is abundant in the markets of San Francisco, where it has been confounded with rosaccus on accomnt of the similarity of the pink spots. The numerons stellate light spots, however, distinguish it at sight. It is very closely related to rosaccus, howerer.

The discovery of three species in the waters of California having the light spots supposed to distinguish S. rosuccus, invalidates the identification of that species with the similarly spotted S. oculatus of Chili.

SEbasticiethys rastrelliger sp. nor.

Body rather oblong, deepest at the shoulders, slowly tapering backward to a rather deep caudal peduncle; head short, rather blunt and deep, the upper profile straight; month moderate, little oblique, the maxillary reaching to the posterior margin of the eye, the premaxilliary rather below the level of the eye; jaws equal, the lower convex, not produced at tip, and whthout symphyseal knob.

Preorbital bone moderate, the width of its neck about two-fifths the diameter of the eye, its free margin simate, without spines.

Ese morlerate, anterior, its diameter about $4 \frac{1}{2}$ in head.
Ridges on head strong, but broad and depressed, ending in small spines. The following pairs present: Nasal, procular, supraocular, tympanic, aml occipital, five in all. The occipital ridges are very long, equaling the dianeter of the orbit ; preoperenlar spines short and stont, the two upper subequal; opercular spines usually very broad and flat, their posterior edge sometimes serrated or bifid; supraseapular spines strong; spines on interopercle and subopercle swall, sometimes obsolete ; inter-
orbital space moderate, less than the diameter of the eye, flattish, with two low ridges ; spines of head little divergent hackwards.

Gill-rakers cory short, wide, compressed, the longest is wide as high, the shortest much wider and not free, all strongly toothed on anterior margin and side; the number about $\frac{7}{14}$, only 6 to 9 of them being morable.

Scales on body large, the accessory scales almost wanting; about 45 transverse series, and about 50 in the course of the lateral line.

Dorsal spines low, the fifth highest, about two-fifths the length of the head; the last spines not much shortened; the fin comparatively little emarginate; soft rays considerably higher than the spines. Caudal fin slightly ronnded. Anal fin short and high, its spines low, the second as high as the third and much stouter. Peetorals rather short, reaching vent, their busc cxtremcly brocul, its width greater than the length of the eye and about one-third the length of the head ; the lower rays much thickened. Ventrals moderate, not quite reaching the tips of the pectorals.

D. NIII, 13 ; А. III, 6.

Color blackish green, with paler mothings, the sides spotted with darker; belly pale greenish, often many seakes on the side, each with a darker spot; paired fins dark, often tinged with reddish; other fins chiefly olivaceous, mottled with darker; anal fin often spotted with black. The brightness of the olive and greenish shades is quite vari- " able, but the species is always without bands or distinct markings and without distinet red.

This species is extremely abmudant from Point Concepcion to Santa Catalina Island, and large numbers come into the San Francisco market. It may be known at once from all the others by the small gill-rakers ("rastra") and by the breadth of its pectoral fins. It grows to the length of abont 15 inches.
S. rastralliger is intermediate, in regard to the drvelopment of the spines, between the gromps termed Schastomus and Sebastosomus by Professor Gill. Its relations with S. nebulosus are most intimate, and it forms the base of a series ascending in degree of ronghess of head, terminating in the extreme of S. nigrocinctus.

Sebastichitiys fasciolatis Lockington, nom. sp. nov.

> (Scbastes fasciatus Girard, not of Storer.)

The form described and figured by Girard as Scbustes fasciutus is, in our opinion, specifically distinct fiom Scbastes nebulosus of Ayres, with which it has usually been identified.

The name fasciatus is preoceupied in this group. We have therefore adopted the above name, proposed by Mr. Lockington in MSS.

Scbastichthys fasciolaris is very closely related to S. nebulosus. It is rather stouter, and the slope of the profile is steeper. The ridges on
the top of the head are much higher and stronger, especially the oceipital ridge, which forms a wall-like elevation, much as in S. serriceps. The sides of this ridge are vertical, or even directed upward.

The color of this species is very constant and quite distinct from that of nebulosus. It is nearly black, everywhere speckled with whitish. There are coarse yellowish blotches on the sides of the head and body, and a broad, gellowish, lateral band. This band begins on the membrane of the third and fourth dorsal spines, and extends downward to the lateral line, which it follows to the tail. The edges of this band are very meven, and it is of varying width, bat it is always distinct and continnons. The body is mottled with light and dark, and the fins are all blackish, with pale spots.

In the bluntish spines of the sides of the head, the horizontal mouth, with shortish subequal jaws, the short, thickish gill-rakers, the high dorsal spines, and moderate, subequal aual spines, this species agrees with S. nebulosus. Both species are common in the San Francisco market, in about equal abundance.

Mcasurements in hundredths of length to base of caudal.

Body:							
Greatest height	38	36	35.5	40	36	34. 5	41
Least height of tail	11	12	12	10	12.5	9.5	9
Head: Greatest lensth	35	41	37.5	38	37.2	40	42
Snout	10	9	9.2	11	8.5	10	11.3
Urbit	8.5	8.5	11	9.5	8		11.5
Interorbital space..	5	6	8	5. 7	7	6.8	6
Least wilth of preorbital	3	2.5	1.5	3	2		2.5
Maxillary	18	20	17	16	17.5	18.5	20.6
Lonrest will-raker	2.5	1.5	3.5	2.3	3	3.8	4
Oceipital ridge	6	8	6	9. 3	6. 5	7.5	8
Supraocular ridge	5	6	6	6			
Dorsal:	32. 5	3.5	35	38	33	36.2	40
Longest spine.	13	13	16	16	21	21.5	15
Lougest ray...	15.5	16	19	15	15.2	16. 7	14
Anal:							
Dase	13.5	15	15	12. 5	15	13	
Second spine	14	12	14.5	15	14.6	16.6	16
Third spine	14	9	15	13.5	12.2	14.5	13
Longest ray	22	19	20	20	20	18	15
Candal, length.	20.5	20	21	15.3	17.5	18	18.5
Pectoral, length	27	27	32	24	27	0.5	24
Winth of base..	11	11	8.8		11	9.5	10
Ventral, length.	${ }^{26.5}$	${ }^{22} 13$	24.5	$\begin{array}{r}19.5 \\ \text {-11 } \\ \hline\end{array}$	${ }^{23} 13$	$\stackrel{21}{13}$	${ }^{18}$
Dorsal...........	XIII, HI S	SIIf, 13	XIII, 14	XIII, 14	$\begin{array}{r}\text { XIII, } \\ 111 \\ \hline 1\end{array}$	$\mathrm{SIII}_{\text {III, }} \mathbf{6}$	XIII, ${ }_{\text {II }} \mathbf{4}$
An:1 ${ }^{\text {Trunserse }}$ rows of sc.........	111, 5	${ }_{4}^{111,6}$	$\mathrm{III}_{47} 7$	$\mathrm{IIL,}_{50}$	$\mathrm{l}_{56}^{111}, 6$	$\mathrm{III}_{4.2} \mathrm{C}$	III, 6
Transrerse rows of scales, ${ }_{\text {Leng }}$ Le	53		47	50	56		
inches	8.7	9.25	7.25	9.7	11.3	9.3	6.23
Lxtreme length, in inches.	10.4	11.3	8. 75	11.3	14.25	11.2	8. 55

San Francisco, Cal., February 28, 1880.
Note.-The publication of this paper has been accidentally delayed for some time. Meanwhile the writers have discovered a number of additional species of Sebastichthys descriptions of which precede those of the present species, although of course no allusion is made to them in this earlier paper.

Body very elongate, with dorsal and rentral ontlines evenly curved; candal peduncle very long, thick at base; snout blunt and rounded, top of head everywhere transpersely conrex and the occipital region but little depressed.

Month small and oblique, the lower jaw somewhat shorter than the upper and included. The maxillary reaches but two thirds the distance to front of orbit; premaxillaries anteriorly about on a level with lower rim of orbit.

Teeth long and strong, somewhat compressed and incisor-like, arranged in a close series; each tooth with three short-rounded lobes near the end, the middle lobe the longest; their form precisely as in Abeonu minima. These incisor teeth are crowded, with the lobes orerlapping, and often with one slipped entirely behind the others.

Scales of cheeks in three distinet series below, in one posteriorly. Behind this onter row and well separated from it are, in the upper jaw, from two to sereral distinct canines, there being usnally a pair near the middle of the jaw. Gill-rakers wather feeble, of moderate length. Lower lip thin, with a fremum.

Dorsal fin with the spines from the fifth or sixth to the eleventh, longer than the others, about equal to each other and to the longest soft ray. Pectorals not reaching as far as do the ventrals, which scarcely reach the rent. Candal forked for nearly half its length. Ventral groove almost obsolete; the distauce from ventrals to vent abont equals the length of the anal fin.

Lateral line with 40 to 45 scales ($4-43-13$).
Color bhish black above, becoming lighter on lower half of sides silvery below. Opercles and lower half of sides punctate with black dots and shaded with light orange or rose red, the latter here more intense on the centers of the sales. A broad grayish area extending backward from the axil of the pectorals, without orange tints aud darkened by black punctulations on the edges of the scales; this area ends opposite the origin of the anal fin; above it the orange shate forms a rather distinct band from the lips to the base of the candal. Axil of pectorals black, especially above. Fins plain, speckled with blackish. Anal somewlat yellow.

Fin rays: D. VILI, 17 ; A. III, 20.
The intestines were filled with a species of Ulya, indicating a regetable diet.

This species is known to us from fifteen examples taken in the bay of Monterey, and purchased by us in the San Francisco market.

It agrees with Abeona minima in the peculiar dentition characteristic of that genus, as well as in the large scales and shortened fins. Its form is, howerer, quite different, resembling more the genera Brachyistiuts and Cymatogaster. It is a considerably larger fish than Abcona minima ; its dorsal spines are weaker and the number of fin rays is greater.
(I). IX, 1t; A. III, 16-in Abcona minima.)

From Cymatogaster aggregatus it is widely separated by the different dentition; with Brachyistius frenatus Gill it has closer affinities, but the two species belong to different genera.

This latter species has been but once observed, and no deseription has been yet published, merely a brief note enmmerating some of its peculiarities. We therefore subjoin a fuller account, drawn from a fine specimen obtained by us at Santa Barbara.

Brachyistius frenatus Gill.*

(Proc. Acad. Nat. Sci. Phila., 1862, 275.)
Body clongate, compressed, the body proper regularly elliptical, with long candal peduncle. Head long, very slender and pointed, much depressed above the eyes, the snout projecting. Mouth very small, terminal oblique, the small maxillary falling much short of the orbit. Lips rather thin, the lower with a fremum. Teeth long and slender, somewhat lanceolate, few in number, arranged in a single series.

Preorbital broad. Checks with abont two rows of scales; opercles with three. Eye large, anterior, about 3 in head.

Gill-rakers numerous, long and slender.
Scales large, 42 in the course of the lateral line. Dorsal spines high and rather strong, the first low, the others rapidly increasing to the sixth and seventh, the eighth shorter, the soft rass a little higher than the highest spines.

Candal peduncle nearly as long as the head, not very slender. Candal fin rather deeply forked.

Anal spines feeble, the fin elevated in front. Ventrals reaching soft rays of anal. Pectorals reaching first anal spine. Ventral groove very short.
D. VIII, 15 ; A. III, 22.

Color dark olive-brown above, with lighter stripes along the rows of scales. Below everywhere a brilliant light coppery red; each seale with a light blue spot and dark punctulations. Head colored like the body. Fins all light reddish, plain, the dorsal somewhat dusky. A streak of sky-blue spots below and in front of the eye.

Measurements of Abeona aurora.

[^27]Body :
Greatest depth ē6
Least depth of tail 14
Length of caudal pedunclo 21
Heal:
Greatest length 25.5
Width of interorbital area. 9
Length of snout 7
Length of maxillary 6
Diameter of eye 7
Dorsal:
Distance from snout 37.5
Length of hase 43.5
Height of longest spine 12
Height of highest soft ray 12
Anal:
Length of base 16.5
Height of longest ray 9
Candal:
Length of middle rays 13.2
Length of onter rays 25
Pectoral, leugth 24
Ventral, length 19
Dorsal rays VIII, 17
Anal rays III, 20
Scales 4-43-13
Transverse series below lateral line 35San Francisco, Cal., February 28, 1880.

Body extremely elongate for the family, thin, and strongly compressed. - Fead rather long and slender; the snont somewhat pointed. Month extremely large and oblique, the lower jaw included; the maxillary very long and slender, reaching much beyond the eye, its length about half that of the head. Premaxillary in front above the level of the lower eye.

Teeth in the upper jaw anteriorly long, slender, and wide-set. Some of the teeth very freely depressible, the larger ones scarcely movable. Posteriorly the teeth are much smaller, close-set, and fixed in two rows; the inner row continuons with the larger anterior series, the outer row extending ontside of some of the enlarged teeth.

Teeth in the lower jaw very sharp and slender, long, and wide-set, altemating with shorter ones, which are very freely depressible. Outside of the larger teeth is a series of small, fixed, close-set teeth. The larger teeth in each jaw are distinctly arrow-shaped. Pharyugeal teeth apparently in one row.

Eyes large, dextral, their anterior margins abont even with each other; the upper ege larger and directed obliquely upward. A conspicuous ocular ridge about the upper eye, becoming continuous with the lateral line. Interorbital space narrow, not half the width of the eye, scaly, as is the space in front of it. Cheeks wide, the posterior edge of the preopercle free. Opercle rather short and weak. Premaxillary protractile, capable of little protrasion.

Gill-rakers long and strong, abont $4+13$ in number, the longest more than half the diameter of the eye.

Scales very small and thin, irregularly arranged, their margins weakly ciliaterl, in about 135 transverse series; abont 100 tubes in the course of the lateral line. The lateral line is nearly straight, gently ascending in front. No accessory lines. Scales on blind side similar.

Dorsal tin beginning just behind the middle of the eye, its rays low, especially anteriorly, its greatest height considerably behind the middle. Uandal fin somewhat forked. Anal fin higher than the dorsal, its lighest rays about midray. No spine before anal. Caudal peduncle long and slender, about as long as the maxillary. Pectoral fins short, the one on the right or eyed side longest, its length nearly equal to that of the maxillary. Ventral fins very short, reaching just past the vent.

Fin rays: D. 101; A. 8 J.
Color plain brown, with darker punctulations. Left side white, the many dark points giving it a soiled appearance. Fins dusky.
This species is known to us from one example over a foot long, bonght in the San Francisco market, and taken just outside the Golden Gate. It doubtless reaches a much larger size, and the adult is probably less slender than this example.

It differs from its congener, the Greenland Halibut, Platysomatichthys hippoglossoides, of the North Atlantic, in the slenderer body, larger mouth, longer gill-rakers, and narrow interorbital space, but the two appear to agree in all respects of generic value.

We regret the necessity of using the clumsy and inappropriate generic name Plutysomatichthys for these fishes instead of the name Reinhardtius proposed by Professor Gill. The former name, although later in date, has priority of definition.*

Table of measurements of Platysomatichthys stomias.
Extreme length 12.9 inches
Length to base of candal ... 10.9 inches $=100$
Greatest depth of borly 30
Least depth .. . 07
Length of caudal peduncle 12
Length of head .. . 88
Number of gill-rakers ... 4, 11
Length of longest gill-raker 032
Length of snout 068
Length of maxilliary 152

[^28]PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
Lergth of mandible 168
Gxeatest wilth of maxillary 03
Diameter of orbit 07
Distance from suout to dorsal 116
Length of base of dorsal 79
Greatest height of clorsal 094
Distance from snont to amal 346
Length of base of anal 615
Height of longest ray 105
Length of middle candal rays 142
Length of outer caudal rays 185
Distance from snout to peetoral 295
Length of pectoral (right side) 128
Distance from shout to ventral 127
Length of nentral 057
Dorsal rays 101
Anal rays と5
Number of tubes in lateral line 93San Francisco, Ual., Mareh 1, 1880.

Boly rather elongate, deepest at the shouklers; the profile thence to the occipnt convex, the occipital and interorbital region considerably depressed; body tapering backwards from the shonlders into a short and slender candal pedumele.

Head small, thick, the snont blmont. Mouth rather large, little oblique, the lower jaw inchuled; maxillary slightly passing the vertical from the front of the orbit; premaxillary anteriorly on a level with the inferior margin of the pupil. Ere very large, its diameter abont one-third the length of the head; interorbital region very broad. Lower lip with a narow fremm, above which its margin is narrowly free.

Teeth large, in a single row, much as in Cymatogaster firenatus, but blunter, slightly compressed and truncate at tip, somewhat incisor-like, the edge, however, entire. Teeth few and distant, about $\frac{12}{8}$; none on the sides of the lower jaw. They are larger, blunter, and more wide-set than in Cymatogaster aggregatus.

Seales on the cheeks in three series below.
Gill-rakers small and weak, much as in Cymatogaster aggregatus, curred and apparently smooth.

Seales large, but rather smaller than in any of the related species, 50 in the course of the lateral line.

Spinous dorsal high; the first spine two-fifths the length of the highest; the sixth to tenth of nearly equal height, and higher than the soft rays. Anal fin with the base oblique and courex, the spines rather strong, more or less eurverl, as in Abcona.

304 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

Candal fin narrow, forked for more than half its length, the lobes rather pointed. Pectoral fins small, not reaching to the tips of the ventrals, which attain the anal.

Fin rays: D. X, 18; A. III, 20.
Color in alcohol silvery, strongly flushed with rose-red, darker abore. Top of head orange. Λ very distinct oblong chocolate-colored spot above the lateral line at the origin of the soft dorsal fin. Another much smaller one just below the end of the soft dorsal. Fins immaculate, slightly tinged with reddish. In life the color was silvery, with the rosy flush less distinct.

This species is known from a single specimen found by Mr. W. N. Lockington in the San Francisco market. A few others have since been obtained from sweep nets in deep water.

In its relations it is intermediate between the species which we have taken to be Brachyistius frenatus Gill and the common Cymatogaster aygregutus. The frenum of the lower lip is too little developed in the largescaled Embiotoroids (Abeona, Cymatogaster, "Brachyistius") to be used for generic distuction. Abeona is well set off by the tricuspid teeth, but the dentition of Cymatogastor and Brachyistius is essentially the same, the slightly more incisor-like form of the teeth in Brachyistius being scarcely definable as a generic character.

The numbers of fin rays do not afford very good generic characters, as will be seen by the following enumeration:

	Dorsal.		Anal.	
Cymatogaster aggregatus	IX,	20-21	III,	22-24
Brachyistins iosaceus.	X ,	18	III,	20
Brachyistius frenatus.	VIII,	15	III,	22
Abeona aurora	VIII,	17	III,	20
Sbcona minima	IX,	14	III,	16

We therefore prorisionally refer the present species, with Brachyistius frenatus, to the genus Cymatoyaster.

Table of measurements.

Extreme length	
Length to base of eaudal	100
Body:	
Greatest depth	40
Least depth of tail	113
Length of candal peduncle.	15
Head:	
Greatest length	30
Width of interorbital area	8
Leugth of suont.	$6 \frac{1}{2}$
Length of maxillary	$8 \frac{1}{3}$
Diameter of eje.	$10 \frac{1}{2}$
Dorsal:	
Length of lase.	50
Height of highest spine.	15
Height of lougest ray.	15

Anal:

Length of 1aise 21
Height of lougest ray !
Distance from rentrals 场
Candal:
Length of middle rays 1:
Length of onter ratys 2
Pectoral, leugtl $27 \frac{1}{2}$
Veutral, length 2:
Dorsal rays X, $1-$
Anal rays 111,20
scales $(1-51)-16$
San Francisco, Cal., Murch थ., Lsso.

Icichthys grur uov.
Allied to Icostrus Lockington, hat the boty lower and more chongate, not compressed at the bases of the vertical fins. Head moderate: ceres lateral; month terminal, little oblique, with small, sharp teeth in ont series, in the jaws only. Gill-openings very wide, contimons. fiillrakers long. Psendobranchise present. Branchiostegals T. Bonly rntirely sculy. Lateral line continnons. mmormerl. Bases of fins withont spimules.

Dorsal amd anal tins long amd low, composed of sot pays only: P'estoral tins moderate. Veutral fins small, thoracie, 1, 5. Pyloric coced about 6, large. Bones all very tlexible, curtilaginons.

The scaly body fully distinguishes this species foom Icostcus, with which singular getas its affinities are intimate, althongh the known species do not resemble cach other closely.
(Etymology: bew, to yield or submit: $\%$ yons, fish-in allusion to the tlexible skeleton.j

Icichthys lockingtoni wher.
Body oblong, moderately elongate, somewhat compressed, the caudal peduncle rather slender.

Fead moderate, compressed, with vertical cheeks, rather broad and slightly convex above, the snout aborntly descending, hence blantish in protike. Protile nearly straight from upper part of snont to the nape.

Month moderate, little oblispe, the slender maxillary scarcely widened at the tip, extending to rather below hee front of the pupil, the anterior edge of the premaxillary on the level of the lower rim of the ege. Lips thin. Tpper lip not potactile. Premaxillary tapering backwark, not forming the whole maryin of the !lyer jaw. Maxillary behint slipping motirely under the mombranous edge of the preorbital. Preorbital bather Proc. Niat. Mus. S0-20 - जer
wide, with one or two series of rather large, thin cecloid seales. These scales perhaps covered the cheeks also in life. It present no other seales are present on the head in the trpieal example. Lower jaw prominent, projecting in front, but included at the sides. Teeth in jaws only, minute, sharp, closely and evenly set, much as in Icosteus cenigmatious, but rather larger and less numerons.

Eyes large, lateral, longer than snout, their diameter contained about 4 times in the length of the head. Cheeks rather wide. Preoperele with a prominent crest, behind which are some radiating mucous cavities; the bone with a broant, prolonged, flexible membranaceous edge, covered with radiating strix, each of which ends in a slightly exserted flexible point. Opercle and subopercle rather large, extremely thin, and each crossed by mumerons conspienons radiating stria.

Gill-openings wide, not separated by an isthmens, the membranes not connectef. Pseudobranchie present. Branchiostegals 7. Gill-rakers long, slender, sharp, their length nearty three-fourths the diameter of the eye. They are rather close-set and moderately stiff. Gills 4, a slight slit behind the posterior gill.

No bony stay comnecting suborbital and preopercle.
Scales very small, apparently eycloid, soft and smooth to the touch, covering the body evenly, bat becoming smaller below. Lateral line nearly straight, apparently continnous, but not conspienous on the middle part of the body. It does not 1 min on the candal fin. There are on it uo traces of the spimes, so conspicuons in Icostens anigmaticus.

Scales (too small to be accmately comented) in about 120 transierse series.

Dorsal fin loug and low, beginning opposite a point nearly midway hetween the rent and the base of the ventrals; the mumber of rays 39 to 40 . All the rays are solt and articulated, and apparentiy all except the first are branched. The first rays are very low, the fin gradually rising posterionly, the highest about one-thind the length of the head. The base of the fin is somewhat sealy.

Anal fin cntirely similar, but shorter, begiming slightly in front of the middle of the body (withont caudal), and ending just in front of the last rays of the florsal; its rays about 28.

Candal broad, fan-shaped, on a slender pedmele; the accessory rays numerons and recurrent. The tin is broken, so that its ontline cannot be ascertained.

Pectorals ans in Icosteus, with the caral bones slightly exserted, as if pedunculate, the base a little below the axis of the body, the outline romder. The fin is short and small, its length less than that of the head.

Tentrals short and small, thoracic, phaced a little behind pectorals, with one obsolete spine and five soft rays, one of which is slighty filamentons. The fin is about one-thind the length of the head,

Fin rays not beset with spinnles.

Vint normal, immediately in fiont of the anal, withont papilla. Air-bladder apparently wanting. Pyloric coca about 6, rather long. Bones all soft and flexible, as in Icostens emigmations. The skin, however, not thick and tongh, as in the latter species, bot thin and scaled.

Coloration in spirits plain brown, lighter below; the skim somewhat punctulate.

Metsistrements of typical example.

The single example of this speries at present known was obtained in the market of San Francisco by Mr. IV. G. W. Harford, with two of the original types of Ienstens anigmations. It has been presented by the California deademy of sciences, for whom it was originally obtained, to the United States National Masenm. Its specitic distinctness from Icos. tens dnigmaticus was tirst moticed by Mr. Lockington, and we have seen fit to name the species for him, in recognition of his important work in Californian ichthyology.

The two sulecies are called "deep-water tish" loy the dealers.
As before noticed, the relations of this gemm are evidently with the assoriated genus Icostens, lant the two genera bear little resemblance to any form known to nis. They will probably constitnte a distinct family or subfamily, in the Trachiunid gronp.

This family (Icosteide) may be detined as follows:
Borly ohlong, compresised. Head moderate, marmed; the suborbital without bony stay. Mouth terminal, little oblique; the premaxilary not frotractile; the maxilhary slender. Teeth minute, sharp, erect, in ome series on the jaws ondy: No barbels. Gills 4 , a slit behind the fourth. (iill-openings wide; the membranes fire trom the isthmms. Gill-rakers slender. Branchiostegals 7.

Dorsal and amal fins long, withont spines. Candal fin, with mang recurent accessory rays, on a slender pedmele. Pectoral fins momeded, with the carpal bones slighty exserted. Ventral fins thematir. 1, , or 1, 4. Vent normal, withont anal papila. Psendobanchise present.

Skeleton imperfectly ossified, the bones flexible, so that the whole body is limp and destitute of firmuess.

The two genera may be thus compared:
Head and hody naked. covered with rather thick tor gh skin; lateral line and fin rays beset with spimules. Dorsal and anal rather ligh, the body at their bases closely compresser. Lorsal rass, 50 to 55 ; anal rays, 35 to 40 ; ventrals rather long, 1, 4 ... Icostev.s.
** Head partly and the hoorly wholly covered will small seales. Lateral line and fins rass smooth. Dorsal and anal fins low, their bases little compressed. Dorsal rays, 35 to 40 ; tual rays, 25 to 30 ; ventrals short, $\mathrm{I}, 5$. Icichthys.

San Francisco, Cal., Murch 12, 1880.

The following catalogue enumerates all the species of Humming Birds which are contained in the collection of the National Musemn, with the localities represented, the latter being in many cases additional to those given in standard text-books relating to this family of birds. The chief aim of the list is to show what species are wanted to complete the collection, and exchanges to this end are respectfolly solicited. Many of the species of the list are represented by an incomplete series of specimens, ofteu by a single skin only, and of these additional specimens are desirable, especially if from a locality not mentioned in the list. Such speries are indicated by an asterisk prefixed to the name.

The names ${ }^{1}$ and numbers correspond with those of Elliot"s "List of Deseribed Species of Humming Birds," pulblished by the Smithsonian Institution. ${ }^{2}$

* 1. Eutoxeres aquila (Bonrc.) Roich.

Veragna.

1. Rlamphodon mævius (Dumont) Reich.

Brazil.
(5. Glaucis hirsuta ((fimel.) Boic.

Costal Rica ; Trinidad; Grenada, W. I.; E. Peru (Pebas); Panama;
" Brazil".
10. Glaucis cervinicauda (Gould) Suls. \& Elliot.
E. Eenador (Rio Ňapo); Brazil?
11. Glaucis ruckeri (Botrre) (ionld.

Panama; Contar Rica. ${ }^{3}$
${ }^{1}$ A diw na nes are lame chaned in consermence of recent emendations:
${ }^{2}$ List of Described species of llnmaniug Dirds. By Daniel Girand Elliot. Reprinted hom a Smopnis wi' the Trochilide in the Smi hsonian Contributions to Kowledge.
 No. :334.)
${ }^{3}$ Including the roype of ${ }^{\prime}$ (i, anca Lawr.
＊13．Phreoptila sordicta Gould．
S．Mexico（Oaxilea）．
＊16．Plaæthornis yaruqui（Boure．）（ionld．
Eenator．
18．Phrethornis emilize（Bome．）Bonaty，
Gostar Lica；Colombia．
＊19．Plææthornis augusti（Bonte．）Bunap．
Venezucla．
＊ 20 ．Phrethornis pretrii lass． Brazil．
${ }^{*}$ ®1．Phæthornis superciliosus（ Limn ．）Swains． Balia．
De．Phæthornis longirostris（Less．）Calhan．© Huin．
Mexico；Guatemala：Colombia（Tmbo）；Pamama；Ph．Paru（Pobas）；${ }^{2}$
（＇hiricqui．
＊23．Phæthornis hispidus（fonld）（itaş．
E．Ecuador（Rio Nitpo）．
＊2．4．Plaæthornis symatophorus Gould．
Quito．
＊饮，Phæthomis anthophilus（Bomre）（iray \＆Mitch．
＂Bogota＂．
＊2G．Phæthornis eurynome（Less．）（iran．
Brazil．
＊27．Phæethomis squalidus（Temm．）Bonap．
Southern Brazil；Rio Negro．
＂28．Phrethornis longuemareus（Less．）Gray．
Trinidad ；＂Brazil＂．
29．Phæthornis adolphi（xould．
Gnatemala；Costal Rica；Panama：NゃW \＆irenada（Turko）．
＊30．Phæthornis griseigularis fould．
Colombia．
＊31．Phæthormis striigularis（fould．
Colombia．
：3f．Eupetomena macroura（fimel．）Bonap．
Brazil（Bahia）．
＊37．Eupetomena hirundo Gould．
Bolivis．
38．Sphenoproctus pampa（Less．）（iould．
Guatemala．
＊39．Splenoproctus curvipennis（Licht．）Gonld．
E．Mexico（Mirador）．

[^29]* 40. Campylopterus largipemis (Bowl.) Cah. \& Hein.

Cayemne.

* 42. Campylopterus rufus Less.
(xuatemala (Dneñas; Gnatemala City).
* 41. Campylopterus obscurus (ionld.
L. Peru (Pebas).

44. Campylopterus lazulus (Bomatt.) Ponap.

Colombia; W. Peru.
45. Campylopterus hemileucurus (Licht.) Cab. \& Heill.
E. Mexico (.Jalapa); IIonduras; Veragua; (inatemala; Costa Rica.

* 46. Campylopterus ensipennis (Swains.) Lest.

Tobago.

* 4i. Campylopterus villavicencio (Bomre.) Gonkl.

Rio Napo.

* 50. Campylopterus roberti (Salvin) Conld.

Guatemala (Choctum, Vera Paz).
*5?. Aphantochroa cirrochloris (Vieill.) Gonld.
Brazil.
54. Creligena clemencir Lass.
E. Mexico (Mirador).

* \% . Creligena henrici (Lens.) Cal. \& Hein. (iuatemala.

56. Cæligena viridipallens Bomre. \& Muls.

Guatemala (Coban, Vera Paz; Guatemala City); "Mexico".

* 57. Cæligena hemileuca (Salvin) Elliot.

Costa Rica.
58. Lamprolæma rhami (Less.) Reich.
E. Mexico (Orizaba and Mirador); (inatemala (finatomala City).
59. Orcopyra calolæma Salvin.

Costa Rica.

* 60. Oreopyra lencaspis Gould.

Chiriqui.
92. Oreotrochilus jrichincha (Bourc. \& Muls.) Bp.

Pichincha.

* 63. Oreotrochilus chimborazo (Delattr.) Gould.

Chimborazo.

* 64. Oreotrochilus estellæ (D'Orb. \& Lafr.) Gould.

Bolivia (La Paz).

* 65. Oreotrochilus Ieucopleurus Gonld.

Chili (Valle del Yero).
ii*. Lampornis violicauda (Bodd.) Elliot.
"Florirla"; ${ }^{1}$ Brazil (Bahia); Guiana; Veneznela; I'anama.; Folombia (Bogota and Cartagena) ; E. Peru (Pebas); Trinidad; Demerara.

[^30]69. Lampornis mango (Limn.) Gosse.

Jamaica.
70. Lampornis prevosti (Less.) Cunld.

Mexico ('Tehuantepere).
71. Lampornis viridis (Amul. A. Vicill.) (Gonld.

Porto Rico.
*i3. Lampornis gramineus (imel.) (ionld.
Ghiana.
i5. Lanupornis dominicus (linn.) Elliot.
St. Thomas; Haiti ; Porto Rico.
7(6. Eulampis holosericeus (Lim.) Gonld.
St. Thomas; Martinique; Dominica; Antigua; Gualelonpe; St.
Vincent; Cremada; Barbuda; Tobago; St. Bartholomew, and Barba
sloes.
77. Eulampis jugularis (Linn.) (rould.

Martinifue; Dominical Gmbleloupe, and St. Vinuent.
72. Lafresmaya flavicaudata (Fraser) Bonap.

Colombia (Bogota aml Popryan).

* 79 . Lafresnaya gayi (Boure. \& Muls.) Bp.

Ecuador (Quito).
co. Chalybura buffoni (Less.) Reirl.
Venezuela (Lagnayra): Colombia; Panama.

* ©o. Chalybura isauræ (Gould) Salv.

Veragua; Costa Rica.
8\%3. Chalybura melanorrhoa Salvin.
Costa Rica.

* 84. Chalybura cæruleiventris (Reich.) Cab. \& Hein.

Colombia (Bogota).
E.). Florisuga mellivora (Limn.) Bonap.

Guatemala; Bogota; L. Peru; Tobago; Guiana (Domain:ı) Brana-
dor (Quito); Tres Marias, W. Mexico! [?]
86. Florisuga fusca (Vieill.) Reiclı.

Brazil (Bahia).
-7. Petasophora anais (Less.) Gouht.
('olombia; Eenador ((n ito and Puna I.) ; Bolivia! (L.a l'ı\%).
88. Petasophora thalassina (Swains.) Gonld.

Mexico (Jalapa and Tres Marias); Guatemala (V. Ne Vinego, 市, (1) ft., aud Cuatamala City).
89. Petasophora cyanotis (Bomr.) Gomld.

Costa Riea; Veragua; Colombia.

* 92. Petasophora serrirostris (Vieill.) lomalp.

Brazil.
9.). Petasophora delphinæ (Less.) Bonaly.

Trinidad; Colombia; Cinatemala (Cohan, Vera Paz).

* 94. Panoplites jardini (Bonre.) Contd.

Echador (Quito).
9.5. Panoplites flavescens (Lidd.) Fomld.

Colombia (Bogota).
-96. Panoplites matthewsi (Bowre.) (ionld.
E. Echador (Rio Napo) ; E. Peru (Pelas).
(17. Plıæolæma rubinoides (Bomre.) Reich.

C'olombia.
99. Clytolæma rubinea (Cruel.) (roukd.

Brazil.

* 100. Clytolæma aurescens Gould.
E. Peru (Pebas).
* 103. Iolæma frontalis (Lawr.) Gould.
L. Perll (Pehas).
${ }^{*} 106$. Eugenes fulgens (Swans.) Could.
Arizona; E. Mexico; Guatemala.

107. Eugenes spectabilis (Lawr.) Muls.

Costa Rica.

* 109. Engenia imperatrix Cionld.

Ecuador (Quito).
111. Heliodoxa jacula (iould.

Costa Rica; Veragna: Colombia.

* 112. Heliodoxa jamesoni (bourr.) Gould.

Ecuador (Quito); Bogota.
113. Heliodoxa leadbeateri (Bourc.) fiould.

Colombia ; "Rio".

* 114. Pterophanes temmincki (Boiss.) Gould.

Bogota; Quito.

* 115. Patagona gigas (Vicill.) Gray. Quito; Chili ; Pern (near Urubambir).

116. Docimastes ensiferus (Boiss.) Conlı.

Eemador (Quito): Bogota.
190). Helianthea typica (Less.) (imuld.

Colombia.
121. Helianthea bonapartii (Boiss.) Could.

Colombia.

* 123. Helianthea lutitire (Delatts. \& Bourc.) (iomld.

Colombia (Popayan); Quito.

* 130. Bourcieria fulgidigula Gould.

Ecuador (Quito).
131. Bourcieria torquata (Boiss.) Could.

Colombia (Bogota).

* 183. Bourcieria wilsoni (DClattr. \& Boure.) Bp. Emador (Quito).
* 1:36. Bourcieria pronelli (Bomr . © Muls.) Bp. Colombia (Bogota).
* 1:\% . Bourcieria caeligena (1,ess.) Elliot.

Ibogota (!).

* lis. Bourcieria columbiana Elliot.
('olombia (Bowota).
* 140. Hemistephania johamme (Bourc.) Reich.
('olombiar (Bogota).
* 141. Hemistephania Indoviciæe (Bonrr. dl Muis.) Rrich.

Colombia (Boget:).

* 14:. Hemistephania rectirostris (Gonlil) Elliot.

E(•nador.

* 144. Hemistephania veraguensis (A゙alv.) Elliot. (Gosta Rica.
145.) Floricola longirostris (Vieill.) Elliot.

Mexico (Chiapas): Gnatemala (Dmeñas); Costa Rica; Panama; 'rimidad.
147. Floricola constanti (Delattr.) Elliot. Costa Rica; (rmatemala; San Salvamor; Chiapas: Mazatlan.

* 148 . Floticola leocadiæ (Bourc.) Elliot.

Mexico (Tehmantepec, Acapulco, and Mazatlan).

* 149. Lepidolarynx mesoleucus (Temm.) Reich.

Brazil.
150. Heliomaster furcifer (Shaw) Eliot.

Brazil; Buenos Ayres (Conchitas).
15\%. Heliotrypha exortis (Fras.) Elliot. Colombia (Bogotia).
15.). Heliangelus clarissæ (De Long.) Bp. Colombia (Bogota).

* 156. Heliangelus strophianus (Fomld) Bp. Eenador (?nito).
* 161. Urosticte benjamini (Bourc.) Gould. E(cuallor (Pnito and Nanegal).
16\%. Eustephanus galeritus (Mol.) Reich. Chili (Santiago).
* 16\%. Topaza pella (Limn.) Gray. Cayenne: Demexara.
10i\%. Aithurus polytmus (Limn.) (:nJ. \& Hein. Jamaica.

169. Thalurania glancopis (Cimel.) Gouk. Brazil (Kio and Bahia); "Tres Marias Islands" \mid ??!\}.
170. Thalurania columbica (Boure. \& Muls.) Gonld.

Costa Riua; Vrragua; I'anama: Colombia.

* 171. Thalurania furcata (Cimel.) Gould. Gniana (Demelasa) ; 'rimidad.
* 17\%. Thalurania nigrofasciata (Could) Bp. Eruador (Quito) ; E. Peru (head Luallaga R.) ; Upper Amazons :
* 17%. Thalurania eriphile (Less.) Ip,

Brazil (Rio (xrande (lo Sul); Ecuador (buito).

* 179. Thalurania bicolor (Gmel.) Elliot.

Dominica.
1-0. Mellisuga minima (Lim.) Pp.
Tamaica; St. Domingo; Haiti (Pt. an Prince).

* 15\%. Microchera parvirostris Lawr.

Costa Rica (Alugostma).
l $\times 3$. Trochilus colubris Limn.
Eastern North America (numerons loalities); Mexion; (xhatemala; Costa Rica: Vemgraa.
144. Trochilus alexandri Bourc. \& Muls.

Califormia; Nevada; Utah; New Mexior) Arizonal.

* 18.5. Calypte costre (Bourc.) Gomll.

Guatemala; W. Mexico (Mazatlan) ; s. California (Ft. Teion); ('ape St. Lncas; Arizona.
186. Calypte amæ (Less.) Gomild.

California; Arizona.

* 1z\%. Calypte helenæ (Lemb.) Gould.
('uba.
1-9. Selasphorus platycercus (Swains.) H1.
Ghatemala; Mexicu (Mirador); Arizona; New Mexien; 'olomalo; Utalı; E. Nevada; Wyoming (Ft. Bridger).
${ }^{7}$ 190. Selasphorus ardens Šalvin.
Costa Rica.

192. Selasphorus alleni Henshaw. ${ }^{1}$

Califormia (coast-region, Santa Cmy to Nicasio).
194. Selasphorus rufus (Gumel.) And. ${ }^{2}$

Columbia T., Oregon (3 specimens, types of Audubons works!);
Sitka, Alaska; Ft. Steilacoom, Washington Torr.; Dakota; Novala; California; Colorado; Itaho; Arizona; New Mexico ; Texas (El I'aso); table-lands of Mexico, sontle to Minador.
193. Selasphorus scintilla Gould.

Costa Rica; Veragua.
*197. Atthis heloisæ (Less.) Reich.
E. Mexico.

* 198. Atthis ellioti Ridgw.

Guatemala.
199. Stellula calliope Gould.

New Mexico; Arizona; Califormia (Ft. Teion, Ft. ('romk. Honey Lake, \&e.) ; Nevarla; Montana (Ft. Ellis).

* 202. Heliactin cornuta (Max.) Boic.

Brazil.
*204. Calothorax lucifer (Swains.) Gras.
E. Mexico (Mirador) ; Arizona.
*205. Acestrura mulsanti (Bonwe.) (ionld.
Echador (Quito).
*207. Acestrura heliodori (13une.) Gould.
Colombia (Bogota).
213. Doricha enicura (Vicill.) Reich.
(inatemala (Cohan and Gmatemala City).
214. Doricha elizæ (Less. d Delattr.) Comll.

Jalapa; Mirador; Merida; Yncatan.
*215. Doricha bryantæ Lawr.
Costa Rical Veragua?

* 216. Doricha evelynæ (Bourc.) Gould.

Bahamas (Nassau, New Providence).
217. Doricha lymura Gonld.

Bahamas (Hagua).
*21~. Myrtis fanny (Less.) Reich.
Reuador (Quito).
220. Tilmatura duponti (Less.) Cah. © Hein.

Guatemala.
293. Calliphlox amethystina (Gruel.) Reicll.

Triniclad ; Brazil.

* 225. Lophomis stictolophus Nills. id Elliot.

Colombia (Bogota).

* 226. Lophomis delattrii (Less.) Gonld.

Panama; Veragua?
*2ne. Lophornis ornatus (Bodd.) (ionld.
" Brazil"; Trinidad.
*230. Lophornis magnificus (Vieill.) Gonld.
Brazil.
231. Lophornis helenæ (Delattr.) Reich.
"Mexico"; Guatemala.
*233. Lophornis verreauxi (Boure.) Reieli.
E. Peru (Pebas).
*234. Lophornis chalybea (Vicill.) Bl.
Brazil.
*235. Popelaria' tricholopha Reich.
Colombia.
*236. Popelaria langstorff (Bourc. \& Vieill.) Thilgw.
Brazil ; E. Pern (Pebas).
*2:\% Popelaria conversi (Bonre. \& Muls.) Rilgw.
Costa Rica.
340. Steganura underwoodi (Less.) Reich.

Colombia (Bogota).
*241. Steganura melananthera (Jart.) Reich.
Ecuador (Quito).
217. Lesbia gouldi (Lodd.) Reich.

Colombia (Bogota).

[^31]250. Lesbia amaryllis (Bomre.) Reich.
(Colombia (Rogota) ; Eenallor (Quito).
253. Cynanthus forficatus (Linn.) Bp.

Bogota; Ruito.
*259. Oxypogon guerini (Boiss.) Ciontel.
Colombia.

* 261. Rhamphomicron olivaceus Lawr.

Bolivia (La Paz).
262. Rhamphomicron heteropogon (Boiss.) Bp.

Colombia (Bogota).
*263. Rhamplomicron herrani (Delatts. \& Bourc.) Fiould.
Ecuador (Quito).
*264. Rhamphomicron stanleyi (Boure. © Muls.) (iomld.
Bolivia (La Paz).
266. Rhamphomicron microrhynchum (Boiss.) Bp.

Bogota; Quito.

* 268 . Avocettula recurvirostris Swains.

Guiana.
276. Metallura tyrianthina (Lodd.) Bp.

Bogota; Quito.

* 2i8. Chrysuronia humbolati (Buure. \& Muls.) Reich.

Buenaventura, Ist. Panama. ${ }^{1}$

* Q79. Chrysuronia ænone (Less.) Sp1. Colombia.
* ¿80. Chrysuronia josephinæ (Boure \& Mnls.) Reick.
E. Pern (Pebas).
* 281. Chrysuronia eliciæ (Bourc. \& Muls.) B1 . Guatemala (Masagua, Pacific coast).

282. Chrysuronia chrysura (Less.) Bp.

Brazil ; Arqentine Repnblic (Conchitas).

* D87. Schistes geoffroyi (Bourc. \& Muls.) Gould.

Bogota.
288. Heliothrix auritus (Gmel.) Boie.

Brazil; Colombia (Bogota).

* 289. Heliothrix auriculatus (Licht.) Gray.

Brazil.
290. Heliothrix barroti (lBonre.) Gray.

Guatemala; Costa Rica; Veragua; Pinama.
991. Chrysolampis moschitus (Lim.) Boie.

Tobago; Trinidad; Brazil (Rio Janciro and Bahia); Colombial (Bo gota and Cartagena).
292. Bellona cxistata (Linn.) Muls.

Grenada; St. Vincent; Barbadoes; "Venezuela"."
[292a.] Bellona ornata (Gould) Ridgw.
St. Vincent.

[^32]293. Bellona exilis (Gm.) Muk.
 buda; Lorto Rico: St. Bartholomew.

* ! ! 4. Cephalolepis delalandi (li, ill.) Lodd.

Brazil (Tio Gratule do Sul).
": DJ. Cephalolepis loddigesi (Gould) Ik.
brazil.
299. Adelomyia melanogenys (Fizt.) (ionld.

Bogota; Quito.
301. Abeillia typica Bonap.

Guatemala.
30%. Klais guimeti (Bourc. © Muls.) Reich.
Costal Rica; Veragua; Colombia.
:303. Aglæactis cupripemis (Lowre. \& Muls.) Bp.
Colombia; Ecuador (Quito).

* 304. Aglæactis camatonota (Gould) 1'p).

Peru (Matara, prov. Ayacucho).'
*307. Eriocnemis derbiana (Delattr. © Bontr", Bp.
Ecuador (Quito).
309. Eriocnemis aureliæe (Boure. \&. Muls.) Reich.

Colombia (Bogota).
*:311. Eriocnemis lugens Goukd.
Ecuarlor ((Quito).
*:31\%. Eriocnemis alinæ (Bour".) Rinith.
Colombia.

* 315. Eriocnemis lnciani (butre.) Reich.

Ecuador (Quito).
316. Eriocnemis cupreiventris (Fras.) Reich.

Colombia (Bogota).
$: 3: 0$. Eriocnemis vestita (Lougnem.) Reieh.
Colombia (Bogota).

* 3 d. Panterpe insignis Cab, id Hein.

Costa Rica.
*:25. Uranomitra quadricolor (Vicill.) Reich.
Orizaba: Mazatlan.

* : We (i. Uranomitra violiceps (Grould) Cath. A Hpin.

Mexico (Orizalba and Mazatlan).
: : 27 . Uranomitra viridifrons Elliot.
S. Mexico (Trhuantepec).
:2s. Uranomitra cyanocephala (Less.) Reich.
Mexico (Mirarlor, Tehuanterere, Chiapas, Tres Marias); (imatemalat (Vexa l'az).
330. Uranomitra franciæ (Bonre.) Fivich.

Colombia (Bognta).

* 33.2. Leucippus chionogaster (I'schudi) Gould.

Bolivial Lal Paz).
"3:3:3. Leucippus chlorocercus (iould.
L. Perll (Pebas).
334. Leucochloris albicollis Vieill.

Brazil.
*335. Agyrtria niveipectus Catb. d Hein.
Trinidad.

* :3:36. Agyrtria lencogaster (Gmel.) Reich.

Brazil (Balha).

* 3:38. Agyrtria milleri (Bome.) Reich.

Colombia.
:339. Agydtria candida (Bourc. \& Muls.) C'ab. di Hein.
s. Mexico (Tehuantepec) ; Guatemala.
:34. Agyrtria brevirostris (Less.) Reich.
Brazil (Lio Grande do Sul).
347. Agyrtria tephrocephala (Tieill.) Elliot.

Brazil; Surinam.

* 349. Agyrtria fluviatilis (fiould) Heinc.
E. Ecuador (Rio Napo).
* 356. Eivira cupreiceps (Lawr.) Muls.

Costa Rica.

* 357. Elvira chionura (Gould) Muls.

Costa Rica (Dota).

* 355. Callipharus nigriventris (Lawr.) Llliot.

Costa Rica.

* 360. Eupherusa eximia (b)lattr.) (imuld.

Guatemala.
*361. Eupherusa egregia sicl. © Nalv.
Costa Rica.

Trinidarl ; Venczuela; Bogota!
363. Polytmus viridissimus (Vieill.) Rlliot.

Guiana; Surinam?

* :bs. Amazilia dumerili (Less.) lyp.

Eenarlor (Puma I., (illayadail).
369. Amazilia cimnamomea (Less.) Elliot.

Yucatan; Nicaragua; Tchuanterec; Mazatlan; Sin salvador.

* 380. Auazilia graysoni Latwr.
W. Mexico (Tres Marias Lslands).
* 371. Amazilia yucatanenses (Cabot) Gionhl.

Mexico (Jalapa); S. Texas (Ft. Browu).
352. Amazilia fuscicandata (Fras.) Ridgw.
S. Mexico (Cordova and Tehnantepec) ; S. Texats (Ft. Brown) ; fratemala; Nicaüagua: Costa Rica; Colombia; Ecuador (Gnayaquil).

* 373. Amazilia viridiventris (Reiclı.) Ellion.
(olombia (Bogota).

375. Amazilia berylina (lirltt.) (ionld.

Mexico (dalapa); (thatemala,
*37(\%. Amazilia edwardi (Del. \& Bomre.) In). I'anallas.

* 3ั̃\%. Amazilia niveiventris (Gould) Ellinh.

Costa Rica.

* 3i8. Amazilia mariæ (Bourc.) Elliot.

Ginatemela.
*39. Amazilia cyanura (ionld.
Guatemala (Pacific side) ; Realejo.
3*\%. Amazilia erythronota (Luss.) Ellint.
Tobago ; Trinidad.
884. Amazilia sophiæ (Boure, of Muls.) Bp.

Costa Kica; Niearagua.
387. Amazilia cyanifrons (Boure.) Elliot.

Colombia (llogota).
${ }^{*}{ }^{1} 3 \times 4$. Basilinna leucotis (Vocill.) Boic.
Mexion (Jalapa, Mirador, and Mazatlan); Gmatemalad (Chilaseo, Verat Paz).

* 390. Basilimea xantusi (Lawr.) Elliot.

Cape St. Lucas.
:39. Eucephala grayi (1)cl. \& Bourc.) R゙ch.
Ecuador (Quito).
397. Eucephala cærulea (I ieill.) (fould.

Trinidad; (iuiana; Demerara; Bahia.

* [0]. Juliamyia typica Bonap.

P'anama; Bogota; Turbo.

* 402. Juliamyia feliciana (Less.) Gould.

Eeuador (Guayaquil); Bogota!
403. Damophila amabilis ((imuld) Reich.

Costa Rica; Panama; Bogota; Turbo.

* 404. Iache latirostris (Swains.) Ehliot.
W. Mexico (Colimat, Mazatlan, and Tres Marias); Mrizona,
* 406. Iache doubledayi (Boure.) Elliot.

Tchuanteper (Chiluitau).
40e. Hylocharis sapphiria (Gum.) Gray
Brazil (Bahia and Lio Grande do Sinl) ; Demerana.
109. Hylocharis cyanea (Vicill.) Gray.

Brazil (Bahia and Rio Grande do Sul); Surinam.
410. Cyanophaia creruleigularis (Gould) Elliot.

Panama; C'artagena; "Centr. Am."
411. Cyanophaia goudoti (Bourc.) Ellion.

Colomhiar (Bosenta).

* 41%. Cyanophaia luminosa (Lawr.) Elliot.
(Colombia (Cartagena).
* 411. Sporadinus elegans (Vicill.) Bp).

St. Domingo.
415. Sporadinus ricordi (tierv.) Lp.

Cubar.

* 416. Sporadinus maugæi (Vieill.) 11p.

Porto Rico.
41s. Chlorostilbon caniveti (Less.) Bp.
Mexico (Mirador, Jalapa, and Tehmantepec); Yucatan (Merida); Guatemala; Costa Rica.
419. Chlorostilbon pucherani (Boure. de Mnls.) Ell.

Sontheastern Brazil (Rio Grande do Sul) ; IV. Mexico (Tres Marias) [???]. ${ }^{1}$
120. Chlorostilbon splendidus (Vieill.) Elliot.

Buenos Ayres (Conchitas) ; Paraguay (Rio I'arana).
421. Chlorostilbon haberlini (Reich.) Cal, \& Hein.

Colombia (Bogota).
42z. Chlorostilbon angustipennis (lras.) (xould.
Costa Rica (Cartago); Panana; Quito; E. Leru (Pebas).
423. Chlorostilbon atala (Less.) Giould.

Trinidad.
*2 425. Panychlora poortmani Boure.
Colombia (Bogota). .

* 42\%. Panychlora stenura Cab de Hem.
"New Granada."

Alied to Ditrema (Phanerodon) furcatum. Body unsmally elomgate, slenderer than in Ditrema furcatum, tapering into a long and slender caudal peduncle. Back little elevated. Protile slightly depressed above the eyes, the snont rather projecting.

Head small, triangular in profile, the snout rather acute. Month small, oblique, the maxilary not reaching the front of the eye. Premaxillary anteriorly rather above the level of the lower edge of the mpil. Lower jaw slightly included in the closed month. Teeth smaller and fewer in number than in I. furcutnm, conical, in one series, $\frac{8}{6}$ or less in number (about $\frac{15}{12}$ in D. furcatum).

Eye moderate, about as long as snont, $3!2$ in length of head. Luter-

[^33]2 Females wanted.
orbital spate strongly comvex transpersely. Cheeks with three rows of seales.
(Xill-fakers rather small, hut longer anall stronger than in 7). fierectum. the longest about one-thind the diamerer of the orbit.

Scales momerate, arerasing rather smaller than in I). furcotum, abont $5-7(0-13$.

Spinous dotsal romparatively low, the tirst spine short, the others fapially incrasing to the tifth, after which the others are nearly of equal length, but gradually incrasinge to the last. The fiast soft ray is a little bigher than the highest spine. The other soft rats are grahnally shotened.

The camdal fin is deeply forked, the bobes being about equal. In I). fiucotum the upper lobe is evidently the longer. Anal tin low, its spines moxerately developed. Pectoralis not reachinge to the tips of the "romtrals, which scareely tall short of the first anal spine.

Fin maxs: D. 1 , 23 ; 1. 11t. $\because 9$.
Coloration light dusky olive abowe silves below, with pearly reilestions. Scales abore the axis of the body each with a golden-red spot at base, the outer margin of the seales tinged with light bhe. These spots fade in alcohol. lont arr comspiemons in life, forming redrish streaks along the rows of sables.

Membrane of dorsal, anal, and ventral tims light olise-green. Traces of a dark shade on upper part of dirst rays of solt dorsal. No black at base of torsal. A distinet black bloteh on "1p]er thind of first eightmyss of the anal. I entruls broudly tipued with reddlish black, as in Hypurproropon "rgentens. Pectorals and eambal entirely plain, the black edo. ing to the latter fin, charactaristic of I). forentum, being entirely wanting. Premaxillaris aml end of smont distinetly dusky. inis silvery, rededish above.
 silvery, the scales with bright rethections, but without distinct red markings. The sides are more silvery than in I). "tipers, and there are more black pmotalations. The maked portion of the base of the soft domal is black. There is no dark shate on the verotrals, and the "athdal is thistincty mareined with hatek hehind. The dark anal spot is similan in the two species, but it is sometimes wantiner in I). furctum.
 biotoce adgyensomen (ibiarl), if distinet from Diterma furcutrm, is mknown to ws. It differs, acoorling to (irard, in having the anal III, 21 , but the topes had been mutilated and this count mal. perhaps, be monneous.

Mcaswements of Ditrema furctum and Ditremu utripes in 100ths of length to base of caudal fin.

The present species was described from two specimens, similar in size, obtained in the Sau Francisco market, and probably canght in Monterey Bay. Later, about 200 others were obtained at Monterey and Santa Cruz, but the species has not yet been noticed eisewhere on the coast.

We refer this species for the present to the genus Ditrema, of which Phancrodon Girard is cousidered by us a synonym.

We hare not seen the Japauese trpe of the genus, Ditrema temminchi, but in external characters at least it agrees with Phanerodon.

San Fravcisco, Cal., March 14, 1880.

Allied to Sebastichtliys nebulosus and more remotely to Sebastichthys vexillaris. Body oblong, moderately robust, the profile with a regular but not very steep slope. Nouth moderate, nearly horizontal, the jaws equal when closed, the upper jaw somewhat emarginate. Maxillary reaching to near the posterior border of the eye; premaxillary in front below the levol of the eye. Preorbital molerate, its neck about onethird the width of the large eye, with an augnlar lobe.

Spinons ridges on the top of the head rather prominent, much as in nebulosus, but lower, a little less depressed than in rexillaris. The forlowing pairs are present: Nasal, preocular, supraocular, tympanic, amsl oceipital, tive in all. The nasal spines are rery strong. The preocmian and supraocular are broad and sharl. The trmpanic spines are smallew than in related species. The occipital ridges are short and comparatively weak, the point rather depressed.

Preoperenlar spines resy short, int all distinct. the upper one broad, the second longest and most acute. Opercular spines large, the upper very long and strong. Bhmtish ipines on subpercle and iuteroperde. Two sapmacapular spince. Interorhital space mather deeply and somewhat evenly concare, with a mather deep pit anterionls.

Gill-akers ahout $10+20$, stont, moderately long, rather longer than in nebulosus, somewhat clavate, the longest about eqnal to the diameter of the pupil.

Scales moderate. rough, in about mamserserows. Aceessory scales developed.

Dorsal spines very high and strong, the fouth spine highest, usually more than half the length of the head, the last spines low, so that the tiu is deeply emarginated.
The mombrane of the spinous dorsal is rery deeply incised, more than half the anterion elge of each of the middle spines heing above the membrane; even four-fifths of the length of the highest spime is sometimes free anterionly. This is sulject to some varations, but in all cases the bare portion of the spines is mach higher than in other speries. Soft dorsal high, but lower than spinons dorsal. Candal trancate.

Anal fin rather low, the spines short. Second anal spine a little higher than the third, not two-thirds the height of the soft rays.
D. XIII, 12: A. III, 7.

Pectoral fins extremely broad and rounded, as in s. rastrelliyer, tise tips reaching beyond the tips of the rentrals, but not to the rent. The base of the fin is greater than the diameter of the eye and about twice the length of the occipital ridge. In hoth sexes the lower rays are thickened and fleshy.

Prevailing color a warm brownish yellow, sometimes quite yellow om the siles and below, the back sometimes considerably olive, sometimes reddish tinged. Sides of head, front of back, and thoracic region msually most distinctly jellow. The coloration mottled and clonded, but without distinct markiugs except the small spots with which the anterion region is closely cormed. They are smallest and most distinct on the thoracic and scapular region. Here they are of a clear orange-brown color. On the top of the haad they become more orange, and on the anterior part of the back they become larger and of a bright clear oranye. Posteriorly they blend with the gromed celor. Top of head with dusky cross-shades. Sclerotic coat of cye spotted above with orange.

Fins all with the membranes slaty black; the pectorals and dorsal
paler at base and spotted with reddish. Membrane of the third dorsal spine seareely paler than that of the secoud. There are no other traces of the light areas found in nebulosus and fesciolaris. There are usually traces of hownish slades radjating fiom the ere and alternating with yellowish areat.
This species is not rare in the San Francisco markets. The specimens from which the above deseription was taken, four in number, were obtained in the neighborhood of the Farallones. It is frequently taken in deep water in Monterey Bay and in the Straits of Fnea; it is very abundant, reakhing a large size. It is one of the larger species, agreeing in size and appearance with S. vexillaris. lits relations are, however, more nearly with S. nclulosus, and it forms a transition trom the brown to the red series.

Table of measurcments.

Length to base of caurlal $=100$
Body:
Greatest height 37.5
Least height of tail 11.8
Head:
Greatest length 38.5
Leugth of occipital ridges 6. 3
Length of supraocular ridges 4.:3
Lengtlu of preocular ridges 2. 2
Interorbital width 7.9
Length of snont 9. :
Length of gill-rakers :3.5
Length of maxillary 19.5
Diameter of orbit 10.5
Dorsal:
Longest spine 23
Longest ray 17.5
Least height of membrane between third and fourth spines. 4.5
Anal:
Second spine 12.3
Third spine 12
Longent ras 18
Caudal, length 17
Pectoral:
Leugth 25
Width of base 11
Ventral, leneth 222
Dorsal XIII, 12
Anal III, 6
Lateral line (rows of seales) 47
Extreme length, in inches 15.45
Length to base of eaudal, in inches 13.1
san Franerson, Cat., March 15, 1880.

Ey W. N. LOCHE日GTON.

In the review of the I'lemencetide of San Frane"iseo (l'roc. U. S. Nat.
 is described as identical with the Platichthys, umboswes of (xinard (Pac. Rail. Rep., x, 149, 185\%). At the epoch when this (leseription was written, as well as on previous oroasions when a (ompharison was instituted between this suecies and the descripetion of (ximard abore referted to, several discrepancies were noted, get it was not supposed possible that that anthor hat redeseribed one of Dr. Ayresis speriess whent the deseription of the latter was acepssible to bim.

Such, howerer, as first pointed ont by Dr. Gill, furns ont to be the Gase, and Plutichthys mmbrosus ((irde) must sink into a synonym of Lequitopsette bilineate (Ayres), white the form drectibed hy we as L. umbrost needs renaming.

The syonymy of the two sjecerpes will be as follows:

Lepidopsetta bilineata.

> Platessa bilineatu Ayres, l'xoc. L'al. Acad. Nat. Sed., i, 40.
> Platichthys umbrosus (ird., l'ac. Rail. Rep., x, [855-07, 149.
> Lepidopsetta bilinentu (itll, Proc. Plhil. Acad. Nat. Sci.
> Lepidopsetta umbrosa (iill. 1’roe. Phil. Acad. Nat. Sci.
> Lepidopsetta bilincata Lockn., Proce. IT. A. Aat. Mins. 1879, 10:3.

Lepidopsetta isolepis sp. unt.
Lepidopse'ta ambroser Lockn., l'voc. I'. S. Nat. Mrus. 1-79, 106.
This species is not closely related to l. bilineutr. Its ctenoid seales, almost uniform orer the head and bodr, its mearly straight lateral line, its smaller eres, with a hroader, flattish interornital ware as mell as the differences in the form and the momber of fin rass. completely distinguish L. isolepis from L. bilinertu.

Typiral examples are in the Unitel states National Annseum.

ESY IDAVHD A. JCRETSN.

During the intancy of the ('alifinnia deademy of Sefences the reports of its proceedings ware pololished in the leaily Plarr Times and Than-

 fishes from the Wim Frandiseo matkets, by Dr. WV. R'. Gibbons and The W. O. Ayres. The deseriphions of Dre (ibobons were suon atter rephot.
lished in the l'mecedings of the Academy of Natinal Sciences of Philadelphia (15.5), and identifications of them have been carefully made by Alexamber Agassiz (Proc. Bostom Soc. Nat. Mist., 1851, 12:2). By this means the names given by Dr. (fibbons have taken their proper places in syouryus.

The demerptions published by lor. Ayres hare, on the contrary, not been noticed, so far as 1 know, by any subsecpent anthor, not eren by Dr. Ayees himself, who soon after redeseribed the same species as nem, apparently not considering the first publication as a sufficient one, as one species at least received a new mame on the second deseription.
The following are the species in question:

1. Lernciscuts gibbosies Ayres.

Stouter and thicker than ans previonsly described specit's of the genus. Month small. Ahout to sealos in the lateral line. Brown abore; silvery below. Weight about a pomal. (Daily Placer Tmmes and Transcript, issme of May 30, 1854.)

This description is not very explicit, bnt we are to remember that the species was described from the fish market of Sim Francisco, and that the five surecies then common in the markets were the subjects of the fire descriptions. The followings, species of Cyprinois fishes are taken in the Lower Sacramento River, and are now, as then, abondant in the markef of San Francisen: Ptychochilus oregoncusis, Ptychochilus vorax, Niboma crassicauda, Poyonichthys incequilobus, Oethodon microlepidotus, and C'atostontus occillentulis.
The deseription of Leuciscus tilbosus above quoter, as well as a more elaborate one afterwards published of "Larini" gibbosa," applies to Nibom crussicuntu only among the fishes which come to the San Franriseo market. The name giblosus tras published in May, 185t; the name mrussicauk in Angust, 185). We have therefore no alternative but to diop) the latter rery characteristic mame, and call the species sibom gilbosa, or, perhaps better, Telestes siblose, for the robust caudal peelurde handly fomishes a sufficient reason for a genus Sibomn. In Ayres's time, as now, this species was known in the market as the "Chnh."
¿. Lencircus microlepidotus, Ayres (I. c.. May 30).
This species, afterwarls more fully deseribed as Gila micolepidoir. is the well-known isthodon misrolepidotus.
\therefore Louciscus macrolepidotus Ayres (l. c., May 30).
Porm much like that of Lemeiscus pulchollus, thongh a little moresternter. Sual fin fonger' ('andal much armaterl. Scales 60 . Size of the preceling.
This is eridently the species describe in Angust of the same year by Baird and Girard as Pogonichthys incquilobus, muder which name it was afterwards mentioned by Dr. Ayres.

It must therefore take the less appopriate mame of Poymichthys: mutcrolepirlotus. This is now the "Split-tail" of the markefs.
4. Luисiscus (frucilus (sic) Ayres (1. c., May 30).

Body slender: head much elongate. Color silvery, becoming darker on the back. seales about su; much larger than ans other known Leuciscus, weighing, it is said, 30 pommls or more, lont genorally ras ing, as we find it in the markets. from 5 to 20 ponuds. 'This is the species bere known as salmon Tront, \&e.

This species was described soon after by Dr. Ayres in the Procecdings of the California Academy of Seiences, 185t, p. 19, as Gila grandis. It is apparently identical with the prior Ptychochitus oreqonensis of Richardson. This species is now no longer called "Salmon Trout," its market name being "Pike."

The small-sealed Ptychochilus (? 'corex of (iirard) was not then noticed ly Dr. Ayres.
5. Catostomus occidentalis $\Lambda_{\text {yres (}}$ (1. c.).

Soon after reconsidered by Dr. Ayres, in the Proceedings of the California Academy, muder the same name, and also still later by Professor Agassiz (Am. Jomual Sci. Arts, 1850), still as Catostomus occillentulis.

San Frincisco, Cal., Mareh 20, 1880.

ROTE ON "sEMIA"AKD "DACENTHES."

In the Bulletin of Hayden's Vnited States Geological and Geographical Surver, vol. ir, No. 2, 18:5, 1 published "Notes on a collection of fishes from the Rio Grande at Brownsville, Tex." In this paper are characterized two netr species, "Sema signife"" (p. 399), and "Dacentrus lucens" (p. 667).
These species must be suppressed. The former is a foetal Embiotocoid, apparentiy Cymutogaster agyregutus, the other is the romg of Hysterocarpus traskii.

The latter discorery was made bofore the paper was printed, but oy inadvertence it was sent to the press dmins my absence in the field.

Of course neither of these species really eame from the Rio Grande at Brownsrille, Tex., abd their presence in a jar otherwise containing only Texas fresh-water fishes is the only excuse for the gross blunders as to their relationships.

San Francisco, Cal., Merch 20, 1880.

Allied to N. oralis and S. clongatus, laving the month, spines, and fins of the former and the color and general appearane of the latter.

Body elongate, a little deeper than in s. elongutus and somewhat more compressed, tapering slowly backward into a slender candal peduncle, which is rather shorter and stouter than in N. elongatus.

Head rather short and small. the profile somerhat steeper than in s. elongatus. Mouth small, much as in S. ocalis, the short, narow maxillary extending to below the middle of the exe, the premaxillary on the
level of the lower margin of the pupil. Lower jaw strongly projecting, with a conspicnoms stmplyseal knol. Eye reme large, longer than snont. Preorlital with its neck extremely narrow, armed with a slight spine.

Spinous ridges on top of head rery low and weak, ahont as in st. ornlis, rather lower and narrower than in S. utrocirens and s. pimaiger. The following paiss of spines are present: Nasal, preocular, supraocnlar, tympanic, and oceipital, five pairs in all. as in so elongutus. The rifges are most of them partly covered log scales. Preocular spine little prominent. Supmocular ridge very little developed, its length two-fifthis that of the eye (in S. chongatus two-thirds). 'Tympanie spine minnte. Occipital ridge not compicmons, the spine depressed.

Preopermbar spines sharp, rather shorter than in N. clomgatas, but similar, the second longest, the points of all directed backward ratherthan radiating. Operenlar spines moderate; blantish points om sub. opercle and interopercle. Two bhutish sumaseapular spines.

Interorbital space broad, nearly as broad as the eye, somewhat regnlanty convex, the midde being elevated. In S. mongatus, as in most of the red species, the interorbital space is transersely concave.

Gill-rakers very lowe, slender, and mmerous, about $10+30$, the longest longer than the supmocular ridge, and ahont hatf the dianeter of the eye.

Scales rather small, as in s. oculis, in abont fin transerse series, the ancessory scales mother few.

Dorsal fin rery low, as in S. oralis, not deeply emarginate, the shortest (twelfth) spine two-thirds the height of the fifth, which is little more than one-third the length of the head. Soft dorsal low, nearly twice as high as long, the lighest ray about equal to the longest spine. Candal fin moderately forked. Anal fin very low, its length abont equal to the height of its longest ray. Second spine much longer and strouger than the third, searcely shorter tham the longest mas.

Pectorals shortish and rather narrow, the base rather wider than the ere, athe tips reaching berond the tips of the rentrals to the vent.

D. XIIl, 13; A. IIl, $\overline{\text { T. }}$

Coloration very similar to that of S' elongutus, red, with oliwe markings. There is, howerer, more blackish and less greenish.
(xround color hright light red. Body mottled above with dusky olivegreen, the gromed color forming distinct blotehes moter the third dorsal spine and muler the first and last rays of the soft dorsal. Lateral lime rumning in the middle of a repy distinct contimous red stripe. precisely an in S. clongatns. Head above with purplish cross-shades. Operele with a dusky bloteh: two olive shades radiating firom the eye. Lips aud tij) of lower jaw blackish (red in elongutus). Eyes red. Candal fin bright red, speckled with dark olive. Spinons dorsal hright red, the posterior part of each membane backish; soft dorsal olive and red : lower tins bright light red, with shades of olive-rellow.

This speries is linome to hes fiom abont dight examples obtained in the San Frameseo market. Ther came from Monterey Bay, in a box rontaining S'dustich thys. rosurens. comstrelletus. elongutus, and chlorostictus. spectes all simila in size ame redness of color. Later about sixty examples were obtanod. all from derp water about Monterey and the Farallones.
The relations of selorstichthys proniger seem to be most intimate with S. oralis (Ayres), from which it differs in the more clongate form, the red color, and the absence of the postocular spine. It resembles superficially S. plongetus most, and its position is evidently bet ween orelis and elomgetus. Its relations with s's pinniger are alse not remote. Ton the green S. orulis, S. proriger beas the same relation that the red S. pimiger does to the greep sio atrorirens.
lo the following table comparative measmements of sopmiger, ore lis, ank elongatus are given for purposes of "omparison with proriger:

Table of comparative mrastrements.

| |
| :--- | :--- |

Monteres; (Al., Motch 2.j, 1880.

Body elongate, tapering rapidly to the long tail, wery where broader than high. It is highest and broadest at the shonders, but is lower and narrower than the head.

Head acutely triangular as viewed from above, the profile irregularly sigmoid; lower surface of head and body plane from the head to the tail. Month U-shaped, entirels inferior, the maxillary reaching to opposite the front of the pupil, the premaxillary in front to the base of the posterior pair of rostral spines. The distance from the anterior margin of the premasillaries forward to the tip of the rostral spines equals more than half the length of the snout, more than half the diameter of the eve, less than one-fifth the length of the head. Lips thickish. Upper jaw protractile. Teeth small, in a villiform band, none evident on the vomer or palatines. Maxillary mandible and brauchiostegal region with some small scattered cirri ; under side of snont with few barbels or none. Eyes large, nearly as long as shout, 3_{3}^{2} in length of head, the orbital bones forming a raised ridge around them. Interorbital space transwersely concare, nearly straight longitudinally, with a lengthwise groore and two slight ridges. Profile depressed at the front of the ejes, thence nearly straight to the tip of the rostral spines.

Spines on head highly developed. On each side a stont straight rostral spine projecting horizontally forwards; at its base a stont spine emved batwords, upwards, and outwards; behind this a smaller one projecting upwards. Orbital ridge above serrated, and with two prominent recurved spines, one in front, the other behind; behind these a ridge on cach side conflnent with the dorsal ridges and each with four spines; between these the top of the head is ronghish and somewhat concare, with traces of a median keel. At the ncciput is a conspicuous pit betreen the above-mentioned ridges, broader than long and longer than deep. Just below these ridges, on each side, is another and more prominent ridge, also ending in four spines, the last very strong; this is contimons with the upper lateral keel of the bods; below this, on the opercle, is a strong keel ending behind in a spine; still lower is an irregular ridge, armed with two or three irregular series of spines and tubereles, extending from the preorbital along the subortal and preoperele, ending in a stont preopercular spine ; behind the pectorals this ridge again appears as the long lateral keel of the body.

Along the lower margin of the preopercle are three or fom more bluntish spines. There are on the head between serenty and eighty more or less developed spinous processes.

Isthmis rather wide.
Body with four ridges on each side, formed by the series of scales. Each seale ending in a strong recurced spine, its roots forming strice on
the seakes. Between the two lateral keels are traces of another keel; traces also exist between the two donsal keels in front.
The spines are developed on all the keels except in front amd behind on the two aldominal ones. The two dorsal keels, at atont the eighth scale in front of the caudal fin, coalesee, after which the median furrow is obliterated and the spines contime donble.

Just below the point of jumetion the abdominal keels also mite. The two lateral ridges remain distinct thronghout. At the lase of the tail, on each side, is a median spine hetween the lateral ridges.

The abdominal ridges are farthest apart behind the base of the ventrals, in fiont of which and behind which they converge, but anteriorls ther do not meet. Breast with six or eight polygonal plates. Belly transersely convex, with traces of a furrow, into which the rentrals are depressible. Veat just behind the middle of the length of rentrals. Lateral line about forts.

Doral begiming behind the serenth dorsal scale, and extending over tight scales. four scales intervening between it and the soft dorsal, which covers seven seales. The anal begins muder the end of the first dorsal, and extends over cleven seales. Dorsal spines rery delicate and thexible. Pectorals reaching the eleventh scals in the upper lateral series. Tentrals beginning opposite the fifth seale and extending to the tenth.

Colornearly obliterated—dark brown, with hackish cross-bars, involving the fins. One bar across caudal, one across posterior part of soft dorsal aud anal, one across posterior part of spinous dorsal and front of anal, and one across front of spinous dorsal. Pectorals black, with whitish edging. Candal and rentrals blackish. Belly thite.

Limensions, in humlreaths, of lengit to base of caundal fin.

This species is known to us from about ten specimens picked ont of piles of prawns in the San Francisco market. They are taken in the sweep-nets of the "l'aranzelle" off Point Reyes.

It belongs to the group or genus termed Podothecus by Professor Gill (typified by Agonus ucipenserinus), which is distinguished from Agonu: cutaphoractus by the longer spinous dorsal and by the greater number of plates on the breast. Agomus calsms differs from Agonus ucipenserinus in the much rongher lead, the narrow suborbital, and in the slight development of the barbels, as well as in many minor respects.

Agonus acipenserinus is rather stouter, the head broader and smoother above, the turbinal bones more widely separaterl. The nasal spines are similar in the two species, as well as the position of the month. The preocular spine is obsolete, the interorbital space is broader and not corrngated, with two longitudinal ridges. Posterior part of head comparaticely smooth, withont pit at the occipnt. Ridges and spines on posterior part of head contimnous with those on the body, as in A. culsus, but higher than those on the body, instead of smaller, as in the latter: latter. Opercular ridge small, the bones feebly striate.

Suborbital region quite broad and smooth, with a strong ridge beneath, on which are three strong retrorse spines, below which is a groose. Preopercle with tiro radiating ridges, each ending in a spine. About 28 spinous projections on the head in all, the number on the suborbital region much less than in rulsus. Eye much smaller than in A. rulsus, much shorter than snout, nearly 4 in head. Ocular ring not serrated, developed only above the eye. Body similatly armed, but the spines rather blunter and the back and belly less concave. There are no series of spines along the bases of pectorals and candal. The abdominal series join behind close to the end of the rentrals, as the dorsal series close behind the second dorsal. The dorsal tins are separated by about tro scales. The tentral fins are short, the fin scarcely half the length of the snont, the reut close behind its base; no risible groore ("Potothecus") at their base. Pectorals reaching about to front on anal. Breast with about nine large plates. Tsthmus present.

D. LX, 7; A. 8. Lat. I. 37.

Barbels greatly developed, as long as the diameter of the eye, arranged in three tufts, one at each angle of the mouth and one under the snont. Noue on the branchiostegal region. The type of the present description of Agonus neipenscrinus is in the museum of the California Academy of Sciences, and came from Tanconver's 1sland. It does not agree well with the account of Porlothecus peristethus of Gill, althongh Professor Gill considers the fro identical.*
San Frazcisco, Cal., Murch 1, 1880.

[^34]

Ky INRED. M. ENHETCH.

Albitc.
Allanite.
Allophanite.
Altaite.
Alım.
Amalgam.
Amber.
Amblygonite:
Amphibolite.
Actinelite.
Asbestus var.
Hornblente.
Tremolite.
Analcite.
Anatase.
Antalusít.
Chiastolite.
Auglesite.
Anhydrite.
Anorthite.
Anthrophyllite.
Antimony.
Apatite.
Apophyllite.
Aragonite.
Argentite.
Argnerite.
Arsenicum.
Asphalt.
Atacamite.
Aurichalcite.
Azurits.
Barite.
Baritocalcitr.
Berthierite.
Beryl.
Biotite.
Bismuth.
Bitumen.
Boracite.
Borax.
Bromyrite.
Brookite.
Brucite.
Cacoxenite.
Calamine.
Calaverite.
Calcite.
Cancrinite.

Canlinite.
('amallite.
(:arpholite.
Cassiterite.
Celestite.
(crargeyrit".
('erite.
Cerussite.
Cervantite.
Chabasite.
Chaleanthite.
Chalcocite.
Chalcodite.
Chaleopyrite.
Chlorastrolite.
Chlorite.
Chloritoidite.
Chondroditr.
Cbromite.
Chrysoberyl.
Chrysolite.
Cimmabarite.
Clinochlorite.
Clintonite.
Colraltite.
Colnmbite.
Copiapite.
Copper.
Copperasite.
Cocquimbite.
Comndophyllits.
Corundmm.
Cryolitc.
Cryptomorphite.
Cuprite.
Cyanite
Danburitr.
Datholite.
Deweylite.
Diallogite.
Diamond.
Diasporite
Dolumite.
Domeykite.
Dufrenite.
Embolite.
Emerald.
Emplectite
Enstatite.

Epictote.
Epsomite.
Embescite.
Erythrite.
Euchroitr.
Euphyllite.
Enxenite.
Fergnsonite.
Fibrolite.
Fluerite.
Forsterite.
Fowlerite.
Frankinite.
Gadolinite.
ralenite.
Garnet.
Alnanditr.
Grossularite Melamite.
Onvarovite.
Pyropite.
Spessartitr.
(rehlenite.
Genthite.
Geyserite.
(fibbsite.
Glanberite.
Glockerite.
foethite.
Gold.
Craphite.
(ireenockite.
Gysmm.
Sclenite rar.
Halite.
Harmotomite.
Hanerite.
Hansmannite.
Hanynite.
Haydenite.
Helvinite.
Hematite.
Columnar.
Compact.
Micaceons.
Oehreons.
Speenlar.
Tabular.
IEsssite

Heulandite.
Hortonolite.
Howlite.
Hydromagnesite.
Hydrotalcite.
Hypersthenite.
Idocrase.
Ilmenits.
Iodyrite.
Iolite.
Iridosmine.
Iron (meteoric).
Jamesonite.
Jeffersite.
Kermesite.
Labradorite.
Lanarkite.
Lapis lazuli.
Laumontite.
Lazulite.
Leonhardite.
Lepidolite.
Leucite.
Liebethenite.
Limonite car.
Linnæite.
Liroconite.
Magnesite.
Magnetite.
Magnolite.
Malachite.
Manganite.
Mareasite.
Margarite.
Meerschanm.
Meionite.
Melaconite.
Melanosiderite.
Mesolite.
Metacinnabarite.
Millerite.
Mimetite.
Mineral coal var.
Molybdenite.
Molybdite.
Muscovite.
Garnet inclusions.
Hematite inclusions.
Magnetite inclusions.
Tourmaline inclnsions.
Natrolite.
Nephelite.
Nitre.
Oligoclase.
Aventurine oligoclase.
Olivenite,

Opal.
Fire opal.
Milky opal.
Precious opal.
Semi-opal.
Was opal.
Wood "pal.
Orpiment.
Orthoclase.
Adularia.
Amazonstone.
Chesterlite.
Moonstone.
Ossidian.
Pumice.
Sunstone.
Ozocerite.
Pectolite.
Peridot.
Petzite.
Pharmacosiderite.
Phlogopite.
Pickeringite.
Picrophyllite.
Pitchbleude.
Pitticite.
Polybasite.
Polyhalite.
l'olymyguite.
Prelmite.
Psilomelanitel
Pyrargyrite.
Pyrite.
Pyrolusite.
Pyromorphite.
Pyroselerite.
Prroxenite.
Angite.
Coccolite.
Hedenbergite.
Jeffersonite.
Malacolite.
Sahlite.
Uralite.
Pyrrhotite.
Quartz.
Agate.
Amethyst.
Arenturine.
Basanite.
Chalcedony.
Carnelian.
Chresoprase.
Crystal.
Flint.
Heliotrope.

Quartz-Continned.
Hornstone.
Jasper.
Noraculite.
Onyx.
Prase.
Rosy.
Sandstone tlexible.
Sardonyx.
Siliceous sinter.
Silicified wood.
Smoky.
Quicksilver.
Realgarite.
Retinite.
Rhodonite.
Ripidolite.
Rutile.
Samarskite.
Sassolite.
Scapolite.
Scheeletinite.
scheelite.
Schirmerite.
Schreibersite.
Scorodite.
Serpentine rar.
Chrssotilite.
Ophite.
Precinns.
Sideritc.
Sillimanite.
Smectite.
Smithsonite.
Sphalerite.
Spinel.
Spodumen.
Stannite.
Staurolite.
Stephanite.
Stercorite.
Stibnite.
Stilbite.
Strontianite.
Struvite.
Sulphur.
Susserite.
Sylvauite.
Sylvite.
Tachydrite.
Talc.
Tellurite.
Tellurium.
Tennantite.
Teschemacherite.
Tetrahedrite.

Thomsonite.	Viviauito.	Wollastonite.
Titanite.	Wad.	Wolfenite.
Topaz.	Asbolite.	Nemotimito.
Pycuite.	Wavellite.	Zaratite.
Tourmaline.	Warwickite.	Zincifo.
Troilite.	Wheelerite.	Zircou.
Trona.	Whitneyite.	Zoisitc.
Turquois.	Willemite.	Zorgite.
Ulexite.	Witherite.	
Vermiculite.	Wolframite.	

Hemirhamphus rosæ, sil. нол.
Allied to Memirfumplues unifusciutus and other typical species of the genus.

Body rather dongate, moderately compressed; the gireatest depth being one-ninth of the length from the snont to the base of the candal. Length of the whole lead, including the lower jaw, contained $2 \frac{2}{3}$ times in the length from tip of lower jaw to hase of caudal. Length of the lower jaw bexond the dip of the upper jaw $1 \frac{1}{2}$ times in the same length. The length of the head from the tip of the upper jaw is contaned 3_{5}^{4} times in the trunk (withont head or candal).

The triangular part of the premaxillaries is convex, slightly carinated above, and about as broad as long. The eye is mather large, somemhat less than the interorbital space, and about half of the postorbital part of the head. Mandible elongate, the narrowed tip slightly bent downward; the bone bordered on each side for its entire length by a conspicuons membrane, the membranaceous part being about as wide as the bony portion itself. Upper surface of mandible conrex, grooved. Teeth in both jaws small, even, all of them apparently unicuspid. Top of head nearly plane, very slighty convex. Preorbital rather long; its diameter two-thirds that of the eye.

Scales rather small, very deciduous, about 63 in a longitudinal series.
Fin rays: D. I, 13; A. I, 14.
Dorsal and anal fins not at all scaly; the dorsal a rery little longer than the anal and inserted slightly in front of it; the anterior majs of dorsal and anal moderately elevated. Candal tin moderately forked; the lower lobe the longer; the middle rays nearly twice the diameter of the eye. Pectoral fin a little longer than the postorbital part of the head. Insertion of ventral fin slightly nearer the tip of the eaudal fin above than the eye, and midway between the gill-opening and the base of the caudal. Ventrals a little shorter than the postorbital part of the head, not reaching vent.

Color transheent green, with the usial silvery band somewhat broader than a seale. Belly white. A dark vertebral band made of three streaks of dark points. Edges of scales with dark punctulations. Fins plainLower jaw dark hood-color; the ground-color red, rendered dak by punctulations. Bordering membrane deep red.

Trable of proportional measurements.

Extreme lengtli fiom chin to tip of tail 万. 7.5 inchus.
Length from tip of upper jaw to base of tail 1.01 inches - 100
Body:
Greatest depth $11 \frac{1}{3}$
Greatest width γ
Least depth of tail 11.
Length of caudal peduncle (i)
Ileard:
Length from tip ui lower jaw 50
Leugth from tip of upper jaw 2月
Width of interorbital area i;
Length of mandible from eye :3i
Length of snont 1
Diameter of orbit 5
Doisal:
Distance from snout $3 i$
Length of base 16
Greatest height 7
Anal:
Distance from snout 78
Length of base 14
Candal:
Length of upper rays 13
Length of middle rays 11
Length of lower rays 1.1
Pectoral length 11 $\frac{1}{2}$
Ventral:
Distance from suout (i3)
Length 7 $\frac{1}{3}$
Dorsal rays I, 1:3
Anal rays. I, 14

This species is abmond in the bay of San Diego and in the harbor of San Pedro. At San Diego we obtained in the winter, a very large number of immature individuals. At Wilmington we secured one specimen nearly adnlt, and saw numerous others swimming about near the surface in the muddy waters of the harbor.

We have named this species for Miss Rosa Smith, of San Diego, who has given much attention to ichthyology, and to whom the National Museum is indebted for many specimens of San Diego fishes.

San Diego, Cal., August 10, 1880.

Hy G. REEOUN GOODE.

On the 4 th of September, 1880, the Fish Commission steamer "Fish Hawk" made a two days' trip from the summer station at Newport, R. I., to the edge of the Gulf Stream. Several hanls of the trawl-net were made at the following stations: Nos. S65, S66, 867 ; lat. $40^{\circ} \tilde{j}^{\prime}$; long. $70023^{\prime} \mathrm{W} . ;$ depth, 65 fathoms. No. S68; lat. $40^{\circ} 1^{\prime} 42^{\prime \prime} \mathrm{N} . ;$ long. 70° $22^{\prime} 30^{\prime \prime}$ W.; depth, 162 fathoms. No. 869 ; lat. $40^{\circ} 2^{\prime} 18^{\prime \prime} \mathrm{N} . ;$ long. 70° $23^{\prime} 6^{\prime \prime} \mathrm{W}$. ; depth, 192 fathoms. No. 870 ; lat. $402^{\prime} 36^{\prime \prime} \mathrm{N} . ;$ long. $70022^{\prime} 58^{\prime \prime}$ W. ; depth, 155 fathoms. No. 871 ; lat. $4002^{\prime} 54^{\prime \prime}$ N. ; long. $70023^{\prime} 40^{\prime \prime} \mathrm{W}$. ; depth, 115 fathoms. No. S72; lat. $40^{\circ} 5^{\prime} 39^{\prime \prime} \mathrm{N} . ;$ long. $70^{\circ} 23^{\prime} 52^{\prime \prime}$ W.; depth, 86 fithoms.
'The results of this day's work are mparalleled in the history of the Commission. Over 120 species of invertebrates and fishes were added to the fauna of Southeru New England. The list of fishes never before seen south of Cape Cod is as follows. The other fishes taken in the same hauls are also mentioned, inclosed in brackets:

1. Glyptocephalus cynoglossus, (Limn.) Gill; joung; 869, 870.
2. Monolcne sessilicauda, n. s., n. @.; s70, 871.
3. Citharichthys arctifrons, 11. s.; 871, s72.
4. Citharichthys unicomis, n. s.; 870, S71.
5. Thyris pellucidus, n. s., 1. g.; 871, S72.
6. Macrurus Bairdii, Goode \& Bean ; adult and joung; S70.
7. Macrurus carminatus, 11. s.; S70.
8. Hypsicometes gobioides, 11. s.; 871.
[Phycis chuss, (Walb.) Gill]? (No. 25925); 866.
[Merlucius bilincaris, (Mitch.) Cill]; adnlt and young; s70, S71, s72.
9. Plycis Chesteri Goode \& Bean ; adnlt and jomg' ; S6S, S99, S70.
[Plycis regizs, (Miteh.) Gill]; s70.
10. Lycodes Verrillit, Goote \& Bean ; 870.
11. Anarrhichas lupus, Linn.; young; 866.
12. Peristcdium miniatum, 11. s.; $865,872$.
13. Scbastes marimus, (Linn.) Liitken, s70, s71.
14. Raia, unkn. spec. (with mumeroms closely studded spines); S71.
15. Raia, mukn. spee. (in egg, with very long tail); 869.
16. Myxine glutinosa, Linn.; S69, S70.

On this same ground Gloncester fishermen, in 1879, obtained mumerons. specinens of Lopholatilus chameleonticeps never elsewhere taken.

The oceurrence of I'hycis regius and Mcrlucius bilincoris at such great depths is worthy of mention.

Proc. Nat. Mus. $80-22$
NOV. $83,1850$.

In the following paper are deserıbed the following genera and species, apparently never before observed:
$\left.\begin{array}{l}\text { Monolene, n. g. } \\ \text { Thyris, м. } . ~\end{array}\right\}$ Pleuronectida.
Thyris, ı. g.
Hypsicometes, 11. g. Merluciida?
Wonolene sessilicauda, in. s.
Citherrichthys arctifions, n. s.
Citharichthys unicornis, 11. s.
Thyris pellucitus, n. s.
Wacrurus carminatus, n. s.
Hypsicometes gobioides, 11. s.
Peristedium miniatum, n. s.
I an greatly indebted to Mr. Frederick Gardner, jr., who has assisted in the preparation of this paper.

Monolene,* new geuls.
A genus of pleuronectoid fishes with thin elongate body and sessile caudal fin. Eyes upon left side very close together, and near to profile. Mouth moderate; the length of the maxilliry less than one-third that of the head. Teeth minute in the jaws, in single series, nearly equal on both sides, though perhaps a tritle stronger on the blind side; absent on vomer and palatines. Pectoral fin upon blind side totally absent. Dorsal fin commences in adrance of the eye upon the snout. Dorsal and anal rass simple. Caudal fin sessile, almost confluent with dorsal and anal. Ventrals normal. Scales rather large, etenoid upon colored side, eycloid upon blind side. Lateral line marked; on colored side strongly and angularly curved above the anterior two-thirds of the pectoral; on the blind side straight, rising slightly as it approaches the region of the gill-opening. Gill-rakers few, feeble. Vertebræ 43.

Monolene sessilicauda, now species.
Extreme length of specimen described $0.156^{\mathrm{m}} . \dagger$
The height of the body (38) is about three-eighths of the total length (without caudal), and is equal to twice the distance of the origin of the ventral from the snont (19); its height over the rentrals (25) is about five times the longitudinal diameter of the lower eye (5), the least leight (8.5), at the base of the tail, slightly greater than the length of the lower jaw (8). The body is thin its greatest width (5) not exceeding the longitudinal diameter of the orbit.

Scales subcircular, with irregular outline, about 2 millimeters in diameter, or in diameter about one-fourth (1.25) the diameter of the eye. The posterior edge of each scale upon the colored side is pectinate with about fifteen denticulations. The seales of the blind side are oval, non-pec-

[^35]tinate, about as large as those of the colored side. The head is ererywhere closely thatched with scales, even to the edges of the lips, and small scales ocenr on the bases of the candal, pectoral, and ventral fins, and upon the rays of the vertical fins nearly out to their tips. There are abont 23 rows above and 25 below the lateral lines on the colored side, behind the enrve of the line.

Lateral line of colored side strongly bent in its anterior part over the lase and anterior two-thirds of the pectoral fin. There are about 92 seales in the lateral line, 72 of them in its straight portion. The are of the curved portion of the lateral line (12) is slightly more than double the distance of its highest portion above the line of the straght portion of the line were it continued (5). The curre of the line is very peculiar, having two angles; that nearest the head being most ohtuse. The lateral line on the blind side is nearly straight, slightly ascending above the alrdominal carity.

The length of the head (20) equals one-fifth of the standard length, and four times diameter of eye, or length of pereulum (5). Distance from shont to margin of upper eye (5) much greater than distance to lower eye (3), and less than length of the maxillary (5.5), the posterior margin of which passes the perpendicular from the anterior margin of the lower eye. The width of the interorbital area is very small, less than one-sixth of the diameter of the eye. The leugth of the mandible (8) is two fifths of the head.

The dorsal fin begins upon the snont in the perpendicular from the auterior margin of the lower eye. It is composed of from 99 to 104 simple rays (in five specimens), the longest of which in the posterior fourth of the fin; their length (?) nearly half that of the head. The anal fin begins between the tips of the rentral, close to the rent, and muder the insertion of the pectoral. It is composed of 79 to 84 simple rays, the longest in the posterior fourth; their length (i) slightly more than one-third the length of the head.

The caudal is sessile, rounded, the middle rays in length (17) nearly donble the longest dorsal rays.

The pectoral, priesent only on the colored side, is inserted close to the brameled opening, its length (15) three-fourth that of the head.

The ventrals are mon the modiun ventral line, even in length (6), slightly shorter or nearly equal to the longest rays of the anal.

Color on the left side ashy brown, with mmerous more or less distinct darker brown spots. On the blind side white. Pectoral blackish, with traces of lighter transerse hands.
ladial formula: D. 99-103; A. 79-84. Lateral line (92).
Eleven specimens, ranging in length from .094 to .156 millimeter, were taken, September 4, in hauls 870 and 871.

Current number of specimen \qquad Locality	$\begin{gathered} 26,004 . \\ 870 . \end{gathered}$		26,004b.		26,004c.		26,004c.	
	$\begin{gathered} \text { Milli- } \\ \text { meters. } \end{gathered}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	Millimeters.	$\begin{gathered} 100 \text { ths } \\ \text { of } \\ \text { of } \end{gathered}$	Millimeters.	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$	Milli. meters.	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { lengll. } \end{aligned}$
Extreme length	156							
Length to end of middle caudal rays. Dody:	133	100						
Greatest licight................		38						
Greatest width		5						
Greatest circamference		25						
Height at ventrals..............		25						
Least height ot tail		8.5						
Distance from snout to upper eye		5						
Width of interobital area		7.5						
Distance from shuat to lower eye		-						
Length of operculmm		5						
Lengtle of maxillary		5.5						
Lengtl of mandible		8						
Dorsal (spinons) :								
Greatest height......................... 9								
Height at longest ray		7						
Caudal:								
Pectoral: ${ }_{\text {Distance from snout }}$								
Distance from suout		21						
Ventral: ${ }^{\text {a }}$								
Distance from snout		19						
Length		6						
Anal		103		102			103	103
Number of scales in lateral ino		${ }^{*} 92$						
Number of transverse rows above lateral line.								
Number of transverse rows below lateral line.								
Number of vertebre.		5						

Citharichthys, Bleeker.
A genus of pleuronectoid fishes. Mouth rather wide, the length of the maxillary almost one-third that of the head. Eyes upon left side, the upper one rery near to profile. Teeth quite minute, on a single series in each jaw, rather more prominent upon the blind side: Vomerine and palatine teeth none. Pectoral fin upon blind side much shorter and with fewer rays than upon colored side. Ventrals also asymmetrical, the sinistral one upon the median ventral line, the dextral one slightly in adrance and crowded mp upon the blind side. Dorsal fin commences in front of the eye upon the snont. Dorsal and anal rays simple. Candal fin subsessile, its peduncle not much developed. Scales large, flexible, cycloid, very decidnons. Lateral line strongly defined, straight or very slightly eurved anteriorly. Gill-rakers short, rather stont, flexible. Vertebra 34 (in C. arctifrons). Gill membranes broadly united below the throat; gill rakers lanceolate. Branchiostegals 5.

Citharichthys arctifrons, new species.
Extreme length of specimen described 137 millimeters.*
The height of the body (37) is abont three-cighths of its total length (withont candal), and is equal to about fom times the height of the tail (9) and about five times its thickness (7).

The scales are irregularly polygonal, eycloid; the largest abont 6 mil. limeters in diameter; the diameter $(5)^{\prime}$ nearly equal to that of the eye. The seales are flexible, loosely arranged, and very easily detached, so that it is difficult to secure a specimen ingood order. Small scales on the rays of the ventral fins. There are forty seales in the lateral line (on the colored side), which is sharply defined and straight, and seven or eight above and the same namber below the lateral line at the broadest fart of the body.

The length of the head $\left(2-24 \frac{1}{4}\right)$ is abont one-fourth that of the bods, and four times the diameter of the eइe (6). The interorbital space (1) is very marow, equal to the difference in the distances from snont to lower eye (4) and shout to mper eje (5). The length of mandible $\left(10-10 \frac{1}{4}\right)$ is about donble the latter distance; the length of the maxillary $\left(5-7 \frac{1}{4}\right)$ slightly more than the greatest width of the body.

The dorsal fin begins upon the snont, above the anterior margin of the mper eye. Its greatest height (13-15) is abont three times the distance of its anterior ray from the snont. It is composed of 82 to 83 simple ras. The anal begins inder the axil of the pectoral, its greatest height (14-15) erual to or slightly exceeding half the distance of its anterior ray from the snout. It is composed of 67 simple rays.

The caudal is subsessile, triangular, of 16 rass; its length about equal to that of the head. In dorsal, anal, and candal the rays appear to project beyond the connecting membrane half or two-thirds of their owat length.

The pectorals are inserted far below the lateral line and close to the gill-opening. The pectoral on the colored side is composed of more rays $(9-10)$ than that of the blind side (6), its length ($17-19$) being abont donble that of its mate $(7-9)$. The ventrals are composed of 4 rays.

Color airty light brown.
Padial formula: D. S®-3; A. 67 ; C. 16 ; P. $9-10-7$; V. 5; L. lat. 40 .
Numerous specimens, ranging in length from 90 to 140 millimeters. were taken, September 4 , in hauls S70-S71. The females were full of ripe spawn. It is not probable, therefore, that the average size of the species is much greater than that of the specimens described.

Citharichthys unicornis, new species.
Extreme length of the specimen deseribed (No. 26003) 69 millimeters.
The greatest height of the body (47) is slightly less than its length, and is about $4 \frac{1}{4}$ times its least height at the tail (11). The body is much higher than in C. arctifrons, its greatest height over the pectorals, the contours then descending in almost straight lines to the base of the tail. The thickness of the body (G) is less than in C. arctifrons, being contained. nearly seventeen times in the standard length.

The scales are thin, deciduous, smaller than in C. arctifrons. There are abont forty seales in the lateral line, which is slightly curved over the pectoral, and, as nearly as can be determined in the denuded specimens before me, about twelve rows above and twelve below the lateral line at the broadest part of the body.

The length of the head (25) is one-fourth of the standard length and about three times the diameter of the eye (9), or the distance from the smout to the upper eye (9). The interorbital space is wide (4), equal to the length of the snout, and diagonally crossed by a strong ridge, a continuation of two ridges which form the upper boundary of the lower and the lower boundary of the upper orbit.

The length of the maxillary (11) is less than half, that of the mandible
(13) more than half, that of the head. The teeth are minnte, in single rows, closely set in the jaws, somewhat stronger upon the blind side. A strong short spine above the snout, at the anterior termination of the ridge at the lower margin of the upper eye. Hence the specific name unicornis.

The dorsal fiu begins at the side of the preorbital spine, its anterior rays being slightly crowded over upon the blind side. It is composed of 73 to 75 simple rays. Its greatest height (13) is half the leugth of the head.

The distance of the anal from the snout (33) is one-third of the standard length. The mumber of rays is 60 ; their longest (13) equal in length to the longest dorsal rays.

The candal is pointed, triangular, subsessile; its length (22) twice that of the maxillary (11) and two-thirds the distanee from the snout to the anal (33). The pectorals are inserted far below the lateral line. The pectoral of the colored side is twice as long (18) as the diameter of the eye, that of the blind side as long (13) as the longest dorsal rays. The former is composed of 10 rays, the latter of 4.

The length of the rentrals (11) is half that of the candal. They are asymmetrically placed, as is deseribed under the generic diagnosis.

Radial formula: D. $73-75$; A. 60 ; P. 4 right, 10 left ; L. lat. 40.
Color ashy gray, with dark lateral line. Ejes black.

Current number of specimen...	26,003. 870 and 871.	
	Milli- meters.	100ths of length.
Extreme lenoth.	69	
Length to origin of middle caudal rays	57	100
Eorly:		
Greatest height		47
Least height of tail		11
Head:		
3istince from snout to upper ere		
1 istance from snout to lower eye		
Widht of interorbital area		
Length of snout		
Length of maxillary		11
Lftegth of mandible.		13
Diameter of orbit, longitudinal		
Dorsal (spinous) :		
Distance from snout Gireatest height		
Anal:		
Distance from snout		
loight at longest ray		13
Candal:		
Pectoral: Length midule rays		22
Distance from snout		28
Length		18-13
Tentral:		
Distance from snout on colored side		26
Length		- 11
Dorsil		75-73
Pectoral		
Number of scales in lateral line.		4., 40

Thyris,* new genus.
I feel much hesitation in tescribing as a member of a new genus this little heterosome fish, which has all the appearance of being the larval form of some larger species. Since, however, it has attained almost the size at which one of the associated species begins breeding, and since I am mable to assign it to any genus already described, it seems desirable to give it a name which may serve to designate it, at least for the time being.

Diagnosis.-A gemms of heterosome fishes, with soft, transparent, elongate body. Head very short (in the single species contained about $5 \frac{1}{2}$ times in total length of body). Mouth small, toothless. Eyes upon left side, close together, the lower slightly in advance of the upper. Pectoral fin upon blind side shorter and with fewer rays than upon colored side. Ventrals crowded together upon median keel of body, their bases prolonged upon this keel. Dorsal fin commences in front of the eye upon the snout. Dorsal and anal rays simple. Cautal fin subsessile, almost confluent with dorsal and anal. Scales rery small, thin, easily detached. Dorsal line marked, straight. Body translucent, colorless (except for three longitudinal stripes in the single species). The vertebrat can almost be counted through the flesh when the fish is held up to the light, and the arrangement of the gills is clearly visible through the opercular bones.

Thyris pellucidus, new species.
The length of the specimen described (No. 26005) is 72 millimeters.
The height of the body (32) is abont one-third of its length (without candal), the least height of the tail (7) one-fourteenth. The body is thin, pellucid, larval-like, divided into three longitudinal tracts by depressions at the bases of the rows of interspinous processes, as in Glyptocephalus.

The scales are small, thin, easily detached (none remain upon the specimen except a few in the lateral line). The mumber of transverse rows is estimated at one hundred and twenty, the number of rows above and below the lateral line at the widest portion of the body seventeen or eighteen. The scales in the lateral line are provided with a large central canal. The lateral iine is straight on both sides.

The head is very small; its length (18) contained abont five and onehalf times in the total length of the body. The eyes are small, protruding, the upper almost perpendicularly above, though perh:ups slightly posterior to the lower. The diameter of the eye (2) equals the width of the interorbital space (2) and is double the distance (4) from the snont to the upper eye, that from the snont to the lower eye (3) being intermediate. The month is small, the shape of the opening being somewhat like that in Solea, the upper jaw being somewhat hook-shaped. The length of the ruper jaw (4) is two-thirds that of the mandible (6).

The dorsal commences on the snont in advance of the eye, and is com-
posed of 96 to 102 long, flexible, simple rass, their tips apparently extending far beyond the eonnecting membrane. The length of the longest rays (14) is double the least height of the body at the base of the tail (7).

The anal fin originates at a distance (22) from the snout contained four times and one half in the length of the body. It is composed of 76 to 81 rays, the longest of which are as long as the head.

The pectoral is inserted close to the gill-opening and far below the lateral line (midway from the black stripe upon the lateral line to the black stripe at the base of the interspinons processes of the anal fin). The pectoral upon the blind side is short, its length (2) equal to the diameter of the orbit, composed of about four or five rays; that upon the colored side longer, its leugth (3) equal to that of the snont, and coimposed of about tivelve rays. The rentrals are both crowded mpon the rentral keel, their bases prolonged upon the keel, their tips embracing the origin of the anal.

Radial formula: D. 96-102; A. $76-81$; P. 12 left, 4-5 right.
Color: In life colorless, translucent. In alcolol rellowish white. Three prominent blackish longitudinal stripes or lines upon the left side. The stripe rumning from the branehial cleft to the base of the tail is less prominent than the two at the bases of the interspinons processes. On the lateral line of the right side there is no stripe, thongh the two lateral stripes are as prominent as upon the other side. Eyes black.

C'urrent number of specimen Lucality	$\begin{gathered} \text { 86,005. } \\ 870,871, \text { ant } 872 . \end{gathered}$			
	Millimeters.	100ths of length.		
Extreme length	83			
Length to chid of middle candal rays		100		
Body :				
Least height ot tail		32		
Head:				
Greatest height.		184		
Distance from suout to upper eye				
Distance from snout to lower eje		3		
Width of interonbital area				
Length of maxillary		4		
Length of mandililo.		${ }_{2}^{6}$		
Diameter of orbit.				
Dorsal (spinous):				
Greatest height... 14				
Meight at longest ray		22		
Caudil:				
Length of middle rays		19		
Pectoral:				
Distance from snout		18		
Ventral:				

Macrurus carminatus, new species.
A single specimen, 248 millimeters in length, was obtained, September 4, at station 871. It is most closely related to M. colorhynchus (Risso) Bonap. and to M. atlanticus Lowe, but differs in the number of fin-rays and in other characters.

The body is less elongate and stonter than in M. Bairdii, Goode \& Bean, thongh its greatest height (12.5) is, as in JM. Bairdii, one-eighth of total length. The difference in general appearance is due to the fact that in M. carminatus the ventral contour retreats less rapidly.

The scales are large, heavy, the free portions covered with long vitreous spines arranged in nine or ten rows. These seales resemble the oldfashioned wool cards. Hence the specific name, from catmen, a wool-card. The spines are thicker and more closely set than in AI. Bairdii, and there is no specialization of the central row. The number of scales in the lateral line cannot be determined, thongh it probably does not exceed 100 , but there are about five transverse rows above it and twelve below it, connting from the rent obliquely backward. In M. Bardii there are 152 in the lateral line, six above and nineteen or twenty below.

Length of head (21) contained a little less than tive times in total length. Width of interorbital area (4) abont equal to vertical diameter of orbit, and about one-fifth of the leugth of the head. Leugth of snout, horizontal diameter of eye, length of postorbital portion of head about equal ($\overline{6}$). Length of operculum (35) half that of snont.

Snout long, sharp, depressed, triangular, the lower surface more nearly parallel with the axis of the body than in M. Bairdii. The lateral ridges are pronomsed and are contained in a straight line under the eyes and upon the preopercula. Stroug horizontal ridges continue from the supraorbital margins to the gill-openings, parallel with the subocular ridges. Nostrils immediately in front of the orhit. Barbel very short.

Teetl small, conical, somewhat recurved, arranged in villiform bands.
Distance of first dorsal from snout (23.5) about fom and one-half tines the length of its base (5), its distance from anterior margin of orbit much less than the length of the head. First spine very short, hardly perceptible above the skin. Sceond spine about half as long (11) as the head, slender, unarmed. When laid back, its tip reaches the origin of the second dorsal (the filament is destroyed). The decrease in the length of the spines is very gradual, the sixth being nearly as long as the second, so that the fin is not so triangnlar in shape as in MT. Bairdie.

The second dorsal begins in the perpendicular from the seventh ray of the anal. The anal is much higher than in M. Bairdii, the length of the longest rays (2) nearly equal to half the width of the interorbital area.

Aual fin inserted under the eighteentlo seale of the lateral line (as nearly as can be judged from the distorted speeimen). Its longest rays are as long as the width of the interobbital area.

Distance of pectoral from snont equal to twice its own length (11),
which is about equal to the length of the dorsal spine. Its insertion is below the middle of the depth of the body and below the level of the center of the orbit. Its tip does not reach to the perpendienlat from the origin of the anal.

Insertion of ventral behind pectoral and slightly in advance of the insertion of the dorsal. Its distance from the snont (22) is greater than twice its length (9). Its long filament does not reach to the origiu of the anal fin.

Radial formma: D. 1, LN , $80+; \mathrm{A} .76+;$ P. 13; V. 7.
Color silvery gray. The thick, closely-set spines are matted with oozy mud which camot be removed. This is doubtless the result of the hard usage experienced in the trawl-net.

Hypsicometes,* new genus.
A small specimen, much contracted and distorted from immersion in strong alcohol, is the only material upon which to base this deseription. Althongh not quite satisfied that the relatious of this fish are most nearly with Merluciide, I venture to assign it temporarily to a position in this family, hoping that additional material may contirm my present belief. In some respects it resembles the Blemioids, but psendobranchie are absent.

Diagnosis.-A genms of fishes in general form closely resembling Merlucius, but with the elongate body covered with large scales (not

[^36]much more than half as many in lateral line as in M. bilinearis nor onethird as many as in M. vulgaris). Month rather small. A separate caudal. Two dorsal fins, the first composed of a few long rays, the second with longer base. One elongate anal. Ventrals well developed, with broad base composed of six rays. Teeth on the romer and in the jaws in two or three rows, rather feeble. The eyes large, near together, looking upward. No barbel.

Hypsicometes gobioides, new species.
The general appearance of the fish is suggestive of a species of Gobius.
Head rather broad and somewhat depressed; its greatest width (13) abont equal to the greatest height of the body (12), and less than onehalf its length (30), which is contained three times and one-third in the standard length. The cleft of the mouth is horizontal, extending to the perpendicnlar from the anterior margin of the orbit. The snout is broad, romided, as long (10) as the longitudinal diameter of the eye. The interorbital space is namow (2), one-fifth the length of the snout, the eyes large, very close together, looking upward. The length of the maxillary (13) is equal to the greatest width of the head. The mandible is much longer. Teeth minute, in two or three rows on jaws and on vomer. Gillopening wide, the membranes united over the isthmus near the snont.

Body shaped much as in young of Morlueius, the least height of the tail (5) abont half of the greatest widh of the bods (11). The scales are large, about 58 transverse rows from gill-opening to base of candal. The character of the scales and the position of the latcral line cannot be decided from the specimen described.

The dorsal originates above the base of the pectoral, and consists of six or seven tlexible rays as long (10) as the snout. The second dorsal has a base four times as long (10) as the snout, and extends nearly to the base of the caudal. It is composed of about seventeen rays, the longest slightly longer (11) than the longest in the first dorsal.

The origin of the anal is under that of the second dorsal; its base length (48) is equal to the distance of its anterior ray from the snout (4S). It is composed of about sixteen rays, the longest of which (10) is equal to the longest in the first dorsal.

The candal is truncate, its length (18) three-eighths of that of the base of the anal.

The insertion of the pectoral is distant from the snout (33) one-third of the distance from snout to base of caudal. Its length (10) equal to the height of the first dorsal.

The ventrals are far apart, with broad bases lying flat upon the ventral surface, composed of six rays. They are situated far in advance of the pectorals and their length (14) equals two-fifths of the distance from snont to first dorsal.

Radial formula: D. VI (or VII), 17 ; A. 16; V. 6 ; L. lat. 158.
Color grayish, with obscure clondings. Belly lighter. A large black blotch upon the base of the upper caudal rays.

	Milli. meters.	100ths of length.
Extreme leagtls.	54	
Lenght to end of middlo candal ray	46	100
Body:		
Greatest heicht Greatest width		11
Least height of tail		5
Head:		
Greatest length		13
Greatest width -..........		13 2
Length of spout		10
Length of maxillary		13
Diameter of orbit, longitudinal		10
Dorsal (spinous) :		
Distance from snout		35
Leagth of base.		
Greatest height		10
Dorsal (soft) :		
Length of base		40
Height at longest ray		11
Anal: Distance from snout		
Length of base.		48
Height at longest ray		10
Caudal:		
Length of middlo rays		18
Distance from snout		33
Length		10
Veutral:		
Distance from snout		23
Length		「I-[VII], 17
Dorsal		PI-[VII], 17
Tentral		
Number of scales in lateral line.		[58]

Peristedium miniatum, new species.

Total length of type (No. 26023) 300 millimeters.
The greatest width of the body (20) is equal to its greatest height (19.5), being one-fifth of its total length without caudal. The general armature of the body is much like that described by Giinther under Peristethus brevirostre.* The number of plates between the gill-opening and the base of the tail is from twenty-seren to twenty-nine. There are four series of spiny plates on each side, the spines of the abdominal series becoming riry weak and obsolete towarls the tip of the tail.

The length of the head (40.15) is two-fifthe of the total length withont candal. The length of the preorbital processes (6) is contained abont three times and one-half in the distance from their extremities to the anterior margin of the orbit. The interorbital space is deeply coneave, its width (6.75) contained between six and seren times in the length of the head. Protuberance on the forehead very slight. The length of the snont (20.5) is more than half that of the head (in young less). The diameter of the eye (65) is contained between six and seven times in the length of the head. There is one pair of spines upon the upper surface of the snont behind the base of the preorbital processes, and another larger pair upon the preorbital processes, one npon each. The ridge of the preopereulum terminates in a depressed, short, sharp-pointed spine. The number of small tentacles upon either side of the lower jaw is abont

[^37]ten, the smallest nearest to the symphysis. The long tentacles at the angles of the mouth are fringed and extend to the base of the pectorals. In other respects Giinther's description of P. brevirostre is ample for this species.

Color bright crimson.
Radial formula: D. VII, 18; A. 17; C. $16 ;$ P. $2+10 ;$ V. 6. L. lạt. 27 on one side, 28 on the other.

Three other sperimens had the following: D. VIII, 18; A. 17. D. VII, 18; A. 18. D. VII, 18; A. 18.

The measurements of adult and young specimens are given. The fish when taken seemed to be in the height of the spawning season.

HNEIES。

By GECHEEN. KAWERENCE.

Icterus oberi.
Male: Head, neck, upper part of breast, back, wings, and tail black; lower part of breast, abdomen, under tail-coverts, and rump lightbrownish chestnnt, with the concealed bases of the feathers of a clear light yellow; the thighs are yellow, with a wash of chesturt; edge of wing and under wing-corerts yellow; bill black, with the sides of the muler mandible bluish for half its length from the base; tarsi and toes black.

Length (skin), $8 \frac{1}{2}$ inches; wing, $3 \frac{3}{8}$; tail, 4; tarsus, $\frac{7}{8}$; bill, $\frac{7}{8}$.
The female has the upper plumage of a clull greenish olive, with a yellowish tinge, the front and rump inclining more to fellow; the tail feathers are jellowish green; quills brownish black; the primaries and secondaries are edged narrowly with dull yellowish gray; the tertiaries are margined with fulvons; wing-coverts dark brown, margined with fulvous; edge of wing yellow; the under plmage is of a rather dull dark yellow; the breast and nuder tail-coverts are of a deeper or warmer color; the sides are greenish olive; bill and legs as in the male.

The young male resmbles the female in plomage, bint has the back somewhat darker.

Types in National Museum, Washington.
It differs from all its allies, which are somewhat similanly colored, in having the shoulders black, instead of yellow or chestmut.

Sereu specimens were obtained.
In the early part of March of the present year, Mr. Ober left for the West Indies, inteuding to explore as mary of the islands not visited on his first expedition as his limited time would permit. He retmmed after an absence of six months, and his collections sent to the Smithsonian Institution were placed in my hands for examination. Among them I found but one new species, viz, the Icterus abore described, procured in Montserrat.

It seems but a fitting compliment that the only new species commemorative of the second expedition of Mr. Ober shonld bear his name.

The catalognes of the birds obtained by him in the different islands will be published in the Proceedings of the National Musemm as soon as he furnishes me with his notes and observations thereon.

October 15, 1880.

Ry DAVID S. JOBDAN and CHAREES HI. GHLBERET.

Etexanchus corinus, sp. nov.
Head large, broad, depressed and vers blunt anteriorly; the length of snont from frout of month little more than half the interorbital space and rather less than the distance from the front of the mouth to angle of the mouth.

No median tooth in upper jaw. Two sharp, slender teeth in front of upper jaw, behind which is a row of fom others similar but a little larger; the two outer larger than the inner, all without basal cusps. Behi: d these are four others similar and still a little larger. These are directed backward, and should not be considered as functional teeth.

The first of the large teeth in the upper jaw is larger than the succeeding teeth. It has a sharp point hooked outward, and a single strong cusp on its outer margin, its inner edge not serrate. The second tooth, on both sides, has the basal cusp obsolete. The third tooth is like the first, but a little smaller. The fourth tooth is slightly serrated on the inner margin, and has two strong eusps on the outer at base. The fith and sixth are similar to the fouth, but more strongly serrate on the inuer margin. The seventh, eighth, and ninth are small, and the number of cusps is increased, so that they approach the form of the teeth of the lower jaw.

The median tootl of the lower jaw is very small, with a slight median eusp and three cusps on the outer margin, the uppermost the largest. The first lateral tooth has six cusps; the first the largest, the others progressively decreasing; the long edge of the first cusp is finely serrated, but has no basal cusp. The seeond, third, fourth, and fifth teeth are precisely similar in size and form to the first. The sixth and seventh are somewhat smaller. In the smaller specimen, from Soquel, the inner edge of the tseth is not serrated. Behind the large teeth in each jaw is the nsnal series of small blunt teeth, which in this species are little developed.

Nostrils near the tip of the snont. Furrow of skin at angle of mouth reaching half way from the angle of the month to the gill-opening. Eyes large, $\frac{2}{3}$ the length of the snout. Spiracles small, far behind the eyes. Gill-openings 6. Pectoral moderate, as long as from first gill-opening to tip of lower jaw. Ventrals small, reaching past front of the small dorsal. Dorsal a little higher than anal, and terminating over the middle of the latter fin. Tail long, twice as long as head, a little less than $\frac{1}{3}$ the total length, little bent upward ; its basal lobe little developed; the scales on its upper edge somewhat enlarged.

Color very dark sooty, almost black above, grayish black below, with out spots or distinct markings. A very obseure grayish lateral streak. Inside of upper lip blotched with black. Toung specimen clear brown.

This species is known to us from two specimeus, the larger, a female 43 inches in length, the type of the present description, having been obtained by James G. Swan, assistant to the United States Fish Commission, at Nealh Bay, near Cape Flattery. The other was secured by Mr. Gilbert at Soquel, on the Bay of Monterey.

This species is closely related to Hexanchus griseus Raf. of the Mediterranean and Eastern Atlantic. It differs chiefly in the form of the teeth of the lower jaw, which are serrated on the inner edge, aud have on the upper or outer elge only six cusps instead of eight or nine.

Another Notidanoid shark, belonging to the related genms Heptranchias, distinguished by the presence of seven gill-openings instead of six, is fomb with the present species in the same waters. This is Heptranchias maculatus, the Notorhynchus maculatus or Notorhynchus borealis of Ayres and Gill. This species differs from Heptrenehius indicus, with which it has been confounded by Giinther and Duméril, in the lack of a median tooth in the upper jaw, and in the longer tail, which forms rather more than a third of the total length.

Heptranchias maculatus is rather common on the coast of California from Monterey northward. In Humboldt Bay it is especially abundant, and the pursuit of it for the oil in its liver is an industry of some importance.

The teeth in this species undergo some cbanges with age, and at least are subject to some individual variations, as will be seen from the following descriptions, which may be compared with Professor Gill's accomet of the jaws of Notorhynchus maculatus (Proc. Ac. Nat. Sci. Plila. 1862, 495) from Nisqually, Washingtou Territory.

Description of Heptranchias maculatus, juv., from Soqucl.

Head rather depressed, broad, rounded. The nostrils almost at the tip, of the snont. Length of the snont much less than the interorbital width. Spiracle rather large, nearer the gill-openings than the eye. A long furrow at the augle of the mouth, above which the upper lip extends backward in a broad fold.

In the upper jaz no median tooth; two small teeth near together, well in front, simple and pointed; two a little larger, behind and outside of these; then two more, similar, near together and directly within the first pair ; then directly behind the second pair mentioned two much larger ones, pointed, each with a conspicuous cusp on the onter edge near the base on each side, and one or more denticulations. The next tooth is similar, rather larger and directed more ontward. The remaining five or six grow still more oblique, but are otherwise similar in form and size, but a little more serrated.
The median tooth in the lower jaw is hroad, with two (or three) strong dentations on each side, directed ontward, and a very small median cusp
at tip. The other teeth are very similar to each other, six in number on each side and slightly increasing in size from the middle. They are much broader than high, and armed with about four sharp points turned ontward, besides one or two smaller ones. The first point is longest, and has a small cusp on its side, so that strictly one might call the second cusp longest.

Gill-openings 7, high; pectorals moderate, truncate and slightly concave behind; rentrals moderate, rather backward; anal small, the single small dorsal just in front of it, corering most of the interspace between it and the ventrals.
'Tail very long, forming a little more than one-third the length (23). A notch near its tip below; the lower lobe a little developed. Upper edge of tail mith abont three series of scales, much enlarged, so that its entire edge is finely serrated.

Described from two specimens from Soquel, each 18 inches long, one male, the other female.

Description of the jaus of Heptranchias maculatus, adult, from Humboldt Bay.

No median tooth in upper jaw. Upper jaw with two transverse series of teeth on each side of symphysis, the outer series usually with two, the inner with form or five tecth, some of which are placed externally to the main row. Thes are lanceolate from a quadrate base, the points directed backwards and curved slightly ontwards, withont ensps or sermations. First tooth of main series similar to symphyseal teeth, but larger and broader, with a larger or smaller cusp at base on onter side and with or without minute serrations on base of inner side; from this towards corner of month there is much variation in the development of cusps and serratures, the teeth, however, constantly approximating in shape those of the lower jaw, always differing in being smaller, with external margins more inclined, and with the central cosp larger in comparison to others and more distant from them. Sometimes on each side are four or five teeth, bicuspidate and without serratious on inner edge; in other jaws the second or third tooth trom symphysis has threc or more cusps on the outer margin, and with serulations or a single cusp at base on inner side. The last large tooth on each side usually broad and low, with the two margins subequal, without prominent merlian cusp; the inner margin minutely serrate; the outer with seven or eight cusps.

In lower jaw the teeth are much larger than in upper, and are uniform in shape and style of armature; they are wide from a quadrate base, the outer margins comparatively little inclined and with the cusps regularly and rapidly graduated, usually seven in number; the inner margins short, gibbous and much curved, always distinctly serrate; median tooth upright, without median cusp, and with three or four eusps on each margin.

Each jaw has laterally about 12 transverse series of small linear teeth,
scarcely elerated above surface of jaw, resembling the lateral teeth of Heterodontus, but much smaller and without median crest.

Teeth ca. $\frac{12-7-2-2-6-12}{12-6-1-6-12}$.
We may note here, as further additions to the list of sharks on our Pacific coast, the oceurrence of Sommiosus microcephalus (Bloch) Gill in Puget's Sound; of Lamna cornubica L. in Monterey Bay; and of a species closely related to Eulamia lamia (Risso) Gill in San Diego Bay. The shark recorded by us as Pleuracromylon lavis (Proc. U. S. Nat. Mus. 1880,52) is Rhinotriacis henlei Gill. This species is not a genuine Triacis, and it appears to us to be congeneric with P. lavis, from which it differs in the greater development of the basal cusps of the teeth.

Table of measurements.
Species, Hexanchus corinus J. \& G.; sex, ㅇ. Loeality, Neah Bay, Washington Territory.

[^38]
ON © 'TEEERE宣。

PART II.-MOLLUSCA, WITH NOTES ON ANIJELIDA, ECIINODERIIATA, ETC., COLLECTED BY THE UNITED STATES FISH COMIIISSION.

By A. E. WERERTCL.

The species included in the following paper, unles.s otherwise stated, have been collected by the parties employed by the United States Fish Commission for several years past in exploring the waters and investigating the marine animals of this coast.* This work las been under the immediate direction of the writer, who has personally taken a part in most of the very mmerous dredging excursions. The total number of stations drelged or trawled amounts to over 1,200. Among the large number of persons who have taken in more or less important part in these explorations, in connection with the invertebrate department, I may partieularly mention Prof. S. I. Smith, Prof. A. S. Packard, Mr. Sanderson Smith, Mr. Richard Rathbm, Prof. H. E. Webster, Mr. Oscar Harger, Mr. E. B. Wilson, and Mr. S. F. Clark.

During the last three years Mr. Sanderson Smith has given special assistance in caring for the testaceons Mollusea in the dredging season, and has also been engaged with the writer at varions other times in the working up of the Mollusea of Northern New Eugland for publication. Owing to the great accumulation of materials, this will necessarily take much time. In the mean time the following catalogne will afford much useful information as to the additions recently made to our mollusean fama.

This season, the most iuteresting and prolific region of our coast hitherto explored was discovered upon the onter bank, or slope, situated from 70 to 80 miles sonth of Martha's Vineyard, and from 90 to 115 miles sonth of Newport, R. I.

In September and October three very successful trips were made to this region.

The first of these trips was made September 3 to 5 , south of Martha's Vineyard, abont 70 to 80 miles (stations 865 to 872), where the depth was from 65 to 192 fathoms. The bottom was mostly fine compact sand, with some mud, and with a large percentage of Foraminifera. The

[^39]second trip was made September 12 to 14, nearly south from Newport, 90 to 105 miles, where the depth was from 85 to 325 fathoms (stations 873 to 881). The third trip, October 1 to 3, was to the same region, but somewhat farther west and south, and in deeper water (stations 891 to 895). At all these stations, except 867 , a large beam-trawl was used; at 567 a heary "rake-dredge", of a new form, was used with good success.

All these stations are situated in the region designated on the charts as " Block Island soundings", and nearly all proved to be exceedingly rich in animal life, the vast abundance of individuals of many of the species taken being almost as surprising as the great number and variety of the species themselves.

In this region the slope is exceedingly gradual till the depth of 75 to 100 fathoms is reached, at about 90 miles from the coast; the slope then becomes much more rapid, but yet not steep, and the bottom is of very fine compact sand, mingled with more or less mud, fragments of shells, and sometimes with small stones,* and generally has a smooth and rather hard surface, well adapted to support a very great variety of animals of nearly all classes. In some places the material is softer mod and sand ; in others it is covered with broken shells and great numbers of sponges, hydroids, and worm-tubes.

Many species owe their existence, on these bottoms, to the snitable piaces of attachment furnished by the large tubes of annelids, which formed a marked feature in many of the localities.

In several localities with muddy bottoms ($569,579,580,594$), we trawled large quantities (several thousands in all) of very singular, large, round, mattached worm-tubes, occupied by a large, undescribed species of Hyalinocia. \dagger These tubes are firm and translucent, composed of a tough substance resembling the quills of birds. They are open at both ends, but often have internal septa near the larger end ; they are often more than a foot long, and about a third of an inch in diameter at the

[^40]larger end, but taper gradually toward the smaller one, and are nearly straight. They may possibly at times stand erect in the mud, but this is doubtful; in most cases they probably lie free on its surface, and the large and powerful annelid inhabiting them probably has the power of dragging them about; otherwise it would be impossible to account for the numerons hyrlroids, actinians, sponges, \&c., which often cover them.

On the harder bottoms, in the shallower localities, especially at stations 865 to 867 , we obtained great quantities of a very different, unattached worm-tube, composed of bivalve shells, entire and broken, arranged so as to form a strong, flattened covering around a thin silken, central tube. These are made by a pale, opalescent species of Nothria (near N. conchylcga), allied to Hyctinocia. In the localities last named we also took large quantities of another very different kind of wormtube, made by another Annelid of the same family, a large species of Eunice or Leodice.* This tube is sometimes half an inch in diameter, more or less attached. irregnlarly bent, often branched, or with sideopenings at the angles. It is composed of a parchment-like material, aud is usually covered with hydroids, sponges, actinians, ascidians, \&e.

The sand and mud usually contain a large percentage of calcareous Foraminifera, many of which are remarkably large and handsome species, often more than 5^{m} or 6^{m} in diameter. In some of the localities (as at stations 869,894 , and 895) there were, in the mud, rery large quantities of large sand-covered Rhizopods (Astrorhiza, Rhabdammina, \&e.), which assume a variety of irregularly branched and often rudely stellate forms, but many of them are rod-like, and nearly an inch in length.

Fishes, Crustacea, Annelids, Anthozoa, and Echinoderms, as well as Mollusca, abounded in new and strange forms. Of many of these species, previously unknown in our waters, thousands of specimens were obtained. At several of the stations, especially at $850,851,893$, and S94, large numbers of the handsome Mopsea-like coral, Acanella Normani V., were taken; to these many fine specimens of the rare Pecten vitreus were attached, and also several species of Actinians and Annelids. In many of the localities vast numbers of hermit-crabs (Pagurida), of several species, occurred, inhabitiug cases consisting of groups of the compound, sand-coated Actinians, mostly Epizoantlus Americanus V. The bases of these originally covered dead shells of Gastropods or Pteropods, occupied by the crabs, but by some chemical process they have, in most cases, wholly remored the substance of the shell, so that the polyp constitutes the entire residence of the crab. Large numbers of huge Actinians, such as Bolocera Tuetice, Urticina nodosa, \&c., oc-

[^41]curred in most of the deeper dredgings, Large quantities of a large, handsome, but very fragile, cup-coral (Flabellam Goodei V.) occurred in the deeper localities, especially at stations $880,894,895$, but most of the specimens were ruined by being crushed by the great weight of the contents of the trawl. The animal of this coral is bright orange, with a purple center.

While many of the species of erery class obtained here are arctic, or belong to the cold waters found at similar or greater depths on the coasts of Enrope and in the Mediterranean, a few genera, like Avicula, Solarium, and Marginella, are related to southern or West Indian forms. A number of the most aboudant species of Crustacea and Echinoderms* had alrealy been described from the collections made by Pourtales, off Florida.

Many free-swimming species, belonging to the Pteropoda and Heteropoda, of which we dredged the dead but perfectly fresh shells, were not previously known to occur so far north. They were associated with others of the same groups which had previonsly been taken living at the surface along onr shores, but they all belong properly to the Gulf Stream fauna.

The frequent occurrence of nearly fresh shells of Argonauta Argo was also a matter of surprise to us, and indicates that this species must often be very common near our coast.

The very large collections of specimens obtained on these three trips have, as yet, been only partially examined, but enough has already been done to prove his region to be altogether the richest and most remarkable dredging ground ever discovered ou our coast. The large number of new forms, combined with others previously known only from remote regions, constitnte a very distinct fanna, hitherto almost wholly unknown.

A considerable number of undetermined, and perhaps undescribed, shells from these localities are not included in this article.

[^42]Dredging stations on the outer bank in 1880.

Number.	Locality.								Depth.	Nature of bottom.
	Latitude.				Longitude.				Fathoms.	
	-	1	"			,	"			
86.5	40	05		N.		23			65	Fine compact sand, with some mud.
866	40	05	18	N.	70 70	22	18		65	Do.
8868.		05 01		N.		$\stackrel{23}{22}$	06 30		64 162	Do.
869.	40	03		N.	70	23	06	V.	192	Mud and fine sand, soft.
870.	40	02	36	N.	70	22	58	W.	155	Fine sand, with some mud.
871.	40	02	54	N.	70	23	40		115	Do.
872.	40			N.	70	23	53	W.	86	Shells and sponges.
873.	40	02	00	N.	70	57	00		100	Finc sand and mud.
874.	40	00		N.		57	00		85	Do.
875.	39	57	00	N.	70	57	30	W.	126	Do.
876.	39	57		N.	70	56	00	W.	120	Do.
877.	39	56		N.	70	54	18		126	Do.
878.					70	54	15		$142 \frac{1}{2}$	Do.
879.				N.		54	00		225	Do.
880.	39			$\stackrel{N}{N}$	70	$5 \pm$	00		252	Mud and fine sand.
891	33	46	00	N.	71	10	00	W.	+	Mud and fine sand.
892.	39	46	00	N.	71	05	00	W.	487	Mud, finu sand, small stones.
893.	39			N.		58	00		372	Do.
891.	39			N.		58	30		365	no.
		56	30	N.	70	59	45	W.	238	Do.

The temperature determinations, owing to the violent motions of the steamer, are unreliable at stations 865 to 872 . At stations 873 to 878 the bottom temperature was usually 51° to $53^{\circ} \mathrm{F}$.; at 879 to 881 it was 42° to $43^{\circ} \mathrm{F} . ;$ at 893 and 894 , it was 40°.

CEPHALOPODA.

The great abundance of Cephalopods in the deep-water localities explored by us is a very interesting and important discovery. Eight species were taken this season. Some of these occurred in large numbers. This collection adds three genera to the New England fama, two of them new and very curious.

Heteroteuthis tenera Verrill.
Amer. Journ. Science, xx, p. 392, for Nov., 1880 (published Oct. 25).
A. small and delicate species, rery soft and translucent when living. Body shortish, cylindrical, scarcely twice as long as broad, posteriorly usually round, but in strongly contracted, preserved specimens often narrowen and even obtusely pointed ; front edge of mantle with a dorsal angle extending somewhat forward over the neck. Fins very large, thin, longer than broad; the onter edge broadly rounded; the anterior edge extending formard quite as far as the edge of the mantle and considerably beyond the insertion of the fin, which is itself placed well forward. The length of the fin is about two-thirds that of the body; the base or insertion of the fin is equal to about one-half the body length; the breadth of the fin is greater than one-half the breadth of the body. Head large, ronnded, with large and prominent eyes; lower eye-lid slightly thickened. Arms rather small, nuequal, the dorsal ones considerably shorter and smaller than the others. In the male the left dorsal arm is
greatly modified and very different from its mate. Lateral and ventral arms subequal. In both sexes, and even in the young, the suckers along the middle of the four lateral and two ventral arms are distinctly larger than the rest, lut in the larger males this disparity becomes very remarkable, the middle suckers becoming greatly enlarged and swollen, so that eight to ten of the largest are often six or eight times as broad as the proximal and distal ones; they are deep, laterally aftached, with a raised band around the middle and a very small, round aperture, furnished with a s:nooth rim. In the female the corresponding snckers are abont twice as broad as the rest on the lateral arms. The suckers are in two regnlar rows on the lateral and ventral arms, in both sexes. In the male the left dorsal arm becomes thickened and larger from front to back, and usually is curled backward; its suckers become smaller and much more numerous than on the right arm. being arranged in four crowded rows, except near the base, where there are but two; the suckerstalks also become stont and cylindrical or tapered, their diameter equaling that of the suckers. The right arm remains normal, with two alternating rows of suckers, regularly decreasing to the tip, as in both the dorsal arms of the female. Tentacular arms long, slender, extensible; club distinctly enlarged, usually curled in preserved examples. The suckers on the club are numerous, unequal, arranged in about eight close rows; those forming the two or three rows next the upper margin are mnch larger than the rest, being three or four times as broad, and have deuticulated rims. Color, in life, pale and translucent, with scattered chromatophores. In the alcoholic specimens the general color of body, head, and arms is reddish, thickly spotted with rather large chromatophores, which also exist on the inner surface of the arms, between the suckers, and to some extent on the tentacular arms and bases of the fins; outer part of fins translucent white; anterior edge of mantle with a white border. Length of body 25^{mm} to 40^{mm}. Pen small and very thin, soft and delicate. It is angularly pointed or pen-shaped anteriorly, the shaft narrowing backward; a thin, lanceolate expansion or web extends along nearly the posterior half. Upper jaw with a strongly incurved, sharp beak, withont a notch at its base. Lower jaw with the tip of the beak strongly incurved, and with a broad but prominent romded lobe on the middle of its cutting edges.

Odontophore with simple, acute-triangular, median teeth; inner laterals simple, nearly of the same size and slape as the median, except at base; onter laterals much longer, strongly curved forward.

Over 150 specimens of this interesting species were secured by the writer and others of the dredging party on the United States Fish Commission steamer "Fish Hawk", September 4, 1880. It was particularly abundant at stations 870 and 871 , in about 125 to 150 fathoms, on the rapidly sloping outer bank of the coast, under the inuer edge of the Gulf Stream. Both sexes occurred in about equal numbers, and also the young, of various sizes. It was also taken in considerable numbers
at stations 865 to 867 , in 65 fathoms ; 872 to 880 , in 86 to 252 fathoms. It was also obtained by Mr. A. Agassiz, at similar depths, in the same region, as well as farther south, earlier in the season, while dredging on the Coast Survey stemer "Blake".

This species was associater, at station 869, in 192 fathoms, mud, with Octopus Bairdii and Rossia subleris. It can easily be distingaished from the latter and other species of Rossia, not only by the large suckers of the lateral arms, but still better by the inequality of the suckers on the tentacular club. The latter character is obvious in specimens of both sexes and of all ages.

Gonatus amœnus (Möller) Gray.
G. O. Sars, Mollnsca Regionis Arcticæ Norvegiæ, p. 336, pl. 31 ; pl. xvii, fig. 2 (figures excellent).
A good specimen of this species, in nearly perfect preservation, was recently presented to the United States Fish Commission by Capt. Willian Demsey and crew, of the schooner "Clara F. Friend". It was taken from the stomach of a corl, off Seal Island, Nova Scotia.

Calliteuthis Verrill.
Amer. Journ. Sci., xx, p. 39:3, for Nov., 1880 (published Oct. 25).
Form much as in Histioteuthis, but withont any web between the arms. Body short, tapering to a small free tip; fins small, united behiud the tip of the body. Siphon united to the head by two dorsal bands; an internal valve. Mantle connected to the sides of the siphon by lateral elongated cartilages and corresponding grooves on the sides of the siphon. Arms long, free; suckers in two rows, largest on the middle of the lateral and dorsal arms. Eyes large, with oval opeuings. Bnceal membrane simple, sack-like.

Calliteuthis reversa Verrill.

Loc. cit., p. 393.
Arms long, tapering, the lateral pairs equal ; the dorsal and ventral about equal, somewhat shorter than laterals; tentacular arms slender, compressed (the ends absent). Fins small, thin, transversely rhomboidal, white. Color reddish brown. The ventral surface of the body, head, and arms is more ornamented than the dorsal surface, being covered with large, rounded verrucæ, their center or anterior half pale, the border or posterior half dark purplish brown; upper surface of body with much fewer and smaller seattered verruce; a circle of the same around the eyes; inner surfaces of arms and bnecal membranes chocolate-brown. Total length, 133^{mm}; to base of arms, 67^{man}; mantle, 51^{mm}; of $64,17^{\mathrm{mm}}$; breadth of fins, 24^{mn}; of body, 20^{mm}; diameter of eye-ball, 16^{mm}.

Station S94, 365 fathoms.
Alloposus Verrill.
Amer. Journ. Sci., xx, p. 393 (published Oct., 1880).
Allied to Philonexis and Tremoctopus. Body thick and soft, smooth; arms all (in the male only seveu) united by a web extending nearly to
the ends, the length of the arms decreasing from the dorsal to the ventral ones; suckers sessile, simple, in two rows; mantle united firmly to the head by a broad dorsal band and by a ventral and two lateral commissures, the former placed in the median line, at the base of the siphon; free eud of the siphon short, well forward. In the male the right arm of the third pair is hectocotylized and developed in a sack in front of the right eye; as found in the sack it is curled up and has two rows of suckers; the groove along its edge is fringed; near the end the groove connects with a rounded, obliquely placed, lateral, concave lobe, with interior plications. The terminal portion of the arm is a lanceolate thickened process, with ridges on the inner surface.

The permanent attachment of the mantle and neek, by means of commissures, is a very distinctive character.

Alloposus mollis Verrill.

Loc. cit., p. 394.
Body stout, ovate, very soft and flabby. Head large, as broad as the body; eyes large, their openings small. Arms rather stout, not very long, webbed nearly to the ends, the dorsal 60^{mm} longer than the ventral arms; suckers large, simple, in two alternating rows. Color deep pur1, lish brown, with a more or less distinetly spotted appearance. Length, total, 160^{mm}; of body to base of arms, 90^{mm}; of mantle, beneath, 50^{mm}; of dorsal arms, 70 mm ; breadth of body, 70^{mm}. Seven specimens were taken. The sexes scarcely differ in size. Station 880 , in 225 fathoms ($2{ }^{8}, 1$ \&) ; 892, 487 fathoms; 893, 372 fathoms; 895, 238 fathoms.

Argonauta Argo Linné.
The capture of a living specimen, probably of this species, on the coast of New Jersey, has been recorded by Rev. Samuel Lockwood.* It was, nevertheless, very surprising to us to find its shells, or fragments of them, very common in nearly all our deeper dredgings, 70 to 100 miles off the southern coast of New England. At station 894 two eutire and nearly fresh shells were taken, and another nearly complete. They belong to the common Mediterranean variety.

GASTROPODA.

Bela (Leach) H. \& A. Adams; G. O. Sars, \&c.
Pleurotoma (pars) Jeffreys and many earlier authors.
The species of this genus are numerous on our coast, but their identification is difficult, owing to the very poor and insufficient descriptions of many European writers. \dagger Möller's Greenland species, especially, are

[^43]badly described. The publication of the excellent work of G. O. Sars has at length rendered it possible to identify many species, hitherto donbtiul, with his Norwegian forms, thongh there may still be doubt as to the proper application of the names given by earlier writers, and even as to the actual specific distinctness of all the forms that he has neseribed. The sexual variations he has not taken into accoment. Dur. ing numerons dredging expeditions made in the past twenty years, the writer has obtained a large series of specimens of Bela, which he has reserved for a more complete revision hereafter; but some of the more conspicuons forms not yet recorded from New England, and in part not known as American species, are here mentioned. Figures of all these and others have been engraved for a more detailed paper and will, it is hoped, soon be published.

Bela Pingelii (Möller, 1842) II. \& A. Adams, i, p. 92, 1858.
G. O. Sars, Moll. Reg. Arct. Norv., p. 2.3, pl. 16, fig. 5, 1878.

This very distinct species has been repeatedly dredged by me at Eastport, Me., and by the United States Fish Commission parties in Casco Bay, Massachusetts Bay, on George's Bank, and off Nova Scotia. It has not unfrequently been confounded by authors with B. cancollatu. It is our most slender and elongated species, with evenly rounded whorls, strongly cancellated, over the whole surface, by numerous slender, longitudinal ribs and revolving raised lines or cinguli, which are abont equally prominent, and form small, round nodules where they cross the ribs.

Bela Sarsii Verrill, sp. nov.
Bela cancellata G. O. Sars, op. cit., p. 224, p1. 23, fig. 31 ; pl. viii, fig. 9 (not of Couthouy).
This name is proposed for the species described and figured by G. O. Sars as B. cancollata. The same species was formerly collected by Dr. A. S. Packard at Labrador, and sent to us by him under the name of B. cxarata. It is a small, strongly seuptured species, with obtuse, angular-shouldered whorls, and is especially distingnished by its few broad and strong ribs, crossed by rather distant revolving lines, giving it a coarsely cancellated surface.

Bela cancellata (Mighels) Stimpson, Check List.
Fusus cancellatus Mighels, Proc. Boston Soc. Nat. Hist., i, p. 50, 1841; Boston Journ. Nat. Hist., iv, p. 52, pl. 4, fig. 18, Jan., 1842.
Bela cancellata Gould, Invert. Mass., ed. ii, 1. 355, description (not the figure, 624).

The true Bela cancellata (Mighels) is a common shell ou the New England coast, in 20 to 60 fathoms. It is an elongated species, with fong, acute spire, and with the whorls moderately and obtnsely shonldered at some distance below the suture, the flattened portion above the shoulder being destitute of revolving lines, but crossed by the numerous oblique ribs, which are strongly bent at the shoulder and take a sigmoid form.

Below the shoulder the cinguli are munerous and prominent, erossing the prominent uarrow ribs so as to produce a distinct, but not coarse, cancellation. It most resembles the figures of B. elegans and B. angulosa of Sars. It is perhaps the original B. declivis (Lovén), but does not agree with Sars's figure.

Bela tenuicostata M. Sars.
G. O. Sars, op. cit., p. 237, pl. 17, figs. 1 a, 7 ; pl. ix, fig. 6 (dentition).

Specimens apparently identical with this species were dredged by me, in moderate depths, at Eastport, Me., in 1564, 1868, and 1870. It was also taken this season at stations 893 and 894, in 365 to 372 fathoms. It is closely related to B. decussata Conth., but has smaller and more numerous ribs, and is, therefore, more finely cancellated. It may be only a variety of B. decussuta. The latter is easily distingnished from all our other species by its oval form, rounded, scarcely shouldered whorls, crossed by very numerous small, narrow, flexuons, sigmoid ribs, which are strongly beut backward near the suture, in conformity with the rery distinct, rounded sinus of the lip. The whole surface, except close to the deep suture, is covered with numerous rather fine, close, raised, revolving cinguli, giving the surface a rather finely and regularly cancellated structure.

Bela Trevelyana (Turton) H. \& A. Adams.
This las been recorded by Jeffreys from the Gulf of Saint Lawrence. He formerly united B. decussata with it, but has subsequently (in liollusea of Valorons Expedition) distinguished them. I have myself seen no American shells agreeing clearly with English specimens of B. Trerelyana. The latter resembles B. deeussata in form and size, but has the ribs nearly straight and the cancellation coarser than in our shell.

Bela impressa ? (Beck) Müreh, Catal. Moll. Spitzberg, p. 17, 1869.
Pleurotoma impressa Leche, Kongl. Svenska Vet.-Akad. Handl., Bd. 16, p. 54, pl. 1, fig. 16, 1878 (anthor's separate copy).
I refer doubtfully to this species a small but very distinct shell frequently dredged by us, in 10 to 70 fathoms, all along the coast, trom off Cape Cod to Nova Scotia. It was also dredged this season at stations 812 to 815 , in 27 fathoms, of Block Islaud.

The shell is greeuish white, short-oval, with about five whorls, which are distinctly flattened and angularly shouldered near the deep suture. There are on the last whorl about twenty rather broad, flat ribs, which are a little prominent and usually slightly nodose at the shoulder, but they disappear a short distance below. The most characteristic feature is that the surface is marked by rather fine, but regular and distinet, revolving grooves or sulei, which are rather distant, with flat intervals. Of these there are usually about three or four on the penultimate whorl, and about twenty on the last, the greater number being below the middle, on the siphon, where they become closer; one of the sulci, just below
the shoulder, is more distinct, and crosses the ribs so as to give their upper ends a subnodulous appearance; below this there is usually a rather wide, smooth zone; no revolving lines above the shoulter. Aperture about half the length of the shell, rather wide, angular; canal short. There is a very distinct, moderately deep, posterior simes; the middle of the outer lip projects forward strongly. Ordinary specimens are about 6.5^{mm} long; 3.5^{mm} loroad; aperture, $.3^{\mathrm{mm}}$ long.

Our shell is not so stout as that represented in the figure of Leche, but it agrees very well in other respects.

Bela exarata (Möller) H. \& A. Ad., Genera, i, p. 92, 1858.
G. O. Sars, op. eit., p. 232, pl. 16, fig. 18; pl. ix, figs. $1 a, b$ (dentition, \&c.).Verrill, Trans. Conn. Acad., v, pl. 43, fig. 15.
A regularly cancellated species of Bela, agreeing with Greenland specimens sent under this name from the University Museum of Copenhagen, is not uncommon, ranging from off Massachusetts Bay to the Bay of Fundy and Nora Scotia. It does not agree perfectly, however, with G. O. Sars's figure of the shell, but its dentition agrees well with his figure and seems to be characteristic. The color of the shell is usually pale greenish or greenish white; texture thin; size medium; whorls turreted, flattened, angularly shouldered close to the suture, with the angle of the shoulder rather sharply nodose. Ribs numerons, regular, nearly straight, narrow but rounded, separated by concare intervals of equal or greater width. Whole surface covered with regular and rather strong, elevated, revolving cinguli, which cross the ribs and produce on them small, rommled nodes, and give a very regularly and strongly cancellated appearance to the whole surface. On the penultimate whorl there are about four cinguli below the angle. The flattened space above the shoulder is crossed by the ribs and cosered with numerous fine revolving lines. Length, 10^{mm}; breadth, 4.5^{mm}; length of aperture, 5.5 mm . A more elongated form, similar to the above, but with the angle of the whorls still more sharply nodose, also frequently occurs. This I have supposed to be the male of the same species, but it agrees closely with Sars's figure of Bela mitrula (Lovén). The dentition of B. exarata closely resembles that of the latter, as figured by Sars. The teeth are umsually long and large for the size of the shell, rather slender, somewhat curred, acute, with one side excarated to near the tip; basal part short, a little thickened, notched deeply on one side, obtuse.

Living specimens were also dredged this year at stations 880, 892, and 894, in 252 to 487 fathoms.

Bela rugulata (Möller) H. \& A. Ad., Genera, i, p. 92, 1858.
G. O. Sars, op. cit., p. 230 , pl. 23 , fig. 6 ; pl. viii, figs. $13 a-c$ (dentition).

This is one of the several species that have commonly been confounded under the name of "Bela turricula".

Our shell agrees well with the figures and description given by G. O. Sars, both as to its external characters and dentition. The sculpture
is rather coarse, the ribs being strong, with wider and concave intervals: the whorls are strongly angulaly shonldered, each of the ribs ending in a distinct nodule, formed by the first spiral groove below the shoulder, which is stronger than the rest; the flattened subsutural area is nearly or quite destitute of spiral lines, bat is erossed by slight flexnous extensions of the ribs; the whole surface below the shoulder is covered with stroug spiral lines, between the ribs. On the upper whorls a few of the revolving lines are stronger than the rest, forming with the ribs a coarsely cancellated structure.
The dentition is very characteristic, and entirely different from B. exarata, B. harpulariu, and other allied forms. The uncini are broad, flat, lauceolate, with a sharp, slightly barbed tip, and with a broad bilobed base.

This species has frequently been dredged by us in Massachusetts Bay, Bay of Fundy, \&e., in 5 to 50 fathoms.

Bela simplex (Middend.).
G. O. Sars, Moll. Reg. Aret. Norv., p. 239, pl. 17, fig. 4 ; pl. 23, fig. 11; pl. ix, fig. 9 (dentition).
Bela levigata Dall (teste G. O. Sars).
One dead, but fresh, small specimen, from station 894 . The whorls are very couvex and evenly rounded, nearly smooth, but covered with fine and close spiral lines, erossed loy still finer lines of growth; sul)sutural zone smootl. The apex of the spire is acnte. The three apical whorls are chestuut-brown; their surface is finely decussated by equal lines running in opposite directions.

Bela hebes Verrill, sp. nov.

Shell short-fusiform or subovate, with a short, blant spire and fire well-rounded, slightly turreted whols: suture impressed. Sculpture numerous small, regular, raised, spiral ridges, with wider interspaces, those just below the suture stronger and more distant; lines of growth faint. Aperture narrow-ovate. Onter lip expanded belor the suture, then regularly rounded, thin; the posterior simus is broad and shallow; canal short and broad, straight; colnmella regularly incurved. Epidermis thin. greenish white. Length, $8^{m m}$; breadth, $5^{m m}$; length of aperture, 5^{mm}; its breadth, 1.80^{mm}; length of body-whorl, front side, $6.3 \mathrm{~J}^{\mathrm{mm}}$.

Stations 891 and 892 , in 500 and 487 fathoms; four specimens.
Pleurotoma (Pleurotomella) Agassizii Verrill \& Smith.
Amer. Journ. Sci., xx, p. 394, for Nov., 1880 (published Oct. 25).
This large and elegantly scuptured species occurred sparingls, living, in many of the off-shore localities ($869,871,874,875,880$), in 65 to 252 fathoms, but it was taken in larger numbers at statious 891 to 895 , in 238 to 500 fathoms. The two nuclear whorls are rery small, chestmutbrown, scarcely carinated, romded, with the surface finely camcellated by lines running obliquely, in two directions, but close to the suture only the transverse lines appear.

Pleurotoma (Pleurotomella) Pandionis Verrill, sp. nov.
Shell large, thick, tull brownish yellow, with a very acute, elevated spire; whorls nine, very oblique, moderately convex, concave below the suture; whole surface covered with close lines of growth, which recede in a broad curve on the subsutural band; mumerous fine, unequal, raised, spiral lines cover the whole surface, except the subsutural band. The upper whorls are also crossed by sixteen to eighteen blunt, transverse ribs, abont as broad as their interspaces, most elevated on the middle of the whorls, fading out above and below. Aperture elongated, narrow; simus broad and well marked, just below the suture; canal short, nearly straight. Operculum absent. Length, 43^{mm}; breadth, 14.5^{mm}; length of aperture, 19^{nm}; its breadth, 5.5^{mm}.

A large specimen was taken alive at station 895 , in 238 fathoms.
Pleurotoma Carpenteri Verrill \& Smith.
Amer. Jonrn. Sci., xx, p. 395 (published Oct., 1880).
Only a few specimens were taken, stations 871 to 873 , in 86 to 115 fathoms.

This species very likely belongs to Mangelia, but I have had for examination no specimens with the animal.

Taranis Morchii? (Malm) Jeffreys, Annals and Mag., v, 1870.
G. O. Sars, Moll. Reg. Arct. Norv., p. 220, pl. 17, fig. 8.

Two good examples of a prettily sculptured shell, which I refer doubtfully to this species, were taken at station 894 , in 365 fathoms, off Newport, R. I. They do not agree fully with Sars's figure and description.

Whorls six, the lower ones sharply angnlated and carinated. There are five revolving, nodulous caring on the body-whorl, one close to the suture; the second and most prominent surrounds the periphery; the other three are on the anterior half; some faint additional ones appear on the canal; the three preceding whorls have the subsutural and the sharp centrol carina, and usually the third carina is more or less exposed at the suture. Between the first and second carinæ the surface is flat or slightly concave. The whorls are crossed by numerous thin, delicate, flexuous, regularly spaced, raised ribs, which are conspicuons between the carine, and prodnce sharp nodules where they cross them. The mucleus is small, rounded, light chestnut-brown, minutely cancellated with microscopie lines rmning in two directions. Sims of the lip shallow, rounded. Length, 4^{mm}; breadth, 2^{nm}.

The principal lifference between our specimens and the form figured by Sars is that in the latter there are more carina, two of which surround the periphery, instead of one.

Taranis pulchella Verrill, sp. nov.
A smaller and more slender species than the preceding, with a more acute spire, and with the carinæ sharp, but not nodulous. Whorls seven, angular, the lower ones carinated and shonldered. Body-whorl
with six revolving carine, besides one or two on the canal ; one is just below the suture; the three largest surround the periphery, the median one most prominent. Between the subsutnral and second carine the surface is concave and crossed by numerous elevated, thin, curved riblets, corresponding to the labial simus; similar but less prominent and less curved riblets cross the interspaces between the other carina, but do not cross the carine themselves. Penultimate whorl with the subsutural and two peripheral carine. Preceding whorls withont distinct carine, except the subsutural one, but with the curved, trausierse, raised riblets well dereloped. Nuclear whorls very small (surface eroded). Aperture naroor, angular; canal short, slightly turned to the left; outer lip with a distinct, evenly rounded sinus below the subsutural carina. Columella slightly incurved and flattened. Length $1 \mathrm{l}, 2.20^{\mathrm{mm}}$; breadth, $.90^{\mathrm{mm}}$; length of body-whorl, 1.40^{mm}; of aperture, $.9 . \mathrm{J}^{\mathrm{mm}}$.
Station 892, in 487 fathoms; one specimen.
Marginella roscida (?) Ravencl.
A single dead specimen, closely resembling this species, was taken at station S65, in 65 fathoms.

Tritonofusus latericeus (Mäll.) Mr̈̈rch.
Sipho lutericens G. O. Sars, Moll. Reg. Arct. Norv., p. 2 f6, pl. 15, fig. 8; pl. x, fig. 24 (dentition).
Several specimens, apparently of this species, were taken at stations 894 and 895 , in 238 to 365 fathoms, off Newport. It hat previously becu dredged in the Gulf of Saint Lawrence by Dr. J. W. Dawson.

Our shell is long.fusiform, with an elevaterl, acute spire; whorls eight, morlerately convex, crossed by strong, prominent, rounded ribs (about cighteen on the last whorl), separated by concave interstices, wider than the ribs; whole surface covered with fine and regular spiral grooves, defining raised spiral lines of about double their width; these lines cross the ribs as well as their interspaces. Nuclear whorl small, a little eccentric and incurvel. Aperture long-ovate, narror. Canal somerhat elougated, nearly straight, narrow; the outer lip is contracted or incurvel at its base. Length, $\simeq 0^{\mathrm{mm}}$; breadth, S^{mm}; length of aperture, 10^{mm}; its breadth, 3^{mm}.

Neptunea (Sipho) cælata Verrill, sp. nov.
Shell resembling the last, small, subfusiform, with an elevated spire, which is less acute than in the preceding, while the aperture is shorter and the canal is shorter and more recurved than in that species. Whorls six, moderately convex, with impressed sutures. the upper whorls decreasing more rapidly. Nuclear whorls vers small, regular, smooth, not distinctly incurved. Sculpture broad, rather prominent, rounded ribs, with wider concare interspaces, and over the whole surface mumerons small, narrow, unequal, raised spirail lines, separated by wider grooves The whole surface is also covered with very tine and regular raised lines of growth, which cross and ronghen the spiral raised lines, and are more
conspicuous in the grooves, producing a fine decussated structure. On the last whorl are fourteen to sixteen of the transverse ribs or folds; these become ohsolete just below the periphery, so that on the base there are only spiral lines and lines of growth. Apertare narrow-ovate. Onter lip evenly romderl in the middle, but contracted at the base of the canal, which is short, rather narrow, and distinctly recurved. Columella decidedly curved. Epidermis thin, yellowish white, closely adherent, with distinct lines of growth. Length, 14.5^{mm}; breadth, 7^{mm}; length of aperture, with canal, 7^{mm}; its breadth, $3^{\text {min }}$; length of bodywhorl, front side, $10 \mathrm{~m}^{\mathrm{mm}}$. Stations 591 to 895,238 to 500 fathoms, with the preceding; several specimens, living.

Neptunoa (Sipho) araîa Verrill, sp. nov.
Stations 869 to S80, 893 to 895; common. Nearly all our deep-water specimens related to N. Stimpsoni Mörch (=Fusus Islandicus Gould) differ widely from the common shallow-water form, in having the whole surface much more strongly sulcated by broader, deeper; and less numerons spiral grooves. On the upper whorls there are seven or eight of these broad grooves, separating llattened spiral ridges of about the same width; on the last whorls the ridges become broader, and each of them is divided at summit by a smaller secondary groove. The canal is rather long, slightly recurved. Columella twisted, but not much bent. Epidermis not pilose, yellowish brown, often in raised lines along the lines of growth. Color within aperture bluish white, the columella and canal tinged with flesh-color or pale salmon. Length, 80^{mm}; breadth, 30^{mm}; length of aperture, with canal, 45^{nm}; its breadth, 14^{mm}.

The typical, nearly smooth variety of N. Stimpsoni Mörch is perhaps the same as N. glabra Verkruzen, sp. (=Sipho glaber G. O. Sars).

Neptunea (Sipho) propinqua (Alder).
Fusus propinquus Alder, Catal. Moll. North. \& Durh.; Jeffreys, British Coneh., iv, p. 338 ; v, pl. 83, fig. 3.
Neptunca propinqua Veriill, Amer. Journ. Sci., xvi, p. 210, 18:8.
This shell was first taken by ns, in 1877, off Cape Sable, and off Halifax, Nova Scotia, in 88 to 100 fathoms, where it was common. This season it ocenrred in abundance, living, and of good size, in most of our outer dredgings, being the most common species of this family, except N. pygmea. It occurred at all the stations from S65 to 874, 876 to 880 , 893 to 895 , ranging in depth from 65 to 487 fathoms. It was most abuudant at 869 to 871,894 and 895 , in 115 to 365 fathoms.

Although it does not agree perfectly with the Luropean specimens of N. propinqua that I have had for comparison, I have recorded it under this name, largely in deference to the opinion of Mr. W. H. Dall, who has made a special study of this group, and who has had some of our specimens for comparison.

This shell is somewhat stouter and more ventricose than the ordinary forms of N. Stimpsoni and N. arata, from which it differs, also, in having
an olive-colored, ciliated epidermis; the canal is shorter and more curved and twisted; the suture is slightly chameled, and the aperture is broader than in either of these species. The sculpture consists of regular, narrow, spiral grooves. The aperture is white.

Buccinum cyaneum Brug.; Stimpson.
Buceinum Grönlandicum G. O. Sars, op. cit., p. 259, pl. 25, fig. 1; pl. x, fig. 11 e, b (nou Stimpson).
This speeies was dredged in the summer of 1879 , by the "Speedwell", off Cape Cod, in 90 fathoms. It was dredged by us in 1877, off Cape Sable, Nora Scotia, in 80 to 90 fathoms, compact sand, and off Halifax, in 100 fathoms, and has often been brought in from the banks off Nova Scotia by the Gloncester fishermen, but it was not previonsly actually known from the New England coast.

Nassa nigrolabra Verrill, sp. nov.
Shell minnte, long-ovate, nearly smooth, pale olive, with the edges of the lips blackish. Whorls five, slightly rounded, with shallow sutures; spire elevated, not very acute. Surface covered with close, regular, microscopic lines of growth, and with less distinct revolving lines; canal with a few minute, distinct, spiral groores. Aperture short-ovate; canal wide and very short ; outer lip romuded, with edge flaring, thickened and revolute, with a row of minute norlules on the inside; imer lip consisting of a broad, smooth, glossy, brownish-black deposit of enamel on the body-whorl and columella; columella nearly straight; no umbiliens. Length, 2.85^{mm}; breadth, 1.40^{mm}; length of aperture, 1.20^{mm}.

Station S70, in 155 fathoms; one specimen. It is referred to Nassictonly provisionally. The animal is not known.

Lunatia nana (Müller).

G. O. Sars, op. cit., p. 159, pl. 21, figs. $16 a, b ;$ pl. v, fig. 14 (dentition).-Verrill, Proc. Nat. Mus., ii, p. 197, $18 \% 9$.
In addition to the localities off Cape Cod and on Le Have Bank, previously cited by me, this species has been taken at other localities on our coast. It was taken by Prof. S. I. Smith and myself at Eastport, in 1864; by Prof. H. E. Webster at Seal Cove, Grand Menan, in 1872; by Mr. J. F. Whiteares in the Gulf of Saint Lawrence; and by our parts in 1880, twenty miles south of Block Island, in 28 fathoms.

Lunatia levicula Verrill, sp. nov.
Shell light, thin, and rather delicate, broad-ovate; spire moderately elerated, subacute. Whorls five, evenly rounded; suture distinct. Aperture orate, well romided below. Onter lip short, simons along the edge, the upper portion considerably adrancing where it joins the body-whorl. Inner lip partially reflexed over a rather small, deep umbilicus, but not thickened, and forming a mere film on the hody-whorl, above the umbilicus. Surface covered with distinct and rather coarse, simons lines of growth, parallel with the edge of the lip, and, like it, advancing as they approach the suture. Color (of a dead but fresh
shell) pale brownish yellow; the spire, when worn, and the interior, yellowish brown. Other specimens are white or yellowish white. Length, $32^{\mathrm{mm}} ;$ breadth, 25^{mm}; length of aperture, 27^{mm}; its breadth, 15^{mm}.

This shell was first dredged by me near Eastport, Me., in 1870. It has since been dredged by the United States Fish Commission parties in Casco Bay, Me., and also off Block Island, stations 812 to 814, in 26 to 28 fathoms. It is still a very rare species. It has some resemblance to Acrybia flava, on account of the lightness and thinness of the shell, as well as in form, but the shape of the aperture is different, and there is a distinct umbilicus. The columella is also much less incurved.

Lamellaria pellucida Verrill.
Amer. Journ. Sci., xx, p. 395, for Nov. (published Oct. 25, 1880).
Animal broad-elliptical, well rounded, both anteriorly and posteriorly; back convex or somewhat swollen, smooth, without tubercles; branchial sinus, in anterior edge of mantle, shallow but distinct; tentacles slender, tapered ; eyes small, black, on the outer basal portion of the tentacles; foot oblong, well developed, reaching nearly to the posterior end of the mantle when extended. Color of the mantle yellowish brown, blotched irregularly with dark brown; some specimens were paler, others darker brown.

Odontophore long and narrow, with three rows of teeth; central tooth much smaller than the lateral, its basal part oblong, with nearly parallel sides and squarely truncate at the end; tip acute-triangular, strongly curved forward, with a prominent, sharp, median denticle, and a row of four or fise much smaller denticles on each side. Lateral teeth very large, strongly incurved, and hollowed out on the concave surface, with both edges serrate; the inner edge has the serrations coarser, not reaching the tip, which is smooth, stout, acute. The basal portion of the lateral teeth is furnished with a broad, sinnous, aliform lobe on the outer edge; the basal end is slightly expanded and obtusely round or subtruncate.

The most important difference between the dentition of this species and that of L. perspicua and L. latens (Miill.) is in the form of the basal portion of the median teeth; in both the European species this is divided into two divergent lobes, separated by a deep notch.

Shell ovate, with a well-formed spire, very thin and delicate, smooth, lustrons, and transparent. Aperture broad-ovate, much larger than the body of the shell, but not so large and open as in L. latens. The interior of the spire cannot be seen in a ventral view, but is risible in an end view from the front. The spire is oblique, somewhat elerated, and slightly pointed, with a minute nuclens. Whorls three, well romuded; sutures impressed. Onter lip very thin, sloping or somewhat flattened posteriorly; somewhat expanded and well romded anteriorly; imer lip receding in a deep, regular incurvature of the body-whorl, which has a sharp, thin edge that winds spirally into the interior of the spire. Sculp-
ture none, except indistinct lines of growth; surface smooth and shining throughout.

Length of the animal in life about $15^{\text {nim }}$ to 20^{mm}; length of shell, 12.5^{mm}; breadth, 10^{mm}.

Stations 870 to 872 , sonth of Martha's Vineyard, in 86 to 155 fathoms, fine sand (16 specimens, living).

The shell of this species, in form, closely resembles that of the Enropean L. perspicua (not of Gould), but the differences in the mantie aud dentition will clearly separate it. Specimens of both sexes oceurred, and they had the same form and color externally.

The "Lamellarit perspicua" of Gould was based, in part at least, upon Marsenina glabra. A species of Lamellaria oceurs at Eastport, Me., which may be distinct from the preceding.

Marsenina prodita (Lovén) Bergh.
G. O. Sars, Moll. Reg. Arct. Norv., p. 151, pl. 12, figs. 5 a-c; pl. v, figs. $7 a, b$ (dentition).-Verrill, Trans. Conn. Acad., v, pl. 42, tigs. 2, $2 a$ a
This species was taken, living, at Eastport, Me., by Prof. S. I. Smith and myself, in 1864 and 1868. It is easily recognized by its comparatively prominent, acute spire, turned to one side, by its obliquely elongated aperture, and by the margin of the outer lip being slightly inflexed near the suture. It has not been previonsly recorded from the American coast, south of Greenland.

Marsenina glabra Verrill.
Oxinoë glabra Conthouy, Boston Jumrn. Nat. Hist., ii, p. 90, pl. 3, fig. 16, 1838. Lamellaria perspicua (pars) Gould, Binney's e!., p. :3:37, fig. 607 (?).
Marsenina micromphala Bergh.-G. O. Sars, op, ،it., p. 151, pl. 21, figs. 10 a-d.Verrill, Trans. Conn. Acad., v, pl. 42, figs. 1, 1 u.
This species is not uncommon at Eastport, Me., where I collected it in $1859,1861,1863,1864,1868,1870$, and 187. . It was dredged last year by our party, on the "Speedwell", off Cape Cod, in 34 fathoms. It has a much smaller and less prominent spire than the preceding, and a more regularly oblong-oval aperture. The shell is smooth, white, thin, and delicate in both species, but more transhucent in the present one.

There can be no doubt, from the description and figure, that the Oxino glabra of Couthouy was a Marsenina indistinguishable from this species, which is the commonest of the group on our coast. The M.micromphala, well described and figured by Sars, appears to agree perfectly with our form, both in the animal and shell.

Gould appears to have confounded tro or more species under his L. perspicua. His figure (158) in the first edition does not represent this species ; the figure 607 of Bimney's edition is different, and may be this shell. As a gemuine Lemellaria, having its shell entirely inclosed in the mantle, also occurs on our coast, not rarely at Eastport, Me., it is not improbable that Gould may have had its shell among those examined by him. Its identity with L. perspicue of Europe is very doubttul, however.

Marsenina ampla Verrill, sp, nor.
Trans. Conn. Acad., v, pl. 42, figs. 3, 3 a.
Shell broad-oval, white, nearly opaque, fragile, with conspicuous lines of growth, but otherwise smooth; whorls scarcely two; last whorl very large, constituting nearly the entire shell, and nearly concealing the first whorl, which appears only as a minute incurved nucleus, sitnated in an apical depression. Aperture broad, oblong-oval, showing the interior of the spire to the apex. Outer lip thin, distinctly expanded and slightly shouldered near the suture, somewhat straight along the right and left sides, regularly rounded in front, slightly excurved where it joins the inner lip, which consists of a narrow and thin coating, conformable to the columella surface, but with a distinet, narrow groove, and with the edge slightly raised as a narrow lamina in the umbilical region. The columella-edge is sigmoid and very much incurved in the umbilical region.

Length, 11^{mm}; brearlth, 8^{mm}; depth of last whorl, 5^{mm}.
Eastport, Me. Dredged in 1868, by the writer.
Velutella cryptospira (Middend.).
G. O. Sars, Moll. Reg. Arct. Norv., p. 149, pl. 21, figs 9 a-c.

A goorl living example of this shell was taken by us in 1877, off Halifax, Nora Scotia, in 57 fathoms (station 82).

The shell is very thin, translucent, yellowish horn-color, flexible, and but slightly ealcified, with no sculpture except fine lines of growth. The spire is small, incurved, and depressed, so that the apical whorl is not visible in a front view. The aperture is elongated. The onter lip expands rather abruptly posteriorly, and is prolonged anteriorly.

Length, 8^{mm}; breadth, 5^{mm}; length of apertnre, 6.5^{mm}.
Trichotropis conica Mäller.
Kröger's Tidss., ir, p. 85, 1842.-G. O. Sars, op. cit., p. 163, pl. 13, fig. 3.
A single dead, but large and characteristic, specimen of this very distinct species was taken in the Gulf of Maine, off Cape Sable, Nova Scotia, in 75 fathoms, by the United States Fish Commission party, on the "Speedwell", in 1877. It is easily recognized by its conical spire and its flattened base, covered with revolving grooves and ridges. The revolving ribs on the spire are stronger than those on the base, and unequal.

Rissoa (Cingula) harpa Verrill, sp. nov.
Shell small, white, translucent, acute-conical, with five very convex, rounded whorls and deeply impressed sutures; body-whorl large; apical whorl very small, smooth, regnlar. Sculpture very regular, wellraised, roundeal, transverse ribs, about twenty-six on the last whorl, separated by spaces rather wider than the ribs; and fine, close, microscopic spiral lines, which cover the interspaces. Aperture nearly cirenlar, slightly effuse in front. Outer lip thin, regularly rounded; inner lip) reflexed in the umbilical region, and continued on the body-whori only
as a thin layer of enamel. Umbilicus a small but distinct chink. Length, 2.75^{mm}; breadth, 1.80^{mm}. Animal unknown.

Dredged by us off Massachusetts Bay, 1877, station 34, in 160 f̂athoms; and off Newport, at stations 892 and 894, in 487 and 365 fathoms.

Cingula turgida (Jeff.) Verrill.
Liissoa turgida Jeffreys.—G. O. Sars, Moll. Reg. Arct. Norv., p. 183, pl.10, figs. $12 a, b$.
A rery small, white species, with smooth, rounded whorls and distinct umbilicus. Station 892, in 487 fathoms.

Cingula Jan-Mayeni (Friele) Verrill.
Rissoa Jau-Mayeni Fricle, Nyt. Mag. Naturv., 1877 (auth. cop., p. 4, fig. 4).
Cingula Jan-Mayeni Verrill, Amer. Journ. Sci., xvii, p. 311, Apr., 1879.
This species was common at stations 891 to 894 , in 238 to 500 fathoms. A single specimen occurred at station 880 . It was originally from off Greeuland, 70 to 300 fathoms. Whiteares has dredged it in the Gulf of Saint Lawrence, 200 fathoms, but it had not hitherto been taken on the New England coast.

Lepetella Verrill.
Amer. Journ. Sci., xx, p. 396, Nov., 18ino.
Shell small, smooth, oval or oblong, limpet-shaped, conical, with a simple subcentral apex, not spiral. Animal much as in Lepeta, but with distinct eyes. Odontophore trenioglossate, with seven regular rows of teeth; median tooth a rather broad, thin plate, with incurved, smooth, convex edge, narrower than the base; imer lateral tooth stont, with a broad base and a single incurved, terminal denticle; second lateral tooth larger, with a broader flat base and two terminal incurved denticles; outer laterals smaller, flattened, subtriangular plates.

Lepetella tubicola Verrill \& Smith.
Loc. cit., p. 306, 18×0.
Shell thin, white, smooth, conical, with the apex acute and nearly central; aperture broad elliptical, oblong, or subcircular, usually more or less warped, owing to its habitat; edge thin and simple. Sculpture none, lines of growth slight, outer surface dull white; imner surface smooth, with the pallial markings faint. Length of largest specimens, 3.75^{mm}; breadth, 3^{mm}; height, 2^{mm}. On inside of old tubes of Hyalincecia artifex V.; twenty-seren were taken from one tube. Stations 869, 192 fathoms, and 894, 365 fathoms.

Lovenella Whiteavesii Verrill, loc. cit., p. 396, 1880.
Cerilhiopsis costulatus Whitcaves (non Möller).
A small and elegant species, allied to L. metula (Lovén). Elongated, subulate; spire regularly tapering to the acute apex; whorls nine, slightly convex, with a prominent, nodulous, revolving carina below the middle, and a swaller one just below the suture; on the body-whorl another less elevated and scarcely nodose carina revolves in line with
the edge of the lip; below this the base is smooth. Whorls crossed by numerous transverse, curved, elevated, rounded costr, which are about as wide as their intervals, and in crossing the two upper cingulæ form small rounded nodes at their intersections. Aperture broad; columella much incurved above; canal distinctly excurved and twisted; outer lip with three angles corresponding with the three carinæ. Length, 4.5^{mm}; breadth, 1.5^{mm}. The largest specimen measures, in length, 6.25^{mm}; in breadth, 2^{mm}. Stations 891, 892, and 89t, in 365 to 500 fathoms; Gulf of Saint Lawrence, 200 fathoms, J. F. Whiteares.

Truncatella truncatula (Drap.).
Jeffrey's British Conch., iv, p. 85, pl. iv, fig. 1.-Verrill, Amer. Journ. Sci., xx, p. 250, Sept., 1880.
This speecies was fomd by the writer, living in considerable numbers, and of all ages, among the docks at Newport, R. I., July, 1880. It occurred among decaying sea-weeds thrown up at high-water mark, both among the regetable matter and on the under sides of stones. It was associated with Alexia myosotis, Assiminea Grayana, Anurida maritima, Orchestia agilis, \&c.

It may possibly have been introduced in recent times by commerce, like the Littorina littorea, now so common on our shores; but if so, it has, like the latter, become thoroughly naturalized. This is the first time that it has been observed on our coast, so far as known to me.

Solarium boreale Verrill \& Smith, sp. nor.
A small, pretty, pale yellowish brown species, with a strong carina-like, rounded, nodulons rib around the periphery. Height, 2.5^{mm}; breadth, 5^{mm}.

Two living specimens from station 871,115 fathoms. The spire is low and flattened ; nuclear whorl smooth, obliquely incurved, reddish ; bodywhorl strongly keeled, triangular ; above the keel, flattened, and near it, are about six small spiral ribs, separated by impressed lines; upper surface of whorls also crossed by numerous flexuous, transverse, low ribs, with shorter ones interpolated toward the periphery. Base a little convex, about as much so as the spire; toward the periphery corered with numerous fine spiral lines; also covered with many low ribs radiating from the umbilicus, around which they are nodulous. Aperture triangular, with a motch corresponding to the keel.

Scalaria Pourtalesii Verrill \& Smith.
Amer. Journ. Sci., xx, p. 395, Nov., 1880.
Three fine specimens, one of them living, from stations 871,873 , and 874, in 85 to 115 fathoms.

Scalaria, sp.
An undetermined Scalaria, having the sculpture much as in S. Grönlandica, but more slender in form, was taken at station S73. The spiral lines are rery distinct between the ribs, and also extend over them.

Scalaria Dalliana Verrill \& Smith.
Amer. Journ. Sci., xx, p. 395, Nov., 1880.
Several specimens, living, fiom stations S69, S70, S71, and S74, in 65 to 155 fathoms.

Acirsa gracilis V errill, sp. nov.
Shell white, with a long, slender, regularly tapered, rather acute spire and deeply impressed sutures. Whorls eight, evenly rounded, all except the last crossed by slightly raised but distinct romnded ribs, separated by wider interspaces; the ribs are most elevated just below the sutures and on the upper whorls. Lower whorls with numerous (eight or more) fine, slightly impressed spiral lines, producing narrow spiral cinguli, of which the lowest on the last whorl is strougest and borders the base of the shell, which is convex and smooth. The spiral lines are absent near the sutures. Month round-ovate, slightly effuse in front. Inwer lip slightly reflected. No umbilicus.

Stations S73 and S94, in 100 to 395 fathoms.
This species is much more slender than Acirsa costulata Migh., sp., 1841 ($=$ A. borealis and A. Wschrichtii of anthors), and its ribs are more regular and distinct. A. prelonga Jefireys has much finer seupture.

Aclis Walleri Jeffreys.
G. O. Sars, Moll. Reg. Arct. Norv., p. 196, pl. 11, fig. 18.

Three living specimens were taken at stations S93 and S94, in 487 and 365 fathoms.

Aclis striata Verrill, sp. nov.
Shell small, white, somerhat lnstrous, fragile, with moderately elerated spire; whorls six, well rounded, with deep sutures, the last one rentricose. Scnlpture muncrous fine, close, spiral grooves, covering the whole surface. Aperture simple, ovate. Onter lip thin, with a wide and rather deep sinus below the suture, but projecting strongly forward in the middle, where it is regularly romded, then recedes somewhat anterionly, joining the inner lip in an even curve. Inner lip discontinuous, slightly concave and reflected in the umbilical region, where it joins the body-whorl. Umbilicus narrow, but deep. Nuclear whorl small, regular, smooth. Length, $4^{\text {min }}$; breadth, $2^{m m}$.

One specimen was dredged by me in the Bay of Fundy, near Eastport, Me., in 1868; another was dredged in deep water off Newport, R. I., this season, by the United States Fish Commission.

This species is provisionally reterred to Aclis because of its general resemblance to known species of that genus. Both my specimens were dead, and I have, therefore, no means of knowing the structure of the animal. Its regular apical whorl shows that it is not an Odostomia. TLe marked sinus of the outer lip and the distinct nmbilicus are features not found in any other shell of our coast of similar size and appearance. Dead and broken specimens might be taken for bleached Cingula aculeus,
but the latter has a different aperture, continuous lip, and no umbilicus, and its sculpture is coarser.

Calliostoma Bairdii Verrill \& Smith.
Amer. Jouru. Sci., xx, p. 396, for Nov., 1880 (published Oct. 25).
Stations 865 to 874 , in 65 to 192 fathoms; many living specimens. Most common at stations S69 and S71, in 192 and 115 fathoms.

Margarita regalis Verrill \& Smith.
Amer. Journ. Sci., xx, p. 397, for Nov., 1880 (published Oct. 25).
Stations 870,871 , 880 to 895 , from 115 to 500 fathoms. Most abundant at stations 892 to 894 , in 365 to 487 fathoms.

Margarita lamellosa Verrill \& Smith.
Amer. Journ. Sci., xx, p. 397, for Nov., 1880 (published Oct. 25).
Statious 869 and 871,115 to 192 fathoms. Only two specimens obtained.

Margarita, sp. nov.
A small, elevated, conical, nearly smooth, white, and iridescent species, with a small, narrow umbilieus, was dredged by us off Halifax, Nora Scotia, in 1877. The specimen is not now at hand for accurate description.

Machæroplax bella (Verk.).
G. O. Sars, op. cit., p. 137, pl. 9, figs. 5 a-c.

An elegant species, allied to M. varicosa, but with more elaborate sculpture. As in the latter, the whorls are crossed by oblique, flexuous, rounded, transverse folds, but there are, in addition, in M. belle four conspicuons revolving ribs on the last whorl; the upper one is large and nodulons, giving the whorls an angular or somewhat carinated form; the two lower ribs are smaller and close together, the third one at, and the fourth just below the basal angle of the whorl. Ou the other whorls only the two upper ribs are visible. Base with curved tramsverse ridges, crossed by fine revolving lines. Umbilicus moderately large and deep, with rery distinct spiral lines within it.

Off Cape Sable, Nova Scotia (loc. 47), 90 fathoms, fine, compact sand, United States Fish Commission, 1877. Oue living and one dead specimen. New to the American coast.

Cyclostrema trochoides (Jeff. MSS.) Friele.

Arch. Math. Naturv., 18i6, p. 308, pl. 4, figs. 2 a, b-G. O. Sars, op. cit., p. 131, pl. 8 , figs. 9 a-c.
A few specimens of this little shell were trawled at stations 892 and 894, in 487 and 36 fathoms. In our specimens the umbilicus is, in most cases, a narrow chink, but in one it is closed. There are distinct spiral lines immediately around the umbilicus. It is new to the American waters.

Assiminea Grayana Leach.
Jeffrey's British Conch., v, 1. 99, pl. 4, fig. 1; pl. 97; fig. 5.-Verrill, Amer. Journ. Sci., xx, p. 250, Sept., 1880.
This was found in Jnly of this year, by the writer, living among decaying sea-weeds, at high-water mark, between the docks at Newport, R. I. It was associated with Alexia myosotis and Trumeatella truncutula, and was rather more abondant than either of the latter. Dramings of the animal of this and the two species last named were made by Mr. J. H. Emerton. The animal agrees well with the figmes and descriptions of the European examples. It has not been recognized as American before.

Eulima intermedia Cantraine.
G. O. Sars, op. cit., p. 210, pl. 11, fig. 20 ; pl. xviii, fig. 41.

Several living specimens were taken at stations $870,871,874,876$, and S77, in 85 to 155 fathoms. It has previonsly been known from deep water in the Mediterranean, and off the Canary Islands, Lofoden Islands, and Finmark (200 to 300 fathoms).

This shell is more slender than E. oleacea. The sutures are not at all impressed; the whorls are flattened so that the spire has a regular, long-conical form. Aperture regularly orate. The surface is smooth, polished, and shining. Color of shell pure white, translucent; in life the animal shows through, giving it a pale orange or salmon color. Length, 5.6^{mm}; breadth, 1.6^{mm}.

Eulima distorta Deshayes.
G. O. Sars, op. eit., p. 210, pl. 11, fig. 23.

A simgle living specimen of this curious little shell was obtained at station 571 , in 115 fathoms.

Turbonilla nivea Stimpson, Check List.
Chemnitzia nivea Stimpson, Proc. Boston Soc. Nat. Hist., iv, p. 114, 1851; Invert. Grand Manan, p. 23, 1853.
One perfect specimen of this very rare shell was dredged at station 871, in 115 fathoms.

It• is distinguished by its very slender, elongated form, with twelre flattened, closely coiled whorls and slightly marked sutures. The sculpture consists of well-marked, regular, transserse, rounded ribs, with smooth interstices; no spiral lines. Color white; surface shining. Apical whorl small, incurved, and reversed. Length, 6.5^{mm}; breadth, 1.5^{mm} 。

Turbonilla Rathbuni Verrill \& Smith.
Amer. Journ. Sci., xx, p. 39², Nov., 1880.
Several fine living specimens were taken at stations 865 to 867 , in 64 and 6.5 fathoms, and at stations 893 to 895 , in 238 to 365 fathoms.

Dedicated to Mr. Richard Rathbun, of the United States Fish Commission.

Turbonilla formosa Verrill \& Smith.

$$
\text { Amer. Journ. Sci., xx, p. 398, Nov., } 1880 .
$$

A few living examples of this elegant shell occurred at stations S01 and 892 , in 487 to 500 fathoms.
Turbonilla Smithii Verrill, sp. nov.
Skell long and slender, smooth, polished, white, with a narrow spiral band of light yellowish brown or red just above the suture. Whorls up to twelve, much flattened, little oblique, closely coiled, with the sutures only slightly impressed; apical whorl small, incurved. Sculpture none. Aperture irregular oblong-ovate; onter lip nearly straight for about half its length, rounded and slightly prominent anteriorly. Columella lip nearly straight anteriorly, but curved inward and twisted posteriorly, with a slight spiral fold that winds into the shell. Length, 7.5^{mm}; breadth, 1.5^{mm}.

Stations S71, S73, and S76, in 100 to 120 fathoms.
This elegant and very distinct species I have dedicated to Mr. Sanderson Smith, of the United States Fish Commission party.
Eulimella ventricosa (Forbes).
G. O. Sars, op. cit., p. 209, pl. 11, fig. 19; pl. 22, fig. 16.

A single dead specimen, not in good condition, but apparently belonging to this species, was dredged by us at Eastport, Me., in 186S. A perfect specimen was dredged by us this season, at station S73, in 100 fathoms. This last has a distinetly incurved, small, nuclear whorl; whorls nine, smooth, polished, white, well rounded, with deep sutures. Aperture broad-ovate, slightly effuse in frout. Onter lip broad, well rounded in the middle and projecting well forward. Length, 3.6^{mm}. Odostomia unidentata (Mont.).
G. O. Sars, op. cit., p. 201, pl. 11, figs. C-8.

Odostomia modesta Stimpson.-Gould, Invert. Mass., ed. ii, p. 327, fig. 596.
A single specimen occurred at station 571 , in 115 fathoms. This shell appears to be much more rare on the American than on the European coasts.

Odostomia (Menestho) sulcata Verrill, sp. nov.
Shell small, white, long-ovate; spire regularly tapered, aeute; whorls about sis, moderately convex, covered with many regular, rather strong, revolving grooves. Nuclear whorl strongly inflexed and reversed. Aperture regularly ovate. No tooth on the columella. Length, 2.80^{mm}; of body-whorl, 1.80^{mm}; breadth, 1.40^{mm}; length of aperture, 1.10^{mm}; its breadth, .70 mm .

Stations 871 and 894, in 115 and 365 fathoms.

This differs from all other related species of our coast, except O. striatula Conth. (= Menestho albula Gonld, non Fabr.), in being strongly grooved spirally; from the latter it differs in having fewer whorls and a regularly tapered, acute spire, and in having the spiral lines coarser and fewer. Perhaps it is more elosely related to the real Menestho
albula of Greenland, which, according to Jeffreys, is distinct from our shell, so named by Gould. These three forms all belong to Mcnestho Möller (= Liostomia G. O. Sars).

Auriculina insculpta? (Mont.).
G. O. Sars, op. cit., p. 204, pl. 11, figs. 11, 12; pl. xviii, fig. 33 (operculum).

A single dead and probably immature specimen, which I refer doubtfully to this species, was taken at station 892 , in 487 fathoms. It agrees nearly, in form and sculpture, with the figure (12) given by Sars, but our shell is shorter, ovate-fusiform. There are five slightly convex whorls; the anterior half of the body-whorl is covered with distinct, fine, spiral grooves; nuclear whorl rounded, rather large, partially incurved. Aperture narrow-ovate; a slight fold on the columella; no umbilicus.

Diaphana Brown, 1827 (restrictel) ; H. \& A. Alams.
Ctriculus (pars) Brown, Ill. Brit. Conch., 1844 (non Schumacher, 1817).
Utriculus G. O. Sars, Moll. Reg. Arct. Norv., p. 285.
In 1827 Brown proposed the name Diaphana for certain species of shells figmred by him (but not described), which now are known to belong partly to the restricted modern gemus Utriculus and partly to Amphisphyra Lovén, 1846. But he did not then define the genus, and in a later edition of his rork (1841) he discarded the name and substituted Utriculus for it.* But Utriculus had been used by Schmmacher, in 1817, for a different genus (Conille). Lovén's name (Amphisphyra), established by him for Brown's secoud section of Utrioulus, should, therefore, be retained for that group, which is a good gemes. Diaphanc and Ctriculus, as used by Brown, were absolutely synonymons, but Diephanu, as used b: G. O. Sars, is a synonym of Amphisphyra. In its original sense, Diaphana might be rejected, becanse undefined. But since Utriculus had been preoccupied, it seems necessary to retain Diaphana for the first section of Brown's genus, corresponding nearly with Utriculus of G. O. Sars. This is also in accordance with the nomenclature in Π. \& A . Adlams's Genera of Shells.

The abscnee of an odontophore in Diaphana II. \& A. Adams = Utriculus sars, is certainly a very important character by which the genus can easily be distinguished from Cylichna and Amphisphyra. But this genus camot always be distinguished from Cylicha by the shell alone. On that account Lovén, Jeffireys, and other able conchologists have referred some of the speeies of "Utriculus" to Cylichna.
Diaphana nitidula (Levén) Verrill.
Cylichna nitidula Lovén, op. cit., p. 142, 1846.
Ctriculus vitidulus G. O. Sars, op. cit., p. 286, pl. 17, fig. 13; pl. 26, fig. 3; pl. xi, figs. $6 a, 6 b$ (gizzard, \&e.).
This shell has been dredged by us in several localities in deep water off the coast of New England and Nova Scotia, and by Mr. Whiteaves in the Gulf of Saint Lawreace. This season it was taken at stations 891,892 , and 894 , in 365 to 500 fathoms.
*This elhange was probably first made in the edition of 1834 , which I am mable to consult.

It is a small, very smooth, white shell, in form closely resembling young specimens of Cylichna alba, for which it may easily be mistaken. It lacks the fine spiral lines usually seen on the latter, and is rather more narrowed posteriorly. The apex of the spire is occupied by a shallow depression, and there is no umbilicus.
Diaphana gemma Verrill.
Amer. Journ. Sci., xx, p. 399, Nov., 1880.
Shell ohlong, suboral, widest a little in front of the middle, truncate posteriorly and obliquely romnded anteriorly, with a distinct umbilicus, and also with a narrow, deep pit at the apex. Texture of shell rather solid, somewhat thickened. Onter lip rising somewhat above the spire, forming a rounded posterior angle; thronghout most of its length only slightly convex, often nearly straight; anteriorly, a little expanded and produced, well rounded, thickened. Inner lip more thickened, with the edge a little revolute, but leaving a small and regular umbilicus. Aperture narrow posteriorly, orate anteriorly. Surface smooth and glossy, without any sculpture over the middle region, but with several well-defined, not crowded, but fine spiral groores at each end, visible with a lens. Color grayish white. Length, 4.2^{mm}; breadth, 2.5^{mm}.

Stations 871 and 873,100 to 115 fathoms, fine sand, south of Martha's Vineyard and Newport, R. I.

I have had no oplortunity to examine the animal of this species, and refer it to Diaphana, provisionalls, because of its resemblance to D. umbilicata. It may prove to be a Cylichna. It has some resemblance to C. occulta Mighels (=C. propinqua Sars). The latter is, however, destitute both of the pit at the summit of the spire and of the umbilicus, and its surface is ererywhere covered with distinct spiraldines. Our shell is shorter and stonter than D. umbilicata.

Diaphana conulus (Desh.).
Utriculus comulus G. O. Sars, op. cit., p. 287, pl. 17, figs. 17 a-c.
A perfect living specimen of this rery distinct species was taken at station 870 , in 155 fathoms. It has not been recorded hitherto from the American coast.
Amphisphyra globosa Lesvén, 1846.
Diaphena globosa C. O. Sars, op. cit., p. 290, pl. 18, figs. 3 c, 4 ; pl. xi, fig. 12 (dentition).
Specimens agreeing in all respects with Sars's figures, referred to above, were dredged at stations 870,871 , and 894 , in 115 to 365 fathoms, south of Martha's Vineyard and Nerrport.
Amphisphyra pellucida (Brown) Lovén, 1846.
Diaphana pellucida Brown, Ill. Recent Conch., pl. 19, figs. 10, 11, 1827.
Bulla kiyalina Turton, Mag. Nat. Hist., vii, p. 353, 1834 (uon Gmelin).
Bulla debilis Gould, Invert. Mass., ed. i, p. 164, fig. 95, 1841.
Utriculus hyalinus Jeffreys, Brit. Conch., iv, p. 427 ; v, pl. 94, fig. 7.
Diaphana heyalina G. O. Sars, op. cit., p. 289, pl. 18, figs. 1 a, b; pl. xi, fig. 10 (dentition).
Diaphana debilis Gould, Invert. Mass., ed. ii, p. 216, fig. 507.
This species occurred at stations 876 and 894 , in 120 and 365 fathoms.

The name pellucida clearly lias priority for this species, and should be adopted; moreover, hyalina had been previously used. Jeffreys, although he admits the priority of Brown's name, claims that it is "obsolete" because no one has used it, "except its author". But Lorén, A. Adams and others have correctly adopted it. Moreover, Jeffreys himself does not apply this idea in regard to "obsolete" names in many other cases, as, for example, in the case of Margarita olicacen (Brown), an "obsolete" name revived by him to replace argentata Gould.

Cylichna Gouldii (Couth.) Verrill.
Bulla Gouldii Couthony, Bost. Journ. Nat. Hist., ii, p. 181, pl. 4, fig. 6, 1838.
Utriculus Gouldii Stimpson.-Gould, Invert. Mass. (second ed.), p. 217, fig. 508.
Living specimens of this species, of large size and in considerable numbers, were dredged by us in 1879, off Cape Cod, and especially on the sandy portions of Stellwagen's Bank, Massachusetts Bay, in 15 to 25 fathoms.

An examination of the animal shows that it has a gizzard, with ealcareous plates, while its dentition agrees with Cylichne, to which it should be referred, notwithstanding the character of the spire of the shell. The median teeth are deeply bilobed; the inner lateral ones large and hooked; outer laterals four on each side, slender, spiniform.

This species is very distinet from Diaphana pertenuis ($=$ Bulla pertemuis Migh.), with which it has sometimes been confounded. The latter occurred at station 894 .

Philine amabilis Verrill.

Amer. Journ. Sci., xx, 1. 398, Noy., 1850.
Animal large, about an inch long, eren in alcoholic specimens. In preserved specimens the anterior lobe is large, oblong, truncate behind, obtusely pointed in front, slightly narrowed backward; lateral lobes large; posteriorly the thin membrane covering the shell projects backwards beyond it, and its free edge is divided into several wide, but short, lobes; foot large.

Odontophore with a large inner lateral, hook-shaped tooth on each side, having its inner edge very finely servulate and each of its lateral edges bordered by a sharp ridge; outside of these there is on each side a single, very much smaller, slender, spiniform, very sharp, slightly bent tooth.

Shell large, but exceedingly thin and delicate, diaphanons, lustrous, and iridescent, with a very wide aperture. The ontline is broad-oblong, rounded at both ends; the outer lip, forming the greater part of the shell, is evenly rounded posteriorly, and scarcely projects beyond the level of the spire; in the middle it projects forward in a regular cmere, and recedes rapidly in front, where it also becomes slightly broader, and forms a very obtuse, rounded angle ; the anterior end is broadly rounderl and very much ent away, so that in an eud viers, from the front, the whole interior of the spire is visible. The inner lip is thin and sharp-
edged, and recedes in a broad curve anteriorly, so that the body of the shell is relatively very small. There is a small, shallow pit in the place of the spire. Sculpture inconspicuons; many lines of growth, and very fine, wary, spiral striæ, visible with a lens, cover the whole surface, which has a glistening and opalescent or pearly luster.
Length of the entire animal, 25^{mm} or more; length of shell, 15^{mm}; breadth of shell, 100^{mm}.

Several living specimens from station 876 , about 100 miles sonth of Newport, R. I., in 120 fathoms.

This is one of the largest species of the genus, and one of the most beantiful and delicate.

Philine Finmarchica M. Sars.
G. O. Sars, op. cit., p. 296, pl. 18, figs. $10 a-d$; pl. xii, fig. $1 a, b$ (dentition).

Off Cape Sable, Nova Scotia, 90 fathoms, fine sand, 1877; 70 to 75 miles sonth of Martha's Vineyard, 65 to 192 fathoms.

Philine fragilis G. O. Sars.
G. O. Sars, op. cit., p. 296, pl. 18, figs. 11 a-c; pl. xii, fig. 2 (dentition).

Oif Cape Sable, Nora Scotia, 30 fathoms, fine, compact sand, 1877; Jeffirey's Ledge, Gulf of Maine, 88 to 92 fatloms, 1874 , several large living specimens.

Philine cingulata G. O. Sars.
G. O. Sars, op. cit., p. 297, pl. 26, figs. $7 a-c$; pl. xii, fig. 3.

Off Cape Sable, Nora Scotia, 90 fathoms, with the preceding. Taken this season at stations 802 and 804 , in 487 and 365 fathoms.
These four species of Philine are new to the American coast. Probably additional species of this gemus will be detected when all our collections shall have been fully examined.

Pleurobrancheæa tarda Verrill.
Amer. Journ. Sci., xx, p. 398, Nov., 1880.
Boty subovate, stout, thick, often nearly half as broad as long, usually less, tapering backward and blunt posteriorly; front broad, convex or subtruncate; back more or less courex or swollen in the middle, with the surface wrinkled or irregularly reticulated, with the sunken lines brown, the reticulations smaller posteriorly. Dorsal tentacles sbort, stout, wide apart, ear-like, subtubular, having a slit on the onter side, with the edges often rolled in. Gill rather large, well exposed in a dorsal view, situated on the right side, behind the middle, and equal in length to nearly one-fourth the body, plumose, bipinnate, with 15 or 16 piunæ on the upper side. Foot broad, often nearly as wide as the mantle, subtruncate or romnded in front, narrowed and obtuse posteriorly, ordinarily not extending beyond the mantle. The mantle elge is but little prominent, except along the right side. Proboscis protruded in most of the specimens, large, thick, obtusely tapered close to the end, which is emarginate, showing the large odontophore in a
broad, vertical noth. Reproductive organs large and prominent ; the two orifices are situated on a large tuberele in front of the gill. The male organ, in extension, is long, slender, usually cmbled, truncate, about equal in length to laff the breadth of the body; it is a tubular organ, with a slit along the lower side, formed by the rolling up of a long, thin, membranous process. At the posterior edge of the tubercle there is a shorter, flat-pointed process, comected with the female organs. Color of dorsal surface yellowish brown, lighter or darker, and reticulated with dark brown, often specked with flake white; gill and proboscis dak purplish brown ; the proboseis with a daker dorsal patch; tentacles sometimes crossed by dark brown bands. Foot salmon-color. Odontophore very large and broad, with 150 to 170 rows of teeth; no median teetlo all the teeth are similar in structure, and show only a gradnal change in form and size from the inner to the outer ones. The inner ones are elongated, slightly curved, marow-lauceolate, with a very acnte point and with a smaller, marrow, sharp denticle on the inner edge, parallel to lout shorter than the main point; the onter teeth gradmally become shorter, blonter, with a smaller denticle, which finally nearly disappears. Length, hanally 300^{mm} to 40^{mm}; breadth, 10^{mm} to 14^{mm}.

About 20 miles sonth of Block Island (stations 814 to 817), in 38 fathoms; about 70 to 74 miles south of Martha's Vineyard (stations 86π to $87=$), in 65 to 19 fathoms, fine, compact sand, very almudant (140 specimens). Also 90 to 100 miles sonth of Nemport, R. I., in 85 to 235 fathoms (stations 873 to 859). Closely resembles Plenrobranchere NorceZctlendie in form and color. The latter is a littoral species.

Derdronotus elegans Vertill, sp. nov.
Form and general aprearance nearly as in D. arborescens, but rather more slender. Branchia with rather longer stems and less mmerons branches than in the latter, but similarly arranget. Tentacle sheaths with the terminal lobes not so finely divided, and with a smaller branch on the onter side, near the base. Frontal processes of the head numerous, large, mith elongated stems, and not so much branched as in D. arborescons. Color everywhere nearly miform pale salmon; tentacles more sellowish. The dentition is peculiar and distinguishes it easily from both our other species. Median tooth stont, smooth, entirely destitute of lateral denticles; its free portion, in a dorsal view, is luoal-triangular, almost as broad as long. acute at tip; base transversely elliptical, a little broader than the fiee portion. Lateral teeth abont ten on each side, slender, the outer two or three shorter, bhunt or subacute; the others are successively longer and larger, and each has a more acnte and more oblique tip than those that precede it, except the immer one, which has a shorter tip, with longer spimules. These lateral tecth are rather sublenly curved inward where they begin to taper, and berond the enre the tip becomes neanly straight again, and very acute, while the anterion edge of the carvature is covered with slender, sharp spimules.

Proc. Nat. Mus. $80-25$
Der. 刃is, 1580.

The dentition of this species is rery different from that of D. rolustus and D. arborescens. Both of these have the median teeth serrated, and different in form; the latter has broader and less acnte lateral teeth.

Off Cape Cod (station 330), 26 fathoms, September 6, 1879.
Doris complanata Verrill.
Amer. Journ. Sci., xx, p. 399, Nor., 1880.
Body depressed, broad-elliptical, well romded, both in front and behind, the mantle extending much beyond the foot all around, its edge usially mudulated. The lower side of the mantle is stiffened with spicules; upper surface slightly convex, nearly smooth, but covered with small, rather distant, and but slightly prominent, conical elevations. Dorsal tentacles large, stout, subclavate (not seen in full extension), with rery numerons, crowded, thim, high, lamelliform plications or folds over the entire npper portion; retractile into cavities having plain, sharp edges Gills large, the two lower, on each side, partially conflnent at base, hiphmately and tripinately divided, retractile into a large common cavity, which has plain edges. Anal papilla a prominent, cylindrical tube in the center of the branchial wreath. Foot relati rely small, obtusely rounded posteriorly, emarginate in front, and with a transrerse sulcus on the front edge. Head small, rounded in front, with a free, short, thick, ovate tentacle on each side. Odontophore broad, with about serenty to eighty rows of teeth; no median teeth; abont twentrytwo to twenty-four lateral teeth, ou each side, are stont, hook-shaped, with slarp points, and a slight lobe on the outer cmrature and another on the inner side; ontside of these there are twelve or more shorter, flattened teeth, with obtuse or rounded, incurved, and sharply denticulated or spinulated euds; the outermost teeth are smallest. Length, $50^{\mathrm{mm}} ;$ breadth, 25^{mm}.

Color, above, dull yellowish brown to dusky brown, irregularly finely specked and blotched with dark brown; gills dark brown.

Abont 70 miles sonth of Martha's Vineyard, station 872, in 85 fathoms, among sponges (eleven specimens).
This large species is closely related to D. Johnstoni and D. planatu of Europe. It differs from both in its dentition, in having stonter and blunter dorsal tentacles, with more mmerons lamelle, and in having shorter and blunter oral tentacles.

Polycerclla Verrill, gen. nov.
Borly elongated-ovate, having the same form as Polycera. Mantle little developed. Dorsal tentacles (rhinophores) not laminated and not retractile, without sheaths. A row of papille along each side of the back, extending beyoud the gills. Gills three, pimate, situated in the middle of the back, nearly as in Polycera. Foot amricled. Odontophore with six rows of teeth ; median row absent; imner laterals large, curved, with three denticles; two onter rows meln smaller, simple, hook-shaperl.

Polycerella Emertoni Verrill, sp. nor.
Boaly small, elongated-ovate, rather narrow, somerhat angular, about as high as broad, sometimes higher than broad, tapered aud somewhat acute posteriolly, narowed a little at the nesk. Head high, convex above, sometimes bilobed, but often rounded in fiont, capable of chang. ing its form to a sreat extent, the part in front of the dorsal tentacles being capable of considerable elongation and of contracting to a truncate form. Foot high and narrow, obtuse posteriorly, the anterior angles prolonged into short but prominent auricles, often curved backward and pointed, at other times short and blunt. Dorsal tentacles rather long, not retractile, but capable of considerable contraction; in extension their length is often equal to the breadth of the neck; they are fusiform or subclavate, blunt, smooth or showing only slight, transrerse, inegular wrinkles, changeable in form, sometimes nearly cylindrical, at other times swollen in the middle or toward the tip. Edge of the mantle indicated only by a slight, often crenulated, medge along each side and around the head. Above this edge there is a row of small papille, of which two on each side are in adrance of the dorsal tentacles; tro are opposite to them, and four or five on each side occupy the space between the tentacles and gills; a row of five or six, on each side, extends beyoun the gills to near the end of the body, the posterior ones becoming rery small. Behind the gills there are three or fonr pairs of larger and longer papille, situated more dorsally; of these the two pairs next to the gills are longest, and are often nearly equal to the dorsal tentacles in size and length; they are usually somewhat swollen in the middle and bont at the tip. Two or three pairs of much smaller papilla are situated on the back, in frout of the gills. Gills three, narow, elongated, pimate, subplumose, not finel̉ diviled, curved backward, not retractile, abont equal in length to the dorsal tentacles; the pimme are few, alteruate, generally incurved, those toward the base more sleuder.

Color fellowish green to olive-green, varied with lemon-yellow, and blotehed and specked with darker green or blackish; foot, tentacles, gills, and dorsal papillæ lighter greenish yellow, sparingly specked with dark green.

Length, $5^{m m}$ to 6^{mm}; breadth, $1^{\text {min }}$; height, 1.12^{mm}; length of rhinophores, $.88^{\mathrm{mm}}$.

The odontophore is rery minate. The teeth of the imer row, on each side, are relatively very large and long, stom, with the shaft bent backward and the end abruptly curved forward and divided into two sharl denticles; another sharp denticle is situated laterally, below the others. The two onter lateral rows of teeth are much smaller and less than half the length of the inner ones, nearly equal in size and form, simple, strongly curved forward, and very acnte.

This species was first taken by the writer at W'oot's Holl in September, 1875, at the surface, among eel-grass; and on hydroids from the piles of Long Wharf, New Maren, Comm., October, 1875. At Newport, R. I., it has been found sereral times by Mr. J. H. Emerton and the writer, in

July and August, on filamentous algæ, especiall: Ceramium rubram, growing on the mooring buoys and piles of wharves in the harbor.

In confinement it often leares the alga and creeps at the surface of the water, foot upward.

The eggs of this species were laid in confinement, July 24, at Newport, R. I. They form a long, narrow, oblong or strap-shaped, white mass, attached by one edge to filamentous alge ; the eggs are arranged in mumerous rows.
Coryphella nobilis Verrill, sp. nov.
A large and elongated species, with stont dorsal tentacles and large, flattened, pale-salmon dorsal papilie. Foot broad, elongated, tapering and acute posteriorly; anterior angles considerably elongated, in the form of acute tapering processes, having a distinct longitudinal groove or fold. Head rather small, rounded, in front slightly conves or nearly straight, lower side concare. Oral tentacles very stont, flattened, gibbous near the end, with a small, somewhat miturned, round, acute tip. Dorsal tentacles (rhinophores) very large and stont, arising close together, longer than the oral ones, tapered, subacute, thickly covered with small, conical papillæ or warts. No eses could be detected. Dorsal papillae arranged in mumerous transverse, oblique rows, each of eight to ten or more papille (except posteriorly); they are small and much crowded along the sides; the upper ones are much longer, stont, mostly flattened, widest beyond the middle, tapering to the lanceolate tip.

Color of foot and body translucent white; on the back there are visible, throngh the integument, salmon-colored vessels, runuing from one group of dorsal papille to another and connecting with their nuclei ; the dorsal papilla are pellucid white externally, with a palesalmon muclens, becoming paler and whitish near the tip; dorsal tentacles pale yellowish green; oral ones pellucid white.

Length, about 6.3 mm , or 2.5 inches; length of dorsal tentacles, 15^{mm} (. 6 inch); of longest dorsal papillx, $12{ }^{\mathrm{mm}}$ (. 5 inclı).

The odontophore has a central row of large tecth, with a moderately prominent, acute, central denticle, and usually sis smaller denticles on each side; lateral teeth withont distinet denticles on the edge, rather large, wide at the base, which is emarginate, the outer lobe extending further back, imer edge slightly wary and uneren, but not denticulate.

Off Cape Cod, in io fathoms, mud and broken shells, 1879. One specimen only.

In form and color this species resembles C. salmonacen, but the latter, which occurs at Eastport, Me., has the dosal papille more crowded, and its dentition is very different, for the lateral teeth are strougly dentienlated along the edge to near the tip.
Coryphella Stimpsoni Verrill.

> Cuthona Stimpsomi Verrill, Amer. Journ. Sci., xvii, p. 314; Trans. Conn. Acal., v, pl. 42, fig. 14.

The dentition of this species is peculiar, but agrees better with that
of Corzphelle than with that of any of the related genera. It was originally referced to Cuthona on account of the lateral expansions of the head. The odontophore is remarkahly high and narrow ; the central teeth are dark brown, large, strong, with the median point very large, compressed, and emred forward, projecting far beyond the small, sharp, lateral denticles, of which there are usually eight or nine on each side; lateral teeth thin, pale, comparatively small, narrow, acute, withont any denticles, or rarely with some very small ones near the base, which is rounded and but little expanded.

This species occurs from Massachusetts Bay to Malifax, Nova Scotia, aud from low-water to 50 fathoms.

Facelina Bostoniensis (Conthouy) Verrill \& Emerton.
This species has been very much misunderstood, and totally different species* have often been confonnded with it. It is, however, very easily distinguished from all of our other species. It is the only known species from the New England coast that has the dorsal tentacles distinctly laminated or plicated.

It is a true Facelina, having only a single row of teeth, with the central denticle prominent.

It is common from above low-water to 20 fathoms, on Obclia and other hydroids, from Massachusetts Bay to Block Island and Newport, R. I. This season it oceurred abundautly among Obeliu geniculatu, on Laminaria, off Block Island, in 18 to 20 fathoms, associated with large numbers of Lamcllidoris muricata.

This species is very closely related to the Emropean species, Facclima Drummondii (Thomp., 1843) and F. elegans (Alder \& Hancock).

Facelina pilata (Gould) Verrill \& Emerton.
In its dentition this species agrees closely with the preceding, having but a single row of teeth, of nearly the same form. It shonld be referred properly to Facelina, although it does not agree strictly with the diagnoses of that gemus, especially in respect to the lamination of the dorsal tentacles, which are, in this species, nearly smooth. This character is, however, variable in this genns, the lamina being very prominent in F. coronuta, rudimentary in F. clegans, and absent in F. pilata.

Cratena Veronicæ Verrill, sp. nov.
Size moderate, about 25^{mm} in length, rather stont. Dorsal papilla cylindrical, obtuse, moderately slender, arranged in twelve to fifteen regular transverse series on each side, the middle ones containing eight to ten or more papilla; anterior groups smaller, situated well forward,

[^44]in front of the dorsal tentacles. Oral and dorsal tentacles nearly equal in length, moderately long, tapered, blunt. The dorsal tentacles appear slightly wrinkled transversely. Eyes black, conspicnous, near together, just behind the bases of the dorsal tentacles. Foot narrow, with broad, rombled anterior angles. Head moderately large, its ontline nearly semicircular in front, and projecting considerably in advance of the bases of the oral tentacles.

Color variable. In some specimens the muclei of the dorsal papillæ and the biliary ducts from them are dark green, the nuclei appearing to be lobulated or flocalent; the onter sheath is translucent whitish, with an interrnpted streak of flake-white on the distal half, and with mequal speeks and spots of the same seattered over the surface, while on the outer side, near the end, there is a patch of orange; tip translucent white. In front of the bases of the dorsal tentacles there is a dark green patch. Tentacles white.

In other specimens, taken at the same time, the nuclei of the dorsal papillæ were salmon-colored, but the subterminal patch of orange and the streak and specks of flake-white were as in the green variety; the body was translucent white; dorsal tentacles white, tinged or faintly reticulated with flake-white; oral tentacles with a streak of flake-white on the posterior side.

Odontophore narrow, with a single row of teeth; these have thirteen sharp denticles, the merlian one searcely as long as those next to it ; the anterior border of the tooth is nearly semicircular, with a notch on each side near the outer ends, which run backwarl, as short processes, somewhat enlarged and emarginate at the end.

Off Cape Cod (station 328), in 23 fathoms, among hydroids, September 6, 1879.
This species is nearest allied to Cratena olivacea (Alder \& Hancock), but differs in the form of its teeth, as well as in its coloration. It is also allied to Cratena viridis, of Europe. In case either of the older names (Cavolina and Montagua) be retained for this group, this species should be so named. But both of these names having been previonsly used for other genera, they should be discarded.

Cratena gymnota (Conthouy) Verrill \& Emerton.
Montagua Gouldii Verrill, Invert. Viney. Sound, p. 667 (author's copies, p. 373), 1873.

This species, which is common on littoral hydroids, from Massachnsetts Bay to New Haven, Comm., is a typical Cratena Bergh* ($=$ Cavolina Ahter \& Hancock = Montagua auth.), and is very closely allied to C. aurantiaca (A. \& H.) of Europe, with which its dentition agrees very nearly, eren in minute details. In C. gymnota the coloration, also, is often similar to that of C. auruntiaca, but the dorsal papille are fewer

[^45]and longer, and their clusters are less numerous and less crowded. In case it be thought necessary to unite the two forms, Couthony's name has priority.

Tergipes despectus (Johnst.) Alder \& Hancock.
The gemuine despectus was distinguished from G. exigua by Mr. J. II. Emerton, at Salem, Mass., iu $\mathbf{1 8 7 9}$, when he made characteristic drawings of both and preparations of the odontophores, which I have examined. During the present year he has found the former near Newport, R. I., on hydroids (Obetiu) at low-water. The species described aud figured by Gould (Binney's edition) under this mame is really the Gulvinia exigua Alder \& Hancock, differing widely in its dentition, there being three rows of teeth, instead of the single row, seen in Tergipes. But the T. despectrs of my report on Invertebrates of Vineyard Sound, 1873 , was correctly named. Both species are fonnd muter the same conditions, but, according to Mr. Emerton, G. cxiguc is found in the spring and early summer, while T. despectus occurs later in the summer and in antumn.

Acmæa rubella? (Falor.).
Tectura rubella G. O. Sars, Moll. Reg. Arct. Norv., p. 121, pl. 8, figs. 5a, b; pl. ii, fig. 11 (dentition).-Jefireys, Aun. and Mag. Nat. Hist., for March, 1857, p. 231.
One specimen, withont the animal, was dredged at station 89t. It appears to agree closely with the species referred to, except that the apex is not obtuse, and its color is pale yellowish white. There is no sempture except irregular and rather distinct lines of growth. The apex is acnte, bent directly backward, and sitnated at about the posterior fourth. The base is oblong-oval. Length, 5.5^{mm}; height, 2.75^{mm}.

HETEROPODA.

Carinaria Atlantica Ad. \& Reeve (?).
Fragments ocenred at station S65. They may have belonged to C. Mediterraneu.

Atalanta Peronii Lesueur.
D'Orbigny, Voy. Amér. Mérid., Moll., p. 171, pl. 1², figs. 1-15; Mist. I'Islo de Cuba, Moll., i, P. 102, 1853.
Near George's Bank, latitude 410 2 25^{\prime} north, longitude $65^{\circ} 5^{\prime}$ to $65^{\circ} 30^{\prime}$ west (Messrs. S. I. Smith and O. Harger, 1872).

PTEROPODA.

Althongh the Pteropods are all, properly speaking, oceanic species, it is undoubtedly true that a certain group of species will be found to be characteristic of the waters adjacent to each coast. Hitherto those observed and recorded from near the shores of New England have been chiefly northern or arctic species, which follow the course of the aretic current along our coast. For this reason, in the winter and spring, the beantiful Clione papilionacea is frequently found as far south as Vineyard

Sound and the shores of Rhode Island. The Spirialis Gouldii Stimp. is probably also an arctic species, and is very closely related to, if not identical with, S. balea of the Aretic Ocean.* There are, however, a few of the more tropical species that have been already recorded as oceasionally cast ashore deal, upon the southern shores of New England. Of these Diacria trispinost and Cavolina tridentata are the most common. Of the former, I have also received numerous examples, with the animal in good condition, obtained by Mr. Samnel Powell, at Newport, R. I., several years ago, from the stomach of a blue-fish. This season two living specimens of it were taken off Block Island by Messrs. V. N. Edwards and N. P. Scudder, of our party. The fresh shells of this species were dredged by us in 1871 , near Martha's Vineyard, and this year we found it in abundance and perfectly fresh, in all onr onter dredgings, 70 to 100 miles off shore. It was associated with Diacriut trispinosa Gray and several other species, named below, but was far more mumerons than any of the others. The following species are here introduced becanse of their common occurrence, evidently in large numbers, within a few miles of our coast. Several of them have not been recorded from so far north before, even in mid-ocean.

Cavolina longirostris (Les. MSS., Br.) H. \& A. Ad.
Hyalca longirostris Blainv., Dict. Sci. Nat., xxii, p. 81.-Rang, Hist. Nat. Pterop., p. 41, pl. 2. tigs. 7-10, 1852.
Carolina longirostra Gray, Catal. Moll. Brit. Mus., Pteropoda, p. 8.
This small but elegant species occurred frequently in our dredgings, but not in large mumbers (stations $867,870,576,891,894$, ©c.).

Cavolina uncinata (D'Orb.) Gray, 1850 ; I. \& A. Ad.
Hyalaa uncinata D'Orb., 1836.—Rang, Hist. Nat. Pterop., p. 37, pl. 2, tigs. 1114, 1852.
This occurred in many localities, with the last. Our specimens differ from the figures referred to in having the median posterior spine more hooked and more abruptly beut, so as to make nearly a right angle with the shell.

Cavolina inflexa (Les.) Gray.
Hyalaa inflexa Lesueur ; Blainv., Diet. Sci. Nat., xxii, p. 80.
One perfeet and full-grown specimen from station 894 .
Clio pyramidata Browne; Linné; Gmelin.
Cleodora pyramidata Peron \& Les.; Lamarck.
Cleodora lanceolata Rang, Ann. des Sci. Nat., xvi, p. 497, pl. 19, fig. 1.
Clio pyramitata Gray; Catal. Moll. Brit. Mus., Pteropoda, 1. 12, 1850.
Several fresh but somewhat broken specimens of this species occurred at stations 865,891 to 894 .

[^46]Balantium recurvum Children.
Journ. Roy. Inst., xv, p. 220, pl. 7, fig. 107, 1829.-Gray, Catal. Moll. Brit. Mus., Pteropoda, p. 14, 18 з.
Clcodora baluntium Rang, Mag. Zool., 1834; Hist. Nat. Pterop., p. 52, pl. 5, fig. 12 ; pl. x, fig. 7, 1852.
Fragments occurred at stations 865 and 869.

```
Styliola recta (Lesneur, MSS.) Blainv., Man. Mal., 1825.
Creseis acicula Rang, Ann. des Sci. Nat., I, xiii, p. 318, pl. 17, fig. 6, 1823.
Creseis clara Rang, Ann. des Sci. Nat., I, xiii, p. 317, pl. 17, fig. 5, 1828.
Creseis acus Esch., Zuol. Atlas, iii, pl. 15, fig. 2, \(18: 31\).
Cleodora aciculu Rang, Hist. Nat. Pterop., p. 56, pl. 7, figs. 5, 7, 1852.
```

Near George's Bank, latitude 41025^{\prime}, longitude $65^{\circ} 5^{\prime}$ to 65030 , September, 1872, at surface (Messrs. S. I. Smith and O. Harger).

Styliola virgula (Rang) Gray.
Creseis virgula Rang, Ann. des Sci. Nat., I, xiii, p. 316, pl. 17, fig. 2, 1823.
Cleorlora virgula Rang, Hist. Nat. Pterop., p. 57, pl. 13, figs. 20-24, 1852.
Near George's Bank, with the preceding.
Spirialis MacAndrei Forbes \& Hanles, ii, p. 3ゝ4.
Spirialis retroversus (Flem.), variety ? MacAndrei, Jeffreys, Brit. Conch., r, p. 115, pl. 4, fig. 4 ; pl. 93, fig. 5.-G. O. Sars, Moll. Reg. Arct. Norv., 1. 330, pl. 29, figs. $3\left(1-f ; p^{1} . x\right.$ xi, fig. 19 (dentition).
Several entire and perfectly fresh specimens occurred at statiou 594. They agree with the form called var. NacAntici by Jeffreys.

Cymbulia calceolus Verrill.

Amer. Journ. Sci., xx, p. 394, Nov., 1880.
Test thick, transparent, broad-ovate or elliptical, rounded at both ends, covered, above and below, with low, rounded verruce; aperture large, occupying more than half the length of the test, broad-ovate, posterior margin nearly straight; edges simple, marmed. Animal pale pink, with a brown mucleus; fins very large, comate, broadly ronnded; their outline taken together forms a long ellipse, considerably longer and somewhat broader than the test. Length of test of a medium-sized specimen, in alcoLol, 19^{mm}; breadth, 11^{mm}; expanse of fins, 23^{mm}; their breadth, 12 mm . The largest specimens have the test about $40^{\mathrm{mm}} \mathrm{long}$, 20^{mn} broad. Stations 865 to 872 (near the surface), common; about 30 miles east-southeast of Block Island, at surface, October 2, 1880 (Messr's. Scudder aud Edwards).

Halopsyche Verrill, nom. nov.
Psyche Rang, 1825 (nom I'syche Limé, 1735, nee Psyche Schrank, 1801).
The name Psyche having been twice used before it was employed by Rang, it will be necessary to substitute another name for this genus of Pteropods. I therefore propose Halopsyche.

The type, and only known species, Hulopsyche globulose (Rang), inhabits the waters of Newfomblland aud Nova Scotia.

SOLENOCONCHA.

Dentalium occidentale Stimp.
Shells of New England, 1851 (hased on D. demale Gould, 1st ed., p. 155, fig. 5, not of European authors).
Dentalium dentate Gonld, Invert. of Mass., 2 ll el., p. 256.
Dentalium abyssorum M. Sars, 1858.
Dentalium striolatum Jeffreys (non Stimpson).
Antalis strioluta G. O. Sars, Moll. Reg. Aret. Norv., p. 101, pl. 7, fig. 1; pl. 20, figs. $10 a, b$; pl. i, figs. $1 a-e$, dentition (non Stimpson sp.).
This species is abundant on muddy bottoms, in 50 to 300 fathoms, all along the coast of New Eugland aud Nova Scotia.

Mr. Jeffreys, misled by a singular and maccomntable mistake, has constantly applied to this sulcated species the name given by Stimpson to our common, shallow-water, nearly smooth form. In this mistake G. O. Sars and others have followed him.

The question as to the specific distinctness of these two forms I do not propose to discuss at this time, but it is equally desirable that the respective names should be correctly applied, whether we regard the forms as varieties or species. Of D. striolatum, I have dredged thousands of specimens in shallow water in the Bay of Fundy, in the same region where Stimpson's original specimens were taken, and among them no specimens of " D. occidentale" are to be fonnd. In other loealities, however, both species occur together. Both were taken this season ou the outer banks, off Newport. But D. occidentule was by far the most common, and was abundant in the deeper stations, where D. striolatum did not occur at all.

Among the specimens taken by us there are many that are more strongly ribbed and sulcated than usual, the ribs being more or less angular aud elevated. In some of these, whieh are slemler aud abont an inch long, the internal surface of the shell has grooves corresponding to the external ribs, the shell being thin, but of miform thickness, so that the two surfaces are parallel. In others of the same size the bore of the shell is smooth and round, the shell being thiekened opposite the ribs. I am not prepared, however, to say that this is anything more than at varietal difference.

The form of the posterior notch varies in all our species (or varieties) from a shallow notch to a triangular cut, and even to a deep slit.

Siphonodental:um vitreum Sars.
G. O. Sars, op. cit., p. 103, pl. 7, figs. $2 a-e$; pl. i, figs. $2 a-f$ (dentition).-Verrill, Trans. Conn. Acad., v, pl. 42, fig. 19.
A fine, large specimen, probably belonging to this species, was dredged by the party on the "Bache", in 1873, in the Gulf of Maine (station 12 B), in 60 fathoms, mud.

The shell is smooth, round, very thin, transparent, and lustrons. It is slightly curved and expands gradually to the anterior eut. The posterior opening is small and round, without lobes, but it probably has
been broken off squarely. Length, 12^{mm}; diameter of larger end, 9.5^{mm}; of small emd, $.5^{\mathrm{nmm}}$.

Another specimen of similar character, $10{ }^{\mathrm{mm}}$ long and $2.5^{\text {min }}$ broad, was dreelged in the Gulf of Maine, 107 fathoms (station 9 L), 1873. With the last-named specimen there was, howerer, a perfect living specimen, i^{mm} long and $2^{\text {man }}$ broad, having the posterior end perfect and provided with the chamacteristic digitations aromed the opening.

Siphonentalis affinis (Sars).
G. O. Sitrs, op. cit., p. 104, pl. 20, fig. 12.-Verrill, Tuans. Conu. Acad., v, pl. 42 , figs. $20 a-b$.
A specimen smaller and more slender than the precering species, and which I refer to S. affinis, was dredged by ns, in 187T, in Bedford Basin, near Halifax, Nora Scotia, 35 fathoms, soft mut. It is 6^{mm} in length, 1^{nm} in breadth, slightly curved, ronnd, smooth, glos.y, and translncent. The posterior opening is small and appears to be perfect ; it shows only a faint indication of a notel on the conrex side.

Siphonentalis Lofotensis (M. Sars).
G. O. Sars, Moll. Reg. Aret. Norr., 1, 104, pl. 20, figs. 11 a, b; pl. i, fig. 3.

A few specimens that agree well with the figures and description of this species were taken at station 891 , in 500 fathoms.

It is longer and more tapered than the last, and moch lass translucent.
Cadulus propinquus G. O. Surs.
Moli. Reg. Arct. Norv., p. 106, pl. 20, figs. 15 a, b; pl. i, fig 5 (deutition).
This shell oecurred in considerable numbers, living, at station 871, in 115 fathoms. It is a small, polished species, rather steater and more swollen than the next.

Cadulus Jeffreysii Monterosato.
C'alulus subfusiformis? Jeffreys, British Conch., v, p. 196, I'. 101, fig. 3 (non Sars, teste Monter.).
Several specimens of a small Cadutus, somerhat swollen in the middle and rather strongly bent, I refer to the above species. The posterior apertme is simple in most of them, but slightly notched ir others.

Station 871.
Cadulus Pandionis Verrill if Smith.
Amer. Journ. Sci., xx, p. 357, Nov., 1880.
A very much larger, highly polished speries occurred at many of the stations, but most abundantly at 869 to 871 and 873 to 877 in 85 to 192 fathoms. It is swollen on the convex side, in the middle, and slighty angulated or gibbous at abont the anterior third. It is transersely elliptical in section; the anterior end decreases to the aperture, which is oblique, the lip being prolonged on the concave side. Posterior aperture small, with a semicireular notch above and below. Langth, $10^{\text {min }}$; breadth, 2.25^{mm}; of month, 1.75^{mm}; of posterior aperture, $40^{-\mathrm{o}}$.

LAMELLIBRANCHIATA.

Poromya granulata (Nyst) Forbes \& H:mley.
G. O. Sars, op. cit., p. 90, tigs. 6 a,b.-Verrill, Trans. Comm. Acad., r, pl. 44, figs. 3, 4.
Several adult living examples of this shell were dredged in 1872 by Dr. A. S. Packard and Mr. C. Cooke, on the Coast Survey steamer "Bache", in the Gulf of Maine, in 150 fathoms, mud. This season it was taken at station 865 , in 65 fathoms. It has not previously been recorted as American.

In form and size it somewhat resembles Thrucia myopsis, but is easily distinguished by the small granules seattered over the exterior, and by the pecnliar hinge, very different from that of Thracia. The right valve has a prominent, recurved, cardinal tooth. On the European coast it ranges from the Lofoden Islands to the Mediterranean, in deep water.

Poromya rotundata Jeffreys.
Aunals and Mag. Nat. Hist., Dec., 1576, p. 494 (Valorons Expedition, Mollusea).
Shell rounded, thin, translucent, pearly within. External surface closely covered with small, romoded, obtuse gramules, arranged mostly in close quincms, and distinctly forming radiating lines, but in some parts appearing to be also in concentric lines. The narrow intervals between these lines of granules show the iridescent surface of the shell. These gramles give a shagreen-like appearance to the shell. The granules show through on the inside, giving a finely tessellated appearance. The shell is but little longer than broad, convex; rentral and anterior edges evenly romnded; posterior dorsal edge a little slopiug, and forming an obtusely rombed angle where it meets the curvature of the posterior end. Hinge of right valve with a prominent conical tooth, fitting into a corresponding pit in the left valve.

Sonth of Martha's Vineyarl, stations S65 and 871, 65 to 115 fathoms, living; North Atlantic, 1,450 fathoms (Jeffreys).

Lyonsiella abyssicola M. Sars; Friele.
Pecchiolit abyssicola G. O. Sars, Remarkable Forms Anim. Life, i, p. 25, pl. 3, figs. 21-4:3; Moll. Reg. Aret. Norr., p. 102, pl. 20, figs. 5 a-d.
A few good living specimens of this interesting addition to the American fana were dredged by our party this season, sonth of Martha's Vineyard and Newport, in 192 to 500 fathoms, fine, compact sand and mud (stations S69, S80, $891,892,894$).
Lyonsiella gemma Verrill, sp. nov.
Shell small, iridescent, white, with raised radii, broad-oval, widest and broadly romded anteriorly, expanded and broady romded rentrally, posterior end short, narrowed, and tapered to an obtuse point The beak is subcentral, but a little nearer the anterior end, prominent, intlated, strongly curved inward and forward. Dorsal margin abruptly incurved opposite the beaks and decidedly expanded and excurved in
front of them, so as to rise nearly to a level with the mmbos; internally, opposite the tips of the beaks, there is a smooth swelling within the margin. Hinge margin thin, toothless, but with an internal sear behind the beaks, where the ligament and ossicle were attached (the ligament is gone). Patial simus rery small, angular. Shell less thin than in the preceding species. Sculpture mumerons, reey delicate, slightly raised lines, which radiate from the beaks over the whole surface; they are separated by much wider interspaces, which are smooth and iridescent, and not at all exearated. Length, 4.5^{mm}; height (beak to ventral margiiu), $4^{\text {mm }}$.

One perfect specimen, station 892, 487 fathoms, associated with L. abyssicola.

From the latter it differs widely in shape, having nothing of the rectangular form so characteristic of that species; the latter is also much less expanded auteriorly and much more so posteriorly, being far more inequilateral and more elongated.

Kennerlia glacialis (Leach) Carpenter.
Pandora glaciulis Leach, Rosse's Toyage, appendix, p. 174.-Leche, Kongl. Vetensk.-Akad. Handl., liand 16, p. 11, pl: 1, figs. $1 a, b$, 1-i8 (author's copy).
Living specimens of this aretic shell were dredged at station 873 , in 100 fathoms. It had previonsly been recorded from the Gulf of Saint Lawrence by Whiteares, but was not known to occur on the New England coast. It differs widely from the common Clidiophora trilineata Cpr. (= Pandora trilineata Say $)$, in the absence of the internal radiating ridges, in its more inequilateral and irregnlar form, and in the greater conrexity of the upper valce. The lower valve is rery flat, or even coucare, and is marked externally with sereral distinet radiating lines.

Neæra glacialis.

G. O. Sars, op. cit., p. 88, pl. 6, figs. \& a-c.-Terrill, Trans. Conn. Acad., r., pl. 44, fig. $10 b$.
A form of Nectra, agreeing perfectly with this, is common on mund y bottoms, in 50 to 192 fathoms, off the coasts of New England and Nova Scotia. We have dredged it off Cape Cod, off Cape Ann, off Casco Bay, in the Bay of Fundy, and in numerous localities in the Gulf of Maine and off Nova Scotia, since 182こ; and recently, sonth of Newport and Martha's Vineyard, in 6iJ to 500 fathoms. The larger specimens exceed an inch in length.

Among our nnmerons examples there is, howerer, considerable variation, both in the form of the shell and in the size and shape of the ear-tilage-pit and lateral teeth. Noreover, the variations in the hinge are not correlated with the differences in the breadth and length of the rostrum. Therefore, it seems to me probable that this shell shombl be considered merely a variation of N. arctica. The latter, in its typical form, occurs in the same localities and in about the same numbers, and
some examples grow to ereu greater size, being 1.25 inches long. In our suecimens (see Trans. Coun. Acad., v, pl. 44, fig. 10 a) the rostrum is usually longer and narrower than in the specimen figured by Sars, approaching in this respect his figure of N. glacialis, but with the cartilage-pit as large and broad as in his N. arctica. In fact, the majority of our specimens may be described as intermediate between the two forms figured by Sars.

Neæra obesa Lovén (1845) == N. pellucida Stimpson (1852).
Associated with the preceding, in most of the localities named, I have found another form, often . 5 of an inch or more in length, which I consider identical with Necera obesa of Lovén, and which often agrees well with the figures of this species gireu by G. O. Sars, but with the rostrum more commonly somewhat shorter. The cartilage-pit has the same form as the one figured br Sars. The young of this shell is the Jecera pellucida of Stimpson, withont doubt. I have repeatedly dredged it in his original locality.

Necre obesn, as thus determined, is closely allied, in form and structure, to N. arctica and rar. glacialis. Its texture is thinner, more telicate, more translucent, and smoother, or with less conspicnons lines of growth, and freer from adherent mud. These differences are not merely due to age, for I have examined both forms, of rarions sizes, from .10 of an inch or less, in length, up to the full-grown specimens.

The largest specimens of N. obesa are, however, rarely more than . 50 of an inch in length. The shell is usually very swollen and rentricose, rather abruptly contracted posteriorly at the base of the rostrmm, which is rather narrow and not very long, but varies considerably in length and breadth. The cartilage plate is prominent, and projects inward so as to form a distinct angle.

Nerera jugosa S. Wood.
G. O. Sars, op. cit., p. 8^{2}, pl. 6, figs. $9 a-c$.

This species is easily distinguished from all others fomd on our coast br its concentric raised lamellie. Station 894, 365 fathoms, off Newport, R. I.

Neæra rostrata (Spengler) Lovén.
G. O. Sars. op. cit., p. 89, pl. 6. figs. $7 a, b$.

Several fine, large speeimens of this species were dredged by us about 70 to 75 miles south of Martha's Vineyard, in 85 to 115 fathoms, and 90 to 100 miles sonth from Newport, R. I., in 120 to 500 fathoms. It is easily distinguished from the forms above mentioned by its very long and marrow posterior beak or rostrum, and by the oral form of the shell. It has a nearly smooth surface.

Neæra multicostata Verrill \& Smith, sp, nov.
This is a large and very distinct species, easily distinguished from all others known on our coast by the strong radiating ribs which cover the

Whole surface of the shell. The shell itself is rather large, swollen, subovate, well-rounded rentrally, but obliquely subtrunate anteriorly. Rostrim rather short, narrow, well defined, tapered; on the rostrum there are eight or nine rather broad, low, radiating costa. The body of the shell is covered with regular, raised and strong, radiating costa, orer fifty in number, separated by deep grooves of about the same wilth as the coste; anteriorly these ribs become small; posteriorly, near the base of the rostrum, five or six become much larger than the rest, and have smaller ones alternating with them.

Color yellowish white; in life rosy, from the internal organs showing through. Length, 19^{mm}; beak to ventral edge, 12^{mm}.
South of Martha's Vineyarl, 115 fathoms; about 90 to 100 miles south of Nemport, 85 to 120 fathoms, stations $871,873,87$. , 876 , \&e. Several living specimens of rarions sizes.

Carcium, sp.

A roundish species of Curdium, about 18^{mm} in diameter, is represented by a single valve, in good condition. The surface is rather closely and regularly cancellated. The ribs are smooth, withont seales or spines. It was taken at station 865.

Astarte crenata Grare.
Parry's Voyage, app.-Friele, Catal. Norv. Nordmeer-Exp. Spitzb.. Möll., 1. 267, 1879.
? Astarte crebricostata Forbes; Jefiress; G. O. Sars; and other European writers.
Astarte crebricostata Gould. Invert., Mass., , Dl ex., p. 126, fig. 410 (var. lens).
Astarte lens (Stimp., MSS.) Verrill, Amer. Journ. Sci., iii, p. 287, 1-i.2.
Large numbers of specimens, which seem to agree closely with the typical aretic and deep-water form of this species, were taken at nearly all the stations, in 65 to 500 fathoms. It was most abundant at stations 881, $894,895$.

These form series that appear to graduate into the large, broad, flattened form to which the name lens has been applied, which is abundant in the Bay of Fundy and Gulf of Maine, in 50 to 150 fathoms.

The typical form is smaller, more swollen, with the edges more romded, and less expanded posterionly. All the forms have the edges regularly crenulated.
Crypiodon Sarsii (Phil.).
Axinus Sarsii G. O. Sars, op. cit., p. © $0,1 \mathrm{l} .19$, figs. 5 a, b.
A single dead specimen of a shell agreeing very closely with this form, as figured by G. O. Sars, was dredged by our party, in 1879, off Cape Cod.

Crypton obesus Verrill.
Aner. Journ. Sci., iii, p. 287, pl. 7, fig. 2, 187...
I may take this oceasion to remark that Sars's figure (pl. 19, fig. 7) of C. obesus Verrill does not represent the large form described by me under that name, which is remarkable not only for its swollen form, but
also for its great height (from beak to ventral edge), as compared with its length, while the shell figured by Sars is broadly rounded, more like our typical C. Gouldii, of which I am iuclined to consider it the adult state.

Very large and characteristie specimens of the typical C. obesus, several of them more than $15^{\text {wm }}$ broad, but mostly dead, have been frequently dredged this season, off Nemport, R. I., in 12 to 20 fathoms, and especially at stations $865-871,873,876$, and 877 , in 65 to 192 fathoms, south of Martha's Vineyard and Newport.

Cryptodon ferruginosus? (Forbes).
Aximus fervuginosus (i. O. Sars, Moll. Reg. Arct. Norv., p. 63, pl. 19, figs. $10 a, b$.
Living specimens were taken at station 871 , in 115 fathoms. They were thickly incrusted with iron-oxide, which adheres very tenacionsly; beneath this crust the shell is usually much eroded.

Loripes lens Verrill \& Smith.
Amer. Journ. Sci., xx, p. 400, Nov., 1880 (published Oct.).
Shell rather thin, moderately convex, well romuded, nearly equilateral; beaks acute, a little prominent, curved forward; lunule small, deeply excavated, cordate; ligamental area long, narrow-lanceolate, a little sunken, so that the ligament searcely rises to a lerel with its edges. The posterior dorsal ontline of the shell is nearly straight or but slightly convex; the posterior end is very obtusely rounded or subtruncate, making a slight angle with the dorsal edge and a very obtusels romnded one with the ventral edge, which is evenls curved and continuous with the regularly ronuded anterior end; dorsal edge in front of the beaks incurved. Surface rather smooth, especially toward the umbos, but with more or less numerous and irregular lines of growth, marked by thin and slightly raised lines, which become more regular and more conspicuons at each end of the shell, and especially posteriorly. A faint ridge runs from the beak to the posterior rentral angle. A slight undalation or depression (often obsolete) rims from the beak to the upper part of the anterior edge, bounding a small anterior dorsal area. llinge withont any distinct teeth. Anterior muscular sear elongated, somewhat simons; posterior one small, ovate. Shell memally yellowish white; young specimens, when living, are translucent, fleshcolor, owing to the animal showing throngh. Length of the larger specimens, 14^{mm}; breadth or height, $12.5 \mathrm{ymm}^{\mathrm{mm}}$.

Dredged in 1879 in many localities off Cape Cod, in 50 to 100 fathoms; in 1880 common at nearly all the outer stations, in 65 to 192 fathoms (stations 86.5 to 877). Most of the specimens are dead, but fresh.
Tellimya ferruginosa (Mont.).
G. O. Sars, Moll. Reg. Aret. Norv., p. 70, pl. 20, figs. 1 a-c.

Montacuta ferruginosa Jefirmes, Brit. Conch., ii, p. $\because 10$; v, pl. 31, fig. 9.
Sereral living specimens from stations 892,893 , and 894 , in 365 to 487 fathoms. They were all thickly coated with a brown ferruginous crust, beneath which the shell is usually eroded.

Leda unca Gould.

Proc. Bost. Soc. Nat. Hist., viii, p. 232, 1832.-Otia Conch., p. 239 (=? Leda acuta Conrad, described as fossil).
Many of our specimens are mnch larger than the shells described by Gonld and Conrad. Our larger specimens are $13^{\mathrm{mm}} \mathrm{long}, \mathrm{S}^{\mathrm{mm}}$ broad.

This shell is rather strong and thick, oval, swollen, rounded anteriorly, but posteriorly narrowed to an acute, short, angular beak, at the base of which there is a slight incurvature of the rentral edge. The nearly straight posterior dorsal edge slopes regularly to the beak, and is somewhat compressed or keeled. The whole surface is covered with numerous prominent, regular, rounded, concentric ribs, separated by deep grooves of about the same width. On the posterior dorsal area these ribs are smaller, and are often nearly obsolete close to the edge.

Taken in considerable numbers, alive and dead, at many of the stations, both south of Martha's Vineyard and south of Newport, I.. I., in $S 5$ to 155 fathoms, especially at stations $871, S 73,874$, and 876 .

This species appears to be allied to L. Messanensis Cant. ($=$ L. acuminata Jefi.), from deep water in the Mediterranean.

Leda pernula (Miller).
G. O. Sars, op. cit., p. 35, pl. 5, fig. $1 a-d_{\text {. }}$

A specimen that appears to be a typical example of this speceies was dredged by us in 187T, off Halifax, in 59 fathoms. It has a smooth, lustrons, yellowish-green epidermis. The concentric grooves are iregular and mostly obsolete, except anteriorly, where they are fine and close. The form is similar to that of L. tenuisuleatu. Length, 23^{mm}; height, 10^{mm}.

Yoldia frigidia Torell.
Spitz. Moll., p. 148, pl. 1, fig. 3, 1859.-G. O. Sars, Moll. Reg. Aret. Norv., p. 39, pl. 4, figs. $11 a, b$.
This species ocemred at station $\$ 94$. It had not previonsly been obtained off the New England coast, but had been dredged in the Gulf of Saint Lawrence, by Whitcaves, in 200 fathoms.

Arca glacialis Gray.
G. O. Sars, op. cit., p. 43, pl. 4, figs. 1 a-c.-Verrill, Trans. Conn. Acad., v, pl. 44, fig. 5.
This species has been dredged in umerons localities by the various dredging parties of the United States Fish Commission, since 185:2, in the Bay of Fundy, Gulf of Maine, off Cape Cod, on George's and Le Have Banks, and of Halifax, Nova Scotia, at various depths from 90 to 430 fathoms; abont 70 to 75 miles sonth of Martha's Vineyard, in 115 to 192 fathoms, and south of Newport, in $S 5$ to 500 fathoms. It attaches itself to pebbles or gravel-stones by a small but strong ventral byssus.

The shorter and more rounded form, known as Area pectuneuloides Scacchi, also occurs on our coast, as well as the deformed variety called var. septentrionalis by G. O. Sars. These appear to me to be mere vari-

Proc. Nat Mus. S0-26
ations of A.glaciulis. The shortest and most rounded forms that we have taken were dredged sonth of Martha's Vineyard and sonth of Newport, in 85 to 225 fathoms, this season.

Limopsis cristata (?) Jeffreys.
Ann. and Mag. Nat. Hist., 18i6, p. 434; Proc. Zool. Soc. London, 1879, p. 5ع5, pl. 46, fig. 8.
A few dead specimens, referred doubtfully to this species, occurred at stations 865 to 867 and at 870 and 871 , in 65 to 155 fathoms.

Limopsis minuta (Philippi).
G. O. Sars, Moll. Reg. Arct. Norv., p. 44, pl. 3, figs. 5 a-c.

Limopsis borealis Jetfreys, Brit. Conch., ii, p. 164; v, p. 174, pl. 100, fig. 3.
This shell was taken in abundance, living, at stations 893, 894 and 895, in 238 to 372 fathoms; in smaller numbers at 891 and 892 , in 487 to 500 fathoms; and sparingly at several other localities in 115 to 252 fathoms.

Modiola polita Verrill \& Smith.
Amer. Journ. Sci., xx, p. 400, for Nov., 1880 (published Oct. 25).
Two living specimens were taken at station 895, in 238 fathoms.
Avicula hirundo (?) L., var. nitida, nob.
The shell is very inequivalve, the right shell being smaller and flatter, and much bent inward near its ventral edge. The form is very oblique, with the anterior ear small and short, in the left valve, and separated from the body of the shell by a slight incurvature of the edge, from which a depression runs to the beak; right valve with a shallow byssal notch. Posterior ala short, triangular, with a rounded incurvature of the posterior edge of the shell, separating it from the body of the shell, which is produced and rounded at the end. Surface nearly smooth, glossy, and somewhat iridescent, with regular but inconspicuons lines of growth, which on the anterior cars rise up into thin, wavy lamelle.

Color translucent, pale yellowish, usually with a brown streak radiating from the beak to the outer edge.

Length, beak to outer edge, 13^{nmm}; length of hinge-line, 11^{mm}; beak to end of posterior ala, S^{mm}.
This shell was found in considerable numbers adhering to hydroids, in 65 to 192 fathoms, south of M:artha's Vineyard (stations 865 to 867, and 869 to 873). In form it resembles the young Avicula hirundo of Florida and the West Indies. It is, however, mueh smoother and more lustrous than any specimens of that species which I have hitherto seen, and may well prove to be a distinct species, for which I would, in that case, propose the name nitida.

Limæa subovata (Jeffreys).

Lima suborata Jeffireys, Ammals and Mag. Nat. Hist., Nor., 1876, p. 427.
Shell small, white, orate, nearly equilateral, with the valres conrex, much swollen in the middle; beaks prominent, incurved; hinge-line straight, shorter than the shell; ligament-pit narrow, elongated, lunate.

Sculpture very numerons (70 to 80 or more) radiating ribs, fine laterally, increasing in strength on each side to the middle, where there are two or three ribs considerably larger than the rest, with wider intervals; the ribs and intervals are crossed by fine, close, raised lines of growth.

Interior with radiating lines corresponding to the external ones. Length, 4^{mm}; height (beak to ventral edge), 7^{mm}; thickness, 4^{mm}. Station 850, 255 fathoms, scarce; 891 to 894,365 to 560 fathoms, common.

Liman gibba (=Lima gibba Jefifeys, op. cit., p. 428) also differs: but little from our specimens.

Pecten fenestratus Forbes (?).

Report on Mollusca, ©c., of Ngean Sea, p. 146, in Proc. British Assoc. for 1843. Pecten inequisculptus Tiberi (teste Jefireys).
A small, but elegantly colored and sculptured, inequivalve Pecten was taken living at station 872. This I refer donbtfully to the above-named, Mediteranean deep-water species. In our two examples the upper valve is finely and regularly cancellated, with fine radiating and concentric lines; the under valve is corered with fine, raised, concentric ribs only. Ears prominent. Color whitish and different shades of red and brown, irregularly mottled.

Pecten, sp. (near P. opcrcularis).
Fragments of a large and peculiar Pecten occurred at stations 873 and S74. They closely resemble, in sculpture, the P. oporcularis of Emrope, except that the large ribs are triangular and carinated at summit, instead of rounded. These large ribs are separated by equally wide, concave interspaces, which, like the ribs, are marked by slightly concave, radiating furrows, and the surface of these furrows is covered with thin, concentric, slightly raised, wavy plates, the waves being limited by the fine radiating ridges between the grooves. Interior of valves with broad, flat grooves, alternating with flat ribs of the same width. Culor grayish white, the ribs pale reddish.

List of species cnumerated in the preecding article.

Abstract

〔Onc asterisk signifies that the species is an addition to the New England or North American fanna; two, that it is a newly discovererl species; $\mathrm{E}=$ European ; $\mathrm{G}=$ Grcenlandic ; $\mathrm{m}=$ middle region of New England, or both north and south of Cape Cod; $\mathrm{N}=$ northern coasts of America (Cape Cod to Labrador) ; $\mathrm{s}=$ sonthern ; $\mathrm{O}=$ oceanic $; \mathrm{P}=$ North Pacific.]

* * Heteroteuthis tenera V.
* G. 1s. Gouatus amœnus (Möll.) Gray.
* * Calliteuthis reversa V.
** Alloposus mollis V.
* o. e. Argouauta Argo Limé.
* g. e. Bela Pingelii (Möller).
* n. e. Bela Sarsii Verrill.
* E. n. Bela temuicostata Sars.
N. E. Bela Trevclyaua (Turton).

5. Bela cancellata (Migh.) St.

* n. E. Dela mpressa Möreh.
*N. G. E. Bela exarata (Müller).
* G. e. Bela rugulata (Müller).
* P. E. Bela simplex (Middend.).
** Bela hebes Verrill.
* * Pleurotoma Agassizii V. \& S.
* * Plcurotoma Pandionis V. \& S.
** Pleurotoma Carpenteri V. \& S.
* * Taranis pulchella V.
* E. Taranis Mörchii (MaIm) Jeff.
* s. Marginella roscida? Rav.
* G. w. Tritonofusus latericeus (Möll.) Morch.
** Neptunca (Sipho) calata Verrill.

404 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

* Neplunea (Sipho) arata Verrill.
* E. N. Neptanca propinqua (Alder).
* N. G. J. Buceimum cyaneum Brug.
* \quad Vassa nigrolabra V.
N. G.E. Lunatia nana (Müller).
** N. Lunutia levicula V.
* Letmelluria pellucida V.
* G. E. Marsenina prodita Bergh.
N. G. E. Marsenina glabra (Couth.) V.
* * N. Marsenina ampla Verrill.
* P. E. N. Velutella eryptospira (Middent.).
* G. E. N. Tirichotropis conica Möller.
* * m. Cingula harpa Verrill.
* E. Cingula turgida (Jeff.) V.
* N. G. E. Cimgula Jan-Mayeni (Friele) V.
** Lepctella tubicola V. \& S.
** N. S. Lovenclla Whitcavesii Verrill.
* E. Truncatella truncatulas (Drap.).
* * Solariam boreale V. \& S.
* * Sealaria Pourtalcsii V. \& S.
* Sealaria Dalliana V. \& S.
* * Scalaria, sp.
* * Aeirsa gracilis Verrill.
* N. E. Aelis Walleri Jeff.
* * N. s. Aclis striata Verrill.
* Calliostoma Bairlii V. \& S.
* * Margarita regalis V. \& S.
* Margarita lamellosa V. \& S.
** N. Margarita, sp.
* E. N. Macharoplax bella (Verk.) Friele.
* E. Cyclostrema trochoides (J.) Sars.
* E. Assiminca Grayana Leaeh.
E. Eulima intermedia Cant.
* E. Eulima distorta Desh.
N. s. Turbonilla mivea (Stimp.).
* Turbonilla Rathbumi V. \& S.
* * Tiubonilla formosa V. \& S.
* * Turbomilla Smithii Verrill.
* E. N. Eulimella ventricosa (Forbes).
** Odostomia (Menestho) sulcata V.
N. E. Odostomia ruidentatu (Mont.).
* E. Auriculina insculpta? (Mont.) G. O. Sars.
* N. T. Diaphana nitidula (Lovén).
N. E. Diaphana pertenuis (Migh.) V.
* * Diaphana genema V.
* E. Diaphana comulus (Desh.).
* E. Amphisphyra globosa Lovén.
N. S. Amphisphyra pellucida (Br.)

Lovén.
N. Cylichma Gouldii (Conth.) V.

* Philinc amabilis Verrill.
- Ib. n. Philine Fimmarchica Sars.
* F. N. Philine fragilis G. O. Sirs.
* E. N. Philine cingulata G. O. Sars.
* * Plcurobranchaa tarda V.
* * N. Dcndronotus clegans V.
* * Doris complanata V.
** S. Polyceretla Einirtoni V.
* * N. Coryphuclla nobilis V.
N. Corgphella Stimpsoni V.
m. Facolina Bostonicnsis (Coulh.) V. \& Em.
M. Facrlina pilata (Gould) V. \& Em.
** n. Cratena Veronice V.
M. Cratma gymmota (Couth.) V. \& Em.
* N. Е. Tergipes despectus (Johnst.) A. \& H.
N. E. Galrinia exigua A. \& H.
* N. E.G. Lemaxa rubella (Fabr.) Dall.
* o. Atlanta Peronii (Les.).
* O. Curinaria Atlantica Ad. \& IR.
* O. Cacolina longirostris (Les.).
* O. Cavolina uneinata (Gray).
* o. Curolina inflexa (Les.) Gray.
* o. Clio pyramidata Limme.
* 0. Balantium recurvum Children.
* o. Styliola acicula (Rang).
* O. Styliola virgula (Rang).
* o. Sprivialis MacAndrit Forbes \& Han.
** O. Cymbutia calceolus V.
N. Halopsyche globulosa (Rang) V.
N. E. Dentalium oceidentale Stimpson.
* N. E. Siphonotcntalium vitreum Sars.
* N. E. Siphonentalis affinis Sars.
* 上. Siphoncutalis Lofotensis G. O. Sars.
* E. Cadnlus propinquas G. O. Sars.
* E. Cadulus Jeffrcysii (Monteros.).
* Cadulus Pandionis V. \& S.
* E. Poromya rotundata Jeff.
* N. E. Poromya gramulata (Nyst) Forbes \& H.
* E. Lyonsiclla abyssicola Sars.
** Lyonsiclla gemma Verrill.
* N. ๒. Kennerlia glacialis (Leaeh) Carp.
* N. E. Necra glacialis G. O. Sars.
N. E. Neara aretica Lovén.
N. E. Necra obesa Lovén ($=$ N. pellucida St.).
* E. Necera jugosa S. Wood.
* e. Nicera rostrata (Speng.) Lovén.
* Neara multicostata V. \& S.
* Cardium, sp. ind.
* e. Tellimya ferruginosa (Mont.).
* E. Cryptodon Sarsii (Phil.).
M. Cryptodon obesus Verrill.
* F . Cryptodon ferruginosus? (Forbes).
**N. S. Loripes lens V. \& S.
N. E. Astartc crenata Gray ($=$ A. lens Stimp.).
* s. Leda unca Gould.
* N. E. Leda permula (Mïll.).
* E. Toldiu expansa Jeff.?
* N. E. Foldia frigida Torell.
* N. G. E. Arca glacialis Gray.
N. E. Arca pectunculoides Scacchi.
* E. Limopsis cristata Jeff. ?
* E. Limopsis minuta (Phil.).
* Modiola polita V. \& S.
* s. Avicula hiruudo? var. nitida V .
* N. e. Pecten vitrcus (Gmel.) Wood.
N. E. Pecten Hoskynsi Forbes, var. pustulosus V.
* E. Pecten fenestratus Forbes?
* * Pecten, sp. (near opercularis).
* E. Limaca subovata (Jetf.) Monter.

PART III.-CATALOGUE OF MOLLUSCA RECENTLY ADDED TO THE FAUNA OF SOUTHERN NEW ENGLAND.

By A. E. VERRELL。

The following lists include 130 species of Mollusea that have recently been added to the fauna of Southern New England, mainly throngh the researches of the dredging party of the United States Fish Commission on the steamer "Fish Hawk". The greater portion of these, with several others undetermined or not yet described, were taken on September 4 and 13 and October $\mathscr{2}$, on the onter bank or slope, 70 to 115 miles south from Martha's Vineyard and Newport, R. I., in 65 to 500 fathoms. For a list of these localities see p.-.

In these lists those species which were unrecorded from or entirely new to New England or to the northeastern coast of America are indicated by an asterisk; previously undescribed species by two asterisks; those known previously from our northern coasts have a prefixed; those from the middle parts of the coast have ar, and are neither specially southern nor northern; those oceanie species belonging to the surface fauna have o prefixed; southern forms are designated by s; those that are also known from Europe are designated by E ; those peculiar to America by A.

In the tables, living specimens are indicated by an asterisk; dead ones by a dagger; m signifies many; sv, several ; r, rare; l, umsually large; j, young.

List of Mollusca from the outer banks prerionsly unlinown south of Cape Cod.

	Stations .. $\{$	$\begin{aligned} & 865 \\ & \text { to } \\ & 867 \end{aligned}$	$\begin{aligned} & 872 \\ & \text { to } \\ & 874 \end{aligned}$	$\begin{aligned} & 870 \\ & \text { to } \\ & 878 \end{aligned}$	849	$\begin{aligned} & 879 \\ & 880 \\ & 895 \end{aligned}$	8893	891 892
	Depths in fathoms................................ $\{$	$\begin{aligned} & 64 \\ & \text { to } \\ & 65 \end{aligned}$	$\begin{gathered} 85 \\ \text { to } \\ 100 \end{gathered}$	$\begin{gathered} 115 \\ \text { to } \\ 155 \end{gathered}$	192	$\begin{gathered} 225 \\ \text { to } \\ 2.52 \end{gathered}$	$\begin{aligned} & 365 \\ & \text { to } \\ & 372 \end{aligned}$	$\begin{gathered} 487 \\ \text { to } \\ 500 \end{gathered}$
	CEPHALOPODA.							
***	Calliteuthis reversa Verrill .						* 1	
N. A.	Heteroteuthis tenera Verrill. Rossia suble is Verrill	* m .	* m .	$\operatorname{*m}_{*} \mathrm{~m}_{2}$		* $\begin{aligned} & \text { sv. } \\ & *\end{aligned}$	${ }_{1}{ }^{1}$	
${ }^{\text {N. }}$ **. ${ }^{\text {E. }}$	Octopus Bairdii Verrill			* sv.	* sv.	* sv.	sv.	* 1
	Alloposus mollis Verrill					+ 3	*2	* 1

List of Mollusca provionsly unknown south of Cope Cod-Continued.

	Stations $\{$	$\begin{aligned} & 865 \\ & \text { to } \\ & 867 \end{aligned}$	$\begin{aligned} & 872 \\ & \text { to } \\ & 874 \end{aligned}$	$\begin{aligned} & 870 \\ & 10 \\ & 878 \end{aligned}$	869	$\begin{aligned} & 879 \\ & 890 \\ & 895 \end{aligned}$	893 894	${ }_{892}^{801}$
	Depths in fathoms $\{$	$\begin{aligned} & 64 \\ & \text { to } \\ & 65 \end{aligned}$	$\begin{aligned} & 85 \\ & \text { to } \\ & 100 \end{aligned}$	$\begin{aligned} & 115 \\ & 10 \\ & 155 \end{aligned}$	192	$\begin{aligned} & 225 \\ & \text { to } \\ & 255 \end{aligned}$	$\begin{aligned} & 365 \\ & \text { to } \\ & 372 \end{aligned}$	$\begin{aligned} & 487 \\ & \text { to } \\ & 500 \end{aligned}$
	GAStropoda.							
N. ${ }_{* *}^{\text {E. }}$	Admete Couthouyi Jay (=A. viridula Gld.) Pleurotoma Pandionis V			st.	* m.	* sp.	- sv.	* m.
	Pleurotoma Agassizii V.		${ }_{*}^{\dagger 1}$	*	†1	v.	* m.	* m.
**	Pleurotoma Carpenteri V. \& S S			*2				
	Bela impressa Morrch (27 to 29 fathoms)						$\cdots 3$	
* N. E.	Bela simplex Midd. (smooth)						$\dagger 1$	
**	Bela heles Verrill							
N. E.	Bela violacea (Miligh.) Ad. (27 to 29 fathoms)							
N. ${ }_{* *}$ E.	Bela exarata ((10il.) Ad					* 1	2	* 1
* $\mathrm{N} . \mathrm{e}$.	Taranis Mörchii Sars						$\ddagger{ }^{7}$	
* ${ }_{68}$.	Marginella roscida? Rav	$\dagger 1$						
N. A.	Neptunea decemcostata (Say')	†1		$\dagger \mathrm{sv}$.				
${ }^{*}{ }_{* * *}$. E .	N-ptunea propingua (Alder)	\dagger	\dagger sv.	* m.	* m.	* m.	*m.	
***	Neptunea arata V \& ${ }_{\text {Neptunea colat }}$						* ${ }^{*}$	$\cdots \mathrm{m}$.
* N.e.	Tritonofusus latericeus (Möli.) Mör					* sv.	\dagger sv.	
	Nassa nigrolabra V			* 1				
N. E ¢ E .	Anaclis costolata (Cant.) ${ }^{\text {Lunatia }}$ Grönlandica (Möl.)				* m.	* s8.	* m.	
N. N. N. E. E.	Lnnatia Grönlandica (Müll.) Ad		+1	i sv.	\dagger ¢8.			
***.	Lunatia levicula V. (27 to 29 fathoms)							
	Lamellaria pellucida V			v.				
* $\mathrm{N} . \mathrm{e}$.	Cingula Jan-Maycni (Friele)					* 1	m	$\times \mathrm{m}$.
${ }_{*}^{\mathrm{N} \cdot} \times$	Cingula carinata Mig		2	+			2	1
* N. E.	Cingula turgida (Jerr.)							
** N .	Lovenella Whhiteavesii Verr						${ }^{*} 2$	
N. A.	Aporrhais occidentalis Beck		${ }^{\dagger}$	* m.	†2	† 2	$\dagger 2$	
${ }^{\mathrm{N}} \mathrm{C}_{* *}^{\text {E. }}$.	Torellia rest ita Jeff.							
* ${ }^{\text {n.e. }}$.	Lepetella tubicola V. \& ${ }^{\text {Acmea }}$			+1			m.	
	Scalaria Dallinna V. ©		¢1		* 3			
**	Scalaria Pourtalesii V. \& S			\dagger sv.				
**	Scalaria (sp.ind.)		* 1					
**	Acirsa gracilis V						12	1
**	Solarium boreale			* \dagger				
N.	Aclis striata V			† 1				
N. E.	Aclis Walleri J							1
N. ${ }^{\text {E. }}$.							+ 1	
***	Calliostoma Bairdii V. \& S	t	* m.	* m.	* m.			
**	Margarita regalis V. \& S					* m.	${ }^{\text {m }}$.	* m.
	Margarita lamellosa V. \&		+1	+1				
* E.	Cyelostrema trochoides (J.)						* 2	2
N. E.	Puncturella noachina (L.) Lowe			*		$\times 1$		
- ${ }^{\text {E. }}$ E.	Eulina intermedia							
ง. ** ${ }^{\text {A }}$.	Turbonilla nivea (St) Ad			* 1				
${ }_{* *}^{* *}$	Turbonilla Rathbuni V. \& S				r.	* sv.	*1	
**	Turbonilla formosa V. \&. s							* sv.
**	Turbonilia suithin V		-	+1.			*	
${ }_{*}^{\text {N. }}$. E.	Odostoniia unidentata (Mront.)			†1				
* ${ }_{\text {* }}$ E.	Auriculina insculpta? (Mont.) S							
${ }^{\text {N. }}$ N. $\mathrm{E}_{\text {A. }}$.	Eulimella rentricosa Forbes Rithicula nitida V.......		+1					
N. E.	Scaplander puncto-striata (\%igh.) Ail			* m.	*sv.	* m.	* m.	
* N. E. E.	Philino Finmarchica Sars.							
	Philine cingulata Sa							1
* E.	Ampliiepliyra globosa Lové			+48.				
N. ${ }_{* *}^{\text {er }}$.	Amphisphy yra pellucida (Brown) Lovén			$\dagger 2$			*1	
				* 1				
* N. E.	Diaphana nitidula (Lo						4	
N. F.	Diaphana pertenuis (Migh						†1	
$\mathrm{N}_{* * *}^{\text {\% }}$.	Cylichna occulta (Migh.) Ad		*1	+1			* sv.	* sv.
**	Pleurobranchea tarda V. (27 fathoms)			* m.		* 1		

List of Mollusca proviously unlinown south of Cape Cod-Continued.

	Stations .. $\{$	865 to 867	872 to 874	870 to 878	869	$\begin{aligned} & 879 \\ & 880 \\ & 895 \end{aligned}$	8893	8891
	Depths in fathoms	64 to 65	85 to 100	115 to 155	192	$\begin{aligned} & 225 \\ & \text { to } \\ & 252 \end{aligned}$	$\begin{aligned} & 365 \\ & \text { to } \\ & 372 \end{aligned}$	$\begin{gathered} 487 \\ t 0 \\ 500 \end{gathered}$
	PTEROPODA.							
**	Csmbulia calceolns V			*		* m.		* 2
* 0	Carolina uncinata (D'Orb)	$\dagger 2$		$\dagger 2$			†sv.	$\dagger 1$
* ${ }^{*}$ O.	Cavolina lougirostris (Les.)	$\dagger 1$		\dagger sv.			\dagger sv.	\dagger ¢v.
* 0	Clio pyramidata Linné	$\dagger 1$					$\dagger 2$	$+2$
* 0 .	Balantium recurvam Childr	$\dagger 1$			$\dagger 1$		1	
	Spirialis Maca ndrei Forbes						$\dagger 3$	\dagger ¢v.
	SOLENOCONCHA.							
N. ${ }_{*}^{\text {E. }}$	DentaliumoccidentaleStimp. $=$ D.abyssorum Sars) Dentalium (slender var)		$\dagger 2$	* sq .	* sv.	* \dagger	* sv.	* m.
	Cadulus Pandionis V. \& S ...			* m.	* sv.		\dagger sv.	\dagger ¢v.
* E.	Calulus Jeffressii (3Ionteros.)			* m .	* s .			
* E.	Cadulus propinguas G. O. Sars			* sv.				
N. E.	Siphonodentalium vitreum Sars							$\dagger 1$
* N. E.	Siphonentalis Lofoteusis Sars..							$+2$
	LAMELLIBRANCHIATA.							
N. E.	Saricava Norregica (Speng.) Woodw.		\dagger	\dagger				
* ${ }_{\text {N. }}$ E. E.	Coromato granulata (Speng.) Woodw.	* 1		\dagger				
* N. E.	Poromya rotundata Jeff -...	+ 2		* 1				
N. E.	Neæra obesa Lovén ($=$ N. pellucida St.)	* sr.	m.	* m.	* 1		* sv	* m.
${ }^{N}$. E.	Neæra arctica Lovéu				* sv.	* m.	*sv.	
${ }_{*}^{*}$ N. E.	Nexra glacialis G. O. Sars				* sr.	* sv.	* m.	* ${ }_{\dagger}$
* E.	Neæra jugosa S. Wood.'.		SV.	sv.			* 85.	
**	Nexra multicostata V. \& S		* sv.	* sv.				
* ${ }_{* *}$ E.	Lyonsiclla abyssicola Sat				* 2	* 1	St	sv.
* $\mathrm{N} . \mathrm{E}$.	Kennerlia glacialis (Leach.)							$\dagger 1$
$\mathrm{N}_{*}^{* *}$. $\mathrm{E}^{\text {. }}$	Cardinm Islandicum Linné.	\dagger sv.						
	Cardinm. sp.n. (cancellated)			$\dagger 1$				
	Loripes lens V. \& S	$\dagger \mathrm{m}$.	* m.	+ m.	$\dagger 1$			
* E.	Cryptodon fermuginosus (Forbes)			*			* sr.	* 8 sv
N. E.	A starte erenata Gray ($=$ A. lens St., var	* m.					* ${ }^{\text {sr }}$ m.	* ${ }_{*} \mathbf{V}$,
N. E.	Nucula delphinodonta Mtighels.......	m.	* sr.	* mv .		${ }_{* 1}^{111}$		
* E.	Yoldia expansa Jeff. (?) .-....							
N. E.	Follia lucida Lovén			*	* sv.	* sr.	* m .	* 2
${ }^{*}$ N. E.	Yoldia frigida Torcll						* sv.	
* N. ${ }_{\text {s }}$.	Yoldia thaciformis (Storer) Stim Leda unca Gld				* sv.	* sr.		
* E.	Limopsis cristata Jeff	† sv.	* m.	${ }_{\text {+ }}^{+1}$				
* E.	Limopsis mimita (Phil.)			* sv.			* m.	* 3
N. E.	Area glacialis Gray.....................			* m.	* m.	\% m.	* m.	* sv.
N. E. N. E.	Arca pectunculoides Sc. (? var. of last) Arca, var. septentrionalis		* m .	* m.			${ }^{*} \mathrm{~m}$.	8.
N. E.	Arca, rar. septentrionalis Modiola polita V. \&S....						* sr.	
N. E.	Crenella decussata (Mont.) Maco	* r .				-		
N. E.	Dacrydium vitreum (Müll.) Torel	I.						
* S .	Avicula hirundo? var. nitida V.	m.			+ 1		m.	m.
s. ${ }_{\text {* }}^{\text {** }}$ E.	Pecten Islandicus Müller		$\dagger \mathrm{r}$.	\dagger sv.				
**	Pecten (near opercularis) Pecten vitrens (Gmel.) Wo			\dagger				
* N. E.	Pecten vitreus, var. abyssor	* r.		$\dagger \mathrm{sv}$.	* sy	* m.	* m.	
${ }_{*}^{\text {N. }}$ E.	Pecten Hoskyusi Forbes, var. pustulosus V			* 1			* r.	
* E.	Pecten fenestratus Forbes? = inequisculptus Tib.		$\times 1$	* 1			${ }^{\text {r }}$.	
	Limæa subovata (Jeff.) Monteros...					* 1	* m .	* s\%.
	BRACHIOPODA.							
N. E.	Terebratulina septentrionalis (Couth.) (789 sv.).				* 1		* m.	

List of Mollusca from the outer banks prexionsty known from the shallow waters south of Cape Cod.

List of recent additions to shallow-water Mollusca of Southern New England.*

Parasira catcmulata Steenstrup. Oceanic. Mediterranean.
*Truncatula truncutulus (Drap.). Littoral. Enropean.
Littorina littorea. Littoral; abundant. Europeau.
*Assiminea Grayana Leach. Littoral. Enropean.
Ancula cristata Lovén. Northern and European.
** Polycerella Emertoni Verrill. Littoral.
Scyllwa Edwardsii Verrill. Littoral. Southern and oceanic.
Coryphella Mananensis (Stimp.) Verrill. Off Race Point, Long Island Sound, 40 fathoms.

Stiliger fuscata, (Gld.) Bergh. Massachusetts Bay.
Terebratulina septentrionalis (Couth.). Off Block Island, 15 fathoms. Northern.
 AVOCETTA), EEOM PUGETEOUNE.

By DAVIB S. JOREDN and CHAREES II. GHEBEETR

Nemichthys avocetta, sp. nov.

Color translucent white, the lower half of the body covered with small, round, black spots, sharply defined; among these some smaller spots. Belly near the median line black. Upper half of body plain, colorless. Pectorals and dorsal plain. Anal speckled.

Body band-shaped, but not strongly compressed; deepest in the middle, tapering behind to the long and very slender filament-like tail, and anteriorly to a very long and slender neck, which contracts immediately behind the head. Skin smooth. No lateral line.

Head proper small, short and rather broad; concare between the eyes, with two median ridges; full and broad behind the eyes, with three longitudinal ridges. Lower part of head narrow, sharp, so that the head would be triangular in a vertical section. Eye very large, vertically placell, its length one-third that of the head without snout. Nostrils each simple (two on each side), rather large, close in front of eye, without tube or flap. Maxillary extending to close behind the eye, the mandible somewhat farther. Jaws prolonged, becoming very slender, long, acuminate, needle-like at tip, somewhat recurved. Upper jaw the longer, and nearly four times the length of the rest of the head, being i-8 times its greatest depth. Both jaws with small, very numer-

[^47]ons, retrorse, close-set, sharp teeth. Jaws bony, their lateral surfaces with retrorse roughnesses. Head naked, covered with skin.

Gill-openings rather large, oblique, rumning downward and forward, separated by a rather narrow isthmus. Pectorals well developed, half longer than eye. No ventrals. Vent under middle of the length of the pectorals (when depressed); the anal fin beginning close behind it and extending to the tail; its rays soft and rather slender; the membrane delicate; its height greatest near the middle and anteriorly, where it is somewhat less than height of body, becoming obsolete on the long candal filament. Dorsal similar to anal, but lower, beginning close behind the occiput and running to the tail.

Table of measurements.

	Inches	$\begin{gathered} \text { 100ths } \\ \text { of } \\ \text { length. } \end{gathered}$
Extreme length	21.40	100
Body:		
Greatest depth.	. 15	1.6 .8
Hearl:		
Greategt length.	2. 10	10
Greatest depth...	1.70	7.6
Diameter of orbit	. 18	1
Anal: ${ }_{\text {Greatest hei }}$. 28	1.3
Pectoral:		
Length	. 30	1.5

The specimen which is the type of the present description was taken in May, 1880, in the harbor of Port Gamble, and was placed by its captor in the museum of the University of Washington Territory, at Seattle. The president of the university, Prof. A. J. Anderson, presented it to the United States National Museum. Its movements in the water are said to be extremely active.

Fishes of this type offer comparatively few specific characters, and we are able to separate this species from Nemiehthys scolopaceus Rich. of the Atlantic by differences in proportion only. According to the detailed description and figure of the latter species given by Lowe and Brandt (Leptorhynchus or Belonopsis leuchtenbergi, Mém. Acad. St. Pétersb. Sav. Etrang., 1854, vii, 171-174), Nemichthys avocetta is distingnished by the much slenderer head, longer beak, and higher anal fin, the greatest height of the latter being nearly equal to the length of the pectoral and more than the depth of the head. So far as known to us, this is the first species of the genus thens far taken in the Pacific. A recent newspaper account of the capture of a sea-serpent at Victoria, British Columbia, perhaps refers to a second example of the same species.
Seattle, Wash., June 10, 1880.

DESCREPTEON OF A NEW SEPECUEG OF EDAEALGEDS (PAERAIEPIS

Paralepis coruscans, sp . nov.
Allied to P. borealis Reinh.
Head and body very elongate, compressed, almost ribbon-shaped, of uniform width throughout, and preserving its depth forwards to oceiput and backwards to origin of dorsal fin. From the insertion of the dorsal the body is gradually uarrowed to the rery slemder caudal pedmele, the base of anterior portion of anal projecting much beyoud the rentral outline.

Abdomen compressed, subtrenchant.
Head long, wedge-shaped, its upper and lower outlines equally oblique. Snont very long and sharp, equaling half the length of the head, its tip on a line with the axis of the body. Eye large, its diameter onethird the length of the snout, placed high, with its upper margin on a level with the top of the head.

Head shaped somewhat as in Sphyrana. Jaws equal; gape very wide; maxillary reaching the vertical from the nostril; mandibular joint reaching the vertical from the anterior margin of the pupil.

Mandible closing inside the margins of the upper jaw, the latter being transversely much arched to receive it; tip of mandible fitting into an emargination between the iutermaxillaries.

None of the teeth very large or fang-like. Intermaxillaries laterally with a single series of exceedingly minute teeth (as in Engraulis); anteriorly, however, on each side is a series of 4 or 5 lather long acicular teeth; the entire intermaxillary series is ontside of the mandible in the closed mouth. Vomer with minute tecth. Palatine series long; the anterior teeth long and slender; the posterior short. Mandibular series working aganst the palatines; the teeth slender, distant, of different leugths.

Branches of the lower jaw transversely deeply concave. Maxillary and intermaxillary slender, intimately connected, sliding under a fold of the skin.

All the bones of the head very thin, flexible, membrane-like. Preonbital long, very narrow, arched, extending forwards from orbit, reaching maxillary midway of its length. Snboibital chain likewise narrow.

Head with numerous sharp ridges; two forwards from the orbit; two pairs on the top of the head, converging forwards. Orbital ring slightly raised. Preopercular margin very oblique. Opercle with concentric strix and radiating lines.

Gill-openings very wide, extending forwards to vertical from nostril; isthmus anteriorly much compressed, thin and membrane-like, the gills of the two sides lapping over and meeting across the ridge. Mandibular rami and subopercles and interopercles of the two sides meeting below across the istlimus.

Gill-rakers similar on all the arches, short, immovable, much broader than long, each provided with 4 or 5 short needle-like spines. A slit behind fourth gill. Pseudobranchiæ developed, partly hidden by a fold of the membrane. Branchiostegals 7, the membranes overlapping anteriorly, as in the Salmonide.

Scales small, deciduons; those of the lateral line large, non-imbricate, plate-like, becoming smaller posteriorly, the series terminating abrubtly opposite middle of the base of the anal.

Fins all very small. Pectorals placed low, their length two-fifths that of the snout. Ventrals far back, entirely behind the dorsal, their distance from base of caudal half that from front of orbit. Distance from middle of dorsal basis to base of caudal half its distance from the tip of the snout.
Anal elongate, high anteriorly, its base terminating at a point distant one-half diameter of orbit from base of caudal. Adipose dorsal high and narrow, directly over the end of the anal.

Candal small, widely forked, the middle rays two-fifths the length of longest. End of candal peduncle emarginate, the candal rays radiating from the upper and lower angles. (In the type specimen the two lobes of caudal are entirely separate, without trace of connecting membrane.) Rudimentary rays long, extending along upper and lower sides of caudal peduncle for a distance greater than diameter of orbit. Tips of adipose dorsal and posterior anal rays reach rudimentary caudal rays.
Dorsal rays 8 ; anal rays 31 ; pectoral rays 11 ; ventral rays 9 ; lateral plates 60. Vent slightly behind base of ventral fins.

Color, in spirits, light olive-brown, becoming darker on the back, belly, and towards the tail. Above with a few small, distinct, black dots. Sides with some light brownish-yellow shading, a very narrow, lengthwise, silvery streak along the middle of the abdomen. Base of pectoral silvery, with a dark spot above. Bases of other fins jet-black, the color usually extending on the bases of the rays.

Sides of head silvery; opercles, top of head, and tip of snout dark; mandibular rami loright silvery, and provided each with a donble series of minute "phosphorescent" spots.

This species is known to us from a single specimen obtained in the harbor of Port Townsend, Wash., by Mr. Brown, assistant in the customoffice at Port Townsend, and by him presented to the United States National Museum. The type is $9 \frac{1}{4}$ inches in length, and is in good condition.

Table of measurcments.

Collector's number of specimen Locality	$\begin{aligned} & 150 \\ & \text { Port Townsend, } \\ & \text { Wash. } \end{aligned}$	
	Inches and 100ths.	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length	9.25	
Lody:		
Height at rentrals.		6
Least height ot tail.		23
Head:		
Greatest length........		$23 \frac{1}{3}$
Length of snout		$11 \frac{1}{2}$
Length of maxillary		9
Length of mandible		$12 \frac{1}{2}$
Diameter of orbit. .		$3 \frac{1}{2}$
Dorsal (rayed):		
Distance from snout		$55 \frac{1}{2}$
Length of baso.....		$2 \frac{1}{2}$
Dorsal (adipose):		
Distance from ventral base		$11{ }^{2}$
Length of base		15
Height at longest ray (ca.)		6
Caudal:		
Distance from snout		24
Distance from dorsal outline		$5 \frac{1}{3}$
Leagth		5
Veutral:		
Distance from snout		$59 \frac{1}{2}$
Dorsal	8	
Ventral.		
Number of scales in lateral line ..		

Port Townsend, Wash., September 30, 1880.

By S. I. SMITHE

A general account of three short dredging trips of the United States steamer Fish Hawk to the region, off the eastern end of Long Island, known as the Block Island soundings, has already been given by Professor Verrill in these Proceedings, and also in the American Journal of Science for the present month (vol. xx, pp. 390-103), and need not be repeated here, further than that the region examined is in latitude $39{ }^{\circ}$ 46^{\prime} to $40^{\circ} 09^{\prime}$ nortl, longitude $70 \circ 22^{\prime}$ to $71^{\circ} 10^{\prime}$ west, and that on the first trip, September 3 to 5 , eight hanls (stations 865 to 872) were made, at depths ranging from 64 to 192 fathoms; on the second trip, September 12 to 14, nine hauls (stations 873 to 881) were made, in 85 to 325 fathoms;
and on the third trip, October 1 to 3, five hauls (stations 891 to 895) were made, in 238 to about 500 fathoms. At station 872,86 fathoms, the bottom was covered with shells and sponges, but at all the other statious it was composed of fine sand and mud, varying in proportions and in compactness. The collections from the last trip have not yet been fully examined, and only a few of the species are recorded in the following pages. There was, however, a much smaller number of crustaceans obtained upon this last trip than upon the others.

The wonderful richness of the fauna of the sea-bottom in this region, in mollusks and echinoderms, has been shown in Professor Verrill's papers just referred to, and it is not less remarkable as regards the crustaceans. The richmess, in both species and individuals, of this crustacean fama would never have been suspected, and scarcely dreamed of, by one accustomed only to the meager fauna of the shallower waters of the south coast of New England. The larger part of the species secured from the great masses of material bronght up in the trawl and dredge are Decapoda. There are comparatively few sinall species of Schizopoda, Cumacea, and Amphipoda, and further dredging will undoubtedly increase very greatly the number of species in these groups. The followiug enumeration is not complete even for the Decapoda, and much less so for the other groups, as several of the species are represented by specimens insufficient for proper determination, while others are omitted becanse not jet satisfactorily determined.

The exact location, depth, character of bottom, and temperature for each of the stations are given by Professor Verrill in the papers above referred to, and in the following pages I give only the serial numbers of the stations at which the species occurred, and the range in depth from the shallowest to the deepest of these stations. In occasionally referring to localities of dredgings carried on by the Fish Commission in previous years, I give the serial numbers of the stations according to the "Lists of the Dredging Stations of the United States Fish Commission from 1871 to 1879 , inclusive, with Temperature and other Observations, arranged by Sanderson Smith and Richard Rathbun", in the Commissionel's Report for 1879.

BRACHYURA.

Hyas coarctatus Leack.

Several specimeus from 86 fathoms, station 872 , and 115 fathoms, station 871.

Collodes depressus A. Milne-Edwards, Crust. Région Mexicaine, p. 176, pl. 32, fig. 4, 187%.
I refer to this species a considerable number of specimens from stations S65, $871, S 72, S 73,874, S 75,87 S$; 65 to 142 fathoms. Most of these specimens are much larger than those described by Milne-Edwards, and in all the larger, and in some of the smaller, specimens examined the three dorsal spines of the carapax and abdomen are almost wholly obsolete,
but in other respects they all agree well with the figures. In a few of the smallest specimens examined the spines are very nearly or quite as prominent as in the figures, while in other respects they are indistinguishable from specimens of the same size in which the spines are very small and inconspicuons. In all the spincless specimens there is a more or less prominent tubercle in place of the spines of the carapax. As in the next species, the spines are probably specially characteristic of the young, and become more or less obsolete as the individual increases in size, the obsolescence being more rapid in some individuals than in others. I think there is very little donbt that this species is synonymons with C. trispinosus Stimpson, also deseribed from very small specimens. The following measurements show the size of the specimens examined. In the largest males the chelæ* are stout, but little more than twice as long as broad, and the basal portion considerably swollen.

	Station.	Sex.	Length of carapax.	Breadth of carapax.	Ratio.
			mm.	$m m$.	
874		σ^{*}	10.0	7.9	1: 0.79
871		0	12.0	8.7	1:0.73
865		δ	14.3	11.0	1:0.76
871		${ }^{\circ}$	14.7	12.2	1:0.77
874		O	17.5	14.0	1:0.80
873		9	8.2	5.7	1:0.70
871		9	11.0	8.0	1:0.73
863		¢	13.1	10.3	1:0.78
878		9	14.0	11.0	1:0.78

Euprognatha rastellifera Stimpson, Bull. Mus. Comp. Zool. Cambridge, ii, p. 123, 1870.-A. Milne-Edwards, Crust. Région Mexicaine, p. 183, pl. 33, fig. 2, 1578.

Statious 865, 869, 871, 872, $873,874,877,878$; 65 to 192 fathoms; at nearly all these stations in vast numbers.

Many of the specimens are much larger than those described by Stimpson and Milne-Edwards, males often being $15^{\text {nom }}$ in length of carapax. In all the large specimens the spines of the carapax are much less conspicuous than in the young; the spines upon the orbital arches, upon the gastric, cardiac, and the smmmits of the branchial regions, and upon the basal segment of the abdomen, are often reduced to low and inconspicuons tubercles. In large males the chelæ are nearly as long as the carapax, more than a fourth as broad as long, and the basal portion considerably swollen. The whole animal is nearly naked and very free from foreign growths of all sorts, contrasting strongly in this respect with most of the Maioidea.

Lambrus Verrillii, sp. nor.

Allied to L. Pourtalesii Stimpson.

Female.-The carapax, including lateral spines, is about one and a fouth times as broad as long, with a broad longitudinal depression

[^48]either side, between the branchial region and the posterior part of the gastric and the cardiac region, and with the surface rongh and tuberculose. The cardiac, with the posterior part of the gastric region, is raised into a contimuous ridge, capped with a longitudinal line of four large spiniform tubercles, one on the gastric and three on the cardiac, besides a small one in the middle of the posterior margin. The cardiac and the two anterior gastric tubercles are erect and their tips nearly in the same horizontal line, while the posterior cardiac is situated much lower down on the posterior slope of the carapax and is directed upward and backward. In front of the gastric tubercle there are two much smaller oues, in a trausverse line, and in front of these there are usually four still smaller ones similarly disposed, so as to make a submedian line of three small tubercles either side, between the large gastrie tubercle and the erect and prominent tubercle upon the crest of the orbital arch. In one of the specimens the most anterior of these three pairs of tubercles back of the orbits is obsolete. There is a deep longitudinal depression between the orbits, and extending a little back of them and forward to the narrow part of the rostrum. The rostrum is prominent, directed forward and downward, suddenly contracted just in front of the antennal fossie, leaving a dentiform tubercle either side, where the rostrum is suddenly narrowed; there is also a small tooth either side, near the tip of the rostrum. The antero-lateral margin is strongly incurved at the cervical suture, so as to approach closely and expose slightly from above the strongly tuberculo-dentate, infero-lateral carina, which is itself slightly incurved at this point; both in front of and behind the cervical suture, however, the margin recedes from the inferior carina, in front being directed mpward at an oblique angle with the part behind the cerrical suture. Abore this augle there is a broad, conspichous, and nearly smooth depression in the nearly rertical surface. The margin between the cervical suture and the orbit is armed with tro small tubercles near the cervical suture, but the anterior two-thirds is unarmed and slightly concave in outline. Behind the cervical suture the margin is regularly and very strongly arcuate, and in front of the great branchial tooth, which really forms the lateral angle of the carapax, is armed with nine or ten teeth, of which the first three or four are small and somewhat tuberculiform; the six posterior are larger, acutely triangular, and strongly laciniated, the fom anterior of these six being nearly equal in size, the fifth larger and the sixth smaller than the others. The greatest breadth of the carapax is between the tips of the large fifth laciniated tooth each side, or, excluding the teeth, between the bases of the third and fourth teeth each side. The great branchial tooth is larger than any other, laciniated, and has a small tooth at the base in front and a larger one near the base behind; and still behind this last there is first a snall and then a much larger tuberenliform spine on the concare postero-lateral margin, while the short posterior margin is armed with three prominent tubercles, with several smaller ones between. The
branchin regions are prominent, tuberenlose, and pitted, particularly upon the outer surface, and rise at the summit into a prominent spiniform tuberele either side, on a line with the anterior cardiac tubercle.
The chelipeds are rery nearly as in L. Pourtalesii, but appear to be propertionally a little longer, and, judging from A. Milne-Edwards's figure of Pourtalesii, to have the marginal teeth more acute and more deeply laciniated. The meri of all the ambulatory legs are spinulose on both the upper and lower edges, as in Pourtulesii, while in the last pair there are, in addition, similar spines on the upper edge of the carpus aud one near the middle of the upper edge of the propodus. The dactyli are about as long as the corresponding propodi, are very slightly compressed, and are covered with a dense velvet-like pubescence, except at the tips.

Mcasurements.

	$\left\lvert\, \begin{gathered} \stackrel{\ominus}{4} \\ \text { (Sta. } \\ 865-7 .) \end{gathered}\right.$	$\text { (Sta. } \left.{ }^{f} 872 .\right)$	$\text { (Sta. } \left.{ }^{\ominus} 872 .\right)$
Lencth of carapax	mm.	mm.	$m m$.
Breadth jncluding lateral	30.0	33.0	32.8 41.0
Tatio of lencth to breadth	1:1.25	1:1.55	1:1.25
Breadth exeluding lateral spines	26.0	28.0	35.3
Length of eheliped fully extended	57.0	65.0	85.0
Length of merus of cheliped	20.0	25.5	32.0
Length of propodus of cheliped.	27.0	30.0	39.0

The conspicnous cervical emargination of the antero-lateral margis of the carapax, the cervical depression above the margin, the different antero-lateral margin in front of the cervical suture, and the spines or tubercles on the carpi and propodi of the last ambulatory legs appear clearly to distinguish this species from the Pourtalesii. The anterolateral margin between the cervical suture and orbit appears to be more like L. hyponeus, as figured by A. Milne-Edwards, though in other respects the hyponcus is unlike the present species.

Stations S65 to S67, 872; 65 and 86 fathoms; three specimens, all females.

Cancer borealis Stimpson.—Smith, Trans. Conn. Acad., v, p. 39, p1. 8, 1879.
Stations $865,871,872,875,877,878,879 ; 65$ to 2257 fathoms. Most of the specimens are small, and the largest is only $56^{m m}$ in breadth of carapax.

Large specimens of this species were taken in abundance in the shallow waters off Newport.

Geryon quinquedens Smith, Trans. Conn. Acad., r, p. $3 \overline{5}$, pl. 9, figs. 1, $2,1 \varepsilon \overline{7} 9$.
Stations 881, 893 ; 252 and 372 fathoms.
This species grows to a much greater size than ans of the specimens from which my original description was drawn. A male from $\mathfrak{z c} 0$ fath oms, off Nova Scotia, north latitude 42033^{\prime}, west longitude $6 \because 003{ }^{\prime}$, presented to the National Museum by Capt. G. A. Johnson and crew of Proc. Nat. Mun: SO--27

Jan. $10,1881$.
the schooner Angusta A. Johnson, of Gloucester, Mass., gives the following incasurements:

Bathynectes loagispina Stimpson, Bull. Mus. Comp. Zool. Cambritge, ii, p. 146, 1870.-A. Nihne-Edwards, Crust. Région Mexicaine, p. 234, pl. 42, tig. 1, 1879, Stations $871,872,874,879 ; 85$ to 295 fathoms.
Stimpson's and Milne-Edwards's specimens were from the Straits of Florida.

Acanthocarpus Alexandri Stimpson, Bull. Mus. Comp. Zool. Cambridge, ii, p. 153, 1870.

Stations 870 to $874,877,878 ; 85$ to 155 fathoms. At 878,142 fathoms, forty-nine specimens were taken.

A large part of the specimens are much larger than those described by Stimpson, which were from 74 fathoms, in Pourtalès's dredgings in the Straits of Florida. A male, from station 578 , gives the following measurements: Leugth of carapax, 16.9^{mm}; breadth, 16.8^{mm}; breadth between tips of carpal spines, with the chelipeds closed, $42^{2 \mathrm{~mm}}$; length of carpal spine, $8^{n \mathrm{~mm}}$.

Ethusa microphthalma, sp. nov.
Female.-The carapax is as broad as long, but very much narrowed anteriorly, so that in front it is only half as broad as the widest part, which is at the swollen branchial regions posteriorly. The front between the orbits is less than half as wide as the entire front, and, as seen from above, is divided by a triangular median simus and two slightly less deep sinuses at the extremities of the antenunlary fossa, and the angles between and ontside of these sinuses are spiniform, so that the front between the eyes is armed with fonr similar and nearly equidistant spines, of which the lateral are slightly more prominent than the median. The orbital sinuses are nearly as deep as broad, and formed on the ontside by the spiniform antero lateral angles, which reach nearly as far forward as the spines of the front. The antero-lateral margins are long and nearly straight. The dorsal surface is slightly convex and not deeply areolated, though the cervical snture is well marked, and the whole surface is grauular and slightly pubescent, except on the cardiac and gastric regions, where the granulation is nearly obsolete.

The eyes are small and on very short peduncles, so that they do not nearly reach the angles of the orbital simses; the cornea is terminal, not expanded, and the pigment is black.

The chelipeds are equal, small, and very slender; the chela is scarcely stouter than the carpus, the basal portion is smooth and nearly eylindrical, and the digits are alike, fully as long as the basal portion, strongly compressed, longitudinally groored, slightly curved laterally,
and the prehensile edges straight and rery regularly dentate. The two first pairs of ambulatory legs are nearly alike, twice as long as the chelipeds, and nearly or quite naked; the propodus is a little shorter than the merus, very slightly compressed, and smooth, but slightly grooved longitudinally; the dactylus is once and a half as long as the propodus, very much compressed vertically, slightly curved, of nearly uniform breadth to a short distance from the acmminate tip, and vers smooth. The third and fourth pairs of ambulatory legs are nearly alike, scarcely half as long as the first and second, slender, and covered with short pubescence, except upon the dactyli. The propodus is much shorter than the merns, not very much shorter than the carpus, nearly eylindrical, and not expauded distally; the dactylus is very short and strongly eurved.

The single specimen seen, from station SiS (142 fathoms), gives the following measurements:

Length of carapax, including frontal spines... 13.5
Greatest breadth of carapax 14.0
Breadth between antero-lateral spines ... 0
Breadth between tips of inner angles of orbital sinuses................................... 3. 1

Length of chela ..-........... ... 8.0
Breadth of chelat.............. 1.7
Length of dactylns.. 4.1
Lengtl of second ambulatory leg...

Length of its dactylus.... ... 12.1
Length of fourth ambulatory leg.... 1 . 0
Length of its propodus .. 3.6
Leugth of its dactylns $1 . \bar{y}$
The very small eyes and the great breadth and prominent anterolateral angles of the carapax at once distinguish this species from E. mascurone, of the Mediterranean, and from the Japanese E. sexdentata. It is also evidently distinct firom E. granulatu Norman, which, howerer, has apparently not been fully described. The genus has not, I think, been recorded from America beiore, although a species ocemrs in the Bay of Panama.

ANOMURA.

Latreillia elegans Roux, Crust. Mediterrance, pl. 20, 18:8.-Milue-Edrards, Hist. Nat. Crust., i, p. 277, 1834.-De Haan, Fauna Japouica, p. 108, 1837.-Lueas, Explor. de l'Algérie, Animanx Articulés, i, p. 3, pl. 1, fig. 1, 1849.-Heller, Crust. siidlichen Emopa, p. 147, pl. 4, tig. 14 (anterior part of carapax after Lucas).
Station $872, S 6$ fathoms (three females); 87 t, S fathoms (fragment of carapax).

I have had no European specimens for comparison, and have seen only a tracing of Rouxs figure, with which the specimens before me agree well. In these specimens the propolns in the posterior pair of legs is a little more than two-thirds as long as the merns, and the dactylus is very short and closes against the somewhat oblique and spinous
distal extremity of the inferior edge of the propodus, which is ciliated along the rest of its length, while the merus is not ciliated. In Lucas's general figme the propodis is proportionally about a fourth shorter and the dactylus several times as long as in the specimens, the dactylus being very much as in the first thee pairs of ambulatory legs; but the cularged figure, $1 c$, of the terminal portion of the posterior leg is very different. The part apparently corresponding to the dactylns in the general figure is represented as composed of two segments, a shorter terminal one like the dactylns in the specimens, and a longer basal one like the terminal part of the propodus. I think there is little donbt that these fignres were drawn from a specimen in which the very slender and delicate propolus of the posterior leg was partially broken and bent at about a fourth of the way from the tip to the base, and that the artist mistook the break for a natural articulation, and so represented it. Supposing this to be the case, Lncas's enlarged figure agrees very well with the specimens before me.

Homola barbata White, List Crust. British Museum, p. 55, 1847.-Cancer barbatus Fabricius, Entomologia Systematica, ii, p. 460, 1793.-Herbst, Krahben und Krebse, pl. 42, fig. 3.-"Dorippe spinifrons Lamarck, Animaux sans Vertèbres, T, 1. 245, $1818^{\prime \prime}$ (Heller).-Homola spinifroms Leach, Trans. Linuean Soc. London, xi, p. 324, $1 \wedge 15$; Zoological Miscellany, ii. p. 82, pl. 88, 1815.-Desmarest, Considérat. Générales Crust., p. 134, pl. 17, fig. 1, $18 \cdot 55 .-$ Milue-Edwards, Hist. Nat. Crust., ii, p. 183, pl. 22, figs. 1-4, 1837 ; Règne Auimal de Cuvier, $3^{\text {mue }}$ écit., pl. 39, fig. : .
Station Siン; S6 fathoms; two males, the larger 19^{mm} in length of carapax.

I have had no Mediteranean specimens for comparison, but the two before me agree perfectly with the figures and descriptions above referred to.

Lyreidus Bairdii, sp. nov.
Female.-The carapax is regularly and strongly convex transversely, abont one and three-fonths times as long as the breadth at the anterolateral angles, back of which it narrows only slightly for lalf the length of the lateral margins, which then curve regnlarly round to the articulation with the abdomen. The rostrum, or median tooth of the deeply tridentate front, is acutely triangular, the breadth at base being ergual to about half the length and greater than the distance between its tip and that of either of the lateral spines, which are spiniform, very acnte, and directed forward. The orbital sinuses left between the median and lateral teeth are nearly as deep as broad and broadly romded behind. The edge of the antero-lateral margin is romeded, but is armed with a small tubercle about a third of the way from the lateral to the anterior angle, and in front of this tubercle the carapax is snddenly narowed, so that the margin in front of the tubercle is concave in ontline as seen from above. The posterior halt of the lateral margin is marked above by a distinct carina, but the anterior half is smoothly ronnded.

The eye-stalks searcely reach the tips of the lateral teeth of the front,
are broad at base, and narrowed to triangular tips. The eyes themselves are very sinall, black, and situated on the onter and inferior elge of the ere-stalks.

The chelipeds are nearly as long as the carapax, and similar in form to those of L. tridentutus. The propodus is short and very much compressed; the distal margin is transrerse and nearly as long as the length of the whole segment; the dorsal edge is thin and sharp, and terminates in a sharp tooth near the articnlation of the dactylus; back of the thin digital process the inferior edge is armed with three or fom acute teeth, decreasing in size proximally. The dactylns is compressed and very thin, with the onter edge regularly curved and sharp; the prehensile edge is sharp and slightly irregular in ontline, but not dentate, althongh the opposing edge of the propodns is armed with about five low teetli inside the lip. The first, second, and fourth pairs of ambulatory legs are very nearly as in L. tridentutus, as figured by De Haan. In the third pair, however, the propolus is nearly twice as broad as long, the inferior edge being expanded into a very thin, broad, lamellar process nearly as large as the boty of the segment, and with a ciliated and regularly curved margin nearly semicircular in outline. The dactylns is nearly as broad as the propodus, lamellar throughout, articulated at the upper end of the proximal margin, which, below the articulation, is concave in outline and ciliated to match the adjoining lamellar process of the propodus; the lateral margins are maked and convex in outline, except near the tip, which is sharply acuminate.

The abdomen is slightly more than two-thirds as long as the carapax, and agrees very closely with De Haan's figure of the abdomen of the male of L. tridentatus in the form and proportions of the somites. In its matural position, the abdomen is bent at the fourth somite, and this somite is armed with a small spiniform tuberele, projecting from the niddle of the dorsal surface.
The dorsal surface of the carapar and of the abdomen, the stermm, and the exposed surface of the external maxillipeds and of the chelipetis and ambalatory legs are naked, smooth, and highly polished, though the dorsal surface of the carapax is mimutely punetate, the panctations being more numerons on the anterior portions. The subhepatic and the adjacent anterior pleural regions are slightly hairy or pubescent.

Professor Verill tells me that the color of the entire animal shortly after it was placed in alcohol, and before the color could have changed materially from that in life, was light orange-red.

The single specimen, from which the above description is drawn, gives the following measurements:

Lengtlo of carapax, ineluding rostrum

Length of abdomen

Station S73; 100 fathoms.

Another and very much smaller specimen, from station 876,120 fathoms, though difliring very much from the larger specimen, is probably the young of the same species. The carapax of this specimen is proportionately longer; the orbital sinuses are much larger; the lateral spines of the front are more slender and mach longer, longer even than the rostral tooth, and curvei slightly ontward and upward toward the tips; and the lateral spines are much longer and directed more ontward. There is a small tubercle upon the third somite of the abdomen, and in place of the tubercle on the fourth somite there is an acute spine, much longer than the somite itself. There is also a small spiniform tubercle on the lower side of the ischinm of the third pair of ambulatory legs.

mm.

Length of earapax, including rostrum... 10.3
Breadth of carapax jnst back of lateral spines ... 5.7
Brealth of carapax between tips of lateral spines 6.8
Breadtli of front between tips of lateral spines ... 3.6
Length of rostrum .. 1.5
Hemipagurus, gen. nov.
The genus for which this name is proposed is allied to Spiropagurus Stimpson (Proc. Acad. Nat. Sci. Philadelphia, x, 1855, p. 236 (74), 1859), but differs conspicuonsly in the form and position of the sexual appendage of the last thoracic somite of the male. In Spiropagurus this appendage formed by the permanent extrusion of a portion of the vas deferens) arises from the cona of the left side of the last thoracic somite; while in the genus here proposed it arises from the corresponding coxa of the right side, is shorter than in Spiropagurus, and curved in one plane round the right side of the abdomen.

The carapax is short and broad, and the anterior margin is obtuse, and does not wholly corer the ophthalmic somite between the eyes. The portion in front of the cervical suture is indurated, but all the rest of the carapax is very soft and membranaceous, withont any distinct induration along the cardiaco-branchial suture. The ophthalmie seales are well developed. The eye-stalks are short and the cornea expanded. The antenula, antennx, and oral appendages are similar to those in Eupagurus; the exopods of all the maxillipeds are, however, proportionally much longer than in that genus. There are eleven pairs of phyllobranchir, arranged as in Eupagurus bernhardus, but the two antedior pairs connected with the external maxillipeds are very small and rudimentary, and composed of a few slightly flattened papilla, so that they are, strictly speaking, trichobranchiae. The chelipeds are slemder and unequal. The first and second pairs of ambulatory legs are long, and have slender, compressed, and ciliated or setigerons dactyli; the third pair are only imperfectly subcheliform.

In the male, the second, third, and fourth somites of the abdomen bear small appendages upon the left side, as in most of the allied genera,
but the fifth somite is destitnte of an appendage; in the female, the appendages of the secomd, third, and fourth somites are biramous and ovigerons, and there is usually a mdimentary miramons appendage upon the fifth somite, as in the allied genera.* The mopods are very nearly or quite symmetrical, the rami of the right appendage being very nearly or quite as large as that of the left. The telson is bilobed at the extremity.

As might he expected, the unsymmetrical development of the external sexual appendages of the males of the two spectes here described corresponds to a like unsymmetrical development of the internal sexual organs, and the following incomplete observations, made on ordinary alcoholie specimens in which the abdominal viscera are not sufficiently well preserved for a full anatomical or histological investigation, appear of sufficient importance to notice here, especially as nothing appears to be known of the internal structure of either species of Spiropagurus.

The right testis and vas deferens are much larger than the left. The lower part of the right vas deferens, in all the adnlts examined, is much more dilated thau the left, and is filled (as is also the external part of the duct) with very large spermatophores of peculiar form. The left vas deferens is slender, much as in Eupagurus bernharlus, terminates in a small opening in the left coxa of the last thoracie somite, as in ordinary Paguroids, and contains spermatophores somewhat similar in form and size to those of Eupagurus bernhardus. In alcoholic specimens of H. socialis the spermatophores from the left ras deferens are approximately 0.16^{mm} long and $0.03 .5^{\mathrm{mun}}$ broad, with a slender neck about a third of the entire length, and a very thin and delicate lamella for a base. The spermatophores from the richt vas deferens are over $2^{\text {mm }}$ in total length; the body itself is oval, approximately 0.40^{mm} long and a third as broad; at one end it terminates in a very long and slender process, two or three times as long as the body; at the other end there is a similar but slightly stouter process, a little longer than the body, and expanding at its tip into a broad and very delicate lamella, approximately $0.3 \tilde{y}^{\mathrm{mm}}$ long by 0.20 mm broad. The contents of the two kinds of spermatophores are, of course, not in a condition to show the structure of the spermatozoa, but they present a similar appearance in each case, and are apparently of about the same size.

Hemipagurus socialis, sp. nov.
Mate.-The part of the carapax in front of the cerrical suture is about a fifth broader than long; the sides nearly parallel; the front margin sinuons, curving slightly forward in the middle and each side between the eye-stalks and the peduncles of the antemae, the middle lobe this formed being sarcely more prominent than the lateral lobes, each of

[^49]which is armed with a minute spine, projecting forward just inside of the peduncle of the antema; between these spines the edge of the front is mptmmed in a sharp marginal carina, which terminates each side in the spines themselves. The dorsal surface of this part of the carapax is consex in both directions, the protogastric lobes are protuberant and well marked, and nearly the whole surface is ronghened, and more or less tuberculose, with transverse scalbrons elevations, which give rise to numerons hairs. The branchial regions are slightly swollen, so that the hreadth of the carapax posteriorly is greater than in front. All the portions back of the cervical suture are smooth and membranaceons.
The eye-stalks are about half as long as the carapax in front of the cervical suture, flattened and expanded distally, where they are abont three-fourths as broad as long. The eye itself is black, and the cornea extends romul either side so as to be creseent-shaped as seen from above. The ophthalmic scales are less than half as long as the eye-stalks, narrow, triangnlar, and acnte.

The first and second segments of the pedmele of the antennula are subequal in length, and the ultimate segment nearly once and a half as long as the penultimate, and almost as long as the eye-stalks. The superior, or major, flagellmu is nearly as long as the ultimate segment of the pedmele; the thick, ciliated basal portion consists of abont fourteen secments, and the slender terminal portion, which is nearly once and a half as long as the basal, of about five very sleuder and subequal segments. The minor flagellam is about two-thirls as long as the major, and composed of about eight segments. The peduncle of the antemnd reaches by the eye nearly the length of the last segment, which is about as loug as the greatest diameter of the eye. The acicle is slender, acute, and slighty longer than the last segment of the peduncle. The flagellum reaches beyond the tips of the ambulatory legs.

The chelipeds are slender and very nearly equal in length, but the right is very mucla stonter than the left. In the right cheliped the merns and carpns are subequal in length, together nearly twice as long as the carapax, and both are rongh and obsenrely spinous, the spines being most conspienoms on the elges of the mper surface of the carpus, which is fully three times ass long as broad, flattened above, and angular, but not distinctly carinated along either side. The chela is not far from twice as long as the carpus, nearly three times as long as broarl, compressed rertically, evenly rom ded, smooth and nearly naked above, but clothed with long, soft hair bencath; the digits are longitudinal, not gaping, and the dactyms is ahont two-thirds as long as the hasal portion of the propodis, and its prehensile edge is armed with a broad tooth near the middle. In the left cheliped the merns and carpus are simbar to those of the right, but much more slender and a little longer; the carpus is abont six times as long as broad, and the edges of the upper surface are rather more sharply angular than in the right ; the chela is shorter than the right, but very slender, smooth, and nearly
maked; the digits are similar, longitudiual, slightly longer than the basal portion of the chela, compressed, slightly carved downward toward the tips, but the prehensile edges straight and very minutely serrate.

The ambulatory legs are very nearly equal in length, and slightly overreach the chelipeds; the merus is abont as long as the left chela, and roughened with small spines on the upper and under edges; the propodus is shorter than the merns, compressed, smooth, and ciliated along the edges; the dactylus is a little longer in the second than in the first pair, but in both shorter than the propodus, very strongly compressed, very slightly twisted, about ten times as long as broal, and thickly ciliated along both edges, except for a short distance along the lower edge near the tip.
The female is smaller than the male, and has proportionally shorter ambulatory legs, and chelipeds very much shorter and much more alike. The right chela is only abont a third longer than the carpus, little more than a third as brod as long, and the digits are slender and nearly as long as the basal portion. The left cheliped is proportionally stonter than in the male, and this approximates to the right; the chela itself is scarcely more than a third longer than the carpus. The ambnatory legs overreach the chelipeds by nearly or cquite the full length of the dactyli, but all the segments have very nearly the same relative proportions as in the male.

The eggs are few in number and very large, being about a millimeter in diameter in alcoholic specimens.
In yomg males the chelipeds and ambulatory legs are similar to those of the female.

Mensurements.

| | |
| :--- | :--- | ---: | ---: | ---: |

The carcinœeinm is very rarely a naked gastropod shell; in most of the specimens seen it is either built up by a colony of Epizounthus Americamus, like the carcinœcinm of Eqpagurus Kröyeri, from the same stations, or is made up in a somewhat similar way by the single polyp of a species of Atamsia, the base secreted by the Adamsia being expanded on either side aud united below so as to inclose the crab in a broadly conical cavity, with only a slight spiral curvature. The nuclei abont which these polypean carcinœcial are formed are of varions origins; the majority of the Adtomsio carcinœecia appear to have been built upon fragments of pteropod shells, in some cases upon bits of worm-tubes, in one case upon the entire shell of a Cadulus, the greater part of the shell being left protruding from the base of the polyp. In the carcinceia formed by Epizomthus the nuclens seems usnally to have been absorbed, so that nothing is left distinguishable from the colony of polyps itself. In some case: the Addamsit has completely overgrown a small Epizoanthus carcinocium, so that when the Adamsia is removed a perfect Epizoonthus carcinœecium is found beneath as a nucleus. The carcinœecium of this species, and of $I I$. gracilis as well, does not cover the animal to the same extent as is usual in the species of Eupagurus, the anterior part of the carapax evidently being constantly exposed, its induration fitting the animal for such exposure. The Epizouthus carcinœcia are, however, very often disproportionally large for the crabs inhabiting them, having giown out either side until they are several times broader than long. In spite of these often enormons carcinœcia, both species of the gemus probably swim about by means of the ciliated dactyli of the ambulatory legs, as Spiropagurus spiriger has been observed to do by Stimpson (Proc. Acad. Nat. Sci. Philadelphia, 18j8, p. 248 (S6), 1859).

Stations 865, $870,871,872,873,874,876,877,878,880 ; 65$ to 252 fathoms. At many of these stations it occurred in very great abundance.

Hemipagurus gracilis, sp. nov.
This is a smaller and more slender species than the last, and is readily distinguished from it by the smooth carapax, the longer and more slender eye-stalks, the long and acicular ophthalmic scales, and by the narrow dactyli of the ambulatory legs being longer than the corresponding propodi.

Mule.-The carapax in front of the cervical suture is flat, smooth, nearly maked, and scarcely at all areolated. The anterior margin is rather more strougly sinnons than in H. sociutis, and the hateral lobes are slightly angular and each is tipped with a minute spine, as in that species, but the marginal carina between these spines is much less distinct.

The eye-stalks are more than half as long as the carapax in front of the cervical suture, flattened and expanded distally, but ouly about half as broad as long. The eyes themselves are as in Π. socialis. The ophthalmic seales are more than half as long as the eye-stalks, and are acicular and regularly acute.

The ultimate segment of the peduncle of the antenuula is as long as
the eye-stalk and nearly twice as long as the pemultimate segment. The major flagellum is as long as the ultimate segment of the peduncle, the basal portion of abont eight segments, the terminal portion three times as long and of about five snbequal and very slender segments. The minor flagellum is about half as loug as the major, and composed of about six segments. The antenna are very much as in H. socialis.

The chelipeds are nearly equal in length and similar to those of $I I$. socialis, but in the right cheliped the imner edge of the upper surface of the carpus is angular, and armed with a regular series of twelve to eighteen small spines, while the onter edge is rounded and unarmed ; and the prehensile edge of the dactylus is armed with two irregular and indistinet teetl, corresponding with two irregular emarginations in the edge of the digital portion of the propodus. In the left cheliped the onter edge of the upper surface of the carpus is slightly rounted and searcely at all spinulous, while the inner edge is armed as in the right cheliped. The left chela differs from that of $I I$. socictis in having the digital portion of the propodus considerably stouter than the dactylus, particularly toward the base.

The ambulatory legs are proportionally as long but more slender than in I. sociulis; in both pairs the dactylus is longer than the propodus, curved slightly near the tip, about sixteen times as loug as broad, sparsely ciliated along the upper edge, and very slightly setigerous along the lower.

The fcmale differs from the male as in II. socialis, but to a very much less extent, the chelipeds and ambulatory legs being only a little shorter than in the male, and the right cheliped ouly a little less stout and a little more like the left than in the male.
The eggs are fer and nearly as large as in H. socialis.
Measurements.

The carcinceium in all the specimens examined is a colony of E_{i} izoanthus, but this species, like H. socialis, probably sometimes inlabits an Ademsia carcinceium.

Stations $865,870,871,874,877,878 ; 65$ to 155 fathoms; associated with H. socielis, but not at all abundant.

Parapagurus pilosimanuss Smith, Trans. Comm. Acad., r, p. 51, 1879.
Stations $880,893,894 ; 252$ to 372 fathoms.
Since this species was described, from a single specimen taken in 250 fathons off Nora Scotia, a few additional specimens have been brought in by fishermen from deep water off Nova Scotia. In all the specimens seen, the carcincecium is built up by a compomed actinoid polyp, as in the specimen first describel. Some of the foung specimens show very plainly the gastropod shell, wheh serves as a nuclens about which the polypean carcinocium is built.

Eupagurus bernhardis Branelt ex Linné.
Station 805; 6.5 fathoms; two small specimens.
Eupagurus Kröyeri Stimpson.
Stations $869,870,877,878 ; 126$ to 192 fathoms; many specimens, mostly small, and all in carcinœcia formed by colonies of Epizoanthus Americanus.

Eupagurus, sp.

Stations 865 to 867,869 to 874,876 to 880,893 to $895 ; 65$ to 365 fathoms.

A species of about the size of E. Fr röyeri, and quite distinct from the species heretofore known upon our coast, and apparently distinct from all the described Emropean species.
?Munida Caribæa Stimpson, Aun. Lyceum Nat. Hist. New York, vii, p. 244 (116), $18 \mathrm{c}_{0} 0$.
Stations 895,871 to $87,587,878 ; 65$ to 142 fathoms. Very abundant at 871 ; 115 fathoms.

It is with considerable hesitation that I refer these specimens to Stimpson's species, which was very briefly deseribed, apparently from a single very small specimen, and with no more precise indication of its habitat than is implied in the specific name. Very small specimens of the species before me agree very well, however, with Stimpson's description, except that he says, "eye-peduncles longer and the cornea less dilated than usual", while in the species before me the eye-stalks are just about as long as in MI. Bamffia and the cornea fully as much expanded horizontally, though considerably more compressed vertically; but this rertical compression is perhaps what Stimpson referred to in speaking of the cornea as "less dilated than nsual".

The suecies in hand resemble M. temimana G. O. Sars in the length and shenderness of the chelipeds, which are even longer and more slender than in that species, from which, howerer, it is suficiently distinct.

The armature of the carapax, chelipeds, and ambulatory legs is more like 11. Bamffat than tenumuna. There are usually six subequal and nearly equiclistant spines upon the anterior half of the latemal margin of the carapax, of which one is in front of the cervical suture, thee upon the hepatic region, and two upon the anterior part of the branchat region. There are no spines upon the posterion horder of the carapas and none mpon the abdomen, exeept two very small ones on the anterior edge of the second somite. The chelipeds are very long and slender, in large specimens being a half or more longer than the entire body, nearly cylindrical, and the merus and carpos sparsely armed with small spines; but the chela, which is longer, but no stonter, than the merns, is without spines.

Four specimens give the following measurements:

Macrura.

Arctus depressus, sp. nov.
This species is represented only by a single, small, and probalbly immature individual, but is apparently distinct from any knorrn species of the gems, and is readily distinguished by the rery broad and greatly depressed cephato thorax, which in these respects is like Ibecus, and bs the conspicnoms spines each side of the posterior segments of the stermum. The depresse form is perhaps partially a character of immaturity, being an approach to the Phyllosomid-stages, and it is possible that the stemal spines disappear in the adult.

The carapox is less than half as thick as broad, and the breadth is much greater than the leugth along the midde line above, but slighty less than the length of the la: eral margin, whiel is convex in outline, so that the greatest breadth is near the mildle of the length. The anterolateral angles are acnte and very prominent, extending far forward of the rest of the front and to a line slightly in adrance of the first dorsally exposed segment (the true second pedmentar) of the antema each side. The ondits are very large, almost completely open in front, and ocenpy fully a third of the wilth of the whole front. The median carina is low, being, erem in the middle of its length, only a little higher then the lateral carine, and rises into two low, dentiform prominences, one
at about the middle of the carapax and another a little back of the anterior margin, and in front of the latter the carina is almost wholly obsolete. The lateral carine are prominent along the inner sides of the orbits, terminating in front in the elevated and irregularly dentate inner angles of the orbits. Just back of the orbit there is a hiatus in the carina, from which the carina exteuds minterruptedly to near the posterior margin, thongh its crest is minutely and obscurely dentate. The smface of the longitudinal depressed spaces between the median and lateral carinæ are naked and nearly smooth, and so is the narrow and slightly concave space between each lateral earina and the edge of the carapax, except for a line of small tubercles just outside the carina and a few additional ones outside of these, near the postero-lateral angle. The lateral margin is thin and the edge sharp, and divided by a sharp incision at the cervical suture, by an incision slightly less deep a little way back of the cervical suture, and by two or three obscure notches along the branchial region, while the edge between these incisions and notches is irregnlarly and very minutely dentate.

The eyes are large, with an expanded corneal, and black. The tro lobes of the antemulary somite rise in front into small dentiform tubercles, and so tho the first and second of the dorsally exposed segments of the antemæ. The second exposed segment of the antenna is about as broad as long, carimated above, acutely angular in front, and the inner and onter edges are each armed with three teeth, of which the anterior in each ease is obscure. The terminal segment is short, and the slightly arenate anterior margin is deeply five-lobed.

The stermum is triangular and very broad, the breadth between the bases of the posterior legs being nearly as great as the length along the median line. The edges are slightly raised above the bases of the legs, and terminate posteriorly, back of and below the base of the fifth leg, in a conspicuons spine, direeted backward.

The abdomen, to the tip of the telson, is twice as long as the carapax along the median line above, is at base mneh narrower than the carapax, and tapers regularly and so rapidly that at the sixth somite it is little more than two-thirds as broad as at base. There is a slight median carina on the secoud to the fifth somite, and the dorsal surface is naked and sparsely punctate, but otherwise nearly smooth. The pleura of the second, thirr, fourth, and fifth somites are nearly perpendicular and slightly earimated in the middle; the second is broader than the others and nearly right-angled, but terminates in a spiniform tip, turned backward; the third is angular, bat not spiniform at the extremity; and the fourth and fifth are obtuse or romnded. The sixth somite is about as long as, but considerably narrower than, the fifth, and its pleura are small and narrowly triangular. The telson is much longer than broad, tapers very slightly distally; the posterior portion is very thin, delieate, and transparent, and the posterior edge is slightly eurred and the angles rounded. The lamellie of the uropods are as long as and much broader
than the telson, and, except a small portion near the base, are thin and transparent like the terminal part of the telson.

Measurements.

Length from front of eararax to tip of telson mm.
Length from tips of antennx to tip of telson 23.2
Length of carapax along median line above 6.2
Length of carapax along lateral margin 9.0
Greatest breadth of carapax 8.3
Breadth betweeu anterior angles 7.5
Brealth posteriorly 6.2
Greatest thickness of cephalo-thorax 3.5
Breadth of first somite of abolomen 6. 1
Breadth of sixth somite of abdomen 4.0

Station 872; 86 fathoms.
In the outline of the edges of the segments of the antennæ and in the divisions of the carime of the carapax this species is much like A. Americanus Smith (Amer. Jonrı. Sci., II, xlvii, p. 119, 1869; Scyllarus (Aretus) Gundluchi von Martins, Archiv für Naturgesch., xxxviii, p. 123, pl. 5, fig. 13, 1872), the young of which it may possibly prove to be, thongh this seems very improbable considering that the specimen just deseribed is half as long as ordinary specimens of A. Americanus, which is known from the Gulf of Mexico and the West Indies.

Nephropsis aculeatus, sp. nov.
Very closely allied to Nephropsis Stexarti Wood-Mason (Journ. Asiatic Society of Bengal, xlii, part ii, p. 39, pl. 4, 1573), described from a single female, $98^{n \mathrm{~mm}}$ long and wanting the chelipeds, dredged in 260 to 300 fathoms in the Bay of Bengal.

Male.-In specimens 30^{mm} to 34^{mm} in length the rostrum is vert slightly longer proportionately than represented in the figures of N. Stecurti, bat in all other respects the carapax shows no differences whatever. The abdomen is as represented in the figure of N. Stewarti, except that the pleura of the second to the fifth somite, inclusive, project farther downward and terminate in slender, acmminate, and spiniform tips, and that the plenron of the sixth somite is sharply right-angled below, and not rounded. The uropods and telson show no differences whatever.

The chelipeds are equal, or very nearly so, about a fourth longer than the carapax, including the rostrum, and are carried with the chele held horizontally, as in Nephrops and Homarus. The merus is about as long as the rostrum, and is armed near its distal end with a slender spine above and a similar one below. The carpus is short, a little longer than broad, slightly broader than the distal part of the merus, and is armed with three small spines-one near the middle of the inmer edge, one at its distal end, and another beneath at the articulation with the chela. The chela is searcely longer than the merus and slighty broader than the carpus, somewhat compressed vertically, rounded above and belon, and
without spines, except a few very minute dentiform ones along the inner edge of the propodus; the propodal digit is longitudinal and tapers to a slender incurved tip; the dactylus is a little longer and stouter than the propodal digit, and has a longer and more strongly curved tip, which closes beneath the tip of the propodus; the prehensile edges of both digits are sharp and minutely cremule. The mper surface and the imer edge of the carpus and the upper surface and both edges of the chela are thickly clothed with very long and soft pubescence, directed distally. The snceeding pairs of legs are very nearly as in N. Stercarti. The second pair are abont three-fourths as long as the chelipeds, slender and perfectly chelate. The third pair are a little longer than the second and not quite as perfectly chelate. The fourth are a little louger than, and the fitth about as long as, the chelipeds.
Very imperfect fomale specimens, considerably larger than the males above described, have the chelipeds a little larger and stonter proportionally than in the males, and the pleura of the second to the fifth somite of the abdomen rery slightly less prolongerl, but still acuminate and spiniform, and very different from N. Stewarti.

One of the males and an imperfect female give the following:

Measurements.

Len

Station 873; 109 fathoms (3 males). Station $876 ; 120$ fathoms (one very imperfect female from the stomach of Lopholatilus). Station 875; 126 fathoms (fragments of two or three specimens).

As Wood-Mason has remarked, the genns Nephropsis is closely allied
to Nephrops. The structure and arrangement of the branchie were apparently not examined by Wood-Mason, but in our species they agree with Tephrops Yorvegicus, there being nineteen branchiae upon each side, arranged like the nineteen posterior branchia of each side of Iomarus. The branchia of the second maxilliped is wholly wanting, unless it is represented by a minute, papilla-like process near the base of the epignath. The oral appendages agree perfectly with those of Nephrops Norregicus. The densely pubescent chelipeds, howerer, are very different from the naked and carinated chelipeds of Nephrops, and probably afford an additional generic distinction.

Axius armatus, sp. nov.
Female.-The carapax is strongly compressed, abont twice as long as high, smooth and nearly naked. The rostrum is narrow, acmminate, spiniform at the tip, and armed along each edge with four or five slender, acnte, and spiniform teeth, directed forward and slightly upward. From the edge of the rostrum a sharp lateral carina mons back on each side more than a third of the way to the cervical suture. The dorsal carina is sharp anteriorly, extends back nearly to the cervical suture, but anteriorly only as far as the posterior marginal teeth of the rostrum, aud is armed with two spiniform teetl just back of the base of the rostrum. About half way between the dorsal and lateral carinæ there is a very distinct subdorsal carina, parallel with and extending back nearly as far as the dorsal, and in front turned abroptly inward opposite the posterior dorsal tooth, but uot quite reaching the dorsal carina.
The eyes are small and black.
The peduncle of the antemmia reaches by the tip of the rostrum the full leugth of the last segment, and the flagella are subequal in length and about as long as the carapas. The third segment of the peduncle of the antenna is armed with a slender spine on the lower side of the distal end. The distal spine on the second segment, at the base of the acicle, is slender, acute, and more than half as long as the rest of the segment, while the acicle is slender, straight, and as long as the fourth segment, which is slender, and about as long as the second segment together with its distal spiue. The fifth, or last, segment is not more than a third as long as the fourth. The flagellum is more than twice as long as the carapax.
The merus of the external maxilliped is armed at the distal extremity of the lower edge with two very long aud stender spines.
The larger cheliped is about twice as long as the carapax, and the chela itself, to the tip of the dactylus, is nearly as long as the carapax. The propodus is strongly compressed, about half as broal as the entire length and three-fourths as broal as the length of the basal portion, which is convex on both sides aut has the edges sharl and carmated. The digital portion is longitudinal, about three-fourths the entire length, more than half as long as the basal portion, slightly upturned at the tip,
and armed with a stout tooth near the middle of the prehensile edge. The dactylus is as long as the basal portion of the propodus, abont threefourths longer than the propodal digit, strongly curved toward the tip, and the prehensile edge is sharp and minutely crenulate, but not toothed, and closes by the inmer side of the tip of the propodus. The smaller cheliped is similar in form to the larger, but is considerably shorter and very much more slemder, and the propodal digit is proportionately longer and its prehensile edge thin and minutely multidentate. Both chela are sparsely hairy on the digits and very slightly along the margins of the basal portions. The second pair of legs are very slender and a little longer than the carapax; the merus is about as long as the carpus and chela taken together; the carpus is less than half as long as and slightly narrower than the merns and about three times as long as broad; the chela is slightly longer but scarcely broader than the carpus, and the digits are slender, longitudinal, not gaping, and a little shorter than the basal portion. The third and fourth pairs of legs are very nearly alike, and as long as the second, but more slender; the merus is about as long as the carpus and propodus together; the propodus is about a third longer than the carpus; and the dactylus is slender, nearly straight, and about two-fifths as long as the propodus. The fifth, or posterior, legs are considerably shorter and much more slender than the third and fourth pairs, being nearly cylindrical; the merus is about as long as the propolus; the carpus about three-fifths as long; the dactylus is about half as long as the carpus.

The abdomen is much narrower than the carapax and not expanded in the middle, the sides being nearly straight and parallel. The lamellæ of the uropols are abont as long as the telson, the onter as long as broad, the inner a little narrower. The telson is about a third longer than the sixth somite of the abdomen, about two-thirds as broad as long; the lateral edges are nearly parallel and each armed with about four small spines; the posterior inargin is regularly arcuate. Near the middle of the dorsal surface there is a transverse line of four small spines, and there are one or two more between these and the tip.

An imperfect male specimen, wanting the chelipeds and most of the abdomen, has three spines in front on the dorsal carina, and the spines, of the rostrum slightly longer than in the female.
The single female gives the following:
mm.
Length from tip of rostrum to tip of telson 44. 0
Length of carapax to tip of rostrmm 16.3
Lengeth of rostrmm 3.1
Height of carapax. 8. 2
Breadth of carapax 7.0
Length of right cheliped 31.0
Length of lett cheliped 25.0
Length of right merus. 8.3
Lengrth of left merus 7.0
Length of right propodus 12.5
Length of left propodus
mn. 3.0
Breadth of right propodus
Breadth of left propodus 3.1
Length of right propodal digit 4.5
Length of left propodal digit 4. 0
Length of right dactylus 8.0
Length of left dactylus 5. 2
Length of telson 5. 5
Breadth of telson 3. 5

Stations 873 and $878 ; 100$ and 142 fathoms.
This species is at once distingnished from A. stirynchus and A. serratus by the narrower and acmminate rostrum, the teeth on the dorsal carina, the form of the chelipeds, and the more slender second, third, and fourth pairs of legs. In A. stirynchus and serratus the carpus in the second pair of legs is short, expanded distally, and less than half as broad as long, and the chela is nearly or quite half as broad as long.

Axius serratus Stimpson (Proc. Boston Soc. Nat. Mist., iv, p. 222, 1852; Smith, Trans. Conn. Acad., v, p. 55, pl. 10, fig. 4, 1S79) was dredged the past season from the "Fish Hawk", in 20 fathoms, sandy bottom, in Narragansett Bay; and large specimens, taken on George's Banks, have been presented to the National Muscam by Capt. John Q. Getchell and crew of the schooner "Otis P. Lorl", of Gloncester, Mass.

These specimens show that Stimpson's species is distinct from the Enropean stirynchus. The serratus is at once distinguished by its broad and depressed abdomen, which expands laterally in the middle, and is much broader than the carapax. The fourth segment of the peduncle of the antenna and the acicle are both proportionally much longer in serratus than in stirynchus, being nearly as long as in the species just described. The upper edge of the propodus in both chelipeds is thin and strongly carinated in serratus, but thick and ronnded in stirynchus, and the smaller cheliped is much narrower and has much longer and more sleuder digits in serrutus than in stirynchus.

Pontophilus Norvegicus M. Sars.

Stations $869,870,880,881,893,894,895 ; 155$ to 372 fathoms.
The largest femates are $7 \mathrm{t}^{\mathrm{mm}}$ long, the largest male 47^{mm}. Several of the specimens belong to the variety with the broad and obtuse rostrum described by Sars.

Pontophilus brevirostris, sp. nov.
Tery closely allied to P. spinosus and P. Norregieus, but readily distinguished from both these species by the very short rostrum, which is tridentate, with the median tooth searcely broader and rery little longer than the lateral, about reaching to the cornea of the imer side of the eye and not projecting beyond the line of the spiniform outer angles of the orbits. The proportions of the body are more like spinosus than Norvegieus, but the carination and armature of the carapax are more
like Norvegicus, while the seulpture of the distal somites of the abdomen is more like spinosus.
The dorsal carina of the carapax is armed with three spines, and usually a smaller fourth one in front of the others and just back of the hase of the rostrum; the subdorsal carina is armed with two spines, as in Norregieus, and often with a rudiment of a thim behind these; the lateral carina does not extend back of the middle of the carapax, and is armed with a single spine, as in Norvegicus. There are no distinct carine on the first four somites of the abdomen, but the fifth somite is flattened above and has subdorsal carine slightly diverging posteriorly, and below these, each side, another carina, nearly parallel with the subdorsal; and the sixth somite is flattened above and subdorsally carinated, as in spinosus, though the carinæ are not quite as conspicuous on either somite as in that species.

The eyes, antemnlx, and antenne are very nearly as in P. spinosus. The external maxillipeds reach a little beyond the tips of the chelipeds, the pemultimate segment reaches nearly to the tip of the antemal scale, and the ultimate segment is a little less than twice as long as the penultimate, while in P. Norvegicus it is about once and a half as long, and in P. spinosus much more than twice as long, as the the penultimate segment. The thoracie legs differ searcely at all from those of P. spinosus.

The lamellæ of the uropods are very nearly as in P. spinosus. The imner lamella reaches nearly or quite to the tip of the telson, is lanceolate, and six or seren times as long as broad; the onter lamella is abont a tenth shorter than the inner and about four times as long as broad. The telson is once and a fourth to once and two-fifths as long as the sixth somite of the abdomen, is very narrow, slightly acuminate, aud has a very narrow and acutely triangular tip, armed with only two very loug, slender, and plumose setæ, which arise near together from the under side.
This species appears to be much smaller than either Norvegicus or spinosus. The following measurements are from two of the larger specimens:

Stations 865 to 867,870 to $874,877,878 ; 65$ to 155 fathoms. At most of these stations it was taken in great abundance.

Hippolyte securifrons Norman.
Stations 897 and 880 ; 225 and 252 fathoms ; three large females.
The branchial formula of this species, written essentially after Huxley's method, is :

Somites.	Podobranchise.	Artbrobranchix.	Pleurobranchiæ.	
VII.	0 (ep.)	0	0	$=0$ (ep.)
VIII	$1(+c p$.	0	0	$=1(+\mathrm{p}$. $)$
IX.	0 (ep.)	0	0	$=0$ (cw.)
X	0 (ep.)	0	1	$=1(+$ (り) $)$
XI.	0 (ep.)	0	1	$=1\left(+{ }^{\text {el }}\right.$
XII	0 (ep.)	0	1	$=1(+e p$.
KIIL.	0	0	1	$=1$
X「I.	0	0	1	$=1$
	1+6 ep.	0	5	$6+6$ cр.

Bythocaris sp.

Stations 865 to $867,872,874,878 ; 64$ to 142 fathoms.
Pandalus propinquus G. O. Sars, Christiania Videnskabs-Selskabs Forhandlinger, 1859 , p. 148 (4); ibid., 1871, p. 259 (16).
Stations $878,879,880,893,894,875 ; 142$ to 365 fathoms. The largest specimen is a fermale, over 110^{mm} in length.

This species was dredged in 1879 in the Gulf of Maine, off Cape Cod, station 305, N. lat. $42^{\circ} 9^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 41^{\prime}, 118$ fathoms, soft mul; and station 343, N. lat. $42017^{\prime}, \mathrm{W}$. long. $69051^{\prime}, 116$ fathoms, mud. A male, 74^{mm} long, from station 305, has the chelate secont pair of legs reversed, the short one being on the left and the long one on the right! The legs themselves are of the normal size and structure, and the specimen appears to be perfectly normal in all other respects.

As far as I am aware, the species has heretofore been recorded only from deep water oft the coast of Norway.

Pandalus leptocerus, sp. nov.
In size and general appearance mbich like P. Monturfui (annulicornis), but more slender and readily distinguished from it, and from P. propinquus and borealis as well, by the minntely roughened surfice and the presence of exopods upon the external maxillipeds.

The rostrum is from about once and a third to nearly twice as long as the rest of the earapax, and curved very slightly upward, but usnally not as much so as in P. Montugui. Above, it is armed with eleren to thirteen teeth, of which one is near the tip, as in P. Montagui, and usually only two back of the orbit on the carapax proper, while a considerable space back of the terminal spine is manmed, though this space is usually shorter than in P. Montagui. Bencath, there are 6 to S teeth, as in P. Montagui. The entire surface of the carapax and abotomen is slightly roughened with short and irregular, trausverse, punctate ridges, which give rise to very short, bristle-like hairs, while in P. Jontayai, propinquus and borealis the surface is naked and rery smooth. The
carapax is considerably more slender than in P. Montagui, and the posterior tooth of the dorsal carina is farther forward, being much in front of the middle. The abdomen is more slender than in P. Montagui ; but, except for the greater slenderness, there is scarcely any difference in the form or proportions of the somites, or the form and armature of the telson and mropods. There are slender exopods, about a third as long as the ischia, at the bases of the external maxillipeds, but the endoporls themselves are as in P. Montagui; the meras reaches to the base of the flagellum of the antema, and the tip falls considerably short of the tip of the antemal scale.

The first pair of legs are nearly as in P. Montagui. The right chelate leg of the second pair is shorter and stonter than in T. Montagui, and scarceiy reaches the tip of the corresponding leg of the first pair; the ischinm is about a fourth the entire length; the merus is only a little shorter than the ischinm; the carpas increases in thickness distally, is a little longer than the ischinm, not more than about once and a half as long as the merus, and usually composed of only five segments, the proximal half being wholly unsegmented or ammlated, then three snbequal and rery distinct segments, abont as broal as long, and these followed by the terminal segment, which is about as long as the three next preceding; the chela is about half as long as the carpus and a little stonter than its distal end.* The left chelate leg is a little shorter and stonter than in P. Montagui, but has about the same number of segments in the merus and carpus, and does not differ in other respects. The third, fourth, and fifth pairs of legs differ from those of P. Montagui in being a little more slender and in having much longer, much more slender, and nearly cylindrical dactyli, which are wholly unarmed, except a few small spinules beneath near the base.

[^50]Mcasuremсиts.

Detailed measurements of each of the chelate legs, and the number of segments in the earpus, of nine of the above specimens are given below. The first three columns give the number, sex, and length of each specimen, as in the table above; colmms four to nine give the entire length of the leg and the lengths of each of the five distal segments ; and the last cohmm gives the number of segments in the carpus. For the left carpus this last number is not perfectly definite, as the segmentation becomes irregnlar and indistinct toward the proximal end.

No.	Scx.	Length.	Right chelate leg.						
			Leugth.	Ischium.	Merus.	Carpus.	Propodus.	Dactslus.	No. sers. in carp.
		$m m$.	$m m$.	$m m$.	$m m$.	$m m$.	$m m$.	$m m$.	
2	${ }^{\circ}$	60	15	4.0	3.2	4.5	$\stackrel{.2}{2.6}$	1.1	
3	\%	75	22	5.2	4.9	7.0	- 3.8	1.5	
6	¢	80	23	5.9	5.1	7.2	4.0	1.6	
10	¢	90	24	6. 6	5.3	7.6	3.9	1.6	5
7	+	82	20	5.5	4.4	6.5	3.2	1.2	18
4	δ	61	15	4.1	3. 2	4.6	2.5	1. 0	6
5	${ }^{\circ}$	65	16	4.0	3.2	5.0	2.5	1.0	8
8	\bigcirc	84	22	5.5	1.6	7.0	3.4	1.3	8
						chelate			
No.			Length.	Ischium.	Merus.	Carpus.	Propodus.	Dactylus.	No. segs. in carp.
		$m m$.	mm.	$m m$.	$m m$.	mm.	$m m$.	$m m$.	
2	\%	60	27	6.5	5.9	12.3	1.2	0.6	53
3	${ }^{\circ}$	75	35	9.0	8.0	15.0	I. 9	0.9	58
6	O	80	37	9. 0	8.5	16.0	2.0	1.0	64
10	¢	90	41	10.3	8.8	18.2	2.0	1.0	64
7	+	82	39	10.0	8.4	17.6	1.9	0.9	63
4	0	61	27	6. 7	5.7	12.2	1. 1	0.6	54
3	O	6.5	27	6. 6	5.8	13.1	1. 2	0.6	52
8	\bigcirc	84	39	9.0	8.8	17.5	1.9	0.8	56

Station 870, 155 fathoms (abundant); 873, 100 fathoms; 878, 142 fathoms (very abundant). It was also taken in abundance this season at many stations in shallow water off Rloode Istand.

In the dredgings off Cape Corl, in 1879, this species occurred at a great number of the stations, in 15 to 116 fathoms, and was very often associated with P. Montagui, and at 116 fathoms with P. propinquus. It was particularly abmodant in 25 to 50 fathoms, several quarts of specimens often being taken at one hand of the trawl. In the dredgings previons to 1879 it occurred very much less abundantly, and was carelessly coufounded with P. Montagui, under which name specimens of P. leptoccrus may have occasionally been distribnted in the sets of specimens made up from the Fish Commission collections and distributed from. the National Mnseum. In the dredgings of 1877-78, it occurrel sparingly, in 22 to 48 fathoms, in Massachusetts Bay ; and in 75 to 90 fathoms, in the Gulf of Maine, off Cape Ann, in considerable abundance and of large size; in both localities associated with P. Montagni, and in the Gulf of Maine with P. borealis also. In Casco Bay, in 1873, a few specimens only were taken. Among great numbers of specimens of P. Montagui from the Bay of Fundy I have not succeeded in finding a single specimen of the new species, although it very likely occurs there. At Malifax, Nova Scotia, a few specimens only, most of them rers small, were taken, and these were from 18 fathoms. In the region of George's Banks, in 1872, it was takeu in 30, 45, 50, 60, aud 430 fathoms,
and appears to have been more common than P. MTontagui, which occurred with the leptocerus in 30 and 45 fathoms, and alone in $2 S$ fathoms.*

Pandalus tenuipes, sp. nov.
This species is smaller but has a proportionally thicker body than P Montagui, and the surface of the carapas and abdomen are very minutely ronghened. somewhat as in the last species, but the punctate ridges are much less conspienons and much more thickly crowded than iu that species.

The carspax, including the rostrum, is about two-fifths of the entire length, and the carapax proper is nearly as long as the rostrum, slightly swollen in the middle, somewhat contracted in front, as seen from above, and with the rostral carina extending back to abont the middle, and armed, at about a third of the way from the fiont, with two to four sleuder teeth, crowded close together and rapidly decreasing in size posteriorly; but between these teeth and the posterior tooth of the rostrum the carina is wholly unarmed. The rostrum is curved upward a little more than in P. Montagui, is not expanded below, and is armed the whole length above with eight to ten teeth, which are usually more widely separated distally, though in some specimens the terminal two or three are crowded together uear the tip; beneath there are six to teu small teeth.

The eyes are black and as broad as long, but shorter than in P. Montagui. The peduncle of the antemnula reaches to near the middle of the antenual scale, and the two distal segments are subequal in length and each about as broad as long. The antemular flagella are snbequal in length and much longer than the carapax, including the rostrum; the proximal half of the onter flagellum is very much thickened, the terminal portion very slender, as is the imer flagelimm thronghout. The antemal scale is approximately four-fifths as long as the rostrum, and of rery nearly the same form as in P. Montagui. The external maxillipeds are very slender, reach to abont the tip of the rostrom, and have well-developed exopods, fully half as long as the ischium; the ischium is a little longer than the rest of the endopod, which is composed, as in P. Montagui, of only two distinct segments beyond the ischiom, and in this case these two segments are subequal in length.

The first pair of legs are ver's sleuder and reach to the tips of the external maxillipeds. The second (chelate) legs are exactly alike, and reach to or considerably by the tips of the anteunal scales. The ischimm is a little longer than the merus; the carpus a little less than twice as long as the merns, slightly shorter than the antemal seale, and composed of about fifteen segments, of which the proximal are separated by

[^51]indistinct articulations, while the four or five distal ones are separated by conspicnous articulations, of which the ultimate is about twice as long as broad, but the next three or four, each, only about half as long as broad. The chela is sleuder, only a very little stouter than the distal end of the carpus, nearly a third as long as the carpus, and abont half as long as the merus, and the digits are alike, about as long as the basal portion, slightly gaping, and with a very few loug, setiform hairs. The third, fourth, and fifth pairs of legs are exceedingly slender, sparsely armed with minute spinules and slender setæ; and the dactyli are very long and slemder, slightly aud regularly bent, and flattened a little vertically (or in the direction of the plane of the cervature), and wholly mnarmed; the fifth pair reach beyond the tip of the rostrmm, and the fourth and third pairs are successively a little longer; the dactylus in the fifth pair is a third or a little more than a third as long as the propodus, in the fourth pair a little longer than in the fifth, and in the third pair not far from half as long as the propodus.
The abdomen is evenly rounded and not at all compressed above, and less geniculated at the third segment than in P. Montagui. The sixth segment is about once and two-thirds as long as the fifth. The telson is about once and a half as long as the sixth segment, and terminates in an acutely triangular tip, armed each side with two long spines, of which the proximal is very much the longer, and at the extreme tip with a few long, plumose setæ.

Measurements.

Some of the legs of these specimens give the following measurements:

Stations $870,871,873,877,878,880 ; 100$ to $2 \check{2} 2$ fathoms. Three females from 878 , 142 fathoms, were carrying eggs.

The genus Pundulus, as at present recognized, apparently contains species representing two or more genera, and the species just described is probably not strictly congeneric with P. Montagui, the type species. The equal, chelate legs and the slender, unarmed dactyli of the third, fourth, and difth pairs of legs separate P. temuipes widely from Montagui. The oral appendages afford some characters not indicated in the above description. In P. temuipes the proximal segment of the mandibular palpus is dilated, though not quite as conspicuously as in P. Hontagui ; the posterior lobe of the seaphognath of the second maxilla is very short, broad, obtusely rounded at the extremity, and projects very little back of the base of the endognath, while in P. Montagni and the allied species it is very much prolonged and acutely triangular posteriorly; in the second maxilliped the dactylns is about as long as broad and articulated wath the oblique distal end of the propodns, while in P. Montagui and its allies the dactylus is a narrow plate, articulated by one edge to the distal part of the mesial edge of the propodus.

The branchis of P. temipes are the same in number and arranged in the same way as in P. Montagui and P. boreulis; that is, there are twelve branchix plus seven epipods on each side; or, stated in full, the branchial formula is:

	Somites.	Podobranchix.	Arthro. branchis.	Pleuro. branchie.	
VII.		0 (ep.)	0	0	$=0$ (ep.)
VIII.		1 (+ep.)	0	0	$=1(+\mathrm{ep}$.
1N.		0 (ep.)	2	0	$=2(+e p$.
X		0 (ep.)	1	1	$=2\left(+\mathrm{e}^{2}.\right)$
N11.		0 (ep.)	1	1	$=2(+\mathrm{ep}$.
N11		0 (cp.)	1	1	$=2(+\mathrm{ep}$. $=2(+\mathrm{p}$.
XIV.			0	1	
		$1+7 \mathrm{ep}$.	6	5	$=12+7 \mathrm{ep}$.

444

Penæus politus, sp. nov.
Male.-The carapax and abdomen are naked and smooth and the carapax is armed with well-developed antennal, hepatic, and branchiostegial spines, but the sulci are all shallow and indistinct. The rostrum is short, acute, aboutt two-fifths as long as the rest of the carapax, scarcely orerreaches the eyes, rises obliquely from the anterior part of the carapax, and then points straight forward; its dorsal crest is armed with seren or eight teeth, of which the posterior one is just back of the orbit, while the two or three most anterior ones near the tip are small or inconspicuous and nearer together than toward the base; the lower edge is ciliated and minutely multidentate, the teeth being slender, acute, and closely crowded, so that, to the naked eye, the edge appears entire. The dorsal crest extends nearly the whole length of the carapax, but gradually fades out posteriorly, and, at about a third of the way from the base of the rostrum to the posterior border, rises into a low and obscure dentiform prominence.

The eyes are very large, obliquely compressed, and black. The peduncles of the antemule reach to the tips of the antemal scales; the lamelliform appendages of the basal segments are small, narrow, and do not cover the eyes above, but lie concealed between the eyestalks; the second segments are slightly longer than the basal, while the third are not quite half as long as the second; the inner flagellum is about as long as the carapax, including the rostrum, and tapers regularly throughout its length; the onter flagellum is slightly shorter than the inner, and suddenly expanded toward the base, but the terminal portion more slender than in the inner flagellum. The antennal scales are about twice as long as the rostrum, rather more than a fourth as wide as long, and taper regularly to the broadly rounded tips. The terminal segment of the peduncle of the antenna is searcely a fourth as long as the antennal scale, and the flagellum is slender and much longer than the whole body.

The external maxillipeds are slender, and reach a little beyond the middle of the antennal scale, and their exopods to about the middle of the carpi of the endopods. The first pair of legs reach ouly to the middle of the carpi of the external maxillipeds, the second pair to near the middle of the propodi, and the third and fourth pairs to the tips of the exterual maxillipeds, and the fifth a little beyond the tips of the fourth pair. The dactyli of the fourth and fifth pairs are slightly compressed, and only about half as long as the propodi.

The first, second, and third abdominal somites are rounded above, but the fourth, fifth, and sixth are compressed and sharply carinated dorsally. The sixth somite is very mach compressed, longer than the fourth and fifth taken together, and about twice as long as high. The telson is shorter than the sixth somite, dorsally sulcated with the margins of the sulcus terminating posteriorly in a long spine either side of the tip, which is itself imperfect in the single specimen seen. The outer
lanelle of the uropods are abont as long as the sixth somite, ollongelliptical, about four times as long as broad, and the terminal spine of the outer margin about a fourth of the way from the tip to the base. The inner lamella is a little shorter, and proportionally very slightly narrower. The bases of the first pair of abdominal legs are connected by a very large and complex sexual appendage, nearly twice as long as the bases themselves.
The only specimen seen is from station 878 (142 fathoms), and gires the following measurements:
Leiggth from tip of rostrum to tip of telson.. 61.0
Length of carapax and rostrum. 20.0
Length of rostrum .. 5.6
Breadth of carapax ... 6.5
Length of antennal scale ... 11.0
Length of sixth abdominal somite ... 10.6
Length of telson .. $8.2+$
Sergestes arcticus Kröyer, Oversigt danske Vidensk. Selsk. Forhandl. Kjübenhaven, 1855 , p. (6) ; Monograph. Sergestes, Videusk. Selsk. Skr., v, naturvidensk. mathem. Aflu., iv, יp. 240, 276, pl. 3, figs. 7, pl. 5, figs. 16, 1856.
Stations $880,881,891,893,894 ; 252$ to 500 fathoms; thirty specimens, most of them in good condition, and several about 60^{mm} in length.

Sergestes, sp.

Station 893; 372 fathoms; three specimens, over $60^{\text {mm }}$ in length. The species is different from any described by Kröyer.

SCHIZOPODA.

Thysanopoda Norvegica Sars.

Stations S79, S50; 225 and 252 fathoms.
Lophogaster, sp.
Station 870 ; 155 fathoms. A species very distinct from L. typicus Sars.
Boreomysis arctica G. O. Sars, Christianiafjordens Dybvandsfama, p. 26, 1869 (extr. Nyt Magazin for Naturvidenskberne); Christiania Videnskabs-Selskabs Forhandlinger, 1871, p. 264 (21).-Metzger, Jahresbericht der Comm. wissensch. Untersuchnng der deutschen Meere für 1872, 1873, Nordsee, p. 233, 1875.-Mysis arctica Kröyer, Et Bidrag til Kundskab om Krelssdyrfamilien Mysidæ, Naturhistorisk Tidsskrift, III, i, pp. 34, 42, pl. 1, fig. 5, 1861.

Station $\$ 91$; 500 fathoms.

Pseudomma roseum G. O. Sars, Christiania Videnskabs-Selskabs Forhandlinger, 1869, p. 154 (10) ; Carcinologiske Bidrag til Norges Fauna, Mysider, part i, p. 54, pl. 4, 1870; Hardangerfjordens Fauna, Christiauia Videnskabs-Selskabs Forhandlinger, 1571 , p. 263 (20); Archiv for Mathematik og Naturridenskab, Kristiania, ii, p. 344, 1877.-Metzger, Jahreshericht der Comm. zur wissensch. Untersuchung der deutschen Meere für 1872, 1873, Norlsee, p. 2s8, 1875.Whiteaves, Report on further Deep-Sca Dredging Operations in the Gulf of St. Lawrence [in 1873], p. 16, [1874 ?].-Smith, Traus. Conn. Acad., v, 1). 98, 1870.

Station S91; 500 fathoms.

CUMACEA.

Diastylis quadrispinosus G. O. Sars.
Stations S71, 873, S78; 100 to 142 fathoms.

STOMATOPODA.

Lysiosquilla armata, sp. nov.
This species appears to be closely allied to L. spinose Miers, from the Indian Ocean and New Zealand, or at least more closely than to any of the other species contained in Mr. Miers's recent review of the Squillidæ (Ann. Mag. Nat. Hist., V, v, pp. 1-49, pls. 1-3, 18S0).

The carapax is smooth and about once and two-thirds as long as the breadth at the anterior margin, which is about two-thirds of the greatest breadth. The rostral plate is about half as broad as the anterior part of the carapax, very slightly longer than broad, the lateral edges not angulated, but strongly couvex in outline, and curved regularly round to the short lout sharp and acuminate tip. The four exposed thoracic somites and the first abdominal somite increase rapidly in breadth posteriorly, but from the second to the fifth somite the abdomen is of a nearly uniform width, which is about equal to the length of the carapax. The free thoracic somites, like the anterior abdominal, are smooth and unarmed, except that the first somite projects downward either side in a lamellar, transverse, dentiform process below the posterior margin of the carapax. The fire auterior abdominal somites are erenly rounded above and smooth, but the posterior edge of the fourth somite is armed either side for about a fourth of its length from the lateral margin with slender, spiniform teeth, directed backward, and the entire posterior margin of the fifth somite is armed in the same way. The sixth somite is about three times as broad as long, only a little narrower than the fifth; the postero-lateral angle each side is armed with a stout, dentiform spine, back of aud within which the dorsal surface is uneven and armed with five to seven spines or tubercles, of which the two or three most posterior are slender spines, but the others more or less tubereuliform and inconspicuous; the middle portion of the dorsal surface is smooth, and the posterior margin, except a short space each side, is armed with slender, spiniform teeth, as in the fifth somite.

The telson is nearly as wide as the sixth abdominal somite and about once and two-thirds as wide as long; the middle portion of the dorsal surface rises in a smooth, oval, longitudinal area, projecting behind abave the posterior margin, limited each side by a line of short spinules, and its narrow posterior extremity truncated and three-lobed or obtusely tridentate; each side of this smooth area the surface is armed with many spinules or small tubercles, showing a tendency to arrangement in longitudinal lines; the lateral margins are expanded in front of the large lateral spines of the posterior margin and armed with a few spinules; the posterior margin is armed each side with three spines, of which the
two outer are large, dentiform, and have a spinule between them, while the terminal or inner spines are smaller, slender, and movable, and sep. arated from the large lateral spiues by a space armed with three or four spimles, while the margin between the movable spines forms an oltuse, re-entering angle, each side of which is armed with a elose-set series of seven to ten slender spinules.

The eyes are large, as ibroad as the rostral plate, and black. The antenual scale is narrowly elliptical, about three times as long as broad, and the margins ciliated. The prehensile edge of the daetylus of the large "raptorial limbs" (second maxillipeds) is armed with ten slender spines, which decrease in length distally. The bases in each of the three posterior pairs of thoracie legs are armed on the outer side with a conspicuous, acute, and somewhat hooked spine, projecting over the artienlation of the next segment. The appendages of the antipenultimate segments of the three posterior pairs of thoracic legs are lamellar and broadly elliptical, though those of the anterior pair are a little shorter and those of the posterior pair slightly narrower than the others. The base of the uropods is armed above with a spinulose erest, running from the base to the articulation of the outer ramus, and at the distal end below with two dentiform spines as long as the inner ramus, below the articulation of which there is another but much smaller spine on the base. The proximal segment of the onter ramus is erested above, the distal part of the onter edge is armed with a crowded series of stont, spiniform setæ, and the lamellar terminal segment is elliptical, nearly as long as the base, and has its edges ciliated. The inner ramns is much longer and narrower than the terminal segment of the onter ramus, which in other respects it resembles.

Measurements.

	σ	앙
I.ength	$\mathrm{mmm}_{38.0}$	${ }_{47}{ }_{4}$.
Leng h of carapax along median line, exelnding rostrum	${ }^{7} 8$	10.0
Greatest lreadth of carapax	6.3	6.0 9.0
Length of rostral plate	2.1	2.6
Greatest breadth of abilomen	8.8	10.
Length of telson	3.8	5.
Breadth of telson	6.6	8.5

Station 885, 65 fathoms (one male); 876,120 fathoms (one somewhat mutilated female, from the stomach of Lopholatilus).

AMPHIPODA.
Stegocephalus ampulla Bell.
One specimen from station 895 ; 238 fathoms.
Epimeria loricata G. O. Sars, Arehiv for Mathem. Naturvidenskab, Kristiania, ir, p. $450,1879$.
Stations 869 to 871, 879, 880, 893 to 895; 115 to 372 fathoms. Abundant at 869,192 fathoms, and 894,365 fathoms. Sars's specimens were
from 123 to 202 fathoms, north latitude $75^{\circ} 30^{\prime}$ to 80°, east longitude $17^{\circ} 50^{\prime}$ to $8^{\circ} 15^{\prime}$, west of Spitzbergen.
A few, mostly small, specimens of this species were dredged at different points in the Gulf of Maine, in from 32 to 110 fathoms, 1873, 1874, and 1878, and in 88 fathoms (station 43), off Nova Scotia, in 1877. Mr. Whiteares dredged it also in the Gulf of Saint Lawrence in 1871, 1872, and 1873. Some of these northern specimens were labeled "Epimeria cornigera?" by me, and have been so referred to by Mr. Whiteaves, in his reports on dredging expeditions to the Gulf of Saint Lawrence, in the Annals and Magazine of Natural History for November, 1872, and in the American Journal of Science, 1II, vii, 213, 1874; and by Professor Verrill, in the last named serial, vii, p. 407, 411, 1874, and ix, p. 414, 1875.

Haploops setosa Bocck, Christiania Videnskabs-Selskabs Forhandlinger, 1870, p. $2: 8$ (148); Scandinav. Arktiske Amphipoder, p. 541, pl. 30, fig. 7, 1876.-G. O. Sars, Arehiv for Mathematik Naturvidenskab, Kristiania, ii, p. 350, 1877.

Station 880; 252 fathoms; one specimen.
I have examined numerous specimens of this species from different parts of the Gulf of Maine, the Bay of Fundy, off Nora Scotia, and from the Gulf of Saint Lawrence (Whiteaves). In the Bay of Fundy and off Nova Scotia the specimens were dredged in from 20 to 100 fathoms.

Ptilocheirus pinguis Stimpson.
Stations 865 to 867,$872 ; 65$ to 86 fathoms.
Ericthonius difformis Milne-Edwards.-Cerapus rubricornis Stimpson.-Smith, Trans. Conn. Acad., iv, p. 278, 1880.
Station S61; 192 fathoms ; three specimens.
Unciola irrorata Say.-Glauconome leucopis Kröyer.-Smith, Trans. Conn. Acad., iv, p. 280,1880 .

Stations 865 to 867,869 to $872,876,778 ; 65$ to 192 fathoms.
Neohela phasma, sp. nov.-Neohela, nom. nov., vice Hela Boeck, preoc.
This species is apparently very closely allied to N. monstrosa Boeck,* but has well-developed eyes, and the propodus in the second pair of gnathopods is different in form, besides other slight differences.
Malc.-The head is about as long as and, including the stont lateral spines, fully as broad as the first somite of the peræon excluding its epimera; the anterior edge is slightly carinated and slightly concave iu outline above the bases of the antennulæ, leaving a slightly prominent and obtusely angular rostrum and a fully as prominent and more acute angle either side, just back of which the large and prominently convex eyes, salmon-colored in the recently preserved alcoholic specimen, are situated. The antennulæ are much longer than the rest of the animal;

[^52]the first segment of the peduncle is nearly as loug as the width of the head; the second segment is much more slender than the first and more than three times as long; the third segment is more slender than the second and considerably longer than the first; there is a well-developed secondary flagellum, as long as the third segment and composed of about nine slender segments; the pimary flagellam is very slender and about one and a half times as long as the peduncle. The third segment of the peduncle of the antema just reaches the distal end of the first segment of the peduncle of the antennula; there is a small, spiniform tubercle on the outside of the first segment, in line with the lateral spine of the head and the spiniform anterior angles of the first and secomd epimara. The distal portion of each antema is wanting in the single specimen examined.

The first gnathopods are of nearly the same form as in N. monstrosa, as figmed by Boeck, but the inferior elge of the popodus is nearly straight, and the spine at the distal end is directed straight ont in line with the edge, and not downward as in the figure of N. monstiosel. In the second pair of guathopods the carpus is about twice as long as broad, and has the marmed prehensile edge much less oblique than represented in the figure of N. monstrosa. The first three pairs of perrepods are very nearly as in N. monstrosa; the last two pairs are wanting in the specimen.
The pheon is nearly as high but very much narrower than the last somites of the pereon: the tirst three somites are subequal in size aud very similar in form ; the fourth is as long bot not quite as high as the third ; the fifth is not more than two-thirds as long as the fourth; the sixth is only about half as long as the fifth. The telson is partially consolidated with the sixth somite, and somewhat triaugular, with an obtuse tip. The uropods are as in N. monstrosa.

Mcasurements.

Length from front of head to tip of telson 26.0Length of head and pereon17. 8
Length of antenmula
Length of dirst segment of peduncle 35.0
reng 2.4
Length of sucond segment 8.:
Lengrth of third segment 3.2
Lengtla of secomdary flagellum 3. 2
Lengrth of carpus in first gnathopod 3.1
Breadth of same 1.8
Length of propodus of first gnathopod 2.5
Breadth of same 2.0
Lengeth of dactylus 2. 7
Length of cirpus of" sceond gnathopod 2. 7
Breadth of same 1.4
Lengtly of propodus of second gnathopod. 2.5
Breadth of same 1.8
Length of dactylus 2.0

Station S93; 372 fathoms; one speeimen.
N. monstrosu, the type of this remarkable genus, and heretofore the only known species, was described from a single specimen, wanting most of the antemulæ and antenuæ, dredged in Christiania Fiord, in 20 to 30 fathoms; and G. O. Sars has recently recorded a single mutilated specimen, dredged in 1,215 fathoms, between Norway and Iceland, by the Norwegian expedition of 1876.

ISOPODA.*

Janira alta Harger ex Stimpson.
Stations 865 to 867,892 ; 65 to 487 fathoms.
Munnopsis typica M. Sars.
Station 878; 142 fathoms.
Cirolana polita Harger ex Stimpson.
Stations 871,873, s76; 100 to 120 fathoms.
Gnathia cerina Harger ex Stimpson.
Stations 865 to 867,$892 ; 65$ to 487 fathoms.
Syscenus infelix Harger, Marine Isopoda of New England, Report United States Fish Commission, vi, for 1878,1 . $387,1880$.
Stations 893 to 595 ; 238 to 372 fathoms.
The following tabular synopsis of the known geographieal distribution and the bathymetrical range, as far as ascertained by the investigations on our own coast, gives the pineipal facts in regard to the distribution of the species, and it will also serve as a condeused list of the species enmmerated in the foregoing pages. In the first column the species are checked which are known to ocenr in the Straits of Florida or anywhere in the Caribbean region; in the second, those known in the shallow waters (mnder 30 fathoms) of the sonth eoast of New Englaurl; in the third, those known from any part of the region from Cape Cod to Labrador; in the fourth, those known to occur in Greenland; in the fifth, those known on the coasts of Northern Enrope or in the eastern part of the extreme North Atlantic; and in the sixth, those known fiom the Mediterranean.

[^53]List of the species enumerated in the foregoing paper, with a tabular statement of their geographical and bathymetrical range.

Brachyura:							
Hyas coarntatus.		\times	\times	\times	\times		0-150
Collodes depressus....	\times		\times		\times		65-142
Euprognatha rastellifera	\times						$65-142$
Lambrus Verrillii (nov.)							$65-86$
Geryon (quinquedens		\times	- ${ }^{\times}$				- $\begin{array}{r}0-220 \\ 100-372\end{array}$
Bathynceteslongispina							100-372
Acanthocarpus Alexandri.	\times						85-150
Ethusa microphthalma (nov.)	\times						${ }^{\text {c- }} 85$
Anomura:							
Howola barbata.							¢6
Latreillia clegaus						\times	85-¢t
Lreidns Eairdii (nov.)							100-120
Hemipagurus socialis (nov.) rracilis (nov.)							65-155
Parapagarus pilosimanas....							65-155
Eupagurus bernhardus			$\stackrel{x}{x}$				250-372
Enpagurus Kröyeri....		\times	\times \times \times		\times		$\stackrel{\theta-150}{8-430}$
Sp. Hov ...				\times			65-252
Munida Caribæa?	$\times 1$						65-142
Macrma: Arctus depressus (nov.)	Macrma:						
Nephropsis aculeata (nov.)							
Axius armatus (nov.)							100-142
Poutophilus Norvegicus. .			\times		\times		101-372
bippolyte securifrostris (nov . ${ }^{\text {b }}$)							65-155
Bythoearis, sp.ner.....					\times		27-252
Paudalus propinguus....							116-365
leptacerus (nov.)		x	\times				15-430
Penæus poulitus (nov.)							100-252
Penrus politus (nov.) Sergestes areticus....							142
Sergestes areticus.........				\times			252-500
Schizopoda: ${ }^{\text {a }}$							
Thissanopoda Norvegiea							
Lophogaster, sp, uov ...			\times	\times	\times		0-430
Loreomysis arctica..				\times			150
Cumacea:							
Diastilis quadrispinosa		\times	\times				2-190
Ampliosquilla armata (nov.)							65-120
Amphipoda:							
Speqocephalus ampulla			\times	\times	\times		110-238
Traploops setosa....			\times \times \times \times		\times		$32-372$
Ptilochcirns pinguis			\times \times \times \times		\times		20-252
Ericthonius difformis		\times					0-150
Unciola irrorata......						\times	0-192
Neohela plasma (nov.)							
Isopoda:							
Janira alta			\times				0-300
Mummonsis typica			\times		\times		$60-220$
Guathia cerina.			\times				0-150
Sysoenus infelix			\times				10-487
			\times				130-3i2

A numerical summation of the columns of the above table gives the following ：

					䔍		䀜
Brachyura							
Anomura	10	$1 ?$	1	3			2
Macrura	13		1	${ }_{3}^{3}$	1	3	．
Sclizupoda．．	4		1	${ }_{1}^{2}$		3	．
Stomatopoda	1						
Ampliipoda．	7		3	${ }_{5}^{6}$	$\stackrel{2}{2}$	5	i
Isopuda ．．．．				5		1	
Total．．	50	5	8	23	8	15	3

In addition to the above facts in regard to the distribution of the species，it should be added that two of the species，Lyreitus Bairdii and Nephropsis aculeata，belong to genera heretofore known only from the Pacific region，and each represented there by a single species ouly； while a third species，Lysiosquilla armata，has its nearest known ally in a species known only from the same region．
Of the fifty species enumerated，fourteen are described as new and three others are indicated as probably new；forty－three are here first recorded as belonging to the New England fama south of Cape Cod； twenty－eight are new to the whole fanna from Cape Hatteras to North－ ern Labrador；and twents－one are new to America，including Green－ land．Of the forty－three species new to the Southern New England fama，fifteen are now known also from the New England fana north of Cape Cod；and of the remaining twenty－eight，four were already known from the Straits of Florida，three from Greenland and Northern Europe，and two from the Mediterranean．

New Haven，Conn．，November 12， 1880.

SPECERE。

The writers have been engaged during most of the present year（1880） in making investigations of the fish and tisheries of the Pacific coast of the United States，in the interest of the United States Fish Commis－ sion and the United States Census Bureau．Extensive collections have been made at each of the priucipal fishing ports from New Westminster to San Diego．

In the present paper a catalogue is given of the species now known to inhabit the Pacific Ocean between the mouth of Frasel＇s River on the north and San Diego on the south．The names of the species not
seen by the writers are placed in italics. A vertical column is given for each of the principal localities, and a cross in any colmmn opposite the name of a species indicates that we have obtained or examined, while in the field, specimeus from the locality in question. In the last colnmn, S. iudicates a general southern distribution, most usually from Point Concepcion or Monterey to Magdalena Bay or Cape San Lucas; N. indicates a general northern distribution, usually from Monterey or Cape Mendocino to Sitka, or beyond; C. indicates the distinctively Califormian fanma, the abundance being usually greatest about Monterey and San Francisco. This fanna is chiefly composed of the two viviparous families Scorpanide and Embiotocide.

It will be noticed that the number of species obtained in Monterey Bay and about San Francisco is considerably greater than at auy other points. This is partly due to the fact that these regions have more extensive fisheries than others. There is no doubt, however, that more species of fishes really occur from Monterey to Point Reyes than elsewhere on the coast. Monterey Bay is the common meeting ground of the semi-tropical and semi-arctic fish faunæ. There is nowhere an abrupt change along the coast. The three capes, Flattery, Mendocino, and Point Concepcion, are to some extent points of division.

[^54]| Name. | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26. Hippoglossoides exilis J. \& G | + | | + | + | | | | | C. |
| 27. Mippoglossoides elassodon J. \& | $+$ | | | | | | | | N. |
| 28. Hippoglossoites jordani Lock | $+$ | | + | + | | | | | C. |
| 29. Paralichthys natulosus Grd. | | | + | + | $+$ | + | $+$ | $+$ | S. |
| 30. Xrstrenrys liolepis J. \& G | | | | | | + | $+$ | | S. |
| 31. Mippoglossus vulcaris Flem | $+$ | | $+$ | | | | | | N. |
| 32. Atheresthes stomias J. \& G | | | + | | | | | | N. |
| 33. Merlucius productus (Ayres) Gill | $+$ | | $+$ | $+$ | | $+$ | | | N. |
| 34. Pollachins chakcogrammus* (Pallas) J. \& | $+$ | | | + | | | | | N |
| 35. Gadus morrhuat L..................... | $+$ | | | | | | | | N. |
| 36. Microgadus proximus (Grd.) Gill | $+$ | | + | $+$ | | | | | N. |
| 37. Brosmophyeis marginatus (Ayres) Gill | | | + | | | | | | C. |
| 38. Ophidium taylori Grd | | | + | $+$ | | + | | | C. |
| 39. Scytalina cerdale J. \& Gr | + | | | | | | | | N. |
| 40. Lreodopsis paucidens (Lock.) Gil | | | + | | | | | | C. |
| 41. Lycodopsis pacificus Collott.... | + | | $+$ | | | | | | N. |
| 42. Anarrbichthys ocellatus Ayres | + | | $+$ | + | | | | | N. |
| 43. Lumpenus anguillaris (Pallas) Gill | $+$ | | | | | | | | N. |
| 44. Xiphister rmpestris J. \& G . . . | $+$ | | | $+$ | | | | | N. |
| 45. Xiphister mucosus \ddagger (Grd.) Jo | $+$ | | $+$ | $+$ | | | | | N. |
| 46. Siphistor chirus J. \& G | $+$ | | | \pm | | | | | N. |
| 48. Anoplarchus alectrolophus§ (Pallas) J. | + | | + | $+$ | + | | | | $\stackrel{\text { c. }}{ }$ |
| 49. Apodichthys flavidus Grd | $+$ | | + | + | | | | | N. |
| 50. Apodichthys fucorum J. \& G | $+$ | | + | + | | | | | C. |
| 51. Murwnoides ornatus (Grd.) Gill | + | | | | | | | | N. |
| 52. Murænoides lætus (Cope) Gill | + | | $+$ | | | | | | N. |
| 53. Cremnobates integripinnis Fosa Smith | | | | | | | | $+$ | S. |
| 54. Gihbonsia elegans Cooper | | | | $+$ | | $+$ | | $+$ | S. |
| 55. Heterostichus rostratus Gr | | | | $+$ | $+$ | $+$ | + | + | S. |
| 56. Neoclinus blanchardi Grd | | | | + | + | $+$ | | | S. |
| 57. Nenclinus satiricus Grd | | | | + | | | | | S. |
| 58. Hypleurochilus gentilis (Grd.) Gill | | | | | | + | | $+$ | S. |
| 59. Porichthys porosissimus (Cuv. \& Val.) | $+$ | | $+$ | + | $+$ | + | $+$ | $+$ | c. |
| 60. Gobiesox reticulatus Gril | + | | + | + | | | | | N |
| 61. Eumicrotremus orbis (Gthr.) Gill | | | | | | | | | N. |
| 62. Neoliparis mucosus (Ayres) Stei | | | + | $+$ | | | | | N. |
| 63. Liparis cyclopus Gthr | | | | | | | | | N. |
| 64. Liparis pulchellus Ayres | | | $+$ | $+$ | | | | | N. |
| 65. Aspidophoroides inermis $\overline{\mathrm{G} \text { thr }}$ | | | | | | | | | N. |
| 66. Brachyonsis verrucosus Lock | | | $+$ | | | | | | C. |
| 67. Brachyopsis xyosternus J. \& Gr ... | | | $+$ | $+$ | | | | | $\stackrel{C}{\text { c. }}$ |
| fi. Potothecus acipenserinus (Pallas) 69. Polothecus rulsus J \& G | | | | | | | | | N. |
| 70. Porlothecus trispinosins (Lock.) J. \& G | | | $+$ | | | + | | | ${ }_{\text {C. }}^{\text {C. }}$ |
| 71. Bothragomus swani (Steind.) Gill | | | | | | | | | N. |
| 72. Prionotus stephanophrys Lock | | | + | | | | | | ร. |
| 73. Ascelichthys rhodorus J. \& G | + | | | | | | | | N. |
| 74. Psychiolutes paradoxus Gthr. | | | | | | | | | N. |
| 75. Cottus polyacantlocephalus Pallas | $+$ | | | | | | | | N. |
| 76. Arterlius lateralis Grit.............. | | | | + | | | | | N. |
| 77. Artedius notospilotus Grd... | $+$ | | $+$ | | + | + | | | C. |
| 78. Artedius quadris criatus Lock | | | | | | | | | C. |
| 79. Artedins pugettensis Steiud. 80. Ifemilepulotus spinosus Ayre | | | $+$ | | | | | | C. |
| 80. Hemilepilotus spinosus Ayr 81. Hemilepidotus ciblesi Grill | + | | \pm | + | | | | | $\stackrel{\mathrm{C}}{\mathrm{N}}$. |
| 82. Aspicotus bison Gral ... | \pm | | $+$ | | | | | | N. |
| 83. Seorpenichthys man moratus Gra | $+$ | | $+$ | + | + | + | | $+$ | . |

[^55]

[^56]| Name. | | | | | | | | - | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 143. Al heona minima (Giblons) | | | | | + | + | | + | |
| 144. Abeona aurora J. \& G - | | | $+$ | $+$ | | + | | + | O |
| 145. Cymatogaster aggregatus G | + | | $+$ | $+$ | + | + | $+$ | + | C |
| 147. Brachyistius rosaceus J. \& G | | | $+$ | | | | | | |
| 148. Holconotus analis (A. Acassiz) J. \& G | | | | + | | | | | c |
| 149. Ifolconotus argentens (Gilbions) J. | | | + | + | + | + | + | + | c |
| 150. Ifolconotus agassizi (Gill) J. \& G | | | $+$ | + | | + | | | C |
| 152. Amphistichus argenteus A g | | | + | \pm | + | + | + | + | C |
| 153. Hypsurus cayri (L. Agass.) A. Agas | | | + | + | | | | | c |
| 154. Ditrema* jacksoni (Δ gass.) Günther | + | | + | + | $+$ | + | + | + | |
| 155. Ditrema literale (Agass.) Günther. | + | | + | $+$ | | | | | N |
| 157. Ditrema fareatum (Grd) G Gtir | | | + | $+$ | + | + | + | + | d |
| 158. 1)amalichthys argy rosomus (Grd.) | + | | \pm | | | $+$ | | | |
| 159. Rhacochlus toxutes Δ gass | | | + | + | + | + | + | | C. |
| 160. Parcphippus fabert (Blocli) Gill | | | | | | | | | |
| 161. Genyonemus lineatus (Ayres) G | | | + | + | + | | | | |
| 163. . Corvinal saturnal (Grd.) (ithr | | | | | | + | + | + | |
| 163. Roneador stearnsi (Steind.) J. \& | | | | | | + | + | + | S |
| 164. Umbrina xantit Gill... 1 Menticirrus undulatus (Grd.) Gili | | | | | | $+$ | +. | $+$ | S |
| 165. Menticirrus undulatiss (Grd.) Gill | | | | | | | | + | S |
| 166. Cynuscion mobilis (Avres)\|| J. | | .- | + | + | | + | + | $+$ | S |
| 168. Sereptus politus Δ yres | | | + | + | + | + | $+$ | $+$ | S |
| 169. Girella nigricaus (Ayres) Gill | | | | + | | | | | |
| 170. Scorpis caliomichsis Steind. | | | | | | + | $+$ | + | |
| 171. Xenichthys ealiforniensis Stcin | | | | | | | | | |
| 172. Pristipoma davidsoni Steind. | | | | | | | + | $+$ | S. |
| 173. Stereolepis gigas Ayres | | | | + | | | | + | |
| 174. Sermuns chathratus (Grd)) Steind | | | | $+$ | | + | $+$ | | |
| 175. Serraus nebulifer (Gri.) Steind. | | | | + | | | | $+$ | |
| 176. Serranus maculotasciatus Stcind | | | | | | | $+$ | + | S. |
| 177. Stromateus simillimus (Ayres) Gil | + | | + | + | + | + | | + | |
| 178. Trachnrus saurus Raf | | | | | | + | + | | |
| 179. Caranx caballus Gthr | | | | | | | | | |
| 180. Serioln lalandi** Cur. \& Val | | | | | | + | + | + | S. |
| 181. Orevnus alalongaft (Gmel.) Risso | | | | + | | | | | |
| 182. Sarda chilensisit (C. © V.) J. \& G | | | | $+$ | | $+$ | $+$ | + | |
| 184. Scouber pueunatophorusi\|l| De la lioche | | | | + | | | | | |
| 185. Xiphias gladius L | | | | | | | + | | |
| 186. Remora jacoinea (Lowe) Gill | | | + | | | . | | | S. |
| 188. Ammodytes (tobianus) parsonatus Grd | | | | | | | | | |
| 189. Sphyrena argentea Grd | | | + | + | | + | + | + | S |
| 190. Atherinopsis californiensis (Grd.) | | | + | | | | | | |
| 191. Atherinops affinis (Ayres) Stcind 192. Leuresthes temuis (Ayres) J. © G | | | $+$ | $+$ | $+$ | $+$ | $+$ | $+$ | C. |

* We are informed by Dr: Giinther that the pharyngeals in Ditrema temmincki are of the normal trpe as in Embiotoct. Ditrema is therefore identical with Phanerodon (rrd., and no character of importance distinguishes "Planerodon" from Embiotoca. Embiotoca argyrosoma Grd, is identical with Damalichthys vacca.
\dagger tphippus zonatus Grd.
+ Umlnina undulata Steiud., non Grd.
§ Tmhrina elongata Gthr.
U Otolithus californiensis Steind.
IT Otolithus magdalenas Steind.
** Seriola mazatlana Steind.
HOrcynus pacilicus Cooper.
+t Pelamys lineolata Grd
§§ Chriomitra concolor Lock. ; Chriomitra Lock.=Cybium C. \& V.=Scomberomorns Lac.
illi Scomber diego Ayres.

Name.	Puget Sound.			Monterey Bay.						
193. Mugil mexicanus Steind				+		$+$	$+$	+	S.	
194. Tylosurus exilis (Grd.) J. \& G						-	$+$	$+$	S.	
195. Scombercsox brevirostris Peters				+		..			C.	
196. Heuirhamphus rosæ J. \& G ...							$+$	$+$	S.	
197. Exocœtus californicus Cooper						+	$+$	$+$	S.	
198. Cypriuodon califormiensis Grd									S.	
199. Fupdulus parvipinnis Grd....						+	+	+	S.	
200. Myctophum procellarum Bean Mss									N.	
col. Myctophum crenulare J. \& G						$+$			S.	
202. Synodus lucioceps (Ayres) Gill			+	+		+			S.	
203. Paralepis coruse ns $J . \& G$	+								N.	
204. Sudis ringens J. \& G......						$+$			S	
205. Alepidosaurus borealis Gill	+								N,	
206. Osmerns thaleichthys Ayres.	+		$+$	+	\downarrow				N.	
207. Osmerus attenuatus Lock ...			+						C.	
2u8. Hypomesus olidus (Pallas) Gill	$+$		+						N.	
209. Thaleichthys pacificus (Rich.) Grd	$+$	$+$							N.	
210. Salvelinus inalma* (Wallo.) J, \& G	$+$	+							N .	
211. Salmo purpuratus Pallas........	$+$	+	+	$+$					N.	
21:. Salmo rrideus Gibbons				$+$					C.	
213. Salmo trairdneri Rich	$+$	+	+	$+$					N.	
214. Oncorhynchas kennerlyi (Suckl.) Jor	$+$	+	-						N.	
215. Oncorhynchus vorbuschat (Walb.) Gill \&	$+$	$+$	$+$						N.	
216. Onemhinchus keta+ (Wallo.) Gill \& Jor.	+	$+$	+						N.	
217. Oncorhynchus kisutch§ (Walb.) J. \& G	\pm	$+$	+						N.	
218. Oncorhi, nehus tshawyteha (Walb.) J. \& G	+	+	$+$	+					N.	
219. Oncorhynchus nerka\\| (Walb.) Gill \& Jor .	$+$	$+$							N.	
220. Stolephorus rinmens (Jensns) J. \& G	+	\pm	+	+	$+$	+	+	$+$	S.	
221. Stolephorus delicatissimus (Grd.) J. \& G								$+$	S.	
$2 \because \cdots$. Stolephorus compressus (Grd.) J. \& G .							$+$	+	S.	
223. Clupea sagax Jenrns			+	$+$	$+$	$+$	$+$	$+$	S.	
224. Clupea mirabilis Grd	$+$		+	$+$	$+$	+	$+$	$+$	N.	
225. Albula vulpes (L.) Goode				t				+	S.	
226. Nemichthys avocetta J. \& Gr	+								N.	
227. Myrichthys tigrinus Grd									N.	
2:8. Ophichtliys triserialis (Kaup) Gthr									S.	
299. Murrna mordax Ayres							t	$+$	S.	
230. Acipenser transmontanus \% Rich	+	$+$	$+$						N.	
231. Acipenser medirostris** Ayles		$+$	$+$						N.	
232. Chimara colliæi Benuett	+		$+$	$+$					N	
233. Manta birostrist (Wallo.) J. \& G.									S.	
234. Myliobatis ealifornious Gill			$+$	$+$	+	$+$	$+$	$+$	S.	
235. Aêtobatis laticeps Gill									S.	
236. Pteroplatea marmorata Cooper						$+$	$+$	$+$	S.	
237. Dasybatus dipterurus J, \& G								$+$	S.	
23\%. Urolophus halleri Cooper .						+	+	$+$	S.	
239. Rara binoculata Grd.	$+$		$+$	+					N.	
240. Raia rhina J. \& G.	$+$		+	+					N.	
241. Raia inornata f. \& G. Mss			$+$	$+$					C.	
var. inermis J. \& G. Mss						+			C.	
242. Raia stellulata J. \& G									C.	

*Salmo spectabilis Grd. ; Saluo bairdi, ete., Suckley; Salmo callarias Pallas.
\dagger Salmo scouleri Kich., uon suckl.
+Salmo sanguinolentus Pallas; Salmo tsuppitch Rich.: Salmo scoulcri Suckl.
SNalmo lycaodon Pallas, nou G thr.; Salmo Puncidens Rich.
if Salmo lagocephalus Pallas; Silmo canis Suckl.
Fi Acipenser brachyrhynchus et acutirostris Ayres.
** Acipenser acutirostris Gthr.
† Raia birustris Wall.; Mauta americana Bancroft; Ceratoptera vampyrus Auct.
${ }_{\ddagger+}^{+\dagger}$ Raia binoculata Grd. = yg. of Raia cooperi Grd.

Name.		*อง!ฺ v!quแณoŋ		Monterey Bay.	San Iuis Olispo.	'vieq.reg eques			Greatest abundance.
243. Zapteryx exasperatus J. \& Gr								$+$	S.
244. Rhinobatus triseriatus J. \& G			+			+	+	+	S.
245. Rhinobatus prorluctus Ayres			$+$		+	+	+	$+$	S.
246. Torpedo californica Ayres			+	$+$					C.
247. Squatina angelus Dum .			$+$	$+$		$+$	+	+	S.
248. Somniosus microcephalus (Bloch) Gill	$+$								N.
249. Squalas acanthias L.	+		t	$+$		+			N.
250. Heterodantus francisci (Gyd.) Gill						+	+	$+$	S.
251. Notorhynchus macriatus Ayr			+	+					C.
25. Hexanchus corinus J. \& G	+			+					C.
253. Catulus rentri sus* (Garman) J. \& G				+		t	$+$		S.
254. Mustelus hinunlus (Blainv.) J. \& Cr			+	+		+	$+$	$+$	S.
255. Rhinotriaeis benlei Gill			+	+					C.
256. Triacis scmifasciatus Gad			+	$+$		+	+	$+$	C.
257. Galeorlinus galeus (L.) Blainv			+	+		$+$	$+$	$+$	S.
2;8. Galeocerdo tigrinns M. \& H								$+$	S.
259. Carehatinus stancus (L.) Blainv	+		-						C.
260. Enlamia lamia (Risso) Gill.								+	S.
261. Spliy rua zygieua (L.) Rat									S.
262. Cetorhinus maximus (L.) Blainv				+					C.
263. Carcharoton carchariast (L.) J. \& G				+					S.
264. Isums oxyliynchus Raf							+		S.
265. Lamna coumbiea (Gmel.) Flem				+					C.
266. Alopias rulpes (Gmel.) Bon				+					(1.
267. Entosphenns tidentatus (Rich.) Gill		$+$		$+$					N.
268. Ammoccetes plumbens (Ayres) J. \& G	t								N.
269. Polistotrema dombeyi ${ }_{i}^{+}$(Muller) Gill			+	$+$					S.
270. Branchiostoma lanceolatum (Pallas) Gray									S.
Totals	90	14	145	148	43	99	80	83	
Species most abuutanf northwart (Alaskan fauna)									96
Species most ahmmant centmally (Californian famma)									76
Species most abundant southward (Lower California									98
Tota]									270
Species found also in Atlantic Ocean									28
Species not ohtained hy the Commission									15
Specres not recorded by previous writers									66

[^57]Indiana State University, Bloomington, November 30, 1880.

The "needle-fish" (Belone exilis Girard), of the Califormia coast, differs from the type of the gemis Belone in the development of the gill-rakers. In Belone vulgaris the gill-rakers are well developed, long, and slender, and a patch of teeth is present on the vomer. In Belone exilis the gillrakers are entirely wanting, and there are no romerine teeth. The gill-rakers are also wanting in the Atlantic species, Belone lonyivostris (Mitch.), Belone latimana Poey, Belone melanochira Poey, Belone notata Poey, and Belone hians (Cur. \& Val.), and probably also in Belone cantrain, which is the type of the genus Tylosurus Cocco. The generie name Tylosurus may therefore be provisionally adopted for the species of Belone without gill-rakers. The caudal keel on which the genus Tylosurus was based, and which is developed in T. exilis as in T. eantraini, has apparently no systematic importance.

Bloonington, Ind., December 2, 1880.

NOTES ON A COLIECTION OE FISIESS FHEDE UTAEI LAIE.

A short risit to Provo, Utah, on Utah Lake, enabled one of the writers to make a small collection of the fishes of that locality. This collection has been since supplemented by an excellent series of the different species, presented to the United States National Musemm by Peter Madsen and soms, fishermen at Provo. Fom of the thirteen species obtained seem to be new to science.

1. Cottopsis semiscaber Cope.-Bull-head.

Tro specimens. Professor Cope says of his types: "Skin pricklyabore the lateral line, smooth below it posteriorly." Onr specimens are villons above and below, as in Cottopsis asper, from which C. semiseaber differs chiefly in the less number of rays in the rertical fins.

The genus Cottopsis is distingnished from Centridermichthys mainly by the absence of a slit behind the fonrth gill, which, as I am informed by Dr. Giinther, is present in Centridermichthys fasciatus. Centridermichthys uncinatus, of the North Atlantie, agrees with Cottopsis in this respect, and should probably be referred to it. The American genera of Cot-
toids may be divided into two series, on the presence or absence of this slit, as follows:

Without slit.
Ascelichthys.
Psychrolutes.*
Cottunculus.
Uranidea.
Cottopsis (including Tauridea and Potamocottus).
Cottus. \dagger
Artedias.
Hemitripterus.

With slit.
Blepsias. Nautichthys. Blennicottus. Oligocottus. Leptocottus. Scorpænichthys. Liocottus.
Triglopsis (including Oncocottus). Gymnacanthus.

Aspicottus.

Icelus.
Triglops.
Hemilepidotus.
Melletes.
2. Coregonus williamsoni Grd.-Mountain Herring.

Very abundant.
3. Salmo purpuratus Pallas.-Lake Trout; Brook Trout. (Salmo clarki Rich.)
Very abundant in Utah Lake; a food-fish of much value.
Specimens obtained do not differ in any visible respect from others taken in salt water in Puget Sound. This is apparently the parent stock from which S. spilurus, S. irideus, and S. gairdneri Rich., (S. truncatus Suckley) have scarcely yet become completely differentiated. $\$$. henshawi Gill \& Jor. is a marked local variety of S. purpuratus.
4. Squalius tænia (Cope) J. \& G.-Lcather-side Minnow.

Very abundant. We find it impossible to separate the genera Squalius, Telestes, Tigoma, Siboma, Cheonda, and Clinostomus, and we adopt for the whole group the name of Squalius. The genus Dobula was established by Rafinesque in the Ichthyologia Ohiensis (1820, p. 45). Although no type is stated, it was probably based on the Cyprinus doluta L., afterwards the type of Squalius Bonaparte.
5. Squalius montanus (Cope) J. \& G.

Also abundant.
6. Squalius cruoreus, sp. nov.

Allied to Squalius ardesiacus Cope, but with larger scales and shorter head.

[^58]Form of the species termed "Clinostomus", but less compressed. Body moderately elongate, somewhat compressed, symmetrical, the back considerably arched; caudal pedumele rather stout. Head subconieal, laterally compressed, broad and rounded above; mouth short, oblique, jaws about equal. Premaxillary in front on the level of the lower edge of the pupil; maxillary reaching to opposite the front of the eye. Eye large, about as long as snout, $4 \frac{1}{2}$ in head. Isthnus narrow; scales firm, not closely imbricated; the belly with imbedded scales. Lateral line complete, ruming low, but not greatly decurved. Dorsal fin inserted a little behind the rentrals, scarcely nearer base of candal than snout. Candal fin evenly fonked. Pectorals shortish, not reathing nearly to the ventrals; the ventrals reaching to the vent. Head contaned 4 times in length to buse of caudal; greatest depth equal to length of head Fin-rays: Jorsal 9; atal 8. Scales 11-5!j-f. Teeth 2, $5-1,2$, withont evident masticatory surface. This latter character is, however, so variable in the Crpmoids of this type as to be scarcely even of specitic value. Batk and tins dusky blnish; sides of body and head dark, with fine punctulations; a red spot at base of each ventral and of anal.

Numerous specimens, the longest f inchesin length. This species is related to S. urdesincos (Cope), but it has a deeper body and larger suales, the pectorals are shorter and length of the head proportionately Tess.
7. Squalius copei, s?. nov.
(Hybopsis egregins Cope, Ann. Rrpt. U. S. Geol. Surv. Terr. 1870, 438 ; Cope \& Yarrow, Wheeler's Expl. W. 100th Mer. v, 662, 18i7; not Tijoma egregia Girard.)
Numerous specimens of this species were obtained at Evanston, Wyo., of boys fishing with hook and line in tributaries of Bear River. It has not been observed in Utah Lake. As the original trpes of Tigoma egregia, examined by us, have 6 is scales only in the lateral line, the species called Tigoma egregia by Professor Cope is distinet from it, and inay receive the above specitic name.
E. Squalius atrarius (Girarel) J. \& G.

This "chub" is very abundant in Utah Lake. It is exceedingly destructive to the young trout, well meriting the epithet of "devilish chab" applied to it by Mr. Madsen.
9. Squalius rhomaleus, sp . nov.

Allied to Squalius niger (Cope), but with the large scales of Squalius squamatus (Gill).

Body robust, elevated anteriorly, somewhat compressed or flat-sided, although the back is very broad. Head broat, considerably eoncare in protile as seen from the side, as in the groups called Platygobio and Gila; the interocular space flattish, scarcely raised above the level of the upper edge of the eye. Snout rather broad, somewhat elevated at tip; the premaxillary on the level of the pupil; the form of the head resembling that of Chasmistes. Mouth very oblique, its eleft at an angle of about 45°; the mandible much projecting. Maxillary extending to the
front of the eye. Eye small, anteriorly placed, its diameter $1 \frac{3}{4}$ in snout, 7 times in the length of the head. Isthmus very narrow, the gill-openings extending forward below. Teeth $2,5-4,2$; one of the teeth in the larger series with a broad, flattish, grinding surface, the others convex; the teeth comparatively short and stont. Scales large for the genns, subequal over the body, rather smaller on the belly, their texture firm, their exposed surfaces rery broad and hexagonal. Dorsal fin inserted directly over the ventrals, behind the middle of the body. Candal fin evenly forked, on a stout, rather long caudal peduncle, the rudimentary rays at its base not more than usually developed. Peetorals not long, exteuding three-fifths the distance to the ventrals; the ventrals about to the vent; the lower fins all short. Fin-rays: Dorsal 9; anal 8. Scales $10-55-5$. Length of head contained $3 \frac{1}{2}$ times in the total length to the base of eandal; the greatest depth of the body about the same.

Color blackish, fins all dusky. The ground shade is somewhat silvery, but the color is rendered very dark by the large ummber of small black specks.
The trpieal speeimens, two in nmmber, are about a foot in length. This is therefore one of the largest members of the genus.

10. Apocope vulnerata Cope.

Numerons specimens, some of them 5 inches in length. The large speeimens have the lateral line developed anteriorly only. Pectoral fins short, not reaching nearly to ventrals. Lat. l. about 70 .

11. Chasmistes liorus Jordan.-June Sucker.

A considerable number of fine specimens of this interesting speeies are in the collection, all of them about 18 inches in length. Color oliraceous above, with dusky mottlings formed of dark points; belly white; fins chielly pale, shaded at the tips with dusky. Aual and lower lobe of caudal tuberculate in the males. Body slender, heary at the shoulders, somewhat compre:sed, the eaudal pedmele stoutish; depth of body at the shonlders half more than its thiekness. Head not conie, low at the nape, and strongly concave in profile above, from the great prominenee of the 1 remaxillary spines, which form a conspienons nose, elerated above the eye, and with its top even with the interorbital space, which is very broad and nearly flat. Preorbital large; suborbital moderate. Mouth large and rery oblique, anteriorly on the level of the suborbital bones; the mandible strong, placed at an angle of 45°, its base below the nostrils, its length equal to that of the snout, which is about threesevenths that of the head. Upper lip somewhat protractile, narrow, vertical, its edge smooth; lower lip narrow, the two lobes well separated, very faintly plicate, the plice slightly meven. No cartilaginous sheath to the jaws. Interorbital space nearly equal to length of snout. Eye small, exatly median, 7 in head. Isthmus as broad as eye. Pharyngeal teeth essentially as in Catostomus. Scales much reduced in size aud crowded anteriorly; those on the breast imbedded in the skin. Scales
$7-61-9 ; 28$ series in front of the dorsal. Insertion of dorsal nearly midway between snout and base of caudal, the fin elevated in front, the anterior ray twice the height of the posterior, and abont equal to the base of the fin; the free margin of the fin nearly straight. Caudal fin deeply forken, the lower lobe the longer. Lower fins all sinall. Dorsal rays 11 ; anal 7.
12. Catostomus fecundus Cope \& Yarrow.-Utah Sucker.

This species occurs in Utah Lake in numbers which are simply enormous, justifying Mr. Madsen's assertion that the lake is the "greatest sucker pond in the miverse". It is very destructive to the trout. It ascends the rivers in the spring to sparn at the same time as the latter species, on the eggs of which it feeds. In the interest of the food supply of Salt Lake vity an organized attempt at the reduction or extirpation of this species may become necessary. The old tront feed largely on the young of this species, but the "suckers eat the trout first". No full description of Catostomus fecundus has been yet published. It will be seen from the following account that it is well separated from all its congeners, and that in many respects it approaches Chasmistes liorus. It is, in fact, probably the parent stock of the genus Chusmistes.

Body moderately stout, a little elevated, not much compressed, tapering into a long and slender caudal peduncle. Head subconic, the profile regularly decurved from the nape to the base of the premaxillary spines, which abruptly protrude, forming a distinct "nose", as in Chusmistes liorus. Preorbital long. Premaxillary a little below the level of the preorbital. Mandible large, obliqne, placed at an angle of 30° when the mouth is closed; its length abont one-third that of the head. Upper lip protractile, full, pendant, with about four rows of coarse papillæ. Lower lip moderately developed, rlivided nearly into two parts by a broad emargination, each lobe with about six rows of coarse papillæ. Mouth not large. Interorbital space strongly convex, its width nearly equal to length of suont. Eye a little behind the mid. dle of the head, its diameter contained 7 times in the length of the head. Isthmus broader than eye. Scales 8-60-8, reduced in size forward; breast scaly.

Insertion of dorsal about midway between snout and loase of caudal; the first ray nearly twice the height of the last, its length greater than that of the base of the fin. Candal fin moderately forked, the lower lobe longest and widest. Pectorals long, reaching more than half way to ventrals, the latter not to vent. Anal high. Fin-rays: Dorsal 11; anal 7 ; ventrals 9 . Length of head contained 4 times in total length to base of caudal; greatest depth $4 \frac{1}{2}$ times. Color blackish above, silvery below, the fins slightly dusky tinged, the dark colors formed of black points.

This species seems to reach a smaller size than the other lake suckers.
13. Catostomus ardens, sp. nov.
(? Catostomus !nzmaniensis Cope \& Yarrow; not of Girard.)
A large, thick-lipped species, allied to C. macrochilus, \&c.
Body rather elongate, subfusiform, little compressed, the back broarl and somewhat elevated. Head conical, broad and convex above, the front regularly sloping from the nape to the snout. Mouth entirely inferior, the mandible quite horizontal, the premaxillaries scarcely raised above the level of the base of the mandible. Upper lip very wide, full, pendant, with about eight rows of coarse, irregular papillæ, of which the second and third rows from the inside are much larger than the others; upper lip contimuous with the lower at the angle of the month. the lower lip cut to the base in the middle by a deep, abrupt incision Front of eye midway in head. Eye very small, 7 in head, $3 \frac{1}{2}$ in the convex interorbital space. Isthmus broad, half browter than the eye. Fontanelle large, as in the other species noticed in this paper. Scales crowded anteriorly, 9-65-9. Breast with evident imbedded scales. Dorsal fin inserted a little behind the middle of the body, long and low, its anterior rays but three-fourths the length of the base of the fin, $1 \frac{1}{2}$ the length of the last rays; the free edge of the fin straight. Caudal fin short and broad, abont equally forked, its upper lobe two-thirds the length of the head. Pectorals short and broad, their length threefourths that of the head. Ventrals short, not quite reaching vent. Anal very high, reaching caudal. Dorsal rass 13; anal 7. Length of head $3 \frac{2}{3}$ in body to base of caudal; greatest depth $4 \frac{1}{2}$. Teeth essentially as in the others.

Color blackish above, blotehed with darker, the whole back and sides obscurely spotted; belly white; a narrow, bright, rosy, lateral band on the anterior part of the borly, overlying the blackish; fins mostly dusky mottled; top and sides of head rendered dusky by the presence of many dark speeks.

This species is described from a large adult male nearly 18 inches in length, besides which we have a single young specimen.

There is another specimen in the collection, a large male fish 18 inches long, which agrees entirely with the type of C. ardens, with the following exceptions: The lower lip is wider, with less conspicuons, coarse, irregular papillæ, in 8 to 10 rows; the upper lip with two rows of largo papillæ and several series of small ones. The caudal fin is much larger, the upper lobe three-fourths the length of the head, the lower broader than the upper; the pectoral fin is very long, but little shorter than head; aul the ventrals reach the vent. The dorsal has 12 rays, and is loug and low, as in C. ardens. The scales on the breast are almost obsolete. The isthmus shows a structure very different from that of any other Catostomoid fish known. The gill membranes are partly free posteriorly, their free margins forming a broad fold across the narrow isthmus, as in the genus Cottus. This structure appears normal, and is not the result of injury. If it be permanent, this form should probably constitute a distinct genus; if not, it may not be sepa-
rable as a species from Catostomus ardens. Meanwhile we abstain from giving a new name until more speeimens can be obtained to settle the question.

Indiana State University, December 4, 1880.

By TAVIDS. TCHENAN :GAI CHAEREESH. GILIBER'T.

Sebastichthys chrysomelas, sp. nov.
(Sebastichthys nebulosus Jortan d: Gilbert, Proc. U. S. Nat. Mus. iii, 1-80, 73, and elsewhere; not Sebastes nebulosus Ayres.)
In previous papers on the California rock-fish we have provisionally identified one of the common species as the Sebastes nebulosus of Ayres. Ayres himself, however, considered his own nebulosus as without question the Selastes fusciatus of Girard, which is the Sebastichtirys fasciolaris of Lockingtou. The two species agree closely in general characters, but differ in the development of the spines on the head, and especially in color, the "fasciolaris" having the yellow markings in the form of small spots or specklings, which are confluent along the sides, forming a sort of band, the other species having the yellow areas all large. The original description of Sebastes nebulosus Ayres (Proc. Cal. Acad. Nat. Sci. i, 5, 1854) applies in the main to both species; but the accomnt of the coloration applies to S. fasciolaris Lockington, and not to our "S. nebulosus".

Ayres says:
"In color this fish is finely mottled with dusky yellow and dark brown; on the fins the latter line predominates, and the lighter mottlings have rather a bluish aspect."

We propose, therefore, to consider fascioluris a synonym of nebulasus, and to give to the species previonsly called nebulosus by us the new name chrysomelas, in allusion to its yellow and black coloration.

Description.-Body short and stout, not much compressed; highest at the origin of the first dorsal, thence tapering rapidly to the tail. Head short, bluntish, the profile very steep. Month rather small, nearly horizontal, entirely below the axis of the borly. Lower jaw rather shorter than the upper in the closed month; no prominent symphyseal knob. Premaxillaries anteriorly on the level of the lower edge of the orbit; maxillary reaching the vertical from the posterior margin of the pupil.

Preorbital wide, its neek abont half the diameter of the eye, its margin simuate, usually with a spine.

Ridges on top of head very prominent, high and strong, ending in stroug spines, which diverge backwand. They are a little stronger than in S. cerratus, but lower than in S. nebulosus. The following pairs are present: Nasal, preocular, supraocular, tympanie, and ocecipital, tive in all. Preoperentar spines short and thick, the uppermost usually the
lougest. Opercular spines usual. A small spine on the interopercle and one on the subopercle at the junction of the two bones. Suprascapular spines present. Gill-rakers short, rather thick, compressed and somewhat clavate, the longest about two-ninths the diameter of the orbit. Scales moderate, rough, the accessory ones few; about 56 transverse series. Lower jaw, maxillary, nasal region, and space in front of eye maked.

Dorsal spines high and strong, the third to sixth spines subequal and highest, rather higher than the highest soft rays. Dorsal fin deeply emarginate. Second anal spine much stronger than third, the two abont equal in length. Pectorals with very broad base, reaching beyond the tips of the ventrals, which reach nearly to the vent. The lower pectoral rays thickened. Caudal slightly rounded.
D. XII, I, 13; A. III, 6.

Coloration black and yellow; the latter shade is usually a clear, warm, brownish yellow, with some specks of deeper orange. It varies from a dusky orange to olivaceons yellow, the latter color more often seen on the belly. The dark shades are black or dank brown, with slight olive tinge. The colors are usually purest in specimens taken in deep water.
The dark color predominates on the back; the membrane between the third and fourth dorsal spines and an area at the base of these spines is always pale; a yellow blotch extends thence downward and backward, joining the light color of the belly. Auother light area passes from near the angle of the opercle aromd the pectorals, miting below them. Three other blotches occur along the back, one under the eighth dorsal spine, one muder the last spine, and one under the last soft ray; from each of these irregular pale areas extend down the sides. The fins have the color of the region to which they belong. Head above with dusky cross-shades and faint bands radiating from the eye.
This species reaches a length of about 15 inches, and is found in large numbers on the coast of California, from the island of San Nicolas, which marks the sonthern limit of the abundance of the "rock-fish", to Cape Mendocino. It is common in the markets of San Fl"tucisco, although not one of the most abundant species. Its affinity with S. carnatus has been elsewhere noticed (Proc. U. S. Nat. Mus. iii, 1880, 74).

A table of measurements will be found on page is of rol. iii.
The species deseribed by us as Selatichthys rexillaris in vol. iii, p. 292, is represented in Puget Sound and the Gulf of Georgia by a variety or subspecies with lower dorsal spines and much darker and dulter coloration, the dark shades being of a reddish brown. The latter form is apparently identical with Sebastes eatrimus Richardson, Ichth. Voy. Sulphur, i, 1844, 77, pl. 41, fig. 1, deseribed from Sitka.

The species may therefore take the name of Sebastichthys eaurinus, and the California form that of subspecies vexillaris.

Indiana State University, Bloomington, Ind., November 6, 1850.

13y G. TB IECDNN GO© DDE.

The following paper enmmerates 51 species of fishes known to oceur outside of the hundredfathom curve along the sonthern coast of New England. Nearly all were obtaned by the Fish Commission steamer "Fish Hawk" on its three trips to the "Lopholatilus Ground" in September. Several of the species were described a few weeks ago in another paper.

MALTHEID A.

1. Halieutæa senticosa, new specics.

A single small specimen (No. 26088) was obtained, September 13, from station 879 , at a depth of 225 fathoms, and on October 2, from station 895,238 fathoms, four specimens (No. 26175), ranging in length from 60^{mm} to 140^{mm}.

The occurrence on the Atlantic coast of the United States of a species of the genus Halicutar, hitherto known only from China, is exceedingly interesting. A relaterl genus, Halicutichthys, Poey, is represented in the West Indian fama by the species Halieutichthys aculeutus.*

Description.-Disk orbicular, nearly as wide as long; its length less than half that of the body; its lateral ontlines prolonged on each side in a strong spine, armed at the tip with a group of irregularly armanged acicular spinelets. Body covered above with mmerons stout, conical spines with stellnlar bases. These are largest mon the postdiscal portion of the body, where they are approximately arranged in about four irregular longitudinal rows upon each side of the dorsal fin. Closely set rows of these stont spines mark the onter margin of the disk, and there is also a chuster of tive to seven upon each carpal peduncle. Outside of these marginal spines, upon each side, is an irregular marginal row of five depressed, knife-like spines, each tipped with a crown of three acicular spinelets. On the anterior margin of the disk the two rows of spines coalesce and form a bristling row of elosely set spines, some pointing dorsally, some laterally, some ventrally. There are two kinds of spines upon the dorsal surface, in addition to the large ones already described: some large, somewhat remote from each other, conical, stellular; others, much more mumerons and filling the interspaces, prickle-like, stellular. Belly armed with mumerons elosely set spines of a similar kind. Snont somewhat projecting, armed with three many-

*Halieutichthys aculeatus (Mitchill) Goode.

Lophius aculeatus, Mimblifl, Amer. Montbly Magazine, ii, 1-18, p. Sen (sperimen from straits of Bahama).
Halieutichthys aculeatns, Gowne, Proc. I. S. Nat. Mus, ii, 1879, p. 109 (calling attention to Mitehill's description).-(ionne \& Bean, ibil. p. $33: 3$ (specimen from Key West).
Halieutichthys reticulatus, Poers, Proc. Acad. Nat. Sci. Phila. 1863, p. 91 (specimen from Cula).
tipped spines. A spine-armed ridge in front of the eyes, over the top of the snont. In this four spines are conspicnous, one in front of each eye, and between these a larger pair, in front of the supraorbital ridges. From these last-mentioned spines extend spine-armed ridges along the mpper margins of each orbit. Under the snont is a cavity containing a barbel, pedicelled, with thick, chnb-shaped, trilobate tip. On each side of this cavity are the nasal openings.

The width of the mouth is equal to the distance between the eenters of the pupils of the eyes, this being much less than in Malieutco stellate, in which the mouth is proportionally twice as large. The shape of the disk is less circular than in the Asiatic species, being intermediate between this form and Malieutichthys. Other points by which H. stellata may be distingmished are the absence of the strong lateral spines of the disk; the slighter specialization of the carpal pedmeles; the greater proportionate size of the disk, which oceupies two-thirds of the entire length of the fish; the less immediately axillary position of the gillopenings; the less spiny armature of the body, the spines upon the margin being smaller and less crowded; and the entire absence of spines upon the ventral surface.
D. 6 ; A. $4 ;$ C. $8 ;$ P. 13-15; V.5. Color reddish gray, whitish below. Мсавиrements.

Current number of specimen. Locality	26175. Station 895.	
	Millimeters.	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length	140	
Length to base of middle caudal rays	118	100
Berly:		
Createst wirn of disk		47
lenith of disk (snout to angle of peeto		47
Least heiyht of tail		5
Length of body (ontside of disk)		40
Head:		
G Geatest length (to branchial opening)		39
Width of interorlital area		8
Length of suout.		4
Width of mouth		16
Length of maxillary		9
Lenth of mandible.		10
Diameter of orluit		8
Dorsal:		
Distance from snout		60
Length of hase.		8
Greatest height		14
Lendth of rostral larbel		2
Anat:		
Distance from snont		65
Lenstly of base.		5
Height at longest ray		14
Caudal:		
Lenenth of mindile rays pectal		13
Distance of flow from suout		52
Length		24
Ventral:		
Distance of freepration from snont		35
Length		12
Dorsal Anal		G
Caudal		8
Pectoral		13-15
Ventrel.		5

. Lophius piscatorius, Linn.
A specimen, No. $26170,266^{\mathrm{cm}} \mathrm{long}$, eontaiming immature ora, was taken at station 894 , at a depth of 365 fathoms; also a large specimen with immature ova, No. 26098, from station 876,120 fisthoms; and a smaller one, perhaps two years old, No. 26070 , from station $878,142 \frac{1}{2}$ fathoms.
3. Mancalias uranoscopus (Muray) Gill.

Ceratias uranoscopus, Murray, in Wyville Thompson, The Atlantic, 18f8, ii, 1. 67, fig. 20 (Am. ed.).

Muncalias wranoscopus, Gill, Proc. U. S. Nat. Mus. i, 1878 (Oct. 17), 1’, 2v.
A single specimen, No. $26159,185^{\mathrm{mm}} \operatorname{long}$, was taken October 2 at station No. 893 , at a depth of 372 fathoms. It is of much interest, only one specimen having hitherto been fomnd. This was dredged July 23, 1873, by H. M. S. Challenger, sontheast of Madeira (lat. $22^{\circ} 1 S^{\prime}$ N., Iong. „eo z^{\prime} W.), at a depth of 2,300 fathoms (temperatme 1065^{\prime} C.). Mr. Murray's description, which is sufficiently acemate except that our specimen has four instead of three days in the second dorsal, runs as follows: The specimen is 90^{mm} in length from the snont to the end of the tail, compressed laterally, and of a uniform black color. The anterior spine of the first dorsal fin is prodnced into a long filament, ending in a pearshaped bulb, terminating in a very distinct, semi-transparent, whitish spot. This spiue has its origin on the posterior portion of the head, and when laid back it reaches nearly to the tip of the tail. The second part of the first dorsal is placed far back on the body, and consists of two short, fleshy tubereles, which lie in a depression in front of the second dorsal fin. The second dorsal has three rays; the anal is opposite tine second dorsal and has four rays; the candal has eight rays, the four central rays being much larger than the others, and biid. The pectorals are small athl have ten very delicate rays. The gill-opening is a slit situated below the pectoral fin. The upper jaw is formed by the intermaxillaries, and is armed, together with the lower jaw, with a series of teeth of moterate size, which can be depressed inward as in Lophius. The skin is thickly covered with minnte, embedded, conical spines. The eyes are very small amd are placed high mp on the middle of the head. The prescnce of a fish of this gronp at so great a depth is of special interest. From its structure, and from the amalogy of its nearest allies, there seems to be no reasomable donbt that it lives on the bottom. It is the habit of many of the family to lie hidden in the mud, with the long dorsal filament and its terminal soft expansion exposed. It has been imagined that the expansion is used as a bait to allure its prey, but it seems more likely that it is a sense-organ intended to give notice of their approach.

4. Chaunaz picturs, Lowe.

Chaunax picfus, Lowe, Trans. Zool. Soc. Lond. iii, 1846, p. 339, pl. li.-Günther, Cat. Fish. Brit. Mus. iii, 1831, 1. 200.-Gill, Proc. Acad. Nat. Sci. Phila. 186:3, p. 90 (generic diagnosis in symopsis of family) ; Ball. U, S. Nat. Mns. i, $18 \pi \boldsymbol{z}$, p. 222.

A single small specimen of a species of Chamax, 37^{mm} long, was obtained September 4 , at station 869, at a depth of 192 fathoms.

While there is ageneral agreement between the specimen described from Madeira by Lowe under the name Chaunax pictus* and the immature individual of the same genus before me, there are certain characters, such as the slightly smaller number of fin-rays in dorsal and caudal, and the difference in the shape of these fins in the latter, which renders the question of their identity somewhat doubtful. I am unwilling, however, to establish a new specific name on this immature specimen, particularly since the shape of the fins is likely to be modified with age, and the difference in the radial formula is hardly of specific importance. The specimen is therefore provisionally referred to Lowe's species. A larger specimen from onr coast is much to be wished for. Lowe's was 406^{mm} (16 inches) long, and "was taken with an ordinary bait and line at the Picos, a rocky shoal about a leagne from the shore of Camera de Lobos, a village tive or six miles to the westward of Funchal, on the 12th of March, 1846 "; depth of water not stated. The color of this specimen was bright orange above, rosy at the sides, and with fins and tips vermilion; on the belly rosy white, with fins vermilion.

The color of our specimen, No. 26021, is brownish gray. The rostral tentacle is nearly as long as the diameter of the eye.
Radial formula : D. I, 10; A. 5; C. 7; V. [3]; P. 10.

Measurements.

-	Millimeters	$\begin{aligned} & \text { looths } \\ & \text { of } \\ & \text { lengh. } \end{aligned}$
Extreme length	37	
Length to base of middle candal rays	27	100
Body:		
Greatest height		18
Greatest width...		12
Least height of tail.		
Head:		
Greatest kngth (to branchial aper Greatest width		74
Width of interorbital area		15
Langth of shout		11
Length of maxilary		20
Length ot mandible		18
Diameter of orbit		5
Dorsal tentacle		
Dorsal tin:		
Anal:		70
Distance from suout		4

* 1846.-Lowe, Rıv. R. T. On a New Genns of the Family Lophitue (Les Pectorales, Pediculees, Cuv.), diseovered iu Madeira. < Trans. Zool. Soc. Loudon, iii, pp. 339 344, pl. li. Read Sept. 2.2, 1846.

PLEURONECTIDA.

5. Hippoglossus vulgaris, Fleming.

Pleuronectes hippoglossus, Linn. Syst. Nat. ed. x, i, p. 269
Hippoglossus rulgaris, Fleming, Brit. Auimals, p. 199.-GÜNther, Cat. Finh. Brit. Mus. iv, 1860,1 . 403.
Hippoglossus cumeriearus, Gill, Proc. Aead. Niat. Sci. Plila. 1864, p. 220.
The New London halibut-smacks obtain many halibut on the south part of George's Banks and the neighboring shoals. An individual was taken, years ago, on the outer side of Fisher's Island, Comecticnt. The halibut may, in all probability, be found to be abundant on the edge of the continental slope south of Cape Cod, since here have been recently obtained nearly all the species most constantly associated on the northern inalibut grounds on the onter edges of La Have, Brown's, Sable Island, and other banks off the coast of Nova Scotia and Newfoundland.
6. Hippoglossoides platessoides (Fabricius) Gill.

Plewonectes platessoides, Fabricius, Fama Groenlandica, 1780, p. 164 (cexcelleut (lescription).—"Vidensk. Selsk. Naturv. och Mathem. Afhandl. i, P. 50, pl. ii, fig. ?."

Citharus platessoides, Reinmariot, ibid. vii, 1032, p. 130.-Kröyer, in Gaimard, Voyages en Scaudinavic, ete. pls. xxi (excellent ligure).
Drepano (p)setta platessoides, Gill, C'at. Fish. E. Coast N. America, 1831, 1. 50.
Hippoglossoides platessoides, Gill, Proc. Acad. Nat. Sci. Phila. 1864, 1. $217 .-$ Goode \& Bean, Cat. Fish. Essex Inst. 1879, 1י 7.
Platessa dentata (not Pleuronectes dentatus, Mitchill). Storme, Rep. Fisb. Mass. 18:39, 1. 143; Hist. Fish. Mass. 1867, p. 197, pl. xxx, dig. 3.
Hippoglossoider dentatus, Gill, Cit. Fish. E. Coast N. A. 1861, 1). シ0.—Gi゙Ntimer, Cat. Fish. Brit. Mus. iv, 1869, lי. 40.i.
Pomatopsetta deututa, Gill, Proc. Acad. Nat. Sci. 1864, p. 217 (with defo of Pomatopsette, 1. 216).
Hippoglossoides limemdoides, Goone \& Bean, Amer. Journ. Sci. d Arts, xvii, $187(i, 1$. 39.
Not munsual in deep water oft Southern Massachusetts and Rhode Iskand, approaching the coasts in winter, but not taken in these trips of the Fish Commission steamer.
7. Paralichthys oblongins, (Mitchill) Jordan.Pleuroncetes oblouga, Mitchill, Trans. Lit. \& Phil. Soe. N. Y. i, 1814, p. 391.Platessa oblouga, Storer, Syn. Fish. N. A. 1. 225.-DeRay, Zool. N. Y. Fish.1842 , p. 299, pl. xlviii, fig. 156.
Chenopsetta oblonga, Gild, Cat. Fish. E. Coast N. A. 1881, p. 50 (name ofgemus proposed; no definition); Proc. Acad. Nat. Sci. Phila. 1864, p. 218218 (gemus defined 1. 216).Pseudorhombus oblongus, Günther, Cat. Fish. Brit. Mus. iv, 1834, p. 425.-Goode \& Bean, Cat, Fish. Essex Co. \& Mass. Bay, 1879, p. 7.
P'uraliehthys oblongus, Jordan, MSS.Platessa quadrocellata, Storer, Proc. Bost. Soc. Nat. Hist. ij, 1847, p. 242:Hist. Fish. Mass. 1867, p. 203, pl. xxxi, lig. 3.Platessa yuadrocularis, Gill, Cat. Fish. E. Coast N. A. 1861, p. 51.Specimens were obtained at the following trawling stations: No.26078, from station 873,100 fathoms.
8. Monolene sessilicauda, Guode.
Monolene sessilicauda, Goode, Proc. U. S. Nat. Mus. iii, 1850, p. 338.
Specimens were obtained from the following stations:
Fathoms.
No. 26004, stations 870, 871 150-115
No. 26099, station 876 120
No. 26109, station 87 126
9. Citharichthys arctifrons, Goode.
Citharichthys arctifvons, Goone, Proc. U. S. Nat. Mus. iii, 1880, p. 341.
Specimens were obtained from the following stations:
Fathoms.
Nos. 25908,26130 , station 871 115
Nos. 26100,26101 , station $87 \approx$ 86
No. 26117, station 876 120
No. 25118 , station 876 120
No. 26124, station 878 $142 \frac{1}{2}$
No. 26129, station 874 85
station 870 155
10. Citharichthys unicornis, Goode.Cithurichthys unicornis, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 342.
Specimens were obtained as follows :
No. 25003, station 870 155
No. 26003 , station 871 155
11. Limanda ferruginea (Storer) Goorle de Bean.

I'latessa ferrminea, Storme, Hist. Fish. Mass. 1867, p. 198, pl. xxx, fig. 4.
Myzopsetta ferruginea, Gidl, Cat. Fish. E. Coast N. A. 1861, I. 51 (genus not defined) ; Proc. Acad. Nist. Sci. l'hila. 1s64, p. 217 (genus defined), et alibi.
Plenronectes fervugiacus, Güntier, Cat. Fish. Bıit. Mus. iv, 18(i:2, 1. 447.
Limama fervoginea, Goobe d Bean, List Fish. Essex Co. de Mass. Bay, 1879, 1. 6.

Platessa rostrata, H. R. Stomer, Boston Jomm. Nit. Mist. v, 1837, p. 268, pl. viii, fig. 2.
Myzopsette rostrata, Gill, II. e.
Numerous specimens were taken in 1874,1875 , and 1880 south of Cape Corl, in deep, cold water. The most sonthern locality is the Pecten Ground off Watch Hill.
12. Limanda Beanii, new species.

Two specimens, No. 26102, were obtained-one from station 875, at a depth of 120 fathoms; one from station 876,120 fathoms-which are provisionally referred to the gemus Limanda, Gottsche, as understood by American ichthyologists. The species surely belongs to Plemronectes, as limsted by Giinther, the weight of whose opinion regarding the difficulties of making generic divisions in this gronp is fully appreciated. The extreme brevity of the snout and the clongate-elliptical form of the body renter its shape very unlike that of Limanda fermughen of our own coast and Limanda platessoides of the Eastern Atlantic. In its general appearance, except that the ventrals are not both lateral, it resembles cousiderably the species mentioned above.

Deschiption.-The boty is elliptical in form, with angular outlines. Its height is threc-eighths (38) of its total length, and slightly more than twice the length of the head, and about three times the greatest height of the anal fin. Its height at the ventrals (25) is one-fourth of its length and less than distance from suont to origin of anal. Its least height, at base of tail (12), is half its height at ventrals. It is thin, its greatest width (7) not execeding the diameter of the orbit.

The seales are subcircular, small, strongly pectinate on the colored side, cycloid on the blind side, where they are also larger, there being about fifty (as nearly as can be comnted in the specimens befne me in the lateral line, behind the cmre, while on the colored side there are probably sixty. The lateral line on the colored side makes a very abrupt, conspicuous, angular, high curve over the pectoral fin. The chord of this are is mearly as long as the head of the fish, its height half as great. The scales in the lateral line are highly specialized, particmhaly along the curve, which appears to contain about trenty-seren of them, while posterior to this, in the straight portion, there are abont sixty. The specialized scales of the lateral line extend far out noon the caudal fin. On the blind side the lateral line is little conspicmons, the seales rery slightly specialized, and it becomes obsolete in the region where, upon the colored side, the curve is located. The scales extend far ont upon the caudal fin, but are not present mon the other fins.

The head is very short, its length (18) contained abont five times and one-half in the total. The snout is rery short ($\%$), one-fiftieth of the total, and the mouth is small, its cleft subvertical, and the maxillary extending very slightly behind the anterior margin of the orbit. The teeth are inconspicuons, apparently in two rows, stronger and more mmerous on the blind side, barely discernable in upper jaw, absent elsewhere in the mouth.

The eyes are large, prominent ; their diameters (7) greater than the length of the maxillary (6) and equal to that of the mandible (6). They are very closely set, the interorbital space marked by a kinifelike edge of bone. The upper eye, in its ontline trenching mon the dorsal ontline of the head, is almost directly above its mate. Together they occupy
nearly three-fourths of the width of the head at the perpendieular passing through their centers.

The dorsal fin begins over the posterior part of the pupil of the upper eye. Its rays are long, widely separated, and with their tips protruding beyoul the membrane, giving to this, as also to the anal, a ragged, irregular appearance. Its greatest height (8) is equal to half the length of the heal. The anal is inserted under the axil of the pectoral, and its height is about the same as that of the dorsal.

The length of the caudal (20) is equal to one-fifth of that of the body, without including caudal. It is broad, fan-shaped, acutely convex in ontline. The distance of the ventral from the snout (28) is about onethird the length of the base of the dorsal. The arrangement of these fins upon the ventral keel is much as in Limand ferruginen, the right fin being almost upon the median line. The pectorals are normal.

The color is grayish brown, mottled with tarker patches. There is a conspicnous black blotch upon the onter rays of the candal on either side.
Radial formula: D. 64; A. 63; C. 18; P. 7; V. 6; lateral line about 88.
This species is dedicated to my associate Dr. Tarleton II. Bean, of the United States National Museum.

Mcasurements.

Current number of specimen Locality	$\begin{gathered} 26102 . \\ \text { Stations } 875-6 . \end{gathered}$	
	Milli. meters.	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length	135	
Length to base of widdle caudal rays	111	100
Body : Greatest height		38
Greatest width		
Heirht at ventrals		25
Least height of tail		13
Head:		
Greatest length.		5
Length of snout		
Postorbital portion of head		
Length of maxillary		
Length of mandible		
Diameter of orbit		
Dorsal:		
Distance from snout		
Length of hase..		83
Greatest height		
Anal:		
Distance from suont		28
Length of base..		
Candal: Lencth of midtle ray		0
Pectorai:		
Distance from suout		17
Leugth		
Vestral:		
Distanee trom snout		17
Length		
Dorsal		64
Anal..		63
Candal.		18
Pectoral		
Ventral.		6 R .
Number of scales in lateral line (ea.)	(27 in	curve).

13. Glyptocephalus cynoglossus (Linn.) Gill.

Pleuroncetes cyuoglossus, LiNNEEUS, Syst. Nat. ed. x, i, 1758, p. 269.
Glyptocephalus cynoglossus, Gill, Proc. Acad. Nat. Sci. Phila. 1R7:3, 1. 161.Goode \& Bean, 1roc. [T. S. Nat. Mas. i, 18t', p. \&] (with extensive synonymy).
Numerous specimens of various sizes, from the yomg of two centimeters to the adult of fifty centimeters, were taken in the following localities:
14. Thyris pellucidus, Goode.
Thyyris pellucilus, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 344.

Specimens were obtained from the following localities:
\qquad

MAORURIDA.

15. Macrurus Fabricii, Sundeval.

Macrurus Fabricii, Sundeval, "Vet. Akad. Haudl. 1840, p. 6".-Goodfe \& Bean, Cat. Fish. Esstex Co. \& Mass. Bay, 1879, p. 7.
Macruris rupestris, Gǜtuel;, Cat. Fish. Brit. Mns. iv, 1e6\%, 1. 390.
There can be little donbt that this species occurs south of Cape Cod, though $1 n 0$ living specimens have yet been obtained. The first specimen found on the coast of the United States was picked ul at sea, floating, somewhere off Gravesend, N. Y.
16. Macrurus Bairdii, Goode \& Bean.

Macrurus Bairdii, Goode \& Bean, Amer. Journ. Sci. \& Arts, xiv, 18i7, pp. 471-473 (Massachnsetts Bay) ; Cat. Fish. Essex Co. \& Mass. Bay, 1079, 1. 7.
Specimens were obtained from the following localities:
Fathoms.
No. 26062 , stations $879-880$. $225-252$
Nos. $26163,26166,26187,26194$, station $93 . . .$.
Nos. 26168, 26194, 26217, 26218 , station 894 365

No. 26193 , station 892... 48 .
Nos. 26212, 20\%17, 20218, station $891 . .$. 48 .
17. Macrurus carminatus, Goode.

Macrurus carminatus, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 346.
Specimens were obtained from the following localities:
No. 26001, station $8 \% 1$... 115

> GADIDÆ.
18. Gadus morrhua, Limmeus.
'The cod ocen's in deep water on this portion of the eoast.

19. Phycis chuss.

Several specimens :pprarently of this species were obtained outside of the limadred-fathom curve.
20. Phycis Chesteri, Groode \& Bean.

I'hycis Chesteri, Goode \& Bean, Proc. U. S. Nat. Mus. i, 1878, p. 256; Cat. Fish. Essex Co. \& Mass. Bay, 1879, p. 8.
Numerons specimens, old and young, were found at stations 878, 142 fathoms ; 879,225 fathoms ; 880,252 fathoms; 881, 325 fathoms; 802 , 487 fathoms; 895,238 fathoms.

This species and Macrurus Bairdii appear to be the most abundant fishes of this district, occurring in immense numbers and breeding copionsly.
21. Phycis regius (W:thatm) Jordan \& Gilbert.

Blennius regius, Walbaum, Artedi, 1792, p. 186.
Urophycis regius, Gill, Proc. Acad. Nat. Sci. Plita. 1863, p. 240.
Phycis regius, Jordan \& Gilbert, Proc. U. S. Nat. Mhs. i, 1878, p. 371.Goode \& Bean, Cat. Fisl. Essex Co. \& Mass. Bay, 1879, p. 8.-Bean, Proc. U. S. Nat. Mus. iii, 18E0, p. 70.
Euchelyopus regalis, Schneider, Bloch. Syst. Ichth. i (cloth), 1801, p. 33.
Phycis regalis, Kadp, Archiv fiir Naturg. 1858, p. 89.-Gille, Cat. Fish. E. Coast N. A. 1861, p. 49.-GÜntier, Cat. Fish. Brit. Mils. iv, 1862, p. 354.
"Gadus blemioides, Mitchill, Medical Register, 1814."
Gudus punctatus, Mitchill, ibid.
Phycis punctutus, DeKay, Zool. N. Y. Fish. 1842, p. 292, pl. xlvi, fig. 149.
A specimen was obtained at station 870 , in 155 fathoms of water. The distribution of this species is very puzzling. It has been found at Halifax, Nova Scotia, and south to the Cape Fear River, but seems nowhere abundant except about Long Island.
22. Haloporphyrus viola Goode \& Bean.

Huloporphyrus viola, Goode \& Bean, Proc. U. S. Nat. Mas. i, 1878, p.. 257 ; Cat. Fish. Essex Co. © Mass. Bay, 1879, p. 8.
Specimens were taken October 2 , at station 893 , in 372 fathoms of water. The species has never before been found except on the outer edges of the Nova Scotia banks.
23. Enchelyopus cimbrius (Linn.) Jordan.

Gadus cimbrius, Linneese, Syst. Nat. ed. x, i.
Onos cimbrius, Goode \& Bean, Proc. U. S. Nat. Mus.i, 1878, p. 349 (with full synonymy) ; Cat. Fish. Essex Co. © Mass. Bay, 1879, p. 8.
Euchelyonus cimbrius, Jordan, MSS.
Several specimens were obtained ontside the hundred-fathom curve.
24. Merlucius bilinearis (Mitchill) Gill.

Nunerons specimens of old and young were taken September 4, September 13, and October 2 , in almost every hanl of the trawl-nets, at whatever depth. The adults appeared to be in the middle of the spawning season, the eggs being separated in the ovaries and flowing easily in specimens taken at the depth of 250 and 457 fathoms. This phenomenon is of the greatest interest and importance, since it may serve to illustrate how other species, common near the shores, such as the menhaden (Brevoortia tyrannus) and the blnefish (Pomatomus saltatrix), retreat to deep water to spawn.
25. Hypsicometes gobioides, Goode.

Hypsicometes gobioides, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 348.
A single specimen of this puzzling little stranger was obtained at station 871 , in 115 fathoms of water.

STICII AID A.

26. Eumesogrammus subbifurcatus (Storer) Gill.

A single specimen of this arctic species was obtained oft the mouths of Newport Harbor.

LYCODID E.

27. Lycodes Verrillii, Goode \& Bean.

Lyoodes Vervillii, Goode \& Bean, Amer. Journ. Sci. \& Arts, xvi, 187\%, p. 474 ; Cat. Fish. Essex Co. \& Mass. Bay, 1879, p. 9.
Specimens were obtained at the following localities: Stations 870,155 fathoms; 879,225 fathoms; 880, 2521 fathoms; 881, 325 fathoms; 893 , $37 \pm$ fathoms; 895,238 fathoms; often in considerable abundance.
28. Lycodes paxillus, Goode \& Beau.

Lycodes paxillus, Goode \& bean, Proc. U. ․ Nat. Mus. ii, 1879, p. 44 ; Cat. Fish. Essex Co. \& Mass. Bay, 1879, 1. 9.
Two specimens, No. 26181, came from stations 891 and 894,487 and 365 fathoms. The unique speeimen previously known was obtained by Captain Collins in the gully between La Have and Sable Island Banks. The enormous development of the buccal muscles appears to be a character acquired in old age, as also the special peculiarities of dentition mentioned in the description.

> ANARRHICADIDA.

29. Anarrhichas lupus, Limmeus.

A single small specimen, abont $30^{m m}$ in length, was obtained at station 866 , in 65 fathoms. At the time of wriling the present notice this is not arailable for examination, but it is believed to be the young of Anarrhichas lupus, never before recorded sonth of Cape Cod.

LIPARIDIDE.

30. Liparis sp.

Specimens of a Liparis closely resembling L. ramula, Goode \& Bean, were obtained at station 879 , and are preservel for future discussion.

COTTID A.

31. Amitra liparina, new genus and new species (Cotlithe).

Two specimens of the fish here described were obtained, October \because, at station S91, in 487 fathoms; one, No. 261S4, $164^{\text {min }}$ long; also a smaller one, $55^{m=1}$. Their structure was so pecnliar that I have long hesitater to describe them. They are evidently Liparoid dishes, withont ventral fins or ventral disk. Protessor Jordan and Dr. Bean have examined
them with me, and the decision has been reacherl that they should be placed in a new genus of the family Cottide. Professor Jordan considers this genns as forming one of the most abnormal types of Cottida, approached through Cottunculus and Psychrolutes, and also closely allied to Liparide.

AMITRA, new genus.

Cottoil fishes, with small head, elongate, attemate, body covered with thick, lax, slimy skin. Ventral fins absent. Operenlar stray present. Psendobranchise present. Gills $3_{\frac{1}{2}}$, without slit behind last (?). Gillopenings closel below, restricted to small slits under the rery small operculum. Operculum very small, strap-shaped. Lower jaw included within the upper. Teeth weak, paved. First five rays of the dorsal non-artienlate, the others grading gradually into tne flexible rings.
32. Amitra liparina, new species.

Description.-Body elongate, compresseal posteriorly, very thin at the tail, coverel with a gelatinons, lax, transparent skin, which is separated from the body and the fins by a filmy, mucous intertissue. Greatest height of body (18) contained five and one-half times in its length, withont caudal.

Head thick, consex between eyes, its greatest width (11) nearly threefourths its length (15), which is contaned six and two-third times in the length of the body. Snont convex, protruding. Month under the snout and far back from its tip. Eyes lateral, in diameter (3) about half the width of the interorbital area (5). Nostril in front of eye. Pores along the upper lip. When the head is riewed from direstly in front the opening of the month seems to be convex upward.

The dorsal fin begins orer the end of the pectoral, and the rays and outline of this, as well as of the anal, are hardly visible through the thick, lax skin. The rays are thick, but wery flexible. The anal begins under the eighth to tenth dorsal ray. The dorsal and anal rays lie closely connected with those of the candal, which are somewhat larger, and extend in a pencillike point.
The pectoral is broad, its lower base almost under the posterior margin of the orbit. It is composed of twenty-three rays, the six lowest of which are prolonged beyond the lower rays contiguous. The jugular disk camot be found.

Radial formula: D. 67 ; A. $54 ;$ C. $6 ;$ P. 23.
Color: Yellowish white, dasky toward the tail and backish upon the anterior part of the head. Abdominal cavity showing black through the skin.

Two other specimens of this or a related species were obtained (No. 26179) from station 894, in 365 fathoms of water, but they are in poor condition and cannot at present be made out.

Mcasurements.

33. Cottunculus microps, Collett.

Cothunculus microps, Collett, Tillhægsh. til. Vidensk.-Selsk. Forh. Christiania, 1864, p. 20, pl. i, figs. 1-3; Norges Fiske, 187.5, p. 20, pl. i, figs. 1-3; Fiske Nordhaus-Expeditionens, 1878, p. 20; Meldelelser om Norges-Fiske Aarena, 1575-'78, 1879, p. 11.
Specimens from the following localities have been obtained:

No. 26085 (1), station 880

$252 \frac{1}{2}$

station 894 365
station 895 238
No. 25186 (3), station 895 238
No. 26140 (1), station 880 $252 \frac{1}{2}$
The largest measures $20.5^{m m}$, the smallest $25^{m m}$. This species, nerer before found except on the Norwegian coast, was described from a specimen measuring $15^{m m}$, dredged by Prof. G. O. Sars at Hasvig, near Hammerfest, in 200 fathoms, Angust, 1864; another, $500^{\mathrm{mm}} \mathrm{long}$, near Trondhigemsfjord, in 1878 , by Mr. Storm, at a depth of 180 fathoms; again, at a depth of 191 fathoms, 18 miles northwest from Hammerfest (720×0^{2} N., $20051^{\prime} \mathrm{W}$.), in temperature $30.5^{\prime} \mathrm{C}$., and at a depth of 459 fathoms; 15) miles westward of Northwestern Spitzhergen (79° z.9' N., $5040^{\prime} \mathrm{W}$.), with temperature of 10 (.
34. Cottunculus torvas, new species, undescribed.

A smooth-skinned species of Cottunculus was also obtained. This is reserved for future liscusion.

AGONIDE.

35. Peristedium miniatum, Goode. Peristedium miniatum, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 349.
Specimens were obtained from the following localities:
Fathoms.
No. 26023, station 869 . 192
No. 26030, station 881 115

As has already been stated, adults and young were found, the former full of nearly ripe eggs.
36. Asphidophoroides monopterygius (Bloch) Valenciemes.

In 1874 a head of an individual of this species was dredged up on the "Pecten Ground" off Watch Hill, R. I. This is the sole instance of its capture south of Cape Cod, thongh there can be little donbt that it is of frequent occurrence in the districts recently explored by the Commis. sion.

37. Sebastes marinus, Limurus.

Numerous small individuals of this species were taken in neany every hanl of the trawl-net down to the depth of 155 fathoms.
38. Setarches parmatus, new species.

A single specimen, No. 2S084, was ohtained at locality S76, in $1 \geq 0$ 120 fathoms. The young fish, 52^{mm} long, was taken in company with momerous young specimens of scbustes marinns, from which it differs in many very striking respects.

It appears to belong to the trpe described by Johnson muler the name Sctarches.*

It is, however, much stonter and higher than the other known species of this genus, Setarehes (xiintheri, from which, too, it differs in having 10 instead of 11 spines in the dirst dorsal, and 6 instead of in rass in the ventrals. The height of the body (38) is three-eighths of its standard length. The length of the head (45) is nine-twentieths of the same. The diameter of the eye (12) is contaned less than fom times in the length of the head (45). The scales are small, cycloid, each with sereral concentric furrows.

The specimen is so fomg, amb motilated withal, that it seems scamely desirable to prepare an elaborate specitic diagnosis. I append, however, a table of measurements, firom which the other proportions of the body may reatily be deduced, hoping soon to secure materials for a better deseription. Setarches parmutus may readily be distinguished from Sebustes marimus by its more generous proportions, as well as by the generic characters already mentioned. The height of the body is three-eighths of

[^59]it.s length insteal of one-fourth; its width is one-fometh insteal of theetwentieths; the length of the head nine-twentioths instead of threeeighths. The width of the interorbital area is half the length of the mpper jaw instead of one-fourth, and is nemly equal to instead of one-half of the diameter of the orbit. The vertical fins are inserted farther barlo. the paired fins farther forward, and the fins are, withont exception, longer. The tail appears to be truncate instead of emarginate, as in s. marinus. The preoperenlar spines are very prominent. The spinous dorsal contains ten spines.

Mensurements.

Species: Sctarches parmatus.

39. Xiphias gladius, Linn.

A fishing smack from Noank, Comn, was engaged by Professor Baird to set a trawl on the edge of the oceanic slope, in the hope of obtaining more specimens of Lopholatilus. Their only capture was a sword-fish thirteen feet long and weighing over be0 pomuls. This was brought up from the bottom on the trawl-line. There is room for much question whether it was taken at the bottom or fastened itself to the
hooks as the line was being lowered, and was carried by its weight to the bottom. This eurious freak of the sword fish, so often observed of late, deserves careful study.

LATILIDE.

40. Lopholatilus chamæleonticeps, Goode \& Bean.

Lopholatilus chanuleonticeps, (roode \& Bean, Prow. U. S. Nat. Mus. ii, 1879, p. 20.

In Jnly, 1879, numerons specimens of this remarkable fish were taken by Gloncester fishing vessels, at a depth of 84 fathoms, 80 miles sonth by east from Noman's Laml. The first trip of the "Fish Hawk" to deep water from Newport was September 4 , and the nets were hauled as nearly ats possible on the same gromds where Lopholatilus had previously been taken.
The second trip, ten days later, was to a region about forty miles farther west, and on this oecasion sis or more large indiriduals of this species were brought up on a hand line ("ladder-line") set from an open boat sent out from the steamer. None were at any time taken in the trawl-mets, thongh there is every reason to believe firm the success of the fishing vessels previously, and from the number taken on the handline by the men in the small boat, that they are exceedingly abmodant in this locality and probably for lnmbreds of miles in either direction, or at any rate to the south.

The Lopholutihes may yet prove to be a fish of ecomonic importance. Its snitability for food was tested at the ward-room table' of the "Fish Hawk", and it was pronomed equal to cod-fish, though somewhat finer grained in tiesh.

The following notes upon color and internal stmeture were taken from a fresh specimen. The colors are very beautiful, and in gemem appearance when taken from the water it is one of the loveliest fishes I have ever seen, no exception being made in favor of the hrilliant parrot-fishes or angel-fishes of the West lndian coral groves.

Color.-Black bhish, with a green tinge, iridescent, changing through purplish blue and bhish gray to rosy white below, and milky white toward the medinm line of the belly. Head rosy, iridescent, with red tints most abmunt on the forehead, bhe under the ejes checks fawncolored. Throat and under side of the head pearly white; with an occasional tint of Jemon-yellow ; this is most prononned in front of the rentrals and on the anterior portion of rentral fins. Back with numerons maculations of bright lemon or golden. Anal purplish, with blue and rose tints, iridesceut. Margin of anal rich purplish bhe, iridescent like the most beantiful mother of pearl. This color prevading more or less the whole tin, which has large fellow maculations. The lower border is rose-colored like the belly, and the base of the fin also partalkes of this general hue. Dashes of milk-white ont the base of the anal between the rays.

Dorsal gray．In front of the seventh dorsal the upper third poste－ rior to the upper tworthirds dark brown．Spots of yellow，large， elongate，on or near the rays．Adipose fin whitish brown or yel－ low ；a large group of bright yellow，comfluent spots at the base．

Pectorals sepia colored with rosy and parplish iridescence．
Viscera．－Stomach small，siphomal，barely more than a loop in the very large intestine．Alimentary canal short，stomach and intestine when stretched out at full length extending from the diaphragm to the caudal．A loop in the intestine immediately posterior to the stomach． Liver with two lobes，nearly equal in length，light chestnut－brown．Gall－ bladder large，pendant，pear－shaped，with long duct．Swim－lladder simple，with thick muscular walls，strongly attacheal to roof of abdominal cavity bymerons root－like appendages，resembling somewhat those of Pogonias．Spleen two thirds as long as gall－hadder．

CHAULたDONTIDE．

〔1．Chauliodus Sloanii，Schueider．
Chamliodus sloanii，Scmaember，Bloch．Syst．Ichth．180I，1＇．480，tab．Ixxxy（as （．．setinotus）．
C＇hutiodus Slocmii，GÜntuer，Cat．F゙ish．Brit．M1s．v，1864．P．392．
A single individual，No．26165，105mu long，was taken from station 892，in 487 fathoms．The only other specimen recorded is that from the stomach of a codtish from Georgess Banks，preserved in the musemm of the Essex Institute．

Radial formula of No．2616．5：D． $6 ;$ A． 12.

SCOPELIDE．

42．Myctophum，sp．
A species，apparently modescribed，was obtamed in seremal of the deep hanls．It is reserved for comprison with mumerons other specimens of the group，as set melaborated，obtained ber the C＇ommission from the deep waters of the Atlantic．

MICROSTOM1TE．

Hyphalonedrus chalybeins，new grims and new species．
Numerous specimens（No．26092）of a form（losely related to Aryentina
 They are considered to represent anew generic type．＊

IIYPILALONEDRTS，new gemms．

A gemes of Microstomatid fishes．Body rombed，terete．Cleft of month extending noder the anterion third（at keast）of the orbit．Eye large．Teeth in the jaws small，sharp，on the elges of the hon lips． Tongue entirely smooth．Tip of lower jani projecting．Dowsal fin short， inserted midway in space between insertions of pectorals and ventrals．

[^60]Gill-arches 4. Pseutobranchice present. Seales moderate, pronomedly pectinate.

The gemns silus Cill * was founded upona misconception. The seales of Argentina silus (Cuv.) Nilss., are "dentigerous," it is true, but not ctenoid. They are trine eyeloid scales, with dentigerous satiaces. The diagnosis of silus Gill would include the form above deseribed, lyot, as has been remarked, it was founded upon a mismuderstanding, and there cun be no question as to what his intention may have been.
43. Hyphalonedrus chalybeius, new species.

Description.-Body plump, terete, its heisht (16) contained six times and one-fomth in its length, its width (1.3) seven and three-fomths. The leight at ventrals (16) is equal to that of the origin of dorsal, the dorsal being inserted at the highest portion of the borly, its middle over the origin of the ventrals. The least height of the tail is half that of the body. The seales are moderately strong, and sharply pectinated at the edge, and arranged in regnlar transverse rows, overlapping in such a manner as to resemble oblique plates mon the sides. The lateral line is prominent, straight, containing aboit 5 seales. Between the lateral line and the origin of the dorsal are $6 \frac{2}{2}$ seales, the origin of the rentral 6 . The greatest length of the head to the end of the Hexible tlap of the opereuhm (27) slightly exceeds one-fourth of the body-length, ant is itself slightly more than fonm times the length of the snout (6). The longitudinal diameter of the orbit (δ) is fom times that of the interorbital space ($\because 2)$. The maxillary, broad and tlattened posteriorly, is in length (10) one-tenth of the body, and extends back to a perpendicular fom the anterion margin of the popil. The articulation of the manlible is in advance of the posterion tip of the maxillary, its length (11) slightly greater, amb it protrudes beyond the snont, when the month is open, a distance greater than the width of the interorbital area. When the month is closed its tip still projects noticeably.

The donsal tin is located almost midway between the snont and the adipose dorsal. Its height is almost equal (19) to that of the ventral (18). The arlipose dorsal is over the middle of the anal, its length hatf' the diameter of the orbit.

The distance of the anal from the snont ($\boldsymbol{6}(6)$ is about three-fonths of the body-length. Its length of hase (i) is equal to the length of the snont; its height (10) to that of the mikhle cancial rays. The candal is furcate. The pectoral is loug, subfalcate, inserted close to the branchial eleft, its tip extending to the fondenth on fifteenth seale of the lateral line, its length ($2: 2$) twice that of the mandible.

The rentral is located two-tifths of the way fiom the snont to the base of the candal, and dineetly mater the middle of the dorsal.

Radial formula: D. $11+1$ (adipose) ; A. 8 ; U. $16 ;$ P. 17 or $18 ;$ V. 9 or 10 ; L. lat. about 52 .

Color grayish mottled with brown, scales metallie silvery.

[^61]
Monsuroments.

NEMICHTH IIIA.

44. Nemichthys scolopaceus, Richardson.

A single specimen, No. 26106 , was taken in 252 fathoms of water at station 880. It came up clinging with its long jaws to the ontside of the trawl-net.

SYNAPHOBRANCHID F.

45. Synaphobranchus pimatus (Gronow) (iinther.

Specimens were obtained from the following localities: Station 880, 250 fathoms; S81, 325 fathoms; S91, 457 fathoms; 894,365 fathoms. In the last-mentioned locality a specimen was taken cancring nearly mature eggs.

SLMENCHELYIDむ.
46. Simenchelys parasiticus, Gill.

Nimenchelys parasitichs, Gill, in Goode \& Bean, Fish. Essex Co. © Mass, Bay, 1-79, p. :27.
A simglo specimen, No. 26172, was taken at a depth of 487 fathoms at station 893.

RAIDE.

47. Raia, muknown species.

The young of a species of skate, with body covered closely with minute sharp spines, was taken in many localities. Mr. Garman has the specimens for identification.
48. Raia, muknown species.

The young of another speeies, with an extremely long tail, was taken from large, square, short-tendriled eggs at various depths. Mr. Garman has also these.
49. Raia lævis, Mitchill.

Two large skates apparently of this species were taken October 2 in deep water. A cast of one of them was mate.
SPINACIDAE.
50. Centrophorus? moknown species.

Mr. Garman has for identitication two specimens taken at station 893 , at a depth of 372 fathoms.

MYエINIDA.
51. Myxine glutinosa, Linneus.

Specimens were obtained from the following localities: Stations S69, 192 fathoms; 570,155 fathoms; 578,142 fathoms.

EY DAVHDS. JoIEDAN.

Caranx beani, sp. nov.
Allied to Curanx cibi Poey, but much less elongate.
Color blaish above, silvery, with golden luster below; upper edge of caudal pednncle a little dusky; spinons dorsal blackish; axil dusky; no dusky spot on opercle, pectoral fin, or elsewhere.

Form rather broadly elliptic-ovate, the dorsal and ventral outlines about equally and nearly regularly curved, the depth greatest at the origin of the anal and soft dorsal, the axis of the body not far frga the middle of its depth. Profile fiom the snont to the base of the dorsal forming a very regnlar enrve. The greatest depth $2 \frac{2}{3}$ in total length, $2 \frac{1}{3}$ in length to the base of the candal. Head little compressed, scareely carinate above, the interorbital space more than half broader than the eye, which is small, shorter than snont, searcely broader than the preorbital, 4 in head. Length of head $3 \frac{1}{3}$ to base of candal, 4 in total length. Month comparatively small, oblique, the lower jaw very slightly projecting when the month is closed. Maxillary small, seareely extending to the anterior border of the orbit. Premaxillaries anteriorly on the
level of the lower edge of the pupil. Teeth small, villiform, in a narrow band in each jaw ; those in the outer series slightly enlarged ; the band in the upper jaw considerably broader than that in the lower; no canine teeth; bands of villiform teeth on vomer, palatine, and tongne. Adipose eyelid little developed. Cheeks and opereles sealy: Gill-rakers long, lenger than the pupil. Breast elosely scaled, its scales a little smaller than those on the sides. Upward curse of lateral line not very strong. Armature of tail feeble, ouly those plates on the caudal peduncle itself having distinct spines; about 26 plates may be counted before they merge into the ordinary scales.
Spinous dorsal low and feeble, the highest spine scarcely as long as the snont, the last spine nearly free, short and thickish; a swall pro"mmbent spine before the dorsal; soft parts of dorsal, anal, and caudal densely covered with small seales; sott dorsal and anal low, their highest rays scarcely longer than the snont; free anal spines, separate from the fin but connected with each other, searcely longer than the pupil ; caudal tin short, not widely forked, the lobes equal, the upper lobe ${ }_{4}$ length of head, the distance vertically between their tips slightly less than the length of the headi; ventral fins very short, scarcely longer than suout, reaching about half way to mal; pectoral fins falcate, reaching about to the fourth soft ray of anal, their insertion on the level of the maxillary, their outer surface largely scaly; length of peetorals 2 the greatest depth, about equal to length of heat.

Fin rays: D. VIII-I, 26 ; A. II-I, 23 .
Two specimens of this species were obtained by Mr. Charles H. Gilbert and myself at Beaufort, N. C., in the summer of 1877. They were takeu with a small seine in the harbor, close to the shore.

It agrees in dentition and many other respects with Caranx cibi Poey, but the latter species is much slenderer, the depth of the body being about equal to the leagth of the peetorals or the length of the head. I place it provisionally in the genus Caranx, the value of the various proposed subativisions of the latter group not being evident.
The example from which the preceding description was taken has been presented to the United States National Museum, where it is numbered 27372.

I present a table of comparative measurements of the type Caranx beani and of one of Poey's types of C. cibi.

Table of measurements.

Species Locality	Carans beami. Beablort, N. C.		$\begin{aligned} & \text { Caranx cibi. } \\ & \text { Cubat. } \end{aligned}$	
	$\begin{aligned} & \text { Yuches } \\ & \text { anil } \\ & 100 \text { ths. } \end{aligned}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { ongth. } \end{aligned}$	$\begin{aligned} & \text { Inches } \\ & \text { and } \\ & \text { 100ths. } \end{aligned}$	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length	6. 85		11.00	
Length to eud of caudal armature		100		100
Borl ${ }_{\text {Greatest }}$ height		43		33
Greatest width.		15		14
Ileight at wentrals		38		30
Least height of tail		8		+
Length of caudal peduncle		8		10
Head:				30
Distance from shout to nape				,
Cistance from shout to nape		15		
Width of interorbital area		111		10
Length of snout.				10
Lenuth of maxilary		14		${ }^{\circ}$
Lenisth of maudible		16		15
Diameter of orbit		9		7
Dorsal (spinous) :				40
bisance from snout				,
Length of hase				10
Treatest height....				
(Soft) length of lase				
Heinht at longest ray		15		-1
Anistance from suon		63		
length of base		38		1
Height at tirst free spine		4		
Height at longest ray		11		
Caudal:				
Length of midute rays		27		26
Pectoral: ${ }^{\text {Lenge }}$				
Lengtlı		30		34
Ventral:		13		11
Dorsal....		VIII-I, 26		VIII-I, 25
Anal.		11-1, 22		11-1, 22
umber of plates in		25		29

Indiana State University,

 Bloomington, Ind., November 10, 1880.

By O. P. HAY.

The collection of fishes which it is the olject of the present paper to describe was made alnost wholly by the anthor, while on a trip along the eastern side of the State of Mississippi, during the latter part of March and the early part of April of the present year, 1880. The route taken was along the Mobile and Ohio Railroad, and extended from Corinth, near the northern line of the State, to Shubuta, a tomn about one hundred miles north of Mobile. Stops were made along this line of travel of from a few homs to four or five days. The conditions for col-

[^62]lecting were usinally very mfaromble, on accome of high water and the superabundance of logs and shags. Newertheless, I suceeeded in collecting altogether 03 species. Three additional species, and additional specimens of several species that I had abredy secured, have since been sent me by Mr. William A. Wamer, of Entermise.

Of the 56 species named in the succeeding pages, I describe 15 as. new- 7 of them in the family of Ethesstomutide, and S in Cyprinide. Little has yet been done in the way of determining the fish fama of this and some of the other Sonthern States, where so rich a field is offered to the maturalist.

At Corinth a few draws were made with the seine in a little stream that runs near the railway depot. This strean is a branch of the Thscmmbia, which eventually empties into the Mississippi through the Big Hatchee.

At Artesia, in Lowndes Connty, my collecting was done in Catawba Creek and its branches and ponds. This creek flows into the Tibbyhah, itself an afthent of the Tombigbee. South of this point, I next fished at Macon, in Noxubee Countr, on the Noxubee River. The river itself was too high to enter, and I had to content myself with working the ponds and Horsehunter Creek, which at this point flows into the Noxnbee.

At Narkecta, in Kemper County, I saw a few "Smufishes" taken from the Snamochee River, a tributary of the Tombighee.

At Enterprise, in Clarke Comnty, my collecting was done in the Chickasawha River and its beanches, near the town. I have in my tollection from that place 33 species. One species was canght with a hook from the same strean at Slmbuta, in the somth part of the same county. Firther sonth this river joins the Leaf, to form the Pascagonla, which flows into the Gulf.

1 have not in this paper attempted to discuss the geographieal distribution of the species obtained, as this I eonsider mseless until a much more complete survey of the State has been made. This I hope to be able to do at some future time. At the end of this paper I subjoin a list of the species oltainel at each of the localities that I have named.

Types of the new species described have been furnished the National Musem, as well as duplicates of most of the others. Duplicates of some of the new species have also been placed in Professor Jordan's collection. The remainder of the collection is the property of Butler Chiversity, at Indianapoolis, Indiana.

I take pleasure in acknowlenginğ mỵ indebtedness to Prof. D. S. Jordan for varions suggestions made in reference to the species herein mamed, as well as for general aid obtained from his mumerons papers on the fresli-water fishes of our country.

Family ETHEOSTOMATIDA.

Genus AmmoCRyPTA, Jordan.

1. Ammocrypta gelida, Hay, sp. nov. (No. 27,425, U. S. Nat. Mus.)

General form of the body that of P. pellucidus (Bd.) Ag.; terete, slender, and in life amost tmasparent. Head pointed. Month terminal, larger than in P. pellucidus, the maxillary bone extending back to a vertical from the anterior of the orbit.

Jaws armed with large, eurved teeth. Eyes h:gh up, 4 in the head, less than the length of the snout.

Cheeks and opereles naked. Opereular spine absent, the bone terminating behind in a thin and obtuse process.

Body almost naked ; abont three rows of peetinated scales along the lateral line, 65 scales in each row.

The rays of the median fins as follows: D. X, 11 ; A. I, 10 or 9. Dorsals separated. Length of spinous dorsal eight-ninths that of the head, and four-fifths as high as long. Soft dorsal three-fourths the length of the head, and two-thirds as high as long. Anal, in length, slightly less than soft dorsal, and a little less in height than in length.

Head in the length to base of candal 4; depth in length $7 \frac{1}{2}$.
Color of the body in spirits white; in life translucent, with a golden yellow band along each side. Head abore dusky, from being thickly sprinkled with black points. A few such points are seattered over the whole dorsal surface. Spinous dorsal with a black spot about half way up in front. Soft dorsal, aual, aud caudal slightly dusky. No spots along the sides or dorsal region.

Length to base of caudal $1 \frac{4}{\overline{6}}$ inches.
Found in the Chickasawha River at Enterprise. It seems to prefer a sandy bottom.

The description of this species seems to agree pretty well with that of Ammocripte beanii, published by Professor Jordan in Bulletin No. 10 of the United States National Musemm. Judging from his description, howerer, my species is slenderer and has a head comparatively shorter. A. bemii has depth in length 6 , head 3_{3}^{3}. The fin formula is also different, being in his species D. X, 10 ; A. I, 9. The coloration of the spinons dorsal is different. Nor do I observe that the sott dorsal and anal fins of my species are notably higher than they are in specimens of P. pellucillus.

To the generic characters given by Professor Jordan in his deseription of A. beunii I will add that of the complete absence of an opereular spine. This spine is wanting in no other Etheostomoid fishes known to me, althongh it is feebly developed in Microperca panctulata.

Genus PERCINA, Hahl.

2. Percina caprodes (Raf.) Grol. (No. 27, 424, U. S. Nat. Mus.)

A single specimen of the "Hog-fish", taken from the Chickasawha, has been sent me loy Mr. W. A. Wamer.

Genus Hadropterus, agassiz.

3. Hadropterus spillmani, Hay, sp nor. (No. .27, 43\%.)

Body elongated, compressed. Head in the length abont 4 times. Depth in the length, ewlusive of the candal inn, 5 times. Eye equal to snout, and one-fout the length of the head.

Lateral line with trom 56 to 60 scales, 6 rows above and 9 bow. A row of enlarged, non-decidnons, etenoid plates along the middle of the pelly. Cheeks and opereles scaled. The whole chest covered with small plates or scales.

The fin-rays as follows: D. XII, 12; A. II, 9. Spinons dorsal about nine-tenths as long as the head, and one-half as high as long; soft dorsal three-fifths as long as the head, and five-sisthe as high as long; anal equal in length to the soft dorsal, and about as high as long. Yentrals and pectorals reaching back about to the same point, two-thirds the distance from the base of the rentrals to the rent. Camdal fin traneated. Spinons and soft dorsals well separated.

The snont is rather pointed; mper jaw not protractile ; month morlerate, the maxillary reaching back to a vertical from the anterior of the orbit. Teeth on jaws, romer, and palatines. Month slightly oblique.

The general color is darkabove, reddish yellow below. The sides are (rossed byabont a dozen brown bands, which are broadest along the lateral line, where coalescing they form a dark horizontal band. This band becomes narrower and better defined on the head, and is continned along the mper edge of the operele and check, throngh the ese, to the tip of the shont. A narrow dark line runs downward and forward from the lower edge of the orbit. There are three well-defined spots at the base of the caudal fin.

The vertical fins are bloteded more or less with dusky colors; the rentrals are blnish black, while the pectorals are lighter.

The cheeks and the oceipital region are pale in color; the snout and interorbital space are bluish black.

Length, exchusive of candal fin, 3 inches.
This species is allied to H. nigrofesciatus, a description of which is given by Professor Jordan in the Am. N. Y. Lyec. Nat. Hist. 1877, 310. Judging from a comparison of my specimens with his description, I think that they evidently belong to a distinet species.

Several specimens of this handsome fish were canght with small hooks in a branch llowing into the Chickasawha at Enterpise. I dedicate it to 1 my friend lier. Willian Spillman, M. D., of Enterprise, who
has spent a long life in scientifie labors in the South, and who has thereby done much to increase on knowledge of the geology and natural history of his own and neighboring States.

Genus BOLEOSOMA, DeKay.

4. Boleosoma maculatum, Agassiz. (No. 27, 443.)
B. breripiune, Cope, Proc. Amer. Phil. Soc. 1870, 268.

A single specimen of a Boleosoma was obtained in Horsehunter Creek at Macon. An examination indicatess that it is B. maculatum, although it does not agree wholly with deseriptions of that species. It is much paler than specimens of that species obtainedoin the streams about Indianapolis. There are no dark bars on the back, and the spots nsmally found along the lateral line are not as conspicnous as common. The tiu formula is D. V III, 12 ; A. I, S. Lateral line 50.

I do not believe that the separation of B. olmstedi and B. maculatum as distinct species can be maintained. The characters most relied on in distinguishing them are the difference in length of the soft dorsal, the difference in the number of scales along the lateral hine, and the smoothness or scaliness of the cheeks. I have examined specimens in the State collection at Normal, [1l., labeled B. muculutum, that appear to combine these charaeters in all sorts of ways. Some have scaled cheeks, 55 vertical rows of seales, and dorsal tin-rays $\mathrm{N}, 1 \geq$. Another specimen noted has scaled cheeks, 48 rows of seales, and dorsal rays VIII, 11. Another has bare. cheeks, 53 scales, dorsal IX, 12. Another, bare cheeks, 46 scales, dorsal rays $I X, 13$. Specimens there labeled P. olmstedi seem to be in no way different.*

As to color, 1 have specimens from Western Illinois that are almost black, especially the head, the rertical and the ventral fins. These are males in their loreeding dress, but they appear to be unusually dark.

Genus NANOSTOMA, Putnam.

5. Nanostoma zonale (Cope) Jordan. (No. 27,417.)

P'ocilichthys zonulis, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 212. Tanostoma zonale, Jordan, Bull. U. S. Nat. Mus. No. 10, 6, 1877.
Two specimens of this beantiful species were seined in a shallow and sandy creek flowing into the Chickasawha River at Enterprise. They differ in no way from deseribed specimens, except that none of the transverse bands anterior to the anal fin pass around the lower part of the body. Eren in this respect they are like a specimen mentioned by Cope from the Miami River, in Indiana. The belly, throat, and spaces between the bars below the lateral line are, in spirits, pure white.

[^63]6. Nanostoma elegans, Hay, spo nov. (No. $2 \pi, 44 \%$.)

Body stont and somewhat compressed. Head short and deep, with swollen cheeks. The smont is tmmed abruptly downward. The month is subterminal, horizontal, and small, the maxillary not reaching back to the rertical from the anterior of the orbit. Upper jaw not protractile. Eye in the head 4 times.

Head in the length to (andal (as in all measmrements in this paper) 4 times; depth in length $\%$. Depth of candal peduncle twice in its length; this equal to three tenths of the length of the body.

The formula of the vertical finis is $10 . \lambda, 12 ; ~ I . I 1,8$. The spinons dorsal slighty longer than the head, and hall as high as lomg. Sott dorsal tive-sixths as long as the head, and two-thinds as high as long. Anal three-fourths the length of the head, and as high as long, the posterior rays being the longest.

The pectoral fins are very wide and long, reathing beyond the tips of the rentrals and to the vent. Candal din emarginate.

Cheeks, opercles, and hack of the neck sealy; the ehest and the region just behind the ventrals naked. Gill-membrane broadly comuected across the breast.

The general color of the body, after lying in spirits, is purple. Along the back are six large square blotehes of black, and along the sides abont eight broad transverse bars of the same color, but fainter; these least distinct formard. Alomg the lateral line, alternating with the transverse bars, we a mmber of spots, which, in the case of my largest specimen, are of a more intense color than the bars. These spots conneet the bars, and with them form a dark lateral band.

Besides these markings, many of the seales, both within and outside the dark hats, principally above the lateral line, but also below, have at their base a jetblack dot. These dots are so armanged as to form somewhat regular longitudinal limes. At the extremity of the caudal beduncle there is a small black spot just above the last transserse bar, and another below it. There are a few black spots bebinel the eye; a dark har ruming from the eye downward, and another fiom the eye forward to the snont.

Ventral and anal fins indigo-blue. Some of the same color on the pectorals. In life there is a har of deep orange or red ruming aloner the base of both dorsals. The tips of the rentral bays in some specimens, males perhaps, are swollen.

Length of longest sperimen 21 inches.
Taken in a shallow, rocky, and sandy branch of the Chickasawha River at Enterprise.

The small, subinferior month, little compressed body, and widely connected gill-membane ally this species to Nenostomu. The dorsal fins are separated as in Nothonotus.

7. Pœcilichthys artesiæ, Hay, sp. nov. (No. :27,434.)

In this species the body is more elongated than usnal, and considerably compressed. The head is large and contained in the length to candal fin 3_{4}^{3} times; depth in length σ times. Candal perluncle contained in the length of the body the ; its depth one-half its length.

Mouth large, the maxillary reaching to a vertical from the pupil, terminal, nearly horizontal; the lower jaw slightly shorter than the upper. Gill-membrane rather broadly connected across the breast.

The eye equal to the suont, and contained in the head 4? times. The cheeks are wholly covered with small scales, resembling in this respect P. usprigenis, Forbes, fíom Central Illinois. The opereles are covered with large seales. The scales on the region between the oceipnt and the dorsal fin are very small.

There are along the sides abont of rertical rows of scales, 8 horizontal rows above the lateral line and 11 below. The lateral line extends slightly behind the posterior end of the soft dorsal, being absent on about 10 or 12 seales. Just above the base of the pectoral tin, on each side, there is an enlarged black seale.

The two dorsals are contignous, the membrane of the tirst reaching the second. The fin-rays are, D. XI, 1: ; ג. II, 7. The leugth of the first dorsal, measured from the first to the last spine, equal to the length of the head; its height less than half its length. The sott dorsal sevenninths the length of the head; its height abont four-ifths its length. The amal is in length a little mone than one-halt the length of the head ; its height also one-half the bearl.

The pectoral and rentralofins rath barkward to the same point. The pectorals are moch smaller than in I '. coruleus (Stor.) Ag., reaching back only three-fifths the distance from their origin to the vent, while in that species they extend backward fom-fifthe this distance.

Color.-Sides yellowish olive, with indications of trumsverse and oblique bars of dark, and sprinkled with many small blotehes of carmine. Pectorals and rentrals dull blue. Dossals with a broad band of carmine faming along the midde, bordered on each side with orange. The tips of the dorsals dall blue, as is also the lase of the sott dorsal. Base of the spinous dorsal with several blotehes of carmine. Anal mostly (rimson, tipered with bhe. Candal first bhe, then orange, then earmine, followed by orange, and tipled with blue. The iris is yellow.

Lensth of the only specimen obtained 25 inches.
From a small branch flowing into the Catamba, itself tributary to the Tombiglees.

A brilliant little fish, attracting by its bright colors the eye at a clistance of many feet.

The palatine teeth of this species form a broat band, whereas in P. caruleus they are few in number and in a single row.
8. Pœcilichthys saxatilis, May, sp. nov. (No. 27,433.)

In my collection there is a single speeimen of another Pocilichthys that appears to be molescribed. It measures but 13 inches in length. The lateral line is incomplete, bnt extends as far back as the posterior rays of the soft dorsal, being found on 3 scales and not arched over the pectorals. There are abont 50 vertical rows of seales and 11 horizontal rows, 5 above the lateral line and $i ;$ below.

The opercula have a few large scales, but the cheeks are maked. The breast and throat are bare.

The dorsal and anal fin-rays are as follows: I). XI, 10; A. II, 7. The spinous dorsal equals the head in its length, and is one-hatf as high as long.

The soft dorsal is two-thirds as long as the head, and as high as long. The dorsals are separated hy a space equal to one-halt the heat. The anal, in height and length, is equal to nearly one-half the length of the head.

The head is contained 4 times in the length of the body, the depth π times, and the candal peduncle 32 times. The head is narrow and pointed; the profile descends in a gradnal emre. The month is horizontal, terminal, and large, the maxillary extending back to a vertical from the anterior edge of the pupil. The eye is equal to the snout, and is contained in the head 4 times. Upper jaw non-protractile.

In color the specimen in my possession rather resembles a Boleosome or a Bole ichthys than a typical I'xcilichthys. Above, the ground color is yellowish olive, below pale. On the dorsal region are abont six square brown spots. Along the sides there are abont eight somewhat W-shaped spots of the same color, between which and the dorsal blotehes are many specks ef brown arranged in zigzag lines. A black streak before the eve and another below it. Opercle mostly black. An enlarged black hinmeral scale on each sitle. All the tims, excent the anal, more or less barred with dusky.

Found at Enterprise in a rocky and sandy strean flowiug into the Chickasawha.

> Gents TAILIANTLA, Jordan.
9. Vaillantia chlorosoma, Hay, sp. now. (No. 27,40※)

Body slender, compressed, and the dorsal rewion much arched. It the vent the borly is suddenly rontracted into the long amd slender candal beduncle, which (measmed from the posterion anal ray to base of (andal fin) is eontained in the whole length of the body $: 3: 3$ to $3!2$ times, and has a depth one-thind its length. The head is small, pointed, and contaned in the lensth from $4 \frac{1}{2}$ to 43 times. Eye in the head 4. [1) per jaw protractile. Month horizontal, moderate, subinterior, the mper jat orerlapping the lower: The depth of the boty in its length from 5 to 5 ed times

There are from 50 to 60 rertical rows of seales, and about 12 horizontal rows between the soft dorsal and anal. The lateral line is fonnd on

496

PROCEEDINGS OE UNITED STATES NATIONAL MUSEUM.
from 4 to 20 or more of the scales. Cheeks and opercles scaled. Region in front of pectoral and rentral fins sometimes scaled and sometimes naked.

The fin-rays are, D. IX, $11(10)$; A. I, 7 or S. The dorsals are separated ly a distance equal to one-half the length of the head, or more. The spinous dorsal is five-sevenths as long as the head, and four-fifths as high as long. The soft dorsal has about the same dimensions. The anal is equal to one-half the head in length and height.

In color this species is of a pale greenish yellow, with many blotches and zigzag markings of brown. There is a row of about ten of these blotehes on each side, most distinet on the caudal pectuncles. Also there are about eight square brown spots along the dorsal region. Top of the head, a spot on the operenhm, and another below the eye, dark; a line of the same color, but more distinct, from the eye to the suout.

Length of the largest specimen $1 \frac{7}{8}$ inches.
This species appears to be widely distributed, as I ohtaned it at Corinth in is small stream that flows into the Tusembia, at Artesia in Sandy Greek, and at Macon in Horsehmiter Creek.

The characters of this species appear to agree in many respects with those of Boleosoma gracile, Girard, deseribed in the Proc. Aead. Nat. Sci. Phila. 1859, 103. Girard's specimens were from Southwest Texas. In B. gracilc, however, the spinons dorsal is described as being longer and lower than the soft dorsal, and the anal as being mnch deeper than long, which statements do not well apply to Boleichthys chlorosoma. I am also informed by Professor Jordan that the jaw of \mathcal{E}. gracile is nonprotractile.

The species that I have above described belongs to Professor Jordan's gemus Vaillantia (Bull. U. S. Nat. Mus. No. 12, 89), the type of which is Boleosoma camurum, Forbes. From that species it difters, among other things, in having the two dorsals widely separated. In B. cumurum they are contiguons.

Genus MICROPERCA, Putnam.

10. Microperca prceliaris, Hay, sp. nov. (No. 27,41\%.)

The species abont to be deseribed may possibly belong to the genus Boleichthys. I have but a single specimen, which has a total length of $1!$ inches. It was obtained at Corinth, and was at first supposed to be a specimen of T . chlorosoma.

The body is rather short and stout, the depth being contaned in the length a little more than 4 times. Behind the vent the body becomes coutracted into the caudal peduncle, whielt is compressed and contained in the length of the body :3 times. Its median lepth is one-third its length.

The head is contained in the length 4 times. The snout conical and pointed. The jaws are equal, the upper not protractile; the mouth
terminal, slightly oblique, and rather small. The maxillary reaches back to a vertical from the anterior of the orbit. The eye is small, 4 in head, and greater than the snont. Cheeks and opercles covered with large scales. Opereular spine well developed.

The scales of the body are large, there being only 36 vertical and 11 horizontal rows, the latter comnted between the dorsal and anterior of anal. The lateral line is found on but two seales anteriorly. Fin-rays, D. VIII, 11; A. I, 6. Anal II, 6, in a specimen of the same species from Alabama in the U. S. Nat. Mus. (fide Jordan). The two dorsals are well separated. Spinous dorsal two-thirds the length of the head, its height a little more than one-half the head. Soft dorsal with about the same dimensions. Anal spine slender and of moderate length. Length of anal 3 times in the head; its height twice its length. Pectorals and ventrals reaching nearly to the vent.

Color greenish olive, with many specks of brown. These brown specks somewhat in rows above the place for the lateral line. Abont ten oblong spots of brown along the sides, most distinct above the anal fin. Below, white. The nsual black streaks below and in front of the eye. Dorsal fins somewhat barred.

The general appearance of this little fish is that of a Boleichthys, but the very short lateral line, large scales, equal jaws, \&c., seem to ally it most closely to Microperca. From the latter it differs in having but a single anal spine and the beginnings of a lateral line. Since, however, this "lateral line" is found on the opercle of M. punctulatu, it would not be surprising if it should be sometimes, even in that species, found on one or two of the auterior scales.

Family Centrarciid x.

Genus Micropterus, Lacépède.

11. Micropterus palliđus (Raf.) Gill \& Jor. (No. 27,450.)

> Huro nigricans, DeKay, Fauna N. Y. Fishes, 1842, 15. Micropterus nigricans, Cope, Proc. Acad. Nat. Sci. Phila. 1855, 83. Dioplites nuccensis, Girarv, U. S. Pac. R. R. Surv. vol. x, 4. Micropterus pallidus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 314.

This species is abundant everywhere, and is esteemed as one of the best fond-fishes. It is called "Trout", instead of "Bass", as at the North.

The young are conspicnously marked by a dark, sometimes interrupted, lateral band. This is sometimes found also in the adults. There is often a small patch of feeble teeth on the tongue of both this species and M. salmoides.
Specimens were obtained in the Catawba at Artesia, and in the Chickasawha at Enterprise.

Genus ambloplites, Raf.

12. Ambloplites rupestris (Raf.) Gill. (No. 27,451.)
Centrarchus pectacanthus, Dekař, Fama N. Y. Fishes, 1842, 30.
Ambloplites aneus, Grrard, Pic. R. IR. Surv. vol. x, 8, pl. i.

A fine specimen of this species was taken in the Chickasawha at En. terprise. Another has since been sent me by Mr. Warner.

Genus CHANOBRYTTUS, Gill.

13. Chernobryttus gulosus (C. \& V.) Gill. (No. 27,459.)

Calliurus melenops, Giralid, Pac. R. R. Surv. vol. x, 11, pl, jii.
Chanobryttus gulosus, Cope, Proc. Acad. Nat. Sci. Phila. 1865, 84.-Jordan, Amals N. Y. Lyc. Nat. Hist. 1877, 361.
A single specimen of this was obtained at Enterprise. It has many of the characteristics assigued by Professor Jordan to Ch. viridis. This latter species is attrıbuted by him to the resion from Virginia to Florida.

In the specimen which I caught the coloration is quite dark, being a reddish brown. Most of the scales have a dark spot in the center. This spot, on a few of the scales along the sides, is quite conspicuous. The fins are dark in color, the soft dorsal, especially behind, being marked with spots. The base of the anal is also obsoletely spotted. Tips of soft dorsal and anal in life bright red. Lower jaw and snout livid blue. The specimen agrees well with Girarl's Calliurus melanops. I think it not unlikely that Ch. gulosus and viridis will turn ont to be varieties of the same species.

Genus APOMOTIS, Rafinesque.

14. Apomotis cyanellus (Raf.) Jortan. (No. 27,449.)

Calliurus formosus, Girard, I’ac. R. R. Surv. vol. x, 14, pl. v, figs. 1-4.
Apomotis cyanellus, Jondan, Bull. U. S. Geol. Surv. vol. iv, No. 2, 398.
I obtained specimens of this widely distributed species from Catawba Creek at Artesia, and from the Noxubee at Macon.

Genus LEPOMIS, Rafinesque.

15. Lepomis pallidus (Mitchill) Gill \& Jordan. (No. 27,4:7.)

F'omotis incisor, Dekay, Fanna N. Y. Fishes, 1842, 33.
Pomotis speciosus, Girard, Pac. R. R. Surv. vol. x, 23, pl. viii, figs. 5-8.
Lepiopomus pallidus, Jordan, BulI. U. S. Geol. Surv. vol. iv, No. 2, 397.
Lepiopomis incisor, Goode \& Bean, Proc. U. S. Nat. Mus. 1879, 139.
Numerous specimens of the above species were obtained in Catamba Creek at Artesia, Noxnbee River at Macon, aud in the Chickasawha at Enterprise.
16. Lepomis obscurus (Ag.) Jortan. (No. 27,458.)
l'omotis obscurus, Agassiz, Amer. Journ. Sci. and Arts, 1834, 302.
Lepiopomis obscurus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 317.
A fine example of this species, 6 inches long, was obtained with the hook from Sucarnochee Creek at Narkeeta, a station on the Mobile and Ohio Railroad.

This species is distinct from L. pallidus, although closely related to it. The color is much darker. Each scale has in its center a dark spot, longest up and down. The opercular flap is longer and more abruptiy formed than in L. pallidus. The opercular flap, measuring from where the scales cease, is equal to the dianeter of the eye, while in L. pullidus it is equal to only two-thirds the eye's diameter. The pectoral and rentral fins reach fully to the first anal spine.
17. Lepomis fallax (B. \& G.) Hay. (No. 27,456.)

> Pomotis fallax and convexifrons, B. \& G. Proc. Acal. Nat. Sci. Phila. 1854, 24. Pomotis fallax, Gmand, Pac. R. R. Surv. vol. x, 27, pl. ix, fig. 5.

While at Enterprise I obtained some small specimens of a Sunfish which belongs to Professor Jordan's genus Tenotis. I saw several adult specimens, but conld procure none from their captors, who took professional pride in their long "strings". My attention was especially attracted to this fish by its immense opercular flap. Since returning home, Mr. William A. Warner, of Enterprise, has kindly sent me additional material, and, among other things, a specimen of this fish, having a total length of 6 inches. After a careful study of this species my conclusion is that it is the Pomotis fallax of Baird and Girard, described from Northern Texas. The agreement with the description and figures given in the Pacific Railroad Surver Report is rery close indeed. Fig. 5 , pl. ix, gives a very good athough somewhat reduced representation of my largest specimen.

Xenotis solis, Gill \& Jor. (Bull. U. S. Nat. Mus. No. 10, 22), not Pomotis solis, C. \& V. (see Proc. U. S. Nat. Mus. 1879, 225), is a more elongate species, the greatest depth being contained $2 \frac{21}{3}$ times in.the length instead of 2 , as in my specimens. The eye of that species is contained in the flap $1 \frac{1}{2}$ times instead of 2 , as in this. The flap of that is contained $2 \frac{1}{2}$ times in the rest of the head instead of 2 times, as in this. In that there are "about 5 rows [of scales] above and 11 below" the lateral line; in this there is one more both abore and below.

From P. breviceps, B. \& G., it appears to differ in having a larger eye, a more anterior dorsal fin, and longer ventral fins; from X. megalotis, in that the body is not so heary anteriorly.

I cannot give a description of the colors in life, except that ther are brilliant. In spirits the body above is yellowish brown, the seales being dark-edged; fins dusks, narrow blue stripes on the cheeks; tlap jetblack, with a pale edge.

Professor Jordan informs me that he now regards L. fallax as simply a variety of L. megalotis. I have not had the opportmity to examine enongh material to enahle me to satisfy myself of the correctness of this conclusion. He also discards the genns Xenotes.

Genus Centrarcilus, Cuvier.

18, Centrarchus irideus (Lac.) C. \& V.
C. irideus, Jordan, Bull. U. S. Nat. Mus. No. 10, 31.

At Narkeeta, on the Mobile and Ohio Railroad, I saw a specimen of Centrarchus taken from the Sucarnochee River, but was not able to procure it. From an examination made at the time I regard it as being C. irideus. It appeared, however, to have some of the characters of C. macroptcrus ; there being, for instance, 8 anal spines instead of 7 , the usual number.*

Genus POMOXYS, Rafinesque.

19. Pomoxys nigromaculatus (Le S.) Girard. (No. 27,461.)

Centrarchus hexacanthus, DeKix, Fama N. Y. Fishes, vol. iv, 1842, 31.
Pomoxis nigromaculatus, Girard, Pac. R. R. Surv. vol. x, 6.
Numerous specimens of this were taken from Horsehunter Creek at Macon. Both this and the next are much sought after as food and to stock fish-ponds.
20. Pomoxys annularis, Rafinesquc. (No. 27,460.)

Pomoxis annularis and nitidus, Girard, Pac. R. R. Surv. vol. x, 6. Same locality as above.

Family ELASSOMATIDA.

Genus ELASSOMA, Jordan.

21. E!assoma zonatum, Jordan. (No. 27,452.)

Elassoma zonatum, Jordan, Bull. U. S. Nat. Mus. No. 10, 50; Bull. Ill. Lab. Nat. Hist. No. 2, 47.

Two specimens of this interesting species were secured in a pond along the Noxubee River at Macon. The largest was 15 inches in length, somewhat larger than the specimens hitherto found. After careful search I have been unable to find any evidences of the existence of vomerine teeth in this species. The fin-formula is, D. I; V, 10; A. III, $\overline{5}$ or 6 . The scales are very small and difficult to comt. As nearly as I could make out, there are 42 vertical rows and 18 or 20 horizontal rows between anal and dorsal. The pseudobranchiæ are obsolete.

[^64]
Family APHREDODERIDE.

Genus APHREDODERUS, Le Sueur.

22. Aphredoderus sayanus (Gillians) DeKay.

Aphredoderus sayamus, Dekay, Fama N. Y. Fishes, 35.
Aphododerus isolepsis (Nels.) Jondan, Bull. Ill. Lab. Nat. Hist. No. 2, 48.
Aphrodedirns cookiamus, Jordan, Proc. Acad. Nat. Sci. Phila. 18it, 60.
A single small specimen was obtained at Macon. All the names cited above belong to varieties of the same species. DeKay mentions that this species occurs at New Orleans.

Family CYPRINODONTID.

Genus ZYGONECTES, Agassiz.
23. Zygonectes notatus (Raf.) Jordan. (No. 27,444.)

Zygonectes notatus, Jordan, Bull. U. S. Nat. Mus. No. 9, 47.
Many fine specimens of this species were taken. I have them from Corinth, Artesia, Macon, and Enterprise. This and the succeeding species are seen almost everywhere, especially in quiet waters, swimming near the surface. One of my specimens from Enterprise is 3 inches long to the caudal, or a total of $3 \frac{1}{2}$ inches.
The color is translucent yellowish green above, silvery white below, with a broad, dentate, lateral band of black. There are fonr or five longitudinal rows of black dots above the lateral band, especially conspicuons in specimens from Enterprise. The fins are golden, the dorsal and caudal dotted with black.
24. Zygonectes melanops (Cope) Jordan. (No. 27,427.) Haplochilus melanops, Cope, Proc. Amer. Phil. Soc. 1870, 457. Zygonectes melanops, Jordan, Bull. ill. Lab. Nat. Hist. No. 2, 52.
Many of these little fishes were seined in the ponds and rivulets along Catawba Creek in the vicinity of Artesia, and in Horsehunter Creek near Macon. They correspond closely with Professor Cope's description cited above. This species appears to have a very wide distribution. It was originally described by Professor Cope from the Neuse River, in North Carolina. It was next discovered in Southern Illinois by Prof. S. A. Forbes, the accomplished superintendent of the Illinois State Laboratory of Natural History. I have now the pleasure of announcing. its ocemrence at points much farther south.

Family HYODONTIDE.

Genus HyODON, Le Sheur.
25. Hyodon selenops, Jordan \& Bean. (No. 27,455.)

Hyodon selenops, Johdan, Bull. U. S. Nat. Mus. No. 10, 6\%.
This beantiful species appears to be abundant in the Chickasawha River. At Enterprise, where I saw a number taken from the water
with hooks, they are called "Hickory Shad". They are not esteemed very highly as a means for gratifying the palate. This species is reported from the Tennessee and Cumberland Rivers.

Family CLUPEIDA.

Genus CLUPEA, Artedi.

26. Clupea chrysochloris (Raf.) Jor. (No. 27,453.)

Pomolobus chrysochloris, Rafinesque.
A single specimen of this species has been sent me by Mr. William A. Warner, of Enterprise.

Genus Dorosoma, Rafinesque.

27. Dorosoma cepedianum (LeS.) Gill. (No. $27,454$.)

Dorosoma cepediana, Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 69; subsp. heterarum, Bull. U. S. Nat. Mus. No. 10, 65.
Several specimens of this species were caught while seining a deep pond along the Noxubee River near Macon. I do not tind that the characters assigned by Professor Jordan to the variety heterurum exist in my specimens, unless it be that of the long filamentons ray of the dorsal fin. Even this distinction does not always hold gool. I find no particnar differences between my largest specimen, $8 \frac{1}{2}$ inches long, and a specimen of the same size from the Potomac.

Family CyPRINide.

Genus Hybornynchus, Agassiz.

28. Hyborhynchus notatus (Raf.) Ag. (No. 27,441.)

Hyborhymchus notatus, Core, Trans. Amer. Phil. Soc. 1869, 392.
A single specimen obtained at Corinth; many in the waters about Artesia and Macon. In their coloration some of the specimens that I obtained are different from any that I have seen from other localities and from any descriptions that have fallen under my eye. These peculiarities of color are observed only in the largest individuals, those $2 \frac{1}{2}$ inches in length. Some of these are quite brown, this color being produced by each scale having a black border. The head is blue-black, of varying degrees of intensity, being in some cases almost jet-black. There is a deep black band occupying the whole upper half of the dorsal fin. The greater part of the candal fin is also black, the base and tip only being light. There is sometimes a black spot near the tip of the posterior rays of the anal fin. In many of these dark colored specimens the dark lateral band usually seen in this species is either obsolete or indistinct. These highly colored individuals are, no doubt, males in their wedding suits of black. The other party does not dress so gorgeonsly.

Gents HYBOGNATHUS, Agassiz.

29. Hybognathus argyritis, Girard. (No. 27,431.)

Hybognathes argyritis, Girand, Pac. R. R. Surv. vol. x, 235 ; Proc. Acad. Nat. Sci. Phila. 1856, 182.
Specimens of this species were seined in Horsehmer Creek at Macon, and in the Chickasawha River at Enterprise. Some of these have a total length of $4 \frac{1}{2}$ inches.

Genus ALBURNOPS, Girard.

30. Alburnops taurocephalus, Hay, sp. nov. (No. 27,439.)

This very interesting species resembles much Hyborhynchus notatus, and therefore recalls strongly Professor Cope's description of Hybopsis tuditanus, from Northern Indiana. (See Trans. Amer. Phil. Soc. 1869,381.) It is a true Hybopsis, or Alburnops, as indicated by the short alimentary canal and the close mion of the spinous dorsal ray to the first soft dorsal. The teeth are 4-4, hooked, compressed, and provided with a masticatory surface.

The body is stont, somewhat compressed, broad and flat above, with a deep and angulated caudal peduncle. The latter is contained in the body abont $3 \frac{2}{3}$ times. Its depth is one-half its length. The heal is broad and flat above, and at the temporal region forms an angle with the cheeks. The breadth of the head behind the eyes is equal to the distance from the muzzle to the back of the orbit, and nearly two-thirds the length of the head. The muzzle is broad and obtuse; but not so truncate as that of Hyborhynchus notatus, since the profile rounds gradnalle into the suout.

The mouth is rather small, horizontal, and derminal ; the jaws about equal, the upper heavy. The maxillary hardly raches a perpendicular from the anterior margin of the orbit. Eye large, 32 in the head. Head in the length, exchnsive of the candal, $4 \frac{1}{2}$ times. Depth about equal to the length of the head.

Dorsal I, 8; A. I, 7. The dorsal begins above the ventrals, is longer than high, and has on the anterior rass, rather below the middle, a black spot. This fin commences nearer the snout than the candal. The anal is small.

The seales along the lateral line are rather large and silvery ; the formula is $8-43-4$. The seales in front of the dorsal fin are small, especially on the nape.

In color this species is pale yellow, with a dusky tinge given it by mumerons black punctulations on each seale. The sides are silvery, as are also the cheeks and opercles. There is an obsolete dusky band aloug the lateral line, terminating at the base of the caudal in a small lont distinet black spot. The top of the head and snout brown.

Length of the largest specimen 3 inches, exclusive of candal.

From the Chickasawha at Enterprise. Caught for bait for larger fishes, and called "Bull Heads".

While this species must resemble II. tuditanus, it evidently is distinct from it. The dorsal fin of that species is said to be markedly nearer to t'le candal than to the end of the muzzle, while the contrary is true in my species. If the horizontal rows of seales have been counted correctly, and in the same way in both species, there is one more row above the lateral line in mine than in Professor Cope's species. The mouth in II. tuditanus is said to be very small and inferior, as in Hyborhynchus notatns. The latter feature certainly does not belong to the present species.
31. Alburnops longirostris, Hay, sp. nov. (No. 27,440.)

The general appearance of this species is much like that of small specimens of Ericymba buccata.
Head rather small, contained in the body 42 times. Eye small, being contained in the head 4 times; not equaling the snout, which is onethird the length of the head. The upper jaw is rounded and much overlaps the lower jaw. The mouth, therefore, inferior, rather large, horizontal. The maxillary attains a vertical from the anterior of the orbit. Teeth 4-4, hooked, and having a triturating surface.

Lateral line somewhat decurved. Scales large, there being 36 along the lateral line, 4 horizontal rows above, and only 3 below. About 12 large seales in front of the dorsal. Depth in length $4 \frac{3}{4}$ to 5 .

Origin of the dorsal fin midway between the tip of the snont and the base of the candal and directly over the insertion of the ventrals. Rays of dorsal I, s; aual I, 7. Dorsal nearly twice as high anteriorly as loug; anal short and low. Candal deeply forked, nearly one-fourth the length of the body. Pectorals far from reaching the rentrals; these extending fully to the reut.

Candal peduncle in body 33_{4} times; its greatest width nearly one-half its length.

This tish is of a pale straw color, slightly dusky from the brown edges of the scales. There is a very narrow, dark dorsal line; also an obsolete lateral band just below the lateral line. Top of the head brown; the vertical fins dusky.

Length of the largest specimen 2 inches. Seined in considerable numbers at Enterprise. The females teem with eggs.
32. Alburnops zænocep'aalus, Jor. (No. 27,435.)

Hybopsis xemocephalus, Jordan, Annals N. Y. Lyc. Nat. Hist. 187\%, 335. Alburnops xenocephalus, Jordan, Bull. U. S. Geol. Surv., vol. iv, No. 2, 420
Several specimens of a dark-colored minnow were seined at Enterprise the resemblance of which to H. xcenocephalus is so close that I have referred them to that species, so well deseribed by Professor Jordan in his "Fishes of Upper Georgia". There are some differences, however, that I have thought worthy of mention.

The body in my specimens is deeper, the depth being contained in the length but $4 \frac{1}{2}$ times or less. The back does not seem to bo so broad nor the caudal peduncle so decp. The dark band that oceurs on the caudal peduncle of typical specimens from Georgia is, in these from Mississippi, continned forward along the side to the snout; being, however, slightly broader and less perfectly defined anterionly.
I do not, however, think that the differences form sufficient grounds for establishing a new species. My largest specimens have a total length of 3 inches.
Professor Jordan's specimens were obtained in the upper tributaries of the Alabama River.

Genus HEMITREMIA, Cope。

33. EXemitremia maculata, Hay, sp. nov. (No. $27,438$.)

Body long and slender, slightly elevated at the dorsal, somewhat compressed. Depth in the length 5 times. Head flattened above; snout, looked at from above, obtuse. Mouth small, the maxillary falling cousiderably short of the anterior border of the orbit, terminal, slightly oblique. Teeth 4-4, with grinding surace.

Head in the length 4! times. Eye in head $3 \frac{1}{2}$, about equal to the snout.

The fin-rays are, D. I, 8; A. I, S. The dorsal begins slightly behind the ventrals. Its length three-fifths, its height four-fifths, of the head. Anal, in length, one-half, in height two-thirds, the head. Caudal peduncle one-fourth the length of the body. Dorsal situated nearer to the suout than to base of edudal.

The pores of the lateral line are found on but 8 or 10 scales, anteriorly. Scales 5-35-3.

This fish is of a straw-color above, with the seales brown edged. There is a faint, narrow dorsal band, aud another narrow, dark line runuing from the rent on each side of the anal fin to the base of the caudal. A leaden band rums along the sides, which is rendered dusky by numerons black punctulations on the seales within this band. Besides these miuute punctulations there is on each scale along the center of the band a pair of larger black points. Posteriorly the lateral band ends in a black spot nearly as large as the eye. Snout and top of the head dusky.

A single specimen, $2 \frac{1}{2}$ inches long, and a few young, were obtained at Enterprise.

Three other species of Hemitremia are recorded. II. vittata, Cope, has teeth $4-5$, with a black lateral band, and other paler ones above this. II. heterodon and II. bifrenatu, described by the same author, both have teeth 4-4. They both appear to be less elongated species than the one deseribed above, and neither are mentioned as having the conspicuons caudal spot of $I I$. maculutu, which is exhibited in all the specimens that I secured. In II. heterodon the "lateral line is posteriorly imperfect". In H. bifrencta there are 12-13 rows of seales in front of dorsal, and
there are 7 rays in the anal fin. In In. macnlata there are about 16 scales in front of the dorsal, and the anal rays are I, 8.

This species will come under Professor Jordan's genus Chriope. (Bull. U. S. Geol. Surv. vol. iv, No. 4, 787.)

Genus LUNiLUS, Rafinesque.

34. Luxilus cornutus (Mitch.) Raf.

Hypsilepis cornutus, Cope, Trans. Amer. Phil. Soc. 1869, 372.
Three specimens of the young of this widely diffused species were obtained at Corinth, and many others at Enterprise.
35. Luxilus chickasavensis, Hay, sp. nov. (No. 27,419.)

This species closely resembles Codoma stigmatura, Jordan, from the Alabama River, originally described as Photogenis stigmaturus. (Annals N. Y. Lye. Nat. Hist. 1877, 337.) If Codoma is to be regarded a valid genus, and if Ph.stigmaturus belongs to that genms, then the present species will be Codoma chichasavensis. I do not, however, believe that there is sufficient grounds for putting Photogenis stigmaturus and Luxilus analostanus into different genera. So far as I can determine with the aid of a good microscope, the masticatory surface as truly exists on the teeth of Ph. stegmaturus as on those of Lux. analostanus. Sometimes in the former species one edge is serrated; and in some species of Codoma, as this genus is limited by Professor Jordan, occasionally both boundaries of the concave surface are serrated. I hope, at no distant period, to be able to discuss this subject still further. For the present I adopt the name Luxilus for both this species aud Luxilus analostanus (Grid.) Jor.

In a close comparison of the present species with Codoma stigmatwra, I find the following differences to exist: There are fewer scales along the lateral line, 38 to 40 instead of 45 . The eye is also considerably larger, being contained in the head $3 \frac{1}{2}$ times instead of $4 \frac{1}{2}$, and about equal to the suout. The candal spot is as intensely black as in C. stigmutura, but considerably smaller. It is about as large as the eye, sometimes smaller; whereas in that species it is nearly always larger, being in length " usually about one-thirl of the head". In this species it is abont one-fourth of the head. Neither does it extend so far on the rays of the cundal fin!. The form of the head and body, and the position and size of the fins, are apparently the same as in C. stigmatura, unless it be that the body is a little deeper, the depth being contained in the length from 4 to $4 \frac{1}{4}$ times.
The black spot on the posterior rays of the dorsal fin is obsolete or wanting, while there is a narrow dark line running up on one or two of the anterior dorsal rays.

There are, on the heads of a few of my specimens, some evidences of the existence of tubercles.

This species appears to be quite abmudant in the Chickasawha at Enterprise. The largest iudividuals obtained have a total length of 4 inches.

Genus ERICYMBA, Cope.

36. Ericymba buccata, Cope. (No. $27,421$.)

Ericymba buccata, Cope, Proc. Acad. Nat. Sci. Phila. 1865, 87 ; Trans. Amer. Phil. Soc. 1869, 361.
Several individuals of this species were seined in the Chickasawha River at Enterprise. Its geographical distribntion is stated by Professor Jordan, in his "Catalogue of the Fresh Water Fishes of North America" (Bull. U. S. Geol. Surv. vol. iv, No. 2), to be from Pemusylvania to Illinois. Judging from the numbers taken at Enterprise, the species is quite as common in the Sonth as farther north. Some of the specimens takeu were 3 inches long, exclusive of the caudal.

Genus Opsopeodd

Body fusiform, moderately elongated, slightly compressed. Mouth very small, very oblique, peculiar. Teeth raptorial, with a well-develloped masticatory surface, both bonnding edges of which are conspicnonsly serrated, standing in a single row of $5-5$ on a prominent process of the pharyngeals. Dorsal somerrhat behind the anterior line of the ventrals. Barbels none. Lateral line complete. Intestine short. Anal fin short.

This gemus is apparently related to Myloleucus, Cope, and it is possible that the species that I describe below will have to be put under that gemas. For the present, however, I think that the peculiar form of the month and the teeth, as well as the general organization of the animal, will serve to separate it from Mylolencus. The name is given in allusion to the thoronghness with which the food is prepared by the numerous serrated pharyngeal teeth.
37. Opsopœodus emiliæ, Hay, sp. nov. (No. 27.429.)

Form of the body as given above. Depth in the length $4 \frac{1}{3}$ times. Head in the length $4 \frac{1}{2}$. Muzzle blunt and rounded. Month very small, very oblique, the lower jaw in the closed month fitting within the upper. In this case the cleft is nearly vertical. The length of the mandible equal to the distance from the tip of the snont to the anterior margin of the orbit; while in Notemigomus chrysoleucus, which has a small month, the mandible reaches to the middle of the pupil. Eye greater than the snont, 3 in the head.

Dorsal and anal fin-rays as follows: D. I, 9 ; A. I, 8. Dorsal beginning over the posterior rays of the rentrals, nearer the snout than to the base of the caudal ; length two-thirds the head; its height equal to the length of the head. The anal fin in its length one-half the head; its height a little less than the length of the head.

Pectorals not reaching the ventrals; the latter attaining the anal. The caudal is furcated for more than one-half its length. Caudal peduncle slender, $3 \frac{1}{2}$ times in the leugth of the body.

Seales in very regular rows, anteriorly somewhat higher than long; the rows 5 or 6-40-3.
Color in spirits pale yellow above, sides silvery, and golden yellow below. Above and on the caudal peduncle the stales with a narrow dusky edge, giving these parts of the body a regularly eheckered appearance. A dusky band runs along the lateral line, back on the rays of the caudal, and forward over the opercle, through the eye, to the snout. Sometimes this band is almost black. Just above this band are two or three longitudinal rows of black dots, one of which dots is located at the tip of each seale. Below the lateral line is another similar row of dots. There is also a row of black points along the lateral line. The anterior rays of the dorsal fin are largely black, and there is also a black spot on the posterior rays.

This is an elegant and rery interesting species. "Its oblique mouth and rounded muzzle give it a peculiar appearance. It appears to be widely distributed through the State. I have one speeimen from Artesia, several from Macon, and one from Enterprise.

Genus Minnilus, Rafinesque.

38. Minnilus dilectus (Girard) C. \& J.

Miumilus dilectus, Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 80.
Albarmus dilectus, Girard, Proc. Acad. Nat. Sci. Phila. 1856, 193.
Alburuellus dilectus, Giraisd, Pac. R. R. Surv. vol. x, 259.
Notropis athermoides, Jordan, Bull. Ill. Lab. Nat. Hist. No. 2, 60 ; Bull. U. S. Geol. Surv. vol. iv, No. 2, 422.
A single specimen of a Minnilus, or Alburnellus, answering well enough to Girard's description cited above, was obtained at Enterprise.

Subgenus Lythrurus, Jordan.
39. Minnilus punctulatus, Hay, sp. nov. (No. 27,430.)

Body short, deep, and compressed. The back elevated in front of the dorsal. Depth in the length $4 \frac{1}{3}$. The head is short and deep, $4 \frac{2}{3}$ in the length. The profile is straight, or even a little coneave; the snout pointed. Mouth large and quite oblique; the lower jaw longer than the upper. The maxillary reaehes back to a perpendicular from the anterior rim of the orbit.

The eye is of medium size, being contained in the length of the side of the head $3 \frac{1}{2}$ times.

The seales are very small. There are 10 to 12 horizontal rows above the lateral line, and 3 below it; 48 to 50 seales along the lateral line, and 25 or more in front of the dorsal. The lateral line is much decurved above the ventrals.

Teeth, $2,4-4,2$, usually with an evident triturating surface.

Fin-rays as follows: D. I, 8; A. I, 10-11. Dorsal begiming midway between the muzzle and the base of the candal; its length one-half, its height two thirds, the head. Anal in length three-fifths, in height fourfifths, the head. Camdal peduncle compressed, and contained in the length of the body $4 \frac{1}{2}$ times.

The body is of a straw-color above, silvery along the sides and below. The scales abore the lateral line are dark-edged from a succession of black dots, which are large enough to be seen by the unaided eye. A dark dorsal line of similar, but a little larger, black points. Along the sides anteriorly are a few such dots; posteriorly they inerease so much that on the candal peduncle they form a dark band. The head, and especially the snout, are sprinkled with similar dots. There is a black spot at the base of the dorsal fin anteriorly. Opereles silvery. Size of largest specimens 2 inches. Corinth.

This minnow resembles somewhat Notropis lirus, Jord., but is a less slender species, has a smaller eye, and has not the conspicuous band of metallic blue of that species. Notropis matutinus (Cope) Jord., also appears to be a much slenderer species, the depth being contained in the length 6 times. Also there are said to be but 7 rows of scales above the lateral line.
I do not think that there are sufficient differences in the teeth of the species of Notropis, or Minnilus, and those of Lythrurus to justify the separation of these species into two genera. If there is such difference, Notropis lirus onght to be written Lythrurus lirus, for the masticatury surfaces of its teeth are as plain, to me at least, as in L. diplemius.
40. Minnilus rubripinnis, Hay, sp. nov. (No. 27,4:0.)

Body long and slender, somewhat compressed, the depth in the length $4 \frac{2}{3}$ times. Head arched transversely above; muzzle very pointed. Mouth oblique, large; the lower jaw slightly longer than the upper; the maxillary reaching to a vertical from the front of the eye. The eye is large, being contained in the length of the side of the head 3 times, and its diameter slightly greater than the snout. Head contained in the length $4 \frac{1}{2}$ times.

Scales small, especially in front of the dorsal fin, somewhat higher than long, but.not so densely imbricated as in the next species. Rows of scales represented by the formula 7 to $9-45 \pm-3$. Lateral line much decurred anteriorly.

The dorsal is sitnated far back, midway between the pupil of the eye and the base of the caudal, and considerably posterior to the ventrals; its rays, I, 8 ; its length one-half the head, its height three-fourths. The anal is long, being three-fourths the length of the head, height onelalf the head; its rays, I, 12.

The pectorals do not reach the ventrals; the latter attain the vent.
The coloration of this species is dark in spirits, all the seales above the lateral line being covered with black points. Along the sides is a
broad leaden band, which narrows behind on the caudal peduncle and becomes a dusky band, ending in an ill-defined candal spot. There is a narrow dorsal band. The top of the head and snout, as well as the lower jaw, are dusky. The belly is pale.

The dorsal and caudal are red, with more or less dusky. There is no dark spot at the base of the dorsal, as in some speeies of Lythrurus; but there is a distinct black spot on the upper part of the anterior rays of the dorsal. There is a similar black spot at the distal ends of the anterior anal rays. The anterior rays of the pectorals are dusky.
Large numbers of this species were collected at Enterprise. The largest specimens have a total length of $2 \frac{1}{4}$ inches.
41. Minnilus bellus, Hay, sp. nov. (No. 27,426.)

Adults of this species resemble much the young individuals of Notemigonus chrysoleucus.

The body is short, deep, and considerably compressed. The dorsal region is elevated. Depth contained in the length about $3 \frac{3}{4}$ times. Head short, in length of body from 4 to $4 \frac{1}{3}$ times. Muzzle short, rather pointed; the profile in adults concare; mouth quite oblique, large, the maxillary reaching back to the anterior rim of the orbit; the lower jaw rather longer than the upper. The eye moderate, $3 \frac{1}{2}$ in the head.

The lateral line is much decurved anteriorly. Scales 7 or $8-40$ to $42-3$, crowded forward, higher than long, about 25 in front of the dorsal. Teeth 2, 4-4, 2, "sharp-edged", but with a "masticatory surface".

Fin-rays, D. I, 8 ; A. I, 10-11. Dorsal situated midway between the tip of the snout and the origin of the caudal, wholly posterior to the rentrals, nearly twice as high as long, its length being contained in the head $1 \frac{2}{3}$ times. Anal contained in the head $1 \frac{1}{2}$ times, a little highèr than long, ventrals reaching the vent, the pectorals not extending to the ventrals. Caudal peduncle very little longer than the head, and rather slender.

Color (in spirits) somewhat dusky above, with a narrow, dark dorsal line; sides silvery, with a dull, leaden line along the caudal peduncle. Occasionally, in some of the most highly colored specimens, a few scales on the side are widely margined with black, so that the sides appear splotehed. The lower part of the body is in life almost flame-color. All the fins orange, at least at their bases. At least the tips of the dorsal, ventral, and caudal jet-black. No spot at the base of dorsal. In some adults the whole dorsal has black pigment mingled with the orange, besides having the rays tipped with black, and the distal half of the ventrals and anal black. Very few specimens are without the black tips to the fins, so that this becomes a distinctive character. Eridences of the existence of tubercles were observed on the heads of a few specimens.

Thirty-six individuals were captured at Artesia and four at Macon. Length from 2 to ≥ 3 inches.
This species must be closely allied to Lythrurus atripes, Jordan, found by Prof. S. A. Forbes in Southern Illinois. The differences are, however, sufficiently evident. The larger eye, shorter head, fewer scales along the lateral line, and the fewer soft rays in the dorsal fin will distinguish my species from that. The peenliar coloration of the fins and the lack of the dorsal spot will furnish the most obvions differences.

This species illustrates well the little value of the character most relied on for separating the Lythruri as a genus from the species of Mimnilus. While the external characters are all, or nearly all, those of a typical Lythrurus, the teeth are decidedly "sharp-edged", as that term must be defined in order to be applicable to other species with "sharpedged" teeth.

Under the subgenus Lythrurus I would arrange the following species. There may be others that ought to be included:
Minnilus diplamius (Răf.) Hay.-Cope, Proc. Acad. Nat. Sci. Phila. 1867, 162. Pemnsylvania to Illinois.
M. cyanocephalus (Copeland) Пay.—Jordan, Proc. Acad. Nat. Sci. Plila. 1877, 70. Miehigan to Minnesota.
M. atripes (Jord.) Hay.-Jordan, Bull. Ill. Lab. Nat. Hist. No. 2, 50. Southern Illinois.
M. rubripinnis, Hay.-Mississippi.
M. ardens (Cope) Hay.-Cope, Proc. Acad. Nat. Sci. Phila. 186i, 163.

Virginia and North Carolina to Kentucky.
M. bellus, Дay-Mississippi.
M. lirus, Jordan.-Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 342.
M. punctulatus, Hay.-Mississipri.

As an aid to the identification of the species given abore, I insert the following analytical table:
I. Elongated species ; depth in length $4 \frac{1}{2}$ or more times.

1. Color pale, with a lateral metallic blue band
M. lirus.
2. Colors conspicuous-steel-blue, red, and purplish.
a. A black spot at the base of the dorsal ; first ray of dorsal opposite the ventrals; A. I, 11
M. Ardens.
b. A black spot at the tips of the anterior dorsal rays; first dorsal ray behind the ventrals; A. I, 12 \qquad M. RUBMIPLNNIS.
II. Deep and compressed species; depth $4 \frac{1}{3}$ times or less in the leugth.
3. Species with a distinet black spot at the base of dorsal.
a. Species with conspicuous hues; the dorsal surface dusky ; sides and funs with more or less crimson.

* Eye small, 4 in heal ; depth $3 \frac{1}{8}$ in length; D. I, 7 ; A. I, $11 \ldots$. . M. Atripes.
** Eye in head $3 \frac{1}{3}$; depth in length 3 年; D. I, 9 ; A. I, 11........ M. diplemits.
*** Eye in heal 37 ; depth in length 4 ; D. I, B; A. I, 11 or 12. M. cravocephalus.
b. Color pale; scales coarsely punctulated, small, 10 to $12-48$ to $50-3$; spot small.

1. penctelates.
2. No distiact spot at the base of the dorsal; fins tipped with black...... M. bellus.

Genus NOTEMIGONUS, Rafinesque.

42. Notemigonus chrysoleucus (Mitch.) Jor. (No. 27,423.)

Stilbe amcricana, Cope, Trans. Amer. Phil. Soc. 1869, 389.
Notemigomus chrysoleucus, Jordan, Bull. U. S. Nat. Mus. No. 2, 404 (Synonomy).
Specimens of this fish were obtained at Corinth, Artesia, and Macon.

> Genus SEMOTILUS, Rafinesque.

43 Semotilus corporalis (Miteh.) Put.
Semotilus corporalis, Cope, Trans. Amer. Phil. Soc. 1869, 363.
A single young specimen was seined fiom the ponds along Catawba Creek at Artesia.

Genus CERATICHTHYs, Baird.
44. ©eratichthys biguttatus (Kirt.) Bd. (No. 27,422.)

Ceratichthys biguttatus, Cope, Trans. Amer. Phil. Soc. 1869, 366.
A few immature individuals from the Chickasawha River at Enterprise.
45. Ceratichthys amblops (Raf.) C. \& J. (No. 27,436.)

Ceratichthys amblops, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 328.
An individual of this species, having a total length of five inches, and differing in no important respect from a specimen of the same size canght in Indiana, has been sent to me by Mr. Warner.
46. Ceratichthys winchelli (Grd.) Jor.

Hybopsis winchelli, Girard, Proc. Acad. Nat. Sci. Phila. 1856, 211.
Ceratichthys hyalinus, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 226.
Nocomis winchelli, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 330.
A single specimen of a fish answering well enough to the descriptions of this species was obtained at Enterprise. It is probably but a variety of C. amblops.

The dark lateral band is very decided the whole length of the body. It is continued from the front of the eye around the snout, and is here quite black.

Family CATOSTOMid e.

Gents MOXOSTOMA, Rafinesque.

47. Moxostoma macrolepidotum (Le Sueur) Jordan, var. duquesnii.

Catostomus duquesnii, DfRay, Fanna N. Y. Fishes, 203.
Teretulus duquesnii, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 236.
Ptychostomus duquesuii, Core, Proc. Amer. Pliil. Soc. 1870, 476.
Myxostoma macrolepidotum, subsp. duquesnii, Jordan, Bull. U. S. Nat. Mus. No. 12, 120.
Several individuals of the widely spread "Red Horse" were obtained at Enterprise.
48. Moxostoma pøœcilurum, Jordan. (No. 27,463.)

One specimen from Enterprise.

Genus ERimyZON, Jordan.

49. Erimyzon sucetta (Lac.) Jordan. (No. 27,418.)

Catostomus sucetta, DeKay, Fama N. Y. Fishes, 203.
Moxostoma clutiformis, Gimaris, Pac. R. R. Surv, vol. x, 219.
Erimyzon sucetta, Joridan, Bull. U. S. Nat. Mus. No. 1:2, 144.
A specimen of this species, a female, was obtained at Corinth. Another female was canght in a shallow branch of Catawba Creek whilst depositing her spawn, in company with the male. Another very young specimen was seined at Macon.

Genus Catostomus, Le Snemr.

50. Catostomus nigricans, Le Sueur. (No. 27,44~.)

Hypentelium nigricans, Jordan, Bull. U. S. Nat. Mus. No. 9, 34.
Catostomus migricans, Jomdan, Bull. U. S. Nat. Mus. No. 10, 16\%.
One specimen from Enterprise.

Family SILURIDE.

Genus ICTALURUS, Rafinesque.

51. Ictalurus punctatus (Raf.) Jordan. (No. 27,448.)

Ietalurus corulescens, Cope, Proc. Amer. Phil. Soc. 1870, 489.
Pimolodus olicaceus, Ghenris, Pac. R. R. Surv. mol. x, 211.
Iclethelurus punetatus, Jordin, Bull. U. S. Nat. Mus. No. 10, 76.
I obtained specimens of this Ciatfish from the Noxubee River at Macon; others have since been sent me from Enterprise, on the Chickasawha, by Mr. Warner:

Genus A MiUlius, Rafinesque.
52. Amiurus vulgaris (Thomp.) Nelson. (No, 27, 437.)

Pimolodus ailurus, Girard, Pac. R. R. Surv. vol x, 210.
Amiurus valguris subsp. celurus, Johdan, Bull. IT. S. Nat. Mus. No. 10, 88.
Two Catfishes were purchased from a young negro, who had caught them in Saud Creek near Artesia. One of these, having a total length of 10 inches, I identify as above. It is, I have no donbt, Girard's l '. aiturus, and if this is, as Professor Jordan in his "Synopsis of the Fresh Water Siluridte of the United States "affims, identical with Thompson's P. culyaris, the latter name will be the proper one to employ:-

The discovery of this specimen reveals a much greater range sonthward in this species than was previously suspected. Hitherto it has not been known to oceur further sonth than Saint Lonis, and has been supposed to be peculiar to our northern lakes and ricers.

The other Catfish purchased was-
53. Amiurus melas (Raf.) Jord. \& Copeland. (No. 27,469.)

Amiurus melas, Jordan, Bnll. U. S. Nat. Mns. No. 10, 89.
One specimen from Sand Creek, Artesia, and two from Noxnbee River at Macon.

Proc. Nat. Mus. 80-_ 33
Feb. 16, 1881.

Genus PILODICTIS, Rafinesque.

54. Pilodictis olivaris (Raf.) Gill. \& Jor.

Mopladelus oliraris, Gill, Proc. Bost. Soc. Nat. Hist. 1862, 45.-Cope, Journ. Acad. Nat. Sci. Phila. 1869, 23\%.
Pelodiclutlys olivaris, Jordan, Bull. U. S. Nat. Mus. No. 10, 95.
The skin of a fine specimen of this species was obtained at Shubuta, the fish having been looked from a branch of the Chickasawha.

Genus noturus, Rafinesque.

55. Noturus leptacanthus? Jordan. (No. 27,442.)

Noturns leptacanthus, Jordan, Annals N. Y. Lyc. Nat. Hist. 18i7, 352; Bull. U. S. Nat. Mus. No. 10, 102.

I have in my collection a specimen of a Noturus which agrees pretty well with the descriptions given by Professor Jordan of his N. leptacanthus, as above cited. There are, however, some important differences which I am not able to account for satisfactorily. My specimen is not quite 2 inches long to the base of the candal, and is, therefore, most probably a young one. Hence, the differences noted below may be due either to its being immature or to its being a different species. It seems that Professor Jordan kuew of but a single specimen, and therefore his description may not be applicable to every individual belonging to the species.*

The head is small and narrow, widening gradually from the narrow snont to the shoulders; the lateral ontlines of the head, therefore, straight; its length $4 \frac{1}{5}$ times in the body. Upper jaw projecting, spincs rather long and slender, instead of being short as in the type, the peetoral spine being one half the length of the head. The color is quite dark.
In other respects the characters assigned by Professor Jordan to his species apply reasonably well to my specimen. I think, therefore, that until more material is collected it will be better to assign the specimen as above.

Collected at Enterprise.
56. Noturus gyrinus (Mitehill) Raf.

Noturus gyrinus, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 237.—Jordax, Bull. U. S. Nat. Mus. No. 10, 102.

Another Noturus, 2 inches long, collected at Macon, belongs to the above species.

I append the following list of species collected at each of the localities wisited :

1. Coninth. Water flowing toward the Mississippi.
2. Vaillantia ehlorosoma.
3. Microperea proliaris.
4. Zygonectes notatus.
5. Hyborhynchus notatus.
6. Luxilus cormutns.
7. Minnilns punctulatus.
8. Notemigouns chrysolcucus.
9. Erimyzon sucetta.

[^65]2. Artesia. Catawba Creek, into Tombigbee.

1. Pæcilichthys artesiæ.
2. Vaillantia chlorosoma.
3. Micropterus pallidus.
4. Apomotis cyanellus.
5. Lepomis pallidus.
6. Zygonectes melanops.
7. Zygonectes notatus.
8. Hyborhynchus notatus.
9. Opsopœodus emilix.
10. Minnilus bellus.
11. Semotilus corporalis.
12. Notemigonus chrysoleucus.
13. Erimyzon sucetta.
14. Amiurus vulgaris.
15. Amiurus melas.
16. Macon. Noxubee River, into Tombigbee.
17. Boleosoma maculatum.
18. Vaillantia chlorosoma.
19. Apomotis cyanellus.
20. Lepomis pallidus.
21. Pomoxys nigromacnlatus.
22. Pomoxys ammuris.
23. Elassoma zonatum.
24. Aphredoderus sayauus.
25. Zygonectes melanops.
26. Zygonectes notatus.
27. Dorosoma cepedianum.
28. Hyborhynclus notatus.
29. Hybognathus argyritis.
30. Opsopœodus emiliæ.
31. Minnilus bellus.
32. Notemigonus chrysolcucus.
33. Erimyzon sucetta.
34. Ictalurns punctatus.
35. Amiurus melas.
36. Noturus gyrinus.

4. Narkeeta, Sucharnochce River, into Tombigbee.

1. Lepomis obscurus.
| 2. Centrarchus macropterus.

5. Enterprise. Chickasawha River.

1. Ammocrypta gelida.
2. Percina caprodes.
3. Hadropterus spillmani.
4. Nanostoma elegans.
5. Nanostoma zonale.
6. Pœecilichthys saxatilis.
7. Micropterus pallidus.
8. Ambloplites rupestris.
9. Chrnobryttus gulosus.
10. Lepomis pallidus.
11. Lepomis fallax.
12. Zygonectes notatus.
13. Hyodon selcnops.

14 Clupea ebrysochloris.
15. Hybognathus argyritis.
16. Alburnops tanrocephalus.
17. Alburnops longirostris.
18. Alburnops xanocephalus.
19. Hemitremia maculata.
20. Luxilus cornatus.
21. Luxilus chickasavensis.
22. Ericymba buccata.
23. Opsopøodus emiliæ.
24. Minnilus dilectus.
25. Minnilus rubripinnis.
26. Ceratichthys biguttatus.
27. Ceratichthys amblops.
28. Ceratichthys winchelli.
29. Moxostoma macrolepidotum.
30. Moxostoma pœcilurum.
31. Catostomus nigricans.
32. Ictalurus punctatus.
33. Noturus leptacanthus 1
6. Shubuta. Chickasawha River.

1. Pilodictis olivaris.

Putler University,
Irvington, Ind., October, 1880.

 Ey SAMIULL GATRMAN.

RHINOBATID A.

Trunk broad, flat; tail long, stroug, continuons with the body; dorsals and candal well developed; pectorals not reaching the end of the snout (excejt species of Discobatidue); covered with shagreen; with spines in a vertebral row and on the shoulders; generally viviparons.

Rhinobatus.

Nasal valves not extended upon the space between the nostrils;
two flolds on the spiracle; rostral cartilage
medium, the ridges
separate;
snout pointed
leucorhynchus
confluent half their length;
snout rounded on the end productus produced, narrow ; groove short, small; ridges confluent more than half their length.
spinosus long; ridges straight, conflnent
less than half their length;
four patches of spines on the shonlders;
color uniform horkelii
more than half their length;
two patches of spines on shoulders; clouded or blotehed undulatus
close together, narrowly separated at the base;
rarely with spines on the shoulders; freckled with whitish
lentiginosus
one fold on the spiracle; snout blunt, rounded; head flat
planiccps

Syrrimina.

Nasal valres extended on the internarial space;
a fold on the hinder margin of the spiracle; rostral ridges meeting Irevirostris no fold on the spiracle; rostral ridges not meeting exasperata

Platyrininoidis.

Labial foid distinct; no fold on the spiracle;
posterior lobe of nasal valve rudimentary :triseriata

Rifinobatús.

Rostral cartilage rather slender, pointed, ridges meeting or close together in front ; dorsal fins far behind the ventrals; nasal valves not extending between the mostrils; disk, withont the ventrals, subtriaugnlar; claspers slender, pointed.

Rhinobatus Ieacorhynchus.

Giunther, 1806, Proc. Zool. Soc. Lond. 604.
Length of disk, including ventrals, $11 \frac{1}{2}$, width $7 \frac{3}{4}$, snont from month to tip $3 \frac{3}{4}$, and total length 23 inches. Anterior margins very slightly undulating, posterior broadly curved. Posterior margin of ventral nearly straight. Head moderately broad, slightly concave; width between the eyes three and one-half times in the length of the suont. Rostral cartilage strong, moderately long; ridges separate in their entire length, approaching each other regularly toward the end of the snont, which they do not reach. Tip of the snont more pointed than in other species. Eyes moderate, larger than the spiracle. Spiracle with two folds on its posterior border. Anterior nasal valve small, not dilated, exteuding over little more than half the length of the nostril. Month slightly arched in the middle.

Body covered with shagreen above and below. A row of small spines along the vertebre, a pair on each shoulder, one above each eye, and a row of smaller ones along the orbital ridges. Tail depressed, with a fold on each side. Dorsals equal, second distant from the caudal the length of its base, and from the first by the longth of its anterior border.

Light reddish or olivaceous brown. Tramslucent spaces in front of the head white. White beneath.

Panama.

Rhinobatus productus.

Girard, 1854, Proc. Acad. Nat. Sci. Phila. 196.
Disk having the form of that of planiceps. Snont shorter than that of undulatus, rounded at the end. Rostral ridges conflnent half or more of their length. Head slightly concave between the orbital ridges. Spiracles with two folds on the posterior border. Fins as in planiceps. Yonng with a dorsal row of compressed hooked spines commencing inmediately behind the head, a pair on each shoulder, a series of smaller ones in fiont and above each eye, and a row of small ones on each of the rirlges of the rostrum.

Color a clonded brown, white on the translucent spaces in front of the head, a black spot beneath the end of the snont. The brown is gravish and somewhat dull, rather than bich and dark, as in the flat-hoaded species. Large specimens have small, indistinct spines in torsal and orbital series, rostral ridges conflnent for a greater portion of their length, and uniform coloration. Distingnished from R. planiceps by the folds on the spiracle, conflnence of the ridges, and color; from R. undu-
latus by the stoutness of body, shortness of snout, and color. Thirtyeight specimens were collected at San Diego, Cal., by the Hassler expedition.

Rhinobatus spinosus.

Giinther, 1870, Cat. Fish. Brit. Mus. viii, 518.

- Anterior nasal valve not dilated laterally. Suont much produced, the distance between the onter angles of the nostrils being one-half of that between the month and the end of the snout. The rostral ridges are conthent, very narrow, with a very small and short groove at the base, and in their eutire length provided with spines. Month nearly straight. Compressed spines with dilated base along the median line of the back, on the shonlder, and abore the eye and spiracle; the entire upper surface rough. Snout white. (Giinther.)

Mexico.

Rhinobatus horkelii.

Miillér \& Henle, 1841, Syst. Beschr. Plagiost. 122.
Rhombic. Disk, iucluding ventrals, 19 , width 11.62 , tip of snont to mouth, 6.57 , and total length 35.5 inehes. Head broader than that of R. undulatus; crown flat. Anterior margins slightly sinnous. Angles and posterior margins of pectorals broadly rounded. Margins of ventrals nearly straight. Snout long, rather less than four times the width of the head between the eyes. Rostral cartilage strong; ridges distant at base, close together somewhat less than half their length, expanded near the extremity. Eye smaller than the spiracle. Spiracle with two folds on the posterior border. Anterior nasal valve not dilated, not extending half the length of the nostril. Month nearly straight; a pair of concave curves meet to form a low arch on the symphysis. Covered with shagreen above and below. A row of hooked spines along the vertebre, a row of several near the middle of each half of the shouldergirdle, and a fer smaller ones on the orbital ridge and in a group upon the end of the snout. Tail depressed, with a fold on each side. Second dorsal distant from the caudal less than the length of its base, and from the first less than the length of its anterior border.

Uniform light grayish or olivaceous brown, without clondings or spots. Whitish below. Translucent spaces on the suont white in young, darker in old. Sometimes a small patch of brown under the tip of the snont.

Bahia; Rio Grande; Rio Janeiro and northward.
Rhinobatus undulatus.
r. Olfers, 1831, Die Gatting Torpedo, 22.

Rhombic. Disk, including ventrals, 18 , width 10.75 , from tip of snout to mouth 5.75, and total length 33 inches. Anterior margins nearly straight, slightly concave. Angles and posterior margins of pectorals broadly rounded. Posterior margin of ventral straight a portion of its length; posterior angle blunt. Head moderate; crown concave.

Snont long, abont four and one-half times the width of the liead between the eyes. Rostral cartilages narrow, ridges close together more than half their length, expanded near the extremity. Eye moderate, larger than the spiracle. Spiracle with two tubercles on the hinder margin. Anterior nasal ralve not dilated, extembing over little more than half of the length of the nostril. Mouth straight or slightly arched forward. Covered with shagreen above and below. A row of small spines in a vertebral series to the camdal, a row of several near the middle of each half of the shonkler-girdle, and several above each eye and spiracle. No spines on the snont. Tail depressed, with a fold on each side. Second dorsal distant from the candal more than the length of its base, and firm the first by the length of its anterior border.

Claspers long, slender, but little swollen at the end.
Olivaccous brown, transsersely clonded with darker. A few small round spots of white above the gills and behind the shoulder-girdle. Translucent spaces of snout white; below there is a lozenge-shaped spot of dark, from each side of which a dark line passes to the anterior rays of the pectorals. Old specimens more uniform in color; dark marks of snout sometimes faded.

Rio Janciro and sonthward.

Rhinobatus lentiginosus.

Garman, 1-゚ロ, Bull. Mus. Comp. Zool. 163.
Ontlines of borly and fins similar to those of horkelii and undulatus. Rostral cartilage long and narrow, a small groove near the head; ridges close together fiom base to extremity. Eyes large. Spiracles half as large as the eyes, with two folds. Head namow, concave between the eyes. The width of the interocular space equals that of the nostrils or their distance apart. Half the length of the snont is less than the elistance between the onter angles of the nostrils. Mouth nearly straight, a little less than twice the width of the head between the eyes. Scales small, smooth. Spines of the dorsal series and the three in firont of each ere rery sumall those above the eye and spiracle not noticeable. The largest spines on the body are a group of five on the top of the end of the snout, a pair of which resemble small horus. Shoulders smooth or with a single small spine.

Color a light grayish brown, densely freckled with small spots of lighter; miform brownish below. On the lower side of the snout there are faint intirations of markings similar to those of undulatus.

Distinguished from horkelii and madulatus by the colors, the hornlike spines on the end of the snont, the absence of spines on the shoulders, the narrowness of the head as compared with the width of the month, the shorter distance from snont to moath, and the greater distance from mouth to vent. Total lengtl 22.9 , snout to mouth 4.1 , snout to rent 9.9 , and width of pectorals 7.4 inches.

Florida; South Carolina.

Rhinobatus planiceps.

Garman, 1880, Bull. Mns. Comp. Zool. No. 11, 168.
Disk, including rentrals, rhombic, about one and a half times as long as wide. Anterior borders of pectorals straight, more than twice as long as the convex posterior margins. Angles of pectorals rounded, the hinder not extending farther than to the vent. Onter angle of ventrals rounded, posterion acnte. Head broad, flat. Rostral cartilage medinm, dilated at the extremity, with the ridges close together in the anterior third of their length. Snont rather broad, with rounded extremity. Eyes moderate. Spiracle immediately behind the eye, smaller than the orbit, with a single fold on the posterior side. Anterior nasal valve not dilated, posterior two-lobed. Mouth nearly straight. Body covered with shagreen above and below. Tail appearing as if continued on the posterior portion of the abdomen, much depressed, with a fold on each side, bearing two elevated dorsals behind the rentrals and a caudal with convex border at its extremity. Second dorsal distant from the caudal the length of its base. Bases of the dorsals distant from each other the length of the anterior borders. Scales larger over the central portions of the disk. Compressed hooked spines in a median row on back and tail, in two patches on each shoulder, and a series above each eye. On the foung these spines are much more prominent and regnlar in size than in the adnlt. Color brown; light between and on each side of the rostral ridges; white below. Young specimens with a number of small, romnd, white spots on each side of the dorsum.

The following measurements are taken from a young male:
Inches.
Total length .. 19.0
Snout to end of ventrals.. 10.2
Snont to month .. 3.5
Width of pectorals 6.9
Payta, Callao, and Galapagos Islands.

Syrritina.

Characters in general those of Rhinobatus. Disk somewhat shorter and broader. Nasal valves dilated and extending upon the internarial space.

Syrrhina brevirostris.

Miiller \& Henle, 1841, Syst. Beschr. Plagiost. 114.
Disk, including the ventrals, thombic, longer than wide; width about seven-eighths of the length. Anterior margins nearly straight, slightly indented opposite the gill-openings, at the end of the snout forming an angle of less than ninety degrees. Angles and posterior margins of pectorals romded. Ventrals romided. Posterior angle rather bhunt. Head moderate; crown concave. Snont short, slightly ronnded at the tip; length about twice the width of the head between the eyes. Rostral ridges distant at the head, menting at the end of the rostrim. Eye
moderate, rather larger than the spiracle. Spiracle with one tubercle on the hinder margin. Anterior nasal valves dilated, extending across about one-third of the space between the nostrils. Mouth arching forward slightly. Bodly rough with shagreen above and below. Small hooked spines seattered orer back and tail. A row of tubercular spines along the rertebre to the second dorsal. Two or three similar tubercles over each extremity of the shoulder-girdle and a pair a short distance from these toward the rertebral row. A couple of spines above each spiracle and one or two in front of each ese. Tail depressed, with at fold on each side. Dorsals equal, second distant from the caudal the length of its base and from the first the length of its anterior border.

Light grayish or olivaccons brown; margins lighter; whitish below. Sometimes clouded with brown.
The claspers, as far as may be judged from young specimens, are simila to those of R. undulatus.

Total length $18 \frac{1}{2}$, length of disk, including rentrals, 10 , and width of disk $8{ }_{4}^{3}$ inches.
Rio Janeiro.

Syrrhina exasperata.

Jord. \& Gill. 1880, Proc. U. S. Nat. Mus. 32.
Disk, including the rentrals, rhombic, longer than wide. Anterior borders of pectorals nearly straight; posterior convex. Snout trmucated, as wide on the end as the space between the eyes. Rostral cartilage wide and strong, deeply grooved on its upper surface. Rostral ridges prominent, widely separated, nearly or quite parailel from base to extremity. Spiracles large, equal in diameter to the orbit, without a fold on the side. Fin-angles romuded, except the obtuse posterior angles of the dorsals. Dorsals elevated, behind the rentrals, the length of the base of the first less than the length of its posterior border, base of the second equal to its posterior margin. The base of the first is equal to its distance from ventral or from second dorsal. Anterior masal valves dilated, coutinued a little beyond the imer angles of the nostrils; posterior two-lobed. Anterior extremities of the pectorals widely separated from the rostral cartilage, extending rery little in alsance of the eyes. Mouth wide, forming a low areh, regularly curved from the comers. Labial fold distinct for a short distance at the symphesis. Teeth small, blunt, in a houdred and ten series in the mpper jaw. Claspers long, slender, knobbed at the ends. Tail with a thick fold on each side; caudal fin romded, withont indentation. Back thickly covered with small scales, among which are scattered larger ones. A median row of large, blunt tubercles on the back and tail, and two short rows parallel to this on each shoulder. The bases of the tubercles are so covered by the skin and small scales that they appear as romeded prominences with a small spine on the summit.

Color grayish brown. Near the ends of the rostral ridges there is a
band of dark brown; between this and another dark band which crosses the bases of the ridges there is a light band. A dark band across the head between the eyes is somewhat confluent with the band in front of it, which makes the fore part of the head dark, lout leaves the prominences in front of the eyes light colored. The remainder of the upper surface is more or less clouded by faint indications of transverse bands. These are more distinct in the soung. With the exception of a dark spot on the posterior angle of each pectoral, the lower surface is white.

Total length 33.1 , suout to end of ventrals 18 , suout to mouth 4.1 , and width of disk 15.5 inches. Specimen described an adult male. The kindness of the officers of the National Museum has enabled me to satisfy myself of the identity of Trigonorhina alveata, described from old, and Platyrhina exasperata, from very yomg specimens.

Southern Califormia.

Platyrminoidis, geu. not.

Disk broad, flat, rounded. Tail moderate, depressed, caudal fin broad. Dorsals posterior. Tubercular spines in vertebral series and on anterior margins of pectorals. Labial fold well developed. Nasal valves not reaching the mouth, posterior lobe rudimentary. Viviparous.

Distinguished from Syrrhina and Trigonorhina by the Labial fold, nasal valves, and marginal series of spines, aud from Platyrhina by the fold, valves, separation of pectorads, and viviparity.

Platyrhinoidis triseriata.
Jord. © Gillo., 18s0, Proc. U. S. Nat. Mus. 30.
Disk, includiug ventrals, subrhomboid, a little longer than broad, anterior borders convex, anterior and lateral extrenities forming broad curves. Suont broad, rounded in front, length from upper jaw equal to distance between outer borders of nostrils. Rostral cartilage stont, ridges approaching rapidly and meeting near the end to form an acute point. Spiracles morlerate, larger than the eyes and close behind them, without folds on the sides. Eyes small, distant from the end of the snout one and one-fourth times the distance between the spiracles. Crown broad, concave. Nostrils broad, narrower than the distance between, which is nearly fom times the space between them and the month. Nasal valves medimm, hardly reaching upon the space between the nostrils, onter lobe narrow, posterior rudimentary. Month not large, moderately curved, distant from the end of the snout abont one and one-third times its wilth. Teeth small (82 series in the upper jaw of the adult female desci ibed), subhexangular on the base, smooth or with a low, blunt cusp. Pectorals separated from the rostral cartilage by a translucent space. Dorsals similar, longer than high, separated by one and one-half times the length of their bases, insertion of anterior a little in advance of the middle of the tail, posterior reaching a little behind the insertion of the caudal. Tail strong, more distinct from body than
in species of Syrrhina, length from vent little more than that from snout to extremity of rentrals, with a broad cutaneous fold on each side below, which extends to the ventrals and is continnous with the lower lobe of the caudal. Candal rather large, somewhat more than twice as long as wide, margins entire. Covered with shagreen above and below. Several (three to fomr) series of sharp, erect, immorable spines along the anterior margin of the pectoral, a group of several above the extremity of the rostral cartilage, and several on the orbital ridge. A vertebral series of larger spines on back and tail extending to the second dorsal, a pair near the middle and on each end of each branch of the shoulder girdle, and a series on each side of the upper surface of the tail parallel with the median.

In foetal specimens the lateral series on the tail are not developed, and the inner pairs on the shoulder-girdle are represented by single spines. The upper portion of each spine is long, narrow, subfusiform, depressed, and, resting upon a low, narrow support, appears as if merely applied to the skin by a portion of its lower side.

Disk to end of ventrals 12 , width of disk 11.2 , vent to end of tail 12.6 , and total length 22 inches.

Uniform olivaceous brown, whitish beneath.
Specimens described from U. S. Nat. Museum. Hab. Southern Califormia.

DISCOBATIDAE, fam. nov.
Form intermediate between that of the Rajide and Rlinobatida; nearer the latter. Tail less distinct from the body than in the former, to which there is also less similarity in dorsals, ventrals, caudal, and nasal ralves. Oviparous. Provisionally placed as a subfamily of the Rhinobatide.

DISCOBATUS.

Platyrhina, preoccupied.

Disk broad, flat, subcireular. Pectorals approximating in front of the head. Ventrals separate, entire. Dorsals and candal as in Syrrhina. Nasal valves resembling those of the Iminobatida; anterior lobes united across the internarial space. Egg-cases similar to those of certain Scylliidte.
D. schönlcinii, sp. Mïller \& Henle, India.
D. sinensis, sp. Lacépède, China.

The species recently described as Platyrhme having been withdrawn, the gemus contains no American representatives at present.

RY TOMN A. RYEDEIS.

Without specimens of each of the species identified by the anthors who have described them, the writer finds himself quite unable to mako a greatly needed revision of this group. The sexnal appendages have not been described in Spirostrophon cesioannulatus Wood, s. copei Packard, or ?S. rutii and S. cavernarum Cope. In the cases of the tro last, Professor Cope, who described them in 1869, at first thought that they were provided with two pairs of lateral pores to each segment, and in the belief that Spirostrephon had no lateral pores he proposed the genus Psculotremia. He afterwards seemed to agree with Packard that the last-named genns was not valid, and appears to have considered the P. cavernarum a Spirostrephon, as he alopts the last name as its genus in his paper on the Wyandotte Cave fama, which he published in the American Naturalist in July, 1872. Mis principal reasons for this step seem to have been the foregoing, and that the species was not hairy and was furnished with well-developed triangular eye-patches. "The allied form found by Mr. Cooke in the Mammoth Care has been described by Dr. Packard as Spirostrcphon copei." Aud, Professor Cope continnes, "It is eyeless, and is, on this account alone, worthy of being distinguished generically from Spirostrephon, though the absence of pores, asserted ly Dr. Packard, would also constitute another character. Spirostrcphon possesses a series of lateral pores, as I have pointed out in accordance with Wood's view." At this point Professor Cope refers to a paper loy himself in the Proceedings of the American Entomological Society for 1870, where, in a foot-note, he says: "I must correct my character 'no lateral pores' for Spirostrephon (Proc. Am. Plil. Soc., 1869, p. 179) to oue series of pores'." He then proposes the genns Scoterpes for Packard's Spirostrephon eopei. We are accordingly led to believe that he has abandoned the genus Pseudotremia. But when we come to learn the character of the external generative organs of the forms described by both Cope and Packard, I would be greatly disappointed if it was not foum necessary to separate S. cavcruarum, ?S. vudii, and S. ceresoumulatus Wood from Spirostrephon and refer them to another genus. For it is a very singular fact that, out of eight species of Lysiopetalide which have been described since the S. lactarius of Say, none are known to have more than 32 or less than 28 segments, while the type species has no less than 59, actording to Wood. I am therefore inclined to believe with Cope that the S. ecesioanmutatus is congeneric with S. cutcrnarum and S. cudii, for which the name Iseudotromia would perhaps become arailable in case they should be found to be dis-
tinet. Not only do the segments of S. lactarius greatly exceed in number those of the curious little Lysiopetalids now under disenssion, but the secretion from the forrmina repuguatoria of the former must be copions, for Say remarks that "when irritated it discharges a lacteous globule from the lateral portion of each segment, diffinsing a strong and disagreeable odor". And Cope remarks (Proc. Am. Ent. Soc., 1870, b. 67) that "Spirostrephon lactarius exudes from a series of lateral pores a fluid which has in its odor a strong resemblance to creosote". Whether the genus Scoterpes is well enongh characterized by the absence of eyes may be a matter of opinion; otherwise the form agrees too closely with Trichopetulum to warrant us in being certain that it is not closely related. Both S. (Scoterpes) copei and the three known species of Trichopetalum have no lateral pores, according to their describers, and are therefore probably a pretty closely related group, especially since they closely agree in the nmber of segments and the arrangement of the hairs or bristles on the back. The figure given by l'ackard (Am. Naturalist, $\mathrm{v}, 1871, \mathrm{p} .749$) does not enable one to decide if it is male or female, on accomnt of the carclessness of the artist with the first five pairs of legs, thongh it appears as if it were a female. Moreover, in the figure of the head from the front he contradicts his description on page 748 , where he says: "No ocular depression behind the antemne, the surface of the epicraninm being well rounded to the antennal sockets." The figure 130 a , on page 749 , would fairly represent the front of the head of the species which I shall describe farther on, only that the antenna are relatively longer in Dr. Packard's species.

Taking a retrospective glance at the genera of American Lysiopetalider, we find that a single species has fumished the basis for the genus spicostrephon, defined by J. F. Brandt, in 1841, in his Recucil. His description is only comparative with other gronps of Julitre of equal rank; the family character of the Lysiopetalids (sterna rudimentare, not conjoined with senta) was used by him to define the geuns Lysiopetatum. In this way Spirostrephom was characterized, mainly with respeet to the characters presented by the maxillo-labial elements. Can it be considered safe, in view of the facts before us, to indiseriminately assign species to a genus which has been quietly embraced amongst the ill-defined forms which have been discovered since the family has been fomded ? To the writer the answer scems to be in the negative. No reference to the chameters assigned to the gems or the description of the typical species of Spirostrephon has been made by some of the anthors of American species of Lysiopetalide. The present systematic condition of the gromp is not good, and we are rehetantly forced to arlmit that it is very little better than a mere list of names. While the intention is not to belittle any one, there has been a very manifest lack of definiteness as well as accuracy and completeness of the descriptions. From the deseription of S. cavernarum? ? S. vudii, and S. copei, we would be led to infer that the antenne were S-jointed, but when we observe Dr. Pack-
ard's figure of the last species (Am. Nat., r, p. 749) we find that there are but seven joints represented, which is in agreement with what we find in Trichopetalum, Zygonopus, Craspedosoma, and Lysiopetalum ; and in the case of the two first, Professor Cope's virtnal assignment of them to Spirostrephon makes the number of joints in their antenne doubtful. Trichopctalum Harger, might probably have been more closely defined as to its generic characters, since those given by its author wonld not define it from Zygonopus, and it differs only from S. (S.) copei in haring eyes, from Oraspedosoma in having free sterna, thongh the latter may have free sterna too. Mr. Harger, however, admits the diffinclties which beset him, at page 119, in a foot-note (Am. Jour. Sci., iv, 1872).

While examining some living specimeus of Trichopetalum lunatum under the microscope, abont a vear since, I observed that the respiration of the animal appeared to be conducted in a most singular manner. The air seemed to be drawn in under the labrum and in some way to enter the dorsal cardiae simus as bubbles, which could be traced for some distance, more than half the length of the animal, as they trareled slowly backwards, until they disappeared orer the opaqne mass of ingested food coutained in the intestine. These bubbles of air always passed backwards. It may have been that they passed backwards insile of the intestine, but the impression I got was that they were traveling throngh the cardiac sinus or dorsal heart of the animal. This circumstance may explain why it is that there are no pores on the side of the body, though it is true that the lateral pores of millipeds are nsually foramina repugnatoria, and have nothing to do with the trachea or respiratory apparatus. This raises the question whether our Lysiopetalide are not distinguished from other forms in some more important way than has been hitherto supposed.

The species which have been described are the following, thongh it is to be understood that they are only given as a list for reference; no arrangement is yet possible and none is attempted:

1. Spirostrephon lactarius Say, Wood (Trans. Am. Phil. Soc., n. s., xiii), Art. Myriap. of N. Am., p. 192, with synonomy; Cope, Proc. Am. Phil. Soc., xi, p. 179.
Habitat.-Eastern United States.
2. S. ceesioannulatus Wood, op. cit., p. 194.

Habitat.-Allegheny County, Pennsrlvania.
Length 1 inch.
3. Pseudotremia cavervarum Cope, Proc. Am. Phil. Soc., xi, p. 179, 1869; Cope, Proc. Am. Ent. Soc., iii, p. 67, 1870 ; Packard, Am. Nat., v, p. 749, 1871.-Spirostrephon cavernarum Cope, Am. Nat., vi, p. 414, 1872.-P. cavernarum Harger, Am. Jour. Sci., iv, pp. 118, 119. 1872.

Mabitat.-Carerns in Virginia and Indiana.
Length 11 lines.
4. Ps. vudir Cope, loc. eit., p. 180; Packard, Am. Nat., r, pp. 748, 749 , 18ন1; Harger, loc. cit., pl. 118, 119.
Habitat.-? Montgomery County, Virginia.
Length 11 lines.
5. Spirostrepion (Pseudotremia) copei Packard, Am. Nat., r, pp. 748, 749, 1871.-Scoterpes copei Cope, Am. Nat., ri, p. 409, genus Scoterpes proposed and defined p. 114; Harger, loc. cit., pp. 118, 119; Packarl, Zoology, pp. 356, 357.
Habitat.-Mammoth Cave, Kentucky.
Length .3.) inch.
Trichopetalum Harger, Am. Jour. Sci., iv, p. 118, pl. ii, 1872.
6. T. lunatuan Harger, loc. cit., p. 119; Ryder, Am. Nat., xir, p. 37 if, 1880.

Habitat.-New Haven, Conn., and Philadelphia, Pa.
Length σ^{mm}.
7. T. glomeratum Harger, loc. cit., p. 120 .

Habitut.-John Day River, Oregou.
Length 10^{mm}.
S. T. juloides Harger, loc. cit., p. 120.

Habitut.-Simmons' Harbor, north shore Lake Superior. (Smith.)
Length 8 mm .
The ninth American species, described below, is the third form of Lysiopetalid which is known to inhabit caves, and the only one beside the speeies which stands fifth in the above list which is totally blind. I name the species for Dr. C. A. White, United States paleontologist. It is a hairy form, like the four preceding, and will, no doubt, with those constitnte a pretty homogeneous gronp.

> ZYGONOPUS,* nor. gen.

Char. gen.-Sixth pair of legs very robust and with the third joint greatly swollen (a unique feature amongst Myriapods, and one which, like the claspers and intromittent organ of Branchipods, is to be regarded as a secondary sexual character, and of value in the characterization of a genus).
9. ZyGonopus whitei, n. sp.

Char. specif.-Head with short, dense hairs. No eyes, but there is a well-marked depression, or rather rertical excaration, extending from the end of the labrum to behind and above the insertion of the antenna. Behind the antemar the head is much swollen, owing to the outwardly bulging basal pieces of the jaws; labrum emarginate inferiorly; epicranium emargin-

Fig. 1. Front view of head and antenna.
Fig. 2. Swollen 6th leg or clasper.
Fig. 3. Normal leg.
margin of the first

[^66]scutum. Antenne pilose, rather robnst, 7 -jointed, 5th longest; next longest in the $3 d$ joint, then the 4 th, $2 d, 6$ th, 1 st, and 7 th, which last is provided with two or three blunt, tactile processes at the tip. Segments 32 , including the head; an impressed dorsal line as in Spirostrephon ctesioamulutus. Delicate and numerous impressed lines on the hind margins of the dorsal scntes. Six bristles smmonnt ench scute; two are placed obliquely on each side, and another is closer to the median line on each side; the upper ones on the four penultimate segments are at or near the posterior margin, and are shorter, blunter, and stonter; two of them project backwards from the margin of the preanal sente. Apparently no pores. Forts-seven pairs of legs in δ, of which 45 are of the normal shape; 1st, 2l, 3il, 4th, and 5th gradually longer; a wide interval between the 5th and 6th pairs, the latter very robust, the $3 d$ joint being mach swollen and somewhat flattened inside, with the terminal and basal joints stonter than in the remaining legs; 7th pair weak, but normal ; place of copulatory apparatus in the position of the Sth; 9th pair 2 -jointed, with basal joint very short, while the $2 d$ is four or five times as long and greatly swollen, looking in shape like a minute melou, and is extended horizontally outwards the same as the similar pair of organs in Trichopetalum. Forty-eight pairs of legs in 8 ; appendages of $3 d$ secment aborted as usmal; sexual openings bounded laterally by rounded elevations. Normal posterior legs slender and pilose. The bristles on the back of the animal are received into basal sockets, and when remored give the appearance of a pore with an elevated rim. A yellowish substance adheres to the hairs in drops or beads in alcoholic specimens, which may be the offensive secretion of the animal which has exuded at the base of the bristles, though there is none of the characteristic odor apparent to the smell. Length of the animal S.5 min. Color nearly white.

Of the above singular form I have received four specimens, three males and one female, which were sent me by Dr. C. A. White, who obtained them from the owner of Luray Cave, in Virginia, who had collected them in the eavern himself. Some time last summer he sent me specimens which, upon being subjected to a test with acetic acirl, proved to be only a calcareous crust which had been deposited orer dead specimens lying in the care. These were collected by himself, and were interesting as showing how psendomorphs of organic forms might be developed in caverns. The acid, however, dissolved them completely, and no vestige of the organic basis upon which they were molded remained. I at first supposel them to be some form of Julus, but could not be certain.

Ont of nine related species known to inhabit this country but two are blind, the other being the Spirostrophon (Scoterpes) copei Packard, which inhabits Mammoth Cave, Kentucky. Another, which, according to Professor Cope, inhabits Wyandotte Cave, Crawford County, Indiana; Erhart's Care, Montgomery Comnty ; and Spruce Run and Big Stony Creek

Caves, in Giles County, Virginia, curiously enough, is not blind. This is paralieled in the case of two species of spiders, howerer, which were collected for me in a cave in Oregon, over a year ago, by Professor Cope. In one of them there is not a restige of the eyes remaining, while in the other they are well developed. A Myriapod, which appears to be at Julus, from the same cavern also has ejes. The Polydesmus caricole Parkarl, from a cave in Utah, seems to have mell-developed eyes. The Orcheselle ectec, which still remains to be fully described, has very undeveloped eyes, but differs in no other essential from its congeners. It was also collected in an Oregon cavern by Professor Cope. Multitudes of facts might be added, but the subject is too large a one for hasty generalizations, and must be approached with the same thoroughness of purpose which has characterized the work of Messis. Darwin and Wallace in their essays upon lindred snbjects relating to the origination of species. We may be allowed, however, to add that, in the absence of proof to the contrary, with the increase in the number of known blind forms which are often congeneric with light-loving species, there is the strongest lind of ground for supposing that they have descended from forms which had eyes, and which wandered into these recesses, where, after many generations had lived and died, a blind form appeared, which resulted from the gradual abortion of the visnal organs of its ancestors. In proof of this we have the partially blind Orchesella, which now seems to be verging towards such a condition. In the absence of a greater number of facts we are not justified in inferring more. True, we have a few instances amongst the mollusks, some of which in their larval states have useful eyes, but which afterwards become useless and abort as the shell develops and gets thicker. Some terrestrial Myriapods are blind, such as Eurypeteropus; so is Lumbricus, the earth-worm, and some of the dirt-abiding Thysanura, which also live among fallen leaves, such as Campodea, while in the burowing Symphyla (scolopenArelle() the eges are reducell to a single pair, with little or no red or dark coloring in the tapetum, differing widely in this respeet from the com-pound-eyed, terrestrial Myriapods.

TE VET.N. NOCEKNGTON.

Prionotus stephanophrys, sp. nov.
L. lat. 53; 1). 10-12; A. 11; P. 12; V. 1-5; C. 3-1-S-1-3.

Body less elongate than in P. cerolinus, head not quite three and a half; greatest depth five and a third times in total length. Greatest deptlo under thind dorsal may.

Snout concare in profile; forehead conrex immediately in fiont of eye, from which to the origin of the dorsal fin the profile rises in almost a Proc. Nat. Mus. S0--34

straight line. Dorsal ontline from origin of dorsal fin to caudal slightly sigmoid, the portion under base of second dorsal nearly straight, while the candal perducle widens at its extremity, is two and a half times as long as its least depth, and at its narowest place one-third as deep as the greatest depth of the fish. Abdominal ontline stiglitly curveal.

Snont twice as long as longitudinal diameter of eye, which is contained about four and a half times in the side of the head; interorbital width slightly less than longitudinal diameter of eye.

Bones of head less conspicuonsly striated than usual in the gemus. Preorbital, suborbital ring and stay, and operculum distinctly striated, the strixe radiating; upper surface of head pustate, with short strise on the upper margins of the orbit and on the occiput. Top of head and interocalar space almost flat, a serrated, crest-like ridge over each eyo (hence the specific name). The interorbital space unusually broad, not at all concive, as broad as eye; a slight trace of a cross furrow behind the eye. Central ridge of opercnlmm distinct, and continned backwards considerably beyoud its membanous edge as a strong, sharp spine. A similar sharp spine on the angle of the preoperenlum. A strong spine, smaller than those on the gill-covers, on the scapmar bone, and a similar one on the suprascapular region. A backward-directed preoculau spine.

Mouth rather large, somewhat oblique, the maxillary extending to opposite front of eye; jaws nearly equal ; entire upper edge of mandible hidden by the preorbital when the mouth is elosed; lower edge of preorbital set with small spines terminating the stris. Upler jaw two and one-sixth times in leugth of side of head.

A band of sereral rows of villiform teeth along both jaws; tip of the upper jaw emarginate and toothless; villiform teeth on palatines and romer. Tongue thick and fleshy. Eye lateral, ahmost circular; interorbital area flat transversely.

Gill-openings continnons, the membrane not joined to the isthmins; loranchiostegals seven. Gill-rakers long and slender, about threefourths as long as the diameter of the orbit.

First dorsal arising a little anterior to the tip of the opereulum; the third and longest spine neally equal to half the length of the head, the minth and tenth spines very short, nearly hidden in the skin. First and second doral spines serratel anteriorly. Second dorsal with a nearly straight upper margin, but slightly lighest in front; rays all once lifurcate. Anal commencing and ending slightly posterior to the origin and termination of the second dorsal; rass all once bifurcate. Posterior margin of caulal slightly concave when expander; all the long lays except the two onter ones branched, the four central ones three times biturcate.

Pectoral pear-shaped when expanded; the membrane between the rays very wide; all the rays bifurcate except the uppermost and lowermost; the tip of the fin reaching to the eighth or ninth anal ray when
turned straight backwards. The three pectoral filaments very slender, the uppermost about half as long as the pectoral fin, which is contained two and two-thirds times in the total length.

Ventrals four and three-fourthstimes in total length, their tips nearly reaching the rent; all the rays once bifurcate, the last united by membrane at its base to the abdomen.

Bases of pectoral and rentral fins oblique, the pectoral filaments in advance of the ventrals, which are inserted vertically below the anterior margin of the pector:als.

Scales of moterate size, finely ciliate. Lower jaw, gill-membrane, and sides and upper surface of head scaleless. Scales of breast rather smaller than those of back. A row of seales along the basal part of the outer caulal rays, other fins scaleless. Lateral line simple.

General color of body slaty gray or leaden upon the mper two-thirds, the lowest third white. A black spot on the dorsal between the fomth and fitth spines, traces of it between the fifth and sixth. Three rows of black spots on the second dorsal, the spots set saddlewise across the days. Three rows of black spots on catudal, the terminal row between the rays. Anal white. Pectoral black, with whitish clondings. Upper part of head rather darker than the body, a silvery tint about the posterior portion of maxillary, lower part of gill-cover, and base of pectoral.

A single specimen of this species was procured in the market of Sim Frameisco, October, 1880, and was taken off Point Reyes. It is now in the United States National Minseum, mmbered 27048.
A large proportion of the fish brought to the San Frameiseo markets is procmed in the tolerably deep water of the region between the rocky islets known as the Fanallones, the entrance of san Francisco Bay, and Point Reyes, a rocky promontory some forty miles north of San Francisco. This locality yielded the finst specimens of Artedins quadriseriatus Locktn., Orlontopyxis trispinosus Locktn., Agoms rulsus J. \& G., Brachyopsis vermcosus Locktn., Brachyistius rosecens J. \& G., IIippoylossoides exilis J. \& (\mathbf{x}., Atheresthes stomius J. \& G., Cymicoglossus pecificus Locktu., and Glyptocephulus zuchirus Locktn. Brachyopsis xyostcrmus J. \& G. and Artedius paypttensis Steind. oceur there in tolerable abme dance, and it has now furnished the first example of a gemus hitherto not known to oceur north of the Gulf of Fonseca.

Giinther (Cat. Fish. Brit. Mus. ii, 195, 19(i) gives a short diagnosis of three species of Pronotus from the Pacific, I^{\prime}. horvens Rich., l '. birostrutus Rich., both from the Gulf of Fonseca, and I^{\prime}. miles Jenyns, from the Galapagos. I'stephemophrys most resembles the latter species, but has much longer pectorals and a different coloration, the latter being "above mottled brilliant tile-red; beneath silvery white".

Table of proportionate measurements.

San Francisco, Cal., Norember 15, 1850.
 CoAs宣。

By G. IB EOUN TOODEE.

The United States Fish Commission has obtained numerons specimens of a fish before entirely mknown in the Western Atlantic. This is the frigate mackerel, Auxis Rochei, twenty-eight barrels of which were taken in a mackerel seine ten miles east of Block Island, on the 3d of August, by the schooner "American Eagle", Capt. Josiah Chase, of Provincetown, Mass.

The frigate mackerel resembles, in some particulars, the common mackerel ; in others, the bonito-the genus Auxis being intermediate in.
its character between the Scomber and the related genera Pelemys and Orcymus. It has the two dorsal fins remote from each other, as in Noomber, and the general form of the body is slemder, like that of the mackerel. The body is, however, somewhat stonter, and, instead of being covered with small seales of uniform size, has a corselet of larger seales muder and behind the pectoral fins. Instead of the two small keels upon each side of the tail, which are so noticeable in the mackerel, it has the single, more prominent keel of the bonito ant the tanny. Its color is grayish blue, something like that of the pollack, the belly being lighter than the back. Unter the posterior part of the body, above the lateral line, are a few clondings or maculations resembling those of the mackerel. The occurrence of a large school of this beautiful species in our waters is very noteworthy, for the fish now for the first time observed are very possibly the precursors of mumerous schools yet to follow. It is not many years since the bonito became an inhabitant of our waters, and the distribution and habits of the frigate mackerel are supposed to be very similar to those of the bonito, Surda pelamys, and the little tumy, Orcynus thynnus, which also first came on the coast in 1871, and have since been found in considerable numbers.

The frigate mackerel has been observed in the West Indies and other parts of the tropical Atlantie, as well as on the coast of Europe. In Great Britain it is called the "plain bonito". It is not unusual in the Bermulas, where it is called the "frigate mackerel", a name not inappropriate for adoption in this comtry, since its general appearance is more like that of the mackerel than the bonito, while in swiftness and strength it is more like the larger members of this family.

Since the first appearance of this fish many new observations of its abmondance have been received. These fish seem to have come in immense schools into the waters between Montank Point and George's Bank; and fioni Mr. Clarke's statements it appears that they have been observed in small numbers by fishermen in previons sears. Several ressels have come into Newport recently reporting their presence in immense numbers in the ricinity of Block Island. It will interest the "ichthyophagists" to know that several persons in Newport have tested the fish, and prononice it inferior to the bonito. Part of the flesh, that on the posterior part of the booly, is white, but behind the gills it is wack and rank, while the meat near the backbone is said to be of disasrecable, sour thavor.

It is hard to predict what its influence will be upon other fishes already occupying our waters. Its month is small and its teeth feeble, so that it is hardly likely to become a ravager, like the bonito and the bluefish. There is little probability, on the other hand, that its adrent will be of any special importance from an economical point of view, for its oil does not seem to be rery abminant, and it would hardly pay at present to capture it solely for the propose of using its flesh in the manfacture of fertilizers.

Mr. A. Howard Clarke, in charge of the Fish Commission station at Gloncester, has communicated to Professor Baird some interesting facts regarling its abondance. From these statements it would also appear that the species has been observed occasionally in past years. He writes under date of August 10: "I have received this morning from the schooner' Fitz J. Babson', just arrived from Block Island, a fish answering to four description of the Auxis, having a corselet of scales aromal the pectoral fin, as in the tunny. The captain of the vessel, Joshua Riggs, reports that abont a week ago he had a hundred barrels in the scine at one time, and saw over twenty schools of them. He saw them as fareast as Sow-and-Pig Light Ship. They are very easy to catch, flip like menhaden, do not rush, and are not frightened at the seine. They go in immense nmbers; he thinks as many as one thonsand barrels to a school. The day after the appearance of these fish the mackerel disappeared, lout he does not know whether the mackerel were driven away by them or not. They feed on mackerel food. Mr. Daniel Hiltz, of the same ressel, says that he eanght one of just the same kind, in February, 1875, on a haddock-trawl on the eastern part of the Middle Bank, in forty fathoms of water. He took it to Boston, where it was called a young bonito.
"Mr. John IIenderson, of the schooner 'Sarah C. Wharf", says that two ressels canght such fish recently eastward of here. The schooner 'American Lagle', of Provincetown, took a number of barrels of them into Newport, and sold them for a dollar a barrel. Another Cape Cod vessel"-he does not know her name-"took about fifty barrels of them and threw them away. All the mackerel-seiners from Block Island report seeing quantities of this new fish within the past formight. The captain of the schooner' 'Sarah U. Wharf' says he first saw them a fortnight ago, some fifteen miles off Block Island. The eaptain and several of the crew of the 'Ella M. dohuson', of Newburyport, just arrived from Block Island, state they saw abondance of the Auxis, but rid not know what it was until reports came from you at Newport. They opened one and found in its stomach the ordinary red-mackerel food. This crew differ with the crew of the schooner 'Fitz J. Babson', with regard to the ease of capturing them ; think them rather difficult to take; say they tlip like porgies, and do not rush like mackerel. They saw ten large sehools of them on Saturday last, when some fifteen miles south of Block Island."

I hope that any reater of the American Naturalist who has seen this fish will mention it. Some may, perhaps, have an opportunity of studying its habits. The length of those I have seen ranges from 12 to $: 6$ inches, and their weight from three quarters of a pound to a pound and a half' or more. Those sent to New York market were I art of the lot taken by the schnooer "American Eagle" and brought moto Newport, whence they were shipped by Mr. Thompson, a fish-dealer of that place. It vould require from eighty to one hundred of them to fill a barrel; so
the estimate of Captain Riggs, that there are a thonsand barrels in one of the schools, shows how exceedingly abundant they must be. The name "frigate mackerel", used in Bermuda, would seem to be the best name for use in this country, since the fish resemble the mackerel more than they do the bonito or tumy.

Capt. N. E. Atwood, of Provincetown, Mass., the reteran fishermanichthyologist, has examined the specimens, and is satisfied that they belong to the same siperies with a fish which he foumd abondant in the Azores in 1840, when, led ly the reports of Cape Cod whalers, he went to these islands in search of mackerel, the mackerel-fishing being poor at home. No mackerel were foumd except the frigate mackerel refered to in this note.

TBy G. 耳PEOUWN GOOEDE.

The United States Fish Commission has received from the schooner "Gatherer," of Cloucester, Captain Briggs Gilpatrick, a remarkable fish taken from the stomach of a ground-shark, Somnosus brevipinnis, on the Grand Bank of Newfoundland.

Notacanthus, Bloch.

Head and borly much compressed, the body clongate, produced in a long pointed tail, shaped like that of Macrurus or Fierasfer. Snont produced, obtnse, rounded at its tip. The cleft of the mouth inferior. (The specimen is mutilated, but the maxillaries do not appear to be protractile. Dorsal fin almost rudimentary, consisting of very short, llexible spines, remote from each other and not connected by a membrane. Anal fun very long; its origin close beinind the vent, which is situated nearly midway of the length of the body; its anterior portion is composed of separate flexible spines, without membrane, resembling those of the dorsal; these gradually lengthen, grading into the articulated branched rays. No caudal. Ventrals broad, with broad, peduncle-like bases, closely contignons, separated only by a slight groove at the base, situated near the rent. Teeth acicular, in single rows upon maxillaries, in a double row upon mandibulars, villiform and in a donble row upon the palatines. Vomerine teeth not apparent (?). Scales very mmerous, of moderate size, round, thin, flexible. Branchiostegals about s; gills 4 .

Notacanthus phasganorus, new species.

The body is much compressed, its greatest width slightly more than one-third the height of the body at the vent, its width at the tail from
one-fourth to one-fifth of its height, and about one-thirteenth of the length of the head. Its length is about one-eighth its height at the rent.

The scales are romd, thin, flexible, very small upon the head, not wider than the diameter of one of the dorsal spines, but npon the anterior half of the body they are abont three times as large, decreasing in size upon the posterior half, until upon the tail they are smaller than upon the head. The number of scales in the lateral line is not far from 400, but in the partially digested specimen before me it is impossille to make an exact emmeration. The number between the lateral line and the dorsal fin is abont 20 , between the lateral line and the anal fin about 36. The head is covered in every part, even the lips, with small scales. There are abont 40 between the eye and the end of the opercular flap. The seales are deeply imbedded, and in life are probably hidden beneath a slimy epidermis.

The length of the head is contained about seven and one-third times in that of the bolly. Its bones are all flexible, and their ontlines are invisible without dissection, the whole being covered with a leathery skin protected by scales. The width of the interorbital space appears to be (in the mutilated head) somewhat greater than the length of snont, and about one-fourth the length of the head. The diameter of the orbit apprars to be about one-half the width of the interorbital space. The length of the postorbital portion of the head is nearly three times that of the snout. The length of the mandibular bone slightly exceeds twice the diameter of the eye; that of the upper jaw is considerably greater. The teeth in the upper jaw are blunt, acicular, set side by side like the teeth of a comb, about 32 on each side. In the lower jaw they are shorter, slenderer, and in domble rows. Villiform teeth upon the palatines.

The dorsal fin begins at a distance from the suout not far from two and three-fourth times the length of the head, and nearly over the one hundred and tenth seale of the lateral line. It consists of ten low, widely separated spines, unconnected by any membrane. The distance between the first and tenth spine is nearly donble the length of the head.

The spines from the fourth to the ninth are about equinistant, while the other interspaces are shorter.
The distance from the snont to the anal fin is equal to about four times the length of the head. The anterior spinons portion of the anal resembles the dorsal and is devoid of connecting membrane. The membrane is also absent from the posterior half of the fin, but may possibly have been destroyed. The anal rays extend to the tip of the elongate tail and number about 130, the nmber of spines being 19 . The anal begins immediately behind the vent, and its length of base is slightly less than half that of the body-less by a length abont equal to the distance from the angle of the month to the gill-opening.

The pectoral fin is placed at a distance behind the gill-opening abont equal to the width of its own base. Its length is at least double this
distance-how much mere cannot be determined, but the fin is eridently short and rounded in contomr, the upper rays longest. Its base is stont-peduncular, and thickly covered with scales.
The distance of the ventrals from the snont is equal to that of the dorsal, though its insertion is slightly in adrance of that of the dorsal. The two ventrals are closely adjacent, separated by a marrow groove, broad, with peduncle-like bases, thickly covered with scales. Thes are provided with two spines and eight or nine (as nearly as the specimen will permit determination) rays.
D. X ; A. XLX (130); C. 0; P. (17); V. II, S-9.

Measurements.

Millimeters.
Extreme length .. 963
Body:
Height at vent ... 110
Greatest width ... (40)
Head:
Greatest length ... 130 .

Length of snont.. 30
Lengtl of postorbital portion (measured diagonally). 87
Length of upper jaw .. 40
Length of mandible.. 36
Ditmeter of orbit .. 17
Dorsal:
Distanee from snout.........-.. 350
Length of base .-... 215
Length of first spine z
Length of last spine-.. 7
Distance between first and sceond spines.. $\frac{7}{}$
Distance between second and thind spines .. 19
Distance between third and fourth spines... $2 x$
Distance between fomth and fifth, fifth and sixth, sixth and seventh, sev-
enth and eighth, and eighth and ninth spines
Distance between ninth and tenth spines ... 21
Anal:
Distance from snout... 437
Length of base .-.. 525
leight at tirst spine...
Pectoral:
Distance from snont... 150
Length ..---.-...-. ... (40)
Ventral:
Distance from snout.. 350
Length ... $20+$

INDEX.

Agonus Annre 332
Barkani 332
（Braehyopsis）Annæ 332
Barkani 332
cataphractus 332
rostratus 63，153
vulsus，a new Californian fish 330
new speeies $330,332,531$
Agyriria brevirostris 318
candida． 318
fluviatilis 318
leucogaster 318
linnæi 214
niveipectus 318
tephrocephala 18
tobaei 214
Ah Sam 2t
Aithurus polytmus 313
Aix 43
sponsa 04
Ajaja． 10，226， 243
rosea 10， 198
Alaska，description of a new fish from 58
Uranidea microstoma from 58
Alauda 225， 243
arrensis 185，218，225， 238
calandra 236
Alaudidæ 239
Albatross，black－footed 208
short－tailed 208
sooty 209
yellow－nosed 209
Albicore 273， 275
Albite 333
Albula conorhynchus 107
vulpes 30，107， 457
Albulidæ 30， 107
Alburnellus 508
dilectus 508
Alburnops 503
longirostris，new species 504， 515
taurocephalus，new speeies 503， 515
xænocephalus 504， 515
Alburnus dilectus 508
Alca 243
alle 228
antiqua 228
arctica 228
cirrbata． 228
eristatella 228
impennis 211
kamtsehatiea 12
pygmæa 12
torda 228
Alcedinidæ 239
Alcidæ 40
Alcyonidium hispidum 131
Alepidosauridæ 107
Alepidosaurus borealis 457
ferox 107
Alexia myosotis 376， 379
Allauite 333
Allen，Mr 7,255
Allo 228， 243
nigricans 211， 228
Page． Page．
Allophanite 333

Alloposus 362
Allorisma 46Alopias vulpes458
Alosa sapid issima 108
33Aluco
flammeus americanus 190
Alum 333
－Sckuck333
AmalgamAmazilia225， 243
cervineiventris
cinnamomea 318
319cyanura
dumerili 318erythronota19
fuscicaudata maria319
ventris 19virdiventri
19
zzonstone 334Ambloplites8
eneus 98
Amblygonite 333
＂d⿱一𫝀口灬土163
Northeastern，additions to mariuedeseriptions of newinvertebrata of ．350
rina 56
American Rhinobatidx 16113
Amiidæ 13liparina，new species477， 478
Amiurus 513
albidus 11121
lophius 111111
nebulosus 112
niguan 111
subsp．ælurns 111
Page.
458
Ammocætes plumbeus
Ammocrypta 490
beanii 490
gelida, new species 490, 515
Ammodromus 242
caudacutus 178
nelsoni 8, 217
maritimus 2,178
var. nigrescens 217
nigrescens 2, 178, 217
Ammodytes americanus 102
(tolianus) personatus 456
Ammodytidx 102
Ampelida 239
Ampelis 242
cedrorum 175
garrulus 175
Amphibolite $33{ }^{3}$
Amphipoda $120,414,447,451,452$
Amphipods of Provincetown 117
Amphipolis elegans 132
Amphisphyra 381
globosa 382, 404, 406
hyalina 383
pellucida 382, 383, 404
Amphispiza 225, 242
bellii 180
nevadensis 180, 217
bilineata 180
Amphistichus argenteus 28, 456
Amphithoë longimana 117, 121
Amphitrite ornata 119
Amphiura squamata 132
Arachis avara 126
costulata 406
Analcite 333
Anarrhichadida 82, 477
Anarrichas latifrons 82
lupus 82, 337, 47
minor 82
Anarrhichthes ocellatns 454
Anas 242
boscas 11, 203
canagieus 227
clangula 227
cygnus. 227
dominica 15, 16, 227
fulvigula 11,203, 222
hyperborea 227
leucocephala 16
moschata 237
obscura 11, 203
var. fulvigula 222
Anatase 333
Anatidx 240
Ancula cristata 409
Andalusite 333
Anderson, Dr. C. L 153, 455
Trachypterus ? altivelis taken by 455
Prof. A.J 410Nemichthys avocettapresented by410
Angite 334
Anglesite 333
Page.
Aphredoderida 501
Aphredoderus 501
cookianus 501
isolepis 501
sayauus 501, 515
Aphriza 243
virgata 198, 230
A pocope vulnerata 462
Apodichthys 138
flavilus 139, 140, 265, 454
fucornm,new species, $139,140,265,454$sanguineus139, 140
virescens 130, 140
Apomotis 498
cyanellus $97,498,515$
Apophyllite 333
Aporrhais occidentalis 406
Aquila 243
chrysaëtus canadensis 194
pelagica 237
Arabella opalina 123
Aragonite 333
Aramidx 239
Aramus 243
pictus 202, 231
Arca 130
glacialis $401,402,405,407$
pectuuculoides 405, 407
var. septentrionalis. 101
var. septentrionalis 407
Arceuthornis 224
Archaster Δ gassizii 359
americanns 359
Flora 359
Archibuteo 943
ferrugineus 194
lagopus 213
lagopas sancti-johannis 194
Archosargns probatocephalns 22, 95
Arctus americanus 431
depressus, new species 429,451
Ardea 243
cinerea $197,221,229$
cyanirostris 235
herodias 197
luloviciana 229
occidentalis 197
rufa 226
tricolor 10,226
wurdemannii 214
Ardeidr 239
Ardetta 243
exilis 197
Argentina. 483
pretiosa 68
silus 484
Argentite 333
Argina pexata 130
Argonauta argo $359,363,403,405$
Arguerite 333
Argyreiosus vomer 89
Argyriosus pacificus 18
Argyrosomus artedi 105
artedi var. sisco 106
clupeiformis 105
Atherina .. $\quad 29$
Atherınideo 29, 103
Atherinops. 29
affinis 29, 456
Atherinonsis californiensis 456
Atthis 225, 243
ellioti 314
belois: 187, 219, 283, 314
Atwoonl, Capt. N. E 535
Auchenopterus monophthalmus 147
Andubon $2,5,7,164,224,234$
Auk, Cassin's 211
crested. 211
great 211
least 211
parrot 211
razor-billed 211
whiskered 211
Anlorhynchus flavidus 453
Aurichalcite 333
Auriculina insculpta? 381, 404, 406
Auriparus. 224, 243
flaviceps 169, 262
Autolytus cornutus 123
Antonoë grandimana 121
Auxis 532, 534
Rochei 532
on New England coast 532
A renturine
oligoclase 334 334
Avicula 359
hirundo 402
himundo? var. nitida 402, 405, 407
linguiformis 157
Arocet, Imerican 201
Arocettnla recurvirostris 316
A sinus ferruginosus 400
Sarsii 399
Axius armatus, new species 433, 4.1
serratus 435
dredged by the "Fish Hawk" 435
stirynchus 435
Ayres, Dr 297, 325, 326, 327, 353, 465note on a forgotten paper of, onthe nomenclature of San Fran-cisco Cyprinoid fishes325
Aythra 243
americana 204
rallisneria 204
Azurite 333
B.
Bagre 146
Bairdiella argyrolenca 20, 93
punctata 93
Etird and Girard 329
Baird, Prof. $1,3,6,10,13,46,163,164,256,48$
Balanoglossus aurantiacus 124
Balantium recurrum 393, 404, 407
Balanus balanoides 122
Baldpate 203
Lalistes capriscus 77
retula 77
Balistidæ 76
Bãnak. 260
Page. Page.
Barite
Baritocalcite 333 333
Barn Owl, Americau 7333
Owls
Bartram 9
Bartramia 227, 243
laticauda 227
longicauda 201
Easanite 334
Basileuterus 224, 243
bellii $174,216,220,232$
culicivorns 174, 216, 220, 222
Basilinna 295, 243
leucotis 319
xantusi 6, 188, 219, 229, 319
Basking shark 52
"Tass" 497
Bathymaster signatus 455
Bathynectes longispina 418,451
"Bat-ma" 256
Batrachidx 25, 83
Datrachus tan 83
Blellostoma polytrema 458
stouti 458
Bdelloura candida 125
Bean, Dr 17, $60,75,474,477$
Beaufort, North Carolina, new species ofCaranx from486
"Bécass" 256, 257
Bela 363, 364, 566
angulosa 365
cancellata. 363, 264, 403
declivis 365
decussata 365
clegans 365
cxarata 364, 366, 367, 403, 406
harpularia 363, 367
hebes, new species $367,403,406$
impressa? $365,403,406$
lerigata 367
mitrula 366
Pingelii 364, 403
prramidalis 40 S
rugulata 366, 403
Sarsii, new species 304, 403
simplex 367, 403, 406
temicostata 365, 403, 406
Trevelyana 365, 403
turricuia $.363,366$
violacea 406
Bellona cristata 316
exilis. 317
ornata 316
Belone 459
cantraini 459
exins. 30, 459
generic relations of 459
hians 103, 459
latimana 459
latimanus 103
longirostris 103, 459
melanochira 459
notata 459
vulgaris 459
Belonidie 103
Page.
Belonopsis leuchtenbergi 410
Denedict, Mr 132
Bermudan Fishes, Goode's Catalogue of 18
Bernicla243
barnstoni 235
brenta. 203
canadeusis. 203
hutchinsi 203
leucoparia 203
oceidentalis 203
leucolæma 235
leucopsis 203, 230
nigricaus 203
Bertheirito. 333
Berycidæ 92
Beryl 333
Bewick's Swan 222
Biotito 323
Bird, red-hilled Tropic 206
yellow-iblled Tropic 206
Birds, North Amcrican, revisions of nomen- clatare of 1
Cones's Check List of. 1
Smithsonian Cata- logne of 1
Birds of North America, Catalogue of 163
Bismuth 333
Bittern, American 197
least 197
Bittium nigrum 127
Bitumen 33
Blackbird, Brewer's 183
red-and-haff-sbouldered 182
red-and-black-shouldered 183
red-and-white-shouldered 183
rusty. 183
Savannah 190
yellow-header 182
Blackhead, little 204
ring-billed 204
Blake, J. H $125,129,132$
Blennicottus 460
Blannide? 63
Blenuiide 25, 82
Blenuioids 347
Blennius crinitus 82
regius 476
Blenuy 147
Blepharichthys crinitus 90
Elepsias 460
cirthosus 455
Blucbird 167
Californian 167
Rocky Mountain 167
Blue Shark 50
Bobolink 182
Bobwhite 190
Bodianus pallidus 20
Boeek 449
Boleichthys 495, 496, 497
chlorosoma 496
Bolcosoma 492,495
brevipinne 492
camurum 496
Page.Page.
191, 219 Bubo, virginianus arcticus
191, 220
191, 220
saturatus
saturatus 191, 219
subarcticus
219
rar. pacificus 220
Buccinum cyancum 371, 404
Grönlandicnm 371
undatum 408
Buckley, Prof. S. B 221
Buda 143,145
Budytes 224, 243
flava 170, 215, 220
Bufflehead 204
Bugula turrita 130, 131
Bulla debilis 382
Gouldii 383
hyalina 382
pertenuis 383
Bullfinch, Alaskan 176
"Bull Heads" (4 lburnops taurocephalus) 504
Bunting, Baird's 178
black-tbroated 182
blue 182
indigo 182
lark. 182
lazuli 182
Oonalaska 3
painted 182
snow 177
Tewnsend's 182
varied 182
Bnphagus 227
Burgomaster 206
Butco 243
abbreviatus 9, 194, 220, 233
albicaudatos 194, 221, 233
albocaudatus 221
bairdii. 213
bercalis 193
calurus 194
krideri 194, 2:0
lucasanus 104, 290
secorroensis 194, 220
var. costaricensis 220
var. krideri 2.0
var. lucasanus 220
var. montanus 220
cooperi 194
costariceusis 220
harlaui 194
insignatns 213
lineatus 104
lineatus elegans 194
montanus 213
exypterus 213
pennsylvanicus 194
swainsoni 194
vnlgaris $193,220,299$
zonocercus 220
Butler Unirersity, Mississippi fishes in 489
Butorides 243
brannescens 214, 237
virescens 197
Butterball 204
Cuzzard, European 193
Buzzard, turkey 195
Bythocaris sp 437
sp. nor. 451
C.
Cabanis 4
Cacosenite 333
Cadulus 395, 426
Jeffreysii $395,404,407$
Pandionis $395,404,407$
propinquus 395, 404, 407
subfusiformis? 395
Cæligena clemencix 310
hemilenca 310
henrici 310
viridipalleus 310
Cærebidx 239
Caitina moschata 237
Calamine 333
Calamospiza 243
bicolor $1 \varepsilon 2$
Calamus 286
megacephalus 9.
Calaverite 333
Cacite. 333
Calidris 24
arenaria 200
California, a new Embiotocoid fish from . . 299, 303
Platysomatichthys from. 301
ray ((L. rhina) from 251
"liock Cod" from 38
Scorpienoid fish from 320, 327
Sebastichthys from 70, 73
sparoid fish from 284
species of deep-water fishfrom305
description of a new A gonill from 60,330Embiotocoillfish from .. $\quad 320$
tlounder from 49, 154
new ray from 36
seren new Srbas-
toid fishes from 287
a new species of Hemiramuphus from 335
fishes collected at San Diego 23
new A gouoid tish from 152
Chiroid fish from 248
genus and species of fishes from 63
ray from 133
Sconeloid fishes from 273
species of Prionotus from 529
"rocktish" from 465
Scbastichthys from 142
Xiphister andApodichthysfrom...........135
notes on a species of A beona from. 299
flounders from 49
sharks of 51
occurrence of Cephaloscyllium laticeps in 40
Celifonia, occurrence of Cremnobates in. Page. 147 Caprimulgi
Page. 5
Productus gi- ganteus in.... 46
oil-shark of 42
Callianassa 161
ulrichi, new species 157, 161
Callioper (?) fuscata 127
Calliopiu* laeriusculns 120
Calliostoma Bairdii $378,404,406$
occidentale 406
Callipepla 243
squamata 197, 233
Callipharus nigriventris 318
Calliphlox amethystina. 315
Callista cunrexa 408
Caliteuthis 362
reversa 362, 403, 405
Calliurus formosus 498
melanops 498
Calocitta collici 236
Calothorax $187,219,225,233,243,314$
calliope 219
Calspte 225, 243
аипж 187, 314
costa 187, 314
helenx 314
Camaraphysema 270
a new type of sponge 269
obscura 269, 271, 272
Camarophoria 46
Campanularia flexuosa 132
Campephilus 243
imperialis 188, 213, 236
Camporlea 529
Camptolemus 243
labradorius 201
Campylopterus ensipeunis 310
hemileucurns 310
largipennis 310
l:zunlus 310
obscurus 310
roberti 310
rufus 310
villaricencio. 310
Campylorlynnchus 243
affinis. $169,215,228$
brunncicapillus 160,232
Canace 226, 243
canadensis 9, 196
franklini 196
obscura 9, 196
fuliginosa 100, 221
richardsonii 196, 221
var. fuliginosa 201
Cancer barbatus -
borealis 417, 451
irroratus 119
Cancrinite 333
Candle-fish 45, 258
of the northwest coast 257
Canvas back 204
C:olinito 333
Cape Cod (Provincetown), littoral marine faun: of 116
Caprella geometrica 117, 121
Caprimulsidse 239
Caprimulgus 5, 225, 243
albicollis 15
anericanus 15
carolinensis 5
curopeus 5, 225
nuttalli 5,220
vociferus 5,188
Caracara, Guadalupe 193
Carangida 18, 83
Carangus chrysus 18
hippos 90
pisquetus 89
Caranx beani, new species. 486, 487, 488
caballus 4.5
cibi 486, 487, 488
new species of, from North Caro-lina486, 487
Carassius auratus 111
Carboniterous brachipoda 46
Carcharinus glaucus 52, 458
Carcharodon carcharias 458
Rondeleti 52, 458
Carcinus granulatus 119
ma:enas 119
Cardellina 224, 34
amicta 224
rubrifrons 174, 216, 232
Cardinalis 243
igneus 218
virorinianus 181
igneus $181,218,232$
Cardinal, Saint Lucas 181
''exan 182
Cardium Islandicum 407
p:nuulatum 408
sp 399
sp. ind 404
sp. n. (cancellated) 407
Carduelis elegans 238
stanleyi 236
yarrelli 236
Carinaria atlantica 391, 404, 406
mediterranea 391
Carine noctua 237
Carnallite 333
Carnelian 334
Carns 280
Carpholite 333
Carpodaens 243
amplus 176, 210, 228
cassini 176
frontalis 176
hæmorthous 176, 216 213, 230
purpurens 176
purpurcus californicus 176
Carroll, Captain 44
Carter 270
Cassin, Mr 15
Cassiterite 333
Catarractes californicus 283
Catbiril 167
Catharacta skua 227

Page.
Catharista .. 226,243 atrata.................................. 195, 233 (atrata, Bartr.)....................... 9 urubu.. 9
Cathartes ... 243
aura.................................... 195
burrovianus213, 237
gryphus............................... 237
рара..................................... 237
Cathartidx.. 239
Catherpes.. . . 243
mexicanus 169, 299, 232
conspersus169, 215
var. couspersus 215
Catostomilæ.21, 110, 512
Catostomus 462, 513
ardens. new species............ 464, 465
commersonii 110
duquesnii............................ 512
fecundus............................. 463
guzmaniensis....................... 464
longirostrum........................ 110
macrochilus...................... 464
nigricans110, 513, 515
occidentalis.......................... 326, 327
sucetta 513
Cattie, S. TH 280
Catulus ventriosus.................................. 458
Caulolatilus anomalus............................ 455
princeps............................ 27
Carolina 390
inflexa............................. . . 392, 404, 40:
longirostra............................. 392
longirostris.......................392, 404, 407
tridentata . 392, 408
uncinata........................... 392, 404, 407
Cebedichthyidx...................................... 138
Cebedichthys ... 138
violacens 454
Celestite ... 333
Cenozoic invertebrate fossils from Arkausas,
Colorado, Utah, aud Wyoming 157
Centrarchidæ 19, $20,96,497$
Centrarchus.. 500
hexacanthus 500
irideus 98, 500
macropterus 500.515
pectacanthus....................... 498
Centridermichthys................................ 459
fasciatus 459
uncinatus 85, 459
Centrocercus.. 243
urophasianus 190
Centronyx.. 243
bairdii................................. 178
ochroceplalus.................... 214, 235
Ccutrophanes295, 243
lapponicus....................... 177
ornatus............................. 177
pictus 177
Centrophorns 480
Centropristis atrarius 99
Centroscymuus cœlolepis 116
Centroscyllium Fabricii............................ 116
Centu:us
243
Centarus aurifrons
carolinus 18
uroprgialis 189, 233
Cephalolepis delalandi 317
loddigesi 317
Cephalopoda $125,360,405,408$
laticeps 52, 458 California 40Page.
Cephus arra 23
Ceramiums inbrum 348
Cerapus rubricornis 448
Cerargyrite 393
Ceratacanthus aurantiacus 76
Ceratias manoscopus 469
Ceratichthys 512
amblops 512,515
liguttatus $110,512,51$.
hyalinus 51:
winchelli $.512,515$
Ceratoptera vampyrus 457
Ceratorhiua 228, $24: 3$
monoccrata 211
Cerebratulus ingens 125
roseus 125
Cerite 333
Cerithiopsis costulatus 375
Ceronia arctata 128, 408
Cerorhina sucklayi 214
Cerorhinca 228
Certhia. 243
albifrons 229
familiaris mexioana 169, 294
rufa 169
palustris 224
Certhiida 239
Certhiola 243
bahamensis 176, 231
Cerussite $33:$
Cervantite 333
Cerylo. 243
alcyon 190
americana cabanisit 190, 233
Cetorhinus maximus 52, 458
Chabasite $3: 33$
Chachalaca 195
Chanobrytus 498
gulosus 97, 498, 515
viridis 20, 97,498
Chænopsetta dentata 79
oblonga 79, 472
ocellaris 79
Chætotontida. 85
Chatura 243
pelagica 188
vanxii 188
Clalcanthite 3:3:3
Chalcedony 334
Chalcocite. 333
Chalcodite 333
Chalcopyrite 333
Challenger; I. M. S. 469
Chalybura buffoni 311
carulerventria 311

Page.

D.

Dacentrus, note on 327
lucens 327
Dacrydium vitreum 407
Dactylopterus volitans 83
Dafila 24
acuta 203
Dall, W. II 3,370
Dillia pectoralis 101
Damalichthys argyrosomus 456
racea 456
Damophila amabilis 319
Danburite 333
Daption 24
capensis 209, 230
Dareste 281
Darwin, Charles 280, 520
Dasybatidæ 31, 114
Dasybatis centrurus 1, 114
dipterurus, new species 31,457
pastinaea 31
Datholito 333
Dawson, Dr. J. W 369
Decapoda 118, 414
Decapods of Provincetown 117
Decapterus punctatus 83
"Dcep-water fish 307
De Haan 421
Do Jough 263
De Kay 501
Demiegretta pealii 214
Dempsey, Capt. William, and erew 362
Dendragapus 9
Dendroeygna 24
antumnalis 203
fulva 203
Dendræca 24
æstiva. 172
audubonii 172
blackburni» 172
cærulea 172
cacrulescens 172
castanea 172
chrssoparia $172,216,232$
coronata 172
discolor 173
dominiea 172
albilora. 172,216
var. albilora 216
graciæ. 172, 216, 232
kirtlandi 173
maculosa 172
montana 164, 173, 231
nigrescens 172
oceidentalis 173
oliracea 216
palmarum 173
hypochrysca 173,216
pennsylvanica 172
pinus 173
striata 172
townsend 172
virens 172
Dendroica carbonata 234
montana 31

Page.

385, 386
Dendronotus arborescens

38J, 404 385, 404 385, 404
clegans, hew species
clegans, hew species 386, 408
Dentalium abyssorim 394, 407
dentale 394
occidentale $394,404,407$
(slender var.) 407
striolatum 391, 408
Dowoylite 333
Dincria trispinosa 392, 408
Diallogito 333
Diamond 333
Diaphana 381, 382
conulns 38?, 404, 4:6
debilis 382
gemma 382, 404, 406
globosa 382
hyalina 382
nitidula $381,404,406$
pellucida 382
pertenuis 383, 404, 400
umbilicata 382
Diapterus gula 94
Lefroyi 94
Diasporite 333
Dyastylis quadrispinosa 451
quadrispinosus 446
Dichromanassa 296,244
rufa 10, 197
Diekhaut, Mr. II. E. 161
Diodon hystrix 75
maculatus 453
Diodontidæ 18,75
Diomedea 12,244
brachyura 208
culminata 200, 230
exulans. 214, 238
fuliginosa 297
nigripes 208
Dioplites nucceusis 497
Diplectrum fascieulare 09
Diplesinm bicunioides 100
Discina 47
Ditrema 322,456
argyrosoma 321
atripes, new species $320,321,322,456$
brevipinuo 300
furcatum $28,320,321,322,456$
jacksoni 456
lateralo 456
(Phanerodon) fureatum 3:0
temmincki 322,456
Diver, blaek-throated 210
Pacific 211
red-throated 211
Dixon 264
Dobula 460
Docimastes ensiferus 312
Dolichonyx 24
oryzivorus 182
var. albinueha 235
Dolomito 333
Domeykite 333
Dominica, new species of Chrysotis from 254
the family Turdide from 16
Page.
d'Orbigny 48
Doricha bryantæ 315
clizæ 315
enicura 219, 315
evelyus 315
lyrura 315
Dorippe spinifrons 420
Doris complanata 386, 404, 406
Johnstoui 386
plauata 386
Dormitator 83
Dorosuma 502
сереиіаиа 502
suosp. heterurum 502
cepediaum 109, 502, 515
Dorosomidæ 109
Dove, blue-headed 195
ground 195
Key West 105
mourning. 195
scaled 19.
sea 211
socorro 195
white-fronted 195
white-winged 195
zenaida 195
Dovelie 211
Drepano(p)setta platessoides 471
Dryobates homorus 235
hyloscopus 235
Duck, black 203
black-bellied tree 203
black maskcd 205
Florida black 203
fulvous tree 203
harlequin 204
Labrador 204
long-tailed 204
ruddy 05
scanis 04
sammer 04
suri 205
Steller's 20
wood 204
Dufreuite 333
Duméril 53, 353
Duncan, Rev. Mr 258
Duulin, Europeau 200
Dussumicride 107
Dytes 228, 244
auritus 210, 230
californicus 210
cornutus 210
E.
Eagle, bald 194
caraeara. 193
golden 194
gray 194
gray sea. 195
harpy 194
Earll, Mr. I. E 69
Lchencididre 18, 102
Echencis unucrates 18,456
naucratcoides 102
Echinode mata 131
of northeastern coast of Amer. ica 350
Ectopistes 24
misratoria 190
Edwards, V. N 302, 393
Edwardsia pallida 117,182
sulcata. 117, 13:
Eels, male, genitalia of, and their sexual characters 280
Egret, American 197
Peale's 197
Eider, American 205
common 204
Fischer's 204
king 205
Pacific 205
Elaninea martinica 256
Elanoides 226, 24
forficatus 193
Elanus 244
glaucus $.193,233$
Elassoma 500
zonatum 500, 515
Elassomatidæ 500
Electra pilosa 131
Eleotris 83
"Ella M. Johnson" seeing Auxis. 534
Elliot, Dauiel Giraud 308, 309
Elopidæ 107
Elops saurus 107
Elvira chionura 318
сиргеісеря 318
Emberiza americana 3, 4, 295
bilineata 2.5
coceinea 225
lappouica 225
melanocephala 4
schoniclus 236
rnalaschcensis 3
Embernagra. 24
rufivirgata 181, 232
Embiotaca 1.56
argsrosoma 321,456
jacksoni 28, 88
Embiotocide 28, 88, 453
Embiotocoil, description of a new 999
notes on a species of, related to
Abeona aurora 299
Embiotocoid fish, a wew Californian speciesof303,320
Embiotocoids 304
Embletonia fuscata 117,127
Embolito 333
Emerald 333
Emerton, Mr. J. II 79, 387, 391
Empidonax 24
acadicus 186
difticilis 186
flaviventris 183
fulviltous 187,218, 2:!
pallescens 187, 1
frammonel 106
mivimus 186
obscurus 187
Page. Page.
Erismatura rubida 205
Erubescito 333
Erythrite 333
Escharipora punctata 131
Esocide 104
Esox americanus 104
lucius 104
nobilior 104
reticulatus 104
Etheostomatide $100,480,490$
Ethusa granulata 419
miscarone 419
microphthalma, new species 410, 451
sexdentata 419
Etrumens teres 107
Encephala cervlea 319
grayi 319
Eucheilodon 150
creno-carinata, new species. 150
Ensatella ,
$124,128,130,408$
Enstatite 333
Enteropneusta 124
Eutomostraca 116
Entosphenus tridentatus 458
Eoceue mollusca, new species of 149
Eone gracilis 123
Epelss trilobus 122
Ephippiidx 101
Ephippus zonatus 456
Epidote 333
Epimeria cornigera? 448
lericata 447, 451
Epiuephelus guttatus 99
morio 99
sp. ? 22
striatus 99
Epizoanthos 426, 428
americanus 358, 426, 428
Epsomite 333
Eremophila 244
alpestris 185
(hrysolriua 18j, 218
lencolama 185, 218
cormuta var. chrrisolæma 218
Ereunetes 04
occirlentalis 22
petrificatus. 250
pusillus 200
occidentalis 200,293
Ergaticus 294, 244
ruber $174,299,232$
Ericthonius difformis 448, 451
Ericymba 507
buccata 504, 507, $51 \overline{3}$
Erimyzon 513
goodei 21
sucetta $110,513,514,515$
Eriocnemis alinæ 317
antelize 317
cupreiventris 317
derbiana 17
luciani 317
lugens. 317
vestita 317
Erismatura $15,15,24$
Page.
Eurypanropus 529
Euspina 4
Euspira 142
Euspiza 4
Eustepbanus galeritus 313
Eutoxeres aquila 308
Euxenite 333
Exocotus californicns 457
Exoglossum maxillingua 111
F.
Fabricia Leidsi 124
stellaris 124
Facelina 389
Bostoniensis 389, 404
corouata 389
Drummondii 389
elegans 389
pilata 389, 404
Falco 24
æsalon 220, 226
albisularis 192, 229
caulicans 296
columbarius, var. Suckleyi 290
communis, var. Pealei 220
femoralis 226
furcatus 226
fusco-carulesceus 8,296
harpyia 226
(Hypotriorchis) richardsonii 220
nigriceps 213
obsoletus 220
peregrinus nævius 192
regulas 26192, 220
sacer 220unicinctus
226
*nieimeta.
urnbitiuga 226
zonurus 226
Falcon, American peregrine 192
aplomado 193
chestuut-thighed 192
Peale's 192
prairie 192
Falconidex 239
Fanna, littoral marine, of Provincetown 116
I enestella 46
Fergusonite 333
Fibrolite 333
Fierasfer 535
Finch, aleutian rosy 176
Bachman's 180
black rosy 177
black and white seaside 178
brown-capped rosy 177
Californian purple 176
Cassin's purple 176
cinereons, of Pennaat 3
\bullet 176
grass 178
gray-crowned rosy 177
gray-headed rosy 177
Guadalupe house 176
house 176
lark 178
Page.
Page.
Fulica 244
americana 202
martinica 297
Fuligula nigra 237
Fulix 15,244
affinis 204
collaris 204
marila 204
Fulmar, griant 209
Pacific 209
Todger's 209
slender billed 209
Fulmarus 11, 12, 244
glacialis 209
pacificus 209
rodgersi 209, 223
rodgersii 223
Fluorite 3.3
Flustrella hispida 131
Flycatclıer, Acadian
180
ash-throated 167
buff-breasted 187
Cones's 186
fork tailed 185
fulvous 187
Giraud's 186
great-crested 186
Hammond's 186
Henshaw's 186
Lawrence's 186
least 186
little 186
Mexican great-crested 186
olive-sided 186
rose-throated 87
scissor-tailed 185
small-billed 187
small-headed 174
thick-billed 187
Traill's 186
rermilion 187
western vellow-bellied 186
Wright's 187
yellow-bellied 186
Fly-fish 145, 146
Foraminifera $116,270,356,358$
Forbes, Prof. S. A 492, 501, 511
Forster 3
Forsterite 333
Fossils, new invertebrate, from Arkansas, W yoming, Colorado, and Ctah 157
Fostcr. Hon. J. W 140
Fuwlerite 333
Franklinite 333
Fratercula $12,228,244$
arctica 211
glacialis 211, 230
corniculata 211
Fregetta 24
grallaria 210, 230
Frigate mackeril 535
Fringilla americana 4
bicolor 4
cinerea 3
mortonii 236
texensis 299
tristis 295
zea 4
Fringillidx 239
Fuca Straits, new species of Paralepis from 411
Fucus 139, 140
Page.
206
Gannet, blue-faced 206
Gardner, Mr. Frederick, jr 338
Garman, Samuel 486, 516
Garnet 33:3
Almandito 303
Grossularite 333
inclusions 334
Melanite 333
Ourarorite 333
Prropite 333
Spessartite 333
Garrulus bullockii 236
californicus $22 \overline{3}$
Garrupa. 146, 291
red 146
spotted 146
(vera) 146
Garzetta 244
candidissima 197
Gastcropod, fossil. from Pueble, Mexico 140
Gasteropoda 125,159
Gasterosteido. 77
Gasterostens aculeatus 77
(aculeatus) serratus 453
microcephalus 453
pungitius 77
subsp.brachypoda 77
Gastrepoda $363,406,408$
Gebia affinis 117, 120
Gellenite 333
Gelasimus pugilator 118
pugnax 118
Genthite 333
Genyonemus lincatus 456
Geucoccyx 24
californiauus 190
Georgia, occurrence of Stricklandinia salteri and davidsoni in 48
Geothlypis 44
æquinoctialis 236
macgillivrayi 173
philadelphia 173
trichas 173
velatus 213, 236
Geotrygon 206, 244
martinica 195, 231
sylvatica 226
Gephyrea 124
Gerres plumieri 17,19
Gerrida 19, 94
Geryon quinquedens 417, 451
Getchell, Capt.John Q 435
Geyserite 333
Gibbons, Dr. WV. P $325,3 \geq 6$
Gibbonsia elegans $25,147,454$
Gibbsite 333
Giglioli 12
Gila 461
grandis 327
microlepidota 3n 6
Gilbert, Charles H $23,34,36,38,40,42,49,51,53$,$70,73,133,135,142,152,154,251,273,276$,$287,299,301,303,305,320,322,327,350$,$335,352,353,409,411,452,459,465,487$

Page.
Gilbe:t, Mr. G. K 47
Gill, Dr. Theodore ..50, C3, 138, 140, 247, 287, 297, 302,$325,332,353$
on Leeurynnis and Lyeo-dopsis247
Gillichthys mirabilis 25, 455
Gilpatrick, Capt. Briggs 535
Girard 68, 297, 325, 496
Giraud, Jacob P 164
Girella niguicans 27, 456
Glauberite 333
Glaucidiun 244
ferrugineum 220
gnonia 192
phalenoides 192, 220, 233
Glancis xnea 308
cervinicauda 308
hirsuta 308
ruckeri 308
Glauconome leuconis 448
Glockerito 343
Glyphidodon saxatilis 87
Glsptocephalus 344
cynoglossus 8, 3.37, 475
zachirus 453, 531
Gmclin 3
Guatcatcher, black-capped 168
hue-gray 1 188
plumbeous 168
Gnathia cerina 450, 451
Goatsucker, parauque 188
Gobiesox reticulatus 265,454
Gmbiida 25,83
Gobiosoma alcpidetum 22
Gobins 348
glaucofrenum 455
soporator 83
Godwit, black-tailed 200
Iludsonian 200
marbled 200
Pacitic 200
Gocthite 333
Gold 333
Golden-eye, American 204
Barrow's 204
Golden Plover, American 9
Goldfinch, American 177
Arizona 177
black-headed 177
green-backed 172
Lawrence's 177
Mexican 177
pine 177
Gonatus amcenus 362, 403
Goniada gracilis 123
Goode, G. Brown , 532
describes Notacanthusphasganerns535
Goose, American white-fronted 203
barnacle 203
blue-winged 202
Canada 203
emperor 203
European white-fronted 203
Hutchins's 203
Goose, larger white-cheeked
lesser snow 202
Ross's snow 203
snow 202
white-cheeked 203
Goshawk, American 193
Mexicau 194
western 193
Grackle, boat-tailed 183
bronzed 1×4
Florida 183
great-tailed 183
Mexicau boat-tailed 183
purple 183
Gracula pyrrhocorax 11
Graculus 11
bairdii 292
bicristatus 223
Grand Banks, new species of Notacauthus from 535
Graphite 333
Gray 10
Grebe, American eared 210
American red-necked 210
Clark's 210
eared 210
horned 210
St. Domingo 210
thick-billed 210
western 210
Greenebaum, Captain 59
Grecnockite 333
Green-shank 200
Grosbeak, black-headed 182
blue 182
cardinal 181
ovening 176
pine 176
rose-breasted 182
Grossmlarite 333
Ground shark 52
Grouper 291
Grouse, Canada 196
common sharp-tailed 196
dusky 196
Franklin's 196
gray ruffed 196
northern sharp-tailed 196
Oregon ruffed 196
Richardson's 196
rufted 196
sooty 196
Gruidæ. 239
Grus 24
americana 202
cauadensis 202
fraterculus 202
Guan, Texan 195
Guillemot, black 212
black-throated 211
Brunnich's. 212
California 212
common 212
Craver's 212
Kittlitz's. 211
Page. 203 203
Guillemot, marbled 211
pigeon 212
short-winged 212
sooty 212
Temminck's 211
thick-billed 212
Xantus's 211
Guiraca 244
cærulea 182
var. enrhyncha 235
Gull, American herring 207
Bonaparte's 207
Californian 207
Franklin's 207
glaucous 206
glancous-winged 206
great black-backed 207
Hecrmann's 207
herring 207
ivory 206
kittiwake 206
laughing 207
mew 207
Pallas's herring 207
ring-billed 207
Ross's 207
Sabine's 207
short-billed 207
Siberian 207
skua 208
swallow-tailed 207
western 207
white-wingerl 206
Günther, Dr. Albert....... 19, 31, 42, 53, 147, 274, 275,
$280,300,350,353,456,459,518,531$
Gymnacanthus 460
pistilliger 85
Gymnocitta 225, 244
cyanocephala 184
Gymnothorax mordax 30
Gyparchus papa 237
Gypsum 333
Gyrfalcon, Iceland 192
Labrador 192
McFarlane's 192
white 192
Gyranlns 159,160
H.
Hadropterus 491
nigrofasciatus 491
spillmani, new species 491, 515
Hadrostomis 225, 244
aglaiæ 187
Hamatopodidæ 239
Hæmatopus 244
ater 214,237
niger 198
ostralegus 198, 221, 229
palliatus 198
townsendii 237
Hamylum 96
flaviguttatus 96
xanthopterum 06
Hake, lescription of new, from SoutbCarolina 69

[^67]

1
Page.
Halatractus zonatus 91
Haliæëtas 226,244
albicilla 195,220
leu̇cocephalus 194
Haliaëtus pelagicus 213, 237
Tashingtonii 213
Halieutra. 467
senticosa 467
stellata 468
Halientichthys 467, 468
aculeatus 467
reticulatus 467
Halisarca 270
Halite 333
Haloçptena 227, 244
microsoma 210, 293, 227
Halodrillus littoralis 12.
Haloporphyrus viola 81,476
Halopsyche, new generic name 393
globulosa 393, 404
Haplochilus melanops 501
Haploidonotus grunniens 94
Haploops setosa 448, 451
Harclda 244
glacialis 204
Harford, W. G. W 66, 307
Harger, Mr. Oscar $117,118,119,120,125,355$,301, 393,526
Harmothoe imbricata 122
Harmotomite 333
Harperhynchus 244
cinereus 167, 214, 298
beudirei 167, 214crissalis . .-..................... 167
curvirostris 167, 232
palmeri 167,215
var. palmer 215
grajsoni $167,215,228$
longicauda 213
redivivus 167
lecontei 167
rufus 167, 213
longirostris 167, 232
retula 213
Haucrite 333
Hausmannite 333
Hanyuite 333
Howk, American rough-legged 194
broad-winged 194
Cooper's 193
Cuban sparrow 193
duck 192
fish 193
Gruber's 194
Harlan's $10 t$
Harris's 103
Isabelline sparrow 193
Krider's $19!$
marsh 193
Mexican black 194
pigeon 192
red-bellied 104
red.shouldered 104
red-tailed 193
sharp-shinned 193
Hawk, sparrow
Page. 193Swaiuson's
white-tailed194104
zone-tailed 194
Hawk Owl, American 8
Europeau 8
Hayden, Dr 157
Haydenite. $3: 3$
Hay, O. P., Mississippi fishes described by 488
Hedenbrgite 304
Hedymeles melanocephalns, var. capitalis 235
Heilprin, Angelo 149
Hela 448
Heliactin cornuta 314
Heliangelus clarissae 31:
strophianus 313
Helianthea bonapartii 312
lutitia 312
typica 312
Helinaia 2, 2.4
Helioduxa jacula 312
jamesoni 312
leadbeatcri 312
Heliomaster furcifer 313
Heliopedica castancocauda 219
Heliornis fulica $2: 7$
surinamensis 2.7
Heliothrix auriculatus 316
auritus 316
larroti 316
Heliotrope 3.4
Heliotrypha exortis 313
Helix 160
eranstonensis 160
(Patula) sepulta, new species 160
Helminthophaga 244
bachmani 171
celata 171
lutescens 171, 215
rar. lutescens 215
var. obscura 234
chrysontera 171
lawrencei 71, 215
leucobronchialis 171, 215
luciae $171,215,232$
peregrina 171
pinus 171
ruficapilla 171
var. sutturalis. 234
Tar. ocularis 234
virginize 171
Helmitherus 2, 244
vermivorus 111
Helonæa 2,224, 244
swainsoni 2,171
Helvinite 333
Hematite 333
columnar 393
compact 333
micaceous 333
ochreous 333
specular 333
tabular 333
Hemilepidotus 460
Gibbsi 434

Hnmmingbird, broad-billed 188 Hyperprosopon argenteus Page.broad-tailed 187
buff-hellieal 187
calliope 187
Costa's. 187
Heloise's 187
lacifer 187
refulgent 187
Rieffer's 187
ruby-tbroated 187
rufons 187
Xantus's 188
Humming birds 308
Huro nigricans 497
Huxley 415
Hyaleba inflexa 392
lungirostris 392
uncinata 392
Hyale littoralis 120
Hyalinœcia 358
artifex, new species 357, 375
tubicola 357
Hyas coarctatus 414, 451
Hyatt, Professor 125
Hyboguathus 503
argyritis 503, 515
Hybopsis 503
amarus 110
egregius 461
tuditanus 503, 504
winchelli 512
xenocephalus 504
Hyborhynehas 502
Hydranassa
502, 503, 504, 514, 515 notatu 226, 244
tricolor 10
ludoviciana 197
Hydrargyra majalis 105
Hydrochelidon 244
lariformis surinamensis 208
leucoptera 208, 223, 230
Hydroids 117
Hydroides dianthus 124, 126
Hydromagnesite 334
Hydrotalcite 334
Hylocichla $.223,224,244$
alicio. 166
fuscescens 166
mustelina 166
unalashkio 166
audubonii 166
pallasi 166
ustulata 166
swainsoni 166
Hylocharis cyanea 319
sapphiria 19
Hylotomus 24
pileatus 189
scapularis 237
Hyodon 501
selenops 501, 515
tergisus 107
Hyodontidæ 107, 501
Hypentelium nigricans 110, 513
Hyperprosopon arcuatum 28
Hyperstbenite 334
Hyphalonedrus, new genus 483
chalylveius, new species.. 483, 484
Hypleurochilus gentilis $25,147,454$
Hypolia arctoa 236
Hypomesus olictus 68
olidus $43,68,258,457$
Hypsicometes, new gemus 338,347
gobioides, new specics 337, 338,
Hypsilepis cornutus 348, 477 506Hypsopsetta guttulataHypsurus Caryi23, 453
456Hypsypops rubicundus
455
Hysterocarpus traskii 327
1.
Iache 225, 244
doubledayi 319
latirostris 319
Tbacus 429
rbidida 239
Ibis, glossy 198
scarlet 198
white 198
white-faced glossy 198
wood 197
Ibis thalassinus 214, 235
Icelus 460
Ichthelurus punctatus 111, 513
Icichthys, new genus 305, 3 f 8
lockingtoni, new specips 305,455
a new Califormian deep-water fish.. 305
Icosteidæ 307
Icosteus, new genns 63, 305, 306, 307, 308
ænigmaticus, now species .63, 306, 307, 45.3
Ictalurus 513
cœrulescens 513
ponctatus 513, 515
Ycteria 244
virens 173
virens longicauda 173
Ycteridx 239
Icterus 244, 351
audubonii 183, 233
bullocki 183
cucullatus 183, 233
description of a new West Indian spe- cies of 351
galbula 183
melanocephalus 236
oberi, new species 351
parisorum 183, 233
spurius 183, 214
spurius var. affinis 214
vulgaris 183, 231
wagleri 183, 229
Ictinia 244
subcærulea 193
Idocrase 334
Idotea irrorata 121
phosphorea 122
tricuspidata 121

Page.
Idus melanotus 111
llmenite 334
Ilyanassa obs.aleta 125
Iudian River, Florida, fishes from 18
Indians, Chinook 44
Quillehute 43, 45
Invertebrata, marine, of northeastern coast of America......... 356 56notice of recent addi.
tions to. 356
descrintions of newgenera and speciesf356
critical remarks on 356
Todyrite 334
Iolema frontalis 312
Iolite. 334
Ionornis 11, 227, 244
martinica 11, 202, 231
Iridosmine 334
Iron (meteoric) 334
Isopoda 121, 450, 451, 45
Isopods of Provincetown 117
Isurus 51
glaucus 51
oxyrbynchus 51, 458
J.
Jabira 197
Jacana, Mexican 201
Jack-fish 145
Jacoby, Dr. L 282
Jæger, long-tailed 208
pomarine 208
Ricbardson's 208
Jæra allifrons 121
copiosa 121
Jamesonite 334
Janira alta 450, 451
Jasper 334
Jily, Arizona 185
black-headed 184
blue 184
blue-fronted 184
brown 184
California 185
Canada 185
Couch's 185
Florida 184
green 18.
long-crested 184
Oregon 185
piūon 184
smoky-fronted 185
Steller's 184
white-headed 185
Woodhanse's 184
Jeffersite 334
Jeffersonite 334
Jeffreys, Mr 381, 383, 392, 394
Johnson, Capt. G. A 417
Johnson 480
Jordan, David S .. 17, 22,23, 34, 36, 38, 40, 42, 49, 51 $53,70,73,133,135,142,152,154,264,273$, $276,287,292,301,303,305,320,322,325$,
Jordan, David S.-Continued. $327,330,335,352,409,411,452,459,465$, $477,478,486,489,490,491,492,496,497$, $498,499,502,504,505,506,507,513,514$
Jordanella tloridæ 17, 20
"Joshua Riggs" taking Auxis 534
Juliamyia feliciana 319
typica 319
Julidæ 525
Julus. 528, 520
Junco 165, 244
aikeni 179, 217
annectens 179, 217
caniceps 179
cinereus 180, 232
dorsalis 179
hyemalis 179
hyemalis var. aikeni 217
insularis 180, 217, 228
oregonus 179

Page.

Jordan, David S.-Continued.
$327,330,335,352,409,411,452,459,465$,
K
Kaup, Dr 14
Keating, Mr. A. C 52
Kennerlia glacialis 97, 404, 407
Kermesite 334
Kestril, European 193
Killdeer 198
Kinglird 185

Cassin's

Cassin's 185 185

[^68]Couch's
Couch's 185 185
-
-
gray 185
western 185
Kingfisher, belted 190
Texan 190
Kinglet, Cuvier's 168
dusky 168
golden-crowned 168
rahy-crowned 168
western golden-crowned 168
Kite, everglade 193
Mississippi 193
swallow-tailed 193
white-tailed 193
Kittiwake, Pacific 206
red-legged 206
Klais guimeti 317
Klakistokar 45
Knot 199
Kröyer 45
Kumlien, Mr. Ludwig 46, 222
I.
Labidesthes 29
Labracidæ 101
Labradorite 334
Labridæ 29, 86
Labrosomus muchipinnis 82
Labrus pallidus 20
Lacuna vincta 126
Lævicardium mortoni 129
Lafresnaya flavicaudata 311
gayi 311
Lagodon rhomboides 19, 22, 95
Lagopus 244

[^69]

 ,

[^70]\square
\square

Lagopus albus 196
americanus. 214196
leucurus 196
rupestris. 196
Lake trout 460
Lambrus hyponevs 417
Pourtalessii 415, 417
verrillii (new species) 415,451
Lamellaria 373
latens 77
pellucida $372,404,406$
perspicua 372,373
Lamellibranchiata 128, 396, 407, 408
Lamellidoris muricata 889
Laminaria 389
Lamna cornubica. 355,458
spallanzaní 51
Lampomis dominicus 311
gramineus. 311
mango. 213, 236, 311
prevosti 311
violicauda 213, 236, 310
viridis 311
Lamprolæma rhami 310
Lampronetta 244
fischeri 204
Lanarkite 334
Langley \& Co., Messrs 258, 262
Laniitio 239
Lanins 225, 244
borealis 175
elegans 236
excnlitor 295
lahtora 213, 236
ludoricianus. 175
excubitorides 175
robustus 175, 216
Lanivireo 224, 244
flavifrons 174
solitarius 174
cassini 174
plumbeus 174, 216
Lapis lazuli 334
Lapwing 198
Larco, Mr. A 38, 41
Laridæ 40
Lark, meadow 183
Mexican mealow 183
shos:e 185
shore 185
sky 185
western meacow 183
white-throated shore 185
Larus 24
affinis 11, 207, 223, 230
argentatus 11, 207
snithsonianus 207, 223
atricilla 207
brachyrhynct us 11, 207
borealis 223
cachinnans. 11, 207, 223
californicns 11, 207
canus 07, 223
capistratus 238
catarractes 227
Page.
Laru ychalcoptorus 214
delawarensis 11, 207
franklini 207
fuseus 237
glaucescens 200°
glaucus 206
heermanni 207
leucopterus 206
mariuus. 207
minutus 238
occidentalis 11,907
philadelphier 207
smithsonianus 223
suckleyi 214
Latilidæ 27, 92, 482
Latriellia elegans 4:9,4 1
Lanmontite 334
Lavinia giobosa 326
Lawrence, Mr. George N13, 15, 16, 220, 351, 354
Loxia curvirostra americana 170
Lazulite 334
Leather-side minnow 460
Leda acuminata 401
acuta 401
messanensis 401
pernula 401, 405
tenuisulcata. 401
unea 401, 405, 407
Leodice 358
Norvegica 358
polybranchia, new species 358
vivida. 358
Leonardo, Vicente 40
Leonhardite 334
Lepas fascicularis 122
Lepeta 375
Lepetella 375
tubicola $375,404,406$
Lepidogobius gracilis 455
newberryi 455
Lepidolarynx mesolencus 313
Lepilolite 334
Lepidonotus squamatus 122
Lepidopsetta 325
bilineata................ $276,278,325,453$isolepis, new species 278, 325umbrosa............................ 325
Lepidosteidæ 113
Lepidosteus ossens 22,113
platystomus 114
Lepiopomns incisor 498
obscurns 498
pallidus 498
Lepomis 498
apiatus 20
auritus 97
fallax 499, 515
megalotis 499
obscurus 498, 515
pallidus 9, 515
punctatus 20, 98
Lopralia americana 131
Pallasiana 131
Loptocberlia algicola. 117, 122
сжса 117

Pago.
Lophornis ornatus 315
stictolophus 315
verreauxi 315 315
Lophertyx 245
californica 197
clegans 237
gambeli 197, 233
Loripes lens. 400, 404, 407
Lota maculosa 81
Lovén. 381, 383
Lovenella metala 375
whiteavesii 375, 404, 406
Lowe, Rev. R. T 470
Loxia 225, 245
atrata 334
canora 225
curvirostra 295
mexicana 176
levisoptera. 176, 234
ludoviciana 225
pityopsittacus 236
pyrrhula 225
Lucina 158
filosa 408
profunda, new species 158
Luidia elegans 359
Lumbriconereis 123
Lambricus 529
Lumbrinereis fragilis 123
tenuis 123
Lumpenus anguillaris 454
Lunatia 141, 142
gröulandica 401
heros 126
heros var. triseriata 408
heros var. (wide umb.) 408
levicula, new species 371, 404, 406
дапа. 71, 404, 406
Lunda 228, 245
cirrhata 12, 211
Luray Cave, Virgiuia, blind myriapod from. $5 \cdot 4$
Luscinidio 239
Lutjanus Blackfordii 96
caxis 19, 96
Luxilus 506
analostanus 506
chickasavensis, new species 506, 515
cornutus $110,506,514,515$
Lycodes 247
pacificus 247, 248, 454
paucidens 454
paxillus 477
Vahlii 82
Verrillii 337, 477
Lycodidie 82, 477
Lycedopsis 24
identical with Leurynnis. 247
pacificus 248
paucidens 248
Lyonsia, hyalina 128
Lyonsiella abyssicola 396, 397, 404, 407
gemma, new species 396, 404, 407
Lyreidus Bairdii $420,451,452$
tridentatus 421
Lysiopetalidæ 524, 525, 526
Page.Lysiopetalids
525
Lysiopetalum 525, 526
Lysiosquilla armata $446,451,452$
spinosa 446
Lythruri 511
Lythrurus 508, 509, 510, 511
atripes 511
diplæmius 509
lirus 509
M.
Machæroplax bella 378, 474
obscura 408
varicosa 378
Machetes. 227, 245
pugnax. 200, 230
Mackerel, frigate, in West Indies 533
Great Britain 533
Bermudas 533
on New England coast 532
Macema sabulosa 408
Macrocystis 139
Macrorhamphus 245
griseus 199
scolopaceus 199
Macrura $429,451,452$
Macruridæ 80,475
Macrurus 535
atlanticus 346
Bairdii. $80,337,346,475,476$
carminatus $337,338,346,475$
cœlorhyachus 346
Fabricii 80,475
rupestris 475
Mactra holmesii 158
solidissima 128
Madsen, Peter 461, 463
and sons 459
Magnesite 334
Magnetite 334
inclusions 334
Magnolite 334
Magpie, black-billed 184
European 4
jellow-billed 184
Malachite 334
Malacolite 334
Mallard 203
Mallotus villosus 43, 105
Maltheidx 467
Mancalias uranescopus 469
Man-eater shark 52
Manganite 334
Mangelia. 368
Mauta americana. 457
birestris 457
Marcasite 334
Marchard 264
Магеса. 245
americana 203
penelope 203, 231
Marganita argentata 383
lamellosa 378, 404.406
new species 378
olivacez 383

Page．
Mycteria americana ．．．．．．．．．．．．．．197，221，226， 233
Myctopham．．275， 483 crenulare，new species．．．．274，275． 457 procellarum．．．．．．．．．．．．．．．．．．．．．．．．． 457
Myiadestes．． 245 genibarbis．．．．．．．．．．．．．．．．．．．．．．．．．．． 256
townsendi ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 167
Myiarchus ．．． 245
cinerascens ．．．．．．．．．．．．．．．．．．．．．．．．．13，14， 186
cooperi．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13， 14
crinitus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14,186
erythrocercus．．．．．．．．．．．． 14
erythrocercus．．．．．．．．．．．．．．．．．．．．．．．．13，15 var．cooperi ．．．．．． 14
lawrencei ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．186， 229
mexicanus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13， 186
oberi ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．13，15 15
stolidus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14
yucatanensis ．．．．．．．．．．．．．．．．．．．．．．．．． 13
Myiodinastes．．．225， 245
luteiventris．．．．．．．．．．．．．．．．．．．．．．． 186,218
Myżodioctes ．． 224
bonapartei．．．．．．．．．．．．．．．．．．．．．．．．． 213
minutus ．．．．．．．．．．．．．．．．．．．．．．．．． 234
pusillus var．pileolata ．．．．．．．．．． 216
Myiozeta．． 225
Myiozetetes．．．225， 245
texensis．．．．．．．．．．．．．．．．．．．．．．．．186，218， 229
Myliobatidæ ．． 31
Myliobatis califurnicus．．．．．．．．．．．．．．．．．．．．．．．．．．．． 31,457
Myloleucus．． 507
Myriapod，blind form of，from Virginia ．．．． $5 ⿰ ㇒ ⿻ 土 一 𧘇$
Myriapods，list of North American．．．．．．．．．． 594
of the family Lysiopetalidæ ．．．． 524
Myrichthys tigrinus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 457
Myriolepis（chiridæ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 248
new genus ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 248
zonifer，new species．．．．．．．．．．．．．．．243， 455
a new Californian chiroid
tish．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 248
Myrtis fanny．． 315
Mysis arctica ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 445
stenolepis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 120
Mytilus edulis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 130
Myxine glutinosa ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．116，337， 486
Myxinidæ．． 16,486
Myxostoma macrolepiduta．．．．．．．．．．．．．．．．．．．．． 110
macrolepidotum subsp．du－ quesnii

512
Myzopsetta ferruginea．．．．．．．．．．．．．．．．．．．．．．．．．．．． 472
rostrata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 472
N．
Nanostoma
．492， 493
elegans，new species ．．．．．．．．．．．．493， 515
zonale．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．492， 515
Nassa－．．． 125
nigrolabra，new species．．．．．．．．．．371，404， 406
Natica clausa ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 408 pedernalis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 142
præ－grandis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 142
Naticidæ．． 141
National Museum，Mississippi fishes in ．．．． 489
Natrolite．．． 334
Nautichthys ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 460

Neah Bay，two new species of fishes from ．． 264
Ascelichthys rhodorus from．．．．． 264
Scytalina cerdale from ．．．．．．．．．．． 204
Nectris amaurosonia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 223
tenuirostris ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 223
Needle－fish ．．． 459
Nelson，Mr．E．W．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3， 222
Nemertes．．． 125
Nemertina ．．． 124
Nemichthyidæ ．．． 484
Nemichthys．． 409
arocetta，new species．．．．．400，410， 457
from Puget
Sound．．． 409
scolopaceus ．．．．．．．．．．．．．．．．．．．．．410，484
Neoclinus Blanchardi ．．．．．．．．．．．．．．．．．．．．．．．． 454
satiricus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 454
Neacorys．．． 245
spraguei ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 171
Neshela，new generic name ．．．．．．．．．．．．．．．．．． 448
monstrosa ．．．．．．．．．．．．．．．．．．．．．．．．448，449， 450
phasma，new species ．．．．．．．．．．．．．． 448,451
Neoliparis mucosus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 454
Nephelite ．．． 334
Nephrops ．．．481， 433
norvegicus．．．．．．．．．．．．．．．．．．．．．．．．．．．． 433
Nephropsis．．． 432
aculeata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．451，452
aculeatus，new species．．．．．．．．．．． 431
stewarti ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 431,432
Nephthys ciliata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 123
Neptunea arata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 370,406
cxlata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 406
decemcostata ．．．．．．．．．．．．．．．．．．．．．．．． 406
glabra ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 370
propinqua．．．．．．．．．．．．．．．．．．．．．． $370,404,400$
руgтха ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 370
（sipho）arata，new species ．．．．．．370，404 cælata，new species ．．．．． 369,403
propinqua．．．．．．．．．．．．．．．．．．．． 370
stimpsoni ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 370,408
Nereis limbata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 123
virens．．． 123
Nesbitt，George F．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 104
Nettion ．． 245
carolinensis．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 204
сreсса ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．204， 230
Neverita duplicata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．126， 408
New England，crustacea dredged off south
coast of．．．．．．．．．．．．．．．．．．．．．．．．．． 413
deep－water fishes from．．．．．．．．．．．．．．．．．．．．．．． 467
frigate mackerel from．．．．．．．． 532
mollusca recently added to
the fauna．．．．．．．．．．．．．．．．．．．．．．．．． 405
southern，new deep－water
fishes from ．．．．．．．．．．．．．．．．．． 337
Page.
Newfoundland, new spxies of Notacanthus from Graud Banks of. 535Page.
New Mexico a new cretaccons Pinnafrom. 47
Newton, Protezsor 2, 7
Nicolea simplex 124
Nicholls, Dr. H. A. Alford 255, 556
Nighthawk 188
Cuban 188
Texan 188
western 188
Nitre 334
Nocomis winchelli 512
Nomonyx, new genus 15, 227, 245
dominicus 205, 231
Nonpareil 182
Noraculite 334
North America, birds of 164
North Carolina, occurrence of Phycis re- gius in 69
Notacanthus 535
phasganorus, new species 535
Notemigonus 512
americanus 111
chrysoleucus..... .507, 510, 512, 514, 515
Nothonotus. 493
Nothria 358
conchylega 358
Notomastus filiformis 124
luritus 123
Notorbynchus borealis 353
maculatus 353, 458
Notropis 509
atherinoides 508
lirus 509
matutinus 509
Noturus 514
exilis 112
gyrinus 112, 514, 515
insignis 112
leptacanthus? 514, 515
marginatus 112
Nucula delphinodonta 407
proxima 408
Nudibranchs of Provincetown 117
Numenius 245
borealis 201
femoralis 10, 222
hudsonicus. 201
longirostris 201
phæopus 201, 222, 230
tahitiensis 10, 201, 222, 230
Nutcracker, Clark's. 184
Maximilian's 184
Nuthatch, brown-headed 169
pigmy 169
red-bellied 169
slender-billed 169
white-bellied 169
Nyctale 245
acadica 191
albifrons 213
tengmalmi richardsoni. 191
Nyctea 245
scandiaca 192
Nyctherodius 245
Oncorhynchus quinnat 106
tshawytcha 457
Onos cimbrius 476
(Rhinonemus) cimbrius 81
Onychotes 226, 245
gruberi 194, 221, 226
Onyx 334
Oonalaska bunting 3
Opal 334
Ophichthys triserialis 457
Ophidium atropurpureum 454
Taylori 454
Ophiocnida olivacea 359
Ophiodon elongatus 455
Ophioglypha sarsii 359
Ophioscolex glacialis 359
Ophite 334
Ophiuran 132
Opisthonema thrissa 108
Oporornis 245
agilis 173
formosa 173
Opsopœodus, new genus of fishes 507
emiliæ, new species 507, 515
Orchesella 529
сæса 529
Orchestia agilis 120, 376
Orcynus. 533
alalonga 273. 275, 456
pacificus 273, 456
pelamys 89, 94
thynnus 533
Oreopyra calolæma 310
lencaspis 310
Oreortyx 245
picta 196
plumifera. 197, 221
Oreoscoptes 245
montanus 166
Oreotrochilus chimborazo 310
estellæ 310
leucopleurus 310
pichincha 310
Oriole, Audubon's 183
Baltimore 183
Bullock's 183
hooded 183
orchard 183
Scott's 183
Wagler's 183
Ornismya costæ 225
heloisæ 225
Ornithion 225,245
imberbe 187, 218
incanescens 218
inerme. 225
Orpiment 334
Ortalida 226
Ortalis 226, 245
vetula.maccalli9, 195, 233
Orthoclase 334
Orthodon microlepidotus 326
Orthopristis fulvomacnlatum
Page.
Orthorynchus amazili 225
emignans 316
Ortygometra porzaua 222
Ortyx 245
elegans 237
plumifera 221
virginiana 196
floridana 196, 221
texana 196
virginianus var. floridanus 221
Osmerus attenuatus. 66, 68, 457
elongatus. 66, 68
mordax 105
pacificus $45,105,258$
pretiosus 68
thaleichthys 68, 457
Osprey, American 193
Ossifraga 227, 245
gigantea 11, 209, 230
Oswald, Dr. Felix L 221
Otolithus californiensis 456
magdalenæ 456
Ouvarovite 333
Onzel, American water 167
Owl 257
American barn 190
hawk 192
long-eared 191
arctic horned 191
barred 191
burrowing 192
California pigmy 192
dusky horned 191
European hawk 192
ferrugineous pigmy 192
flammulated screech 191
Florida barred 191
burrowing 192
screech 191
great gray 191
grey 8
horned 191
Lapland 191
little screech 191
Mexican screech 191
northwestern screech 191
Richardson's 191
Rocky Mountain screech 191
saw-whet 191
short-eared 191
snowy 192
spotter 191
Texan screech 191
Testern horned 191
Whituey's pigmy 192
Oxinoë glabra 373
Oxyechus 227, 245
vociferus 198
Oxyjulis modestus 87
Oxylebins pictus 455
Oxypogon guerini 316
Oxytoma 157
erecta 157
Oyste.catcle: American 198
Pago.
Oystercatcher, black 198European....................... 198
Ozocerite 334
P.Pachyrhamphus225, 245
major 187
Pachyrhsnchus cuvieri 205
Pacific coast of United States, a new Noti-
danoid shark from 352
fishes of 452
Packard, Dr. A. S 281, 356, 364, 396, 524, 525
Pagellns calamus 286
Pagophila 245
brachytarsi 214
eburnea 206
Pagrus argentens 95
Paguride 258
Paguroids 423
Palamouctes vulgaris 120
Palinurichthys perciformis. 91
Palinnrus interruptus 52
Pallene empusa 117, 118
Pandalus 438, 443
annulicornis 441
borealis 437, 440, 443
leptocerus, new species..437, 440, 441, 451Montagui437, 438, 440, 441, 442, 443(annulicornis) 437
propinquus................ $437,438,440,451$
tenuipes, new species........-441, 443,451
Pandion 245
baliaëtus carolinensis 193
Pandora glacialis 397
trilineata 397
Panopeus depressus 11!
Sayi 119
Panoplites flavescens 312
Jardini 311
Matthowsi 312
Panterpo insiguis 317
Panychlora poortmani 320
stennra 320
Panyptila 6
cayennensis 6
Paralabrax clatbrata 101
clathratus 27
maculofasciatus 27
Parakeet,Carolina 190
socorro 190
Paralepis 411
borealis 411
coruscans, new species 411, 457
new species of, from Straits of Fuca 411
presented by Mr. Brown 412
Paralichthys 31
maculesus $23,35,51,454$
oblongus 472
Parapagurus pilosimanus 428,451
Parasira catenulata 409
Paratanais algicola 122
Paratractus pisquetus 89
Parephippus faber 456
Parephippas quadratus 101Page.
Paridæ 239
Parophrys 277, 278
ischymrus, new species..276, 278, 280, 453 isolepis 453
vetulus 276, 277, 278, 453
Parra 227, 245
gymnostoma 201, 222
jacana 227
Parrida 239
Parrot, Caroliua 256
green 250
new species of, from Dominica 254
of the genus Chry- sotis. 254
Partridge, spruce 196
Parula 245
americana 171
insularis 215
nigrilora 232
nigrilora 216
pitiayumi insularis 228
nigrilora 171
Parus 245
albescens 213
atricapillus 168
occidentalis 168
septentrionalis 168
carolinensis 168
cinctus , 230
hudsonicus 169
leucotis 2.9
meridionalis 168, 228
montanus 168
rufescens 169
neglectus 169, 215
β neglectus 215
sibiricus 13, 215
Passer domesticus 214, 238
montanus 238
Passerculus 245
anthinus 2, 178
caboti 235
guttatus ,
princeps 178,217
rostratus 2,178
sandwichensis 2, 178
alaudinus 178
savanna 178
Passerella 3,245
iliaca 3, 181
megarhyncha 3, 181
schistacea 3, 181
unlaschcensis 3
unalashkensis 181
obscura 235
townsendi 3
Passerina 225, 245
amœena 182
ciris 182
cyanea 182
parellina 182
versicolor 182, 232
Patagona gigas 312
Patella 265
160
Patula
10,159
Peale, Dr. A. C
396
396
Pecchiolia abyssicola
Pecchiolia abyssicola
12\%, 403
12\%, 403
Pecten
Pecten
403, 405, 407
403, 405, 407
fenestratus
fenestratus
472
472
Hosksnsi var. pustulosus 405, 407
inequisculptus 403, 407
Islandicus 407
irradians 124, 130
(near opercularis) 407
opercularis 403
sp. near opercularis 405
tenuicostatus 408
vitreus $358,405,407$
Vitreus var, abyssormm 407
Pectinibranchiata 141
Pectolite 334
Pediœcetes 9, 245
columbianus 221
kennicotti 235
phasianellus. 196
columbianns 196,221
Pelamys 533
lineolata 456
Pelecanida 240
Peienanus 245
carbo 227
erythrorhynchus 11, 205
fuscus 205
occipitalis 235
trachyrhynchus 11
Pelican, American whito 205
brown 205
frigate 205
Pelidna 227, 245
alpina 200, 222, 230
americans 200
subarquata 200, 230
Pelionetta 245
perspicillata 205
trowbridgii 214
Pelodichthss olivaris 514
Penæus politns, new species 444,451
Peprilus alepidotus 92
Gardenii 92
Perca americana 100
fluviatilis 100
Percidab 27, 100
Percina 491
caprodes $100,491,515$
Percopsidæ 105
Percopsis guttatus 105
Perdicidæ 239
Peridot 334
Pariploma papyracea. 408
Perisoreus 245
canadensis 4, 185
capitalis $4,185,218$
fumifrons 5, 185, 218
var. capitalis 218
var. obscurus 218
capitalis 4
obscurus $4,185,218$
Perissoglossa 224, 245
Page. Page.
Perissoglossa carbonatatigrina172
Peristedium miniatum, new species. 337. 338,349,480
Peristethus brevirostre 349, 350
Perroquet 256
Pcsce Pretre 145
vermiglia 146
Petasphora anais 311
cyanotis. 311
delphinæ 311
serrirostris 311
thalassina 311
Petrel, ashy 210
black 210
black-capped 209
bulwer's 209
fork-tailed 210
fulmar 209
hornby's 210
Leach's 210
least 210
pintado 209
stormy 210
white-bellied 210
wilson's 210
Petrochelidon 225,245
lunifrons 175
swainsoni 225
Petzite 334
Pencæa 245
æstivalis 3,120
illinoensis 180,217
จณr. arizonz 217
arizonæ $3,180,217,232$
carpalis 180, 217
cassini 180
illinoensis 217
ruficeps 180
boncardi 180, 217, 232
Pencedramus. 224, 245
olivaceus $172,216,232$
Pewee. 186
black 186
say's 186
western wood 186
wood. 186
Phæbetria fuliginosa 12
Phæolæma rubinoides 312
Phæoptila sordida 309
Phæthon ætherens 229
Phaëthon 245
ætherens 206, 223, 229
fiavirostris 206
Phaëthontidæ 240
Phæthornis adolphi 309
angusti 309
anthophilus. 309
cassini 309
emiliæ 309
eurynome. 309
griscigularis 309
bispidus 309
longirostris 309
longuemareus 309

Phæthornis moorei 309
pretrii 309
squalidus 309
striigularis 309
superciliosus 309
syrmatophorns 309
yaruqui 309
Phainopepla nitens 167, 232
Phalacrocoracidæ 240
Phalacrocorax. 11, 227, 244
africanus 237
bicristatus 206, 223
carbo 205
dilophus 11, 205
cincinnatus 11, 205
floridanus 205
floridanus 11
graculus 237
mexicanus 205
penicillatus 206
perspicillatus 06
pygmæus 237
violaceus 206
resplendens 206, 222
Phalænoptilus 5, 226, 245
nuttalli 5,188
Phalarope, northern 201
red 201
Wilson's 201
Phalaropodidæ 239
Phalaropus 245
fulicarins 201
wilsoni 227
Phaleris 245
microceros 214, 228
psittacula 211
tetracula 214
Phanerodon 322, 450
argyrosomus 321
Phaninopepla 245
Pharmacosiderite 334
Phascolosoma Gouldii 124
Phasianus columbianus 221
Philacte 227, 245
canagica 203
Philine 384
amabilis $383,404,400$
cingulata 384, 404, 406
Fiamarchica 384, 404,406
fragilis 384, 404
quadrata 408
Philohcla. 245
minor 199
Philonexis 362
Phlogopite 334
Phobe bird 186
Phoebetria 227, 245
fuliginosa 209, 230
Phænicopteridæ 240
Phœnicopterus 245
ruber 202, 231
Phonipara 225, 245
zena 4, 182, 218, 231
Photogenis stigmatarns 506
Phoxichilidium maxillare 118
chesteri 69, 337, 476
chuss $69,80,337,475$
De Kayi 69
Earllii, new species 69
punctatus 476
regalis 476
regius. 476
in North Carolina 69
rostratus 69
tenuis 69, 81
Phyllodoce cateuula 123
Phyllopueuste kennicotti 215
Phylloscopus 224, $24 \overline{3}$
borealis 168, 215, 239
Phyllosoma 429
Physemaria 270
Pica 245
bullockii 236
nuttalli 184
rustica hudsonica 4, 184
Picicorvus 245
columbianus 184
Picidæ 239
Pickeringite 334
Picoides 245
arcticus 189
tridactylus americanus 6,189
dorsalis 7, 189
Picrophyllito 334
Picus 245
cuvieri 235
imperialis 236
lineatus 237
lencomelas 219
lucasanus 219
nattalli 139
pubescens 188
gairdneri 188
querulas 189
scalaris 189, 233
lucasanus $189,219,220$
stricklandi 189, 219,233
turati 235
villosus 188
harrisi 6,188
lencomelas 188, 219
Pigcon, band-tailed 195
cape 209
passenger 195
red-billed 195
white-crowned 105
"Pike" 327
Pilodictis 514
olivaris 514, 515
Pimelcpteridæ 94
Pimelepterus Boscii 94
Pimelodus ailurus 513
olivacens 513
vulgaris 513
Pimelometopon pulcher 20, 455
Pinicola 245
enncleator 176, 234
Pinia, description of a new cretaceous, fromNew Mexico.47Page.
Pinna legeriensis 48
stevensoni, new species 47
Pinnixa chætopterana 117, 119
Pintail 203
Pipilo 245
aberti. 181, 232
albigala 218
alleni 217
carmani 217
chlorurus 181
erythrophthalmus
alleni 181, 217 181
fuscusalbigula.181, 218, 2.8
crissalis. 181
mesoleucns 4, 181
maculatus arcticus 181
carmani 181, 217, 228
consobrinns 181, 217, 228
megalonyx 181
oregonus 181
mesolencus 4
Pipra galericulata 229
Pitangus 295,245
derbianns 185, 218
Mexican 185
Pitchblende 334
Pitcher, Mr 34
Pitticite 334
Plain bonito of Great Britain 533
Planesticus 224
Planocora Elliptica 117, 125
Planorbis. 159
xqualis, new species 159
cirratus 160
(Gyraulus) militaris, new species. 159
Platalea ajaja 226
rosea 226
Plataleidæ 239
Platea mexicana 10
Platessa bilineata 325
dentata. 471
ferruginea. 472
oblonga 472
quadrocellata 472
quadrocularis 472
rostrata 472
Platichthys stellatus 51, 276, 277
umbrosus 325
Platyglossus semicinctus 455
Platygobio 461
Platyonichus ocellatus 119
Platyrhina 33, 53, 522, 523
exasperata, now species 32, 38, 522
generic relations of 53
scheenleini 53
siensis 38, 53
tıis 3 r ata, new species 36, 53
a new Californinn ray. 36
Platyrhinæ. 523
Platyrhinoidis 516, 522
thiseriata 516, 522
Platysomatichthys 302
hippoglossoides 51, 302
Platysomatichthys stomias, new species $51,301,302$Plectrophanes.245
maccowni. 225
melanomus 213
nivalis. 177
Plegadis 226, 245
falcinellus. 198, 231
guarauna 198
Pıeuracromylon lævis 52, 355
Pleurobranchæa Novæ-Zealandiæ 385
tarda 384, 404, 406
Pleurolepis pellucidus. 490
Pleuronectes 473
cynoglossus. 475
dentatus 471
ferrugineus 472
glaber 78
hippoglossus 471
oblonga 472
perarcuatns. 453
platessoides 471
quadrituberculatus 50, 453
stellatus 453
Pleuronectidæ $23,78,338,471$
Pleuronichthys 50
cœnosus 50, 453
decurrens 453
quadrituberculatus 49, 453
verticalis, new species. , 50, 453
Pleurotoma 149, 363
agassizii 403, 406
carpenteri $368,403,406$
impressa 365
pagoda, new species 149
Pandionis 403, 406
platysoma, new species 150
(Pleurotomella) agassizii 367
Pandionis, new species 368
venusta, new species 150
Plotidæ 240
Plotus. 245
anhinga 06
Plover, American golden 198
belted piping 199
black-bellied 198
field 201
golden 198, 257
lesser-ringed 10
little-ringed. 198
mountain 199
Pacific golden 198
piping 198
ringed 198
semipalmated 198
snowy 199
Wilson's 199
Podasocys 227, 245
montana 199
Podiceps 245
cooperi 214
eristatus 214, 238
holbölli 210
minor 238

Page.
Procellaria tennirostris 227
Procellariidæ 240
Productus 46
giganteusoccurrence of, in Cali-
fornia 46
Progne 245
chalybea 236
leucogastra 236
subis 175
cryptoleuca 175
Protonotaria 245
citrea 171
Provincetown, littoral marine fanna of. 116
Psaltriparus 245
melanotis 169, 228, 232
minimus 160
plambeus 169
Psettichthys melanostictus 453
Pseudogryphus 226, 245
californianus 9, 195
Pseudojulis modestus 455
Pseudomma roseum 445, 451
Pseudopleuronectes americanns 78
Pseudorajidæ, new family 516, 523
Pseudorhombus 34
dentatus 79
oblongus 79, 472
Pseudoscarns vetula 86
Pseudotremia 524
cavernarum 526
vudii 527
Psilomelanite 334
Psilorhinus 246
morio 184, 229
Psittacidæ 239
Psyche 393
Psychrolutes 460,478
paradoxus 454
Psychrolutidæ 460
Ptarmigan, rock 196
white-tailed. 196
willow 196
Pteria 157
(oxytoma) erecta, new species 157
salinensis 157
Pterodonta 141
Pterophanes temmincki 312
Pterophryne histrio 75
lærigata 75
Pteroplatea hirundo 31
marmorata 31, 457
Pteropeda 391, 407, 408
Ptilocheirus pinguis 448,451
Ptilogonatida 239
Ptychochilus oregonensis 326, 327
(? vorax) 326, 327
Ptychostomus duquesnii 512
Ptycorhamphus 246
alenticus 211
Puebla, Mexico, large Gasteropod fossil from 140
Puffin, common 211
horn-billed 211
horned 211
large-billed 211
Page.
Puffin, tufted 211
Puffinus 246
anglorum 209, 230
auduboni 12, 209
creatopus 209, 223, 230
fuliginosas 209
gavia. 12, 209, 223, 230
grisens 12, 209, 223, 230
kuhlii 209
major 209
obscurus 12
opisthomelas 223
tenuirostris 209, 223, 230
Paget Sound, new species of Nemichthys
from 409
two new species of flonnders from 276
Pamice 334
Puncturella noachina. 406
Purpura lapillus 126
Pycnite 335
Pycnogonida 118
Pyranga 246
restiva. 176
cooperi 176, 216, 232
cooperi 216
hepatica 176, 232
ludoviciana 176
rubra 176
Pyrargyrite 334
Pyrite. 334
Pyrocephalus 246
rubincus mexicanns 187
Pyrolusite. 334
Pyromorphite 334
Pyropite 333
Pyrosclerite 334
Pyroxenite 334
Prrrhotite 334
Pyrrhala 225, 246
cassini 176, 216, 230
coccinea var. cassini 216
Pyrrhuloxia 246
sinuata 182, 232
Pyrrophæna riefferi 219
Quail, American 196
Californian 197
Florida 196
Gambel's 197
mountain 196
Massena 197
plumed 197
scaled 197
Texan 196
Quartz 334
Querquedula 246
cyanoptera 204
discors 204
Quicksilver 334
Quillehute Indian mode of taking surf smelt. 43
Quiscalus 246
æneus 218
macrurus 183, 233

Page. Ridgway, Robert 1, 163, 164, 308
Riggs, Captain
Ringicula nitida.. 406
Ripidolite .. 334
Rissa.. 246
brevirostris.................................. 206
nivea ... 214
septentrionalis............................... 214
tridactyla 206
kotzbuei 206
Rissoa ... 126
(cingula) harpa, new species.......... 374
Jan-Mayeni 375
turgida 375
Road-runner .. 190
Robin, American 166
Saint Lacas 166
varied.. 166
western..................................... 166
Roccus chrysops 101
lineatns.................................... 101
"Rock cod," a new species of, from California........................... 38
(Sebastichthys serriceps), description of 38
"Rock-fish"74, 145,466
description of a new species of . 465
Californian $\quad .3$
Roncador, new genus 28
stearnsi............................... 456
Rossia.. 360
sablevis....................................... 362,405
Rostrhamus.. 246
sociabilis plumbeus. 193, 231
Rosy quartz .. 334
Rough-leg, ferrugineous......................... 194
Ruff... 200
Rutile.. 334
Ryder, John A 269,280
on North American Myria-
pods................................ 524
S.

Sagmatorbina labradoria 214
Sahlite .. 334
Salmo Bairdi 457
callarias.................................... 457
canis ... 45,457
Clarki ... 460
Gairdụeri.-.................................. . 457,460
Henshawi 460

lagocephalus................................. 457
lycaodon..................................... 457
paucidens $\$ 57$
purpuratus................................. 457,460
proteus....................................... 45
salar var. sebago 106
sanguinolentus 457
scouleri....................................... 457
spectabilis................................... 457
spilurus 460
truncatus..................................... 460
tsuppitch.................................... 457
Salmonidæ ...106,412

Page.
Salmon trout
Salpin
Salpinctes.. 246
obsoletus............................... 169
quadalupensis 169, 215,228
Salvalori.. 12
Salvelinus Bairdii 107
fontinalis............................. 100
malma.................................. 457
oquassa 106
Salvin .. Br $_{11}$
Samarskite ... 334
Sauderling .. 200
San Diego, California, notes on fiskes from.. 23 occurreace of Crem. nobates at

147
Sandpiper, Aleutian 190
Baird’s................................. 200
Bartram's 201
Bonaparte's.......................... 199
buff-breasted........................... 201
Cooper's................................. 199
carlew 200
green 200
least 200
pectoral............................... 199
prybilov................................. 199
purple 199
red-backed 200
semipalmated 200
sharp-tailed 199
solitary 200
spotted.................................. 201
stilt...................................... 199
westerm 200
Sardstone, flexible................................ 334
San Francisco, description of a new flat-fish
found in 325
species of Chirus in markets
of .. 53
Sazi Sebastian River, fishes from 18
Santa Barlara, new Scopeloid fisbes from .. 273
Sarsta Catalima Island, California, mew
flounder from 34
Sapsucker, great white-backed................. 188
Saint Lucas 189
Texarp.................................. 182
"Sarah C. Wharf" among the Auxis....... 534
Sarathrodus bimaculatus....................... 88
Sarcorbarophus grypbus 25
Sarda chilensis 27, 45 3
pelamys... 89, 5:3
Sardines.. $26!$
Sardoryx.. 331
Sargus Holbrookii................................. 95
Sars, Prof. G. O. 364, 366, 367, 373, 381, 390, 392.
$394,398,399,400,401,450,479$
Sassolite 334
Saxicava Nortegica.............................. 407
Saxicola.. 246
cnantbe167, 231
Saxicolidæ .. 239
Say .. 525
Sayornis ... 249
fuscus..................................... 186
nigricans..................................... 188
Page.
Sayornis sayi 186
Scalaria 150
Dalliana 377, 404, 406
Grönlandica 376
Ponrtalesii $.376,404,406$
sp. ind .376, 404, 406
unilineata, new species 150
Scaphander puncto-striata 406
Scaphirhynchops platyrhynchus 114
Scapolite 334
Scardafella 246
inca 195,233
Scaridæ 86
Scarns radians 86
Scbeelite 334
Scheeletinite 334
Schirmerite 334
Schistes geoffreyi 316
Schizopoda $120,414,445,451,452$
Schreibereite 334
Sciænidæ 18, 28, 92
Sciænops 28
ocellatus 2\&, 93
Scionopsis palmata 124
Sclater, Dr 9, 13, 14, 15
Scolecolepis viridis 123
Scolecephagus 246
cyanocephalus 183
ferrugineas 183
Scolopacidæ 239
Scolopax 227, 246
calidris 227
rubra 226
rusticula. $10,199,221,227,229$
tahitiensis 10
Scomber 533
diego 456
prenmatophorus 88, 456
scombrus 88
Scomberesocidæ 20, 29, 103
Scomberesox brevirostris 453
sauras. 103
scutellatus 103
Scomberomorus 456
1Scombridæ
Scombroides 18
Scopelidx 48
Scopeloid figbes, two mew Caßifornias spe- cies of 273
Scopelas 275
Scopoli
Scops 246
asio 191
e. maxwellix 219
епадо 7
floridanne 191, 218
kennicottii 191, 218
maccalli 7, 191, 233
maxwelliz 191, 218
var. ezane 7
floridanc 8 219
maccalli 219
fammeolus 191, 219, 233
Scops kennicottii 219
macalli 7
tricbopsis 191, 219, 233
Scorodito. 334
Scorpæna gnttata 455
Scorpænichthys 460
marmoratus 27, 454
Scorpanidæ 27, 86, 453
Scorpænoid fish, a new Californian species of 322
description of a new Californian 327
Scorpis californiensis 456
Scoter, American 205
velvet 205
velvet 205
Scoterpes 524, 525, 527
copei 527
Scotiaptex 226
cinereum 8
lapponicum 8
Scott 2
Seudder, N. P 392, 393
Scyllæa Edwardsii 409
Scyllarus (arctus) gundiachi 431
Seyllidæ 523
Scyllium laticeps. 41
Scytale 266
Seytalina cerdale, new epecies. . 264, 265, 267, 268, 454
Scytalina, zew genus 266
Sebastapistes guttatus 27
Sebastes caurinus 446
fasciatus 297,465
marinus. 86, 337, 480
melanops 455
nebulosue 465
viviparus 86
Sobactiehthys. 287, 288, 298
atrovirens . . . $27,70,146,288,289,290$,$293,328,329,455$avxiculatue 38, 146, 288, 289, 291,293, 455
carnatus (new species) ...73, 74, 75,
$146,455,465,466$
caurinas 455, 466
subspecies vexil.
laris 466
var. vexillaris 455
chlerostictur... 74, 144, 145, 146, 288,
$289,293,294,329,455$
chrysomelas (new species).. 455,465constellatus.... 74, 144, 145, 146, 288,
$289,293,294,295,329,455$
elongatue143, 146, 288, 289, 327 ,
$328.329,455$entemelas (new species) ...142, 145,146,455
fasciatus 39, 40
fasciolaris, newspecific name. 74,$146,288,289,297,324,465$
flavidus $142,144,145,146,455$
maliger 74, 146, 455
a new Californian Scorpænoid fish 322
melanops . $39,40,142,144,145,146,455$
Page.
Sebastichthys mystinns 455
nebulosus $73,74,75,144,146,288,289$,294, 297, 298, 322, 323, 324, 455, 465nigrocinctus.....38, 40, 287, 288, 289,297, 453
oculatus 74, 206
ovalis.......142, 143, 144, 145, 146, 327,$328,329,455$
paucispinis 14.5
pinniger....38, 39, 70, 71, 72, 144, 146,$288,289,200,328,329,455$
proriger $72,146,329,455$
rastrelliger, new species...146, 288,$289,293,296,237,323,455$rhodochloris, new species .. 144,145 ,146,455
rosacens. . $74,144,145,146,288,289$,$293,294,295,296,329,455$ruber......... $38,144,146,288,289,45 \overline{5}$
rubrivinctus, new suecies.. 143,146 ,288, 289, 291, 455
serriceps ... 146, 288, 280, 294, 298, 455a new Californiau"Rock Ced"..... 38
simulans 144,145
two new California species of 142
vexillaris...74, 146, 288, 280, 292, 294,322, 323,32 \&, 466
Sebasterdes 287
melanops 455
paucispinis 287, 289, 455
Sebastoid fishes, descriptions of 7 new Cali-
fornian species of 287
Sebastomus $39,287,297$
anricnlatus 39, 287
elongatus 287
flavidus 39
melanops 86
nebulosus 287
pinniger 39
rosaceus 287
ruber 287
Sebastesemus 39, 287, 297
flavidus 287, 288, 289
melanops 39, 287, 288, 289
ovalis 287, 288, 289
pinniger 287
simnlans 287, 288, 289, 455
Seedeater, hlack-faced 182
Morelet's $18 \cdot$
Selasphorus 246
alleni 187, 218, 314
ardens 314
henshawi 314
platycercus 187,314
rufus 187, 314
scintilla 314
Selene argentea 18
Selenite var 333
Sema, note on 327
Sema signifer 327
Semi-opal 334
Semotilus 512
argenteus 110
bullaris 110

Pago.

Semotilns corporalis........................ $10,512,515$
rhotheus 110
Sennett, Mr $7,13,15$
Sergestes arcticus. 445, 451
sp. nov 445,451
Serinus meridionalis 238
Seriola Lalandi 456
mazatlana 456
zonata 91
Seriphus politus. 456
Serpentine, precious 334
var. 334
Serpula 124
Serranidas 90, 250
Serranus clathratus 456
maculofasciatns $4: 6$
nebulifer 456
Sertularia pumila 133
Setarches 480
Güntheri 480
parmatns 480, 481
Setophaga 246
miniata 174, 229, 232
picta 174, 232
rubra 224
ruticilla 174
Shark, a new Pacific Notidanoid species of. 352
basking 52
blue 52
ground 52
man-eater 52
Sharks, Californian, netes on 51
Sharpe, Mr 4, 8, 1, 11, 141
Shearwater, black-tailed 209
black-rented 200
cincreous 200
dark-bodied 200
dusky 200
greater 209
manx 209
pink-footed $\because 00$
slender-billed 209
sooty. 209
Sheldrake, American 205
booded 205
red-breasted 205
Shoveller 204
Shrike, great northern 175
large-billed 175
luggerbead 175
white-rumped 175
Sialia 246
arctica 167
mexicana 167
sialis 167
Siboma. 326, 460
crassicauda 326
gibbosa 326
Siderite 334
"Sifflem mentagne" 256
Sigalion arenicola 117, 122
Siliccous sinter 334
Silicified wood 334
Sillimanite 334
Siluridx 21, 111, 513

Page.
Sparrow, Townsend's 181
tree 179
western chipping 179
western savannah 178
western yellow-winged 178
white-crowned 179
white-throated 179
yellow-winged 178
Sparus 286
a new Californian species of 284
brachysomus, new species 8
Spatula 246
clypeata 204
Speotyto 226, 246
cnnicularia 237
floridana 192, 220
hypogæa 192
var. floridana 220
Spermophila 246
moreletii 182, 232
Spessarite 333
Sphæroma quadridutatam 122
Sphalerite 334
Sphenoproctus curvipennis 309
pampa 09
Sphyræna 411
argentea 29,456
borealis 102
Sphyraenida 29,102
Sphyrapicus 246
thyroideus 189
varius 189
nuchalis 189
raber 189
Sphyrna zygæna 115,458
Sphyrnidæ 115
Sphyropicus thrroideus 6213
Spillman, Rev. William, M. D 491
Spinacidæ 116,486
Spinel 334
Spiralis balea 392
gouldii 392
MacAndrei $393,404,407$
retroversus 392
rar.? MacAndrei 393
Spirigera 46
Spiropagurus 422, 423
spiriger 426
Spirorbis 161
borealis 124
dickhauti, new species 157,161
rotulus 161
Spirostrephon 524, 525, 526
cæsioaunulatus 524, 526, 528
carernarum 524, 525, 526
copei 524,525
lactarius 534, 525, 526
(Pseudotremia) copei 527
(Scoterpes) copei 25, 526, 528
vudii. 524, 525
Spisula solidissima? 128, 408
Spiza. 3, 4, 225, 246
americana , 182
townsendi 182
Pago.
Spizella 24
atrogularis 179,232
breweri 3, 179
domestica 179
arizonæ 179
evara 235
montaua 3, 179
monticola 3
pallida 3,179
pusilla 179
socialis arizonæ 217
var. arizonæ 217
"Split-tail" 326
Spodumen 334
Sponge, a new type of 269
Spongia 269
Spoonbill, American 10
roseate 198
Sporadinus elegans 320
maugæi 320
ricordi 320
Squalius 460
ardesiacus $.460,461$
atrarius 461
copei, new species 461
cruoreus, new specles 460
montanus 460
niger 461
rhomaleus, new species 461
squamatus 461
tænia 460
Squalus acanthias 116,458
americanus 116
Squatarola 246
helvetica 108
Squatina angelus 458
Squillidæ 446
Stannite 334
Starling, European 184
Starnœnas 246
cyanocephala 195,231
Staurolite 334
Steganopus 227, 246
tricolor 227
wilsoni 201
Steganura melananthera 315
underwoodi 315
Stegocephalus ampulla 447, 451
Steindachner 29, 147, 332
Stelgidopteryx 225, 246
serripennis 175
Stellula 225, 246
calliope $187,219,314$
Stenelais picta 122
Stenotomus argyrops 95
Stephanite 334
Stephanolepis setifer 76
Stercorariidæ 240
Stercorarius 246
buffoni 208
parasiticus 208
pomatorhinus 208
Stercorite 334
Stereolepis gigas 27,450
Sterna

Page.
208, 293
Sterna alcutica ..208, 223

208, 223, 231
anglica....................................... 207
antillarum 208
cantiaca acuflarida...................... 208
caspia....................................... 207
dougalli..................................... 208
elegaus....................................... 208
fluviatilis 208
forsteri...................................... 208
fuliginosa 208
var. crissali9................. 235
(Haliplana) anosthæta.................. 223
havelli 214
nacrura....................................... 208
pikei... 214
portlandica.................................... 235
regia.. 207
trudeani 208
Stevenson, Mr. James 48
Sthenelais picta 117
Stibnite.. 334
Stichæidæ.. 138,477
Stilbe americana 512
Stilbite.. 334
Stiliger fuscata.................................. 117, 127, 409
Stilt, black-necked 201
Stimpson, William394, 415, 418, 426, 428
Stizostethium americanum 100
canadense......................... 100
vitrenm............................ 100
Saint John's River, Florida, notes on fishes
from .. 22

delicatissimus 457
ringens............................... 457
Stoliczska.. 141
Stomatopoda 446, 451, 452
Stone, Mr. Livingston 46
Storm, Mr.. 479
Strepsidura ... 151
Strepsilas ... 246
interpes 198
melanocephala........................ 198
Strepsilidæ.. 239
Streptorhynchus 46
Stricklandinia davidsoni 49 salteri.............................. 49
and davidsoni in Geor-
gia
48
Strigidæ...... ... 239
Strix
7, 226, 246
accipitrina 7
aluco.. 237
americana...................................... 7
canadensis 8
cinerea... 226
cunicularia................................... 226
flammea...................................... 7, 226
var. nigrescens 257
funcrea
8
lapponiсін.................................... 226
nebulosa-...-................. 7, 8, 191
alleni.......................... 8, 191, 219
occidentalis
8, 191, 219

passerina..................................... 237
pratincola...................................... 7
stridula $7,226,237$
ulula.. 8
flammeata.............................. 8
uralensis 226
Stromateidæ ... 91
Stromateus simillimus............................. 456
Strontianite... 334
Struvite... 334
Sturnella... 246
magna.-................................... 183
mexicana................183, 218, 232
neglecta.................................... 183
Sturnidæ.. 239
Sturnus .-... . . 225, 246
cinclus 224
vulgaris184, 218, 225, 2:9
Styliola acicula.. 404
recta 393
virgula 393
Sncker, Utah... 463
Sudis hyalina 273,274
ringens, new species.................... 273, 457
Sula... 246
bassana .. 206
cyanops.. . . 206, 223
leucogastra... 206
piscator .-.................................. 206, 223, 229
Snlaridæ .-... 240
Sulphur... 334
Sumichrast, Prof. F 14
Sunfishes 489
Sunstone.. 334
Surf bird ... 198
Surf-smelt..................... 43
method of taking, by Quillehute
Indians................................. 43
of northwest coast, Washington
Territory 43
Snrnia .. 246
funerea 192
ulula......................... $192,220,230$
passerina 237
ulula funerea................................... 8
Sussexite .. 334
Swallow, bank 175
barn 175
cliff.. 175
rough-winged 175
violet-green............................ 175
white-bellied 175
Swan, Bewick's 20 . 222
European.................................... 202
trumpeter 202
whistling..................................... 202
Swan, James G..................43, 46, 257, 258, 353, 455
Trachspterus? altivelis, taken by

455
Swift, black.. 188
chimney .-.................................. 188
Vaux's... 188
white-throated 188
Sylvanite .-.. 334
Page.
Sylvia carbonata 234
delafieldii 236
mitrata 224
montana 234
olivacea 210, 224
swaiusoui 224
vermivora $2: 4$
Sylviidx 239
Sylvite 334
Symphemia 246
semipalmata 200
Symphyla (scolopendrellæ) 529
Synaphobranchidr 113, 485
Synaphobranchus pinnatus 113,485
Synascidiæ 270
Syngnathidx 23, 77
Syngnathus 22
arundinaceus 23,453
fasciatus 22
fuscus 22, 77
griseolineatus 453
leptorhynchas 23
peckianus 22
viridescens 22
Synodentidze 105
Synodus foetens 105
lucioceps 457
Synthliborhamphus. 298, 246
antiquus 211
wurmizusnme 211
Syringa philadelphus 258
Syrnium 7
lapponicum 219
occidentalo 219
Syrrhina $38,53,516,5 \leq 0,522,523$
brevirostris 516, 520
exasperata 516, 521
Syrski 280,281
organs of 280
Syrskian organ of male eels 281, 282
Syscenus infelix 450,451
T.Tachybaptes228, 246
dominicus 210, 2.31
minor. 238
Tachycineta 225, 246
bicolor 175
thalassina 175
Tachydrite 334
Tachypetes 246
aquila 205
Tachspetidæ 240
Tachytriorchis 9
Teniotoca lateralis 88
Tale 334
Talorchestia lougicornis 120
megalophthalma 120
Tambor 146
Tanager, Cooper's 176
hepatic 176
scarlet 176
western 176
Tanagra cyanea 225
Tanagridæ 239
Page.
Tantalus 246
falcincllus 226
loculator 197
Taranis morchii? 368
mörchii 403, 406
pulchella, new species 308, 403, 406
Tattler, wandering 200
Tauridea 460
Tautoga onitis. 87
Tautogolabrus adspersus 87
Teal, blue-winged 204
cinnamon 204
English 204
green-winged 204
Tectibranchiata 141
Tectura 127
rubella 391
Telestes 460
gibbosa 326
Tellimya ferruginosa 400, 404, 407
Tellina 129
Tell-tale 200
Tellurite 334
Tellurium 334
Telmatodytes 224,246
palustris 170
paludicola 170, 215
Tennantite 334
Terebra 151
plicifera, new species 151
Terebratulina septeutrionalis 407, 409
Teredo dilatata 128
megotara 128, 498
navalis 121, 128
Teretulus duquesnii 512
Tergipes 391
despectus 127, 391, 404
Tern, Aleutian 208
aretic 208
black 208
bridled. 208
Cabot's 208
caspian 207
common 08
elegant 208
Forster's. 208
gull-billed 207
least 203
noddy 208
roseate 208
royal. 207
sooty 208
Trudean's 208
white-winged black 208
Teschemacherite 334
Tetrahedrite 334
Tetrao 9
canadensis 226
richardsonii 221
urogallus 9
Tetraonidx 39
Tetrastemma dorsalis 124
vermiculus? 117, 124
Tetrodontidx 76
Tetrodon 40
Page. Page
Tetrodon politus 453
turgidus 76
Texas fossils, tertiary 151
Thalassens caspius var. imperator 235
Thalassidroma bulweri 223
Thalassoætus pelagicus 237
Thaleichthys pacificus C8, 258, 457
Thalurania bicolor 314
columbica 313
eriphile 314
furcata 313
glaucopis 313
luciæ 313
nigrofasciata 313
Thanmatias riridicaudus 316
Thompson, Mr 534
Wrville 469
Thomsonite 335
Thoracocincla 224
Thracia 396
conradi 408
myopsis 396
Thrasætus 226, 246
harpyia. 194, 221, 233
Thrasher, Bendire's 167
brown 167
califormian 167
curve-billed 167
Leconte's 167
mexican brown 107
Palmer's 167
red-vented 167
sage 166
Saint Lucas 167
Socorro 167
Thrush, Aoonalashka, of Latham 1
dwarf 166
eastern hermit 2
golden-crowned 173
gray-chceked 166
Grinuell's water 173
hermit 166
large-billed water 173
olive-backed 166
red-wing 166
rocky mountain heruit 166
russet-backed 166
small-billed water 173
song, of Europe $2: 4$
unalaschka, of Pennant 1
western dwarf 1
Wilson's 1C6
wood 166
Thryomanes 224, 246
bewicki 170
loucogaster $170,215,232$
spilurus 170,215
brevicauda 170, 215, 228
Thryothorus 246
ludoricianas 170
berlandieri 70, 232
miamensis. 170, 215
var. miamensis 215
Thymallus tricolor 105
Thyris, new genus 338, 344

Thyris pellucidus, new species ... 337, 338, 344, 475
Thysanopoda norvegica 445,451
Thysauura ... $5: 9$
Tigoma .. 460
egregia...................................... 461
Tilmatura duponti 315
Tinnunculus 240
alaudarius................... 193, 220, 229
sparverioides193, 220, 231
sparverius........................ 193
isabellinus 193, 231
Titanite.. 335
Tit, black-eared................................... 169
ground .. 168
lead-colored 169
least.. 169
yellow-hcaded 169
Titlark, American 170
European................................. 170
Sprague's.................................. . 171
Titmouse, black-crested......................... 168
plain 168
tufted.................................... 168
Wollweber's 168
Tityra atricapilla 225
viridis 225
Tom-cod... 145
Tomlinson, Robert 257
Topaz.. 335
Topaza pella .. 313
Tope, European 42
Torellia vestita...................................... 406
Torpedo californica 458
the genus 518
Totanus...227, 246
calidris 237
flavipes 200
glottis200, 230
melanoleucus........................... $\quad 200$
Totten, General 129,130
Tottenia gemma 126, 129
Tourmaline .. 335
inclusions........................... 334
Towhee .. 181
abert's...................................... 181
californian brown...................... 181
cañon...................................... 181
Florida 181
green-tailed............................... 181
Guadalupe............................... 181
northern................................. 181
Oregon 181
Saint Lucas brown 181
Socorro 181
spurned 181
Trachinoid group................................... 307
Trachurops crumenophthalmus 89
Trachurus saurus................................ 450
Trachynotus carolimus 90
Trachypterus ? altivelis........................ 455
Trask.. 46
Trec-fish ... 146
Tremectopus... 362
Tremolite.. 333
Triacis... 355

Page.
Triacis semifasciatus............................ $34,52,458$
Trichas delafieldii................................... 236
Trichiuridæ.. 88
Trichiurus leptucus 88
'Irichodon Stelleri.................................. 455
Trichopetalum 525, 526, 527, 528
juloides 527
glomeratum...................... 527
lunatum526, 527
Trichotropis conica................................374, 404
Triglidæ ... 83
Triglops .. 460
Triglopsis.. 460
Trigonorhina 522
alveata 522
Tringa.. 246
alpina... 222, 227
canutus..................................... 199
crassirostris 221
hyperborea............................... 227
longicauda................................... 227
maculata 256
maritima 227
minuta 227,237
minutilla 257
platyrhyncha............................. 237
ptilocnemis................................... 221
pugnax...................................... 227
temmincki................................. 237
vanellus 227
Tringoides ... 246
macularius 201
Tritia trivittata 408
Tritonofusus latericeus369, 403, 406
Trochilidæ.. 239
catalogue of, in collection of United States National Museum 308
classification and synopsis of.... 6
Elliot's synopsis of 6
synopsis of 15
Trochilus .. 246
alexandri 187,314
calliope................................... 225
colubris 187, 314
fulgens 225
leucotis................................ 225
mango................................... 236
Troglodytes ... 246
ædon 170
parkmanni................. 170
alascensis........................... 215
americanus 213
bewicki.............................. 224
europæus 236
hyemalis............................ 236
var. pacificus......... 215
insularis............................. 170,215
parvulus............................ 236
Troglodytidæ.. 239
Trogon.. 246
ambiguus................................ 6, 190, 299
coppery-tailed 190
mexicanus

Trogonidæ ... 238
Troilite ... 235
Trona .. 335
Troupial .. 183
"Trout"... 497
Truncatella truncatula........................... 376,379
truncatulus........................ 40.
Truncatula truncatulus 400
Trupialis militaris 213,236
Tryngites.. 246
rufescens 201
Tubulipora flabellaris 131
serpens... 131
Tunicata .. 130
Turbellaria.. 125
Turbonilla formosa.......................... $380,404,406$
interrupta?.......................... 408
nivea $370,404,406$
Rathbuni 379, 404, 406
Smithii, new species........380, 404, 406
Turdidæ .. 239
new species of the family of, from
Dominica............................. 16
Turdus.. 223, 248
aonalaschkae 1,2
auduboni 1
pallasi.................... 1
atrogularis................................. 224
confinis................................... 214
iliacus............................ 166, 214, 223, 229
merula...................................... 224
migratorius................................. 224
propinquus.............. 214
musicus 223, 224
mustelinus................................. 223
nævins.. 294
nanus.. 1,2
pallasi...................................... 2
pilaris 224
torquatus 224
viscivorus223, 224
Turkey, Mexican 103
wild....................................... 185
Turner, Mr. Lucien M............................. 3, 13
Turnstone.. 198
black 198
Turquois .. 335
Twa-oo.. 237
Tylostoma 141, 142
mutabilis 142
princeps, new species............. 141
Tylostoma torrubiæ............................... 142
Tylosurus... 459
cantraini 459
exilis 457,459
Tsrannidæ .-.. 239
Tyrannula cooperi.................................. 13
lawrencei.............................. 229
mexicana 13,14
mexicanus 14
Tyrannus 246
carolinensis........................... 185
dominicensis 185, 231
melancholicus213, 238

Page.
Vultur atrata 226
californianus 226
urubu 226
Vnlture, black 195
W.
Wad 335
Wagtail, white 170
yellow 170
Wallace 529
Walker, Col. S. T 8
Warbler, Andubon's 172
Bachman's 171
bav-breasted 172
Bell's 174
blackburnian 172
black and yellow 172
black-capped yellow 173
black-poll 172
black-throated blue 172
gray 172
green 172
Blue Mountain 173
blue-tliroated 167
blue-winged yellow 171
blue yellow-backed 171
Brasier's 174
Canadian fly-catching 174
Cape May 172
carbonated 172
cerulean 172
chestunt-sided 172
Connecticut 173
golden-checked 172
golden-winged 171
Grace's 172
hermit 173
hooded 173
Kennicott's 168
Kentucky 173
Kirtland's. 173
Lawrence's 171
Lucy's 171
luteous 171
Macgillivray's 173
mourning 173
Nashville 171
olive-headed 172
orange-crowned 171
pileolated 114
pine-creeping 173
prairie 173
prothonatory 171
red 174
red-faced 174
red-poll 173
Sennett's 171
Socorro 1.1
Swainson's 171
Tennessce 171
Townsend's 172
Virginia's 171
white-hrowed yellow-throated 172
white-tluronted 171
worm-eating 171
Page.
Woodpecker, striped-backed, 3-toed 189
white-headed 189
yellow-bellied 189
Worms of Proviucetown 117
Wreu, Alaskan 170
Berlandier's 170
Bewick's 170
Califormian Bewick's 170
Carolina 170
Florida 170
Guadalupe 170
rock 169
house 170
long-billed marsh 170
Mexican white-throated 169
rock. 169
Saint Lacas cactus 169
short-billed marsh 170
Socorro 170
Texan Bewick's 170
tule 170
western house 170
winter 170
white-throated 169
winter 170
W yoming, new invortebrate fossils from 157
X.
Xanthocephalus 246
icterocephalus 182
Xanthura 246
luxuosa. 185, 233
Xema 246
sabinei 207
Xeuichthys califonniensis 456
Xenopicus 6, 226, 246
albolarvatus 6, 189
Xenotimite 335
Xenotis 499
meralotis 499
peltastes. 98
sangninolentus 98
solis 499
Xiphias gladius 456, 481
Xiphidion mucosum 135
Xiphidiontida 82, 138
Xiphidium cruoreum $.138,454$
Xiphiida 481
Xiphister 138, 140
chirus, new spocies. . 135, 137, 138, 265, 454cruoreus............................... 138
mucosus $135,137,138,265,454$
rupestris, now species .. 137, 138, 265, 454
Xystreurys, new genus34
Pago.
Xystreurys, liolepis, a new Californian floun- der 34
new genus and specie 98
Y.
Yellow-bird, summer 172
Fellow Garrupa. 146
Yellow-logs 200
greater 200
Yellow-tail 144,145
Fellow-throat, Maryland 173
Yoldia expansa 405, 407
frigida 401, 405, 407
lucida. 407
sapotilla 408
thraciformis 407
Z.

Z.
Zamelodia 225, 246
ludoviciana 182
molanocephala. 182
Zaniolepis latipinnis 455
Zapteryx 53
exasperatus 458
Zaratite 335
Zenæda 246
amabilis 195, 231
Zenædura 246.
carolinensis 195
graysoni 195, 221, 220
Zineite 335
Zircon. 335
Zittel 141
Zoarces anguillaris 82
Zoareidæ 247
Zoisite 335
Zonotrichia 246
albicollis
coronata 179
179albicollis
coronata
gambeli 179
intermedia. 179, 217
leucophrys 179 9
var. intermedia 217
pileata 236
querula 179
Zorgite 335
Zygonectes 21, 501
bensballi 17, 21

melanops

melanops

melanops

melanops

melanops

melanops 501, 515 501, 515 501, 515 501, 515 501, 515 501, 515

notatus

notatus

notatus

notatus

notatus

notatus 201, 514, 515 201, 514, 515 201, 514, 515 201, 514, 515 201, 514, 515 201, 514, 515

rubrifrons

rubrifrons

rubrifrons

rubrifrons

rubrifrons

rubrifrons 17, 20 17, 20 17, 20 17, 20 17, 20 17, 20

Zygonopus

Zygonopus

Zygonopus

Zygonopus

Zygonopus

Zygonopus 526 526 526 526 526 526
new genus of Myriapods
new genus of Myriapods
new genus of Myriapods
new genus of Myriapods
new genus of Myriapods
new genus of Myriapods 527 527 527 527 527 527
whitei, new species
whitei, new species
whitei, new species
whitei, new species
whitei, new species
whitei, new species 527 527 527 527 527 527

[^0]: *A Cheek List of North American Birds. By Elliot Cones. Salem. Natmralists' Agency. 1873. 8vo, pp. 13\%. (635 species.)
 tCatalogne of North Anerican Birds contained chiefly in the Museum of the Smithsonian Institution. By Spencer F. Baird. [First octavo edition.] Washington: Smithsonian Institution. 1859. ["Smithsonian Miscellaneons Collections, 108." Not paged; 738 species, including varieties, all consecutively numbered.]
 \ddagger Small capitals indicate the name which is changed or emended.

[^1]: * A Classification and Synopsis of the 'Trochilidie. By Daniel Giraud Elliot, F. R. S. E., etc. Washington City: Published by the Smithsonian Institution ["Smithsouian Contributions to Knowledge," No. 317.] [March, 1879.]

[^2]: * Cf. Yarrell's Brit. Birds, ed. 4, vol. i, p. 150, and The Ibis, ser. iii, vol. vi, pp. 94-10:.
 tSince these pages were put in type, I have diseovered that the name stands as above given in the "Check List." The notice of the species here was therefore an oversight.

[^3]: * Cf. Bull. Nutt. Orn. Club, Jan., 1850, p. 37.

[^4]: * Cf. Bull. Nutt. Orn. Club, Jan., 1878, p. 37.
 \dagger "I do not . . . hesitafe to decide that Tyramnula mexicana of Kaup is identical with Myiarchus cooperi of Baird."-SCL., P. Z. S. 1871, p. 84."
 \ddagger "What Tyrannula cooperi, Kaup, is . . . does not now much signify.
 But it is not to be supposed that Professor Kaup would make two species of the same bird in the same paper. Therefore, Tyranmula cooperi of Kaup is probably not Myiarchus cooperi of Baird."-SCL., 1. c.

[^5]: * In Mist. N. Am. Birds, Vol. II, p. 331, we predicated the intergradation of these two species on the characters of an individual fiom Nicaragua, which, however, Dr. Coues (Pr. Ihilad. Acad. 187°, p. 68) says, and which I also now believe, is not distinguishable from M. crinitus.

[^6]: * It seems proper to offer here a word of explanation in refirence to the second paragraph on page 403 of Mr. Semett's paper, which says (referring to my remarks on this species in Dr. Merrill's list): "There is no notice whaterer of my specimen from Hidalgo, Tex., . . . which is in the National Mnsemn, amd which is the dirst recorl of its existence within om limits, and which Mr. Ridigway no doubt examined when he coincined with Dr. Cones as to its identitieation." The explanation I have to make is, that at the time m! paper was written and printed the specimen in question was not in the National Mnsemm collection, but, with other hirds, had heen retnrned to Mr. Senuett, at his request, for examination.

[^7]: * Expl. and Sur. West of the 100 th Merid., Vol. IV, p. 34, pl. I, fig. 3, $1, b$, c, and d.
 \dagger Bihang till k. Svenska Vet. Akad Handlingar, Band 3, No. 1:, p. ©0, 11. IV, fign. 44-5\%.
 \ddagger Sveriges Geologiska Undersökning; Ser. C. Afhand. och Upps. No. 35, p. $25, ~ p l$. iii, figs. 40-44.

[^8]: * About six species of Rhabdococla were collected, but they have not been determined.

[^9]: * Two catalognes of North American birds have been issued by the Smithsonian Institution, as follows:
 (1) Catalogue of North American Birds, chiefly in the Museum of the Smithsonian Institution. By Spencer F. Baird, Assistant Secretary of the Smithsonian Institution. Washington: Smithsouian Institution. October, 1858. 4to, paper. 1 p. $1 .$, pp. xviilvi. [Reissue, with new title-page, of pp. xvii-lvi of Vol. IX, Pacific R. R. Reports (" Birds of North America"). Includes, besides the list of $7: 38$ species, with habitats, tables of the higher groups, and lists of extralimital species (23 in number) treated in the general report, and of others (31) claimed, on apparently insuffieient grounds. as North American; also a summary of the number of species given in the works of Wilson, Bonaparte, and Audubon.]
 (2) Catalogue of North American Birds, chiefly in the Museum of the Smithsonian Institution. By Spencer F. Baird. First octavo edition. Washington: Smithsonian Institution. [Smithsonian Miscellaneous Collections, No. 108.] 1859. 8vo. 2 p. 11., pp. $19+2$. [Essentially the same as the quarto list, but without habitats, and the matter relating to elassification, ete. The two additional pages are an alphabetical index of the North American genera. As in the quarto list, there are, ostensibly, 738 species, but 22 numbers are duplieated, making a total of 760 names in the list.]
 t A full analysis of the changes made in this catalogue is given on pages 213-234.

[^10]: * A Description of Sixteen New Species of North American Birds, by Jacob P. Girand, jr. New York. George F. Neshitt, printer, Tontine Building, corner of Wall and Water streets. 1841. Folio, not paged, 8 plates. [For species given in this work, which have not since been obtained within the limits of the United States, see p. :29.]
 † A History of North American Birds, by S. F. Baird, T. M. Brewer, and R. Ridgmay. Land Blrds. Illustrated by 64 colored plates and 593 woodeuts. 3 vols., royal 4to. Eoston. Little, Brown, \& Co.

[^11]: There appears to be but a single race inhabiting North America.
 t While there is undoubtedly a very appreciable difierenee between specimens of 18 . varia from the West Indies and those from the interior of Eastern North Ameriea in the length of the bill, it is the small billed form whieh should receive a new name, since Linneus's name raria was based upon the bird of the South Atlantie States and West Indies. If to be regarded as separable, the name borealis, Nutt., zuay be applied to the western birds.

[^12]: * The new forms are in small capitals, the other additions in italics. In order to reduce the number of references to a minimum, only the original description, or the first North American record of a species is given. In some cases we have not been able to duote the first reference, but have done so whenever practicable.

[^13]: * The National Museum possesses an cxample of what is apparently this species from the coast of Lonisiana.

[^14]: * There is a male of this species in my collection said to have been obtained in Florida. It was found with a collection of Flosida hiris, forming part of a dealer"s stock, aud was evidently the same "make" of skin as the rest of the lot.

[^15]: ＊We cannot cite the page of tho＂Procerdings＂，but the record appears on p． 44 of separate pam－ phlet entitled＂A Comparative List of Birds fond in Europe and North America．By Perey Evans Freke．＂

[^16]: * It is exceedingly doubtfol whether Wilsonia, Bp., shonld displace Myiodioctes, And. Bonaparte's name oceurs tirst in a mere list, is used only as a heading for a subgenerie group, and is maccompanied either by a diagnosis or an indieation of type. Audubon, howerer, only a year later, in designating the same gromp of birds by the new generic term Myiodioctes, gave an excellent diagnosis of the generic charactors. It appears to us that the shight difference of date in favor of Bonaparte's name is greatly overbalanced by the pains which Audubon tork to duly characterize his geuns, thus confoming to the requirements of nomenclatural laws, which Bonaparto fated to do.

[^17]: * Probably seen by me in August, 1868, in the East Humboldt Mts., Nevada. (Cf. Orn. 40th Parallel Exp. 1877, p. 415.)

[^18]: * These specimens are now in the collection of the United States National Museum.
 \dagger Strictly pelagic birds, which are more or less numerous off the coast, are excluded from this and the following lists.

[^19]: * Accidental in Southern Illinois (only once observed).

[^20]: * "Somewhat smaller than L. leucoptert, but with abont the same length of wing, the tail at least 10 mm shorter. Distinguished by its coloration. The red in ground tone is nearest that of the "Hakengimpel" [Pinicola enucleator] but every where darker, and saturated, as it were, with black, this color extending indefinitely both on the back as well as on the middle of the belly to the breast, as also on the lower tail-coverts. The feet are even darker colored than in leucoptera. The wing-bands are unaffected for the most part, although not quite so broad. This is especially seen in the first or terminal band, which begins, scarcely visible, at the edge of the wing, and remains very inconsiderable to the middle, then quickly expands to a great rounded spot. The extent of the second band is everywhere much wore limited than in leucoptera."
 "This is decidedly not a melanism, as is shown, not alone by the character of the coluration, but by the ocurrence of two old males exactly alike."
 "My two birds came from North America."-[Translation.]
 f "The dark Limet is nearest to this species in size, but it is easily distinguished by many features. The whole upper parts are blackish brown, with very narrow margins to the feathers of whitish and rusty yellow. which, on the rump, return to the ground color; on the sides of the head the feathers also have very fine, rusty white margins; the throat-spot is very large; the entire moder parts to the middle of the belly are densely covered with many large, dark brown longitudinal streaks. Two birds killed in Lapland, June-July (sexes not determined), show a tender red on the side of the head. The

[^21]: * This list does not iuclude American species wrongly supposed by authors to be the same as European species, and so named, e.g. Circus "cyaneus" for C. hudsonius, Regulus "cristatus" for R. satrapa, Troglodytes "parvulus" or T. "curopues" for T. hyemalis, etc., etc., but only those which were through actual error (as it appears) wrongly attribnted to North America. Species which are most likely to have occurred in North America are printed in small capitals; those whose occurrence would in any case be purely accidental are printed in italics.

[^22]: * This list does not include domesticated birds.
 \dagger This list is, of course, very incomplete; it includes merely a few species, the records of whose capture I happen to have at hand. A more complete list would be desirable, but want of time forbids its compilation in the present comection.

[^23]: * Families peculiar to America in small canitals; peculiar to North America in italics. Palearetic families not represented ly a peculiar species in America are placed in brackets.
 \dagger The figures following the sign + denote the number of recognized races not distinguished by a separate number in the catalogne; those in the last column the total of species and races.

[^24]: ＊Ueber die Genitalien der männlichen Aale und ihre Sexualunterschiede，von S．Th． Cattie，lliil．nat．Cand．，Docent an der Realschule zu Ámheim（Holland）．Extracted from the Zoologischer Anzeiger，7th Jnne，1830，pp．275－279．Translated by J．A． Ryder．
 \dagger Ch．Darwin，Descent of Man，translated into German by Carns，part ii，p． 5 et seq．
 \ddagger Abhandl．d．kais．Akad．d．Wissensch．，Wien，April Heft， 1874.

[^25]: * Compt. Rendus, 1875. t. lxxxi p. 159.
 † Sitzungsber. d. kais. Akad. d. Wisseusch., Wien, 1877, Mïrz Heft,

[^26]: * Dr. L. Jacoby, Der Fischfang in der Lagune von Commachio.

[^27]: * We have since obtained this species in very great numbers at varions places along the coast from Los Angeles to Vancouver's Island. Ditrema brevipinne Guinther is undoubtedly the same species.

[^28]: * In a paper written later, but by accident printed earlier (Proc. U. S. Nat. Mus., 1880,51), we have recognized this species as the type of a distinct genus, Atheresthes.

[^29]: ${ }^{1}$ Types of P ．carssini Latwr．
 ${ }^{2}$ A specimen（No．55374）from Pebas，labeled in Mr．Jawrence＇s landwriting＂P ． moore Lawr．，＂is not distinguishablo from northem specimens of I^{\prime} ．longirostris．It does not，however，agree with Mr．Lawrence＇s description of P ．moorei，so that Mr． Elliot mas be right in referring the latter to P ．superciliosus．

[^30]: ${ }^{1}$ Types of Audnbou's works:

[^31]: Shells, Jan. 1847, 1, 29; (f. JA1.1, P. '/. S. 1879, pp. 131, 1;3),

[^32]: ${ }^{1}$ Type of Thammatias viridicaudre Lawr. a Type of Orthorhynchus e'migraus Lawr.

[^33]: ${ }^{1}$ Type of C: insularix Lawr.

[^34]: * Sce also Steindachngr (Ichthyol. Beitraige, ix, p. 18), where the same opinion is expressed. In this article ("UTeber zwei nene Agonns-Arten ans California") Brachyopsis verrucosns Lockington is described as Agonus (Brachyopsis) Batkeni, and Brachyopsis syostermus Jor: \& Gilb, as Agonus (Brachyopsis) Anne. The date of publication of
 "Vorgelegt in der Nitzmmen 15 Juli 1-80." It is crotain, therefore, that the American mames are entitleil to the right of priority.-D. 心. .J.

[^35]: * Etymology : $\mu \circ{ }^{\prime} \nu o s=$ single $; ~ \dot{\partial} \lambda \varepsilon ́ v \dot{\eta}=$ an arm.
 \dagger No. 26004.

[^36]: * Etymolog $y: \hat{v} \psi \iota=$ in deep water ; $\kappa \omega \mu^{\prime} \tau \tau \eta=$ an inhabitant, a dweller.

[^37]: * Cat. Fish. Brit. Mus. ii, 1860, p. 218.

[^38]: Indiana State University,
 Bloomington, October 11, 1880.

[^39]: * In this article 115 species of Mollnsea are recorded as recent additions to the famma of New Englaud. Of these, 48 species are apparently undescribed (including 23 species just published in the Ameriean Jonrnal of Science, for November). The number of species included in this article that are not contained in the last edition of Gonld's Invertebrata of Massachusetts is $\mathbf{1 2 5}$. Many other species, not here included, have previously been added by me to those contained in Gonld's work. Many of these are enumerated in the anthor's Preliminary Cheek List of the Marine Invertebrata of Northern New England, 1879. Many will be fonnd in varions articles in the American Journal of Science; others are contained in the Report on Invertebrates of Vineyard Sound, in Part I of the Reports of tho United States Fish Commission, 1873.

[^40]: * These stones, which were common in nearly every hanl of the third trip, are of all sizes, from small pebbles up to bowlders 6 inches or more in diameter. Ther are of various kinds of rocks, like those found in the drift formation along the opposite shores of the mainland and on the shores of Block lsland and the eastern end of Long Islaul. Their presence, so far from land and beneath the edge of the Gulf Stream, cau easily be explained by supposing that they have been carried out to sea by the shore ice that forms along these coasts in winter in vast quantities and of considerable thickness. This ice, when it breaks up in spring, is carried out to sea, with its inclosed stones and gravel, by the tides and currents, till it comes in contact with the warmer waters of the Gulf Stream, where its loads of stones drop to the bottom. We have often met with large, loose, and fresh bowlders, sometimes of large size, in varions localities, far trom land, on nuddy bottoms, off the coasts of Maine and Nova Scotia, where they have donhtless been recently dropped from shore ice.
 \dagger Hyalinocia arifex Verrill, sp. nov. Closely related to H. tubicola of Europe, but much larger, with the buceal segment as long as the threc or fon following segments; anterior antenne small, short, rounded, ovate; three median ones subequal, rery long, reaching the 15th segment ; eyes rulimentary; branchie slender, commeneing at abont the $28 t h$ to 30 th segment; bidentate setre with the hook terminal and less curved. Surface opalescent.

[^41]: * Leodice polybranchia Verrill, sp. nov. A stout species, resembling L. virida (St.) = L. Norvgiea (L.), but the branchix commence on the seventh or eighth segment, aud continue to near the end of the body, on at least $1: 0$ segments; they have four to six branches; eyes large, round; three median antennæ, long, the middle one longest; tentacles long, reaching beyond the edge of the buccal segment, which is as long as the three following ones; ventral cirri at first conical, those beyond the fourth, short, with large swollen bases.

[^42]: * A brief account of the Echinoderms obtained by us, with descriptions of several of the new species discovered, has been published by me in the American Jourual of Science for November, 1880.

 It is only necessary to say here that several of the star-fishes, Ophiurans, and Crinoids ocenrred in snch large numbers as to constitute one of the most conspicuous features of the fanna. The most abundant species were Archaster Americanus V., A. A!gassizii V., A. Floré V., Luidia elegans Perriér, Ophiocnida olivacea Lym., Ophioscolex glacialis M. \& Tr., Ophioglypha Sarsii Lym., Antedon Sarsii (D. \& Koren).

 All these species, exeept the last two, are orange-colored, varying to orange-red. The same is true of Aconclle Normani, of most of the Actinians, and of the majority of the crabs and shrimps, as well as of some of the fishes. It seems probable that the prevalence of orage and red colors among the deep-water animals is due to the fact that the luminous rays of those colors are completely absorbed by the thick, overlying stratum of sea-water, and consequently these animals, not being capable of reflecting such blnish and greenish rays as do reach them, wonld be nearly invisible at those depths beyond which white light penetrates. If this be true, such colors, being protective, may be due to the operation of natural selectiou, according to the principle so often exemplified in shallow-water animals having colors like their surroundings.

[^43]: *Amer. Naturalist, xi, p. 243, 1877.
 \dagger In Binney's edition of Gould's Invert. of Mass. there are included seven northern sprecies of Bela. Of these the figures are mostly inadequate, and some are entirely erroneons. Fig. 620, given for B. turricula; Fig. 621, intended for B. harpularia; and Fig. 624, for B. caneellata, do not really represent those species. Fig. $6: 0$ represents B. harpularia better than "B. turricula", for which it was intended.

[^44]: * The species described by Bergh (Anat. Bid. til Kundskab. on Eolidierne, p. 10: pl. 5 a, 1864) under the name of Coryphella Bostoniensis is entirely distinet. It has three rows of teeth, and is closely related to Coryphella Mananensis Verrill (Stimpson sp.), common on our northern coasts.

[^45]: * In the excellent work of G. O. Sars this generic name has been, by some oversight, misapplied, in place of Cuthona, to include C. nana, which was the original type of Cuthona Alder \& Hancock.

[^46]: * It is very distinct from S. retroversus, to which Jeffreys has formerly referred it. Both the figure and description give it spiral lines, while the latter is very smooth. G. O. Sars identifies it with S. balea.

[^47]: * Some of the specics here included were discovered in 1875 and 1876 , and have been recorded in the American Journal of Science. Those with au asterisk prefixed were first discovered on our coast this season, or else have not been previously recorded. For aldditional species, not included in my Report on Invertebrates of Vineyard Sound, \&c., 1873, see American Journal of' Science, x, pp. 40, 41, Juls, 1876.

[^48]: * I restrict, as Huxley has done, the term chela to the two terminal segments of a chelate appendage.

[^49]: * In many of the best preserved and most perfect females of Hemipagurus socialis examined I can find no trace whatever of this appendage of the fifth somite, while in others it is very casily scen.

[^50]: *The proportions of the segments and the segmentation of the earpus in the unequal second pair of legs in the genus Pandalus appear to be nsually very constant and to afford very good specitic characters, but they occasionally present very remarkable variations. In carefully examining several hundred specimens of this species, only about half a dozen were fonnd which varied from the above deseription in the segmentation of the left carpus ; two or threo specimens had an additional but less distinctly indieated segment back of the four distal ones, making six in all. Two specimens had three additional segments inserted in the same way, making eight in all; lint in both these specimens the segnentation was more or less irregnlar, and the additional segments may have resulted from some injury. One large feraale, quite normal in other respects, has the right carpus multiarticulate thronghont and composed of about eighteen segments, nearly as in P. Montagni; the whole leg, however, is shorter than in other specimens of the same size, and may have been reproduced, thongh I camot see how this would explain its abnormal strncture. Detailed measurements of both chelate legs in most of these abnormal specimens are giveu beyond in the tables of measurements.

 One female, $70^{\mathrm{mm}} \mathrm{long}$, stations 290 to 291, 30 to 31 fathoms, off Cape Cod, has the chelate legs reversed, just as in the specimen of P. propinquus already referred to.

[^51]: * In the report on the dredgings in the region of George's Banks (Smith and Hanger, Trans. Conn. Acad., iii, pp. 1-57, pls. 1-8, 1874), "Pandalats amulicornis" is reported from the following statious: $b, 30$ fathoms ; $c, 28$ fathoms ; $d, 50$ fathoms; e, 60 fathons; g, 430 fathoms; and $q, 45$ fathoms; but on re-exanining the specimens I find all those preserved from b, e, and g are P. leptocerus, the single specinen from c is P. Montagui, while from d and q there are specimens of both species.

[^52]: * Forhand. Scandinav. Naturforskeres Kịhenhaven, 1860, p. 669, 1861; Christiania Videnskabs-Selskabs Forhandlinger, 1870, p. 261 (181); Scandinav. Arktiske Amphipoder, p. 643, pl. 32, fig. 1, 1876.

[^53]: * The Isopoda have leen placed in Mr. Harger's hands for determination, but he has very kindly identified for me the few species here enumerated, which, however, are nuly a part of the whole number obtained.

[^54]: *Syngnathus arundinaceus Grd.
 tSynguathus griseolineatus Ayres.
 +Nom. sp. nov.= Plewronichthrs quadrituberculatus J. \& G. Proc. U. S. Nat. Mus. 1880, iii, 50 non Pleuronec'es quadrituberculatus Pallas.
 §Pleuronectes perarcuatus Cope.

[^55]: * Gadus periscopus Cope.
 \dagger Gadus auratus Cope; Gadus morrhua L. (fide Bean.) $\neq G$. macrocephalus Tiles.
 \pm Xiphidium cruorem Cope.
 §Opidium atropurpureum Kittlitz $=$ Anoplarchus crista-galli Gthr.

[^56]: *Nom. sp. nov. = Sebastodes melamops Ayres, nou Sebastes melanops Grd.
 \dagger Seloastosomus simulans Gill.
 +Chirus trigrammus Cope.
 © Chirns prictum Grit. Cope. Chirus lalias Cope.

 If Taken at Santa Cruz by Dr, C. L. Anderson, and at Cape Flattery by J:mes G. Swan.

[^57]: * Cephaloserllium laticeps J. \& G., probably not of Duméril.
 t Carcharodon romeleti M. \& H.
 \ddagger Bdellostoma jolytrema Grd.; Bdellostoma stouti Lock.

[^58]: * We are unable to perceive any distinction between the Psychrolutida and the Cottida. Psychrolutes has a rudimentary spinous dorsal, hidden in the loose skin.
 † In Cottus gromlandicus, polyacanthocephalus, and scorpius a small pore is present behind the last gill. In other species (octodecimspinosus aneus, scorpioides), the slit appears to be wholly obliterated. In a specimen of C. polyacanthocephalus of about two feet in length there is visible a minute pore representing the usual last slit.

[^59]: * Proc. Zool. Soc. London, 186iz, 1. 177; Sctarches (iäutheri, n. s. Madeima, p. 177, pl. xxiii.

[^60]:

[^61]: * Proc. Acad. Nat. Sci. Phila. 1862, p. 15.

[^62]: *A full series of these has beew presented to the National Museum.

[^63]: * Since the above lines were penned I have received the October number of the American Naturalist, from which I learn that Prof. S. A. Forbes, of the Illinois State Laboratory of" Natural History, in his interesting article on "The Food of the Darters", regards the two so-called species as identieal. Professor Jordan also informs me that he now considers the two forms as merely "smbspecies".

[^64]: * Since this paper has gone to press, Professor Jordan writes me that he is now satisfied that C. macropterus and C. irideus are identical, and that as the term macropterus has the priority, it must be aecepted as the nane of the species. He had already, in his "Catalogue of the Fishes of Illinois," pubhshed in Bull. No. 2, Ill. Lab. Nat. Hist., expressed the opinion that they might have to be merged into one.

[^65]: * Professor Jordan informs me that he has additional specimens of his N. leptacanthus, in all of which the spines are short, less than one-third the length of the head. The skin, however, is said to be dark, as in my specimen.

[^66]:

[^67]: 1

[^68]:

[^69]:

[^70]: $-$

