SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 71, NUMBER 1

SMITHSONIAN PHYSICAL TABLES

SECOND REPRINT OF SEVENTH REVISED EDITION

PREPARED BY

FREDERICK E. FOWLE

AID, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(PUBLICATION 2539)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1923

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the fifth and sixth revised editions published in 1910 and 1914. The latter edition was reprinted thrice. For the present seventh revision extended changes have been made with the inclusion of new data on old and new topics.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

June, 1919.

PREFACE TO 7TH REVISED EDITION.

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 170 new tables have been added. The scope of the tables has been broadened to include tables on astrophysics, meteorology, geochemistry, atomic and molecular data, colloids, photography, etc. In the earlier revisions the insertion of new matter in a way to avoid renumbering the pages resulted in a somewhat illogical sequence of tables. This we have tried to remedy in the present edition by radically rearranging the tables; the sequence is now, — mathematical, mechanical, acoustical, thermal, optical, electrical, etc.

Many suggestions and data have been received: from the Bureau of Standards, — including the revision of the magnetic, mechanical, and X-ray tables, — from the Coast and Geodetic Survey (magnetic data), the Naval Observatory, the Geophysical Laboratory, Department of Terrestrial Magnetism, etc.; from Messrs. Adams of the Mount Wilson Observatory, Adams of the Geophysical Laboratory (compressibility tables), Anderson (mechanical tables), Dellinger, Hackh, Humphreys, Mees and Lovejoy of the Eastman Kodak Co. (photographic data), Miller (acoustical data), Van Orstrand, Russell of Princeton (astronomical tables), Saunders, Wherry and Lassen (crystal indices of refraction), White, Worthing and Forsythe and others of the Nela Research Laboratory, Zahm (aeronautical tables). To all these and others we are indebted for valuable criticisms and data. We will ever be grateful for further criticisms, the notification of errors, and new data.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, May, 1919.

NOTE TO REPRINT OF 7TH REVISED EDITION.

Opportunity comes with this reprint to insert in the plates a number of corrections as well as some newer data. Gratitude is especially due to Messrs. Wherry and Smith of the Bureau of Chemistry, Department of Agriculture, for suggestions.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, March, 1921.

NOTE TO SECOND REPRINT OF 7TH REVISED EDITION.

Again opportunity is taken to alter the plates for a few corrections. Several tables, especially those connected with molecular physics, have been considerably changed to allow for the rapid advances of the last few years. The data for

iv PREFACE

spectrum series has been revised consistently with the now generally accepted nomenclature. Certain standard values adopted for the International Critical Tables, prepared under the auspices of the International Research Council, have been inserted. These will be found included in the table on page 408. Some of the added data has been inserted in the appendix to avoid renumbering the pages of the body of the Tables for this reprint; it will be inserted in proper sequence in the next edition. Gratitude is especially due to the members of the Bureau of Standards, of the Nela Research Laboratory, to Dr. White of the Geophysical Laboratory, Dr. Washburn of the National Research Council, and others for data and suggestions.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, February, 1923.

TABLE OF CONTENTS.

Introduction: units of measurement, dimensional and conversion formulae, standards:
ing, xxv. Dimensional formulae:
Fundamental standards:
Numerically different systems of units:
 The standards of the International Electric Units: xxxviii Resistance, xxxviii: Mercury standards, xxxviii; Secondary standards, xxxix; Resistance standards in practice, xxxix; Absolute ohm, xxxix. Current, xl: Silver voltameter, xl; Resistance standards used in current measurements, xli; Absolute ampere, xli. Electromotive force, xli: International volt, xli; Weston normal cell, xli; Portable Weston cell, xlii; Absolute and semi-absolute volts, xliii. Quantity of electricity, xliv: Standards, xliv. Capacity, xliv. Inductance, xliv: Inductance standards, xliv. Power and energy, xlv: Watt, xlv; Standards and measurement, xlv.
Magnetic units, xlv: Table II. — The ordinary and ampere-turn units xlvi.
I. Spelling and abbreviations of common units of weight and measure
3. Tables for converting U. S. weights and measures: (1) Customary to metric

vi Contents.

5.	Equivalents of metric and British imperial weights and measures:	
	(1) Metric to imperial	8
	(2) Multiples, metric to imperial	ç
	(3) Imperial to metric	IC
	(4) Multiples, imperial to metric	11
	7	
	MATHEMATICAL TABLES	
6	Derivatives and integrals	12
	Series	13
	Mathematical constants	IZ
9.	Reciprocals, squares, cubes and square roots of natural numbers	15
10.	Logarithms, 4-place, 1000–2000	24
11.	Logarithms, 4-place	26
12.	Antilogarithms, 4-place	28
13.	Antilogarithms, 4-place, 0.9000-1.0000	30
14.	Circular (trigonometric) functions, arguments (°, ′)	32
15.	" (radians)	37
16.	Logarithmic factorials, n!, n = 1 to 100	40
17.	Hyperbolic functions	41
18.	Factorials, 1 to 20	47
19.	Exponential functions	48
	Values of e^{x^2} and e^{-x^2} and their logarithms	54
21.	" " $e^{\frac{\pi}{4}x}$ " $e^{-\frac{\pi}{4}x}$ " " " " " " " " " " " " " " " " " " "	55
	l 4" l 4"	55
23.	Least squares: probability integral, argument hx	56
24.	teast squares. Probability integral, argument m	56
25.	values of 0.6745 $\sqrt{1/(n-1)}$	57
26.	values of 0.0745 $\sqrt{1/(n-1)}$	57
27.		58
28.	$0.0453\sqrt{1/n(n-1)}$	58
29.	" " 0.8453 $\{1/n\sqrt{n-1}\}$	58
30.	formulae	59
31.	Inverse probability integral, diffusion integral	60
32.	Logarithms of gamma function, n between 1 and 2	62
33.	Values for the first seven zonal harmonics, $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$	64
34.	Cylindrical harmonics, oth and 1st orders, $x = 0$ to 3.5, 6-place	66
35.	" $x = 4 \text{ to } 15, 4\text{-place} \dots$	68
36.	(a) 1st ten roots cylindrical harmonic of zeroth order = $0 \dots \dots$	68
	(b) "fifteen" " "first " = $0 \dots \dots$	68
	Notes, general formulae of Bessel's functions	68
37.	Values for $\int_{0}^{\frac{\pi}{2}} (\mathbf{I} - \sin^2\theta \sin^2\Phi)^{\pm \frac{1}{2}} d\Phi$; argument θ ; also logs	69
38.		79
39.		71

	CONTENTS.	vii
40	Volume of glass vessel from weight of its volume of H ₂ O or Hg	72
41.	Reductions of weighings in air to vacuo	73
	Reductions of densities in air to vacuo	73
42.	requestions of dominates in an eventual visit in a visi	13
	Mechanical Properties	
43.	Introduction and definitions	74
44.	Ferrous metals and alloys: Iron and iron alloys	75
45.	" " carbon steels	76
46.	" " heat treatments	76
47.	" " alloy steels	77
48.	" " steel wire, specification values	78
49.	" " experimental values	7 8
50.	" " " semi-steel	, 78
51.	" " steel wire rope, specification values	79
52.	" " " plow-steel rope, " "	79
53.	" " steel wire rope, experimental values	79
54.	Aluminum, miscellaneous	80
55.	Aluminum: (a) sheet, experimental values	80
33	" (b) " specification values	81
56.	Aluminum alloys	81
57.	Copper: miscellaneous experimental values	82
58.	" rolled, experimental values	82
59.	" wire, specification values, hard-drawn	82
60.	" " medium hard-drawn	83
61.	" soft or annealed	83
62.	" plates	83
63.	Copper alloys: nomenclature	83
64.	" copper-zinc alloys or brasses	84
	" " copper-tin " " bronzes	84
65.	" three or more metals	85
66.	Miscellaneous alloys	88
67.	" metals: tungsten; zinc; white metal	89"
68.	Cement and concrete: (a) cement	90
	" " (b) cement and cement mortars	90
	" " (c) concrete	91
69.	Stone and clay products: (a) American building stones	92
	" " " (b) Bavarian building stones	92
	" " " (c) American building bricks	93
	" " (d) brick piers, terra-cotta piers	93
	" " " (e) various bricks	93
70.	(a) Sheet rubber	94
	(b) Leather belting	94
71.	Manilla rope	95
72.	Woods: hardwoods, metric units	96
73.	" conifers, metric units	97

74.	Woods: hardwoods, English units	98
75.	" conifers, English units	99
76.	Rigidity Modulus	IO
77.	Variation of moduli of rigidity with the temperature	100
78.	Interior friction, variation with the temperature	10
79.	Hardness	10
	Relative hardness of the elements	10
	Poisson's ratio	10
	Elastic moduli of crystals, formulae	10:
83.	" " " numerical results	10
٥,٠		,
	Compressibility of Gases	
84.	Compressibility of O, air, N, H, different pressures and temperatures .	10
85.	" " ethylene at " " " " "	10.
86.	Relative gas volumes at various pressures, H, N, air, O, CO ₂	10
87.	Compressibility of carbon dioxide, pressure-temperature variation	10
88.	" gases, values of	10
89.	" air and oxygen between 18° and 22° C	10
	Relation between pressure, temperature and volume of sulphur dioxide	100
91.	" " ammonia	100
91.	annona	100
02	Compressibility of liquids	10
93.	" "solids	10
93.	50Hu3	100
	Densities ,	
94.	. Specific gravities corresponding to the Baumé scale	100
95.	. Densities of the solid and liquid elements	II
96.		II
97.		II
98.		II
99.	" " " 1 1 1 1 1 1 1	II
100.		II
101.		116
102.		110
103.		117
104.		118
105.		II
105.	Density and volume of water, -10° to 250° C	120
		121
107.	Density of a greene relations of solts bases and soids	
	Density of aqueous solutions of salts, bases and acids	122
109.	ethyl alcohol, temperature variation	124
110.	methyl alcohol, cane-sugar, sulphuric acid	126
III.	various gases	127
112.		
	(a) for values of t between o° and 10° C by 0.1° steps	128
	(b) " " " " —90° and +1990° C by 10° steps .	120

contents. ix

	(c) logarithms for t between -49° and 399° C by 1° steps	130
	(d) " " " +400° and 1990° C by 10° steps :	132
113.	Density of moist air: $h/760$, h from 1 to 9	133
114.	" " " $\log h/760$, h from 80 to 800	133
115.	" " " o.378e in equation $h = B - 0.378e$	135
116.	Maintenance of air at definite humidities	135
	Pressure of mercury and water columns	136
	BAROMETRIC TABLES	
118.	Reduction of barometer to standard temperature	137
119.	" " gravity, in. and mm, altitude ter n	138
120.	" " latitude 45°, 0° to 45°, mm	139
121.	" " " " 45° to 90°, mm	140
122.	" " " " o° to 45°, inches	141
123.	" " " " 45° to 90°, inches	142
124.	Correction to barometer for capillarity, mm and inches	143
	Volume of mercury meniscus in mm ³	143
126.	Barometric pressure corresponding to the boiling point of water:	
	(a) metric scale	144
	(b) inch scale	144
127.	Determination of heights by the barometer	145
	Acoustics	
128.	Velocity of sound in solids	146
129.	""""liquids and gases	147
130.	Musical scales	148
131.	" "	148
132.		149
133.	Relative strength of the partials of musical instruments	149
134.	Characteristics of the vowels	149
135.	Miscellaneous sound data	149
	A	
	AERODYNAMICS	
	Kinetics of bodies in resisting medium, Stokes law	150
	Flow of gas through tubes	150
		151
	The state of the s	151
		152
		152
		152
		153
144.	shape and size	153
145.	" " " and speed	153
146	Friction	
140.	rriction	154

x	CONTENTS.

147.	Lubrican	ts				154
148.	Lubrican	ts for o	cutting	tools .		154
				1	Viscosity	
149.	Viscosity	of flui	ds and	solids, g	general considerations	155
150.	"				es, temperature variation	155
150.	"				r mixtures, temperature variation	155
~	"		-		se aqueous solutions, temp. variation.	156
152.	"	"			rol " at 20° C	156
153.	"	66			oil, temperature variation	156
154.	"	of mis			ids	157
155. 156.	66					158
-	Specific x				density and temperature variation	159
157.	opecine v				atomic concentrations, 25° C	163
158.	Vicconity					164
159.	v iscosity		"		temperature and pressure variation .	165
160.				•	temperature and pressure variation.	105
161.	Diffusion	of an	agueou	s solutio	on into pure water	166
162.	"					
163.	"	" gas	es and	vapors		168
164.	"				3	168
165.	Solubility				water, temperature variation	169
166.	"	,	0		s in water, temperature variation	170
167.	"					170
168.	"				ed by uniform pressure	171
169.	Absorpti			-		172
170.					, water and alcohol in air	173
•	capman "	iy and	"	"	miscellaneous liquids in air	173
171.	"	"	66	46	aqueous solutions of salts	173
172.	"	66	66	"	liquids-air, -water, -mercury	
173.	"	"	"	"	liquids at solidifying point	
174.	"	66	"	"	thickness of soap films	174
175.					thickness of soap mins	174
				VAPO	OR PRESSURES	
176.	Vapor pi	essures	s of eler	nents		175
177.	"	66			vaporation, Mo, W, Pt	
178.	"	"			S	176
179.	"	"			ol	178
180.	"	46				178
181.	66	46			disulphide	179
101.					penzene	179
			1 1		benzene	179
				aniline		179
						180
				_	l salicylate	180
					naphthalene	180
			(g)	mercui	:y	100

CONTENTS.	X1

182.	Vapor pressure of solutions of salts in water	181
183.	Pressure of saturated water vapor over ice, low temperatures	183
184.	" " water, low temperatures	183
185.	" " " " o° to 374° C	183
186.	Weight in g per m ³ of saturated water vapor	185
	Weight in grains per ft ³ of saturated water vapor	_
187.	-	185
188.	Pressure of aqueous vapor in atmosphere, various altitudes	185
189.	Sca-level	186
190.		187
191.	" wet and dry thermometers	189
	THERMOMETRY	
192.	Stem correction for thermometers, centigrade	190
193.	" " Jena glass, o° to 360° C	190
194.	" " " " " " " " O " " " " " " " " " " "	191
195.	" " " normal, 0° to 100° C.	191
	Gas and mercury thermometers, formulae	
196.		192
197.	Comparison of hydrogen and 16 ^{III} thermometers, 0° to 100° C	192
198.	39 0 100 C	192
199.	to and 39 thermometers, -3 to	
	-35° C	192
200.	Comparison of air and 16 ⁿ¹ thermometers, 0° to 300° C	193
201.	" " " 59 ^{mi} " 100° to 200° C	193
202.	" hydrogen and various mercury thermometers	194
203.	" air and high temperature (59111) mercury thermometer	194
204.	" "H, toluol, alcohol, petrol ether, pentane thermometers	194
205.	Platinum resistance thermometry	195
206.	Thermodynamic scale; temperature of ice point, Kelvin scale	195
207.	Standard points for the calibration of thermometers	195
208.	Calibration of thermo-element, Pt-Pt·Rh	
	" " "	196
209.	Cu-constantan	196
210.	Mechanical equivalent of heat, summary to 1900 (Ames)	197
211.	" " best value	197
211.	best value	197
	English and American horse power, altitude and latitude variation .	
213.	English and American horse power, arctique and latitude variation.	197
	Melting and Boiling Points	
	Melting points of the chemical elements	198
	Boiling points of the chemical elements	199
	Melting points, effect of pressure	200
217.	Freezing point of water, effect of pressure	200
218.	Boiling point, effect of pressure	200
219.		201
,		

xii CONTENTS.

220.	Organic compounds.	melting and boiling points, densities: .					203
	(a) Paraffin series						
							203
	/ 2\ 3\ f						
	(a) Alcoholic e	ethers	•	•	•	•	204
	(f) Ethyl othe	rc	•	•	•	•	204
	(g) Miscellane	rs	•	•	•	٠	204
	Molting points of wa	ous	٠	•	•	•	205
221.	" " "						206
222.	Low molting point of						206
223.	Transformation and	lloys	•	•	٠	•	206
		melting points, minerals and eutectics.					207
		points by salts in solution					208
		ints by salts in solution					210
							211
228.	Critical temperatures	s, pressures, volumes, densities of gases	•		•		212
		m					
		THERMAL CONDUCTIVITY					
229.		y of metals and alloys					213
230.	"	insulators, high temperatures					214
231.	"	various substances					214
232.	"	building materials					215
233.	"	various insulators					216
234.	"	water and salt solutions					216
235.	"	organic liquids					217
236.	" "	gases					217
237.	Diffusivities						217
		EXPANSION COEFFICIENTS					
238.	Linear expansion of	the elements					218
239.		miscellaneous substances					219
240.		solids					220
241.		liquids					221
242.		gases					222
-4		84355					
		Specific Heats					
243.	Specific heats of elem	ents					223
		e and mean specific heats, and latent h					_3
		tallic elements, 0° to 1600° C					225
245.		c volumes, specific heats at 50° K, elemen					226
246.		ous solids					227
247.		er and mercury					227
248.		ous liquids					228
249.	" heat of satur	ated liquid ammonia, -50° to $+50^{\circ}$ C.					228
-							228
-50.	or contents or sati	aracoa include additional, - 30 to 130. C					

	CONTENTS.	xiii
251.	Specific heats of minerals and rocks	229
252.		229
253.	the state of the s	230
•		-50
	LATENT HEATS	
254.	Latent heats of vaporization	231
255.		232
256.		232
257.		232
258.		233
259.		234
26o.		240
		·
	HEATS OF COMBUSTION, FORMATION, ETC.	
261.		241
262.	" " " miscellaneous compounds	241
263.	Heat values and analyses of various fuels: (a) coals and coke	242
	(b) peats and woods	242
	(c) liquid fuels	242
	(d) gases	242
264.	Chemical and physical properties of explosives	243
265.	Additional data on explosives	244
266.	Ignition temperatures of gaseous mixtures	244
267.	Explosive decomposition, ignition temperatures	244
268.	Flame temperatures	244
269.	Thermochemical data: heats of formation from elements	245
270.	" " " of ions	246
271.	" " neutralization	246
272.	" " dilution of sulphuric acid	246
	RADIATION	
273.	Radiation formulae and constants for perfect (black-body) radiator .	247
274.	" in calories for perfect radiator, various temperatures	247
275.	" distribution in spectrum for various temperatures	247
276.		248
277.	Relative emissive powers of various bodies for total radiation	249
278.	Emissivities of metals and oxides	249
279.		249
280.		~49
	peratures	250
81.		250
		Ĭ
	Cooling by Radiation, Conduction, and Convection	
82.	Cooling by radiation and convection: ordinary pressures	251
283.	" " " different pressures	251

xiv	CONTENTS.

284.	Cooling by radiation and convection: very small pressures	252
285.	" " temperature and pressure effect	252
286.	Conduction of heat across air spaces, ordinary temperatures	253
	Convection of heat in air at ordinary temperatures	253
288.	" and conduction of heat by gases at high temperatures: .	254
2001	(a) s as function of a/B	254
	(b) ϕ in watts per cm. as $f(T^{\circ}K)$	254
280	Heat losses from incandescent filaments:	255
209.	(a) Wires of platinum sponge	² 55
	(b) " " bright platinum	255
	THE EVE AND RADIATION	
200.	Spectral variation of sensitiveness as function of intensity (Lumina-	
	tion intensities under various circumstances)	256
201.	Threshold sensibility as related to field brightness	256
292.		² 57
202	Contrast or photometric sensibility	257
	Glare sensibility	257
294.	Rate of adaptation of sensibility	257
295.	Apparent diameter of pupil and flux density at retina	258
	Relative visibility of radiation of different wave-lengths	258
297.	Miscellaneous eye data: physiological; persistence of vision; sensi-	250
290.	bility to small differences of color; flicker	258
	bility to small differences of color, means	230
	PHOTOMETRIC TABLES	
299.	Photometric definitions and units	259
300.	" standards	260
301.	Intrinsic brightness of various light sources	260
302.	Visibility of white lights	260
303.		261
	Luminous and total intensity and radiant luminous efficiency of a	
•	black-body; minimum energy necessary for light sensation	261
305.	Color of light emitted by various sources	261
	Efficiency of various electric lights	262
3	,	
	PHOTOGRAPHIC DATA	
	Numerical constants characteristic of a photographic plate	
	Relative speeds of various photographic materials	263
309.	Variation of resolving power with plate and developer	263
310.	Photographic efficiencies of various lights	264
311.	Relative intensification of various intensifiers	264
	Spectrum Wave-lengths	
312.	Wave-lengths of the Fraunhofer lines	265
	Standards: Red cadmium line, 76 cm, 15° C, Angstroms	266

CONTENTS. XV

314.		OC
315.		66
316.	"Neon wave-lengths	66
317.		67
		68
		68
		68
319.		60
320.		70
321.		72
322.		75
323.		76
324.		76
	Indices of Refraction	
~~~		
325.	Indices of refraction of glass (American)	77
326.	Dispersion of glasses of Table 325	77
327.	Indices of refraction of glasses made by Schott and Gen, Jena 2	78
328.		78
329.		78
330.		79
331.		79
332.	index of refraction of shyline (potassium chioride) in air	79
333.		80
334.	index of refraction of icoland ones (CoCO) in air	80 0
335.	ndex of refraction of iceland spar (CaCO ₃ ) in air	80 2
336.	"" " nitroso-dimethyl-aniline	80 0
337.		8 <b>1</b>
338.	" " refrection. Selected isotropic reinaurals	81
339.	" refraction: Selected isotropic minerals	82
340.		83
341.	" " (" (negative) 2	84
2.4.0	(negative) 2	84
342.		85
343.		86
244	(b) negative 2	87
344.		89
345.	(	89
346.	Liquids relative to air	90
347.	Solutions of saits and acids relative to air 20	91
348.	Gases and vapors	92
349.	Air, 15 C, 70 cm; also corrections for reduc-	
0.50		93
350.	Media for microscopic determinations of refractive indices: liquids	
	with $n_D(0.589\mu) = 1.74$ to 1.87	94

	CONTRENTEC
XVI	CONTENTS.

351.	Media for microscopic determinations of refractive indices: resin-like substances, $n_D(0.589\mu) = 1.88$ to 2.10	294
	Media for microscopic determinations of refractive indices: perma-	-94
352.	nent standard resinous media, $n_D = 1.546$ to $1.682 \dots$	294
	Helit Standard Toshroup Mountain, ND 2054-10-21-2-1	,
	Optical constants of metals	295
353.	" " " "	296
354.		290
	Reflecting Power	
355.	Reflecting power of metals (see Table 359)	296
356.	Light reflected when incident light is normal to transparent medium .	297
357.	" " is near unity or equals $i + dn$ , $i = 0^{\circ}$ to $90^{\circ}$ .	297
358.	" $n = 1.55$ , $i = 0^{\circ}$ to $90^{\circ}$ , polarization percentages.	297
359.	Reflecting power of metals (see Table 355)	298
360.	Percentage diffuse reflection from various substances	298
361.	Reflecting power of pigments, $\lambda = 0.44\mu$ to $0.70\mu$	299
362.	Infra-red diffuse reflecting power of dry pigments	299
363.	Reflecting power of powders (white light)	300
364.	Variation of reflecting power of matt and silvered surfaces with angle	300
365.	Infra-red reflectivity of tungsten, temperature variation	300
	Transmissive Powers	
366.		301
367.	Jena glasses, 0.3/5 to 3.1\tml	302
368.	0.200 to 0.044µ	302
369.	by Jella dicta-violet glasses, 0.200 to 0.39/m	302
370.	" land for anima lights	303
371.	"  "  "  "  "  "  "  "  "  "  "  "  "	304 305
372	(T 11/1)	305
373	// // /प्पर 1\	306
374	" " T 1	307
375		307
376		308
377		300
378		309
379	Properties with wave-lengths 108 ± μ:  (a) Percentage reflection	300
	(a) Percentage renection	309
	(c) Transparency of black absorbers, 2μ to 108μ	309
20-	Rotation of plane of polarized light by solutions	310
		310
381	, sodium emorate and quartz .	3.4
280	Flectrical equivalents	311

CONTENTS.	xvii
CONTENTS.	XVII

	ELECTROMOTIVE POWERS	
383.	Data for voltaic cells: (a) double-fluid cells	312
	(b) single-fluid cells	313
	(c) standard cells	313
	(d) secondary cells	313
384.	Contact potential differences, solids with liquids and liquids with	
	liquids in air	314
385.	Contact potential differences between metals in salt solutions	316
386.	Thermoelectric power of metals	317
387.	" " alloys	318
388.	" against platinum	319
389.	" " of platinum-rhodium alloys .	319
390.	" pressure effect	320
391.	Peltier and Thomson heats, pressure effects	320
392.	Peltier effect	321
393.	" Fe-constantan, Ni-Cu, o° to 560° C	321
394.	" electromotive force in millivolts	322
395.	The tribo-electric series	322
	Electrical Resistance	
396.	Auxiliary table for computing wire resistances	322
397.	Resistivity of metals and some alloys, temperature coefficients	323
398.	Resistance of metals under pressure, temperature coefficients	326
399•	Resistance of mercury and manganin under pressure	326
400.	Conductivity and resistivity of miscellaneous alloys	327
401.	Conducting power of alloys, temperature coefficients	328
402.	Allowable carrying capacity of rubber-covered copper wires	329
403.	Resistivities at high and low temperatures	330
404.	Volume and surface resistivity of solid dielectrics	331
405.	Variation of resistance of glass and porcelain with temperature	332
	(a) Temperature coefficients for glass, porcelain and quartz	332
	Wire Tables	
406.	Tabular comparison of wire gages	333
	Introduction; mass and volume resistivity of copper and aluminum.	334
	Temperature coefficients of copper	335
	Reduction to standard temperature, copper	335
410.	Annealed copper wire table, English units, B. & S. gage	336
411.	" " " Metric units, B. & S. gage	339
412.	Hard-drawn aluminum wire table, English units, B. & S. gage	342
413.	" " Metric units, B. & S. gage	343
	, 3-8	
414.	Ratio of alternating to direct current resistances for copper wire	344
415.		
	current ratio of 1.01	344

xviii contents.

	ELECTROLYSIS	
416.	Electrochemical equivalents	345
417.	Conductivity of a few dilute solutions	346
418.		346
419.	Specific molecular conductivity of solutions	347
420.	" " limiting values	348
421.	temperature coefficient .	348
422.	Equivalent conductivity of salts, acids, bases in solution	349
423.	" some additional salts in solution	351
424.	" conductance of separate ions	352
425.	Hydrolysis of ammonium acetate and ionization of water	352
	DIELECTRIC STRENGTH	
406	Steady potential for spark in air, ball electrodes	353
420.		353
		354
428.		354
429.	Dielectric strength of various materials	
		355
431.	Potential in voits for spark in kerosene	355
	DIELECTRIC CONSTANTS	
432.		350
433.	Variation of dielectric constant with the temperature (gases)	350
434.	" " " pressure (gases)	351
435.	Dielectric constant of liquids	351
436.	" " liquids, temperature coefficients	359
437.	" " liquefied gases	359
438.	" standard solutions for calibration	360
439.	" " solids	360
440.	" . " crystals	36:
	Wireless Telegraphy	
441.	Wave-lengths, frequencies and oscillation constants	36:
442.	Antennae resistances for various wave-lengths and heights	36
443.	Dielectric properties of non-conductors	364
, 15.		
	Magnetic Properties	
444.	Definitions and general discussion	36
445.		36
446.		368
447		368
	Corrections for ring specimens	368
770		

CONTENTS.	xix

449.		erties of various types of iron and steel	
450.	"	a specimen of very pure from (0.017% C)	. 360
451.	"	" electrical sheets	. 369
452.	"	" American magnet steel	. 379
453.	66 66		. 379
454.	66 66	" a ring sample transformer steel, weak field.	. 370
455.	"	" iron in very weak fields	. 379
456.	Permeability of	some specimens of Table 445	. 37
457.		erties of soft iron at 0° and 100° C	
458.	" "		
459.	Magnetism and	temperature, critical temperature	
460.		ariation for paramagnetic substances	
461.		fect on susceptibility of diamagnetic elements	
462.		" " paramagnetic elements	
463.	Magnetic prope	erties of cobalt at o° and 100° C	
464.	" "		• 373
465.			• 373
466.		" Lowmoor wrought iron	. 373
467.			. 373
468.			. 373
469.			• 373
	Demagnetizing	factors for rods	
471.	"		•
	Dissipation of e	energy in cyclic mangetization, Steinmetz constant	
473.		transformer steels	
474.		ptibility	
	9 .		011
		M	
		Magneto-optic Rotation	
475.	Magneto-optic	rotation, general discussion	
476.	"	" solids, Verdet's constant	. 379
477.	"	" liquids, Verdet's constant	. 380
478.	"	" salt and acid water solutions	. 381
479.	"	" " gases, Verdet's constant	. 382
		undt's constants	. 382
		s constant	. 383
482.	Dispersion of K	err effect	. 383
483.			-0-
		Various Magnetic Effects	
184 .	Resistance of m	etals, variation in transverse magnetic field (Bi) .	. 384
		stance in transverse magnetic field (Ni)	
		ance of various metals in magnetic field	
		anomagnetic and thermomagnetic effects	
		ll constant with temperature	
400.	variation of Tia	ir constant with temperature	. 303

	CATHODE AND CANAL RAYS	
489.	Cathode and canal rays	386
490.	Speed of cathode rays	386
491.	Cathodic sputtering	386
	D" (77 ) D	
	RÖNTGEN (X-RAYS) RAYS	
492.	X-rays, general properties	38
493•	Röntgen secondary rays	38
494.		388
495.	Intensity of X-rays; ionization	388
496.	Mass absorption coefficients, $\lambda/d$	38
497.	Absorption coefficients of characteristic radiations in gases	38
498.	X-ray spectra and atomic numbers	399
	(a) K-series	399
	(b) L-series	39
	(c) M-series	39
	(d) Tungsten X-ray spectrum	39
400.	X-ray absorption spectra and atomic numbers	39
• • • • • • • • • • • • • • • • • • • •		
	RADIOACTIVITY	
500.	Relative phosphorescence excited by radium	394
501.	The production of $a$ particles (Helium)	394
502.	Heating effect of radium and its emanation	394
503.	Stopping powers of various substances for $\alpha$ rays	39.
504.	Absorption of $\beta$ rays by various substances	39.
505.		39.
	Table of miscellaneous properties	390
507.		39
	Amount of radium emanation	39
	Vapor pressure of the radium emanation in cm of Hg	39
	References to spectra of radioactive substances	398
J		
	Molecular, Atomic and Ionic Data	
511.	Molecular velocities	399
512.	" free paths, collision frequencies and diameters	399
513.	Cross sections and lengths of some organic molecules	400
514.	Size of diffracting units in crystals	400
515.	Electrons; Rutherford atom; Bohr atom; Magnetic field of atom.	40
516.	Electron emission from hot metals	40
517.	Photo-electric effect	40
518.	Ionizing potentials, resonance potentials, single line spectra	40
519.	Contact (Volta) potentials	 40
	(a) Electron affinity of the elements	404
	(b) Voltage of electrolytic cells	404
520.	Ionic mobilities and diffusions, — ionic mobilities	40
	Diffusion coefficients	40

CONTENTS.	XX
-----------	----

## Colloids

522. General properties of colloids	106
	<b>10</b> 6
	106
	107
	107 107
527. Molecular heats of adsorption and fiquefaction	<b>1</b> 07
528. Miscellaneous constants, atomic, molecular, etc	801
	108
	100
	<b>10</b> 9
	ΙΟ
ASTRONOMICAL DATA	
533. Stellar spectra and related characteristics	111
	111
-	111
	12
	12
	113
	113
	114
	115
	115
T 17 6 7 13 13 1 C	,16
The state of the s	
	116
	116
	17
	117
	17
	18
	18
• • • • • • • • • • • • • • • • • • • •	18
	18
	19
	15
	19
	.19
557. Relative intensity of solar radiation for various months 4	.20
Meteorological Data	
558. Mean monthly and yearly temperatures for representative stations . 4	.20
and a second sec	21
4.	

xxii	CONTENTS.	
560.	Variation of percentage composition with altitude, pressure	421
561.	" temperature, pressure and density with altitude	421
562.		422
563.	" with depth, land and ocean	422
564.	Geochemical data. Meteorites	423
	Geodetical Data	
565.	Acceleration of gravity, sea-level and different latitudes and altitudes	424
566.	Gravity as observed at various stations and reduced to sea-level	425
567.		426
568.	Length of seconds pendulum, sea-level and various latitudes	427
	Miscellaneous geodetic data	427
	Terrestrial Magnetism	
570.	Secular change of declination, 1810 to 1920	428
571.	Dip or inclination, various longitudes and latitudes, 1915	430
572.		430
573.	Horizontal intensity, various longitudes and latitudes, 1915	431
574.	" secular change, 1860 to 1915	431
575.	Total intensity, various longitudes and latitudes	432
576.	" secular change, 1855 to 1915	432
577.	Agonic line, 1800 to 1915	433
578.		433
579-		434
	Appendix, definitions	43
	Table 580. Temperature measurements	438
1	" 581. Adsorption of H and He by cocoanut charcoal	439
	" 582. Adsorption by charcoal at low pressures and temperatures	439
	" 583. Adsorption of hydrogen by palladium black	439
	" 584. Audibility of sound; f (pressure and frequency)	440
	" 322. Spectrum series (concluded from p. 275)	44
	" 518. Ionizing and resonance potentials (concl'd from p. 403).	442
	" 585. List of stars known to be within five parsecs	443
	INDEX	445

The following tables appearing in the 6th revised edition of these tables have been omitted: Table 222. Newton's rings; thicknesses corresponding to various colors.

^{292.} Ratio of the electrostatic to the electromagnetic unit of electricity = v (historical).
293. Absolute measurement of currents and the E.M.F. of standard cells (historical).

[&]quot; 295. Contact difference of potential in volts; solids with liquids and liquids with liquids.

^{&#}x27; 305. Various determinations of the ohm (historical).

## INTRODUCTION.

# UNITS OF MEASUREMENT. DIMENSIONAL AND CONVERSION FORMULAE.

The quantitative measure of anything is expressed by two factors, — one, a certain definite amount of the kind of physical quantity measured, called the unit, the other, the number of times this unit is taken. A distance is stated as 5 meters. The purpose in such a statement is to convey an idea of this distance in terms of some familiar or standard unit distance. Similarly quantity of matter is referred to as so many grams; of time, as so many seconds, or minutes, or hours.

The numerical factor definitive of the magnitude of any quantity must depend on the size of the unit in terms of which the quantity is measured. For example, let the magnitude factor be 5 for a certain distance when the mile is used as the unit of measurement. A mile equals 1760 yards or 5280 feet. The numerical factor evidently becomes 8800 and 26400, respectively, when the yard or the foot is used as the unit. Hence, to obtain the magnitude factor for a quantity in terms of a new unit, multiply the old magnitude factor by the ratio of the magnitudes of the old and new units; that is, by the number of the new units required to make one of the old.

The different kinds of quantities measured by physicists fall fairly definitely into two classes. In one class the magnitudes may be called extensive, — in the other, intensive. To decide to which class a quantity belongs, it is often helpful to note the effect of the addition of two equal quantities of the kind in question. If twice the quantity results, then the quantity has extensive (additive) magnitude. For instance, two pieces of platinum, each weighing 5 grams, added together, weigh 10 grams; on the other hand, the addition of one piece of platinum at 100° C to another at 100° C does not result in a system at 200° C. Volume, entropy, energy may be taken as typical of extensive,— density, temperature and magnetic permeability, of intensive magnitudes.

The measurement of quantities having extensive magnitude is a comparatively direct process. Those having intensive magnitude must be correlated with phenomena which may be measured extensively. In the case of temperature, a typical quantity with intensive magnitude, various methods of measurement have been devised, such as the correlation of magnitudes of temperature with the varying lengths of a thread of mercury.

Fundamental Units. — It is desirable that the fewest possible fundamental unit quantities should be chosen. Simplicity should regulate the choice, — simplicity 1st, psychologically, in that they should be easy to grasp mentally, and 2nd, physically, in permitting as straightforward and simple definition as

possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: 1st, geometrical considerations — length, surface, etc., — lead to the need of a length; 2nd, kinematical considerations — velocity, acceleration, etc., —introduce time; 3rd, mechanics — treating of masses instead of immaterial points — introduces matter with the need of a fundamental unit of mass; 4th, electrical, and 5th, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, — the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability,  $\mu$ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived Units. — Having selected the fundamental or basic units, — namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, - it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is  $3 \times 3 \times 3$  times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is  $l^3$ . Similarly the ratio of two units of area would be  $l^2$ , and so on for other quantities.

¹ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, e. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1917.)

Conversion Factors and Dimensional Formulae. — For the ratios of length, mass, time, temperature, dielectric constant and permeability units the small bracketed letters, [l], [m], [t],  $[\theta]$ , [k], and  $[\mu]$  will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was  $l^3$  or 1/27. These factors will be called *conversion factors*.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or  $\lfloor L/T \rfloor$ , and acceleration by a velocity number divided by an interval-of-time number, or  $\lfloor L/T^2 \rfloor$ , and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases,  $\lfloor l/t \rfloor$  and  $\lfloor l/t^2 \rfloor$ . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called dimensional equations. Thus  $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$  will be found to be the dimensional equation for energy, and  $\lfloor ML^2T^{-2} \rfloor$  the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = CL^aM^bT^c,$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are  $L_i$ ,  $M_i$ ,  $T_i$ , we have to find the value of  $L_i/L$ ,  $M_i/M$ ,  $T_i/T$ , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus  $L_t = Ll$ ,  $M_t = Mm$ ,  $T_t = Tt$ , and if  $Q_t$  be the new quantity number,

$$\begin{aligned} Q_{\prime} &= CL_{\prime}{}^{a}M_{\prime}{}^{b}T_{\prime}{}^{c}, \\ &= CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c}, \end{aligned}$$

or the conversion factor is  $[l^a m^b t^c]$ , a quantity precisely of the same form as the dimension formula  $[L^a M^b T^c]$ .

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is  $s = v_0 t + \frac{1}{2}at^2$ . The corresponding dimensional equation is  $[L] = [(L/T)T] + [(L/T^2)T^2]$ , each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.¹ For instance Lord Rayleigh, in discussing the intensity

¹ See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations," E. Buckingham, Physical Review, (2) 4, 345, 1914; also Phil. Mag. 42, 696, 1921.

of light scattered from small particles, in so far as it depends upon the wavelength, reasons as follows:1

"The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. The number (i) expressing the ratio of the two amplitudes is a function of the following quantities: -T, the volume of the disturbing particle; r, the distance of the point under consideration from it;  $\lambda$ , the wave-length; b, the velocity of propagation of light; D and D', the original and altered densities: of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there are none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows at once that D and D' occur only under the form D: D', which is a simple number and may therefore be omitted. It remains to find how i varies with T, r,  $\lambda$ , b.

"Now, of these quantities, b is the only one depending on time; and therefore, as i is of no dimensions in time, b cannot occur in its expression. We are left, then, with T, r, and  $\lambda$ ; and from what we know of the dynamics of the question, we may be sure that i varies directly as T and inversely as r, and must therefore be proportional to  $T \div \lambda^2 r$ , T being of three dimensions in space. In passing from one part of the spectrum to another  $\lambda$  is the only quantity which varies, and we have the important law:

"When light is scattered by particles which are very small compared with any of the wavelengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wave-length, and the intensity of the lights themselves as the inverse fourth power."

The dimensional and conversion-factor formulae for the more commonly occurring derived units will now be developed.

Area is referred to a unit square whose side is the unit of length. The area of a surface is expressed as

 $S = CL^2$ ,

where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity; if a circle and L its diameter, C is  $\pi/4$ . The dimensional formula is therefore  $\lfloor L^2 \rfloor$  and the conversion factor  $\lfloor l^2 \rfloor$ . (Since the conversion factors are always of the same dimensions as the dimensional formulae they will be omitted in the subsequent discussions. A table of them will be found on page 3.)

Volume is referred to a unit cube whose edge is the unit of length. The volume of a body is expressed as

 $V = CL^3$ .

The constant C depends on the shape of the bounding surfaces. The dimensional formula is  $[L^3]$ .

**Density** is the quantity of matter per unit volume. The dimensional formula is [M/V] or  $[ML^{-3}]$ .

Ex. — The density of a body is 150 pd. per cu. ft.: required the density in grains per cu. in. Here m, the number of grains in a pd., = 7000; l, the number of in. in a ft., = 12;  $ml^3 = 7000/12^3 = 4.051$ . The density is  $150 \times 4.051 = 607.6$  grains/cu. in.

The specific gravity of a body is the ratio of a density to the density of a standard substance. The dimensional formula and conversion factor are both unity.

¹ Philosophical Magazine, (4) 41, p. 107, 1871.

**Velocity, v,** of a body is dL/dt, or the ratio of a length to a time. The dimensional formula is  $[LT^{-1}]$ .

Angle is measured by the ratio of the length of an arc to its radius. The dimensional formula is unity.

Angular Velocity is the ratio of the angle described in a given time to that time. The dimensional formula is  $\lceil T^{-1} \rceil$ .

**Linear Acceleration** is the rate of change of velocity or a = dv/dt. The dimensional formula is  $[VT^{-1}]$  or  $[LT^{-2}]$ .

Ex. — A body acquires velocity at a uniform rate and at the end of one minute moves at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second? Since the velocity gained was 20 km per hour in one minute, the acceleration was 1200 km per hour per hour. l = 100000, t = 3600,  $lt^{-2} = 100000/3600^2 = 0.00771$ ; the acceleration = .00771 × 1200 = 9.26 cm/sec.

Angular Acceleration is rate of change of angular velocity. The dimensional formula is [(angular velocity)/T] or  $[T^{-2}]$ .

**Momentum,** the quantity of motion in the Newtonian sense, is measured by the product of the mass and velocity of the body. The dimensional formula is  $\lceil MV \rceil$  or  $\lceil MLT^{-1} \rceil$ .

Moment of Momentum of a body with reference to a point is the product of its momentum by the distance of its line of motion from the point. The dimensional formula is  $[ML^2T^{-1}]$ .

Moment of Inertia of a body round an axis is expressed by the formula  $\sum mr^2$ , where m is the mass of any particle of the body and r its distance from the axis. The dimensional formula for the sum is the same as for each element and is  $\lceil ML^2 \rceil$ .

Angular Momentum of a body is the product of its moment of inertia and angular velocity. The dimensional formula is  $[ML^2T^{-1}]$ .

Force is measured by the rate of change of momentum it can produce. The dimensional formulae for force and "time rate of change of momentum" are therefore the same, the ratio of a momentum to a time  $[MLT^{-2}]$ .

Ex. — When mass is expressed in lbs., length in ft., and time in secs., the unit force is called the poundal. When grams, cms, and secs. are the corresponding units, the unit of force is called the dyne. Find the number of dynes in 25 poundals. Here m = 453.59, l = 30.48, t = 1;  $ml_{*}^{t=2} = 453.59 \times 30.48 = 13825$  nearly. The number of dynes is  $13825 \times 25 = 345625$  approximately.

Moment of Couple, Torque, or Twisting Motive can be expressed as the product of a force and a length. The dimensional formula is [FL] or  $[ML^2T^{-2}]$ .

Intensity of Stress is the ratio of the total stress to the area over which the stress is distributed. The dimensional formula is  $[FL^{-2}]$  or  $[ML^{-1}T^{-2}]$ .

Intensity of Attraction, or "Force at a Point," is the force of attraction per unit mass on a body placed at the point. The dimensional formula is  $[FM^{-1}]$ , or  $[LT^{-2}]$ , the same as acceleration.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is  $[FL^2M^{-1}]$  or  $[L^3T^{-2}]$ .

Modulus of Elasticity is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity  $[ML^{-1}T^{-2}]$ .

Work is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is [FL] or  $[ML^2T^{-2}]$ .

Energy. — The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical  $[ML^2T^{-2}]$ .

Resilience is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is  $[ML^2T^{-2}L^{-3}]$  or  $[ML^{-1}T^{-2}]$ .

**Power or Activity** is the time rate of doing work, or if W represents work and P power, P = dw/dt. The dimensional formula is  $[WT^{-1}]$  or  $[ML^2T^{-3}]$ , or for problems in gravitation units more conveniently  $[FLT^{-1}]$ , where F stands for the force factor.

Exs. — Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [f], where f is 453.59 and l is 30.48. The answer is  $453.59 \times 30.48 = 13825$ .

Find the number of ft.-poundals in 1000000 cm-dynes. Here m = 1/453.59, l = 1/30.48, t = 1;  $ml^2t^{-2} = 1/453.59 \times 30.48^2$ , and  $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$ .

If gravity produces an acceleration of 32.2 ft./sec./sec., how many watts are required to make one horse-power? One horse-power is 550 ft.-pds. per sec., or  $550 \times 32.2 = 17710$  ft.-poundals per second. One watt is  $10^7$  ergs per sec., that is,  $10^7$  dyne-cms per sec. The conversion factor is  $[ml^2t^{-3}]$ , where m is 453.59, l is 30.48, and t is t, and the result has to be divided by  $t0^7$ , the number of dyne-cms per sec. in the watt.  $17710 \ ml^2t^{-3}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$ .

#### HEAT UNITS.

Quantity of Heat, measured in dynamical units, has the same dimensions as energy  $[ML^2T^{-2}]$ . Ordinary measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by  $\Theta$ , the dimensional formula for quantity of heat, H, will be  $[M\Theta]$ . Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called thermometric units. The dimensional formula now changed by the substitution of volume for mass is  $[L^3\Theta]$ .

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is  $[\Theta^{-1}]$ .

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore  $K = H/L^2T\Theta/L$ , and the dimensional formula  $[H/\Theta LT] = [ML^{-1}T^{-1}]$  in thermal units. In thermometric units the formula becomes  $[L^2T^{-1}]$ , which properly represents diffusivity, and in dynamical units  $[MLT^{-3}\Theta^{-1}]$ .

Thermal Capacity is mass times the specific heat. The dimensional formula is [M].

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is  $[M\Theta/M]$  or  $[\Theta]$ ; in dynamical units it is  $[L^2T^{-2}]$ .

Note. — When  $\Theta$  is given the dimensional formula  $[L^2T^{-2}]$ , the formulae in thermal and dynamical units are identical.

**Joule's Equivalent,** J, is connected with the quantity of heat by the equation  $ML^2T^{-2} = JH$  or  $JM\Theta$ . The dimensional formula of J is  $[L^2T^{-2}\Theta^{-1}]$ . In dynamical units J is a simple number.

**Entropy** of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is  $[M\Theta/\Theta]$  or [M]. In dynamical units the formula is  $[ML^2T^{-2}\Theta^{-1}]$ .

Exs. — Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the British thermal unit is the amount of heat required to warm one pound of water 1° C, the large calorie, 1 kilogram of water, 1° C, the small calorie or therm, 1 gram, 1° C. (1) To find the number of kg-cals. in one British thermal unit. m = .45359,  $\theta = .5/9$ ;  $m\theta = .45359 \times 5/9 = .25199$ . (2) To find the number therms in one kg-cal. m = 1000, and  $\theta = 1$ ;  $m\theta = 1000$ . (3) Hence the number of small calories or therms in one British thermal unit is  $1000 \times .25199 = 251.99$ .

#### ELECTRIC AND MAGNETIC UNITS.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

 $F = \frac{QQ'}{Kr^2},$ 

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is  $[MLT^{-2}]$ , that for Q is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}]$ .

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F=\frac{mm'}{\mu r^2},$$

in which  $\mu$  is the permeability of the medium and r is the distance between two poles having the strengths m and m'.  $\mu$  is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is  $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$ .

The symbols K and  $\mu$  are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and  $\mu$  are connected by the equation  $1/\sqrt{K\mu} = v$ , where v is the velocity of an electromagnetic wave. For empty space or for air, K and  $\mu$  being measured in the same units,  $1/\sqrt{K\mu} = c$ , where c is the velocity of light in vacuo,  $3 \times 10^{10}$  cm per sec. It is sometimes forgotten that the omission of the dimensions of K or  $\mu$  is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when  $\mu$  is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of  $\mu$  has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

#### ELECTROSTATIC SYSTEM.

Quantity of Electricity has the dimensional formula  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ , as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$ .

**Electric Field Intensity** is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or  $\lceil MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}} \rceil$  or  $\lceil M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}} \rceil$ .

Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or  $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$  or  $[M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{3}{2}}]$ .

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or  $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$  or [LK].

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$  or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$ .

**Electrical Conductivity**, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}/L)T]$  or  $[T^{-1}K]$ .

**Resistivity** is the reciprocal of conductivity. The dimensional formula is  $[TK^{-1}]$ .

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$  or  $[LT^{-1}K]$ .

**Resistance** is the reciprocal of conductance. The dimensional formula is  $[L^{-1}TK^{-1}]$ .

Exs. — Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is  $[m^{\frac{1}{2}l^2t^{-1}k^{\frac{1}{2}}}]$ , in which m=0.0648, l=30.48, t=1, k=1; the factor is  $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}}$ , or 42.8.

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is  $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}]$ , in which m = 0.001, l = 0.1, t = 1, k = 1; the factor is  $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$ , or 0.01.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specific-inductive capacity 6 units to c.g.s. units. The formula is [lk] in which l=30.48, k=6; the factor is  $30.48 \times 6$ , or 182.88.

#### ELECTROMAGNETIC SYSTEM.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability  $\mu$  for K.

Magnetic Pole Strength or Quantity of Magnetism has already been shown to have the dimensional formula  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}].$ 

Magnetic Flux characterizes the magnetized state of a magnetic circuit. Through a surface inclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength.

Magnetic Field Intensity or Magnetizing Force is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or  $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ .

Magnetic Potential or Magnetomotive Force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity,  $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$  or  $[M^{\frac{3}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ .

Magnetic Moment is the product of the pole strength by the length of the magnet. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{n}{2}}T^{-1}\mu^{\frac{1}{2}}]$ .

Intensity of Magnetization of any portion of a magnetized body is the ratio of the magnetic moment of that portion and its volume. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-1}\mu^{\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$ .

Magnetic Induction is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}/L^2]$  or  $[M^{\frac{1}{2}}L^{-\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ .

Magnetic Susceptibility is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$  or  $[\mu]$ .

Current, I, flowing in circle, radius r, creates magnetic field at its center,  $2\pi I/r$ . Dimensional formula is product of formulae for magnetic field intensity and length or  $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ .

Quantity of Electricity is the product of the current and time. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ .

Electric Potential, or Electromotive Force, as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is  $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$ .

Electrostatic Capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is  $[L^{-1}T^2\mu^{-1}]$ .

Resistance of a Conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$  or  $[LT^{-1}\mu]$ .

Conductance is the reciprocal of resistance, and the dimensional formula is  $\lceil L^{-1}T\mu^{-1} \rceil$ .

Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}/L^2(M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}/L)$  T or  $[L^{-2}T\mu^{-1}]$ .

**Resistivity** is the reciprocal of conductivity as just defined. The dimensional formula is  $[L^2T^{-1}\mu]$ .

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}} \times T \div M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$  or  $[L\mu]$ .

Mutual Inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Electric Field Intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}\mu^{\frac{1}{2}}]$ .

Magnetic Reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is  $[L^{-1}\mu^{-1}]$ .

Thermoelectric Power is measured by the ratio of electromotive force and temperature. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}\Theta^{-1}]$ .

Coefficient of Peltier Effect is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is  $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$ , the same as for electromotive force.

Exs. — Find the factor required to convert intensity of magnetic field from ft.-grain-min. units to c.g.s. units. The formula is  $[m^{\frac{1}{2}}l^{-1}\mu^{-\frac{1}{2}}]$ ; m = 0.0648, l = 30.48, t = 60, and  $\mu = 1$ ; the factor is  $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}}$ , or 0.046103.

How many c.g.s. units of magnetic moment make one ft.-grain-sec. unit of the same quantity? The formula is  $[m^{\frac{1}{2}}l^{2}t^{-1}\mu^{\frac{1}{2}}]$ ; m = 0.0648, l = 30.48, t = 1, and  $\mu = 1$ ; the number is  $0.0648^{\frac{1}{2}} \times 30.48^{\frac{5}{2}}$ , or 1305.6.

If the intensity of magnetization of a steel bar is 700 in c.g.s. units, what will it be in mmmg-sec. units? The formula is  $[m^{\frac{1}{2}}l^{\frac{1}{2}}l^{-1}\mu^{\frac{1}{2}}]$ ; m = 1000, l = 10, t = 1,  $\mu = 1$ ; the intensity is  $700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}$ , or 70000.

Find the factor required to convert current from e.g.s. units to earth-quadrant-10⁻¹¹ gramsec. units. The formula is  $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}\mu^{-\frac{1}{2}}]$ ;  $m = 10^{11}$ ,  $l = 10^{-9}$ ,  $\mu = 1$ ; the factor is  $10^{\frac{1}{2}} \times 10^{-\frac{9}{2}}$ , or 10.

Find the factor required to convert resistance expressed in c.g.s. units into the same expressed in earth-quadrant-10⁻¹¹ gram-sec. units. The formula is  $[lt^{-1}\mu]$ ;  $l = 10^{-9}$ , t = 1,  $\mu = 1$ ; the factor is  $10^{-9}$ .

#### FUNDAMENTAL STANDARDS.

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility and availability and be suitable for accurate measures. Cnce chosen and made it is called the primary standard and is generally kept at some central bureau, — for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the international ohm standard), when it is simply a standard closely representing the unit and accepted for practical purposes, its value having been fixed by certain measuring processes. Secondary or refer-

ence standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. — The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at o° C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. — The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time. — The unit of time universally used is the mean solar second, or the 86400th part of the mean solar day. It is based on the average time of one rotation of the earth on its axis relatively to the sun as a point of reference = 1.00273791 sidereal second.

Standard of Temperature. — The standard scale of temperature as adopted by the International Committee of Weights and Measures (1887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at o' C of one meter of mercury, o' C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as o' and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.13°, that of the boiling point, 373.13°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K).

#### NUMERICALLY DIFFERENT SYSTEMS OF UNITS.

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron  $(\mu)$  or one-millionth of a meter is often used. The following table ¹ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

TABLE I.
PROPOSED SYSTEMS OF UNITS.

·	Weber and Gauss	Kelvin c.g.s.	Moon 1891	Giorgi MKS (Prim. Stds.)	France 1914	B. A. Com., 1863	Practical (B. A. Com., 1873)	Strout 1891
Length	mm	cm	dm	m	m	m	10 ⁹ cm	10 ⁹ cm
Mass	mg	g	Kg	Kg	10 ⁶ g	g	10 ⁻¹¹ g	10 ⁻⁹ g
Time	sec.	sec.	sec.	sec.	sec.	sec.	sec.	sec.

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships  $F = QQ'/Kr^2$  and  $mm'/\mu r^2$ , respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, — for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor  $4\pi$  at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. — "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

¹ Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

"Some writers ' on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, — one a combination of c.g.s. electrostatic and c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that  $\lceil 1/K\mu \rceil \rceil = \lceil L^2/T^2 \rceil$  which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and  $\mu$  were expressed in the same system of units. Maxwell proved theoretically that  $1/\sqrt{K\mu}$  is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes  $c/\sqrt{K\mu} = v$ . For the ether K = 1 in electrostatic units and  $\mu = 1$  in electromagnetic units. Hence c = v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the e.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is  $2.9986 \times 10^{10}$  centimeters per second.

"Practical" Electromagnetic System. — This electromagnetic system is based upon the units of  $10^9$  cm,  $10^{-11}$  gram, the sec. and  $\mu$  of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm =  $10^9$  c.g.s. units; the current unit, the ampere =  $10^{-1}$  c.g.s. units; and the electromotive force unit, the volt =  $10^8$  c.g.s. units.

The International Electric Units. — The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

¹ For example, A. G. Webster, "Theory of Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 1914.

This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:

- "I. The *International Ohm* is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and of a length of 106.300 centimeters.
- "2. The *International Ampere* is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
- "3. The *International Volt* is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will produce a current of one international ampere.
- "4. The *International Watt* is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was 1.0183 international volts at 20° C.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:

- "Coulomb. As a unit of quantity, the *International Coulomb*, which is the quantity of electricity transferred by a current of one international ampere in one second.
- "Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
- "Joule. As a unit of work, the Joule, which is equal to 10⁷ units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
- "Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."

"The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim

for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 382. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

# THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS.

#### RESISTANCE

Resistance. — The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. — Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

### SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE.

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in 10,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to o° C as possible. The measurements are to be corrected to o° C.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube

is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$A = \frac{0.80}{1063\pi} \left( \frac{\mathbf{r}}{r_1} + \frac{\mathbf{I}}{r_2} \right) \text{ ohm,}$$

where  $r_1$  and  $r_2$  are the radii in millimeters of the end sections of the bore of the tube.

The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. — Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U. S. Bureau of Standards in 1910 and may be called the "1910 ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000. Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. — In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent Cu + 12 per cent Mn + 4 per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed I ohm and O.I ohm coils may remain constant to about I part in 100,000.

Absolute Ohm. — The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is  $\lfloor L\mu/T \rfloor$ , such an absolute measurement gives R not in cm/sec. but in cm  $\times \mu$ /sec. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alternate current methods. Probably the most accurate determination was made

in 1913 by F. E. Smith of the National Physical Laboratory of England, using a modification of the Lorentz revolving disk method. His result was

1 international ohm =  $1.00052 \pm 0.00004$  absolute ohms,

or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.245 cm long. Table 305 of the 6th revised edition of these tables contains data relative to the various determinations of the ohm.

#### CURRENT.

The Silver Voltameter. — The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1893. Differences of as much as 0.1 per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in 1910 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the international committee since 1910, but no agreement upon final specifications has vet been reached.

Resistance Standards Used in Current Measurements. — Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts.¹ It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. — The absolute ampere ( $10^{-1}$ c.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is  $[L^{\frac{1}{2}}M^{\frac{1}{2}}/T\mu^{\frac{1}{2}}]$  which is equivalent to  $[F^{\frac{1}{2}}/\mu^{\frac{1}{2}}]$ , the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance. A summary of the various determinations will be found in Table 293 of the 6th Revised Edition of these tables.

The best value is probably the mean of the determinations made at the U. S. Bureau of Standards, the National Physical Laboratory and at the University of Gröningen, which gives

1 international ampere = 0.99991 absolute ampere.

The separate values were 0.99992, 0.99988 and 0.99994, respectively. "The result may also be expressed in terms of the electrochemical equivalent of silver, which, based on the '1910 mean voltameter,' thus equals 0.00111810 g per absolute coulomb. By the definition of the international ampere, the value is 0.00111800 g per international coulomb."

#### ELECTROMOTIVE FORCE.

International Volt.—"The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. — The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination

¹ See "Report to the International Committee on Electrical Units and Standards," 1912, p. 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912: 13, pp. 447, 479, 1916.

having its anode or negative electrode of cadmium amalgam, consisting of 10 per cent by weight of cadmium and 90 per cent mercury. The cathode, or positive electrode, is pure mercury covered with a paste consisting of mercurous sulphate, cadmium-sulphate crystals, and solution. The electrolyte is cadmium-sulphate solution in contact with an excess of cadmium-sulphate crystals. The containing vessel is of glass, usually in the H form. Connection is made to the electrodes by platinum wires sealed into the glass. The cells are sealed, preferably hermetically, and in use are submerged in a constant-temperature oil bath. The resistance of a cell is about 600 to 1000 ohms. The Weston cell used with potentiometers is not the Weston normal cell, but differs from it only slightly, the cadmium-sulphate solution not being saturated. It is described in the next section below.

One of the great advantages of the Weston normal cell is its small change of electromotive force with change of temperature. At any temperature, t (centigrade), between 0° and 40°,  $E_t = E_{20} - 0.0000406 (t - 20) - 0.0000095 (t - 20)^2 + 0.0000001 (t - 20)^3$ . This temperature formula was adopted by the London conference of 1908. That this formula may apply, the cell must be of a strictly uniform temperature throughout. One leg of the cell has a large positive and the other leg a large negative temperature coefficient. If the temperature of one leg changes faster than the other, the formula does not hold.

When the best of care is taken as to purity of materials and mode of procedure, Weston normal cells are reproducible within 1 part in 100,000. The source of the greatest variations has probably been in the mercurous sulphate. Cells using the best samples of this material have an electromotive force the constancy of which over a period of one year is about 1 part in 100,000. Only very meager specifications for the cell have as yet been agreed upon internationally, however, and the procedures in various laboratories differ in some respects.¹

The basis of measurements of electromotive force is the same in all countries as the result of the joint international experiments of 1910. As already stated, a large number of observations were made at that time with the silver voltameter, and a considerable number of Weston normal cells from the national laboratories of England, France, Germany and the United States were compared. From the results of these voltameter experiments and from resistance measurements, the value

## 1.0183 international volts at 20° C

was assigned to the Weston normal cell. A mean of the groups of cells from the four laboratories was taken as most accurately representing the Weston normal

¹ For the preliminary specifications which have been issued and the reports of the various investigations on the standard cells see the following references: Preliminary specifications, Wolff and Waters, Bull. B. of S. 3, p. 623, 1907; Clark and Weston Standard Cells, Wolff and Waters, ditto, 4, p. 1, 1907; Temperature formula of Weston Standard Cell, ditto, 5, p. 309, 1908; The materials, reproducibility, etc., of the Weston Cell, Helett, Phys. Rev. 22, p. 321, 1906; 23, p. 166, 1906; 27, pp. 33, 337, 1908; Mercurous sulphate, etc., Steinwehr, Zs. für Electroch. 12, p. 578, 1906; German value of cell, Jaeger and Steinwehr, ditto, 28, p. 367, 1908; National Physical Laboratory researches, Smith, Phil. Trans. 207, p. 393, 1908; On the Weston Cell, Haga and Boerema, Arch. Neerland, des Sci. Exactes, 3, p. 324, 1913.

cell. Each laboratory has means of preserving the unit. Any discrepancies between the bases of the different countries at the present time would be due only to possible variations in the reference cells of the national laboratories. Such discrepancies are probably less than 2 parts in 100,000.

The figure 1.0183 has been in use since January 1, 1911. The value used in the United States before 1911, 1.019126 at 20° C or 1.0189 at 25° C, was assigned to a certain group of cells maintained as the standard of electromotive force at the Bureau of Standards. The high value is partly due to the use of commercial mercurous sulphate in the cells. The old and the new values, 1.01926 and 1.0183, thus apply to different groups of cells. The group of cells to which the value 1.019126 was assigned before 1910 differed by 26 microvolts from the mean of the international group, such that the international group to which the value 1.0183 is now assigned had the value 1.019126 + 0.000026, or 1.019152, in terms of the old United States basis. The difference between 1.019152 and 1.0183 is 0.000852.

The electromotive force of any Weston cell as now given is therefore 0.000852 volt smaller than on the old United States basis, i.e., the present international volt is 84 parts in 100,000 larger than the old international volt of the United States.

Upon the new international basis the Clark cell set up according to the old United States legal specifications has an emf of 1.43280 international volts at 15° C. The Clark cell set up (with specially purified mercurous sulphate) according to improved specifications used at the Bureau of Standards has an emf of 1.43250 international volts at 15° C or 1.42637 at 20° C.

Portable Weston Cells. — The standard cell used in practice is the Weston portable cell. It is like the Weston normal cell except that the cadmium-sulphate solution at ordinary temperatures is unsaturated. As usually made, the cadmium-sulphate solution is saturated at about 4°C; at higher temperatures the crystals are dissolved. Plugs of asbestos or other material hold the chemicals in place. Its resistance is usually about 200 to 311 ohms. The change of emf, wholly negligible in most electrical measurements, is less than 0.00001 volt per degree C. The two legs of the cell have large and opposite temperature coefficients so that care must be taken that the temperature of the cell is kept uniform and the cell must be protected from draughts or large changes of temperature. The electromotive force of a portable cell ranges from 1.0181 to 1.0191 international volts and must be determined by comparison with standards. It decreases very slightly with time, usually less than 0.0001 volt per year.

Absolute and Semi-absolute Volt. — Since the direct determination of the volt in absolute measure presents great difficulties, it is derived by Ohm's law from the absolute measures of the ohm and ampere. From the absolute values of these already given,

1 international volt = 1.00043 absolute volts.

The electromotive force of the Weston normal cell at 20° C is 1.01830 international volts and 1.01874 absolute volts. A semi-absolute volt is that potential

difference which exists between the terminals of a resistance of one *international* ohm when the latter carries a current of one *absolute* ampere. The emf of the Weston normal cell may be taken as 1.01821 semi-absolute volts at 20° C.

### QUANTITY OF ELECTRICITY.

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,500 coulombs.

Standards. — There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

#### CAPACITY.

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by r mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

### INDUCTANCE.

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately  $10^9$  cms. and a henry is  $10^9$  cms. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are [TR] and this unit is based on the second and ohm.

Inductance Standards. — Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-

current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

#### POWER AND ENERGY.

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. — No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

### MAGNETIC UNITS.

C.G.S. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (1894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force

as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm²" is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates  $4\pi$  in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.¹

TABLE II.

THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

Quantity		Ordinary magnetic units.	Ampere-turn units.	Ordinary units in 1 ampere- turn unit
Magnetomotive force	F	Gilbert	Ampere-turn	4π/10
Magnetizing force	H	Gilbert per	Ampere-turn per	$4\pi/10$
25 4: 0	т.	cm.	cm.	
Magnetic flux	Φ	Maxwell	Maxwell	I
Magnetic induction	В	Maxwell per cm. ² Gauss	Maxwell per cm. ² Gauss	I
Permeability	μ	`	`	ı
Reluctance	R	Oersted	Ampere-turn per Maxwell	4π/10
Magnetization intensity	J		Maxwell per cm. ²	1/4π
Magnetic susceptibility	К		•	$1/4\pi$
Magnetic pole strength	m		Maxwell	$1/4\pi$

¹ Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13, p. 599, 1916.

## PHYSICAL TABLES

TABLE 1.

#### SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE.

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents "2" and "3" are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 47 of the U. S. Bureau of Standards.

acre are avoirdupois barrel board foot bushel carat, metric centare centigram centiliter clain cubic centimeter cubic decimeter cubic inch cubic mile cubic millimeter millimicron millimeter mill
hectogram hg stere s hectoliter hl ton tn. hectometer hm ton, metric t hogshead hhd. troy t.

SMITHSONIAN TABLES.

2

#### FUNDAMENTAL AND DERIVED UNITS.

#### Conversion Factors.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is  $lt^{-1}$ ; l = 5280/1, l = 3600/1, and the factor is 5280/3600 or 1.467. Or we may proceed as follows: e. g., to find the equivalent of 1 c.g.s. unit of angular momentum in the pd.ft.m. unit, from the Table 1 g cm²/sec.=x lb. ft.²/min, where x is the factor sought. Solving, x=1g/lb.  $\times cm²/ft$ .  $\times cm²/ft$ .  $\times cm²/ft$ .  $\times cm²/ft$ .  $\times cm²/ft$ .

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and

energy, illumination and brightness.

#### (a) Fundamental Units.

The fundamental units and conversion factors in the systems of units most commonly used are: Length [l]; Mass [m]; Time [l]; Temperature [l]; and for the electrostatic system, Dielectric Constant [k]; for the electromagnetic system, Permeability  $[\mu]$ . The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

### (b) Derived Units.

				·							
Name of unit. (Geometrical and		onversion factor. [m²l½[²]		Name of units. (Heat and light.)		fa	version ictor. είνιεθυ]				
dynamical.)	x	у	z	(1000)	x	<i>y</i>	z 	v			
Area, surface	0	2	0	Quantity of heat:							
Volume	0	3	0	thermal units	I	0	0	I			
Angle	0	0	0	thermometric units	0	3	0	I			
				dynamical units	I	2	-2	0			
Solid angle	0	0 -I	0	Coefficient of thermal							
Angular velocity	0	-1	-1	expansion	0	0		-1			
ringular velocity		0		expansion	0	"	"	-1			
Linear velocity	0	I	-1	Thermal conductivity:							
Angular acceleration	0	0	-2	thermal units	I	-1	-1	0			
Linear acceleration	0	I	-2	thermometric units							
				or diffusivity	0	2	-1	0			
Density	I	-3	0	dynamical units	I	I	-3	-1			
Moment of inertia	1	2	0								
Intensity of attraction	0	I	-2	Thermal capacity	I	0	0	0			
Momentum	ı	ı	-1	Latent heat:							
Moment of momentum	ī	2	-1	thermal units	0	0	0	1			
Angular momentum	ī	2	-I	dynamical units		2	-2	0			
Tingular momentum	-	<b>~</b>	-	dynamical anics	Ŭ	_	~				
Force	I	I	-2	Joule's equivalent	0	2	-2	I			
Moment of couple,											
torque	I	2	-2	Entropy:				1			
Work, energy	I	2	-2	heat in thermal units	I	0	0	0			
Domes activity				heat in dynamical				_			
Power, activity Intensity of stress	I	2 -I	-3 -2	units	I	2	-2	I			
Modulus of elasticity	T	-I	-2	Luminous intensity				7*			
Miodulus of clasticity	1			Illumination	0	0 -2	0	1*			
Compressibility	-1	I	2	Brightness	0	-2	0	1*			
Resilience	ī	-r	-2		-1	-2	3	1*			
Viscosity	ī	-1	-1	Luminous efficiency		-2	3	7*			
							3				

^{*} For these formulæ the numbers in the last column are the exponents of F where F refers to the luminous flux For definitions of these quantities see Table 299, page 259.

### FUNDAMENTAL AND DERIVED UNITS.

#### Conversion Factors.

### (b) DERIVED UNITS.

					Convi	ERSIO	n Fa	CTOR.				
NAME OF UNIT. (Electric and magnetic.)	Sym- bol.*	I	Electrostatic system.			omag stem	•	emu esu †	]	sy	natio stem	
			1 1 1	-	-	T	1				1	1
		x	y z 1	v 	<i>x y</i>	_ z	v —		x	у —	Z	7
Quantity of electricity Electric displacement Electric surface density	D	1221212	$ \begin{vmatrix} \frac{8}{2} & -1 \\ -\frac{1}{2} & -1 \\ -\frac{1}{2} & -1 \end{vmatrix} $	121212		0 0 0	$-\frac{1}{2}$	c c c	0 0 0	I I I	0 -2 -2	I I
Electric field intensity Electric potential Electromotive force	I V	121212	$ \begin{vmatrix} -\frac{1}{2} & -\mathbf{I} & -\frac{1}{2} \\ \frac{1}{2} & -\mathbf{I} & -\frac{1}{2} \\ \frac{1}{2} & -\mathbf{I} & -\frac{1}{2} \end{vmatrix} $	121212		-2 -2 -2	121212	1/c 1/c 1/c	1	I I I	0	0 0 0
Electrostatic capacity Dielectric constant Specific inductive capacity	K	0 0 0	0 0 1	1 0	0 -1	2		C ²	-1 -1	0 0 0	0 -1	0 I 0
Current Electric conductivity Resistivity	1 7 1	0 0	$ \begin{array}{ c c c c c } \frac{8}{2} - 2 & \frac{1}{2} \\ 0 - 1 & 1 \\ 0 & 1 - 1 \end{array} $	1 0	$\begin{array}{c c} 1 & \frac{1}{2} \\ \hline 0 & -2 \\ \hline 0 & 2 \end{array}$	1	$-\frac{1}{2}$ $-1$ $1$	C C ² I/C ²	0 -1	0 0	0 -1	0 0
Conductance	g R m	0 0 1 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (		-1	- I I 1/2	C ² I/C ² I/C	-1 1	0 0 I	0 0 0	0 0 I
Quantity of magnetism Magnetic flux Magnetic field intensity	т Ф Н	-400-400-400	$\begin{array}{ c c c c }\hline \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & -2 & \frac{1}{2} \end{array}$		32 32 32 32 32 32 32 32 32 32 32 32 32 3	-1 -1	- 131212 - 2	1/c 1/c c	I	I O	0 0	I I O
Magnetizing force	$\mathcal{F}^{\mathrm{H}}$	400-400-400	$\begin{bmatrix} \frac{1}{2} & -2 & \frac{1}{2} \\ \frac{3}{2} & -2 & \frac{1}{2} \\ \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix}$			-1 -1	-12 -12 -13	c c c	0 0 0	0 I I	- I 0 0	0 0 0
Magnetic moment	J B	421-121-12	$ \begin{array}{c cccc}  & & & & & & & & \\  & & & & & & & \\  & & & &$		52 -12 -12	-1 -1 -1	101010	1/c 1/c 1/c	I I	I I	I - 2 - 2	I I
Magnetic susceptibility Magnetic permeability Current density	κ μ —	0 0 13	$ \begin{vmatrix} -2 & 2 & -1 \\ -2 & 2 & -1 \\ -\frac{1}{2} & -2 & \frac{1}{2} \end{vmatrix} $		0	0	1 -1 -2	I/C ² I/C ² C	I I O	0 0	-I -I -2	I O
Self-inductance	L IN R	000	-I 2 -I -I 2 -I I -2 I	t   c	) 1	0	1 -1	1/C ² 1/C ² C ²	I -I	0 0 0	0 0 0	1 -1
Thermoelectric power‡Peltier coefficient‡	_	1312	$ \begin{vmatrix} \frac{1}{2} - \mathbf{I} \\ \frac{1}{2} - \mathbf{I} \end{vmatrix} - \frac{1}{2} $		372.8	-2 -2	12† 12† 12†	1/c 1/c	I	ı	0 0	o‡ o‡

^{*} As adopted by American Institute of Electrical Engineers, 1915. †  $\varepsilon$  is the velocity of an electromagnetic wave in the ether =  $3 \times 10^{10}$  approximately. † This conversion factor should include  $[\theta^{-1}]$ .

## TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

		LINE	EAR.				CAPAC	CITY.		
	Inches to millimeters.	Feet to meters.	Yards to meters.	Miles to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to liters.	
1 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7·39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.01 236.58 266.16	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433 7.57066 8.51700	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733 30.28266 34.06799	
		SQUA	RE.				WEIG	НТ.		
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrains.	Avoirdu- pois ounces to grams,	Avoirdu- pois pounds to kilo- grams.	Troy ounces to grams.	
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8 9	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133	
		CUBI	C.							
	Cubic inches to cubic centimeters.	Cubic feet to eubic meters.	Cubic yards to eubic meters.	Bushels to hectoliters.	I Gunter's chain = 20.1168 meters.  I sq. statute mile = 259.000 hectares.  I fathom = 1.829 meters.  I nautical mile = 1853.25 meters.  I foot = 0.304801 meter.  I avoir. pound = 453.5924277 grams.  15432.35639 grains = 1.000 kilogram.					
1 2 3 4 5 6 7 8	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154						

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram.

1 meter (international prototype) == 1553164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1907 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Sphere) roid of 1866).

^{*} Quoted from sheets issued by the United States Bureau of Standards.

## TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

	_											
ļ			LINE	AR.					CAPAC	ITY.		
		Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.	Cen liter flu ound	s to lo	rs	Deca- liters to gallons.	Hecto- liters to bushels.
	1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3 280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	I 2 3 4 5 6 7 8 9	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.3 0.6 1.0 1.3 1.6 2.3 2.7 3.0	76   2.11 14   3.17 53   4.22 91   5.28 29   6.34 67   7.39 05   8.45	34 01 68 36 1 03 1 70 13 37 2	2.6418 5.2836 7.9253 0.5671 3.2089 5.8507 8.4924 1.1342 3.7760	2.8378 5.6756 8.5135 11.3517 14.1891 17.0269 19.8647 22.7026 25.5404
ı	SQUARE.								WEIG	нт.		
		Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Kilo- grams to grains.	gran our	cto- ns to nces lupois.	Kilo- grams to pounds avoirdupois.
	I         0.1550         10.764         1.196           2         0.3100         21.528         2.392           3         0.4650         32.292         3.588           4         0.6200         43.055         4.784           5         0.7750         53.819         5.980           6         0.9300         64.583         7.176           7         1.0850         75.347         8.372           8         1.2400         86.111         9.568	2.471 4.942 7.413 9.884 12 355 14.826 17.297 19.768 22.239	1 2 3 4 5 6 7 8 9	0.01543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346 0.13889		15432.36 30864.71 46297.07 61729.43 77161.78 92594.14 08026.49 23458.85 38891.21	3·5· 7·0 10·5· 14·10 17·6 21·10 24·60 28·2 31·7·	548 822 096 370 644 918	2.20462 4.40924 6.61387 8.81849 11.02311 13.22773 15.43236 17.63698 19.84160			
١			CUBI	C.					WEIG	HT.		
		Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintals pounds		Millies tonnes to av	pounds	to.	lograms ounces Troy.
	1 2 3 4 5 6 7 8 9	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272 0.4882 0 5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35.314 70.269 105.943 141 258 176.572 211.887 247.201 282.516 317.830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	1 2 3 4 5 6 7 8 9	2 440.92 4409.2 3 661.39 6613.9 4 8818.5 8818.5 5 1102.31 11023.1 6 1322.77 13227.7 7 1543.24 1763.70 17637.0		9.2 3.9 8.5 3.1 7.7 <b>2.</b> 4 7.0	12 16 19 22 25	32.1507 64.3015 96.4522 128.6030 160.7537 192.9045 225.0552 257.2059 289.3567	

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. These apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

Weights and Measures

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight

in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at 4° C (760 mm. Hg. pressure) which weighs 1 kilogram and = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

## MISCELLANEOUS EQUIVALENTS OF U. S. AND METRIC WEIGHTS AND MEASURES.

(For other equivalents than those below, see Table 3.)

#### LINEAR MEASURES.

```
1 \text{ mil } (.001 \text{ in.}) = 25.4001 \,\mu
1 in. = .000015783 mile
```

1 hand (4 in.) = 10.16002 cm

1 link (.66 ft.) = 20.11684 cm

1 span (9 in.) = 22.86005 cm 1 fathom (6 ft.) = 1.828804 m 1 rod (25 links) = 5.029210 m 1 chain (4 rods) = 20.11684 m

1 light year  $(9.5 \times 10^{12} \text{ km}) = 5.9 \times 10^{12}$ miles

I par sec  $(31 \times 10^{12} \text{ km}) = 10 \times 10^{12} \text{ miles}$  $\frac{1}{32}$  in. = .794 mm  $\frac{1}{64}$  in. = .397 mm

 $\frac{1}{8}$  in. = 3.175 mm  $\frac{1}{2}$  in. = 12.700 mm  $\frac{1}{6}$  in. = 1.588 mm  $\frac{16}{4}$  in. = 6.350 mm I Ångström unit = .0000000001 m

I micron  $(\mu)$  = .000001 m = .00003937 in. I millimicron (m $\mu$ ) = .00000001 m

1 m = 4.970960 links = 1.093611 yds.= .198838 rod = .0497096 chain

### SQUARE MEASURES.

 $1 \text{ sq. link } (62.7264 \text{ sq. in.}) = 404.6873 \text{ cm}^2$  $1 \text{ sq. rod } (625 \text{ sq. links}) = 25.29295 \text{ m}^2$  $1 \text{ sq. chain } (16 \text{ sq. rods}) = 404.6873 \text{ m}^2$ 

1 acre (10 sq. chains) =  $4046.873 \text{ m}^2$  $1 \text{ sq. mile } (640 \text{ acres}) = 2.589998 \text{ km}^2$ 

 $1 \text{ km}^2 = .3861006 \text{ sq. mile}$  $1 \text{ m}^2 = 24.7104 \text{ sq. links} = 10.76387 \text{ sq. ft.}$ = .039537 sq. rod. = .00247104 sq. chain

#### CUBIC MEASURES.

1 board foot (144 cu. in) =  $2359.8 \text{ cm}^3$  $1 \text{ cord } (128 \text{ cu. ft.}) = 3.625 \text{ m}^3$ 

#### CAPACITY MEASURES.

1 minim (M) = .0616102 ml

I fl. dram (60 M) = 3.69661 mlI fl. oz. (8 fl. dr.) = 1.80469 cu. in.

= 29.5729 ml 1 gill (4 fl. oz.) = 7.21875 cu. in. = 118.292

1 liq. pt. (28.875 cu. in.) = .473167 l 1 liq. qt. (57.75 cu. in.) = .946333 l

1 gallon (4 qt., 231 cu. in.) = 3.785332 l 1 dry pt. (33.6003125 cu. in.) = .550599 l 1 dry qt. (67.200625 cu. in.) = 1.101198 l

1 pk. (8 dry qt., 537.605 cu. in.) = 8.80958 l 1 bu. (4 pk., 2150.42 cu. in.) = 35.2383 l

I firkin (9 gallons) = 34.06799 l I liter = .264178 gal. = 1.05671 liq. qt. = 33.8147 fl. oz. = 270.518 fl. dr.

1 ml = 16.2311 minims.

1 dkl = 18.620 dry pt. = 9.08102 dry qt. = 1.13513 pk. = .28378 bu.

### MASS MEASURES

Avoirdupois weights.

1 grain = .064798918 g

1 dram av. (27.34375 gr.) = 1.771845 g 1 oz. av. (16 dr. av.) = 28.349527 g

1 lb. av. (16 oz. av. or 7000 gr.)

= 14.583333 oz. ap. (3) or oz. t. = 1.2152778 or 7000/5760 lb. ap.

= 453.5924277 g

1 kg = 2.204622341 lb. av.

I g = 15.432356 gr. = .5643833 dr. av.

=.03527396 oz. av. I short hundred weight (100 lb.)

=45.359243 kg 1 long hundred weight (112 lb.)

= 50.802352 kg

I short ton (2000 lb.) = 907.18486 kg

I long ton (2240 lb.) = 1016.04704 kg

I metric ton = 0.98420640 long ton = 1.1023112 short tons

#### Troy weights.

1 pennyweight (dwt., 24 gr.) = 1.555174 g; gr., oz., pd. are same as apothecary

### A pothecaries' weights.

1 gr. = 64.798918 mg

 $1 \text{ scruple } (\hat{\Theta}, 20 \text{ gr.}) = 1.2959784 \text{ g}$ = 3.8879351 g

1 dram (3, 3 D) 1 oz. (3, 8 3) = 31.103481 g

1 lb. (123, 5760 gr.) = 373.24177 g

1 g = 15.432356 gr. = 0.771618 D

= .03215074 3  $= 0.2572059 \ 3$ 1 kg = 32.150742 3 = 2.6792285 lb.

1 metric carat = 200 mg = 3.0864712 gr.

U. S. ½ dollar should weigh 12.5 g and the smaller silver coins in proportion.

* Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

#### EOUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

#### LINEAR MEASURE.

```
I millimeter (mm.)
                             0.03937 in.
   (.ooi m.)
I centimeter (.OI m.)
                             0.39370
I decimeter (.1 m)
                             3.93701
                            39.370113 "
3.280843 ft.
I METER (m.)
                             1.09361425 yds.
1 dekameter
                      .= 10.93614
   (10 m.)
1 hectometer
                      .=109.361425
   (100 m.)
1 kilometer
                             0.62137 mile.
   (1,000 m.)
1 myriameter
                             6.21372 miles.
   (10.000 m.)
I micron
                             0.001 mm.
```

#### SQUARE MEASURE.

```
1 sq. centimeter . .
                                   \cdot =
                                              0.1550 sq. in.
1 sq. decimeter
                                   }= 15.500 sq. in.
     (100 sq. centm.)
 \begin{array}{c} \text{1 sq. meter or centi-} \\ \text{are (100 sq. dcm.)} \end{array} = \left\{ \begin{array}{c} \text{10.7639 sq. ft.} \\ \text{1.1960 sq. yd.} \end{array} \right. 
                                             1.1960 sq. yds.
I ARE (100 sq. m.)
                                     = 119.60 sq. yds.
I hectare (100 ares
                                              2.4711 acres.
     or 10,000 sq. m.)
```

#### CUBIC MEASURE.

```
1 cub. centimeter
    (c.c.) (1,000 \text{ cubic}) = 0.0610 \text{ cub. in.}
    millimeters)
I cub. decimeter
    (c.d.) (1,000 \text{ cubic }) = 61.024
    centimeters)
I CUB. METER
                           \cdot = \begin{cases} 35.3148 \text{ cub. ft.} \\ 1.307954 \text{ cub.} \end{cases}
    or stere
                                     1.307954 cub. yds.
    (1,000 c.d.) )
```

#### MEASURE OF CAPACITY.

```
1 milliliter (ml.) (.001 )
                         = 0.0610 cub. in.
  liter)
                         = \ 0.61024 "
I centiliter (.o. liter)
                            0.070 gill.
1 deciliter (.1 liter) .
                             0.176 pint.
I LITER (1,000 cub.
   centimeters or I
                             1.75980 pints.
   cub. decimeter)
1 dekaliter (10 liters)
                      . = 2.200 gallons.
I hectoliter (100 ")
                      = 2.75 bushels.
1 kiloliter (1,000 ")
                             3.437 quarters.
```

#### APOTHECARIES' MEASURE.

```
I cubic centi-
meter (I egram w't) = 0.03520 fluid ounce.
0.28157 fluid drachm.
15.43236 grains weight.
1 cub. millimeter = 0.01693 minim.
```

#### AVOIRDUPOIS WEIGHT.

```
I milligram (mgr.) . = 0.01543 grain.
1 centigram (.01 gram.) = 0.15432
ı decigram (.1
                   " ) = 1.54324 grains.
I GRAM . . . . . = 15.43236 "
I dekagram (10 gram.) = 5.64383 drams.
I hectogram (100 ") = 3.52739 oz.
                              2.2046223 lb-
I KILOGRAM (1,000") =
                              15432.3564
1 myriagram (10 kilog.) =22.04622 lbs.
             (100 "
I quintal
                      ) = 1.96841 \text{ cwt.}
i millier or tonne (1,000 kilog.)
                      = 0.9842 \text{ ton.}
```

#### TROY WEIGHT.

I GRAM . . = 
$$\begin{cases} 0.03215 \text{ oz. Troy.} \\ 0.64301 \text{ pennyweight.} \\ 15.43236 \text{ grains.} \end{cases}$$

#### APOTHECARIES' WEIGHT.

I GRAM . . . . = 
$$\begin{cases} 0.25721 \text{ drachm.} \\ 0.77162 \text{ scruple.} \\ 15.43236 \text{ grains.} \end{cases}$$

NOTE.-The METER is the length, at the temperature of oo C., of the platinum-iridium bar deposited at the

International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 30.370173 inches, as above stated.

The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place.

The LITER contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimeters.

^{*}In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

## EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

	LII	NEAR MEA	SURE.			ME.	ASURE OF	CAPACITY	
	Millimeters to inches.	Meters to feet.	Meters to yards.	Kilo- meters to miles.		Liters to pints.	Dekaliters to gallons.	Hectoliters to bushels.	Kiloliters to quarters.
1 2 3 4 5	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	3.28084 6.56169 9.84253 13.12337 16.40421	1.09361 2.18723 3.28084 4.37446 5.46807	0.62137 1.24274 1.86412 2.48549 3.10686	1 2 3 4 5	1.75980 3.51961 5.27941 7.03921 8.79902	2.19975 4.39951 6.59926 8.79902 10.99877	2.74969 5.49938 8.24908 10.99877 13.74846	3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0.31496090 0.35433102	19.68506 22.96590 26.24674 29.52758	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
SQUARE MEASURE.					w	EIGHT (Avo	irdupois).		
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.	Kilograms to grains.	Kilo- grams to pounds.	Quintals to hundred- weights.
1 2 3 4 5	0.15500 0.31000 0.46500 0.62000 0.77500	10.76393 21.52786 32.29179 43.05572 53.81965	1.19599 2.39198 3.58798 4.78397 5.97996	2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15432.356 30864.713 46297.069 61729.426 77161.782	2.20462 4.40924 6.61387 8.81849 11.02311	1.96841 3.93683 5.90524 7.87365 9.84206
6 7 8 9	0.93000 1.08500 1.24000 1.39501	64.58357 75.34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13.22773 15.43236 17.63698 19.84160	11.81048 13.77889 15.74730 17.71572
	CUBIC	MEASURE	•	Apothe- caries' Measure.	Aı	oirdupois (cont.)	Troy W	EIGH <b>T</b> •	Apothe- caries' Weight.
	Cubic decimeters to cubic inches,	Cubic meters to cubic feet.	Cubic meters to cubic yards.	Cub. centimeters to fluid drachms.		Milliers or tonnes to tons.	Grams to ounces Troy.	Grams to penny- weights.	Grams to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784	3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366.14342 427.16732 488.19123 549.21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

## EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

### LINEAR MEASURE.

1 inch =	25.400 milli- meters.
I foot (12 in.) =	0.30480 meter.
I YARD (3 ft.) =	0.914399 "
1 pole $(5\frac{1}{2} \text{ yd.})$ =	5.0292 meters.
1 chain (22 yd. or ) =	20.1168 "
1 furlong (220 yd.) =	201.168 "
	1.6093 kilo-
1 mile (1,760 yd.) $\cdot = \cdot$	) meters.

### SQUARE MEASURE.

1 square inch =	{ 6.4516 sq. centimeters.
1 sq. ft. (144 sq. in.) =	9.2903 sq. deci meters.
1 SQ. YARD (9 Sq. ft.) =	o.836126 sq. meters.
1 perch $(30\frac{1}{4} \text{ sq. yd.}) = $	25.293 sq. me- ters.
<pre>1 rood (40 perches) = 1 ACRE (4840 sq. yd.) =</pre>	10.117 ares. 0.40468 hectare
1 sq. mile (640 acres) $=$	259.00 hectares.

#### CUBIC MEASURE.

```
1 cub. inch = 16.387 cub. centimeters.

1 cub. foot (1728) = 0.028317 cub. meter, or 28.317 cub. decimeters.

1 CUB. YARD (27) = 0.76455 cub. meter.
```

### APOTHECARIES' MEASURE.

gallon (8 pints or } =	4.5459631 liters
I fluid ounce, f 3 (	\$ 28.4123 cubic
(8 drachms) (	centimeters.
I fluid drachm, f 3 \ _	3.5515 cubic
(60 minims) { =	centimeters.
1 minim, m (0.91146 (	∫ 0.05919 cubic
grain weight) ' (=	centimeters.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

## MEASURE OF CAPACITY.

```
I gill . . . . . . = I.42 deciliters.
I pint (4 gills) . . = 0.568 liter.
I quart (2 pints) . . = I.136 liters.
I GALLON (4 quarts) = 4.5459631 "
I peck (2 galls.) . = 9.092 "
I bushel (8 galls.) . = 3.637 dekaliters.
I quarter (8 bushels) = 2.909 hectoliters.
```

### AVOIRDUPOIS WEIGHT.

Ì		
	1 grain =	64.8 milli-
ľ	ı dram =	grams. 1.772 grams.
l	I ounce (16 dr.)=	28.350 "
	1 POUND (16 oz. or } =	0.45359243 kilog
ļ	I stone (14 lb.)=	6.350 "
į	I quarter (28 lb.) .=	12.70 "
i	$\left\{\begin{array}{c} 1 \text{ hundredweight} \\ (112 \text{ lb.}) \end{array}\right\} = \left\{\begin{array}{c} 1 \text{ hundredweight} \\ \end{array}\right\}$	50.80 "
ı	(112 lb.) } —	0.5080 quintal.
ı		(1.0160 tonnes
į	1 ton (20 cwt.) . =	or 1016 kilo-
ı	1 ton (20 cwt.) . —	grams.

#### TROY WEIGHT.

Note. — The Troy grain is of the same weight as the Avoirdupois grain.

### APOTHECARIES' WEIGHT.

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The Gallon contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at to fuches.

# EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

,										
LI	NEAR ME	ASURE.			MEA	SURE OF	CAPACITY			
Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.		
2.539998 5 079996 7.619993 10.159991 12.699989 15.239987 17.779984 20.319982 22.859980	0.30480 0.60960 0.91440 1.21920 1.52400 1.82880 2.13360 2.43840 2.74320	0.91440 1.82880 2.74320 3.65760 4.57200 5.48640 6.40080 7.31519 8.22959	1.60934 3.21869 4.82803 6.43737 8.04671 9.65606 11.26540 12.87474 14.48408	1 2 3 4 5 6 7 8 9	1.13649 2.27298 3.40947 4.54596 5.68245 6.81894 7.95544 9.00193 10.22842	4.54596 9.09193 13.63789 18.18385 22.72982 27.27578 31.82174 36.36770 40.91367	3.63677 7.27354 10.91031 14.54708 18.18385 21.82062 25.45739 29.09416 32.73093	2.90942 5.81883 8.72825 11.63767 14.54708 17.45650 20.36591 23.27533 26.18475		
SQUARE MEASURE.					w.	EIGHT (Avo	IRDUPOIS).			
Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals.		
6.45159 12.90318 19.35477 25.80636 32.25794	9.29029 18.58058 27.87086 37.16115 46.45144	0.83613 1.67225 2.50838 3.34450 4.18063	0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	64.79892 129.59784 194.39675 259.19567 323.99459	28.34953 56.69905 85.04858 113.39811 141.74763	0.45359 0.90718 1.36078 1.81437 2.26796	0.50802 1.01605 1.52407 2.03209 2.54012		
38.70953 45.16112 51.61271 58.06430	55.74173 65.03201 74.32230 83.61259	5.01676 5.85288 6.68901 7.52513	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	170.09716 198.44669 226.79621 255.14574	2.72155 3.17515 3.62874 4.08233	3.04814 3.55616 4.06419 4.57221		
CUBIC MEASURE.		Apothe- caries' Measure.	A	voir dupois (cont.).	Troy W	EIGHT	2.90942 5.81883 8.72825 11.63767 14.54708 17.45650 20.36591 23.27533 26.18475 Hundred-weights to quintals. 0.50802 1.01605 1.52407 2.03209 2.54012 3.04814 3.55616 4.06419			
Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachms to cubic centi- meters.		Tons to milliers or tonnes.	Ounces to grams.	Penny- weights to grams.	tò		
16.38702 32.77404 49.16106 65.54808 81.93511 98.32213 114.70915 131.09617 147.48319	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22653 0.25485	0.76455 1.52911 2.29366 3.05821 3.82276 4.58732 5.35187 6.11642 6.88098	3.55153 7.10307 10.65460 14.20613 17.75767 21.30920 24.86074 28.41227 31.96380	1 2 3 4 5 6 7 8	1.01605 2.03209 3.04814 4.06419 5.08024 6.09628 7.11233 8.12838 9.14442	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133	1.55517 3.11035 4.66552 6.22070 7.77587 9.33104 10.88622 12.44139 13.99657	2.59196 3.88794 5.18391 6.47989 7.77587 9.07185 10.36783		
	Inches to centimeters.  2.539998 5 079996 7.619993 10.159991 12.699989 15.239987 17.779984 20.319982 22.859980  Square inches to square centimeters.  6.45159 12.90318 19.35477 25.80636 32.25794 38.70953 45.16112 51.61271 58.06430  CUBIC  Cubic inches to cubic centimeters.  16.38702 32.77404 49.16106 65.54808 81.93511 14.70915 114.70915 131.09617	LINEAR ME	LINEAR MEASURE.   Teet to meters.   Yards to meters.   Meters.   1.52890   0.30480   0.91440   5 079996   0.00960   1.82880   7.619993   1.21920   3.65760   12.699989   1.52400   4.57200   12.239987   1.82880   5.48640   17.779984   2.13360   6.40080   22.43840   2.74320   22.859980   2.74320   8.22959   22.859980   2.74320   8.22959	LINEAR MEASURE.	LINEAR MEASURE.	LINEAR MEASURE.   MEASURE	LINEAR MEASURE.   MEASURE OF of centimeters.   Feet to square centimeters.   Square feetinesers.   Square centimeters.   Square centimeters.   Square feetinesers.   Square centimeters.   Square centimeters.   Square feetinesers.   Square centimeters.   Square centimeters.   Square feetinesers.   Square fe	Inches		

## DERIVATIVES AND INTEGRALS.*

d ax	= a dx	$\int x^n dx$	$= \frac{x^{n+1}}{n+1}, \text{ unless } n = -1$
d u v	$= \left(u  \frac{dv}{dx} + v  \frac{du}{dx}\right) dx$	$\int \frac{dx}{x}$	$= \log x$
$d^{\frac{u}{}}$	$= \left(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{x^2}\right)dx$	$\int e^x dx$	$=e^x$
$\int_{0}^{v} dx^{n}$	$= nx^{n-1} dx$	$\int c^{ax}dx$	$=\frac{1}{a}e^{ax}$
df(u)	$= d \frac{f(u)}{du} \cdot \frac{du}{dx} \cdot dx$	$\int x  c^{ax}  dx$	$=\frac{e^{ax}}{a^2}(ax-1)$
$d e^x$	$=e^{x}dx$	$\int \log x  dx$	$= x \log x - x$
$d e^{ax}$	$= a e^{ax} dx$	$\int u  dv$	$= u  v - \int v  du$
7100	_ I ,		
$d \log_e x$	$=\frac{1}{x}dx$	$\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$d x^x$	$= x^x \left( 1 + \log_e x \right)$		
d sin x	$=\cos xdx$	$\int (a^2+x^2)^{-1} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}=$
			$\frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2 + a^2}}$
$d \cos x$	$= -\sin x  dx$	$\int (a^2-x^2)^{-1}dx$	$= \frac{1}{2a} \log \frac{a+x}{a-x}$
$d \tan x$	$= \sec^2 x \ dx$	$\int (a^2-x^2)^{-\frac{1}{2}} dx$	$= \sin^{-1} \left  \frac{x}{a}, \text{ or } -\cos^{-1} \left  \frac{x}{a} \right  \right $
$d \cot x$	$= -\csc^2 x  dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$=\pm (a^2\pm x^2)^{\frac{1}{2}}$
$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x  dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$ \begin{array}{c} d \csc x \\ d \sin^{-1} x \end{array} $	$= -\cot x \cdot \sec x  dx$	$\int \cos^2 x  dx$	$= \frac{1}{2}\sin x \cos x + \frac{1}{2}x$
$d \cos^{-1} x$	$ = (1-x^2)^{-\frac{1}{2}} dx  = -(1-x^2)^{-\frac{1}{2}} dx $	$\int \sin x \cos x  dx$	$= \frac{1}{2} \sin^2 x$
$d \tan^{-1} x$	$= (1-x^2)^{-1} dx$ $= (1+x^2)^{-1} dx$	$\int (\sin x \cos x)^{-1}$ $\int \tan x  dx$	
$d \cot^{-1} x$	$= -(1+x^2)^{-1} dx$	$\int \tan x  dx$ $\int \tan^2 x  dx$	$= -\log \cos x$ $= \tan x - x$
$d \sec^{-1} x$	$= x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot x  dx$	$= \log \sin x$
$d \csc^{-1} x$	$= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot^2 x  dx$	$=-\cot x-x$
$d \sinh x$	$=\cosh x dx$	$\int \csc x  dx$	$= \log \tan \frac{1}{2} x$
$d \cosh x$	$= \sinh x dx$	$\int x \sin x  dx$	$=\sin x - x\cos x$
$d \tanh x$	$= \operatorname{sech}^2 x  dx$	$\int x \cos x  dx$	$=\cos x + x \sin x$
$d \coth x$	$= -\operatorname{csch}^2 x  dx$	$\int \tanh x dx$	$= \log \cosh x$
$d \operatorname{sech} x$	$=$ -sech $x \tanh dx$	$\int \coth x  dx$	$= \log \sinh x$
$d \operatorname{csch} x$	$= -\operatorname{csch} x \cdot \operatorname{coth} x  dx$	$\int \operatorname{sech} x  dx$	$= 2 \tan^{-1} e^x = \operatorname{gd} u$
$d \sinh^{-1} x$	$=(x^2+1)^{-\frac{1}{2}} dx$	$\int \operatorname{csch} x  dx$	$= \log \tanh \frac{x}{2}$
$d \cosh^{-1} x$	$=(x^2-1)^{-\frac{1}{2}}dx$	$\int x \sinh x  dx$	$= x \cosh x - \sinh x$
$d \tanh^{-1} x$	$= (1-x^2)^{-1} dx$	$\int x \cosh x  dx$	$= x \sinh x - \cosh x$
$d \coth^{-1} x$	$= (1-x^2)^{-1} dx$	$\int \sinh^2 x  dx$	$= \frac{1}{2} \left( \sinh x \cosh x - x \right)$
$d \operatorname{sech}^{-1} x$	$= -x^{-1} (1-x^2)^{-\frac{1}{2}} dx$	$\int \cosh^2 x  dx$	$= \frac{1}{2} \left( \sinh x \cosh x + x \right)$
$d \operatorname{csch}^{-1} x$	$= -x^{-1} (x^2 + 1)^{-\frac{1}{2}}$	$\int \sinh x \cosh x dx$	$x = \frac{1}{4} \cosh (2 x)$

^{*} See also accompanying table of derivatives. For example:  $f \cos x dx = \sin x + \cos x$ 

 $(x^2 > 1)$ 

 $(x^2 < \infty)$ 

SERIES.

$$(x+y)^n = x^n + \frac{n}{1} x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^2 + \dots \frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^m + \dots (y^2 < x^2)$$

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \frac{n(n-1)(n-2)x^2}{3!} + \dots + \frac{(\pm 1)^k n + x^k}{(n-k)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!} x^2 \mp \frac{n(n+1)(n+2)x^3}{3!} + \dots$$

$$(\mp 1)^k \frac{(n+k-1)x^k}{(n-1)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \dots$$

$$(x^2 < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots$$

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} f^{(n)}(x) + \dots$$

$$f(x) = f(0) + \frac{x}{1} f'(0) + \frac{x^2}{2!} f''(0) + \dots \frac{x^n}{n!} f^{(n)}(0) + \dots$$

$$e = \lim_{x \to 1} \left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$(x^2 < \infty)$$

$$a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \dots$$

$$(x^2 < \infty)$$

$$\log x = \frac{x - 1}{x} + \frac{1}{2} \left(\frac{x - 1}{x}\right)^2 + \frac{1}{3} \left(\frac{x - 1}{x + 1}\right)^3 + \dots$$

$$(x > \frac{1}{2})$$

$$(x > \infty)$$

$$2 \left[\frac{x - 1}{x + 1} + \frac{1}{3} \left(\frac{x - 1}{x + 1}\right)^3 + \frac{1}{5} \left(\frac{x - 1}{x + 1}\right)^5 + \dots\right]$$

$$(x > \infty)$$

$$2 \left[\frac{x - 1}{x + 1} + \frac{1}{3} \left(\frac{x - 1}{x + 1}\right)^3 + \frac{1}{5} \left(\frac{x - 1}{x + 1}\right)^5 + \dots\right]$$

$$(x > \infty)$$

$$x = \frac{1}{2} (e^{1x} - e^{-1x}) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$(x^2 < \infty)$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62}{2835} x^9 + \dots$$

$$(x^2 < 1)$$

$$\tan^{-1} x = \frac{\pi}{2} - \cos^{-1} x = x + \frac{\pi}{6} + \frac{1}{2} \cdot \frac{3}{3} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$

$$(x^2 < 1)$$

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$

$$(x^2 < 1)$$

 $\sinh x = \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$ 

 $= \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots$ 

#### SERIES.

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots$$

$$\tan x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \dots$$

$$(x^{2} < \frac{1}{4} \pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots$$

$$(x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots$$

$$(x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots$$

$$(x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{6} + \frac{1}{7} x^{7} + \dots$$

$$(x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{6} - \frac{61}{5040} x^{7} + \dots$$

$$(x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots$$

$$(x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots$$

$$(\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} \operatorname{b}_{0} + \operatorname{b}_{1} \cos \frac{\pi x}{c} + \operatorname{b}_{2} \cos \frac{2\pi x}{c} + \dots$$

$$+ a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots$$

$$- a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$\operatorname{b}_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

#### TABLE 8.-MATHEMATICAL CONSTANTS.

e = 2.71828 18285	Numbers. $\pi = 3.14159 26536$	Logarithms. 0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.86960$ 44011	0.99429 97454
$M = \log_{10^{\circ}} = 0.43429 \ 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 \ 38509$	0.24857 49363
$\log_{10}\log_{10}e = 9.63778 \ 43113$	$\sqrt{\pi} = 1.77245 \ 38509$ $\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	9-94754 49407
$\log_{10}2 = 0.3010299957$	$\frac{1}{\sqrt{\pi}} = 0.56418 95835$	9.75142 50637
$\log_e 2 = 0.6931471806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10} x = M.\log_e x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_B x = \log_e x. \log_B e$	$\sqrt{\frac{2}{\pi}} = 0.79788 45608$	9.90194 00615
$= \log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \ 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762$	$\frac{4}{8}\pi = 4.18879 \ 0.2048$	0.62208 86093
$\log \rho = 9.67846 \text{ o}_{3565}$	$\frac{e}{\sqrt{2\pi}} = 1.08443 \ 75514$	0.03520 45477

12	1000.1	$n^2$	$n^3$	122	n	1000. $\frac{1}{n}$	$n^2$	n ⁸	122
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
11	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225	337.5	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4.3589	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721	75	13.3333	5625	421875	8.6603
21	47.6190	441	9261	4.5826	76	13.1579	5776	438976	8.7178
22	45.4545	484	10648	4.6904	77	12.9870	5929	456533	8.7750
23	43.4783	529	12167	4.7958	78	12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990	79	12.6582	6241	493039	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84	11.9048	<b>7</b> 056	592704	9.1652
30	33·3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195
31	32·2581	961	29791	5.5678	86	11.6279	7396	636056	9.2736
32	31·2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274
33	30·3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29·4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	11.1111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	85737 <b>5</b>	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	9409	912673	9.8489
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	9112 <b>5</b>	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47	21.2766	2209	103823	6.8557	102	9.80392	10404	1061208	10.0995
48	20.8333	2304	110592	6.9282	103	9.70874	10609	1092727	10.1489
49	20.4082	2401	117649	7.0000	104	9.61538	10816	1124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025	115 <b>7625</b>	10.2470
51	19.6078	2601	132651	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2303	2704	140608	7.2111	107	9.34579	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25926	11664	1259712	10.3923
54	18.5185	2916	157464	7.3485	109	9,17431	11881	1295029	10.4403
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830
58	17.2414	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481 <b>5</b> 44	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167
63	15.8730	3969	250047	7.9373	118	8.47458	13924	1643032	10.8628
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087

72	1000.1	122	728	√n	22	1000.1	$n^2$	n ³	V 22
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776	13.2665
122	8.19672	14884	1815848	11.0454	177	5.64972	31329	5545233	13.3041
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	13.3417
124	8.06452	15376	1906624	11.1355	179	5.58659	32041	5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.2250	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	13.5647
130	7.69231	16900	2197000	11.4018	185	5.40541	34225	6331625	13.6015
131	7.63359	17161	2248091	11.4455	186	5.37634	34596	6434856	13.6382
132	7.57576	17424	2299968	11.4891	187	5.34759	34969	6539203	13.6748
133	7.51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113
134	7.46269	17956	2406104	11.5758	189	5.29101	35721	6751269	13.7477
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	13.8564
138	7.24638	19044	2628072	11.7473	193	5.18135	37249	7189057	13.8924
139	7.19424	19321	2685619	11.7898	194	5.15464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	2803221	11.8743	196	5.10204	38416	7529536	14.0006
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880 <b>5</b> 99	14.1067
145	6.89655	21025	3048625	12.0416	200	5 00000	40000	8000000	14.1421
146	6.84932	21316	3112136	12.0830	201	4.97512	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.95050	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	3511808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595	23409	3581577	12.3693	208	4.80769	43264	8998912	14.4222
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	44521	9393931	14.5258
157	6.36943	24649	3869893	12.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.13497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410	27556	4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27889	4657463	12.9228	222	4.50450	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	14.9332
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	4.40529	51529	11697083	15.0665
173	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327

72	1000.1	$n^2$	n ⁸	√n	n	1000.1	$n^2$	n ⁸	122
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	83521	24137569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	25672375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3.33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3.32226	90601	27270901	17.3494
247	4.04858	61009	15069223	15.7162	302	3.31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3.30033	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	. 93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.921 57	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.6352
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.6635
258	3.87 597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98596	30959144	17.7200
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.115 6	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	110889	36926037	18.2483
279	3.58423	77841	21717639	16.7033	334	2.99401	111556	37259704	18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933056	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

			1		HL				
11	1000.1	122	** ⁸	√n	11	1000.1	n ²	n8	V 22
340	2.94118	115600	20204000	18.4391	395	2.53165	156025	61620875	TO 87 46
341		116281	39304000	18.4662	111		156816	61629875	19.8746
	2.93255	116964	40001688	18.4932	396	2.52525		62099136	19.8997
342	2.92398				397	2,51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	1 58404	63044792	19.9499
344	2.90698	118336	40707 584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
1				_		7, 3-3		-3739-04	10.0990
350	2.85714	122500	42875000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
1 I	00.60			.00	430		-60		
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	2142222	20 2715
361	2.77008		47045881	19.0000	416	2.40385	172225	71473375	20.3715
362	2.76243	130321					173056	71991296	20.3961
362 362		131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
4	,3	-3		-554		33-49	1/9//0	70223024	
370	2.70270	1 36900	50653000	19.2354	425	2.35294	180625	76765625	20.6155
371	2.69542	137641	51064811	19.2614	426	2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	~ 6666-	7.10607	Z000400Z	******	430	2 22 5 5	184000	70507000	20 726
	2.66667	140625	52734375	19.3649	1	2.32558	184900	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4105	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489 188356		20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	100350	81746504	20.8327
380	2.63158	144400	54872000	19.4936	435	2.29885	189225	82312875	20.8 567
381	2.62467	145161	55306341	19.5192	436	2.29358	190096	82881856	20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
	}								
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	148996	57512456	19.6469	441	2.26757	194481	85766121	21.0000
387 388	2.58398	149769	57960603	19.6723	442	2.26244	195364	86350888	21.0238
388	2.57732	150544	58411072	19.6977	443	2.25734	196249	86938307	21.0476
389	2.57069	151321	58863869	19.7231	444	2.25225	197136	87528384	21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.7990	448	2.23214	200704	89915392	21.1660
393	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896
394	2.5500/	- 55-50	37.02904	- 3.~434	747	J/ •/	10.001	3-3-3049	3111390

12	$1000.\frac{1}{n}$	22	n ⁸	√n	72	1000.1	$n^2$	n ⁸	√n
450	2 22222	202500	01125000	27 27 22	505	7 08000	255005	7-0-0-6	
	2.22222	202500	91125000	21.2132	506	1.98020	255025	128787625	22.4722
451	2.21239	204304	92345408	21.2603	507	1.97239	256036	129554216	22.4944
453	2.20751	205209	92959677	21.2838	508	1.96850	258064	131096512	22.5167
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
434	2,20204	200110	93370004	21.30/3	209	1190404	239001	1310/2229	22.3010
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459	2.17865	210681	96702579	21.4243	514	1.94553	264196	135796744	2 <b>2.</b> 6716
460	2.17391	211600	97336000	21.4476	515	1.94175	265225	136590875	22.6936
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	215296	99897344	21.5407	519	1.92678	269361	139798359	22.7816
				-					
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	140608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	141420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.91571	272484	142236648	22.8473
468	2.13675	219024	102503232	21.6333	523	1.91205	273529	143055667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220000	103823000	21.6795	525	1.90476	275625	144703125	22.9129
47 I	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	1.89753	277729	146363183	22.9565
473	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	0 10106	6			520	- 006	.0	00	
الانتخارا	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477 478	2.09644	227 529 228484	108531333	21.8632	532	1.87970	283024 284089	150568768	23.0651
479	2.08768	229441	109215352	21.8861	533	1.87266	285156	151419437	
4/9		2-9441	109902239	21.0001	534	1.07200	203130	1 5227 3304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	22 2270
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2379
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	1 59220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.83824	295936	160989184	23.3238
400									
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1 585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493 494	2.02429	243049	119823157	22.2036 22.2261	548	1.82482	300304	164566592	23.4094
	2.02429	244036	120553784	22.2201	549	1.02149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2486	550	1.81818	302 500	166375000	23.4521
496	2.01613	246016	122023936	22.2711	551	1.81488	303601	167284151	23.4734
497	2.01207	247009	122763473	22.2935	552	1.81159	304704	168196668	23.4947
498	2.00803	248004	123505992	22.3159	553	1.80832	305809	169112377	23.5160
499	2.00401	249001	124251499	22.3383	554	1.80505	306916	170031464	23.5372
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170053875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	170953875	23.5797
502	1.99203	252004	126506008	22.4054		1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	557 558	1.79211	311364	173741112	23.6220
504	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432
-				_	The real Party lies have been dearly lies and the last lies and th				

							0	-	, 1
12	1000. $\frac{1}{n}$	$n^2$	28	√n	n 	1000.1	n ²	n ³	√n
560	1.78571	313600	1 <b>7</b> 5616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.61551	383161	237176659	24.8797
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199
567	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399
568	1.76056	322624	183250432	23.8328	623	1.60514	388129	241804367	24.9600
569	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
571	1.75131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	19010937 5	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585	1.70940	342225	200201625	24.1868	640	1.56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074	641	1.56006	410881	263374721	25.3180
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377
588	1.70068	345744	203297472	24.2487	643	1.55521	413449	265847707	25.3574
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	267089984	25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
596	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605	1.65289	366025	221445125	24.5967	660	1.51515	435600	287496000	25.6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

72	1000.1	$n^2$	$n^3$	√n	12	1000.1	$n^2$	$n^3$	√n
670	1.49254	448900	300763000	25.8844	<b>725</b> 726 727 728	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037		1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230		1.37552	528529	384240583	26.9629
673	1.48588	452929	304821217	25.9422		1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740
679	1.4 <b>72</b> 75	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1.34409	553536	411830784	27.2764
690	1.44928	476100	328509000	26.2679	<b>745</b> 746 747 748 749	1.34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26.2869		1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26.3059		1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249		1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26.3439		1.33511	561001	420189749	27.3679
<b>695</b>	1.43885	483025	335702375	26.3629	750	1.33333	562500	421875000	27.3861
696	1.43678	484416	337153536	26.3818	751	1.33156	564001	423564751	27.4044
697	1.43472	485809	338608873	26.4008	752	1.32979	565504	425259008	27.4226
698	1.43266	487204	340368392	26.4197	753	1.32802	567009	426957777	27.4408
699	1.43062	488601	341532099	26.4386	754	1.32626	568516	428661064	27.4591
700	1.42857	490000	343000000	26.4575	<b>755</b> 756 757 758 759	1.32450	570025	43036\$875	27.4773
701	1.42653	491401	344472101	26.4764		1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953		1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141		1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330		1.31752	576081	437245479	27.5500
705	1.41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41044	502681	356400829	26.6271	764	1.30890	583696	445943744	27.6405
710 711 712 713 714	1.40845 1.40647 1.40449 1.40252 1.40056	504100 505521 506944 508369 509796	357911000 359425431 360944128 362467097 363994344	26.6458 26.6646 26.6833 26.7021 26.7208	<b>765</b> 766 767 768 769	1.30719 1.30548 1.30378 1.30208	585225 586756 588289 589824 591361	447697125 449455096 451217663 452984832 454756609	27.6586 27.6767 27.6948 27.7128 27.7308
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276	515524	370146232	26.7955	773	1.29366	597529	461889917	27.8029
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388
721	1.38696	519841	374805361	26.8514	776	1.28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	1.28700	603729	469097433	27.8747
723	1.38313	522729	377933067	26.8887	778	1.28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106

n	1000.1	$n^2$	· n³	√n	72	1000.1	n²	728	J 72
780	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.28041	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
782	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
783	1.27714	613089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
784	1.27551	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
786	1.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
787	1.27065	619369	487443403	28.0535	842	1.18765	708964	596947688	29.0172
788	1.26904	620944	489303872	28.0713	843	1.18624	710649	599077107	29.0345
789	1.26743	622521	491169069	28.0891	844	1.18483	712336	601211584	29.0517
<b>790</b> 791 792 793 794	1.26582	624100	493039000	28.1069	845	1.18343	714025	603351125	29.0689
	1.26422	625681	494913671	28.1247	846	1.18203	715716	605495736	29.0861
	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
	1.25945	630436	500566184	28.1780	849	1.17786	720801	611960049	29.1376
795	1.25786	632025	502459875	28.1957	850	1.17647	722500	614125000	29.1548
796	1.25628	633616	504358336	28.2135	851	1.17509	724201	616295051	29.1719
797	1.25471	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
798	1.25313	636804	508169592	28.2489	853	1.17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	1.16959	731025	625026375	29.2404
801	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1.24688	643204	515849608	28.3196	857	1.16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	29.3598
808	1.23762	652864	527514112	28.4253	863	1.15875	744769	642735647	29.3769
809	1.23609	654481	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	662 <b>5</b> 96	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1.22699	664225	541343375	28.5482	870	1.14943	756900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	871	1.14811	758641	660776311	29 51 27
817	1.22399	667489	545338513	28.5832	872	1.14679	760384	663054848	29.5296
818	1.22249	669124	547343432	28.6007	873	1.14548	762129	665338617	29.5466
819	1.22100	670761	549353259	28.6182	874	1.14416	763876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	1.14025	769129	674526133	29.6142
823	1.21507	677329	557441767	28.6880	878	1.13895	770884	676836152	29.6311
824	1.21359	678976	559476224	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561 51 562 5	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563 559 97 6	28.7402	881	1.13507	776161	683797841	29.6816
827	1.20919	683929	56 560 92 8 3	28.7576	882	1.13379	777924	686128968	29.6985
828	1.20773	685584	56 766 3 5 5 2	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	56 9 7 2 2 7 8 9	28.7924	884	1.13122	781456	690807104	29.7321
830	1.20482	688900	571787000	28.8097	885	1.12994	783225	693154125	29.7489
831	1.20337	690561	573856191	28.8271	886	1.12867	784996	695506456	29.7658
832	1.20192	692224	575930368	28.8444	887	1.12740	786769	697864103	29.7825
833	1.20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1.19904	695556	580093704	28.8791	889	1.12486	790321	702595369	29.8161

	-								
12	1000.1	$n^2$	$n^3$	1n	n	1000.1	$n^2$	n ³	Vn.
l					-				
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	
892	1.12108	795664		29.8664	111		896809		30.7571
893			709732288		947	1.05597		849278123	30.7734
	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666		1.04275	919681	881974079	
	1			30.0000	959	1.042/3	919001	00.9/40/9	30.9677
905	1.10497	819025	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907	1.10254	822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	1.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.10011	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
	1-51-5	_		33-4		-103.99	23-3		322200
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.331.5	975	1.02564	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	
922	1.08460	850084	783777448	30.3645	11				31.2410
923	1.08342	851929	786330467	30.3809	977	1.02354	954529	932574833	31.2570
924	1.08225	853776	788889024		978	1.02249	956484 958441	935441352	31.2730
			700009024	30.3974	979	1.02145	930441	938313739	31.2890
925	1.08108	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801765 <b>0</b> 89	30.4795	984	1.01626	968256	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970225	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961 504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	970144	964430272	31.4325
934	1.07066	872356	814780504	30.5614	989	1.01112	978121	967361669	31.4484
935			-						
	1.06952	874225	817400375 820025856	30.5778	990	01010.1	980100	970299000	31.4643
936	1.06838	876096	820025850	30. 5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844 881 <b>7</b> 21	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939		•	827936019	30.6431	994	1.00604	900030	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	1.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	1.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	1.00301	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	1.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	997002999	31.6070
		!							

TABLE 10. LOGARITHMS.

						,		~			
N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115 116 117 118 119	0607 0645 0682 0719	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0622 0660 0697 0734 0 <b>7</b> 70	0626 0663 0700 0737 0774	0630 0667 0704 0741	0633 0671 0708 0745 0781	0637 0674 0711 0748 0785	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910	0806 0842 0878 0913 0948	0810 0846 0881 0917 0952	0813 0849 0885 0920	0817 0853 0888 0924 0959	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140 141 142 143 144	1461 1492 1523 1553 1584	1464 1495 1526 1556 1587	1467 1498 1529 1559 1590	14 <b>7</b> 1 1501 1532 1562	1474 1504 1535 1565 1596	1477 1508 1538 1569 1599	1480 1511 1541 1572 1602	1483 1514 1544 1575 1605	1486 1517 1547 1578 1608	1489 1520 1550 1581 1611	1492 1523 1553 1584 1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

## LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2449	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	27 <b>23</b>	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2 <b>7</b> 88
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2898	2816
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 11. LOGARITHMS.

															_
N	0	1	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3 3	8 8 7 6 6	12 11 10 10	17 15 14 13	21 19 17 16 15
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 2 2 2	6 5 5 4	8 8 7 7 7	11 10 9 9	14 13 12 12
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 39 ² 7	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2 2	4 4 4 4 4	6 6 5 5	8 8 7 7	10 10 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 2 1	3 3 3 3 3	5 5 5 4	7 7 6 6 6	9 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	48 57 4997 51 32 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	I I I I	3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 •5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	I I I I	2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	I I I I	2 2 2 2 2	3 3 3 3 3	4 4 4 4	5 5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	I I I I	2 2 2 2	33333	4 4 4 4 4	5 5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 <b>7</b> 193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	I I I I	2 2 2 2 2	3 3 2 2 2	3 3 3 3	4 4 4 4

## LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	_			P. F	·.	
14.					*	<u> </u>				9	1	2	3	4	5
<b>55</b> 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 <b>7</b> 716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	I I I I	2 2 2 I I	2 2 2 2 2	3 3 3 3	4 4 4 4
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3 3	4 4 3 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 87 <b>0</b> 4	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	I I I I	I I I I	2 2 2 2	2 2 2 2 2	3 3 3 3 3
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	878 <b>5</b> 8842 8899 8954 9009	8791 8848 8904 8960 9015	879 <b>7</b> 8854 8910 8965 9020	8802 8859 8915 8971 9025	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 92 <b>5</b> 8	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	I I I I	I I I I	2 2 2 2	2 2 2 2 2	3 3 3 3 3
85 86 87 88 89	9294 934 <b>5</b> 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	I 0 0	I I I I	2 2 I I I	2 2 2 2 2	3 2 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	955 ² 9600 9647 9694 9741	9557 9605 9652 9699 9745	9 <b>5</b> 62 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	0 0 0 0	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2
95 96 97 98 99	9777 9823 9868 9912 9956	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	979 <b>5</b> 9841 9886 993 <b>0</b> 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	0 0 0 0	I I I I	I I I I	2 2 2 2 2	2 2 2 2 2

TABLE 12.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9			P. F	٠.	
					3				•		1	2	3	4	5
.00 .01 .02 .03	1000 1023 1047 1072 1096	1002 1026 1050 1074 1099	1005 1028 1052 1076 1102	1007 1030 1054 1079 1104	1009 1033 1057 1081	1012 1035 1059 1084 1109	1014 1038 1062 1086 1112	1016 1040 1064 1089	1019 1042 1067 1091 1117	1021 1045 1069 1094 1119	00000	0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.05 .06 .07 .08	1122 1148 1175 1202 1230	1125 1151 1178 1205 1233	1127 1153 1180 1208 1236	1130 1156 1183 1211 1239	1132 1159 1186 1213	1135 1161 1189 1216 1245	1138 1164 1191 1219	1140 1167 1194 1222 1250	1143 1169 1197 1225 1253	1146 1172 1199 1227 1256	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.10 .11 .12 .13 .14	1259 1288 1318 1349 1380	1262 1291 1321 1352 1384	1265 1294 1324 1355 1387	1268 1297 1327 1358 1390	1271 1300 1330 1361 1393	1274 1303 1334 1365 1396	1276 1306 1337 1368 1400	1279 1309 1340 1371 1403	1282 1312 1343 1374 1406	1285 1315 1346 1377 1409	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I 2 2 2 2 2 2
.15 .16 .17 .18	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	00000	I I I I	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2
.20 .21 .22 .23 .24	1585 1622 1660 1698 1738	1589 1626 1663 1702 1742	1 592 1629 1667 1706 1746	1596 1633 1671 1710 1750	1600 1637 1675 1714 1754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	00000	I I I I	I I I I	I 2 2 2 2	2 2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910 1954	1786 1828 1871 1914 1959	1791 1832 1875 1919 1963	1795 1837 1879 1923 1968	1799 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	00000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I	2 2 2 2	2 2 2 2 2
.30 .31 .32 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	2014 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0	I I I I	I I I I 2	2 2 2 2 2	2 2 2 2 3
.35 .36 .37 .38 .39	2239 2291 2344 2399 2455	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466	2254 2307 2360 2415 2472	2259 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	227 <b>5</b> 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	I I I I	I	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3 3
.40 .41 .42 .43 .44	2512 2570 2630 2692 2754	2518 2576 2636 2698 2761	2523 2582 2642 2704 2767	2529 2588 2649 2710 2773	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2564 2624 2685 2748 2812	I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	2 2 2 3 3	33333
.45 .46 .47 .48 .49	2818 2884 2951 3020 3090	2825 2891 2958 3027 3097	2831 2897 2965 3034 3105	2838 2904 2972 3041 3112	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	2858 2924 2992 3062 3133	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	2 2 2 2 2	3 3 3 3 3	3 3 4 4

### ANTILOGARITHMS.

		7	2	3	4	5	6	7	8	9		1	P. F	·.	_
	0	1	<u>z</u>	<u> </u>	<u>*</u>	<u> </u>					1	2	3	4	5
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3177 3251 3327 3404 3483	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	I I I I	I 2 2 2 2	2 2 2 2 2	33333	4 4 4 4 4
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	I I I I	2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 4 5
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 437 <b>5</b>	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	4 4 4 4· 4	5 5 5 5 5
.65 .66 .67 .63	4467 4571 4677 4786 4898	4477 4581 4688 4797 4909	44 ⁸ 7 459 ² 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	4 4 4 5	5 5 6 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6 6
.75 .76 .77 .78 .79	5623 5754 5888 6026 6166	5636 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	5675 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4 4	5 5 5 6 6	7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 6637 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 <b>7</b> 063	I 2 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6 6	7 8 8 8
.85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7311 7482 7656 7834	716 <b>1</b> 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2 2	3 3 4 4	5 5 5 5	7 7 7 7 7	8 8 9 9
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 <b>8</b> 851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2 2	4 4 4 4 4	6 6 6 6	7 8 8 8	9 10 10
.95 .96 .97 .98	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 9817	8974 9183 9397 9616 9840	899 <b>5</b> 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2 2	4 4 4 4 5	6 7 7 7	8 8 9 9	11 11 11

TABLE 13.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.900	7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
.902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
.903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
.904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
.905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
.906	8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
.907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
.908	8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
.909	8110	8111	8113	8115	8117	8119	8121	8123	8125	8126	8128
.910 .911 .912 .913	8128 8147 8166 8185 8204	8130 8149 8168 8187 8205	8132 8151 8170 8188 8207	8134 8153 8171 8190 8209	8136 8155 8173 8192 8211	8138 8156 8175 8194 8213	8140 8158 8177 8196 8215	8141 8160 8179 8198 8217	8143 8162 8181 8200 8219	8145 8164 8183 8202 8221	8147 8166 8185 8204 8222
.915	8222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
.916	8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
.917	8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
.918	8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
.919	8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	8318
.920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
.921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
.922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
.923	8375	8377	8379	8381	8383	8385	8387	8389	8391	8393	8395
.924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
.925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
.926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
.927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
.928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
.929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
.930	8511	8513	8515	8517	8519	8521	8523	8525	8527	8529	8531
.931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
.932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
.933	8570	8572	8574	8576	8578	8580	8582	8584	8586	8588	3590
.934	8590	8592	8594	8596	8598	8600	8602	8604	8606	8608	8610
.935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
:936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
:937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
:938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
:939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
.940 .941 .942 .943 .944	8710 8730 8750 8770 8790	8712 8732 8752 8772 8772 8792	8714 8734 8754 8774 8794	8716 8736 8756 8776 8796	8718 8738 8758 8778 8778 8798	8720 8740 8760 8780 8800	8722 8742 8762 8782 8802	8724 8744 8764 8784 8804	8726 8746 8766 8786 8806	8728 8748 8768 8788 8808	8730 8750 8770 8790 8810
.945	8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
.946	8831	8833	8835	8837	8839	8841	8843	8945	8847	8849	8851
.947	8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
.948	8872	8874	8876	8878	8880	8882	8884	8886	8888	8890	8892
.949	8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913

## ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
.951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
.952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
.953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
.954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	934 <b>5</b>	9348	9350	9352	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	9705	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
.988	9727	9730	973 ²	9734	9736	9739	9741	9743	9745	9748	9750
.989	9750	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
.995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000
									·		

# TABLE 14.

# CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

	RADI-	DE- GREES.	SI	NES.	cos	INES.	TAN	GENTS.	COTAN	GENTS.		
	RA	GRI	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
	0.0000	0°00′	,0000		1,0000	0,0000	,0000		S	S	'yo°00'	1.5708
Н	0.0029	10	.0029	7.1637	1,0000	.0000	,0020	7.4637 .7648	343-77	2.5363	50	1.5070
Ш	0,0087	30	,00Š7	.9108	1.0000	.0000	.0087	.9.100	114.59	,0591	30	1.5021
Ш	0.0116	50	.0116	8,0658	.9999	,0000	.01.15	8.0058	68.750	1.03.12	20	1.5592
П	0.0175	1000	.0175	8.2419	.9998	9.9099	.0175	8.2.(10)	57.200	1.7581	80°00'	1.5563
П	0.01/3	10	,0204	.3088	.9998	.9999	10501	.3089	49.104	.0011	50	1.5533
П	0.0233	20	.0233	,3668	-9997	-9099	.0233	-3660	42.964	.6331	.10	1.5.175
	0.0201	30	.0202	1179 1637	.9997 .9996	.9999 .9998	.0202	.4181 .4638	38.188	.5819	30	1.5417
П	0.03:0	50	.0320	.5050	-9995	.9998	.0320	.505.3	31.242	-1947	10	1.5388
	0,0319	2000'	.0319	8.5428	-9994	9.9997	.03.40	8,5,131	28.636	1.4500	88°00′	1.5359
	0,0378 0,0407	20	.0.107	.5776	.9993 .9992	•9997 •9996	10378	.6101	26.432 24.542	.3890	.10	1.5330
1	0,0.130	.30	.0.130	.6397	.9990	.9996	,0.1,37	.6101	22.904	-3599	30	1.5272
_	0.0465	40 50	.0.105	.6677	.9989 .9988	.9995 .9995	,0466	.6682	21.470	.3318	20	1.5243
	0.0524	3°00′	.0523	8.7188	.9986	9 9094	.0524	8.7194	19.081	.3055	87°00′	1.5213
	0.0553	10	.0552	-7423	.9985	9991	.0553	-7429	18.075	.2571	50	1.5155
Ш	0.0582	20	.0581	.76.15	.9983	.0003	.0582	-7652	17,109	.23.48	40	1.5126
	0,0010	.10	0100,	.7857 .8059	.9981 .9980	.9992	.0612	.7805	16,350	.2135	30	1.5008
П	0,000	50	.0000	.8251	.9978	.9990	.0070	.8261	14.924	.1739	10	1.5039
	8,000,0	4°00′	.0(17)8	8,8136	.9976	9.9989	,0699	8.8446	14.301	1.155.1	86°00′	1,5010
	0.0727	10 20	.0727	.8613	-9974 -9974	.9989 .9988	.0720	.862.4	13.727 13.197	.1376	50 .10	1.4981
Н	0.0785	30	.0785	.89.16	.9900	.9987	.0787	.8960	12.706	.10.10	30	1.4923
	1180,0	.10	,081.1	.9101	.9967	.9986	.0816	.9118	12,251	.0882	20	1.4893
ш	0.087 }	50 5°00'	-0872	8,9403	.996 <u>.</u> .9962	9.9983	.0875	S.9420	11.320	.0728	85°00′	1.4835
	2,000	10	10()01	9545	.9959	.9982	,000/3	.0563	11.050	1.0580	50	1.4806
	0,0031	20	·0()2()	.9682	-9957	.0081	.003.1	.0701	10.712	.0299	40	1.4777
	0,0000	30	0058	.9816	-9954 -9951	.9980	,0003	.9836 .9966	10.385	,01(1.1	30	1.4748
	8101,0	50	.1016	9.0070	.9948	.9977	.1022	9.0093	9.7882		10	1.4000
	0,10.17	6°00	.1015	9.0192	.9945	9.9976	.1051	9.0216	9.5144	0.078.1	84°00′	1.4661
	0,1076	20	.1071	.0311	-9942 -9939	-9975 -9973	.1110	.0336	0.2553	.966.4	50	1.4032
	0,1131	30	.1132	.0530	,9939	.9973	.1139	.0.153	9.0008	-9547 -9433	30	1.4574
	1164 1102	.10	1011.	.06.18	-0032	.0071	.11(5)	.0078	8.5555	.0322	20	1.4544
41	0.1193	50 7°00′	.1190	.0755	.0920	3969	.1198	.0786	8.3.150	.9214	10	1.4515
	0.1222	7-00	.1219	9.0859	.0025	9.0068	.1228	9.0801	7.0530	.0005	83°00′ 50	1.4486
	0.1280	20	.1270	,1000	.0018	1,000	.1287	.1006	7.7701	.800.1	.10	1.,1428
	0,1300   0.1338	30	1305	.1157	.001.(	.0963	.1317	.110.4	7.5058	.8806	30	1.4399
	0.1307	50	.1363	1345	.9907	.0050	.1376	.1385	7.2687	.8615	10	1.4341
	0,1396	8000'	.1392	0.1436	.0003	9.0958	.1105	9.1.178	7.1154	0.8522	S2°00'	1.4312
	0.1425	20	1421	.1525	.0800	.0056	-1435	.1500	6,8269	.8131	50	1.4283
(	0.1484	30	.1440 .1478	.1697	1.080. .080.	.0054	.1405	.1658	0.0012	.8342 .8255	30	1,4224
(	0.1513	.10	.1507	.1781	.0886	.0050	.1524	.1745	6.5606	.8160	20	1.4195
	0.1542	50 9°00′	.1536	9.1943	.9881	0.0048	.1554	9.1997	6.3138	0,8003	10 81°00′	1.4137
-		-	Nat.	Log.	Nat.	Log.	Nat.	Loga	Nat.	Logi	_	
			-	_		-	_	'AN-	TANGE	-	DE- GREES.	RADI- ANS.
			Cost	NES.	SIN	ES.		NTS.	17774(71)		CE	X K

RADI- ANS.	DE- GREEE.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
A.A.	GRU	Nat. Log.	Nat. Log.	Nac. Log.	Nat. Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 .10	.1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	.9877 9.9946 .9872 -9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	.1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	81°00′ 50 40 30 20	1.4137 1.4108 1.4079 1.4050 1.4021 1.3993
0.1745 0.1774 0.1804 0.1833 0.1802 0.1891	10°00′ 10 20 30 40 50	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	80°00′ 50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 40 50	.1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2005 .3149 .2095 .3212	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	79°00′ 50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.36, 2 1.3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50	.2079 9.3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466	.9781 9.990.4 .9775 .9901 .9769 .9899 .9763 .9896 .9757 .9893 .9750 .9890	.2126 9.3275 .2156 .3336 .2186 .3397 .2217 .3458 .2247 .3517 .2278 .3576	4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424	78°00′ 50 40 30 20	1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2250 9.3521 .2278 .3575 .2306 .3029 .2334 .3682 .2303 .3734 .2391 .3786	.9744 9.9887 .9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872	.2309 9.3634 .2339 .3691 .2370 .3748 .2401 .3804 .2432 .3859 .2462 .3914	4.3315 0.6366 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086	77°00′ 50 40 30 20	1.3439 1.3410 1.3381 1.3352 1.3323 1.3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 20 30 40 50	.2419 9.3837 .2447 .3887 .2476 .3937 .2504 .3986 .2532 .4035 .2560 .4083	.9703 9.9869 .9696 .9866 .9689 .9863 .9681 .9859 .9674 .9856 .9667 .9853	.2493 9.3968 .2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230	4.0108 0.6032 3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770	76°00′ 50 40 30 20	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2588 9.4130 .2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359	.9659 9.9849 .9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832	.2679 9.4281 .2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527	3.7321 0.5719 3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473	75°00′ 50 40 30 20	1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.2756 9.4403 .2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618	.9613 9.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810	.2867 9.4575 .2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808	3.4874 0.5425 3.4495 .5378 3.4124 .5331 3.3759 .5284 3.3402 .5238 3.3052 .5192	74°00′ 50 40 30 20	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2924 9.4659 .2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861	.9563 9.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786	.3057 9.4853 .3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075	3.2709 0.5147 3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925	73°00′ 50 40 30 20	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
0.3142	18°00′	.3090 9.4900	.9511 9.9782	.3249 9.5118	3.0777 0.4882	72°00′	1.2566
		COSINES	SINES.	COTAN- GENTS.	TANGENTS	DE- GREES.	RADI- ANS.

# TABLE 14 (continued). CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052 .3228 .5090	.9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765	.3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0777 0.4882 3.0475 .4839 3.0178 .4797 2.9887 .4755 2.9600 .4713 2.9319 .4671	72°00′ 50 40 30 20	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.5126 .3283 .5165 .3311 .5199 .3338 .5235 .3365 .5276 .3393 .5306	.9446 .9752 .9436 .9748 .9426 .9743 .9417 .9739	-3443   9.5370   -3476   -5411   -3508   -5451   -3541   -5491   -3574   -5531   -3607   -5571	2.9042 0.4630 2.8770 .4589 2.8502 .4549 2.8239 .4509 2.7980 .4469 2.7725 .4429	71°00′ 50 40 30 20	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9367 .9716	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.7475 0.4389 2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234 2.6279 .4196	70°00′ 50 40 30 20	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°00′ 10 20 30 40 50	.3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 -5954 .3973 .5991 .4006 .6028	2.6051 0.4158 2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009 2.4960 .3972	69°00′ 50 40 30 20	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 9.5736 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 .9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757	68°00′ 50 40 30 20	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67°00′ 50 40 30 20	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66°00′ 50 40 30 20	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65°00′ 50 40 30 20	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ 50 40 30 20	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025
0.4712	27°00′	.4540 9.6570		.5095 9.7072	1.9626 0.2928	63°00′	1.0996
		Nat. Log.	Nat. Log.	COTAN- GENTS.	TANGENTS.	DE- GREES.	RADI- ANS.

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
A A	GRD	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00′ 10 20 30 40 50	.4540 9.6570 .4566 .6595 .4592 .6620 .4617 .6644 .4643 .6668 .4669 .6692	.8910 9.9499 .8897 .9492 .8884 .9486 .8870 .9479 .8857 .9473 .8843 .9466	.5095 9.7072 .5132 .7103 .5169 .7134 .5206 .7165 .5243 .7196 .5280 .7226	1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	30	1.0996 1.0966 1.0937 1.0908 1.0879
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	28°00′ 10 20 30 40 50	.4695 9.6716 .4720 .6740 .4746 .6763 .4772 .6787 .4797 .6810 .4823 .6833	.8829 9.9459 .8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432 .8760 .9425	.5317 9.7257 .5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408	1.8807     0.2743       1.8676     .2713       1.8546     .2683       1.8418     .2652       1.8291     .2622       1.8165     .2592	62°00′ 50 40 30 20	1.0821 1.0792 1.0763 1.0734 1.0705 1.0676
0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	29°00′ 10 20 30 40 50	.4848 9.6856 .4874 .6878 .4899 .6901 .4924 .6923 .4950 .6946 .4975 .6968	.8746 9.9418 .8732 .9411 .8718 .9404 .8704 .9397 .8689 .9390 .8675 .9383	.5543 9.7438 .5581 .7467 .5619 .7497 .5658 .7526 .5696 .7556 .5735 .7585	1.8040 0.2562 1.7917 .2533 1.7796 .2503 1.7675 .2474 1.7556 .2444 1.7437 .2415	50 40 30 20	1.0647 1.0617 1.0588 1.0559 1.0530 1.0501
0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	30°00′ 10 20 30 40	.5000 9.6990 .5025 .7012 .5050 .7033 .5075 .7055 .5100 .7076 .5125 .7097	.8660 9.9375 .8646 .9368 .8631 .9361 .8616 .9353 8601 .9346 .8587 .9338	.5774 9.7614 .5812 .7644 .5851 .7673 .5890 .7701 .5930 .7730 .5969 .7759	1.7321 0.2386 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270 1.6753 .2241	50 1 40 1 30 1 20 1	1.0472 1.0443 1.0414 1.0385 1.0356
0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	31°00′ 10 20 30 40 50	.5150 9.7118 .5175 .7139 .5200 .7160 .5225 .7181 .5250 .7201 .5275 .7222	.8572 9.9331 .8557 .9323 .8542 .9315 .8526 .9308 .8511 .9300 .8496 .9292	.6009 9.7788 .6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902 .6208 .7930	1.6643 0.2212 1.6534 .2184 1.6426 .2155 1.6319 .2127 1.6212 .2098 1.6107 .2070	50 1 40 1 30 1 20 1	1.0297 1.0268 1.0239 1.0210 1.0181
0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	32°00′ 10 20 30 40 50	.5299 9.7242 .5324 .7262 .5348 .7282 .5373 .7302 .5398 .7322 .5422 .7342	.8480 9.9284 .8465 .9276 .8450 .9268 .8434 .9260 .8418 .9252 .8403 .9244	.6249 9.7958 .6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070 .6453 .8097	1.6003 0.2042 1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930 1.5497 .1903	50 II 40 II 30 II 20 I	1.0023 1.0094 1.0065 1.0036 1.0007
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	33°00′ 10 20 30 40 50	.5446 9.7361 .5471 .7380 .5495 .7400 .5519 .7419 .5544 .7438 .5568 .7457	.8387 9.9236 .8371 .9228 .8355 .9219 .8339 .9211 .8323 .9203 .8307 .9194	.6494 9.8125 .6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235 .6703 .8263	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	50 0 40 0 30 0 20 0	0.9948 0.9919 0.9890 0.9861 0.9832 0.9803
0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	34°00′ 10 20 30 40 50	.5592 9.7476 .5616 .7494 .5640 .7513 .5664 .7531 .5688 .7550 .5712 .7568	.8290 9.9186 .8274 .9177 .8258 .9169 .8241 .9160 .8225 .9151 .8208 .9142	.6745 9.8290 .6787 .8317 .6830 .8344 .6873 .8371 .6916 .8398 .6959 .8425	1.4826 0.1710 1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575	50 0 40 0 30 0 20 0	0.9774 0.9745 0.9716 0.9687 0.9657 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8192 9.9134 .8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 .7221 .8586	1.4281 0.1548 1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	50 0 40 0 30 0 20 0	0.9599 0.9570 0.9541 0.9512 0.9483
0.6283	36°00′	.5878 9.7692	8090 9.9080	.7265 9.8613	1.3764 0.1387		0.9425
		Nat. Log.  COSINES.	SINES.	Nat. Log.  COTAN- GENTS.	TANGENTS.	DE- GREES.	RADI- ANS.

	1 .	1			1					
RADI- ANS.	DE- GREES.	SINES.	СО	SINES.	TANO	GENTS.	COTAN	GENTS.		
A A	GR	Nat. Lo	g. Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	36°00′ 10 20 30 40 50	·5925 ·77 ·5948 ·77 ·5972 ·77 ·5995 ·77	.807 .27 .805 .44 .803 .61 .802 .78 .800	3 .9070 6 .9061 9 .9052 1 .9042 4 .9033	.7265 .7310 .7355 .7400 .7445 .7490	9.8613 .8639 .8666 .8692 .8718	1.3764 1.3680 1.3597 1.3514 1.3432 1.3351	.1361 .1334 .1308 .1282	54°00′ 50 40 30 20 10	0.942 <b>5</b> 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	37°00′ 10 20 30 40 50	.6088 .78 .6111 .78 .6134 .78	311 .7966 328 .795 344 .793 361 .7916 377 .7898	.9014 .9004 .8995 .8985 .8975	.7536 .7581 .7627 .7673 .7720 .7766	9.8771 .8797 .8824 .8850 .8876 .8902	1.3270 1.3190 1.3111 1.3032 1.2954 1.2876	0.1229 .1203 .1176 .1150 .1124 .1098	53°00′ 50 40 30 20	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	38°00′ 10 20 30 40 50	.6157 9.78 .6180 .79 .6202 .79 .6225 .79 .6248 .79 .6271 .79	110   .786: 126   .784: 141   .782: 157   .780: 173   .779:	2 .8955 4 .8945 5 .8935 8 .8925	.7813 .7860 .7907 .7954 .8002 .8050	9.8928 .8954 .8980 .9006 .9032 .9058	1.2799 1.2723 1.2647 1.2572 1.2497 1.2423	0.1072 .1046 .1020 .0994 .0968	52°00′ 50 40 30 20 10	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	39°00′ 10 20 30 40 50	.6293 9.79 .6316 .86 .6338 .86 .6361 .86 .6383 .86 .6406 .86	004 .7753 020 .7733 035 .7716 050 .7698	3 .8895 5 .8884 5 .8874 8 .8864	.8098 .8146 .8195 .8243 .8292 .8342	9.9084 .9110 .9135 .9161 .9187	1.2349 1.2276 1.2203 1.2131 1.2059 1.1988	o.o916 .oS90 .oS65 .o839 .o813	51°00′ 50 40 30 20	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 0.7010 0.7039 0.7069 0.7098 0.7127	40°00′ 10 20 30 40 50	.6428 9.86 .6450 .86 .6472 .81 .6494 .81 .6517 .81	96 .7642 11 .7623 25 .7602 40 .7589	.8832 .8821 .8810 .8800	.8391 .8441 .8491 .8541 .8591 .8642	9.9238 .9264 .9289 .9315 .9341	1.1918 1.1847 1.1778 1.1708 1.1640 1.1571	0.0762 .0736 .0711 .0685 .0659	50°00′ 50 40 30 20	0.8727 0.8698 0.8668 0.8639 0.8610 0.8581
0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	41°00′ 10 20 30 40 50	.6561 9.81 .6583 .81 .6604 .81 .6626 .82 .6648 .82	84 .7528 98 .7500 13 .7490 27 .7470	8 .8767 .8756 .8745 .8733	.8693 .8744 .8796 .8847 .8899	9.9392 •9417 •9443 •9468 •9494 •9519	1.1504 1.1436 1.1369 1.1303 1.1237 1.1171	0.0608 .0583 .0557 .0532 .0506	49°00′ 50 40 30 20	0.8552 0.8523 0.8494 0.8465 0.8436 0.8407
0.7330 0.7359 0.7389 0.7418 0.7447 0.7476	42°00′ 10 20 30 40 50	.6691 9.82 .6713 .82 .6734 .82 .6756 .82 .6777 .83	69   .7412 83   .7392 97   .7373 11   .7353 24   .7333	8699 8688 8676 8665	.9004 .9057 .9110 .9163 .9217	9.9544 .9570 .9595 .9621 .9646	1.1106 1.1041 1.0977 1.0913 1.0850 1.0786	0.0456 .0430 .0405 .0379 .0354 .0329	48°00′ 50 40 30 20	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 0.7534 0.7563 0.7592 0.7621 0.7650	43°00′ 10 20 30 40 50	.6820 9.83 .6841 .83 .6862 .83 .6884 .83 .6905 .83	.51 .7292 .65 .7272 .78 .7252 .91 .7232 .05 .7212	.8629 .8618 .8606 .8594 .8582	.9325 .9380 .9435 .9490 .9545 .9601	9.9697 .9722 .9747 .9772 .9798 .9823	1.0724 1 0661 1.0599 1.0538 1.0477 1.0416	0.0303 .0278 .0253 .0228 .0202	47°00′ 50 40 30 20 10	0.8203 0.8174 0.8145 0.8116 0.8087 0.8058
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50	.6947 9.84 .6967 .84 .6988 .84 .7009 .84 .7030 .84	31 .7173 44 .7153 57 .7133 69 .7112 82 .7092	.8557 .8545 .8532 .8520 .8507	.9657 .9713 .9770 .9827 .9884 .9942	9.9848 .9874 .9899 .9924 .9949	1.0355 1.0295 1.0235 1.0176 1.0117 1.0058	0.0152 .0126 .0101 .0076 .0051	46°00′ 50 40 30 20 10	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883
0.7854	45°00′	.7071 9.84		9.8495	1.0000	0.0000		0.0000	45°00′	0.7854
		Nat. Lo		Log.	Nat.	Log AN-	Nat.	Log. ENTS.	DE- GREES.	RADI- ANS.
		COSINES	SI	MES.	GE	NTS	IANG	LIN 13.	<u> </u>	2

ANS.	SIN	IES.	cosi	NES.	TANG	ENTS	COTAN	GENTS.	EGREES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGR
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000	— ∞ 7.99999 8.30100 .47706 .60194	1.00000 0.99995 .99980 .99955 .99920	0.00000 9.99998 .99991 .99980	— ∞ 0.01000 .02000 .03001 .04002	∞ 8.00001 .30109 .47725 .60229	∞ 99.997 49.993 33.323 24.987	∞ 1.99999 .69891 .52275 •39771	00°00′ 00 34 01 09 01 43 02 18
0.05 .06 .07 .08	0.04998 .05996 .06994 .07991 .08988	8.69879 .77789 .84474 .90263 .95366	0.99\$75 .99\$20 •99755 .996\$0 •99595	9.99946 .99922 .99894 .99861 .99824	0.05004 .06007 .07011 .08017	8.69933 .77867 .84581 .90402 .95542	19.983 16.647 14.262 12.473 11.081	1.30067 .22133 .15419 .09598 .04458	02°52′ 03 26 04 01 04 35 05 09
0.10 .11 .12 .13	0.09983 .10978 .11971 .12963 .13954	8.99928 9.04052 .07814 .11272 .14471	0.99500 .99396 .99281 .99156 .99022	9.99782 •99737 •99687 •99632 •99573	0.10033 .11045 .12058 .13074 .14092	9.00145 .04315 .08127 .11640 .14898	9.9666 9.0542 8.2933 7.6489 7.0961	0.99855 .95685 .91873 .88360 .85102	05°44′ 06 18 06 53 07 27 08 01
0.15 .16 .17 .18	0.14944 .15932 .16918 .17903 .18886	9.17446 .20227 .22836 .25292 .27614	0.98877 .98723 .98558 .98384 .98200	9.99510 ·99442 ·99369 ·99293 ·99211	0.15114 .16138 .17166 .18197 .19232	9.17937 .20785 .23466 .26000 .28402	6.6166 6.1966 5.8256 5.4954 5.1997	0.82063 .79215 .76534 .74000 .71598	08°36 09 10 09 44 10 19 10 53
0.20 .21 .22 .23 .24	0.19867 20846 .21823 .22798 .23770	9.29813 .31902 .33891 .35789 .37603	0.98007 .97803 .97590 .97367 .97134	9.99126 .99035 .98940 .98841 .98737	0.20271 .21314 .22362 .23414 .24472	9.30688 .32867 .34951 .36948 .38866	4.9332 4.6917 4.4719 4.2709 4.0864	0.69312 .67133 .65049 .63052 .61134	11°28′ 12 02 12 36 13 11 13 45
0.25 .26 .27 .28 .29	0.24740 .25708 .26673 .27636 .28595	9.39341 .41007 .42607 .44147 .45629	0.96891 .96639 .96377 .96106 .95824	9.98628 .98515 .98397 .98275 .98148	0.25534 .26602 .27676 .28755 .29841	9.40712 .42491 .44210 .45872 .47482	3.9163 3.7592 3.6133 3.4776 3.3511	0.59288 ·57509 ·55790 ·54128 ·52518	14°19′ 14 54 15 28 16 03 16 37
0.30 .31 .32 .33 .34	0.29552 .30506 .31457 .32404 .33349	9.47059 .48438 .49771 .51060 .52308	0.95534 ·95233 ·94924 ·94604 ·94275	9.98016 •97879 •97737 •97591 •97440	0.30934 ·32033 ·33139 ·34252 ·35374	9.49043 .50559 .52034 .53469 .54868	3.2327 3.1218 3.0176 2.9195 2.8270	0.50957 .49441 .47966 .46531 .45132	17°11' 17 46 18 20 18 54 19 29
0.35 .36 .37 .38 .39	0.34290 ·35227 ·36162 ·37092 ·38019	9.53516 .54688 .55825 .56928 .58000	0.93937 .93590 .93233 .92866 .92491	9.97284 .97123 .96957 .96786 .96610	0.36503 .37640 .38786 .39941 .41105	9.56233 .57565 .58868 .60142 .61390	2.7395 2.6567 2.5782 2.5037 2.4328	0.43767 ·42435 ·41132 ·39858 ·38610	20°03′ 20 38 21 12 21 46 22 21
0.40 -41 -42 -43 -44	0.38942 .39861 .40776 .41687 .42594	9.59042 .60055 .61041 .62000 .62935	0.92106 .91712 .91309 .90897 .90475	9.96429 .96243 .96051 .95855 .95653	0.42279 .43463 .44657 .45862 .47078	9.62613 .63812 .64989 .66145 .67282	2.3652 2.3008 2.2393 2.1804 2.1241	0.37387 .36188 .35011 .33855 .32718	22°55′ 23 29 24 04 24 38 25 13
0.45 .46 .47 .48 .49	0.43497 .44395 .45289 .46178 .47063	9.63845 .64733 .65599 .66443 .67268	0.90045 .89605 .89157 .88699 .88233	9.95446 •95233 •95015 •94792 •94563	0.48306 •49545 •50797 •52061 •53339	9.68400 .69500 .70583 .71651 .72704	2.0702 2.0184 1.9686 1.9208 1.8748	0.31600 .30500 .29417 .28349 .27296	25°47′ 26 21 26 56 27 30 28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

ANS.	SIN	ves.	COS	INES.	TANG	ENTS	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.50 .51 .52 .53 .54	0.47943 .48818 .49688 .50553 .51414	9.68072 .68858 .69625 .70375 .71108	0.877 58 .87274 .86782 .86281	9.94329 .94089 .93843 .93591 .93334	0.54630 .55936 .57256 .58592 .59943	9·73743 ·74769 ·75782 ·76784 ·77774	1.8305 .7878 .7465 .7067 .6683	0.26257 .25231 .24218 .23216 .22226	28°39′ 29 13 29 48 30 22 30 56
0.55	0.52269	9.71824	0.85252	9.93071	0.61311	9.7 ⁸ 754	1.6310	0.21246	31°31′
.56	.53119	.72525	.84726	.92801	.62695	.79723	.5950	.20277	32 0 <b>5</b>
.57	.53963	.73210	.84190	.92526	.64097	.80684	.5601	.19316	32 40
.58	.54802	.73880	.83646	.92245	.65517	.81635	.5263	.18365	33 14
.59	.55636	.74536	.83094	.91957	.66956	.82579	.4935	.17421	33 48
0.60 .61 .62 .63 .64	0.56464 .57287 .58104 .58914 .59720	9.75177 .75805 .76420 .77022 .77612	0.82534 .81965 .81388 .80803 .80210	9.91663 .91363 .91056 .90743 .90423	0.68414 .69892 .71391 .72911	9.83514 .84443 .85364 .86280 .87189	1.4617 .4308 .4007 .3715 .3431	0.16486 .15557 .14636 .13720 .12811	34°23′ 34 57 35 31 36 06 36 40
0.65	0.60519	9.78189	0.79608	9.90096	0.76020	9.88093	1.3154	0.11907	37°15′
.66	.61312	•78754	.78999	.89762	.77610	.88992	.2885	.11008	37 49
.67	.62099	•79308	.78382	.89422	.79225	.89386	.2622	.10114	38 23
.68	.62879	•79851	.77757	.89074	.80866	.90777	.2366	.09223	38 58
.69	.63654	•80382	.77125	.88719	.82534	.91663	.2116	.08337	39 32
0.70	0.64422	9.80903	0.76484	9.88357	0.84229	9.92546	1.1872	0.07454	40°06′
.71	.65183	.81414	.75836	.87988	.85953	.93426	.1634	.06574	40 41
.72	.65938	.81914	.75181	.87611	.87707	.94303	.1402	.05697	41 15
.73	.66687	.82404	.74517	.87226	.89492	.95178	.1174	.04822	41 50
.74	.67429	.82885	.73847	.86833	.91309	.96051	.0952	.03949	42 24
0.75 .76 .77 .78 .79	0.68164 .68892 .69614 .70328	9.83355 .83317 .84269 .84713 .85147	0.73169 .72484 .71791 .71091 .70385	9.86433 .86024 .85607 .85182 .84748	0.93160 .95045 .96967 .98926 1.0092	9.96923 .97793 .98662 9.99531 0.00400	1.0734 .0521 .0313 1.0109 0.99084	0.03077 .02207 .01338 .00469 9.99600	42°58′ 43 33 44 °7 44 41 45 16
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	45°50′
.81	.72429	.85991	.68950	.83853	.0505	.02138	.95197	.97862	46°25
.82	.73115	.86400	.68222	.83393	.0717	.03008	.93309	.96992	46°59
.83	.73793	.86802	.67488	.82922	.0934	.03879	.91455	.96121	47°33
.84	.74464	.87195	.66746	.82443	.1156	.04752	.89635	.95248	48°08
0.85	0.75128	9.87580	0.65998	9.81953	1.1383	0.05627	0.87848	9.94373	48°42′
.86	.75784	.87958	.65244	.81454	.1616	.06504	.86091	.93496	49 16
.87	.76433	.88328	.64483	.80944	.1853	.07384	.84365	.92616	49 51
.88	.77074	.88691	.63715	.80424	.2097	.08266	.82668	.91734	50 25
.89	.77707	.89046	.62941	.79894	.2346	.09153	.80998	.90847	51 00
0.90	0.78333	9.89394	0.62161	9.7935 ²	1.2602	0.10043	0.79355	9.89957	51°34′
.91	.78950	.89735	.61375	.78799	.2864	.10937	.77738	.89063	52 08
.92	.79560	.90070	.60582	.78 ² 34	.3133	.11835	.76146	.88165	52 43
.93	.80162	.90397	.59783	.77658	.3409	.12739	.74578	.87261	53 17
.94	.80756	.90717	.58979	.77070	.3692	.13648	.73034	.86352	53 51
0.95	0.81342	9.91031	0.58168	9.76469	1.3984	0.14563	0.71511	9.85437	54°26′
.96	.81919	.91339	·57352	•75855	-4284	.15484	.70010	.84516	55 00
.97	.82489	.91639	·56530	•75228	-4592	.16412	.68531	.83588	55 35
.98	.83050	.91934	·55702	•74587	-4910	.17347	.67071	.82653	56 09
.99	.83603	.92222	·54869	•73933	-5237	.18289	.65631	.81711	56 43
00.1	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′

TABLE 15 (continued).

ANS.	SIN	VES.	cosi	INES.	TANG	ENTS.	COTAN	GENTS.	REES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 .92780 .93049 .93313 .93571	0.54030 .53186 .52337 .51482 .50622	9.73264 .72580 .71881 .71165 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57 52 58 27 59 01 59 35
1.05 .06 .07 .03	0.86742 .87236 .87720 .88196 .88663	9.93823 .94069 .94310 .94545 .94774	0.49757 .48887 .48012 .47133 .46249	9.69686 .68920 .68135 .67332 .66510	1.7433 .7844 .8270 .8712 .9171	0.24138 .25150 .26175 .27212 .28264	0.57362 •56040 •54734 •53441 •52162	9.75862 .74850 .73825 .72788 .71736	60°10′ 60 44 61 18 61 53 62 27
1.10 .11 .12 .13	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9.65667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1198 .1759	0.29331 .30413 .31512 .32628 .33763	0.50897 .49644 .48404 .47175 .45959	9.70669 .69 <b>5</b> 87 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461 .92837	9.96036 .96228 .96414 .96596	0.40849 •39934 •39015 •38092 •37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 .36093 .37291 .38512 .39757	0.447 53 -435 58 -42373 -41199 -40034	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20 .21 .22 .23 .24	0.93204 .93562 .93910 .94249 .94578	9.96943 .97110 .97271 .97428 .97579	0.36236 ·35302 ·34365 ·33424 ·32480	9.55914 -54780 -53611 -52406 -51161	2.5722 .6503 .7328 .8198 .9119	0.41030 .42330 .43660 .45022 .46418	0.38878 ·37731 ·36593 ·35463 ·34341	9.58970 .57670 .56340 .54978 .53582	68°45′ 69 20 69 54 70 28 71 03
1.25 .26 .27 .28 .29	0.94898 .95209 .95510 .95802 .96084	9.97726 .97868 .98005 .98137 .98265	0.31532 .30582 .29628 .28672 .27712	9.49875 .48546 .47170 .45745 .44267	3.0096 .1133 .2236 .3413 .4672	0.47850 .49322 .50835 .52392 .53998	0.33227 .32121 .31021 .29928 .28842	9.52150 .50678 .49165 .47608 .46002	71°37′ 72 12 72 46 73 20 73 55
1.30 .31 .32 .33 .34	0.96356 .96618 .96872 .97115 .97348	9.98388 .98506 .98620 .98729 .98833	0.26750 .25785 .24818 .23848 .22875	9.42732 .41137 .39476 .37744 .35937	3.6021 .7471 .9033 4.0723 .2556	0.55656 .57369 .59144 .60984 .62896	0.27762 .26687 .25619 .24556 .23498	9.44344 .42631 .40856 .39016	74°29′ 75°03 75°38 76°12 76°47
1.35 .36 .37 .38 .39	0.97572 .97786 .97991 .98185 .98370	9.98933 .99028 .99119 .99205 .99286	0.21901 .20924 .19945 .18964 .17981	9.34046 .32064 .29983 .27793 .25482	4.4552 .6734 .9131 5.1774 .4707	0.64887 .66964 .69135 .71411 .73804	0.22446 .21398 .20354 .19315 .18279	9.35113 -33036 -30865 -28589 -26196	77°21′ 77 55 78 30 79 04 79 38
1.40 .41 .42 .43 .44	0.98545 .98710 .98865 .99010 .99146	9.99363 .99436 .99504 .99568 .99627	0.16997 .16010 .15023 .14033 .13042	9.23036 .20440 .17674 .14716 .11536	5.7979 6.1654 6.5811 7.0555 7.6018	0.76327 .78996 .81830 .84853 .88092	0.17248 .16220 .15195 .14173 .13155	9.23673 .21004 .18170 .15147 .11908	80°13′ 80 47 81 22 81 56 82 30
1.45 .46 .47 .48 .49	0.9927 I .99387 .99492 .99588 .99674	9.99682 ·99733 ·99779 .99821 .99858	0.12050 .11057 .10063 .09067 .08071	9.08100 .04364 .00271 8.95747 .90692	8.2381 8.9886 9.8874 10.983 12.350	0.91583 .95369 .99508 1.04074 .09166	0.12139 .11125 .10114 .09105 .08097	9.08417 .04631 .00492 8.95926 .90834	83°05′ 83 39 84 13 84 48 85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

### CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 15 (continued). - Circular (Trigonometric) Functions.

IANS.	<b>⋖</b>		COSINES.		TANGENTS.		COTAN	EES.	
RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGRE
1.50 .51 .52 .53 .54	0.99749 .99815 .99871 .99917 .99953	9.99891 •99920 •99944 •99964 •99979	0.07074 .06076 .05077 .04079	8.84965 .78361 .70565 .61050	14.101 16.428 19.670 24.498 32.461	1.14926 .21559 .29379 .38914 .51136	0.07091 .06087 .05084 .04082 .03081	8.85074 .78441 .70621 .61086 .48864	85°57′ 86 31 87 05 87 40 88 14
1.55 .56 .57 .58 .59	o.99978 o.99994 1.00000 o.99996 o.99982	9.99991 9.99997 0.00000 9.99998 9.99992	0.02079 .01080 .00080 00920 01920	8.31796 8.03327 6.90109 7.96396n 8.28336n 8.46538n	48.078 92.621 1255.8 108.65 52.067 34.233	1.68195 1.96671 3.09891 2.03603 1.71656	0.02080 .01080 .00080 00920 01921	8.31805 8.03329 6.90109 7.96397n 8.28344n 8.46556n	88°49′ 89 23 89 57 90 32 91 06 91°40′

90°=1.570 7963 radians.

## TABLE 16 .- Logarithmic Factorials.

Logarithms of the products 1.2.3. .....n, n from 1 to 100. See Table 18 for Factorials 1 to 20. See Table 32 for  $\log \Gamma(n+1)$ , values of n between 1 and 2.

_							
n.	log (n!)	n.	log (n!)	п.	log (n!)	12.	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

	sin	h. u	cos	n. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.00	0.00000	∞ 10000.8	1.00000	0.00000	0.00000	— ∞ 7.99999	∞ 100.003	∞ 2.0000I	00°00′ 0 34
.02	.02000	.30106 .47 <b>7</b> 19 .60218	.00020	.00009	.02000 .02999 .03998	8.30097 .47699 .60183	50.007 33.343 25.013	1.69903 1.52301 1.39817	1 09 1 43 2 17
0.05 .06 .07	0.05002 .06004 .07006	8.69915 .77841 .84545	1.00125 .00180 .00245	0.00054 .00078 .00106	0.04996 .05993 .06989	8.69861 •77763 •84439	20.017 16.687 14.309	1.30139 .22237 .15561	2 52 3 26 4 00
.oS .o9	.08009	.95483	.00320	.00139 .00176	.07983	.90216 .95307	12.527	.09784	4 35 5 09
0.10 .11	.11022	9.00072 .04227 .08022	.00500	0 00217	0.09967	8.99856 9.03965 .07710	9.1275 8.3733	0.96035 .92290 .88849	5 43 6 17 6 52
.13	.13037 .14046	.11517 .14755 9.17772	.00846	.00366	.12927 .13909 0.14889	.11151 .14330 9.17285	7.7356 7.1895 6.7166	.85670	7 26 8 00 8 34
.16 .17 .18	.16068 .17082 .18097	.20597 .23254 .25762 .28136	.01283 .01448 .01624 .01810	.00554	.15865 .16838 .17808 .18775	.20044 .22629 .25062 .27357	6.3032 5.9389 5.6154 5 3263	.79956 .77371 .74938 .72643	9 08 9 42 10 15 10 49
0.20 .21 .22 .23 .24	0.20134 .21155 .22178 .23203 .24231	9.30392 .32541 .34592 .36555 .38437	1.02007 .02213 .02430 .02657 .02894	0.00863 .00951 .01043 .01139	0.19738 .20697 .21652 .22603 .23550	9.29529 .31590 .33549 .35416 .37198	5.0665 4.8317 4.6186 4.4242 4.2464	0.70471 .68410 .66451 .64584 .62802	11 23 11 57 12 30 13 04 13 37
0.25 .26 .27 .28	0.25261 .26294 .27329 .28367 .29408	9.40245 .41986 .43663 .45282 .46847	1.03141 .03399 .03667 .03946 .04235	0.01343 .01452 .01564 .01681 .01801	0.24492 .25430 .26362 .27291 .28213	9.38902 .40534 .42099 .43601 .45046	4.0830 3.9324 3.7933 3.6643 3.5444	0.61098 .59466 .57901 .56399 .54954	14 11 14 44 15 17 15 50 16 23
0.30 .31 .32 .33 .34	0.30452 .31499 .32549 .33602 .34659	9.48362 .49830 .51254 .52637 .53981	1.04534 .04844 .05164 .05495 .05836	0.01926 .02054 .02187 .02323 .02463	0.29131 .30044 .30951 .31852 .32748	9.46436 •47775 •49067 •50314 •51518	3.4327 .3285 .2309 .1395 .0536	0.53564 .52225 .50933 .49686 .48482	16 56 17 29 18 02 18 34 19 07
0.35 .36 .37 .38 .39	0.35719 .36783 .37850 .38921 .39996	9.55290 .56564 .57807 .59019 .60202	1.06188 .06550 .06923 .07307 .07702	0.02607 .02755 .02907 .03063 .03222	0.33638 .34521 .35399 .36271 .37136	9.52682 .53809 .54899 .55956 .56980	2.9729 .8968 .8249 .7570 .6928	0.47318 .46191 .45101 .44044 .43020	19 39 20 12 20 44 21 16 21 48
0.40 •41 •42 •43 •44	0.41075 .42158 .43246 .44337 .45434	9.61358 .62488 .63594 .64677 .65738	1.08107 .08523 .08950 .09388 .09837	0.03385 .03552 .03723 .03897 .04075	0.37995 .38847 .39693 .40532 .41364	9.57973 .58936 .59871 .60780 .61663	2.6319 .5742 .5193 .4672 .4175	0.42027 .41064 .40129 .39220 .3 ⁸ 337	22 20 22 52 23 23 23 55 24 26
0.45 .46 .47 .48 .49	0.46534 .47640 .48750 .49865 .50984	9.66777 .67797 .68797 .69779	1.102970 .10768 .11250 .11743 .12247	.04256 .04441 .04630 .04822 .05018	0.42190 .43008 .43820 .44624 .45422	9.62521 .63355 .64167 .64957 .65726	2.3702 .3251 .2821 .2409 .2016	0.374 <b>7</b> 9 .36645 .35 ⁸ 33 .35 ⁹ 43 .34 ² 74	24 57 25 28 25 59 26 30 27 OI
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 31

42

## TABLE 17 (continued).

# HYBERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	00	th. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27°31′
.51	.53240	.72624	.13289	.05419	.46995	.67205	.1279	.32795	28 02
.52	.54375	.73540	.13827	.05625	.47770	.67916	.0934	.32084	28 32
.53	.55516	.74442	.14377	.05834	.48538	.68608	.0602	.31392	29 02
.54	.56663	.75330	.14938	.06046	.49299	.69284	.0284	.30716	29 32
• ·55	0.57815	9.76204	1.15510	0.06262	0.50052	9.69942	1.9979	0.30058	30 02
·56	.58973	.77065	.16094	.06481	.50798	.70584	.9686	.29416	30 32
·57	.60137	. <b>7</b> 7914	.16690	.06703	.51536	.71211	.9404	.28789	31 01
·58	.61307	.78751	.17297	.06929	.52267	.71822	.9133	.28178	31 31
·59	.62483	.79576	.17916	.07157	.52990	.72419	.8872	.27581	32 00
0.60	0.63665	9.80390	1.18547	0.07389	0.53705	9.73001	1.8620	0.26999	32 29
.61	.64854	.81194	.19189	.07624	.54413	.73570	.8378	.26430	32 58
.62	.66049	.81987	.19844	.07861	.55113	.74125	.8145	.25875	33 27
63	.67251	.82770	.20510	.08102	.55805	.74667	.7919	.25333	33 55
.64	.68459	.83543	.21189	.08346	.56490	.75197	.7702	.24803	34 24
0.65	0.69675	9.84308	1.21879	0.08593	0.57167	9.75715	1.7493	0.24285	34 52
.66	.70897	.85063	.22582	.08843	.57836	.76220	.7290	.23780	35 20
.67	.72126	.85809	.23297	.09095	.58498	.76714	.7095	.23286	35 48
.68	.73363	.86548	.24025	.09351	.59152	.77197	.6906	.22803	36 16
.69	.74607	.87278	.24765	.09609	.59798	.77669	.6723	.22331	36 44
0.70	0.75858	9.88000	1.25517	0.09870	0.60437	9.78130	1.6546	0.21870	37 11
.71	.77117	.88715	.26282	.10134	.61068	.78581	.6375	.21419	37 38
.72	.78384	.89423	.27059	.10401	.61691	.79022	.6210	.20978	38 05
.73	.79659	.90123	.27849	.10670	.62307	.79453	.6050	.20547	38 32
.74	.80941	.90817	.28652	.10942	.62915	.79875	.5895	.20125	38 59
0.75 .76 .77 .78 .79	0.82232 .83530 .84838 .86153 .87478	9.91504 .92185 .92859 .93527 .94190	1.29468 .30297 .31139 .31994 .32862	0.11216 .11493 .11773 .12055 .12340	0.63515 .64108 .64693 .65271 .65841	9.80288 .80691 .81086 .81472 .81850	1.5744 .5599 .5458 .5321 .5188	0.19712 .19309 .18914 .18528	39 26 39 52 40 19 40 45 41 11
0.80	0.88811	9.94846	1.33743	0.12627	0.66404	9.82219	1.5059	0.17781	41 37
.81	.90152	.95498	.34638	.12917	.66959	.82581	·4935	.17419	42 02
.82	.91503	.96144	.35547	.13209	.67507	.82935	.4813	.17065	42 28
.83	.92863	.96784	.36468	.13503	.68048	.83281	·4696	.16719	42 53
.84	.94233	.97420	.37404	.13800	.68581	.83620	·4581	.16380	43 18
0.85	0.95612	9.98051	1.38353	0.14099	0.69107	9.83952	1.4470	0.16048	43 43
.86	.97000	.98677	.39316	.14400	.69626	.84277	.4362	.15723	44 c8
.87	.98398	.99299	.40293	.14704	.70137	.84595	.4258	.15405	44 32
.88	.99806	.99916	.41284	.15009	.70642	.84906	.4156	.15094	44 57
.89	1.01224	0.00528	.42289	.15317	.71139	.85211	.4057	.14789	45 21
0.90	1.02652	0.01137	1.43309	0.15627	0.71630	9.85509	1.3961	0.14491	45 45
.91	.04090	.01741	·44342	.15939	.72113	.85801	.3867	.14199	46 09
.92	.05539	.02341	·45390	.16254	.72590	.86088	.3776	.13912	46 33
.93	.06998	.02937	·46453	.16570	.73059	.86368	.3687	.13632	46 56
.94	.08468	.03530	·47530	.16888	.73522	.86642	.3601	.13358	47 20
0.95 .96 .97 .98	1.09948 .11440 .12943 .14457 .15983	0.04119 .04704 .05286 .05864 .06439	1.48623 .49729 .50851 .51988 .53141	0.17208 .17531 .17855 .18181 .18509	0.73978 .74428 .74870 .75307 .75736	9.86910 .87173 .87431 .87683 .87930	1.3517 .3436 .3356 .3279 .3204	0.13090 .12827 .12569 .12317 .12070	47 43 48 06 48 29 48 51 49 14
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36

u	sin	h. u	cos	h. u	tan	h. u	со	th u	gđ u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gu u
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49°36′
*.01	.19069	.07580	.55491	.19171	.76576	.88409	.3059	.11591	49 58
.02	.20630	.08146	.56689	.19504	.76987	.886.;2	.2989	.11358	50 21
.03	.22203	.08708	.57904	.19839	.77391	.88869	.2921	.11131	50 42
.04	.23788	.09268	.59134	.20176	.77789	.89092	.2855	.10908	51 04
1.05 .06 .07 .08	1.25386 .26996 .28619 .30254 .31903	0.09825 .10379 .10930 .11479 .12025	1.60379 .61641 .62919 .64214 .65525	0.20515 .20855 .21197 .21541 .21886	0.78181 .78566 .78946 .79320 .79688	9.89310 .89524 .89733 .89938 .90139	1.2791 .2728 .2667 .2607 .2549	0.10690 .10476 .10267 .10062 .09861	51 26 51 47 52 08 52 29 52 50
1.10 .11 .12 .13	1.33565 .35240 .36929 .38631 .40347	0.12569 .13111 .13649 .14186 .14720	1.66%52 .68196 .69557 .70934 .72329	0.22233 ,22582 ,22931 ,23283 ,23636	0.80050 .80406 .80757 .81102	9.9 <b>0</b> 336 .90529 .90718 .90903 .91085	1.2492 .2437 .2383 .2330 .2279	0.09664 .09471 .09282 .09097 .08915	53 11 53 31 53 52 54 12 54 32
1.15 .16 .17 .18	1.42078 .43822 .45581 .47355 .49143	0.15253 .15783 .16311 .16836 .17360	1.73741 .75171 .76618 .78083 .79565	0.23990 .24346 .24703 .25062 .25422	0.81775 .82104 .82427 .82745 .83058	9.91262 .91436 .91607 .91774 .91938	1.2229 .2180 .2132 .2085 .2040	0.08738 .08564 .08393 .08226 .08062	54 52 55 11 55 31 55 50 56 09
1.20	1,50946	0.17882	1.81066	0.25784	0.83365	9.92099	1.1995	0.07901	56 29
.21	.52764	.18402	.82584	.26146	.83668	.92256	.1952	.07744	56 47
.22	.54598	.18920	.84121	.26510	.83965	.92410	.1910	.07590	57 06
.23	.56447	.19437	.85676	.26876	.84258	.92561	.1868	.07439	57 25
.24	.58311	.19951	.87250	.27242	.84546	.92709	.1828	.07291	57 43
.26	1.60192	0.20464	1.88842	0.27610	0.84828	9.92854	1.1789	0.07146	58 02
.26	.62088	.20975	.90454	.27979	.85106	.92996	.1750	.07004	58 20
.27	.64001	.21485	.92084	.28349	.85380	.93135	.1712	.06865	58 38
.28	.65930	.21993	.93734	.28721	.85648	.93272	.1676	.06728	58 55
.29	.67876	.22499	.95403	.29093	.85913	.93406	.1640	.06594	59 13
1.30	1.69838	0.23004	1.97091	0.29467	0,86172	9.93537	1.1605	0.06463	59 31
.31	.71818	.23507	.98800	.29842	.86428	.93665	.1570	.06335	59 48
.32	.73814	.24009	2.00528	.30217	.86678	.93791	.1537	.06209	60 05
.33	.75828	.24509	.02276	.30594	.86925	.93914	.1504	.06086	60 22
.34	.77860	.25008	.04044	.30972	.87167	.94035	.1472	.05965	60 39
.35	1.79909	0.25505	2.05833	0.31352	0.87405	9.94154	1.1441	0.05846	60 56
.36	.81977	.26002	.07643	.31732	.87639	.94270	.1410	.05730	61 13
.37	.84062	.26496	.09473	.32113	.87869	.94384	.1381	.05616	61 29
.38	.86166	.26990	.11324	.32495	.88095	.94495	.1351	.05505	61 45
.39	.88289	.27482	.13196	.32878	.88317	.94604	.1323	.05396	62 02
1.40	1.90430	0.27974	2.15090	0.33262	0.88535	9.94712	1.1295	0.05288	62 18
.41	.92591	.28464	.17005	.33647	.88749	.94817	.1268	.05183	62 34
.42	.94770	.28952	.18942	.34033	.88960	.94919	.1241	.05081	62 49
.43	.96970	.29440	.20900	.34420	.89167	.95020	.1215	.04980	63 05
.44	.99188	.29926	.22881	.34807	.89370	.95119	.1189	.04881	63 20
.45	2.01427	0.30412	2.24884	0.35196	o.89569	9.95216	1.1165	0.04784	63 36
.46	.03686	.30896	.26910	·35585	.89765	•95311	.1140	.04689	63 51
.47	.05965	.31379	.28958	·35976	.89958	•95404	.1116	.04596	64 06
.48	.08265	.31862	.31029	·36367	.90147	•95495	.1093	.04505	64 21
.49	.10586	.32343	.33123	·36759	.90332	•95584	.1070	.04416	64 36
1.50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

### TABLE 17 (continued).

# HYPERBOLIC FUNCTIONS.

u	sin	h. u	cos	h. u	•tan	h, u	co	th. u	ad	u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gu.	u
1.50 .51 .52 .53	2.12928 .15291 .17676 .20082	0.32823 ·33303 ·33781 ·34258 ·34735	2.35241 .37382 .39547 .41736 .43949	0.37151 ·37545 ·37939 ·38334 ·38730	0.90515 .90694 .90870 .91042	9.95672 .95758 .95842 .95924 .96005	1.1048 .1026 .1005 .0984 .0963	0.04328 .04242 .04158 .04076	64° 65 65 65 65	51' 05 20 34 48
1.55 .56 .57 .58 .59	2.24961 .27434 .29930 .32449 .34991	0.35211 .35686 .36160 .36633 .37105	2.46186 .48448 .50735 .53047 .55384	0.39126 ·39524 ·39921 ·40320 ·40719	0.91379 .91542 .91703 .91860 .92015	9 96084 .96162 .96238 .96313	1.0943 .0924 .0905 .0886 .0868	0.03916 .03838 .03762 .03687	66 66 66 66 66	02 16 30 43 57
1.60 .61 .62 .63	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798 .0782	0.03543 .03472 .03403 .03336 .03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68 .69	2.50746 •53459 •56196 •58959 •61748	0.39923 .40391 .40857 .41323 .41788	2.69951 .72472 .75021 .77596 .80200	0.43129 •43532 •43937 •44341 •44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982 .97042	1.0766 .0750 .0735 .0720 .0705	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 ·42717 ·43180 ·43643 ·44105	2.82832 .85491 .88180 .90897 .93643	0.45153 ·45559 ·45966 ·46374 ·46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649	0.02900 .02842 .02786 .02731 .02677	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78 .79	2.79041 .82020 .85026 .88061 .91125	0.44567 .45028 .45488 .45948 .46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0623 .0610 .0598 .0585	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83	2.94217 .97340 3.00492 .03674 .06886	0.46867 .47325 .47783 .48241 .48698	3.10747 .13705 .16694 .19715 .22768	0.49241 .49652 .50064 .50476 .50889	0.94681 .94783 .94884 .94983 .95080	9.97626 .97673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88 .89	3.10129 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 ·95359 ·95449 ·95537	9.97852 .97895 .97936 .97977 .98017	1.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	o8 18 29 39 49
1.90 .91 .92 .93 .94	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41773 .45058 .48378 .51733 .55123	0.53374 .53789 .54205 .54621 .55038	0.95624 ·95709 ·95792 ·95873 ·95953	9.98057 .98095 .98133 .98170 .98206	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905 .01867 .01830 .01794	7 ² 73 73 73 73	59 09 19 29 39
1.95 .96 .97 .98 .99	3.44321 •47923 •51561 •55234 •58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259 .96331	9.98242 .98276 .98311 .98344 .98377	.0413 .0405 .0397 .0389 .0381	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74	48 58 07 17 26
2.00	3.62686	0.55953	3.76220	0.57 544	0.96403	9.98409	1.0373	0.01591	74	35

# HYPERBOLIC FUNCTIONS.

	sir	h. u	cos	h. u	tan	nh. u	co	th. u.	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.00 .01 .02 .03	3.62686 .66466 .70283 .74138 .78029	0.55953 .56403 .56853 .57303 .57753	3.76220 .79865 .83549 .87271 .91032	0.57 544 .57963 .58382 .58802 .59221	0.96403 .96473 .96541 .96609	9.98409 •98440 •98471 •98502 •98531	1.0373 .0366 .0358 .0351	0.01591 .01560 .01529 .01498	74°35′ 74 44 74 53 75 02 75 11
2.05 .06 .07 .08	3.81958 .85926 .89932 .93977 .98061	0.58202 .58650 .59099 .59547 .59995	3.94832 .98671 4.02550 .06470 .10430	0.59641 .60061 .60482 .60903 .61324	0.96740 .96803 .96865 .96926 .96986	9.98560 .98589 .98617 .98644 .98671	1.0337 .0330 .0324 .0317 .0311	0.01440 .01411 .01383 .01356	75 20 75 28 75 37 75 45 75 54
2.10 .11 .12 .13 .14	4.02186 .06350 .10555 .14801 .19089	0.60443 .60890 .61337 .61784 .62231	4.14431 .18474 .22558 .26685 .30855	0.61745 .62167 .62589 .63011 .63433	0.97045 .97103 .97159 .97215	9.98697 .98723 .98748 .98773 .98798	1.0304 .0298 .0292 .0286 .0281	0.01303 .01277 .01252 .01227 .01202	76 02 76 10 76 19 76 27 76 35
2.15 .16 .18	4.23419 .27791 .32205 .36663 .41165	0.62677 .63123 .63569 .64015 .64460	4.35067 •39323 •43623 •47967 •52356	0.63856 .64278 .64701 .65125 .65548	0.97323 .97375 .97426 .97477 .97526	9.98821 .98845 .98868 .98890 .98912	.0275 .0270 .0264 .0259 .0254	0.01179 .01155 .01132 .01110 .01088	76 43 76 51 76 58 77 06 77 14
2.20 .21 .22 .23 .24	4.45711 .50301 .54936 .59617 .64344	0.64905 .65350 .65795 .66240 .66684	4.56791 .61271 .65797 .70370 .74989	0.65972 .66396 .66820 .67244 .67668	0.97574 .97622 .97668 .97714 .97759	9.98934 .98955 .98975 .98996	.0249 .0244 .0239 .0234 .0229	0.01066 .01045 .01025 .01004 .00984	77 21 77 29 77 36 77 44 77 51
2.25 .26 .27 .28 .29	4.69117 ·73937 ·78804 ·83720 ·88684	0.67128 .67572 .68016 .68459 .68903	4.79657 .84372 .89136 .93948 .98810	0.68093 .68518 .68943 .69368 .69794	0.97803 .97846 .97888 .97929 .97970	9.99035 .99054 .99073 .99091	1.0225 .0220 .0216 .0211 .0207	0.00965 .00946 .00927 .00909 .00891	77 58 78 05 78 12 78 19 78 26
2.30 .31 .32 .33 .34	4.93696 .98758 5.03870 .09032 .14245	0.69346 .69789 .70232 .70675	5.03722 .08684 .13697 .18762 .23878	0.70219 .70645 .71071 .71497 .71923	0.98010 .98049 .98087 .98124 .98161	9.99127 .99144 .99161 .99178	1.0203 .0199 .0195 .0191 .0187	0.00873 .00856 .00839 .00822 .00806	78 33 78 40 78 46 78 53 79 00
2.35 .36 .37 .38 .39	5.19510 .24827 .30196 .35618 .41093	0.71559 .72002 .72444 .72885 .73327	5.29047 •34269 •39544 •44873 •50256	0.72349 .72776 .73203 .73630 .74056	0.98197 .98233 .98267 .98301 .98335	9•99210 .99226 .99241 .99256 .99271	1.0184 .0180 .0176 .0173 .0169	0.00790 .00774 .00759 .00744 .00729	79 06 79 13 79 19 79 25 79 32
2.40 .41 .42 .43 .44	5.46623 .52207 .57847 .63542 .69294	0.73769 .74210 .74652 .75093 .75534	5.55695 .61189 .66739 .72346 .78010	0.74484 .74911 .75338 .75766 .76194	0.98367 .98400 .98431 .98462 .98492	9.99285 .99299 .99313 .99327 .99340	1.0166 .0163 .0159 .0156 .0153	0.00715 .00701 .00687 .00673 .00660	79 38 79 44 79 50 79 56 80 02
2.45 .46 .47 .48 .49	5.7 5103 .80969 .86893 .92876 .98918	0.75975 .76415 .76856 .77296 .77737	5.83732 .89512 .95352 6.01250 .07209	0.76621 •77049 •77477 •77906 •78334	0.98522 .98551 .98579 .98607 .98635	9.99353 .99366 .99379 .99391 .99403	1.0150 .0147 .0144 .0141 .0138	0.00647 .00634 .00621 .00609 .00597	80 08 80 14 80 20 80 26 80 31
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37

# TABLE 17 (continued).

## HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.50 .51 .52 .53 .54	6.05020 .11183 .17407 .23692 .30040	0.78177 .78617 .79057 .79497 .79937	6.13229 .19310 .25453 .31658 .37927	0.78762 .79191 .79619 .80048 .80477	0.98661 .98688 .98714 .98739	9.99415 .99426 .99438 .99449 .99460	1.0136 .0133 .0130 .0128	0.00585 .00574 .00562 .00551	80° 37′ 80 42 80 48 80 53 80 59
2.55 .56 .57 .58 .59	6.36451 .42926 .49464 .56068 .62738	0.80377 .80816 .81256 .81695 .82134	6.44259 .50656 .57118 .63646 .70240	0.80906 .81335 .81764 .82194 .82623	0.98788 .98812 .98835 .98858	9.99470 .99481 .99491 .99501	1.0123 .0120 .0118 .0115	0.00530 .00519 .00509 .00499 .00489	81 04 81 10 81 15 81 20 81 25
2.60 .61 .62 .63 .64	6.6947.3 .76276 .83146 .90085 .97092	0.82573 .83012 .83451 .83890 .84329	6.76901 .83629 .90426 .97292 7.04228	0.83052 .83482 .83912 .84341 .84771	0.98903 .98924 .98946 .98966 .98987	9.99521 •99530 •99540 •99549 •99558	1.0111 .0109 .0107 .0104 .0102	0.00479 .00470 .00460 .00451 .00442	81 30 81 35 81 40 81 45 81 50
2.65 .66 .67 .68	7.04169 .11317 .18536 .25827 .33190	0.84768 .85206 .85645 .86083 .86522	7.11234 .18312 .25461 .32683 .39978	0.85201 .85631 .86061 .86492 .86922	0.99007 .99026 .99045 .99064 .99083	9.99566 •99575 •99583 •99592 •99600	1.0100 .0098 .0096 .0094	0.00434 .00425 .00417 .00408 .00400	81 55 82 00 82 05 82 09 82 14
2.70 .71 .72 .73 .74	7.40626 .48137 .55722 .63383 .71121	o.86960 .87398 .87836 .88274 .88712	7.47347 .54791 .62310 .69905 .77578	0.87352 •87783 .88213 .88644 .89074	0.99101 .99118 .99136 .99153 .99170	9.99608 .99615 .99623 .99631 .99638	.0091 .0089 .0087 .0085 .0084	0.00392 .00385 .00377 .00369 .00362	82 19 82 23 82 28 82 32 82 37
2.75 .76 .77 .78 .79	7.78935 .86828 .94799 8.02849 .10980	0.89150 .89588 .90026 .90463 .90901	7.85328 .93157 8.01005 .09053	0.89505 .89936 .90367 .90798 .91229	0.99186 .99202 .99218 .99233 .99248	9.99645 .99652 .99659 .99666	1.0082 .0080 .0079 .0077 .0076	0.00355 .00348 .00341 .00334 .00328	82 41 82 45 82 50 82 54 82 58
2.80 .81 .82 .83 .84	8.19192 .27486 .35862 .44322 .52867	0.91339 .91776 .92213 .92651	8.25273 .33506 .41823 .50224 .58710	0.91660 .92091 .92522 .92953 .93385	0.99263 .99278 .99292 .99306 .99320	9.99679 .99685 .99691 .99698	1.0074 .0073 .0071 .0070	0.00321 .00315 .00309 .00302 .00296	83 02 83 07 83 11 83 15 83 19
2.85 .86 .87 .88	8.61497 .70213 .79016 .87907 .96887	0.93525 .93963 .94400 .94837 .95274	8.67281 .75940 .84686 .93520 9.02444	0.93816 •94247 •94679 •95110 •95542	0.99333 .99346 .99359 .99372 .99384	9.99709 .99715 .99721 .99726 .99732	1.0067 .0066 .0065 .0063	0.00291 .00285 .00279 .00274 .00268	83 23 83 27 83 31 83 34 83 38
2.90 .91 .92 .93 .94	9.05956 .15116 .24368 .33712 .43149	0.95711 .96148 .96584 .97021 .97458	9.11458 .20564 .29761 .39051 .48436	0.95974 .96405 .96837 .97269 .97701	0.99396 .99408 .99420 .99531 .99443	9.99737 •99742 •99747 •99752 •99757	1.0061 .0060 .0058 .0057 .0056	0.00263 .00258 .00253 .00248	83 42 83 46 83 50 83 53 83 57
2.95 .96 .97 .98	9.52681 .62308 .72031 .81851 .91770	0.9789 <b>5</b> .9833 <b>t</b> .98768 .9920 <b>5</b> .99641	9.57915 .67490 .77161 .86930 .96798	0.98133 .98565 .98997 .99429 .99861	0.99454 .99464 .99475 .99485	9.99762 .99767 .99771 .99776 .99780	1.0055 .0054 .0053 .0052 .0051	0.00238 .00233 .00229 .00224	84 00 84 04 84 08 84 11 84 15
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84 18

	sin	h. u	cos	h. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
3.0 .1 .2 .3 .4	10.0179 11.0765 12.2459 13.5379 14.9654	1.00078 .04440 .08799 .13155	10.0677 11.1215 12.2866 13.5748 14.9987	1.00293 .04616 .08943 .13273 .17605	0.99505 ·99595 ·99668 ·99728 ·99777	9.99785 .99824 .99856 .99882 .99903	1.0050 .0041 .0033 .0027	0.00215 .00176 .00144 .00118	84°18′ 84 50 85 20 85 47 86 11
3.5 .6 .7 .8	16.5426 18.2855 20.2113 22.3394 24.6911	1.21860 .26211 .30559 .34907 .39254	16.5728 18.3128 20.2360 22.3618 24 7113	1.21940 .26275 .30612 .34951 .39290	0.99818 .99851 .99878 .99900	9.99921 •99935 •99947 •99957 •99964	1.0018 .0015 .0012 .0010	0.00079 .00065 .00053 .00043	86 32 86 52 87 10 87 26 87 41
4.0 .1 .2 .3 .4	27.2899 30.1619 33.3357 36.8431 40.7193	1.43600 .47946 .52291 .56636	27.3082 30.1784 33.3507 36.8567 40.7316	1.43629 .47970 .52310 .56652 .60993	0.99933 ·99945 ·99955 ·99963 ·99970	9.99971 .99976 .99980 .99984 .99987	1.0007 .0005 .0004 .0004 .0003	0.00029 .00024 .00020 .00016	87 54 88 06 88 17 88 27 88 36
4.5 .6 .7 .8 .9	45.0030 49.7371 54.9690 60.7511 67.1412 74.2032	1.65324 .69668 .74012 .78355 .82699	45.0141 49.7472 54.9781 60.7593 67.1486	1.65335 .69677 .74019 .78361 .82704	0.99975 .99980 .99983 .99986 .99989	9.99989 .99991 .99993 .99994 .99995	1.0002 .0002 .0002 .0001 .0001	0.00011 ,00009 .00007 ,00006 .00005	88 44 88 51 88 57 89 03 89 09
5.0	74.2032	τ.87042	74.2099	1.87046	0.99991	9.99996	1,0001	0.00004	89 14

#### TABLE 18 .- Factorials.

See Table 16 for logarithms of the products 1.2.3. . . . n from 1 to 100. See Table 32 for log,  $\Gamma$  (n+1) for values of n between 1.000 and 2.000.

n	<u> 1</u>	$n:=1,2,3,4\ldots n$	12
1 2 3 4 5	1.	1	1
	o.5	2	2
	.16666 66666 66666 66666 66667	6	3
	.04166 66666 66666 66666 66667	24	4
	.00833 33333 33333 33333 33333	120	5
6 7 8 9 10	0.00138 \$8888 \$8888 \$8888 \$8889 .00019 \$4126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90653 .00000 02755 73192 23985 89065	720 5040 40320 3 62880 36 28800	6 7 8 9
11	0.00000 00250 52108 38544 17188	399 16800	11
12	.00000 00020 87675 69878 68099	4790 01600	12
13	.00000 00001 60590 43836 82161	62270 20800	13
14	.00000 00000 11470 74559 77297	8 71782 91200	14
15	.00000 00000 00764 71637 31820	130 76743 68000	15
16	0.00000 00000 00047 79477 33239	2092 27898 88000	16
17	.00000 00000 00002 81145 72543	35568 74280 96000	17
18	.00000 00000 00000 15619 20097	6 40237 37057 28000	18
19	.00000 00000 00000 00822 06352	121 64510 04688 32000	19
20	.00000 00000 00000 00041 10318	2432 90200 81766 40000	20

TABLE 19. EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	e-x	х	$\log_{10}(ex)$	ex	<i>e</i> -x
0,00 ,01 ,02	0.00000 .00434 .00869	1,0000 .0101 .0202	1.000000 0.990050 .980199	0.50 .51 .52	0.21715 .22149 .22583	1.6487 .6653 .6820	0.606531 .600496 .594521
.03	.01303	.0305	.970446 .960789	•53 •54	.22583 .23018 .23452	.6989	.588605
0.05 .06 .07	0.02171 .02606 .03040	1.0513 .0618 .0725	0.951229 .941765 .932394	0.55 .56 ·57	0.23886 .24320 .24755	1.7333 .7507 .7683	0.576950 .571209 .565525 .559898
.08	.03474	.0833 .0942	.923116	.58 ·59	.25189 .25623	.7860 .8040	-554327
0.10 .11 .12 .13	0.04343 .04777 .05212 .05646 .06080	1.1052 .1163 .1275 .1388 .1503	0.904837 .895834 .886920 .878095 .869358	0.60 .61 .62 .63	0.26058 .26492 .26926 .27361 .27795	1.8221 .8404 .8589 .8776 .8965	0.548812 ·543351 ·537944 ·532592 ·527292
0.15 .16 .17 .18	0.06514 .06949 .07383 .07817 .08252	1.1618 .1735 .1853 .1972 .2092	0.860708 .852144 .843665 .835270 .826959	0.65 .66 .67 .68 .69	0.28229 .28663 .29098 .29532 .2966	1.9155 .9348 .9542 .9739 .9937	0.522046 .516851 .511709 .506617 .501576
0.20 .21 .22 .23 .24	0.08686 .09120 .09554 .09989	1.2214 -2337 .2461 .2586 .2712	0.818731 .810584 .802519 .794534 .786628	0.70 .71 .72 .73 .74	0.30401 .30835 .31269 .31703 .32138	2.0138 .0340 .0544 .0751	0.496585 .491644 .486752 .481909 .477114
0.25 .26 .27 .28 .29	0.10857 .11292 .11726 .12160	1.2840 .2969 .3100 .3231 .3364	0.778801 .771052 .763379 .755784 .748264	0.75 .76 .77 .78 .79	0.32572 .33006 .33441 .33 ⁸ 75 .343 ⁰ 9	2.1170 .1383 .1598 .1815 .2034	0.472367 .467666 .463013 .458406 .453845
0.30 .31 .32 .33	0.13029 .13463 .13897 .14332 .14766	1.3499 •3634 •3771 •3910 •4049	0.740818 •733447 •726149 •718924 •711770	0.80 ,81 ,82 ,83 ,84	0.34744 .35178 .35612 .36046 .36481	2.2255 .2479 .2705 .2933 .3164	0.449329 .444858 .440432 .436049 .431711
0.35 .36 .37 .38 .39	0.15200 .15635 .16069 .16503 .16937	1.4191 •4333 •4477 •4623 •4770	0.704688 .697676 .690734 .683861 .677057	0.85 .86 .87 .88 .89	0.36915 ·37349 ·37784 ·38218 ·38652	2.3396 .3632 .3869 .4109	0.427415 .423162 .418952 .414783 .410656
0.40 .41 .42 .43 .44	0.17372 .17806 .18240 .18675 .19109	1.4918 .5068 .5220 .5373 .5527	0.670320 .663650 .657047 .650509 .644036	0.90 .91 .92 .93	0.39087 .39521 .39955 .40389 .40824	2.4596 .4843 .5093 .5345 .5600	0.406570 .402524 .398519 .394554 .390628
0.45 .46 .47 .48 .49	0.19543 .19978 .20412 .20846 .21280	1.5683 .5841 .6000 .6161 .6323	0.637628 .631284 .625002 .618783 .612626	0.95 .96 .97 .98	0.41258 .41692 .42127 .42561 .42995	2.5857 .6117 .6379 .6645 .6912	0.386741 .382893 .379083 .375311 .371577
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

# EXPONENTIAL FUNCTION.

x	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ex	ex
1.00 .01 .02 .03	0.43429 .43864 .44298 .44732 .45167	2.7183 .7456 .7732 .8011 .8292	0.367879 .364219 .360595 .357007 .353455	1.50 .51 .52 .53 .54	0.65144 .65578 .65013 .66447 .66881	4.4817 .5267 .5722 .6182 .6646	0.223130 .220910 .218712 .216536 .214381
1.05 .06 .07 .08	0.45601 .46035 .46470 .46904 •47338	2.8577 .8864 .9154 .9447 .9743	o.349938 •346456 •343009 •339596 •336216	1.55 .56 .57 .58 .59	0.67316 .67750 .68184 .68619 .69053	4.7115 .7588 .8066 .8550 .9037	0.212248 .210136 .208045 .205975 .203926
1.10 .11 .12 .13	0.47772 .48207 .48641 .49075 .49510	3.0042 .0344 .0649 .0957 .1268	0.332871 •329559 •326280 •323033 •319819	1.60 .61 .62 .63 .64	0.69487 .69921 .70356 .70790 .71224	4.9530 5.0028 .0531 .1039 .1552	0.201897 .199888 .197899 .195930 .193980
1.15 .16 .17 .18	0.49944 .50378 .50812 .51247 .51681	3.1582 .1899 .2220 .2544 .2871	0.316637 .313486 .310367 .307279 .304221	1.65 .66 .67 .68 .69	0.71659 .72093 .72527 .72961 .73396	5.2070 •2593 •3122 •3656 •4195	0.192050 .190139 .188247 .186374 .184520
1.20 .21 .22 .23 .24	0.52115 .52550 .52984 .53418 .53853	3.3201 ·3535 ·3872 ·4212 ·4556	0,301194 .298197 .295230 .292293 .289384	1.70 .71 .72 .73 .74	0.73830 •74264 •74699 •75133 •75567	5.4739 .5290 .5845 .6407 .6973	0.182684 .180866 .179066 .177284 .175520
1.25 .26 .27 .28 .29	0.54287 .54721 .55155 .55590 .56024	3.4903 .5254 .5609 .5966 .6328	0.286505 .283654 .280832 .278037 .275271	1.75 .76 .77 .78 .79	0.76002 .76436 .76870 .77304 .77739	5.7546 .8124 .8709 .9299 .9895	0.173774 .172045 .170333 .168638 .166960
1.30 .31 .32 .33 .34	o.56458 .56893 .57327 .57761 .58195	3.6693 .7062 .7434 .7810 .8190	0.272532 .269820 .267135 .264477 .261846	1.80 .81 .82 .83	0.78173 .78607 .79042 .79476 .79910	6.0496 .1104 .1719 .2339 .2965	0.165299 .163654 .162026 .160414 .158817
1.35 .36 .37 .38 .39	0.58630 .59064 .59498 .59933 .60367	3.8574 .8962 •9354 •9749 4.0149	0.259240 .256661 .254107 .251579 .249075	1.85 .86 .87 .88 .89	0.80344 .80779 .81213 .81647 .82082	6.3598 .4237 .4883 .5535 .6194	0.157237 .155673 .154124 .152590 .151072
1.40 .41 .42 .43 .44	0.60801 .61236 .61670 .62104 .62538	4.0552 .0960 .1371 .1787 .2207	0.246597 .244143 .241714 .239309 .236928	1.90 •91 •92 •93 •94	0.82516 .82950 .83385 .83819 .84253	6.6859 •7531 •8210 •8895 •9588	0.149569 .148080 .146607 .145148 .143704
1.45 .46 .47 .48 .49	0.62973 .63407 .63841 .64276 .64710	4.2631 .3060 .3492 .3929 .4371	0.234570 .232236 .229925 .227638 .225373	1.95 .96 .97 .98 .99	0.84687 .85122 .85556 .85990 .86425	7.0287 .0993 .1707 .2427 .3155	0.142274 .140858 .139457 .138069 .136695
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

x	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ex	e-x
2.00 .01 .02 .03	0.86859 .87293 .87727 .88162 .88596	7.3891 .4633 .5383 .6141 .6906	0.135335 .133989 .132655 .131336 .130029	2.50 .51 .52 .53 .54	1.08574 .09008 .09442 .09877 .10311	12.182 .305 .429 .554 .680	0.082085 .081268 .080460 .079659 .078866
2.05 .06 .07 .08 .09	0.89030 .89465 .89899 .90333 .90768	7.7679 .8460 .9248 8.0045 .0849	0.128735 .127454 .126186 .124930 .123687	2.55 .56 .57 .58 .59	1.10745 .11179 .11614 .12048 .	12.807 .936 13.066 .197 .330	0.078082 .077305 .076536 .075774 .075020
2.10 .11 .12 .13 .14	0.91202 .91636 .92070 .92505	8.1662 .2482 .3311 .4149 .4994	0.122456 .121238 .120032 .118837 .117655	2.60 .61 .62 .63 .64	1.12917 .13351 .13785 .14219 .14654	13.464 ·599 ·736 ·874 14.013	0.074274 .073535 .072803 .072078 .071361
2.15 .16 .17 .18	0.93373 .93808 .94242 .94676 .95110	8.5849 .6711 .7583 .8463 .9352	0.116484 .115325 .114178 .113042 .111917	2.65 .66 .67 .68 .69	1.15088 .15522 .15957 .16391 .16825	.296 .440 .585 .732	0.070651 .069948 .069252 .068563 .067881
2.20 .21 .22 .23 .24	0.95545 -95979 .96413 .96848 .97282	9.0250 .1157 .2073 .2999 ·3933	0.110803 .109701 .108609 .107528 .106459	2.70 .71 .72 .73 .74	1.17260 .17694 .18128 .18562 .18997	14.880 15.029 .180 •333 •487	0.067206 .066537 .065875 .065219 .064570
2.25 .26 .27 .28 .29	0.97716 .98151 .98585 .99019 .99453	9.4877 .5831 .6794 .7767 .8749	0.105399 .104350 .103312 .102284 .101266	2.75 .76 .77 .78 .79	1.19431 .19865 .20300 .20734 .21168	15.643 .800 .959 16.119 .281	0.063928 .063292 .062662 .062039
2.30 .31 .32 .33 .34	0.99888 1.00322 .00756 .01191 .01625	9.9742 10.074 .176 .278 .381	0.100259 .099261 .098274 .097296 .096328	2.80 .81 .82 .83 .84	1.21602 .22037 .22471 .22905 .23340	16.445 .610 .777 .945 17.116	0.060810 .060205 .059606 .059013 .058426
2.35 .36 .37 .38 .39	1.02059 .02493 .02928 .03362 .03796	10.486 .591 .697 .805 .913	0.095369 .094420 .093481 .092551 .091630	2.85 .86 .87 .88 .89	1.23774 .24208 .24643 .25077 .25511	17.288 .462 .637 .814 .993	0.057844 .057269 .056699 .056135 .055576
2.40 .41 .42 .43	1.04231 .04665 .05099 .05534 .05968	.134 .246 .359 .473	0.090718 .089815 .088922 .088037 .087161	2.90 .91 .92 .93	1.25945 .26380 .26814 .27248 .27683	18.174 •357 •541 •728 •916	0.055023 .054476 .053934 .053397 .052866
2.45 .46 .47 .48 .49	1.06402 .06836 .07271 .07705 .08139	11.588 .705 .822 .941 12.061	0.086294 .085435 .084585 .083743 .082910	2.9 <b>5</b> .96 .97 .98	1.28117 .28551 .28985 .29420 .29854	19.106 •298 •492 •688 •886	0.052340 .051819 .051303 .050793 .050287
2,50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

# EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	ex	x	$\log_{10}(ex)$	ex	e-x
3.00 .01 .02 .03	1.30288 .30723 .31157 .31591 .32026	20.086 .287 .491 .697 .905	0.049787 .049292 .048801 .048316 .047835	3.50 .51 .52 .53 .54	1.52003 .52437 .52872 .53306 .53740	33.115 .448 .784 34.124 .467	0.030197 .029897 .029599 .029305 .029013
3.05 .06 .07 .08	1.32460 .32894 .33328 .33763 .34197	21.115 .328 .542 .758 .977	0.047359 .046888 .046421 .045959 .045502	3.55 .56 .57 .58 .59	1.54175 .54609 .55043 .55477 .55912	34.813 35.163 .517 .874 36.234	0.028725 .028439 .028156 .027876 .027598
3.10 .11 .12 .13 .14	1.34631 .35066 .35500 .35934 .36368	22.198 .421 .646 .874 23.104	0.045049 .044601 .044157 .043718 .043283	3.60 .61 .62 .63 .64	1.56346 .56780 .57215 .57649 .58083	36.598 .966 37.338 .713 38.092	0.027324 .027052 .026783 .026516 .026252
3.15 .16 .17 .18	1.36803 ·37237 ·37671 ·38106 ·38540	23.336 .571 .807 24.047 .288	0.042852 .042426 .042004 .041586 .041172	3.65 .66 .67 .68 .69	1.5851 <b>7</b> .58952 .59386 .59820 .60255	38.475 .861 39.252 .646 40.045	0.025991 .025733 .025476 .025223 .024972
3.20 .21 .22 .23 .24	1.38974 .39409 .39843 .40277 .40711	24·533 ·779 25·028 ·280 ·534	0.040762 .040357 .039955 .039557 .039164	3.70 .71 .72 .73 .74	1.60689 .61123 .61558 .61992 .62426	40.447 .854 41.264 .679 42.098	0.024724 .024478 .024234 .023993 .023754
3.25 .26 .27 .28 .29	1.41146 .41580 .42014 .42449 .42883	25.790 26.050 .311 .576 .843	0.038774 .038388 .038006 .037628	3.7 <b>5</b> . <b>7</b> 6 . <b>7</b> 7 . <b>7</b> 8 . <b>7</b> 9	1.62860 .63295 .63729 .64163 .64598	42.521 .948 43.380 .816 44.256	0.023518 .023284 .023052 .022823 .022596
3.30 .31 .32 .33 .34	1.43317 .43751 .44186 .44620 .45°54	27.113 •385 .660 .938 28.219	o.o36883 .o36516 .o36153 .o35793	3.80 .81 .82 .83 .84	1.65032 .65466 .65900 .66335 .66769	44.701 45.150 .604 46.063 .525	0.022371 .022148 .021928 .021710 .021494
3·35 ·36 ·37 ·38 ·39	1.45489 .45923 .46357 .46792 .47226	28.503 .789 29.079 .371 .666	0.035084 .034735 .034390 .034047 .033709	3.85 .86 .87 .88 .89	1.67203 .67638 .68072 .68506 .68941	46.993 47.465 .942 48.424 .911	0.021280 .021068 .020858 .020651 .020445
3.40 .41 .42 .43 .44	1.47660 .48094 .48529 .48963 .49397	29.964 30.265 .569 .877 31.187	0.033373 .033041 .032712 .032387 .032065	3.90 .91 .92 .93 .94	1.69375 .69809 .70243 .70678	49.402 .899 50.400 .907 51.419	0.020242 .020041 .019841 .019644 .019448
3.45 .46 .47 .48 .49	1.49832 .50266 .50700 .51134 .51569	31.500 .817 32.137 .460 .786	0.031746 .031430 .031117 .030807 .030501	3.95 .96 .97 .98	1.71546 .71981 .72415 .72849 .73283	51.935 52.457 .985 53.517 54.055	0.019255 .019063 .018873 .018686 .018500
3.50	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

# TABLE 19 (continued). EXPONENTIAL FUNCTION.

	log (ex)	ex	e-x	x	log (ex)	e ²	e-x
<i>x</i>	log ₁₀ (ex)			<i>x</i>	$\log_{10}(e^x)$		
4.00	1.73718	54.598	0.018316	4.50	1.95433	90.017	0.011109
10.	.74152	55.147	.018133	.51	.95867	.922 91.836	.010998
.02	.74586	.701	.017953	.52	.96301		.010889
.03	.75021 •75455	56.261 .826	.017774 .017597	·53 ·54	.96735	92.759 93.691	.010781
104		.020	10-7397		19/1/0		10100/3
4.05	1.75889	57.397	0.017422	4.55	1.97604	94.632	0.010567
.06	.76324 .76758	.974 58.557	.017249 .017077	.56 ·57	.98038 .98473	95.583 96.544	.010462
.08	.77192	59.145	.016907	.58	.98907	97.514	.010255
.09	.77626	.740	.016739	•59	.99341	98,494	.010153
4.10	1.78061	60.340	0.016573	4.60	1.99775	99.484	0.010052
.11	.78495	.947	.016408	.61	2.00210	100.48	.009952
.12	.78929	61.559	.016245	.62	.00644	101.49	.009853
.13	.79364	62.178	.016083	.63	.01078	102.51	.009755
.14	.79798	.803	.015923	.64	.01513	103.54	.009058
4.15	1.80232	63.434	0.01 5764	4.65	2.01947	104.58	0.009562
.16	.80667	64.072	.015608	.66	.02381	105.64	.009466
.17	.81101	.715 65.366	.015452	.67 .68	.02816	106.70	.009372
.10	.81 535 .81969	66.023	.015299 .015146	.69	.03250 .03684	107.77	.009187
9							
4.20	1.82404	66.686	0.014996	4.70	2.04118	109.95	0.009095
.21	.82838	67.357	.014846 .014699	.71	.04553	111.05 112 <b>.</b> 17	.009005
.22	.83272 .83707	68.033 •717	.014552	.72 .73	.04987	113.30	.008826
.24	.84141	69.408	.014408	.74	.05856	114.43	.008739
4.25	1.84575	70.105	0.014264	4.75	2,06290	115.58	0.008652
.26	.85009	.810	.014122	4·75 ·76	.06724	116.75	.008566
.27	.85444	71.522	.013982	•77	.07158	117.92	.008480
.28	.85878	72.240	.013843	.78	.07593	119.10	.008396
.29	.86312	.966	.013705	•79	.08027	120.30	.008312
4.30	1.86747	73.700	0.013569	4.80	2.08461	121.51	0.008230
.31	.87181	74.440	.013434	.81	.08896	122.73	.008148
.32	.87615	75.189	.013300	.82 .83	.09330	123.97 125.21	.008067
•33	.88050 .88484	.944 76.7 <b>0</b> 8	.01 3 1 68 .01 3 0 3 7	.84	.09764	125.21	.007907
•34		70.700					
4.35	1.88918	77.478	0.012907	4.85 .86	2.10633	127.74	0.007828
.36	.893 <b>52</b> .89787	78.257 79.044	.012778 .012651	.80	.11067	129.02 1 <b>3</b> 0.32	.007750
•37 •38	.90221	79.044	.012525	.8 ₇ .88	.11936	131.63	.007597
•39	.90655	79.838 80.640	.012401	.89	.12370	132.95	.007521
	1.91090	81.451	0.012277	4.90	2.12804	134.29	0.007447
4.40 .41	.91524	82.269	.012155	.91	.13230	135.64	.007372
.42	.91958	83.096	.012034	.92	.13673	137.00	.007299
•43	.92392 .92827	.931	.011914	-93	.14107	138.38	.007227
•44	.92827	84.775	.011796	•94	.14541	139.77	.007155
4.45	1.93261	85.627	0.011679	4.95	2.14976	141.17	0.007083
.46	.93695	86.488	.011562	.96	.15410	142.59	.007013
•47	.94130	87.357 88.235	.011447	·97	.15844	144.03 145.47	.006943
.48 .49	.94564 .94998	89.121	.011333	.98 .99	.16713	145.47	.006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738
				l			

	1. ()		_		1 (-)		
x	log ₁₀ (ex)	ex	e-x	x	$\log_{10}(e^x)$	ex	e-x
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
.01	.17582	149.90	.006671	.1	.21490	164.02	.006097
.02	.18016	151.41	.006605	.2	.25833	181.27	.005517
.03	.18450	1 52.93	.006539	•3	.30176	200.34	.004992
.04	.18884	I 54-47	.006474	•4	•34519	221.41	.004517
5.05 .06	2.19319	156.02	0.006409 .006346	5·5 .6	2.38862	244.69	0.004087 .003698
.07	.19753	157.59 159.17	.006282	.7	.43205	270.43 298.87	.003346
.08	.20622	160.77	.006220	·7 .8	.51891	330.30	.003028
.09	.21056	162.39	.0061 58	.9	.56234	365.04	.002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
.II	.21924	165.67	.006036	.ı	.64920	445.86	.002243
.12	.22359	167.34	<b>.005</b> 976	.2	.69263	492.75	.002029
.13	.22793	169.02	.005917	•3	.73606	544·57 601.85	.001836
.14	.23227	170.72	.005858	•4	.77948	601.85	.001662
5.15	2.23662	172.43	0.005799	6.5	2.82291	665.14	0.001 503
.16	.24096	174.16	.005742	.6	.86634	735.10	.001360
.17	.24530	175.91	.005685	.7 .8	.90977	812.41	.001231
.10	.24965	177.68	.005628		.95320	897.85	.001114
	<b>.2</b> 5399	179.47	.005572	.9	.99663	992.27	.001008
5.20	<b>2.</b> 25833	181.27	0.005517	7.0	3.04006	1096.6	0.000912
.21	.26267	183.09	.005462	.1	.08349	1212.0	.000825
.22	.26702	184.93	.005407	.2	.1 2692	1339.4	.000747
.23	.27136	186.79	.005354	.3	.17035	1480.3	.000676
.24	.27570	188.67	.005300	•4	.21378	1636.0	.000611
5.25	2.28005	190.57	0.005248	7·5 .6	3.25721	1808.0	0.000553
.26	.28439	192.48	.005195	.6	.30064	1998.2	•000500
.27 .28	.28873	194.42	.005144	.7 .8	•34407	2208.3	.000453
.20	.29307	196.37	.005092		.38750	2440.6	.000410
.29	.29742	198.34	.005042	.9	.43093	2697.3	.000371
5.30	2.30176	200.34	0.004992	8.0	3.47436	2981.0	0.000335
.31	.30610	202.35 204.38	.004942	I.	.51779	3294.5	.000304
.32	.31045	204.38	.004893	.2	.56121	3641.0	.000275
.33	-31479	206.44	.004844	·3	.60464	4023.9	.000249
•34	.31913	208.51	.004796	•4	.64807	4447.I	.000225
5.35	2.32348	210.61	0.004748	8.5	3.69150	4914.8	0.000203
.36	.32782	212.72	.004701	,0	•73493	5431.7	.000184
•37 •38	.33216	214.86	.004654	.7 .8	.77836 .82179	6002.9	.000167
.38	.33650	217.02	.0046c8		.82179	6634.2	.000151
•39	.34085	219.20	.004562	.9	.86522	7332.0	.000136
5.40	2.34519	221.41	0.004517	9.0	3.90865	8103.1	0.000123
.41	•34953 •35388 •35822	223.63	.004472	ı.	.95208	8955.3	.000112
.42	15300	225.88 228.15	.004427	.2	.99551	9897.1	101000.
·43 ·44	.35022	230.44	.004383	-3	4.03894	10938.	100000.
			.004339	•4	.08237		.000083
5·45 •46	2.36690	232.76	0.004296	9.5	4.12580	13360.	0.000075
.40	.37125	235.10	.004254	.6	.16923	14765.	.000068
·47 .48	∙37 \$59 ∙37 99 <b>3</b>	237.46 239.85	.004211	.7 .8	.25609	16318. 18034.	.000061
.49	.384 <b>2</b> 8	242.26	.004128	.9	.29952	19930.	.000055
5.50	2.38862	244.69	0.004087	10.0		22026.	
J. J.		244.09	3.004007	10.0	4. 34294	22020.	0.000045

TABLE 20.

# EXPONENTIAL FUNCTIONS.

Value of  $e^{x^2}$  and  $e^{-x^2}$  and their logarithms.

х	e ^{x²}	$\log e^{x^2}$	e-x3	log e-x2
0.1 2 3 4 5	1.0101 1.0408 1.0942 1.1735 1.2840	0.00434 01737 03909 06949 10857	0.99005 96079 91393 85214 77880	ī.99566 98263 96091 93051 89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 44486 36788	7.84365 78720 72205 64822 56571
1.1 2 3 4 5	3.3535 4.2207 5.4195 7.0993 9.4877	0.52550 62538 73396 85122 97716	0.29820 23693 18452 14086 10540	7.47450 37462 26604 14878 02284
1.6 7 8 9 2.0	1.2936 × 10 1.7993 " 2.5534 " 3.6966 " 5.4598 "	1.11179 25511 40711 56780 73718	0.77305 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	74489 59289 43220 26282
2.1 2 3 4 5	$8.2269$ " $1.2647 \times 10^{2}$ $1.9834$ " $3.1735$ " $5.1801$ "	1.91524 2.10199 29742 50154 71434	0.12155 " 79071 × 10 ⁻² 50418 " 31511 " 19305 "	2.08476 3.89801 70258 49846 28566
2.6 7 8 9 3.0	8.6264 " 1.4656 × 10 ³ 2.5402 " 4.4918 " 8.1031 "	2.93583 3.16601 40487 65242 90865	0.11592 " 68233 × 10 ⁻⁸ 39367 " 22263 " 12341 "	3.06417 4.83399 59513 34758 09135
3.1 2 3 4 5	$1.4913 \times 10^{4}$ $2.8001$ $5.3637$ $1.0482 \times 10^{5}$ $2.0898$ "	4.17357 44718 72947 5.02044 32011	$0.67055 \times 10^{-4}$ $357^{1}3$ $18644$ $95402 \times 10^{-5}$ $47851$	5.82643 55282 27053 6.97956 67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673 × 10 ⁶ 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	0.23526 " 11337 " 53553 X 10 ⁻⁶ 24796 " 11254 "	6.37154 05451 7.72879 39438 05129
4.1 2 3 4 5	$1.9975 \times 10^{7}$ $4.5809$ $1.0718 \times 10^{8}$ $2.5582$ $6.2296$ "	7.30049 66095 8.03010 40794 79446	$0.50062 \times 10^{-7}$ $21830$ " $93303 \times 10^{-8}$ $39089$ " $16052$ "	8.69951 33905 9.96990 59206 20554
4.6 7 8 9 5.0	$1.5476 \times 10^{9}$ $3.9^{22}5$ " $1.0142 \times 10^{10}$ $2.6755$ " $7.2005$ "	9.18967 59357 10.00614 42741 85736	0.64614 × 10 ⁻⁹ 25494 " 98595 × 10 ⁻¹⁰ 37376 " 13888 "	70.81033 40643 71.99386 57259 14264

TABLE 21.

# EXPONENTIAL FUNCTIONS.

Values of  $e^{\frac{\pi}{4}z}$  and  $e^{-\frac{\pi}{4}z}$  and their logarithms.

æ	$\ell^{\pi}$	$\log e^{\frac{\pi}{4}x}$	$e^{-\frac{\pi}{4}x}$	$\log e^{-\frac{\pi}{4}x}$
1	2.1933	0.34109	0.45594	ī.65891
2	4.8105	.68219	.20788 *	31781
3	1.0551 × 10	1.02328	.94780 × 10 ⁻¹	2.97672
4	2.3141 "	.36438	.43 ²¹ 4 "	.63562
5	5.0754 "	.70547	.19703 "	.29453
6 7 8 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04656 .38766 .72875 3.06985 .41094	$0.89833 \times 10^{-2}$ $0.40958$ " $0.18674$ " $0.85144 \times 10^{-8}$ $0.38820$ "	3.95344 .61234 .27125 4.93015 .58906
11	$5.6498$ " $1.2392 \times 10^{4}$ $2.7178$ " $5.9610$ " $1.3074 \times 10^{5}$	3.7 52 <b>03</b>	0.17700 "	4·24797
12		4.09313	.80700 X 10 ⁻⁴	5·90687
13		•43.422	.36794 "	·56578
14		•77532	.16776 "	·22468
15		5.11641	.76487 X 10 ⁻⁵	6·88359
16	$2.8675$ " $6.2893$ " $1.3794 \times 10^{6}$ $3.0254$ " $6.6356$ "	5.45751	0.34873 "	6.54249
17		.79860	.15900 "	.20140
18		6.13969	.72495 × 10 ⁻⁶	7.86031
19		.48079	.33°53 "	.51921
20		.82188	.15070 "	.17812

TABLE 22. EXPONENTIAL FUNCTIONS.

Values of  $\ell^{\frac{\sqrt{\tau}}{4}z}$  and  $\ell^{-\frac{\sqrt{\pi}}{4}z}$  and their logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}z}$	$\log e^{\frac{\sqrt{\pi}}{4}x}$	$e^{-\frac{\sqrt{\pi}}{4}x}$	$\log e^{-\frac{\sqrt{\pi}}{4}x}$
1 2 3 4 5	1.5576 2.4260 3.7786 5.8853 9.1666	0.19244 .38488 .57733 .76977 .96221	0.64203 •41221 •26465 •16992 •10909	1.80756 .61512 .42267 .23023
6 7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 •34709 •53953 •73198 •92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11 12 13 14 15	130.88 203.85 317.50 494.52 770.24	2.11686 .30930 .50174 .69418 .88663	0.0076408 .0049057 .0031496 .0020222 .0012983	3.88314 .69070 .49826 .30582 .11337
16 17 18 19 20	1199.7 1868.6 2910.4 4533.1 7060.5	3.07907 .27151 .46395 .65639 .84883	0.00083355 .00053517 .00034360 .00022060 .00014163	4.92093 .72849 .53605 .34361

#### TABLES 23 AND 24.

# EXPONENTIAL FUNCTIONS AND LEAST SQUARES.

#### TABLE 23 .- Exponential Functions.

Value of  $e^x$  and  $e^{-x}$  and their logarithms.

x	e ^z	log ez	e-z	x	ez	log ez	e-z
1/64 1/32 1/16 1/10	1.0157 .0317 .0645 .1052	0.00679 .01357 .02714 .04343 .04825	0.98450 .96923 .93941 .90484 .89484	1/3 1./2 3/4 1 5/4	1.3956 .6487 2.1170 .7183 3.4903	0.14476 .21715 .32572 .43429 .54287	0.71653 .60653 .47237 .36788
1/8 1/7 1/6 1/5	1.1331 .1536 .1814 .2214	0.05429 .06204 .07238 .08686	0.88250 .86688 .84648 .81873 .77880	3/2 7/4 2 9/4 5/2	4.4817 5.7546 7.3891 9.4877 12.1825	0.65144 .76002 .86859 .97716	0.22313 .17377 .13534 .10540 .08208

TABLE 24 .- Least Squares.

Values of 
$$P = \frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision,  $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$ . For values of the inverse function see the table on Diffusion.

0.0					4	5	6	7	8	9
. I		.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128
	.11246	.12362	.13476	.14587	.15695	.16800	.17901	.18999	.20094	.21184
.2	.22270	.23352	.24430	.25502	.26570	.27633	.28690	.29742	.30788	.31828
.3	.32863	.33891	-34913	.35928	.36936	37938	.38933	.39921	.40901	.41874
-4	.42839	43797	·44747	.45689	.46623	47548	.48466	•49375	-50275	.51167
0.5	.52050	.52924	.53790	.54646	-55494	.56332	.57162	.57982	.58792	.59594
.6	.60386	.61168	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084
.7 .8	.677So	.68467	.69143	.69810	.70468	.71116	.71754	.72382	.73001	.73610
.8	.74210	.74800	.75381	7 5952	.76514	.77067	.77610	.78144	.78669	.79184
.9	.79691	.So188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851
1.0	.84270	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680
.ı	.88021	.88353	.88679	.88997	.89308	89612	.89910	.90200	.90484	.90761
.2	.91031	.91296	.91553	.91805	.92051	.92290	.92524	.92751	.92973	.93190
-3	.93401	.93606	.93807	.94002	.94191	.94376	.94556	.94731	.94902	.95067
-4	.95229	·953S5	.95538	.95686	.95830	.95970	.96105	.96237	.96365	.96490
1.5	.96611	.96728	.96841	.96952	.97059	.97162	.97263	-97360	-97455	.97 546
.6	.97635	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315
-7	.98379	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864
	.98909	.98952	.98994	.99035	.99074	.99111	.99147	.99182	.99216	.99248
.9	-99279	.99309	.99338	.99366	.99392	.99418	.99443	.99466	.99489	.99511
2.0	.99532	.99552	-99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688
	.99702	.99715	.99728	-99741	-99753	.99764	.99775	.99785	-99795	.99805
	.99814	.99822	.99831	.99839.	.99846	.99854	.99861	.99867	.99874	.99880
	.99886	.99891	.99S97	.99902	.99906	.99911	.99915	.99920	.99924	.99928
	.99931	.99935	.99938	-99941	.99944	-99947	.99950	-99952	-99955	-99957
2.5	.99959	.99961	.99963	.99965	.99967	.99969	.99971	.99972	-99974	-99975
	.99976	.99978	-99979	.99980	.99981	.99982	.99983	.99984	.99985	.99986
	.99987	.99987	.99988	.99989	.99989	.99990	.99991	.99991	.99992	.99992
	-99992	-99993	-99993	-99994	.99994	-99994	-99995	-99995	.99995	.99996
-	.99996	.99996	.99996	-99997	-99997	-99997	-99997	.99997	•99997	.99998
3.0	.99998	.90999	.99999	1.00000						

Taken from a paper by Dr. James Burgess 'on the Definite Integral  $\frac{2}{\sqrt{n}} \int_{0}^{t} e^{-t^2} dt$ , with Extended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

### TABLE 25.

## LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0 o.1 o.2 o.3 o.4 0.5 o.6 o.7 o.8 o.9 1.0	.00000 .05378 .10731 .16035 .21268 .26407 .31430 .36317 .41052 .45618	.00538 .05914 .11264 .16562 .21787 .26915 .31925 .36798 .41517 .46064 .50428	.01076 .06451 .11796 .17088 .22304 .27421 .32419 .37277 .41979 .46509 .50853 .55001	.01614 .06987 .12328 .17614 .22821 .27927 .32911 .37755 .42440 .46952 .51277	.02152 .07523 .12860 .18138 .23336 .28431 .33402 .38231 .42899 .47393 .51699 .55806	.02690 .08059 13391 .18662 .23851 .28934 .33892 .38705 .43357 .47832	.03228 .08594 .13921 .19185 .24364 .29436 .39178 .43813 .48270	.03766 .09129 .14451 .19707 .24876 .29936 .39649 .44267 .48705 .52952 .5698	.04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44719 .49139	.04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570 .53778 .57782
1.2 1.3 1.4 1.5 1.6 1.7 1.8	.58171 .61942 .65498 .68833 .71949 .74847 .77528	.58558 .62308 .62308 .65841 .69155 .72249 .75124 .77785 .80235	.58942 .62671 .66182 .69474 .72546 .75400 .78039	.59325 .63032 .66521 .69791 .72841 .75674 .78291	.59705 .63391 .66858 .70106 .73134 .75945 .78542 .80930	.60083 .63747 .67193 .70419 .73425 .76214 .78790 .81158	.60460 .64102 .67526 .70729 .73714 .76481 .79036	.60833 .64454 .67856 .71038 .74000 .76746 .79280	.61205 .64804 .68184 .71344 .74285 .77009 .79522 .81828	.61575 .65152 .68510 .71648 .74567 .77270 .79761 .82048
2.0 2.1 2.2 2.3 2.4 2.5 2.6	.79999 .82266 .84335 .86216 .87918 .89450	.82481 .84531 .86394 .88078 .89595	.82695 .84726 .86570 .88237 .89738	.82907 .84919 .86745 .88395 .89879	.83117 .85109 .86917 .88550 .90019	.83324 .85298 .87088 .88705 .90157	.83530 .85486 .87258 .88857 .90293	.83734 .85671 .87425 .89008 .90428 .91698	.83936 .85854 .87591 .89157 .90562 .91817	.84137 .86036 .87755 .89304 .90694
2.7 2.8 2.9 3 4	.92051 .93141 .94105 .94954 <b>0</b> .95698 .99302	.93243 .94195 .95033 <b>1</b> .96346 .99431	.93344 .94284 .95111 <b>2</b> .96910 .99539	•93443 •94371 •95187 <b>3</b> •97397 99627	.93541 .94458 .95263 <b>4</b> .97817 .99700	.93638 .94543 .95338 <b>5</b> .98176 .99760	.93734 .94627 .95412 <b>6</b> .98482 .99808	.93828 .94711 .95484 <b>7</b> .98743 .99848	.93922 .94793 .95557 <b>8</b> .98962 .99879	.94014 .94874 .95628 <b>9</b> .99147 .99905
5	.99926	-99943	.99956	.99966	•99974	.99980	.99985	.99988	.99991	.99993

## TABLE 26. LEAST SQUARES.

Values of the factor 0.6745  $\sqrt{\frac{1}{n-1}}$ .

This factor occurs in the equation  $r_s = 0.6745 \sqrt{\frac{\sum_{\nu} z}{n-1}}$  for the probable error of a single observation, and other similar equations.

n	0	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .20 <b>34</b> .1472 .1211 .1053	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157 .1017	0.3016 .1742 .1349 .1140	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094 .0974
50 60 70 80 90	0.0964 .0878 .0812 .0759 .0715	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0740 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0779 .0732 .0692	0.0901 .0830 .0774 .0727 .0688	0.0893 .0824 .0769 .0723 .0685	0.0886 .0818 .0764 .0719 .0681

### TABLE 27.- LEAST SQUARES.

# Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$ .

This factor occurs in the equation  $r_0 = 0.6745 \sqrt{\frac{\sum v^2}{n(n-1)}}$  for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0711 .0346 .0229 .0171	0.0643 .0329 .0221 .0167	0.4769 .0587 .0314 .0214 .0163	0.2754 .0540 .0300 .0208 .0159	0.1947 .0500 .0287 .0201	0.1508 .0465 .0275 .0196 .0152	0.1231 .0435 .0265 .0190 .0148	0.1041 .0409 .0255 .0185	0.0901 .0386 .0245 .0180	0.0795 .0365 .0237 .0175 .0139
50 60 70 80 90	0.0136 .0113 .0097 .0085 .0075	0.0134 .0111 .0096 .0084 .0075	0.0131 .0110 .0094 .0083 .0074	0.0128 .0108 .0093 .0082 .0073	0.0126 .0106 .0092 .0081 .0072	0.0124 .0105 .0091 .0080 .0071	0.0122 .0103 .0089 .0079 .0071	0.0119 .0101 .0088 .0078	0.0117 .0100 .0087 .0077 .0069	0.0115 .0098 .0086 .0076 .0068

## TABLE 28. - LEAST SQUARES.

Values of the factor 0.8453  $\sqrt{\frac{1}{n(n-1)}}$ .

This factor occurs in the approximate equation  $r = 0.8453 \sqrt{\frac{\sum v^2}{n(n-I)}}$  for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0891 .0434 .0287 .0214	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252 .0194	0.1890 .0583 .0345 .0245 .0190	0.1543 .0546 .0332 .0238 .0186	0.1304 .0513 .0319 .0232 .0182	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102 .0091	0.0158 .0133 .0115 .0101 .0090	0.0155 .0131 .0113 .0100 .0089	0.0152 .0129 .0112 .0099 .0089	0.0150 .0127 .0111 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

# TABLE 29. - LEAST SQUARES.

Values of 0.8453  $\frac{1}{n\sqrt{n-1}}$ .

This factor occurs in the approximate equation  $r_0 = 0.8453 \frac{\Sigma \nu}{n\sqrt{n-1}}$  for the probable error of the arithmetical mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0282 .0097 .0052 .0034	0.0243 .0090 .0050 .0033	0.4227 .0212 .0084 .0047 .0031	0.1993 .0188 .0078 .0045	0.1220 .0167 .0073 .0043	0.0845 .0151 .0069 .0041 .0028	0.0630 .0136 .0065 .0040	0.0493 .0124 .0061 .0038	0.0399 .0114 .0058 .0037 .0026	0.0332 .0105 .0055 .0035
50 60 70 80 90	0.0024 .0018 .0015 .0012	0.0023 .0018 .0014 .0012	0.0023 .0017 .0014 .0011	0.0022 .0017 .0014 .0011 .0009	0.0022 .0017 .0013 .0011	0.0021 .0016 .0013 .0011	0.0020 .0016 .0013 .0011	0.0020 .0016 .0013 .0010	0.0019 .0015 .0012 .0010	0.0019 .0015 .0012 .0010

Observation equations:

Auxiliary equations:

Normal equations:

Solution of normal equations in the form,

$$\begin{aligned} z_1 &= A_1[paM] + B_1[pbM] + \dots L_1[plM] \\ z_2 &= A_2[paM] + B_2[pbM] + \dots L_2[plM] \\ z_n &= A_n[paM] + B_n[pbM] + \dots L_n[plM], \end{aligned}$$

gives:

wherein

r = probable error of observation of weight unity  
= 0.6745 
$$\sqrt{\frac{\sum pv^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \sum v}{\sqrt{n(n-1)}}.$$
 (approx.) = probable error of observation of weight unity.

$$r_0 = 0.6745 \sqrt{\frac{\sum v^2}{n(n-1)}} = \frac{0.8453 \sum v}{n\sqrt{n-1}} \cdot \text{(approx.)} = \text{probable error}$$
 of mean.

Weighted mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum p v^2}{n-1}}; r_0 = \frac{r}{\sqrt{\sum p}} = 0.6745 \sqrt{\frac{\sum p v^2}{(n-1) \sum p}}$$

Probable error (R) of a function (Z) of several observed quantities  $z_1, z_2, \ldots$  whose probable errors are respectively,  $r_1, r_2, \ldots$   $Z = f(z_1, z_2, \ldots)$ 

$$Z = f(z_1, z_2, \ldots)$$

$$R^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 r_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 r_2^2 + \ldots$$

Examples:

$$\begin{split} Z &= z_1 \,\pm\, z_2 \,+\, \dots & & & & & & & & & & \\ Z &= \,x_1 \,\pm\, Bz_2 \,\pm\, \dots & & & & & & & \\ Z &= \,x_1 \,\pm\, Bz_2 \,\pm\, \dots & & & & & & & \\ Z &= \,z_1 \,z_2 & & & & & & & & \\ & & & & & & & & \\ Z &= \,z_1^{\,2} \,r_2^2 \,+\, z_2^{\,2} \,r_1^2 \,+\, \dots & & & \\ & & & & & & & & \\ Z &= \,z_1^{\,2} \,r_2^2 \,+\, z_2^{\,2} \,r_1^2 \,+\, \dots & & \\ & & & & & & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^{\,2} \,r_1^2 \,+\, \dots & & \\ & & & & & & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^{\,2} \,r_1^2 \,+\, \dots & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_2^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^{\,2} \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, z_2^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^2 \,z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,z_1^2 \,+\, \dots & \\ Z &= \,z_1^2 \,z_1^2 \,+\, z_1^2 \,z_1^2 \,z_1^2 \,+\, \dots$$

# TABLE 31.

Inverse * values of 
$$v/c = I - \frac{2}{\sqrt{\pi}} \int_{0}^{q} e^{-q^{2}} dq$$
.

 $\log x = \log (2q) + \log \sqrt{kt}$ .  $t$  expressed in seconds.

 $= \log \delta + \log \sqrt{kt}$ .  $t$  expressed in days.

 $= \log \gamma + \log \sqrt{kt}$ . " " years.

 $k = \text{coefficient of diffusion.}^{\dagger}$ 
 $c = \text{initial concentration.}$ 
 $v = \text{concentration at distance } x$ , time  $t$ .

					,	
v/c	log 2q	29	log δ	δ	logγ	γ
0.00	) +∞	+∞	+∞	+∞	00	~
.01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
.02	.51719	3.2900	2.98545	967.04	.26674	18481.
.03		3.0690	.95525	902.90	.23654	17240.
.04		2.9044	.93132	853.73	.21261	16316.
0.05		2.7718	2.91102	814.74	4.19231	15571.
.06		2.6598	.89311	781.83	.17440	14942.
.07	.40865	2.5624 2.4758	.87691 .86198	753.20 727 <b>.7</b> 5	.15820	14395.
.09		2.3977	.84804	704.76	.12933	13469.
0.10		2.3262	2.83490		4.11619	13067.
.11	.35414	2.3202	.82240	683.75 664.36	.10369	12697.
.12		2.1988	.81044	646.31	.09173	12352.
.13		2.1413	.79893	629.40	.08022	12029.
.14		2.0871	.7Ś7Ś0	613.47	.06909	11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	11436.
.16	.29821	1.9871	.76647	584.08	.04776	11162.
.17	.28793	1.9406	.75619	570.41	.03748	10901.
.18	1 4 0	1.8961	.74612	557-34	.02741	10652.
.19		1.8534	.73624	544.80	.01753	10412.
0.20		1.8124	2.72651	532.73	4.00780	10181.
.21	.24866	1.7728	.71692	521.10	3.99821	9958.9
.22		1.7346 1.6976	.70745	509.86 498.98	.98874	9744.1
.23		1.6617	.68880	488.43	.97937 .97010	9536.2 9334.6
0.25	-	1.6268	2.67960	478.19	3.96089	9138.9
.26	71	1.5930	.67046	468.23	.95175	8948.5
27	10212	1.5600	.66137	458.53	.94266	8763.2
.28	.18407	1.5278	.65232	458.53 449.08	.93361	8582.5
.29		1.4964	.64331	439.85	.92460	8406.2
0.30	0.16606	1.4657	2.63431	430.84	3.91 560	8233.9
.31	.15708	1.4357	.62533 .61636	422.02	.90662	8065.4
.32		1.4064		413.39	.89765	7900.4
.33	.13912	1.3776	.60738	404.93	.88867	7738.8 7580.3
•34		1.3494	.59840	396.64	.87969	_ 1
0.35		1.3217	2.58939	388.50	3.87068 .86166	7424.8
.36		1.2945	.58037	380.51 372.66	.85260	7272.0
.38	.10305	1.2415	.57131	364.93	.84351	6974.4
.39		1.2157	.55308	357.34	.83437	6829.2
0.40	1	1.1902	2.54389	349.86	3.82518	6686.2
.41	.06639	1.1652	.53464	342.49	.81 593	6545.4
.42	.05708	1.1405	·52533	335.22	.80662	6406.6
.43	.04770	1.1161	.51595	328.06	·79724	6269.7
.44	.03824	1.0920		320.99	.78779	6134.6
0.45		1.0683	2.49696	314.02	3.77825	6001.3
.46		1.0449	.48733 .47760	307.13	.76862	5869.7
.47	.00934	1.0217	47700	300.33	.75889	5739·7 5611.2
.48	9.99951	0.99886	.46776	293.60 286.96	.74905	5484.1
0.50			_	-		5358.4
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5350.4

[†] Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280.

TABLE 31 (continued).

DIFFUSION.

v/c	log 2q	29	log δ	δ	log y	γ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
.51	.96929	.93174	.43755	273.87	.71884	5234.1
.52	.95896	.90983	.42722	267.43	.70851	5111.0
.53	.94848	.88813	.41674	261.06	.69803	4989.1
.54	.93784	.86665	.40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	•54343	3494.9
.67	.78008	.60266	.24833	177.15	•52962	3385.4
.68	.76590	.58331	.23416	171.46	•51545	3276.8
.69	.75133	.56407	.21959	165.80	•50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75 .76 .77 .78 .79	9.65381 .63550 .61646 .59662 .57590	0.45062 .43202 .41348 .39502 .37662	2.12207 .10376 .08471 .06487 .04416	132.46 126.99 121.54 116.11	3.40336 •38505 •36600 •34616 •32545	2531.4 2426.9 2322.7 2219.0 2115.7
0.80	9·55423	0.35829	2.02249	105.31	3.30378	2012.7
.81	•53150	.34001	1.99975	99.943	.28104	1910.0
.82	•50758	.32180	.97584	94.589	.25713	1807.7
.83	•48235	.30363	.95061	89.250	.23190	1705.7
.84	•45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1502.4
.86	.39695	.24943	.86521	73.317	.14650	1401.2
.87	.36445	.23145	.83271	68.032	.11400	1300.2
.88	.32940	.21350	.79766	62.757	.07895	1199.4
.89	.29135	.19559	.75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	.95329	898.03
.92	.15239	.14203	.62065	41.750	.90194	797.89
.93	.09423	.12423	.56249	36.516	.84378	697.88
.94	9.02714	.10645	·49539	31.289	.77668	597.98
<b>0.95</b>	8.94783	o.o8868	1.41609	26.067	2.69738	498.17
.96	.85082	.o7093	.31907	20.848	.60036	398.44
.97	.72580	.o5319	.19406	15.633	.47535	298.78
.98	.54965	.o3545	.01791	10.421	.29920	199.16
.99	.24859	.o1773	0.71684	5.21007	1.99813	99.571
1.00		0.00000	-∞	0.00000	-∞	0.000

#### TABLE 32.

#### **CAMMA FUNCTION.***

Value of 
$$\log \int_0^\infty e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + io of the "Second Eulerian Integral" (Gamma function)  $\int_{0}^{\infty} e^{-x} x^{n-1} dx \circ \log \Gamma(n) + io$  for values of n between i and 2. When n has values not lying between i and 2 the value of the i nction can be readily calculated from the equation  $\Gamma(n+i) = n\Gamma(n) = n(n-i) \dots (n-r)\Gamma(n-r)$ .

n	0	1	2	3	4	5	6	7	8	9	
1.00	9.99	07.407	0.001	92512	90030	87555	85087	82627	80173	77727	
10.1	75287	97497 72855	95001 70430	68011	65600	63196	60798	58408	56025	53648	
1.02	51279	48916	46561	44212	41870	39535	37207	34886	32572	30265	
1.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	07567	
1.04	05334	03108	00889	98677	96471	94273	92080	89895	87716	85544	
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188	
1.06	62089	59996	57910	55830		51690	49630	47577	45530	43489	
1.07	41455	39428	37407	35392	537 57 33384	31382	29387	27398	25415	23439	
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029	
1.09	02123	00223	98329	96442	94561	92686	90818	88956	87100	85250	
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095	
I.II	65313	63538	61768	60005	58248	56497	547.53	53014	51281	49555	
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622	
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289	
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549	
1.15	9.9599007	97471	95941	94417	92898	91386	89879	88378	86883	85393 70816	
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816	
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810	
1.18	55440	54076	52718	51366	50019	48677	4734I	46011	44687	43368	
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483	
1.20	9.9629225	² 7973 15748	26725	25484	24248	23017	21792	20573	19358	18150	
1.21	16946	1 5748	14556	13369	12188	11011	09841	08675	07515	06361	
1.22	05212	04068	02930	01796	00669	99546	98430	97318	96212	95111	
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393	
I.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201	
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530	
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374	
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728	
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376 31682	38585	
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940	
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789	
1.31	23100	22417	21739	21065	20395	19732	19073 12748	18419	17770	17125	
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11541	10944	
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242	
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012	
1.35	9.9499515	99023	98535	9S052	97573	97100	96630	96166	95706	95251	
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953	
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115	
1.38	867 56	86402	86052	85707	85366	85030	84698	81348	84049	83731	
1.39	83417	83108	82803	82503	82208	81916	81630			80797	
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308	
I.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261	
1,42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652	
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476	
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728	

^{*} Legendre's "Exercises de Calcul Intégral," tome ii.

# TABLE 32 (continued). CAMMA FUNCTION.

n	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9-947 5449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77427	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	8201 5	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	99933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	97625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64139	65551	.66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	01844	03335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41 595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	c6663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

TABLE 3.3.
ZONAL SPHERICAL HARMONICS.*

Degrees	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇
0 1 2 3 4	+ 1.0000 .9998 .9994 .9986 .9976	+ 1.0000 .9995 .9982 .9959 .9927	+ 1.0000 .9991 .9963 .9918 .9854	+ 1.0000 .9985 .9939 .9863 .9758	+ 1.0000 •9977 •9909 •9795 •9638	+ 1.0000 .9968 .9872 .9714 .9495	+ 1.0000 .9957 .9830 .9620
5 6 7 8 9	+ 0.9962 ·9945 ·9925 ·9903 ·9877	+ 0.9886 .9836 .9777 .9709 .9633	+ 0.9773 .9674 .9557 .9423 .9273	+ 0.9623 •9459 •9267 •9048 •8803	+ 0.9437 .9194 .8911 .8589 .8232	+ 0.9216 .8881 .8492 .8054 .7570	+ 0.8962 .8522 .8016 .7449 .6830
10 11 12 13 14	+ 0.9848 .9816 .9781 .9744 .9703	+ 0.9548 •9454 •9352 •9241 •9122	+ 0.9106 .8923 .8724 .8511 .8283	+ 0.8532 .8238 .7920 .7582 .7224	+ 0.7840 .7417 .6966 .6489	+ 0.7045 .6483 .5891 .5273 .4635	+ 0.6164 .5462 .4731 .3980 .3218
15 16 17 18	+ 0.9659 .9613 .9563 .9511 .9455	+ 0.8995 .8860 .8718 .8568 .8410	+ 0.8042 .7787 .7519 .7240 .6950	+ 0.6847 .6454 .6046 .5624 .5192	+ 0.5471 .4937 .4391 .3836 .3276	+ 0.3983 .3323 .2661 .2002 .1353	+ 0.2455 + .1700 + .0961 + .0248 0433
20 21 22 23 24	+ 0.9397 .9336 .9272 .9205 .9135	+ 0.8245 .8074 .7895 .7710 .7518	+ 0.6649 .6338 .6019 .5692 .5357	+ 0.4750 .4300 .3845 .3386 .2926	+ 0.2715 .2156 .1602 .1057 .0525	+ 0.0719 + .0106 0481 1038 1558	- 0.1072 .1664 .2202 .2680 .3094
25 26 27 28 29	+ 0.9063 .8988 .8910 .8829 .8746	+ 0.7321 .7117 .6908 .6694 .6474	+ 0.5016 .4670 .4319 .3964 .3 ⁶⁰ 7	+ 0.2465 .2007 .1553 .1105 .0665	+ 0.0009 0489 0964 1415 1839	-0,2040 .2478 .2869 .3212 .3502	0.3441 -3717 -3922 -4053 -4113
30 31 32 33 34	+ 0.8660 .8572 .8480 .8387 .8290	+ 0.6250 .6021 .5788 .5551 .5310	+ 0.3248 .2887 .2527 .2167 .1809	+ 0.0234 0185 0591 0982 1357	-0.2233 -2595 -2923 -3216 -3473	- 0.3740 .3924 .4053 .4127 .4147	0.4102 .4022 .3877 .3671 .3409
35 36 37 38 39	+ 0.8192 .8090 .7986 .7880	+ 0.5065 .4818 .4567 .4314 .4059	+ 0.1454 .1102 .0755 .0413 .0077	0.1714 .2052 .2370 .2666 .2940	0.3691 .3871 .4011 .4112 .4174	-0.4114 .4031 .3898 .3719 .3497	- 0.3096 .2738 .2343 .1918 .1470
40 41 42 43 44	+ 0.7660 -7547 -7431 -7314 -7193	+ 0.3802 ·3544 ·3284 ·3023 ·2762	- 0.0252 .0574 .0887 .1191 .1485	0.3190 .3416 .3616 .3791 .3940	0.4197 .4181 .4128 .4038	0.3236 .2939 .2610 .2255 .1878	- 0.1006 0535 0064 + .0398 + .0846
45 46 47 48 49	+ 0.7071 .6947 .6820 .6691 .6561	+ 0.2500 .2238 .1977 .1716 .1456	0.1768 .2040 .2300 .2547 .2781	0.4063 .4158 .4227 .4270 .4286	0.37 57 .3568 .3350 .3105 .2836	- 0.1484 1078 0665 0251 + .0161	+ 0.1271 .1667 .2028 .2350 .2626
50	+ 0.6428	+ 0.1198	- 0.3002	-0.4275	- 0.2545	+ 0.0564	+ 0.2854

* Calculated by Mr. C. E. Van Orstrand for this publication.

TABLE 33 (continued).
ZONAL SPHERICAL HARMONICS.

Degrees	P ₁	P ₂	P ₃	P4	P ₅	P ₆	P ₇
50	+ 0.6428	+ 0.1198	- 0.3002	0.4275	0.2545	+ 0.0564	+ 0.2854
51	.6293	.0941	.3209	.4239	.2235	.0954	.3031
52	.6157	.0686	.3401	.4178	.1910	.1326	.3154
53	.6018	.0433	.3578	.4093	.1571	.1677	.3221
54	.5878	.0182	.3740	.3984	.1223	.2002	.3234
55	+ 0·5736	0.0065	-0.3886	- 0.3852	- 0.0868	+ 0.2297	+ 0.3191
56	·5592	.0310	.4016	.3698	0509	.2560	.3095
57	·5446	.0551	.4131	.3524	0150	.2787	.2947
58	·5299	.0788	.4229	.3331	+ .0206	.2976	.2752
59	·5150	.1021	.4310	.3119	+ .0557	.3125	.2512
60	+ 0.5000	0.1250	-0.4375	0.2891	+ 0.0898	+ 0.3232	+ 0.2231
61	.4848	.1474	.4423	.2647	.1229	.3298	.1916
62	.4695	.1694	.4455	.2390	.1545	.3321	.1572
63	.4540	.1908	.4471	.2121	.1844	.3302	.1203
64	.4384	.2117	.4470	.1841	.2123	.3240	.0818
65	+ 0.4226	-0.2321	0.4452	0.1 552	+ 0.2381	+ 0.3138	+ 0.0422
66	.4067	.2518	.4419	.12 56	.2615	.2997	+ .0022
67	.3907	.2710	.4370	.09 55	.2824	.2819	0375
68	.3746	.2895	.4305	.06 51	.3005	.2606	0763
69	.3584	.3074	.4225	.03 44	.3158	.2362	1135
70	+ 0.3420	- 0.3245	0.4130	- 0.0038	+ 0.3281	+ 0.2089	0.1485
71	.3256	.3410	-4021	+ .0267	·3373	.1791	.1808
72	.3090	.3568	-3898	.0568	·3434	.1472	.2099
73	.2924	.3718	-3761	.0864	.3463	.1136	.2352
74	.2756	.3860	-3611	.1153	.3461	.0788	.2563
75 76 77 78 79	+ 0.2588 .2419 .2250 .2079 .1908	- 0.3995 .4122 .4241 .4352 .4454	0.3449 •3275 •3090 •2894 •2688	+ 0.1434 .1705 .1964 .2211	+ 0.3427 .3362 .3267 .3143 .2990	+ 0.0431 + .0070 0290 0644 0990	0.2730 .2850 .2921 .2942 .2913
80	+ 0.1736	0.4548	- 0.2474	+ 0.2659	+ 0.2810	-0.1321	0.283 <b>5</b> .2708 .2536 .2321 .2067
81	.1564	.4633	.2251	.2859	.2606	.1635	
82	.1392	.4709	.2020	.3040	.2378	.1927	
83	.1219	.4777	.1783	.3203	.2129	.2193	
84	.1045	.4836	.1539	.3345	.1861	.2431	
85	+ 0.0872	0.4886	0.1291	+ 0.3468     .3569     .3648     .3704     ·3739	+ 0.1577	0.2638	- 0.1778
86	.0698	.4927	.1038		.1278	.2810	.1460
87	.0523	.4959	.0781		.0969	.2947	.1117
88	.0349	.4982	.0522		.0651	.3045	.0755
89	.0175	.4995	.0262		.0327	.3105	.0381
90	+ 0.0000	- 0.5000	0.0000	+ 0.3750	+ 0.0000	-0.3125	- 0.0000

TABLE 34.

CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS

Values when n = 0 and t of the Bessel function  $J_n(x)$   $= \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 - \frac{x^2}{2^2(n+1)} + \frac{x^4}{2^4 2^4(n+1)(n+2)} \dots \right\}. \qquad J_1(x) = -J_0'(x) = \frac{dJ_0(x)}{dx}.$ 

		(" + 1) (									_
x	$J_0(x)$	$J_1(x)$	x	$J_{\dot{v}}(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
00			50		212260	1 00	<b>26270</b> 0	4400 57	1.50	#==0a0	T T T O O T
.00		zero	.50	.938470 .936024	.242268	.00	.765198 .760781	.440051	.51	.511828 .506241	
.01	.999975	.005000	.51	.933534	.251310	.02	.756332	.446488	.52	.500642	.560653
.03		.014998	•53	.933334	.255803	.03	.751851	449658	•53	.495028	
.04	.999600			.928418		.04	.747339	452794	.54	.489403	.563208
	,,,	,,,									
.05		.024992		.925793	.264732		.742796	.455897	1.55	.483764	.564424
.06		.029987	.56	.923123	.269166	.06	.738221	.458966	.56		.565600
.07	-998775	.034979	-57	.920410		.07	.733616	.462001	.57	·472453	.566735
.08	' ' .	.039968	.58	.917652	.277975	.08	.728981	.465003	.58	.466780	.567830
.09	.997976	.044954	.59	.914850	.282349	.09	.724316	.467970	.59	.461096	.300003
.10	.997502	.049938	.60	.912005	.286701	1 .10	.719622	.470902	1.60	.455402	.569896
.11	.996977	.054917	.61	.909116	.201032	.II	.714898	.473800	.61	.449698	.570868
.12	.996403	.059892	.62	.905184	.295341	.12	.710146	.476663	.62	.443985	.571798
.13		.064863	.63	.903209	.299628	.13	.705365	479491	.63	.438262	.572688
.14	.995106	.069829	.64	.900192	.303893	.14	.700556	.482284	.64	.432531	.573537
4			05	0-1-		1 15	6	.0	1 05		
.15		.074789	.65	.897132	.308135		.695720	.485041	1 .65	.426792	.574344
.16		.079744	.66	.894029	.312355	.16	.690856	.487763	.66	.421045	.575111
.17 .18	.992788	.084693	.67	.890885 .887698	.316551	.17 .18	.681047	.490449	.67	.415290	.575836
.10		.094572	.69	.884470	.324871	.19	.676103	.495712	.69	.403760	
9	.99-993	9-43/2	.09		3-7-7-		-,3	1931-2	- 9	1-3700	311-03
.20	.990025	.099501	.70	.881201	.328996	1 .20	.671133	.498289	1 .70	.397985	.577765
.21	.989005	.104422	.71	.877890	.333096	.21	.666137	.500830	.71	.392204	.578326
,22		.109336	.72	.874539	.337170	.22	.661116	0 000 1	.72	.386418	.578845
.23		.114241	.73	.871147	.341220	.23	.656071	.505801	.73	.380628	·579323
.24	.985652	.119138	.74	.867715	-345245	.24	.651000	.508231	.74	.374832	.579760
.25	.984436	.124026	.75	.864242	.349244	1 .25	.645906	.510623	1 .75	.369033	.580156
.26		.128005	.76	.860730	.353216	.26	.640788	.512979	.76	.363229	.580511
.27		·I33774	.77	.857178	.357163	.27	.635647	.515296	.77	.357422	.580824
.28		.138632	.78	.853587	.361083	.28	.630482	.517577	.78	.351613	.581096
.29	.979085	.143481	.79	.849956	.364976	.29	.625295	.519819	.79	.345801	.581327
			00	0.6.0		1 20	606		1 00	0.0	-0
.30	1	.148319	.80	.846287	.368842		.620086	.522023	1 .80 .81	.339986	.581517
.31	.976119	.153146	.81	.842580 .838834	.376492	.31	.600602	.524189	.82	.334170	.581773
.32		.162764	.83	.835050	.380275	-33	.604329	.528407	.83	.322535	.581840
•34	1		.84	.831228	.384029	•34	.599034	.530458	.84	.316717	.581865
Ŭ.	// 0	,,,,,	'	Ĭ					l		
.35			.85	.827369	.387755		.593720	00 (	1 .85	.310898	.581849
.36		.177100	.86	.823473	.391453	.36	.588385	•534444	.86	.305080	.581793
.37	.966067	.181852	.87	.819541	.395121	.37	.583031	.536379	.87	.299262	.581695
.38			.88	.815571	.398760	.38	.577658	.538274	.89	.293446	.581557
.39	.962335	.191316	.89	.811565	.402370	•39	.3/2200	.540131	.09	.200031	.3013//
.40	.960308	.196027	.90	.807524	.405950	1.40	.566855	.541948	1.90	.281819	.581157
.41		.200723	.91	.803447	.409499	.41	.561427	.543726	.91	.276008	.580896
.42	.956384	.205403	.92	.799334	.413018	1 . 1	.555981	.545464	.92	.270201	.580595
•43		.210069	.93		.416507	•43	.550518	.547162	.93	.264397	.580252
•44	.952183	.214719	.94	.791004	.419965	•44	.545038	.548821	•94	.258596	.579870
.45	.050012	.219353	.95	.786787	.423392	1.45	.539541	.550441	1 .95	.252799	.579446
.46	1 -0	.223970	.96			.46	.534029	. 55 - 11	.96	.247007	.578983
.47		.228571	.97	.778251	.430151	.47	.528501	.553559		.241220	.578478
.48			.98	.773933	.433483	.48	.522958	.555059	.98	.235438	.577934
-49			.99	.769582	.436783	.49	.517400		.99	.229661	
En		0.15.560	1 00	m6===0	44657	1 50	d==0.0		2 00	22502	476-07
.50	.938470	.242268	1.00	.765198	.440051	1.00	.511828	·5 <b>5</b> 7937	4 .00	.223891	.576725
<u> </u>			1								

# TABLE 34 (continued). CYLINDRICAL HARMONICS OF THE 6TH AND 1ST ORDERS.

 $J_1(x)=-J_0{}'(x).$  Other orders may be obtained from the relation,  $J_{n+1}(x)=\frac{2n}{x}J_n(x)-J_{n-1}(x).$   $J_{-n}(x)=(-1)^nJ_n(x).$ 

						1			1	1 -	
x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	<u>x</u>	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
2.00	.223891	=76725	2.50	<b>0</b> 48384	407004	3.00	260052	.220050	3.50	380128	.137378
.01	.218127			053342			263424			381481	
.02		-575355	.52	058276	.492086		266758		.52	382791	.128989
.03	.206620			063184			270055		•53	384060	.124795
.04	.200878	.573827	•54	<b></b> 068066	.480953	.04	273314	.323998	•54	385287	.120601
2.05	.105143	.573003	2.55	072023	.484340	3.05	276535	.320101	3.55	386472	.116408
.06	.189418			077753		06	279718	.316368	.56	387615	.112216
.07		.571236		082557		.07	282862	.312529	-57	388717	.108025
.08	.177993			087333			285968 289036			389776	
.09	.172295	.309313	1.39	092083	.4/3502	.09	209030	.304003	1.39	390793	.099030
2.10	.166607	.568292	2.60	096805	.470818	3.10	292064	.300921		391769	
.II	.160929			101499			295054			392703	
.12		.566134		106165			298005			393595	.087106
.13	.149607			110803 115412			300916 303788			394445 395253	1 2 1
	109-0	3-3021		3-7-2	139470						[ ' ' ]
2.15		.562607		119992		3.15	306621	.281291		396020	
.16	.132711			124543			309414 312168			396745 397429	.070431
.17 .18		.560063 .558735		129065 133557			314881			397429	
.19		.557368		138018			317555			398671	
0.00			0.50			2 00	00		0 770		
2.20				142449			320188 322781		3.70	399230 399748	
.21	.104810	.553041		146850 151220			325335	0.0		400224	
.23		.551524		155559			327847			400659	
.24	.088242	.549970	.74	159866	.429150	.24	330319	.245184	.74	401053	.037336
2.25	082770	.548378	2 75	- 164141	405070	3 25	332751	047700	3 75	<b></b> 401406	.033220
.26		.546750		<b></b> 168385			335142			401718	
27		.545085		172597			337492			401989	
.28		.543384		176776			339801			402219	400
.29	.000947	.541646	•79	180922	.413011	.29	342069	.224771	•79	402408	.016885
2.30	.055540	.539873	2.80	185036	.400700	3.30	344296	.220663	3.80	402556	.012821
.31	.050150	.538063		189117		.31	346482	.216548		402664	
.32		.536217		193164			348627			402732	
·33		·534336 ·532419		197177 201157			350731 352793			402759 402746	
	1034092	1332419	.04	.201137	1390207	•34	1332793	.204100	104	1402/40	1003337
2.35		.530467					354814				
.36	.023483	.528480		209014			356793			402599	
·37		.526458 .524402		212890 216733			358731 360628			402465 402292	
-39		.522311	.89	220540	.378955		362482			402079	
2.40	.002508 002683						364296 366067				
	<b>00</b> 2083			228048 231749			367797			401534 401202	
	013000			235414			369485			400832	
	018125			239043			371131			400422	
2.45	022227	500053	2.95	242626	257485	3.45	372735	TE8227	3.95	- 200072	- 046827
.46	023227	.506726		<b>24</b> 2030 <b>24</b> 6193			372735 374297			399973	
	033361						375818		.97		054555
.48	038393	.501974	.98	253196		.48	377296	.145763	.98	398394	058400
-49	043401	499550	•99	<b></b> 256643	.342781	•49	378733	.141571	.99	397791	002229
2.50	048384	.407004	3.00	-,260052	.330050	3.50	380128	.137378	4.00	307150	.066043
	,-554	13,794			339-39			37375		1091-30	
-											

# CYLINDRICAL HARMONICS OF OTH AND 1ST ORDERS.

TABLE 35. — 4-place Values for x = 4.0 to 15.0.

TABLE 36. - Roots.

(a) 1st 10 roots of  $J_0(x) = 0$ 

Higher roots may be calculated to better than I part in 10,000 by the approximate formula

$$R_m = R_{m-1} + \pi$$
 $R_1 = 2.404826$ 
 $R_2 = 5.520078$ 
 $R_3 = 8.653728$ 
 $R_4 = 11.791534$ 
 $R_5 = 14.930918$ 
 $R_6 = 18.071064$ 
 $R_7 = 21.211637$ 
 $R_8 = 24.352472$ 
 $R_9 = 27.493479$ 
 $R_{10} = 30.634606$ 
 $dJ_0(x)$ 

(b) 1st 15 roots of  $J_1(x) = \frac{dJ_0(x)}{dx} = 0$ 

with corresponding values of maximum or or minimum values of  $J_0(x)$ .

No. of root (n)	Root = $x_n$ .	$J_0(x_n)$ .
1	3.831706	402759
2	7.015587	+.300116
3	10.173468	249705
4	13.323692	+.218359
4 5 6	16.470630	196465
6	19.615859	+.180063
7 8	22.760084	167185
8	25.903672	+.156725
9	29.046829	148011
10	32.189680	+.140606
11	35.332308	134211
12	38.474766	+.128617
13	41.617094	123668
14	44.759319	+.119250
15	47.901461	115274

Higher roots may be obtained as under (a). Notes.  $y = J_n(x)$  is a particular solution of Bessel's equation,

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$

The general formula for  $J_n(x)$  is

$$J_n(x) = \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} \pi_s \pi(n+s)},$$
  
= 
$$\sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} s! (n+s)!}$$

when n is an integer and

or

and  $J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$  $J_1(x) = \frac{dJ_0(x)}{dx},$  $J_{-n}(x) = (-1)^n J_n(x).$ 

Tables 35 to 36 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907-1916.

# ELLIPTIC INTECRALS.

Values of  $\int_{0}^{\pi} (1-\sin^{2}\theta\sin^{2}\phi)^{\frac{1}{2}} d\phi$ .

This table gives the values of the integrals between 0 and  $\pi/2$  of the function  $(t-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$  for different values of the modulus corresponding to each degree of  $\theta$  between 0 and 90.

θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-t)^{\frac{1}{2}}}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{)\frac{1}{2}}}$	$\int_0^{*\pi} (1-s)^{\frac{\pi}{2}}$	$(n^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$	θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{\frac{1}{2}}}$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (z-s)^{\frac{\pi}{2}}$	$\sin^2\! heta \sin^2\!\phi)^{rac{1}{2}}d\phi$
	Number.	Log,	Number.	Log.		Number.	Log.	Number.	Log.
0° 1 2 3 4	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
	5709	196153	5707	196087	6	8691	271644	3418	127690
	5713	196252	5703	195988	7	8848	275267	3329	124788
	5719	196418	5697	195822	8	9011	279001	3238	121836
	5727	196649	5689	195591	9	9180	282848	3147	118836
<b>5°</b> 6 7 8 9	1.5738	0.196947	1.5678	0.195 ² 93	50°	1.9356	0.286811	1.3055	0.115790
	5751	197312	5665	194930	I	9539	290895	2963	112698
	5767	197743	5649	194500	2	9729	295101	2870	109563
	5785	198241	5632	194004	3	9927	299435	2776	106386
	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
1	5854	200137	5564	192121	6	0571	313247	2492	096626
2	5882	200904	5537	191362	7	0804	318138	2397	093303
3	5913	201740	5507	190537	8	1047	323182	2301	089950
4	5946	202643	5476	189646	9	1300	328384	2206	086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	1	1842	339295	2015	079738
7	6061	205768	5367	186581	2	2132	345020	1920	076293
8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20° I 2 3 4	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
	6252	210916	5191	181580	6	3439	369940	1545	062412
	6307	212382	5141	180168	7	3809	376736	1453	058937
	6365	213921	5090	178691	8	4198	383787	1362	055472
	6426	215533	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.175545	70° 1 2 3 4	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876		5507	406665	1096	045183
7	6627	220818	4864	172144		5998	414943	1011	041812
8	6701	222732	4803	170348		6521	423596	0927	038481
9	6777	224723	4740	168489		7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	0.031976
I	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7	9026	462782	0611	025740
3	7119	233485	4469	160429	8	9786	474008	0538	022749
4	7214	235880	4397	158261	9	3.0617	485967	0468	019858
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923	4248	153742	I	2553	512591	0338	014432
7	7522	243575	4171	151393	2	3699	527613	0278	011927
8	7633	246315	4092	148985	3	5004	544120	0223	009584
9	7748	249146	4013	146519	4	6519	562514	0172	007422
40° I 2 3 4	1.7868	0.252068	1.3931	0.143995	85°	3.8317	0.583396	1.0127	0.0054 ⁶ 5
	7992	255085	3849	141414	6	4.0528	607751	0086	003740
	8122	258197	3765	138778	7	3387	637355	0053	002278
	8256	261406	3680	136086	8	7427	676027	0026	001121
	8396	264716	3594	133340	9	5.4349	735192	0008	000326
45°	1.8541	0.268127	1.3506	0.130541	90°	∞	∞	1.0000	

SMITHSONIAN TABLES.

# MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is vv.

Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Radius of Gyration ρ ₀ ² .
Sphere of radius r	Diameter	$\frac{4\pi wr^8}{3}$	8πωr ⁵ 15	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	$\frac{4\pi wa^{*2}}{3}$	$\frac{8\pi war^4}{15}$	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	$\frac{4\pi wabc}{3}$	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi\pi(r^3-r'^8)}{3}$	$\frac{8\pi z v(r^5-r'^5)}{15}$	$\frac{2(r^5-r'^5)}{5(r^8-r'^8)}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	$4\pi w r^2 dr$	$\frac{8\pi w r^4 dr}{3}$	$\frac{2r^2}{3}$ $\frac{r^2}{2}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	2πwar²	πwar⁴	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πwabc	$\frac{\pi vabc(b^2+c^2)}{2}$	$\frac{b^2+c^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2a	$2\pi wa(r^2-r'^2)$	πwa(r ⁴ —r' ⁴ )	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4πward <b>r</b>	$4\pi war^3dr$	r ²
Circular cylinder, length 2a, radius r	Transverse diameter	2πwar²	$\frac{\pi \pi v a r^2 (3r^2 + 4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2πwabc	$\frac{\pi vabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2n, external radius r, internal r'	Transverse diameter	2πιυα(r ² —r' ² )	$ \frac{\pi \tau va}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\} $	$\left  \frac{r^2 + r'^2}{4} + \frac{a^2}{3} \right $
Ditto, insensibly thin, thickness dr	Transverse diameter	4πwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	8wabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2wahc(b^2+c^2)}{3}.$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Functionentafeln, Jahnke und Emde (xtgx, x-1tgx, Roots of Transcendental Equations, a + bi and  $re^{\vartheta i}$ , Exponentials, Hyperbolic Functions,  $\int_{0}^{x} \frac{\sin u}{u} du, \int_{0}^{\infty} \frac{\cos u}{u} du, \int_{0}^{+x} \frac{e^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$   $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx, \text{ Pearson Function } e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin r \ e^{\nu x} dx, \text{ Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 11th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.$ 

# INTERNATIONAL ATOMIC WEIGHTS. VALENCIES.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 44, 427, 1922).

Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.
Aluminum Antimony Argon Arsenic Barium	Al Sb A As Ba	27.0 120.2 39.9 74.96	3· 3, 5· 0. 3, 5· 2.	Mercury Molybdenum Neodymium Neon Nickel	Hg Mo Nd Ne Ni	200.6 96.0 144.3 20.2 58.68	1, 2. 4, 6. 3. 0. 2, 3.
Bismuth Boron Bromine Cadmium Cesium	Bi B Br Cd Cs	209.0 10.9 79.92 112.40 132.81	3, 5. 3. 1. 2.	Lation) Niton (Ra eman- Nitrogen Osmium Oxygen Palladium		222.4 14.008 190.9 16.00 106.7	3, 5. 6, 8. 2. 2, 4.
Calcium Carbon Cerium Chlorine Chromium	Ca C Ce Cl Cr	40.07 12.005 140.25 35.46 52.0	2. 4. 3, 4. 1. 2, 3, 6.	Phosphorus Platinum Potassium Praseodymium Radium	P Pt K Pr Ra	31.04 195.2 39.10 140.9 226.0	3, 5. 2, 4. 1. 3. 2.
Cobalt Columbium Copper Dysprosium Erbium	Co Cb Cu Dy Er	58.97 93.1 63.57 162.5 167.7	2, 3. 5. 1, 2. 3. 3.	Rhodium Rubidium Ruthenium Samarium Scandium	Rh Rb Ru Sa Sc	102.9 85.45 101.7 150.4 4 <b>5</b> .1	3. 1. 6, 8. 3. 3.
Europium Fluorine Gadolinium Gallium Germanium	Eu F Gd Ga Ge	152.0 19.0 157.3 <b>70.1</b> 72.5	3. 1. 3. 3. 4.	Selenium Silicon Silver Sodium Strontium	Se Si Ag Na Sr	79.2 28.1 107.88 23.00 87.63	2, 4, 6, 4. I. I. 2.
Glucinum Gold Helium Holmium Hydrogen	Gl Au He Ho H	9. <b>1</b> 197.2 4.00 163.5 1.008	2. I, 3. O. 3. I.	Sulphur Tantalum Tellurium Terbium Thallium Thorium	S Ta Te Tb Tl Tl	32,06 181.5 127.5 159.2 204.0 232.15	2, 4, 6. 5. 2, 4, 6. 3. 1, 3.
Indium Iodine Iridium Iron Krypton	In I Ir Fe Kr	114.8 126.92 193.1 55.84 82.92	3· 1. 4· 2, 3· 0.	Thulium Tin Titanium Tungsten Uranium	Tm Sn Ti W U	169.9 118.7 48.1 184.0 238.2	3· 2, 4· 4· 6. 4, 6.
Lanthanum Lead Lithium Lutecium Magnesium Manganese	La Pb Li Lu Mg Mn	139.0 207.20 6.94 175.0 24.32 54.93	3. 2, 4. 1. 3. 2. 2, 3, 7.	Vanadium Xenon Ytterbium Yttrium Zinc Zirconium	V Xe Yb Yt Zn Zr	51.0 130.2 173.5 89.33 65.37 90.6	3, 5. o. 3. 3. 2.

# VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at  $t^{\circ}$  C, P grammes of mercury, weighed with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature,  $t_1: V = PR = P \frac{p}{d}$ , at another temperature,  $t_1: V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$ 

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at  $t^{\circ}C$ ,

and  $\gamma = 0.000$  025, is the cubical expansion coefficient of glass.

Temper-		WATER.			MERCURY.	
t	R.	$R_1$ , $t_1 = 10^\circ$ .	$R_1, t_1 = 20^{\circ}.$	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$
00	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867
1	1133	1358	1609	5633	5798	5982
2	1092	1292	1542	5766	5914	6098
3	1068	1243	1493	5900	6029	6213
4	1060	1210	1460	6033	6144	6328
5	1068	1193	1443	6167	6259	6443
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558
7 8	1131	1206	1456	6434	6490	6674
	1184	1234	1485	6568 6702	660 <b>5</b> 6720	6789 6904
9	1252	1277	1 527 1 584	6835	6835	7020
10	1333	1333	1504	0035	0033	7020
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135
12	1536	1486	1736	7103	7066	7250
13	1657	1582	1832	7236	7181	7365
14	1790	1690	1940	7370	7297	7481
15	1935	1810	2060	7504	7412	7596
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711
17	2261	2086	2337	7771	76.42	7826
18	2441	2241	2491	7905	77.57	7941
19	2633	2407	2658	8039	7872	8057
20	2835	2584	2835	8172	7988	8172
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288
22	327 I	2970	3220	8440	8218	8403
23	3504	3178	3429	8573	8333	8518
24	3748	3396	3647	8707	8449	8633
25	4001	3624	3875	8841	8564	8748
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864
27	4537	4110	4361	9108	8794	89 <b>7</b> 9
28	4818	4366	4616	9242	8910	9094
29	5110	4632	4884	9376	9025	9210
30	5410	4908	5159	9510	9140	9325

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

# REDUCTIONS OF WEICHINGS IN AIR TO VACUO.

TABLE 41.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M  $\delta$  (1/d-1/d₁) where  $\delta$  = the density (wt. of 1 ccm in grams = 0.0012) of the air during the weighing, d the density of the body, d₁ that of the weights.  $\delta$  for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for  $\delta$  = 0.0012. The corrected weight = M + kM/1000.

Density	Со	rrection factor	, k.	Density	Со	rrection factor	, k.
of body weighed d.	Pt. Ir. weights d ₁ = 21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.	of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.
.5 .6 .7 .75 .80 .85 .90 .95 1.00 1.1 1.2 1.3 1.4	+ 2.34 + 1.91 + 1.66 + 1.55 + 1.44 + 1.36 + 1.21 + 1.14 + 1.04 + 0.94 + .87 + .80 + .75	+ 2.26 + 1.86 + 1.57 + 1.46 + 1.36 + 1.27 + 1.19 + 1.12 + 1.06 + 0.95 + .86 + .78 + .71 + .66	+ 1.95 + 1.55 + 1.26 + 1.15 + 1.05 + 0.96 + .88 + .81 + .75 + .64 + .55 + .47 + .40 + .35	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0 22.0	+ 0.69 + .65 + .62 + .58 + .54 + .34 + .24 + .14 + .09 + .06 + .03 001	+ 0.61 + .56 + .52 + .49 + .46 + .34 + .26 + .16 06 + .01 02 08 09	+ 0.30 + .25 + .21 + .18 + .15 + .03 05 15 25 30 33 37 39 40

TABLE 42.- Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the

uncorrected density, s, is 0.0012 (1 - s/L).

Let W_s = uncorrected weight of substance, W_I = uncorrected weight of the liquid displaced by the substance, then by definition, s = LW_s/W_I. Assuming D to be the density of the balance of weights, W_s { I + 0.0012 (I/S - I/D) } and W_I { I + 0.0012 (I/L - I/D) } are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of I cc. of air is 0.0012 gram).

Then the true density 
$$S = \frac{W_s\{i + 0.0012 (i/S - i/D)\}}{W_i\{i + 0.0012 (i/L - i/D)\}}L$$
.

But from above  $W_s/W_1 = s/L$ , and since L is always large compared with 0.0012, S - s = 0.0012 (I - s/L).

The values of 0.0012 (I - s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

Density of		Corrections.		Density of	Corre	ctions.
substance s.	L=1 Water.	L=0.852 Xylene.	L=13.55 substance L=1 Water.			L=13.55 Mercury.
0.8 0.9 1. 2. 3. 4. 5. 6. 7. 8. 9.	+ 0.00024 + .00012 0.0000 0012 0024 0036 0060 0072 0084 0096 0108			11. 12. 13. 14. 15. 16. 17. 18. 19.	- 0.0120013201440156016801800192020402160228	+ 0.0002 + .0001 0.0000 0.0000 0001 0002 0003 0004 0005 0006

Johnston and Adams, J. Am. Chem. Soc. 34, p. 563, 1912.

#### MECHANICAL PROPERTIES.*

 Compiled from various sources by Harvey A. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U, S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were r2.8 mm (0.505 in.) diameter and 50.8 mm (2 in.) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging 20° C (68° F.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). — Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. — Stress which produces a permanent elongation (or shortening) of o.oor per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. — Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. — Maximum stress developed in the material during test.

Modulus of Rupture. — Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). — Ratio of stress within the proportional limit to the corresponding strain, — as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). — Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. = 
$$P \div \pi t D = P \div \pi D (D/2 - \sqrt{D^2/4 - d^2/4})$$
.

P = pressure in kg, t = depth of indentation, D = diameter of ball, and d = diameter of indentation, — all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Shore Scleroscope Hardness. — Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by \$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. — Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

#### TABLE 44. MECHANICAL PROPERTIES.

#### TABLE 44. - Ferrous Metals and Alloys -- Iron and Iron Alloys.

	Yield point.	Ultimate strength.	Yield point.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	educt.	Hard	ness.
Metal. Grade.		25 th		5 #	国の	N.H	Brinell at 3000	Sclero-
		sion. mm²	Ten lb/	sion in ²	Per	cent.	kg	scope.
Iron: Electrolytic* (remelt): as forged			48,500					18
annealed 900° C.  Gray cast‡(19 mm diam. bars)	indet.	\$ 17.5		§ 25,000	52.0 negli	87.0 gible	75 † {100	{ 24
Malleable cast, American (after			{ 20,000	\\\ 35,000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	{ I5.0 4.5		150	40
Hatfield) European (after Am. Malleable		,	(27,000	(42,000	6.0	6.0	_	-
Castings Ass.)(run of 24 successive heats, 1919)§	{ 28.0 —	40.8	` <u> </u>	{65,000 58,000	21.6	\ `		
Commercial wrought	{ 19.5 22.5	{34.0 37.0	132,000		130.0	135.0	_	{25 30
Silicon alloys   Si 0.01: as forged (Melted in vacuo) ann. 970° C	29.5 11.0	31.5 24.5	41,800		35.0 53.0		_	
(Note: C max. o.or per cent) Si 1.71: as forged	48.0	53.5	68,100	76,300	37.0	82.0	_	
annealed 970° C Si 4.40: as forged	25.0 66.0		35,800		50.0	90.6	_	
annealed 970° C	51.0	64.5	72,900	91,600	24.0	25.1		_
Aluminum alloys ¶ Al 0.00: as forged (Melted in vacuo) ann. 1000° C	35.5 12.5	38.5 24.5	50,700		26.0 60.0	84.3 93.5	_	_
(Note: C max. o.or per cent) Al 3.08: as forged	48.0	54.5	68,200		21.0		_	_
annealed 1000° C Al 6.24: as forged	22.5 54.5	37·5 60.5	31,800	53,400 86,000	51.0 28.0		_	_
annealed 1000° C	37.5	49.0	53,400	69,800	27.0	55.5	_	_
Composition, approximate:								
Electrolytic, C 0.0125 per cent; other im Cast, gray: Graphitic, C 3.0, Si 1.3 to 2.0 A. S. T. M. Spec. A48 to 18 allows S	Mn o.	6 to o.c	, S max. c	o.r, P max.	I.2.	estinos		
Malleable: American "Black Heart," C 2.  European "Steely Fracture," C 2.8 to	8 to 3.5 o 3.5, Si	Si 0.6	to 0.8, Mn 0.8, Mn 0.1	max. 0.4, 15, S max.	S max. 0.35, P	o.o7, P max. o.	max, 0,2	•

Compressive Strengths [Specimens tested: 25.4 mm (1 in.) diam. cylinders 76.2 mm (3 in.) long]. Electrolytic iron 56.5 kg/mm² or 80,000 lb/in². Gray and malleable cast iron 56.5 to 84.5 kg/mm² or 80,000 to 120,000 lb/in². Wrought iron, approximately equal to tensile yield point (slightly above P-limit).

Density: Electrolytic iron. 7.8 g/cm³ or 487 lb/ft³ Malleable iron. 7.6 g/cm³ or 474 lb/ft³ Cast iron. 7.8 g/cm³ or 449 lb/ft³ Wrought iron. 7.85 g/cm³ or 490 lb/ft³ Ductility: — Normal Erichsen values for good trade quality sheets, 0.4 mm (0.0156 in.)

Thickness, soft annealed. mm . . . . . . 9.5 0.374 0.205 0.264

Electrolytic iron... 17,500 kg/mm² or 25,000,000 lb/in² Malleable iron... 17,500 kg/mm² or 25,000,000 lb/in² Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in² Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in² Cast iron..... 10,500 Modulus of elasticity in shear:

Strength in Shear:

P-limit... 21.1 kg/mm2 or 30,000 lb/in2 Ultimate strength . . 35.0 kg/mm² or 50,000 lb/in²

Gray cast iron

Gray cast iron
Modulus of rupture, 33.0 kg/mm² or 47,000 lb/in²

"Arbitration Bar," 31.8 mm (1½ in.) diameter, or 304.8 mm (12 in.) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb.); minimum central deflection at rupture 2.5 mm (0.1 in.), (A. S. T. M. Spec. A 48-18).

* Properties of Swedish iron (impurities less than 1 per cent) approximate those of electrolytic iron.
† These two values of B. h. n. only are as determined at 500 kg pressure.
‡ U. S. Navy specifies minimum tensile strength of 14.1 kg/mm² or 20,000 lb/in².

§ Averages for a U. S. foundry.

|| From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of ximum strength).

Commercial wrought

ximum strength).
¶ From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.

# TABLES 45-46.

# MECHANICAL PROPERTIES OF MATERIALS. - Carbon Steels - Commercial Experimental Values.

TABLE 45. -

S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

carbon content in hundredths of one per cent.

The first lines of properties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 46). The P-limit and ductility of cast steel average slightly lower and the ultimate strength 10 to 15 per cent higher than the values shown for thesame composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soft annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size from \(\frac{1}{2}\) to \(\frac{1}{2}\) in diameter. The final drawing or quenching temperature for the properties shown is indicated

from \(\frac{1}{2}\) to \(1\frac{1}{2}\) in diameter. The final drawing or quenching temperature for the properties shown is indicated in degrees C with the heat treatment letter, wherever the information is available. In general, specimens

were drawn near the lower limit of the indicated temperature range.

Metal.	Metal. S. A. E. Nominal contents per cent.		S.A.E. heat treat-	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	Hard oo kg.	
			ment. Te		sion mm²	Ter lb/	nsion Po		cent	Brinel @ 3000	Sclero- scope.
Steel, carbon	1045	See Spec. No. (Mn 0.45) (Mn 0.65) (Mn 0.35)	Ann. H 260° C	24.0 27.0 28.0 35.0 40.0 62.0 42.0 84.0	32.0 42.0 38.0 56.0 50.0 86.0 56.0	34,500 39,000 39,500 49,500 57,500 88,000 59,500 120,000	46,000 60,000 54,400 79,500 71,300 123,000 79,000 175,000	37.0 30.0 32.0 20.0 23.0 13.5 21.0 6.0	72.0 62.0 68.0 59.0 54.0 36.0 51.0 18.0	120 100 176 168 290 187 551	18 24 17 35 27 45 29 75

Specification values: Steel, castings, Ann. A.S.T.M. A27-16, Class B; * P max. 0.06; S max. 0.05.

	37111	Ultimate te	nsile strength	Per cent	Per cent
Grade.	Yield point.	kg/mm ₂	lb/in2	50.8 mm or 2 in.	reduct.
Hard Medium Soft	0.45 ultimate 0.45 " 0.45 "	56.2 49.2 42.2	80,000 70,000 60,000	15 18 22	20 25 30

Structural Steel: Rolled: S max. 0.05; P-Bess. max. 0.10; -O-H. max. 0.06.

Tension: Yield Point min. = 0.5 ultimate; ultimate = 38.7 to 45.7 kg/mm² or 55,000 to 65,000 lb/in² with 22% min. elongation in 50.8 mm (2 in.).

* Average carbon contents: steel castings, C 0.30 to 0.40; structural steel, C 0.15 to 0.30 (mild carbon or medium hard steel).

#### TABLE 46. - Explanation of Heat Treatment Letters used in Table of Steel Data.

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. 1, pp. 9d and 9e, 1915, q. v. for alternative treatments.)

Heat Treatment A. — After forging or machining (1) carbonize at a temperature between 870 and 930° C. (1600 and 1700° F.); (2) cool slowly; (3) reheat to 760 to 820° C. (1400 to 1500° F.) and quench in oil. Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.)

Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C. (1450 to 1500° F.); (4) quench; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.) and cool slowly.

Heat Treatment F. — After shaping or coiling: (1) heat to 775 to 800° C. (1425 to 1475° F.); (2) quench; (3) reheat to 200 to 480° C. (400 to 900° F.) in accordance with degree of temper required and cool slowly.

Heat Treatment H. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 230 to 650° C. (450 to 1200° F.) and cool slowly.

Heat Treatment L. — After forging or machining: (1) carbonize at a temperature between 870 and 50° C. (1600 and 1750° F.), preferably between 900 and 930° C. (1650 and 1700° F.); (2) cool slowly in carbonizing material; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 700 to 760° C. (1300 to 1400° F.); (6) quench; (7) reheat to 120 to 260° C. (250 to 500 F.) and cool slowly.

Heat Treatment M. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to between 260 and 680° C. (500 and 1250° F.) and cool slowly.

Heat Treatment P. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 260 to 650° C. (500 to 1200° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C. (1650° to 1750° F.); (2) quench; (3) reheat to 260 to 700° C. (500 to 1300° F.) and cool slowly.

Heat Treatment U. — After forging or machining: (1) heat to 900 to 950° C. (1650° to 1750° F.); (2) quench; (3) reheat to 900 to 930° C. (500 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C. (3500 to 550° F.) and cool slowly.

Heat Treatment V. — After forging or machining: (1) heat to 900 to 950° C. (1650° to 1750° F.); (2) quench; (3) reheat to 900 to 930° C. (1650° to 1750° F.); (4) quench; (5) reheat to 180 to 290° C. (1

# MECHANICAL PROPERTIES.

#### TABLE 47. - Alloy Steels - Commercial Experimental Values.

Metal.	S. A. E. spec.	Nominal contents,	S. A. E.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. in area.	ne	ard-
	no.	per cent.	treat- ment.		sion mm²		sion /in²	Per c		Brinel	Sclero- scope.
Steel, nickel	2315 } 2315 } 2335 } 2335 } 2345 }	— Ni 3.50 (Mn 0.65)	Ann. H Ann. H Ann.	44.0	76.0 48.0 131.0 55.0	75,000 55,000 151,000 62,500	186,000	18.0 24.0 15.0 21.0	60.0 55.0 53.0 51.0 48.0	138 321 165 465	43 62
nickel chrome	2345 } Invar	Ni 36.0 C 0.40	H Ann. Ann.	50.0 34.0	77-5	71,000	110,000	30.0	45.0 50.0		_
	3120 { 3135 } 3135 { 3220 }	(Mn 0.65)	H 450° C Ann. H or D Ann.	60.0 40.0 88.0 39.0	82.0 50.0 121.0 49.0	85,000 57,000 125,000 55,000	116,000 71,300 172,000 69,000	23.0 20.0 18.0 21.0	48.0 46.0 43.0 50.0	270 182 330 170	36 30 44 —
	3220 { 3250 } 3250 } 3320 } 3320 }	\[ \text{Ni 1.75} \\ \text{Cr 1.10} \\ \text{(Mn 0.45)} \\ \frac{\text{Ni 3.50}}{\text{Ni 3.50}} \]	H or D Ann. M Ann. L	44.0 134.0 32.0	55.0 183.0 42.0	62,000 190,000 46,000	78,000 260,000 59,500	19.0 16.0 21.0	48.0 42.0 32.0 50.0 48.0	180 480 —	64
chromium.	3340 3340 51120 51120 52120	(Mn 0.45) Cr 1.00 (Mn 0.35) Cr 1.20	Ann. P Ann. M or P Ann.	39.0 120.0 44.0 144.0	52.0 163.0 58.0 193.0	56,000 170,000 62,000 205,000	74,000 232,000 82,000 275,000	18.0 18.0 16.0 7.0	45.0 42.0 31.0 26.0	479 —	64 —
chrome vanadium	52120 } 52120 } 6130 }	(Mn 0.35) (Mn 0.65) \( \text{Cr 0.95} \)	M or P  Ann. T	43.0	178.0 59.0	61,500	84,500 163,000	7.0	24.0 25.0 51.0 43.0	152	
silico- manganese	6195 } 6195 }	(Mn 0.35)	Ann. U Ann.	176.0		250,000	90,000 330,000 77,000	8.c	24.0	562	 75 
tungsten	9250 9×30 9×30 (C-73)	Mn 0.70 Si 0.85 Mn 1.75 W 2.4	V Ann. V Ann.	91.0 48.0 113.0 34.0	122.0 61.0 148.0 59.0	130,000 68,000 160,000 48,100	174,000 87,000 211,000 84,200	14.0 13.0 12.0 20.5	24.0 22.0 21.0 31.5	441 470 —	
	(C-70) (C-47)	W 9.7 W 15.6	Ann. Quench 1065° Draw 205° C	63.0 158.5		1	126,000 248,000		43.0		64

General Note. — Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division,

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less.
Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels.
Compressive strengths:

For all steels approx. equal to yield point in tension (slightly above P-limit).

Density:
Steel weighs about 7.85 g/cm³ or 490 lb/ft³
Ductility, Erichsen values:

Ductility, Erichsen values:

o.75 mm (0.029 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in.

1.30 mm (0.050 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.5 mm or 0.492 in.

Modulus of elasticity in tension and compression:

For all steels approx. 21,000 kg/mm² = 30,000,000 lb/in².

Modulus of elasticity in shear:

For all steels approx. 8400 kg/mm² = 12,000,000 lb/in².

Scleroscope hardness values shown are as determined with the Shore Universal hammer.

Strength in shear:

P-limit and ultimate strength each about 70 per cent corresponding tensile values.

#### TABLES 48-50. MECHANICAL PROPERTIES.

#### TABLE 48. - Steel Wire - Specification Values.

(After I. A. S. B. Specification 3S12, Sept., 1917, for High-strength Steel Wire.)

S. A. E. Carbon Steel, No. 1050 or higher number specified (see Carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

American	Diar	neter.	Req'd twists in	Weig	ght.	Req'd	Spec.	minimu	m tensile s	strength.
B. and S. wire gage.	mm	in.	203.2 mm or 8 in.	kg/100 m	lb/100 ft.	bends thru 90'	kg	lb.	kg/mm²	lb/in²
6	4.115	0.162	16	10.44	7.01	5	2040	4500	154	219,000
7 8	3.665	.144	19	8.28	5.56	6	1680	3700	161	229,000
	3.264	.129	21	6.55	4.40	8	1360	3000	164	233,000
9	2.906	.114	23	5.21	3.50	9	1135	2500	172	244,000
10	2.588	.102	26	4.12	2.77	11	910	2000	172	244,000
II	2.305	.091	30	3.28	2.20	14	735	1620	179	254,000
12	2.053	.081	33	2.60	1.74	17	590	1300	177	252,000
13	1.828	.072	37	2.06	1.38	21	470	1040	179	255,000
14	1.628	.064	42	1.64	1.10	25	375	830	181	258,000
15	1.450	.057	47	1.30	0.87	29	300	660	182	259,000
16	1.291	.051	53	1.03	0.69	34	245	540	186	264,000
17	1.150	.045	60	0.81	0.55	42	195	425	188	267,000
18	1.024	.040	67	0.65	0.43	52	155	340	190	270,000
19	0.912	.036	75	0.51	0.34	70	125	280	193	275,000
20	0.812	.032	85	0.41	0.27	85	100	225	197	280,000
21	0.723	.028	96	0.32	0.22	105	80	175	200	284,000

Note. — Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (0.188 in.) radius, alternately, in opposite directions.

(Above specification corresponds to U. S. Navy Department Specification 22W6, Nov. 1, 1916, for tinned, galvan-

ized or bright aeroplane wire.)

# TABLE 49. - Steel Wire - Experimental Values.

(Data from tests at General Electric Company laboratories.) "Commercial Steel Music Wire (Hardened)."

Diam	eter.	Ultimate	e strength.				
mm	in.	kg/mm² tension lb/in²					
12.95	0.051	226.0	321,500				
11.70 0.15	.046	249.0	354,000				
7.60	.030	253.0 260.0	370,000				
6.35	.025	262.0	372,500				
4.55	.018	265.5	378,000				
2.55*	.010	386.5	550,000				
1.65*	.0065	527.0	750,000				
4 • 55†	.018	49.2	70,000				

^{*} For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (0.018 in.) wire annealed in H2 at 850° C.

# TABLE 50. - Semi-steel.

Test results at Bureau of Standards on 155-mm shell, Jan. 1919.

Microstructure — matrix resembling pearlitic steel, embedded in which are flakes of graphite.

Composition-Comb. C 0.60 to 0.76, Mn 0.88, P 0.42 to 0.43, S 0.077 to 0.088, Si 1.22 to 1.23, graphitic C 2.84 to 2.94.

Metal.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	P-limit. Ultimate strength. P-limit.		Ultimate strength.		iness.	
		nsion mm²	Tension lb/in² Compression lb/in² Compression lb/in²			Brinell @3000 kg	Sclero- scope.			
Semi-steel: Graph. C 2.85 Comb. C 0.76	7.9	19.8	11,200	28,200	24.3	72.6	34,500	103,000	176	_
Graph. C 2.92 Comb. C 0.60	4.2	14.9	6,000	21,200	18.3	61.4	26,000	87,300	170	_

Tension specimens 12.7 mm (0.5 in.) diameter, 50.8 mm (2 in.) gage length; clougation and reduction of Tension specimens 12.7 mm (6.3 m.)
area negligible.
Compression specimens 20.3 mm (6.8 in.) diameter, 61.0 mm (2.4 in.) long; failure occurring in shear.
Tension set readings with extensometer showed elastic limit of 2.1 kg/mm² or 3000 lb/in².
Modulus of elasticity in tension — 9560 kg/mm² or 13,600,000 lb/in².

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in2

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm² or 220,000 lk/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 110,000 lb/in² and minimum elongation of 7 per cent in 254 mm (10 in.).

Type A: 6 strands with hemp core and 19 wires to a strand (= 6 × 19), or 6 strands with hemp core and 18 wires to a strand with hemp center.

Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 12 wires to a strand with hemp or jute center.

Type AA: 6 strands with hemp core, and 37 wires to a strand (= 6 × 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

	Diam	eter.	Approx.	weight.	Minimum	strength.
Description.	mm	in.	kg/m	lb/ft	kg	lb.
Galv. cast steel, Type A  """""""""""""""""""""""""""""""	9.5 12.7 25.4 38.1 9.5 12.7 25.4 38.1 9.5 12.7 25.4 38.1 25.4 41.3 9.5 12.7 25.4 36.5 9.5		0.31 0.555 2.23 5.06 0.358 2.23 5.28 0.25 0.42 1.68 3.94 1.59 4.35 0.31 0.555 2.23 4.66 0.33 0.58 2.23	0.21 0.37 1.50 3.40 0.22 0.39 1.50 3.55 0.17 0.28 1.13 2.65 1.07 2.92 0.37 1.50 3.13 0.22 0.39 1.50	3,965 6,910 27,650 63,485 3,840 7,410 27,650 59,735 2,995 5,210 20,890 47,965 18,825 51,575 4,690 8,165 32,675 69,140 4,540 8,750 32,250	8,740 15,230 60,960 139,960 8,460 16,330 60,960 131,690 6,660 11,500 40,060 105,740 41,500 113,700 10,340 18,000 72,040 152,430 10,000 19,300 71,100
	41.3	1 <del>5</del>	6.18	4.15	83,010	183,000

#### TABLE 52. - Plow Steel Hoisting Rope (Bright).

(After Panama Canal Specification No. 302, 1912.)
Wire rope to be of best plow steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center.
Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 2½ per cent.

Diame	ter.	Spec. minim	um strength.	Diame	eter.	Spec. minim	um strength.
mm	in.	kg lb.		mm	in.	kg	lb.
9.5 12.7 19.0 25.4	3 00 1-(243)44 I	5,215 9,070 20,860 34,470	11,500 20,000 46,000 76,000	38.1 50.8 63.5 69.9	$1\frac{1}{2}$ $2$ $2\frac{1}{2}$ $2\frac{3}{4}$	74,390 127,000 207,740 249,350	164,000 280,000 458,000 550,000

### TABLE 53. - Steel-wire Rope - Experimental Values.

ed under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

Description and analysis.	Diam	eter.	Ultimate	strength.		e strength area).
	mm	in.	kg	lb.	kg/mm²	lb/in²
Plow Steel, 6 strands × 19 wires C 0.90, S 0.034, P 0.024, Mn 0.48, Si 0.172  Plow Steel, 6 strands × 25 wires C 0.77, S 0.036, P 0.027, Mn 0.46, Si 0.152  Plow Steel, 6 × 37 plus 6 × 19 C 0.58, S 0.032, P 0.033, Mn	<b>5</b> 0.8	2 2 ³ / ₄	137,900	304,000	129.5	184,200
0.41, Si 0.160	82.6	3 ¹ / ₄	392,800	866,000	132.2	187,900
Mn 0.23, Si 0.169	82.6	31/4	425,000	937,000	142.5	202,400

#### TABLE 54. - Aluminum.

Metal, approx.	Condition.		nsity veight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	-	iness.
per cent.		gm per cm²	lb.per ft³	Tension, kg/mm²		Tension, lb./in²		Per cent.		Brinell (6	Sclero- scope.
ALUMINUM: Av. Al 99.3 Imp., Fe and Si	Cast, sand at 700° C	2.57 2.69 2.70 2.70	- 160.5 168.0 168.5 168.5	7.0 — 6.0 6.0	8.0 to 9.8 8.9 to 9.6 9.0 9.0 21.0 23.0 28.0	10,000	12,000 to 14,000 12,600 to 13,600 13,500 13,500 30,000 33,000 40,000	15	36 to 22 30 to 22 25.0 25.0 35.0 50.0	26	5

Compressive strength: cast, yield point 13.0 kg/mm² or 18,000 lb/in²; ultimate strength 47.0 kg/mm² or 67,000 lb/in².

Modulus of elasticity: cast, 6900 kg/mm2 or 9,810,000 lb/in2 at 17° C.

# TABLE 55. - Aluminum Sheet.

(a) Grade A (Al min. 99.0) Experimental Erichsen and Scleroscope Hardness Values. [From tests on No. 18 B. & S. Gage sheet rolled from 6.3 mm (0.25 in.) slab. Iron Age v. 101, page 953].

Heat treatment annealed.	Thickness, mm	Indentation, mm	Scleroscope hardness.
None (as rolled)	1.08	6.83	14.0
@ 200° C, 2 hours @ 300° C, 2 hours	I.09 I.07	8.86	8.o 4.5
@ 400° C, 2 hours	1.08	9.40	4·5 11.8
@ 200° C, 30 min	1.07	7.97 9.80	4.5

(b) Specification Values. — (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max. 6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength 12.5 kg/mm² or 18,000 lb/in² with minimum elongation of 8 per

cent in 50.8 mm (2 in.).

(2) Sheet, Grade A: A. S. T. M. 25 to 18T; Al min. 99.0; minimum strengths and elongations.

Gage	, sheet thic	knesses.	Temper, No.	Tensile	strength.	Elong. in 50.8 mm or 2 in.	
(B. & S.)	mm	in.	narquess.	kg/mm²	lb/in²	per cent.	
12 to 16 incl. 17 to 22 incl. 23 to 26 incl.	2.052 to 1.293 1.152 to 0.643 0.574 to 0.404	o.o8o8 to .o5o9 .o453 to .o253 .o226 to	T Soft, Ann. Half-hard Hard Soft, Ann. Half-hard Half-hard Soft, Ann. Half-hard Half-hard Half-hard Half-hard Hard	8.8 12.5 15.5 8.8 12.5 17.5 8.8 12.5 21.0	12,500 18,000 22,000 12,500 18,000 25,000 12,500 18,000 30,000	30 7 4 20 5 2 10 5	Sheets of temper No. I to withstand being bent double in any di- rection and hammered flat; temper No. 2 to bend 186° about radius equal to thickness with- out cracking.

NOTE. — Tension test specimen to be taken parallel to the direction of cold rolling of the sheet. SMITHSONIAN TABLES.

#### TABLE 56.

### ALUMINUM ALLOY.

					3.6		3.6	.5 5 .	.; :		
	a 100		sity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	ness.
Alloy, approx.	Condition, per cent			ь Б	25 th	<u> </u>	St. CI	国 80	N O	@ [	4.1
per cent.	reduction.	gm/	lb/	Tens			sion,	ner e	ent.	Brinell @	Sclero- scope.
		cm ³	ft³	<b>k</b> g/1	mm²	lb/	in ²			Br	01 01
Aluminum — Copper. Al 98 Cu 1 Imp. max. 1	Cast, chill Rolled, 70%	_	=	5.3 19.0	10.5		15,000	24.0 4.0	34.0	_	
Al 96 Cu 3 Imp. max. 1	{ Cast, chill Rolled, 70%	_	_	8.I 25.0	13.7	11,500	19,500	12.0 5.5	21.0	=	_
Al 94 Cu 5 Imp. max. 1	Cast, chill Rolled, 70%	=	_	10.0 23.0	15.0 27.0	14,500 33,000	21,500 38,000	7.0 6.0	14.0	_	
Al 92 Cu 8: Alloy No.	Cast, sand	2.88	180			11,000 to		4.0 to None	3.5 to None	50 to	13 to
Al 90-92 Cu 7-8.5 Imp. max. 1.7	Cast*	2.Q	181		12.7		18,000	1.0	_	_	
Copper, Magnesium Al 9.52 Cu 4.2 Mg 0.6	Cast* Cast at 700° C.		_	3.2 to 4.6	9.6 to	4,500 to 6,500	13,600 to 18,900	2.0 to	0.5 to	74 to 74	17 tc
Duralumin or 17S	Ann. 500° C ( Ann	<u> </u>	— 174	4.6	17.3	6,500	24,900 59,500	3.0	1.0	80	2I —
Alloy Al 94 Cu 4 Mg	Rolled 70% Rolled heat	_	-	53.0	56.0	75,400	79,600	4.0	13.2	_	-
Copper, Manganese	tr'd † Cast, chill	=	=	23.4 10.0	39.0 14.0	33,400	55,300 20,300	25.5 5.0	26.0		
Al 96 Cu 2 Mn 2 Al 96 Cu 3 Mn 1	Rolled, 20 mm	_	=	19.0	27.0 10.0	27,100 16,200	38,200	16.0	28.0	=	
Naval Gun Factory Al 97 Cu 1.5 Mn 1	Cast, sand	2.8	175	14.0	14.0	19,500	20,000	12.0	47.0	=	
Al 94 Cu max. 6 Mn max. 3	Minimum ‡	_			12.7	-9,500	18,000	8.0	_	_	
Copper, Nickel, Mg	Cast at 700° C.	_	_		17.9 to	5.000 to	25,500 to		8.5 to	54 to	o to
Al 93.5 Cu 3.5 Ni 1.5 Mg 1 Mn 0.5	Cust at 700 C.	_		9.8	23.2	14,000	33,000	1.5	1.0	86	25
Copper, Nickel Mn Al 94.2 Cu 3 Ni 2 Mn	Cast at 700° C.	_	_	<del>-</del>	14.5 to	-	20,600 <b>t</b> o		11.0 to		
o.8					21.4		30,500	1.0	2.0	91	27
Magnalium Al 95 Mg 5 Al 77-98, Mg 23-2	Cast, sand Cast, chill	2.5	156	5.6	15.5 29.5 to	8,000	22,000 42,000 to	7.0	8.5	=	
11 17 90, 112 25 211.	Cast, chill	2.57	160	4.0	45.0	5,800	64,000	21.0	36.0	_	_
Nickel Al 97 Ni 2	Drawn, cold	=	=	14.0 8.0	16.0	19,700	22,700	13.0	37.0 52.0		_
Al 95 Ni 5	Cast, chill	=		6.0	15.0	9,000	21,700	9.0	11.0	=	
Nickel Copper:	Rolled, hot	_	=	9.0	16.0	13,500	22,300	22.0	36.0	=	-
Al 93.5 Ni 5.5 Cu 1 Al 91.5 Ni 4.5 Cu 4	Cast, chill Cast, chill	=	=	7.0	17.0	10,700	24,800	6.0	8.o 5.o	=	=
Al 92 Ni 5.5 Cu 2	{ Drawn, cold	=		22.0	27.0	31,700	37,800	4.0 8.0 16.0	15.0		
Zinc, Copper: Al 88.6 Cu 3 Zn 8.4	Cast at 700° C.	l		-	18.5	6,700	26,300	8.0	7.5	50	10
Al 81.1 Cu 3 Zn 15.0.	Ann. 500° C. Cast at 700° C.		193	4.7 4.4 9.8	20.2	6,200	28,800	8.0	7.5	50	10
711 01.1 Cu 3 Zu 15.9.	Ann. 500° C	3.1		9.8	24.7	14,000	41,200	4.0	4.0	74 70	15

^{*} Specification Values: Alloy "No. 12": A. S. T. M. B26-18T, tentative specified minimums for aluminum, copper.
† Quenched in water from 475° C. after heating in a salt bath. Modulus of elasticity for Duralumin averages
7000 kg/mm² or 10,000,000 lb/in².
‡ Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5).

SMITHSONIAN TABLES.

### TABLES 57-59 MECHANICAL PROPERTIES. TABLE 57. - Copper.

Metal and approx. composition.	approx. Condition.		sity ight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct. in area.	Hard ® gy	
Per cent.		gm/ cm³	lb/ ft³	Tension, kg/mm ²		Tension	n, lb/in²	Per c	ent.	Brinell 500 kg	Sclero- scope.
Copper: 99.9: electrolytic Cu 99.6	Ann. 200.3 C	8.89 8.85 8.89 8.90	555 552 555 556	6.0 7.0 14.0 indet. 26.0	27.0 18.0 35.0 25.0 35.0	8,500 10,000 20,000 indet. 37,000	38,000 25,000 50,000 35,000 50,000	50.0 20.0 5.0 50.0 9.0	50.0 60.0 8.0 60.0	80 94	7 8 6 18
Cu 99.9†	Ann. 750° C after drawing cold Drawn hot (64% reduction)	_	_ _	_ _	21.9	_ _	31,200	24.5	76.0 70.5	_	-

* Wire drawn cold from 3.18 mm (0.125 in.) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919.
† Wire drawn at 150° C from 0.79 mm (0.031 in.) to 0.64 mm (0.025 in.) (Jeffries, loc. cit.).
Compression, cast copper, Ann. 15.9 mm (0.625 in.) diam. by 50.8 mm (2 in.) long cylinders.
Shortened 5 per cent at 22.0 kg/mm² or 31,300 lb/in² 01.

"10" "20,0 kg/mm² "41,200 lb/in² "

"20" "39.0 kg/mm² 55,400 lb/in² "

Shearing strength, cast copper 21.0 kg/mm² or 30,000 lb/in² "

"0" "39.0 kg/mm² or 17,400,000 lb/in² (2 cast 7,700 kg/mm² or 17,000,000 lb/in² (2 cast 7,700 kg/mm² or 17,000,000 lb/in² (2 cast 7,700 kg/mm² or 17,600,000 lb/in² (3 cast 7,700 kg/mm² or 17,600,000 lb/in² (3 cast 7,700 kg/m² (3 cast 7,7

TABLE 58. - Rolled Copper - Specification Value.

Specification values: U. S. Navy Dept., 47C2, minimums for rolled copper, - Cu min. 99.5

	Tensil	e strength.	Elong. in 50.8
Description, temper and thickness.	kg/mm²	lb/in²	or 2 in. — per cent.
Rods, bars, and shapes:     Soft	21.0 35.0 31.5 28.0 24.5	30,000 50,000 45,000 40,000 35,000 30,000 to 40,000 35,000	25 10 12 15 20 25 to 25

# TABLE 59. - Copper Wire - Specification Values.

Specific Gravity 8.89 at 20° C (68° F).

Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire)

Specification values. (A. S. T. M. Br-15, and U. S. Navy Dept., 22W3, Mar. 1, 1915.)

mm 11.68	in.	kg/mm²	12- /:2	per cent in
			lb/in²	254 mm (10 in.).
10.41 9.27 8.25 7.34 6.55 5.82 5.18 4.62 4.12 3.66 3.25 2.90 2.31 2.06 1.83 1.63 1.45 1.30 1.145	.460 .410 .410 .365 .325 .239 .258 .229 .182 .162 .128 .1144 .102 .091 .061 .072 .061 .057	34.5 35.9 37.1 38.3 39.4 40.5 41.5 42.2 43.0 43.7 44.3 45.7 46.2 45.7 46.2 46.3 46.5 46.7 46.8	49,000 51,000 52,800 54,500 55,100 57,600 59,000 60,100 61,200 63,000 63,700 64,300 65,700 65,700 65,700 66,200 66,400 66,400 66,600 66,600 66,600 66,800	2.75 3.25 2.80 2.40 2.17 1.93 1.79 in 1524 mm (60 in.) 1.24 1.18 1.14 1.00 1.06 1.02 1.06 0.07 0.95 0.92 0.00 0.80 0.87 0.86

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes. SMITHSONIAN TABLES.

# TABLES 60-63. MECHANICAL PROPERTIES.

# TABLE 60. - Copper Wire - Medium Hard-drawn.

(A. S. T. M. B2-15) Minimum and Maximum Strengths.

D:	neter.		Tensile s	T214:				
Dian	neter.	Min	imum.	Max	imum.	Elongation, minimum per cent		
mm	in.	kg/mm² lb/in²		kg/mm²	lb/in²	in 254 mm (10 in.).		
11.70 6.55	0.460	29.5 42,000 33.0 47,000 34.5 49,000 35.5 50,330		34·5 38.0	49,000 54,000	3.75		
4.12 2.59 1.02	.162 .102 .040	1 - 1		39·5 40·5 42·0	56,000 57,330 60,000	in 1524 mm (60 in.) 1.15 1.04 0.88		

Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

TABLE 61. — Copper Wire — Soft or Annealed.

(A. S. T. M. B3-15) Minimum Values.

۱	Diar	neter.		num tensile rength.	Elongation in 254 mm		
ı	mm	in.	kg/mm²	lb/in²	(10 in.), per cent.		
I	11.70 to 7.37	0.460 to 0.290	25.5	36,000	35		
I	7.34 to 2.62	0.289 to 0.103	26.0	37,000	30		
Ì	2.59 to 0.53	0.102 to 0.021	27.0	38,500	25		
	0.51 to 0.08	0.020 to 0.003	28.0	40,000	20		

Note. — Experimental results show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

#### TABLE 62. - Copper Plates.

(A. S. T. M. BII-18) for Locomotive Fire Boxes. Specification Values.

Minimum requirements.	Tensile	strength.	Elong. in 203.2 mm
	kg/mm²	lb/in²	(8 in.), per cent.
Copper, Arsenical, As 0.25-0.50			
Impurities, max. 0.12	22.0	31,000	35
Impurities, max. 0.12	21.0	30,000	30

Note. - Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.

TABLE 63. - Copper Alloys.

The general system of nomenclature employed has been to denominate all simple copperzinc alloys as brasses, copper-tin alloys as bronzes, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U. S. Government composition "G" Cu 88 per cent, Sn 10 per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called copper alloys, with the alloying elements other than minor impurities listed as modifying copper in the order of their relative percentages.

In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or

not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

#### TABLE 64.

#### MECHANICAL PROPERTIES OF MATERIALS.

# TABLE 64. - Copper-zinc Alloys or Brasses; Tin Alloys or Bronzes.

Metal and approx. composition,	approx.		sity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 59.8 mm (2 in.).	Reduct. in area.	pol	lness.
		gm cm³	lb ft³	Ten kg/1	sion, nm²	Ter lb	nsion, Per o		ent.	Brinell @ 500 kg	Sclero- scope.
Brass: Cu 90 Zn 10†	Sand cast Cold rolled, hard Cold rolled, soft.	8.7	 543	Ξ	20.0 39.0 26.0	=	29,000 55,000 * 37,000 *	22 5* 40*	_ _ 70	- 60 47	
Cu 80, Zn 20 ‡. Cu 70, Zn 30	Cold rolled, soft.	8.6 8.4	537 524	=======================================	25.0 53.0 20.0 23.0	Ξ	35,000 75,000 * 42,000 *	31 5* 50*	3 ² 8 ₅	75 46 37	28 12
Cu 66Zn 34 Std. sheet Cu 60, Zn 40	Cold rolled, hard Cold rolled, soft.		530 524	15.5	42.0 34.0 32.2	21,800	60,000 48,000 *	5* 50*	85	758 45	26
Muntz metal  Bronze:	Cold rolled, hard	(8.4	522	31.5	49.0	45,000	70,000	30	50	-	-
Cu 97.7, Sn 2.3.	Cast or gun	=	=	6.0 7.6	19.5 34.0	8,500 10,800	28,000 48,000	20 55	75	=	Ξ
Cu 90, Sn 10  Cu 80, Sn 20  Cu 70, Sn 30	bronze or bell metal	8.78 8.81 8.84	548 550 552	7.2 7.1 1.4	23.0	10,300	33,000	I.5 0.5	=	=	23
			00=					""		1	

#### Compressive Strengths, Brasses:

Cu 90, Zn 10, cast 21.0 kg/mm² or 30,000 lb/in² Cu 80, Zn 20, cast 27.4 kg/mm² or 30,000 lb/in² Cu 70, Zn 30, cast 42.0 kg/mm² or 60,000 lb/in² Cu 60, Zn 40, cast 52.2 kg/mm² or 75,000 lb/in² Cu 50, Zn 50, cast 77.0 kg/mm² or 15,000 lb/in²

Modulus of elasticity, — cast brass, — average 9100 kg/mm² or 13,000,000 lb/in² Erichsen values: Soft slab, 1.3 mm (0.05 in.) thick, no rolling, depth of impression 13.8 mm (0.29 in.).

Hard sheet, 1.3 mm, rolled 60% reduction, depth of impression 3.7 mm (0.29 in.).
Hard sheet, 0.5 mm, rolled 60% reduction, depth of impression 3.7 mm (0.75 in.).

#### Compressive Ultimate Strengths, Cast Bronzes:

Cu 97.7, Sn 2.3 to 24.0 kg/mm² or 34,000 lb/in² Cu 90, Sn 10 to 39.0 kg/mm² or 56,000 lb/in² Cu 80, Sn 20 to 83.0 kg/mm² or 118,000 lb/in² Cu 70, Sn 30 to 105.0 kg/mm² or 150,000 lb/in²

Specification value, A. S. T. M., B 22-18 T, for specimen = cylinder 645 sq. mm (r sq. in.) area, 25.4 mm (r in.)

long.
Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in²
Modulus of elasticity for bronzes varies from 7000 kg/mm² or 10,000,000 lb/in² to 10,000 kg/mm² or 15,500,000

* Values marked thus are S. A. E. Spec. values. (See S. A. E. Handbook, Vol. I, p. 13a, rev. December, 1913. † Red metal.

† Red metal. ‡Low brass or bell metal. § A. S. T. M. Spec. B19–13T requires B.h.n. of 51–65 kg/mm² @ 5000 kg pressure for 70: 30 annealed sheet brass.

#### FOOT NOTES TO TABLE 65, PAGE 85.

- *Tensilite, Cu 67, Zn 24, Al 4.4, Mn 3.8, P 0.01 compressive P-limit: 42.2 kg/mm² or 60,000 lb/in² and 1.33 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

  † Compressive P-limit 20.0 to 28.2 kg/mm² or 28,500 to 40,000 lb/in²
  † Compressive P-limit 4.2 kg/mm² or 77,500 lb/in²
  § Compressive P-limit 4.2 kg/mm² or 6000 lb/in² and 40 per cent set for 70.3 kg/mm² or 100,000 lb/in²
  ¶ Modulus of elasticity 9340 kg/mm² or 14,000,000 lb/in²
  | Values are for yield point.

  ** Minimum values for ingots.
  †† Rolled manganese bronze (U. S. N.) Cu 57 to 60, Zn 40 to 37, Fe max. 2.0, Sn 0.5 to 1.5; 2.0 per cent increase for thickness 25.4 mm (r in.) and under.

  ‡† Ni 0 per cent, B.h.n. = 130 as rolled; B.h.n. = 50 as annealed at 930° C.
  U. S. Navy Dept. Spec. 465 3a, June 1, 1917; German silver Cu 60 to 67, Zn 18 to 22, Ni min. 15, no mechanical requirements.
- requirements.
- For list of 30 German silver alloys, see Braunt, "Metallic Alloys," p. 314, "best" (Hiorns), "hard Sheffield," Cu 46, Zn 20, Ni 34.

  §§ Platinoid Cu 60, Zn 24, Ni 14, W 1 to 2; high electric resistance alloy with mechanical properties as nickel brass.

  ||| Specification Values, Naval Brass Castings, U. S. Navy, 46B 10b, Dec. 1, 1917 for normal proportions Cu 62, Zn 37, Sn 1, min. tensile strength 17.5 kg/mm² or 25,000 lb/in² with 15 per cent elongation in 50.8 mm (2 in.).

# TABLE 65. MECHANICAL PROPERTIES. TABLE 65.— Copper Alloys— Three (or more) Components.

TABLE 63. — Copper Anoys — Three (or more) Components.												
Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hard	_	
per cent.	Condition	gm per cm³	lb. per it³	Ter kg/	nsion, mm²		sion, /in²		cent.	Brinell @	Sclero- scope.	
Brass, Aluminum Cu 57, Zn 42, Al 1 Cu 55, Zn 41, Al 4 Cu 62.9, Zn 33.3, Al Cu 70.5, Zn 26.4, Al Alum., Manganese.	Cast  3.8. 3.1. Cast, tensilite*		=======================================	   13.4	40.0 60.0 56.2 33.0	  19,000	57,000 85,400 80,000 47,000	50.0 16.5 — 50.0	=		=	
Cu 64, Zn 20, Al 3.1, Mn 2.5, Fe 1.2 Alum., Vanadium Cu 58.5, Zn 38.5, Al	G, G	-	_	21.1	68.8	30,000	98,000	16.0	17.0	130	-	
Iron:		_		35.6	57.0	50,600	81,400	12.0	14.0	-		
Cu 56, Zn 41.5, Fe 1. Aich's Metal	Cast			_	50.7 to 59.2		72,000 to 84,000	22.0	25.0	119		
Cu 60,Zn 38.2,Fe1.8 Delta Metal		8.42	526		40.3	_	57,300	10.0	_	_		
Cu 57, Zn 42, Fe 1 Cu 65, Zn 30, Fe 5 Iron, Tin:	Cast, sand Rolled, hard Rolled hard		=		31.7 42.2 45.5	=	60,000	17.0	=	=	=	
Cu 56.5, Zn 40, Fe 1.5, Sn 1.0 † Sterro metal:	Cast	=	=	23.2 to 26.0	49.2 to 52.8	33,000 to 37,000	70,000 to 75,000	35.0 to 20.0	35.0 to 22.0	104 to	=	
Cu 55, Zn 42.4 Fe 1.8, Sn o.8 Lead or Yellow brass	Cast Forged Hard drawn Cast	8.4	525 — 531	_ _ _	42.5 53.6 58.5 23.2 to		60,500 76,200 83,100 33,000 to			=		
Cu 60 to 63.5, Zn 35 to 33.5, Pb 5 to 3.	Sheet ann	=	=	=	27.5 25.5 42.9	=	39,000 42,000 61,000	26.0 50.0 30.0	30.0	=	=	
to 33.5, Pb 5 to 3.  Lead, Tin or  Red brass	Cast	8.6	535	11.0	21.0	16,000	30,000	17.0	19.0	_	7.0	
Sn 2	Cast	8.87	554	8.4	18.6	12,000	26,500	22.0	24.9	_	-	
Manganese or Manganese bronze	Cast §		524	7-4	20.7	10,500	29,500	25.0	28.5	53.0	-	
Cu 58, Zn 39, Mn o.o5 (Sn, Fe, Al, Pb.)	Cast, sand ¶ Cast, chill	8.3	520	21.1 to 24.6 22.5 to	52.7	30,000 to 35,000 to 32,000 to	70,000 to 75,000 75,000 to	22.0	25.0	109 to 119 119 to	IO	
Cu 60, Zn 39 Mn,	Rolled	8.3	520	26.0   31.5	56 3 52.5	37,000   45,000	80,000 75,000	25.0 25.0	28.0 28.0	130	30	
tr Specification values: U. S. Navy, 46 B 16a **			_	_	49.2	_	70,000	20.0	_	_	_	
U. S. N., 46 B 15a Manganese Vana- dium:	Rolled††		_	24.6	49.2	35,000	70,000	30.0	_	-	-	
Cu 58.6, Zn 38.5, Al 1.5 Mn 0.5, V 0.03. Nickel: Nickel sil-			_	35.6	57.0	50,600	8r,400	12.0	14.0	_	-	
ver, Cu 60.4, Zn 31.8, Ni 7.7 German silver, Cu 61.6, Zn 17.2,	Cast	8.5	530	10.8	25.3	15,400	36,000	40.5	42.0	46	-	
Ni 21.1		8.7		13.2	28.8	18,800	40,900	28.5	25.1	80		
Ni 27.3 Fine wire: Cu 58, Zn 24, Ni 18 Nickel silver ‡‡ Nickel Tungsten: §§		_	530	16. ₇	37.6	23,700	53,500	32.0	31.4	67	-	
Tin: Cu 61, Zn 38, Sn 1 Naval brass, as above	Cast, sand Ann. after roll-	-	-	11.0	30.0	15,700	42,600	29.6	32.0	-	-	
Tobin bronze: as be-	Cast	-	518	26.0	43.5 42.2	37,000 25,000	62,000 60,000	25.0	37.0	=	=	
Cu 58.2, Zn 39.5 Sn 2.3 Cu 55, Zn 43, Sn 2	Rolled	8.4	524	38.0	56.0 48.4	54,000	79,000 68,900	35.0 48.0	40.0 70.0	=	=	

For Footnotes see page 84.

#### TABLE 65 (continued). MECHANICAL PROPERTIES.

# TABLE 65. - Copper Alloys - Three (or more) Components.

				-	-						_	
Alloy and approx.	Condition	on.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.).	Reduct. of area.	Hane	SS.
per cent.		1	gm per cm³	per		sion, mm²	Ten lb,	sion, /in²	Per	cent.	Brinell @ 500 kg.	Sclero. scope.
Brass, Tin — (continued): Rods:* o to 12.7 mm (½ in.) 12.7 to 25.4 mm (1 in.)			=		19.0	42.2 40.8	27,000 26,000	60,000	35.0 40.0		abou	ut
over 25.4 mm (in.) diam Shapes, all Plates to 12.7 mm (½ in.)					17.6 15.7 19.3	38.0 39.4 38.7	25,000 22,400 27,500	54,000 56,000 55,000	40.0 30.0 32.0		amete	
over 12.7 mm (½ in.) thick Tubing (wall thickness) o to 3.2 mm (½ in.) 3.2 to 6.4 mm (½ in.)			_	_	17.6 21.1 19.7	39.4 42.2 38.7	25,000 30,000 28,000	56,000 60,000 55,000	35.0 28.0 32.0	_	i =	-
over 6.4 mm (¼ in.) Vanadium: Victor bronze,			-	_	18.3	35.1	26,000	50,000	35.0	_	_	
V 0.03, Cu 58.6, Zn 38.5, Al 1.5, Fe 1.0	Cold d	rawn			56.5	64.5	80,000	92,000	11.5	29.0	_	
U. S. Navy † 49 B rb Bronze, Aluminum Lead:	See Cu.	. Al		_	15.8	38.7	22,500	55,000	25.0	_	_	
Cu 89, Sn 10, Pb 1 Cu 88, Sn 10, Pb 2	Cast ‡. Cast §.		=	_	 13.4 to 16.2	15.5 21.1 to 24.6		22,000 30,000 to 35,000	20.0 to	26.0 to	65 to	
Cu 80, Sn 10, Pb 10	{ Cast, sa Cast, c	and . 8 hill	3.8		10.9 12.8	22.I 24.7	15,500	31,400	13.5 4.5	12.0	63 85	
Lead, Phosphor: Cu 80, Sn 10, Pb 10, P trace Lead Zinc, Red brass: Cu 81, Sn 7, Pb 9, Zn 3	Cast Cast  . Cast ¶.		-1	- 1	11.0 13.8 13.4 to	21.0 18.8 21.1 <b>t</b> o	16,000 19,600 19,000 to	30,000 26,800 30,000 to	6.0 11 0 18.0 <b>t</b> 0	3.5 11.5 24.0 to	65  50 to	8.0
Cu 88, Sn 8, Pb 2, Zn 2	Cast		-	-	<u></u> .	24.6 21.8 to 26.0	20,000	35,000 31,000 to 37,000	15.0 20.0 to 16.0	22.0	55 57 to 59	
Lead, Zinc Phosphor: Cu 73.2, Sn 11.3, Pb 12.0, Zn 2.5, P 1 Manganese:	Cast **		-	_	10.5	21.4	15,000	30,400	4.0	3.3	_	TI.
Cu 88, Sn 10, Mn 2 Nickel, Zinc:	Cast	• • • •	-	-	9.0	19.1	12,800	27,200	25.0	-	-	-
Cu 88, Sn 5, Ni 5, Zn 2 (1) Cu 89, Sn 4, Ni 4, Zn 3 (2) Phosphor:	Cast†† Cast††		=	=	9.2 8.1	28.6 27.9	13,100	40,700 39,700	32.0 31.0	28.0 31.0	_	
Cu 95, Sn 4.9, P 0.1 Cu 89, Sn 10.5, P 0.5 Cu 80, Sn 20, P max. 1 Rods and bars §§ up to 12.7	Rolled. Cast Cast ‡‡		3.6	-	28.0 11.2 <b>t</b> 0 14.1	46.0 21.8 <b>t</b> 0 24.6	40,000 16,000 to 20,000	65,000 31,000 to 35,000	30.0 6.0 <b>t</b> 0 10.0	=	72 <b>t</b> o	37
mm (½ in.)			_	ļ	42.2     28.1	-	60,000 40,000	80,000	12.0	Requir bend	ed 1 colo	1
over 25.4 mm (1 in.) Sheets and plates §§ spring			=	-	21.1	38.7		55,000	25.0	abou us ec	t radi qual t	-
temper Medium temper		]:		-	17.6	63.2 35.1	25,000	90,000	25.0	thick	ness.	
Bronze, Phosphor: spring wir Sn min. 4.5, Zn max 0.3, Fe m	e, hard-dr ax. o.1, Ph	awn o	or ha	rd-r P o	rolled (	U. S. N	Navy Specax. elong.	c. 22 W5, in 203 mr	Dec. r n (8 in.	, 1915) = 4 p	. Cu	94, t.
Diameter (group limits)		. N	Min.				Diame (group lin			Min. ter		
(82.92)		kg/m	m²	1	b/in²	n	nm	in.	kg/m	m²	lb/in	2

Diameter (group limits).		tensile ength.	Dian (group	neter limits).	Min. tensile strength.		
	kg/mm²	lb/in²	mm	in.	kg/mm²	lb/in²	
Up to 1.59 mm or 0.0625 in Over 1.59 mm to 3.17 mm (0.125 in.)	95.0 88.0	135,000	to 6.35 to 9.52	to 0.250 to 0.375	77 · 5 74 · 0	110,000	

*Specification Values, Rolled Brass, Cu 62, Zn 37, Sn 1, min. properties after U. S. Navy Spec., 7018.
† Specification Values: Jan. 3, 1916, Vanadium Bronze Castings, Cu 61, Zn 38, Sn max. 1 (incl. V). Mimima.
† Compressive P-limit 1.5, 5 kg/mm² or 22,000 lb/in²
§ Compressive P-limit 1.5, 5 kg/mm² or 15,000 lb/in² and 28 per cent set for 70 kg/mm² or 100,000 lb/in²
[I Ultimate compressive strength, 54.2 kg/mm² or 77,100 lb/in² (Cu 76, Sn 7, Pb 13, Zn 4).
† Compressive P-limit 18.0 to 9.1 kg/mm² or 12,500 to 13,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
**Compressive P-limit 18.0 to 9.1 kg/mm² or 17,500 to 10,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
† Compressive P-limit 17.0 to 28.1 kg/mm² or 17,500,000 lb/in²; (2) 10,500 kg/mm² or 14,900,000 lb/in²
† Compressive P-limit 17.0 to 28.1 kg/mm² or 25,000 to 40,000 lb/in² and 6 to 10 per cent set for 70 kg/mm²
or 100,000 lb/in² load.

Specification Values: U. S. Navy 46 B sc. Max. I, 1017, Cu 85 to 90 Sn.6 to 11, Zn max. 4: Cast. Grade 1.— Im-

Specification Values: U. S. Navy 46 B 5c, Mar. 1, 1917, Cu 85 to 90, Sn 6 to 11, Zn max. 4: Cast, Grade 1. — Impurities max. 0.8; min. tensile strength 31.6 kg/mm² or 45,000 lb/in² with 20 per cent elong. in 50.8 mm (2 in.).

¶ Grade 2. — Impurities max. 1.6; min. tensile strength 21.1 kg/mm² or 30,000 lb/in² with 15 per cent elong. in 50.8 mm (2 in.).

\$\$ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P 0.50, rolled or drawn. || || Minimum yield points specified: for P-limits assume 66 per cent of values shown.

#### MECHANICAL PROPERTIES.

# TABLE 65. - Copper Alloys - Three (or more) Components.

										_		
	Alloy and approx.	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct. in area.	Hard	ness.
ı	composition.	Condition.	_	1		1				<u> </u>	@ si	انها
1	per cent.		gm per cm³	lb. per in ³	Ten kg/	sion, mm²		nsion, /in²	Per	cent.	Brinell @ 500 kg.	Sclero- scope.
1	Bronze: Silicon	Cast Drawn, hard		=	=	46.0 74.0	=	65,000	=	=	_	
I	Cu 70, Zn 29.5, Si 0.5 Zinc * Comp. "G" Admiralty gun metal Comm'c'l range	Cast Cast†	8.6	535	8.6 5.6 to 8.4	27.4 22.5 <b>t</b> o 26.7	12,200 8,000 to 12,000	38,900 32,000 to 38,000	25.0 25.0 to 10.0	21.0 25.0 to 12.0	64 65 to	13 10 to 20
	Spec. values Cu 88, Sn 8, Zn 4 Cu 85, Sn 13, Zn 2	Cast (mins.);	8.5	530	7.7	21.1 27.5 26.7	11,000	30,000 39,200 38,000	14.0 30.5 2.5	24.0 2.5	58	 II 25
	Cu 90, Sn 6.5, Zn 2, Pb 1.5 Rods and bars    up to	Cast §		-	11.2	28.1	12,000 to 16,000	34,000 to	25.0	34.0 to	60	
	12.7 mm (½ in.) over 12.7 mm to 25.4 mm (1 in.) over 25.4 mm (1 in.)			_	28.1 26.4 24.6	56.2 52.7 50.7	37,500 35,000	80,000 75,000 72,000	30.0 30.0	Requir cold .120° dius	thi about	ough t ra-
ľ	Shapes,   all thicknesses Sheets and plates,  o to 12.7 mm (\frac{1}{2} in.)			=	26.4	50.7 52.7 54.8	37,500 37,500 39,000¶	75,000	30.0		ness.	1 10
ľ	over 12.7 mm (½ in.) Aluminum Tin: Cu 88.5, Al 10.4, Sn 1.2		_	_	26.4	52.7	37,500	75,000	30.0	5.5	180	32
I	Aluminum Titanium:	Cast **	_	_		·	- 1				100	
l	Cu 90, Al 10	Quench, 800° C			29.0	52.0 74.0	40,500	74,000	19.5	0.8	262	25
I	Cu 89, Al 10, Fe 1	Cast	7.58	473	17.6	56.2	20,000 to 25,000	65,000 to 80,000	20.0 to	30.0 to	93 to 100	25 to 26
l	Cu 71.9, Pb 27.5, Sn 0.5	Cast	-	-	-	4.2 to 4.6	-	6,000 to 6,600	3.0 to 3.2	4.2 to 6.7	_	
I	Nickel, Aluminum: Cu 82.1, Ni 14.6, Al 2.5, Zn 0.7 ‡‡	Forged		_	44-5	00.0	63,300	128,000	10.0	12.0	_	
	Cu 85, Sn 5, Zn 5, Pb 5.	Cast §§		-	10.5 to 13.4	19.0 to 23.2	15,000 to 19,000	27,000 to 33,000	20.0 to 16.0	20.0 to	50 to 62	-
	Cu 83,Sn 14, Zn 2, Pb 1 Zinc, Phosphor	Cast		_	10.5 to	16.2 to	15,000 to 19,000	23,000 to 27,000	4.0 to 0.5	4.0 to 0.5	=	20 24
	(" Non Gran") Cu 86, Sn 11, Zn 3, Ptr. Vanadium, See Brass,	Cast		_	13.0	25.0	19,000	35,000	9.0		-	
	Vanadium. Copper, Aluminum or Aluminum Bronze;											
	Cu 90, Al 10		7.45		23.3	60.0	19,800 to 33,200	72,700 to 85,500	21.7	22.4	100	25 to 26
	Cu 92.5, Al 7.2 Aluminum, Iron or Sill-	ann.	_		7.0	37·5 59·3	9,600	53,500 84,400	91.0	72.9	81	19
	man bronze Cu 86.4, Al 9.7, Fe 3.9	Cast	_	=	8.1 14.0	55.5 54.0	11,500	78,850 77,000	14.5	25.0	100	=
	Cu 88.5, Al 10.5, Fe 1.0.	850° C. drawn 700° C	_	-	28.0	65.0	40,000	92,000	14.0	18.5	140	-
1												

^{*}Gov't. Bronze: Cu 88, Sn to, Zn 2 (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

[†] Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² with 29 per cent set for 70 kg/mm² or 100,000 lb/in² load. † Values from same series of tests as first values for "88–10–2," averages for 26 specimens from five foundries tested at Bureau of Standards.

at Bureau of Standards.

§ Compressive P-limit 9.1 kg/mm² or 13,000 lb/in² with 34 per cent set for 70 kg/mm² or 100,000 lb/in² load.

[Specification minimums: U. S. Navy 46B17, Dec. 2, 1918, for hot-rolled aluminum bronze, Cu 85 to 87, Al 7 to 9, Fe 2.5 to 4.5. Specification values under P-limit are for yield point.

¶ Two and six tenths per cent increase in strength up to 762 mm (30 in.) width.

*** Compressive P-limit: cast, 14.1 kg/mm² or 20,000 lb/in² with 11.4 per cent set at 70 kg/mm² or 100,000 lb/in²

load.

†† Compressive P-limit: cast, 12.7 to 14.1 kg/mm² or 18,000 to 20,000 lb/in² with 13 to 15 per cent set at 700 kg/mm² or 100,000 lb/in² load.

‡† Modulus of elasticity 14,800 kg/mm² or 12,150,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² load.

|| || High values are after Jean Escard "L'Aluminum dans L'Industrie," Paris, 1918. Compressive P-limit 13.5 kg/mm² or 19,200 lb/in² with 13.5 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

#### TABLE 66.

#### MECHANICAL PROPERTIES.

# TABLE 66. - Miscellaneous Metals and Alloys.

								_			
Metal or alloy. Approx. composition,	Condition.	Density	or weight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct.	n	ard- ess.
per cent.		gm per cm³	lb. per ft.3	Tensi kg/m	ion,	Tens		Per c	ent.	Brinell @ 500 kg.	Sclero- scope.
* Cobalt, Co 99.7 } Gold, Au 100. Copper, Au 90, Cu 10	Drawn hard Cast. Rolled hard Drawn soft. Drawn hard Cast.  Drawn hard Vrought, ann	19.3 17.2 — 11.38 11.40 — 10.5 1.7 1.74 8.3 8.7	550 556 1203 — 1073 — 710 711 — 655 100 109 518 543	2.8 — — 16.7 ***	29.9	4,000	42,500	25.0 		8 — 8 — 76 —	
Ni 08.5. Ni. Ni. Ni. Ni. Opper, iron, manganese or Monel metal:	Wrought, com. Rolled hard, " Rolled ann. " Drawn hard, D = 1.65 mm or 0.065 in	1	_	= -	46.0 64.7 53.4 109.0	=	65,000 92,000 76,000	11.0	= -	83	35
Ni 67, Cu 28, Fe 3, Mn 2. Ni 66, Cu 28, Fe 3.5, Mn 2.5 Ni 71, Cu 27, Fe 2 \$	{ Cast	8.9	<u>555</u>	21.2 55.1 28.3	73.8	30,100 78,400 40,300	70,000 104,900 92,200	31.3	20.0 61.7 70.2		2I 27 —
46 M 7b	Cast, minimums.  Rolled, min., rods and bars ¶  Rolled, minimum, sheets	_	_	22.8 ** 28.1 **	56.2	32,500 *** 40,000 **	65,000 80,000	32.0	_	-	-
Palladium, Pd	and plates Drawn hard ( Drawn hard Torawn ann ( Cast ) Drawn hard	2I.5 —	755 1342 — 655 660	21.1 — — —	45.7 27.0 37.3 24.6 28.1 36.0	30,000	65,000 39,000 53,000 35,000 40,000 51,200	18.0		1 1 1 1 1	24 13
Copper, Ag 75, Cu 25 Tantalum, Ta Tin, Sn 99.8††	Drawn hard Drawn hard Cast Rolled Drawn hard	r6.6	1035 456		77.0 91.0 2.8 3.7 7.0	 r,600 	109,500 130,000 4,000 5,300	35.0		59 - 14 -	3 ² - 8 -
Antimony, Copper, Zinc (Britannia Metal): Sn 81, Sb 16, Cu 2, Zn 1. Zinc, Aluminum, etc. (aluminum solder): Sn 63, Zn 18, Al 13, Cu											
3, Sb 2, Pb 1  Sn 62, Zn 15, Al 11, Pb  8, Cu 3, Sb 1  Zinc, aluminum:  Sn 86, Zn 9, Al 5  Aluminum, zinc, cad-	Cast	_ _	_	_	9.1 8.6	_	13,000	r.6	1.5 1.3 81.0	_ _ _	-
mium: Sn 78, Al 9, Zn 8, Cd 5.	Cast, chill	-	-	-	10.1	-	14,300	18.0	41.0	-	_

Antimony: Modulus of Elasticity 7960 kg/mm² or 11,320,000 lb/in² (Bridgman).

* Compressive strength: cast and annealed, 86.0 kg/mm² or 12,000 lb/in².

Comm'c'l. comp., C 0.06, cast, tensile, ultimate, 42.8 kg/mm² or 61,000 lb/in², with 20 per cent elongation in 50.8 or 2 in. Compression, ultimate 123.0 kg/mm² or 175,000 lb/in²

Stellite, Co 50.5, Mo 22.5, C 10.8, Fe 3.1, Mn 2.0, C 0.0, Si 0.8. Brinell hardness 512 at 3000 kg. density 8.3.

† Modulus of elasticity, cast or rolled, 492 kg/mm² or 700,000 lb/in²; drawn hard 703 kg/mm² or 1,000,000 lb/in²

For compressive test data on lead-base babbit metal, see table following zinc.

§ Modulus of elasticity 15,800 kg/mm² or 22,500,000 lb/in².

|| Specification values, U. S. Navy, Monel metal, Ni min. 60, Cu min. 23, Fe max. 3.5, Mn max. 3.5, C + Si max.

0.8, Al max. 0.5.

¶ Values shown are subject to slight modifications dependent on shapes and thicknesses.

*Values are for yield point.

†† Compressive strength: cast, 4.5 kg/mm² or 6,400 lb/in²

Modulus of elasticity: cast av. 2,810 kg/mm² or 4,000,000 lb/in²; rolled av. 401.0 kg/mm² or 5,700,000 lb/in²

SMITHSONIAN TABLES.

#### TABLE 67. MECHANICAL PROPERTIES.

# TABLE 67. - Miscellaneous Metals and Alloys.

(a) Tungsten and Zinc.

Metal or alloy approx.	Condition.		nsity eight.	P-limit.	Ultimate strength.	P-limit.	Ultimate strength.	Elong. in 50.8 mm (2 in.)	Reduct. of area.		ness.
comp. per cent.		gm per cm ³	lb. per ft³		ension, g/mm²		ension, b/in²	Per	cent	Brinell 6 500 kg.	Sclero- scope.
	Ingot sintered, D = 5.7  mm or o.22 in. Swaged rod, D = 0.7  mm or o.o3 in.	13.0	1124	_ _	12.7	_ _	18,000	0.0	0.0		_
Tungsten, W 99.2 *	Drawn hard, D = 0.029 mm or 0.00114 in Swaged and drawn hot 97.5% reduction† Same as above and	-	_ _	_ _	415.0 164.0	_ _	590,000	3.2	65.0	_	_
	equiaxed at 2000°C in H2‡	-	-	_	118.0	_	168,000	0.0	0.0	-	-
	Cast	7.0	437 —	(I	mpurities 2.8 to 8.4	Pb, Fe	and Cd) 4,000 to 12,000	=	=	42 <b>t</b> o	8 to
Zinc, §Zn.	direction of rolling). Rolled (across grain or direction of rolling). Drawn hard		— — 443	2.0 4.1	19.0 25.3 7.0	2,900 5,800	27,000 36,000 10,000		=	=	_

^{*} Commercial composition for incandescent electric lamp filaments containing thoria (ThO2) approx. 0.75 per cent

* Commercial composition for incandescent electric lamp filaments containing thoria (ThO₂) approx. 0.75 per cent after Z Jeffries Am. Inst. Min. Eng. Bulletin 138, June, 1918.
† Alter Z Jeffries Am. Inst. Min. Eng. Bulletin 149, May, 1919.
† Ordinary annealing treatment makes W brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min. exposure, varies from 2200° C for a work rod with 24 per cent reduction, to 1350° C for a fine wire with 100 per cent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.
§ Compression on cylinder 25.4 mm (r in.) by 65.1 mm (2.6 in.), at 20 per cent deformation:
For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24.500 lb/in².
For spelter with Cd 0.26, av. 27.4 kg/mm² or 39,000 lb/in². (See Proc. A. S. T. M., Vol. 13, pl. 19.)
Modulus of rupture averages twice the corresponding tensile strength.
Shearing strength: rolled, averages 13.6 kg/mm² or 11,025,000 lb/in².
Modulus of elasticity: cast, 7,750 kg/mm² or 11,025,000 lb/in².
Modulus of elasticity: cast, 7,750 kg/mm² or 12,000 000 lb/in².
(Moore, Bulletin 52, Eng. Exp. Sta. Univ. of Ill.)

(b) WHITE METAL BEARING ALLOYS (BABBITT METAL).
A. S. T. M. vol. xviii, I, p. 491.

Experimental permanent deformation values from compression tests on cylinders 31.8 mm (1\frac{1}{2}\) in.) díam. by 63.5 mm (2\frac{1}{2}\) in.) long, tested at 21° C (70° F.) (Set readings after removing loads.)

	Formula,		Pour	inα			]	Permane	nt defo	rmation	@ 21°	C	Hard	lness.
Al- loy No	per cent.		tem		Weight.		@ 45 = 10	4 kg 00 lb.		68 kg oo lb.	@ 453 = 10,	6 kg 500 lb.	inell 21°C	500 kg 100° C
	Sn   Sb   Cu	Pb	C	F.	g/cm³	lb./ft³	mm	in.	mm	in.	mm	in.	@ B	@@
	Tin Base.													
1 2 *	91 0 4.5 4.5 89.0 7.5 3 5		440	824	7.34 7.39		0.000	0.0000	0.025 .038	0.0010	0.380	0.0150	28.6	12.8
3	83.3 8.3 8.3	- $ $	491	916	7.46	465	.025	.0010	.114	.0045	.180	.0070	34.4	15.7
4 5			360 350	680 661	7.52 7.75		.013	.0005	.064 .076	.0025	.230	.0090	29.6 29.6	12.8
	Lead Base.													
6			337	638	9.33		.038	.0015	.127	.0050	-457	.0180	24.3	II.I
7 8			329	625	9.73		.025	.0010	.127	.0050	.583	.0230	24.1	11.7
8			329	625	10.04		.051	.0020	.229	.0090	2.130	.0620	20.9	8.6
ro			325	625	10.07	620	.025	orco.	.254	.0100	3.010	.1540	17.0	8.0
rr		85.0	325	625	10.28		.025	.0010	.254	.0100	3.020	.1190	17.0	9.9
12	10.0	90.0	334	634	10.67	666	0.064	0.0025	0.432	0.0170	7.240	0.2850	14.3	6.4
									1		- 1			

^{*} U.S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 89.5, Sb 7.0 to 8.0) covers manufacture of anti-friction-metal castings.

(Composition W.) Note. — See also Brass, Lead (yellow brass), Brass, Lead-Tin (Red Brass); Bronze, Phosphor, etc., under Copper allovs

# MECHANICAL PROPERTIES.

#### TABLE 68. - Cement and Concrete.

# (a) CEMENT.

CEMENT: Specification Values (A. S. T. M. C9 to 17, C10 to 09, and C9 to 16T).

Minimum strengths based on tests of 645 mm² (1 in²) cross section briquettes for tension, and cylinders 50.8 mm (2 in.) diameter by 101.6 mm (4 in.) length for compression. Mortar, composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

Cement	Specific	Age, days.	Tens	sion.	Compression.		
(1: 3 mortar tested).	gravity.	days.	kg/mm²	lb/in²	kg/mm²	lb/in²	
Std. Portland	3.10	7	0.16	200	0.85	1,200	
White Portland	3.07	28	.24	300	1.60	2,000	
Natural Av Natural	2.85	7 28	.03	50 125	_		

# (b) CEMENT AND CEMENT MORTARS.

CEMENT AND CEMENT MORTARS. — Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on 50.8 mm (2 in.) cubes stored in water. Sand: Potomac River, representative concrete sand.

Cement.	Sand.	Water,	Age,	Compressiv	e strength.
Proportions	by volume.	per cent.	days.	kg/mm²	lb/in²
ı	0	30.0	7 28	4.20 6.40	5,970 9,120
I	1	16.0	7 28	3.10	4,440
ı	2	13.6	7 28	4.75 2.05 3.10	6,750 2,900 4,440
I	3	13.9	7 28	1.25	1,780 2,890
I	9	15.1	7 28	0.10	120
			20	3	200

Note. — (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 21 per cent) show 0.52 kg/mm² or 740 lb/in² tensile strength at 28 days' age;

1 Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show 0.28 kg/mm² or 400 lb/in² tensile strength at 28 days' age.

### TABLE 68 (continued). MECHANICAL PROPERTIES.

(c) Concrete.

CONCRETE: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in.) diameter and 406.4 mm (16 in.) long at 28 days age.

American Standard Concrete Compressive Strengths.

Ammonto	Units.			Mix.		
Aggregate.	Onits.	1:3	1:41	1:6	1:72	1:9
Granite, trap rock	kg/mm² lb/in²	2.3 3300	2.0 2800	I.5 2200	1.3	1.0
Gravel, hard limestone and hard sandstone	${ m kg/mm^2}$ ${ m lb/in^2}$	2.I 3000	1.8 2500	1.4 2000	1.1 1600	0.9
Soft limestone and soft sandstone	kg/mm² lb/in²	1.5	1.3	1.1	0.8 1200	0.7
Cinders	$\frac{\mathrm{kg/mm^2}}{\mathrm{lb/in^2}}$	o.6 800	0.5 700	0.4 600	0.4 500	0.3 400

Note. — Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as shown).

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete

design, which may be summarized as follows: Bearing, 35 per cent of compressive strength;

Compression, extreme fiber, 32.5 per cent of compressive strength;
Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing;
Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively. Modulus of Flasticity to be assumed as follows:

For concrete v	vith strength.	Assume mod	ulus of elasticity.
kg/mm²	lb/in²	kg/mm²	lb/in²
up to 0.6	up to 800	530	750,000
0.6 to 1.5	800 to 2200	1400	2,000,000
1.5 to 2.0	2200 to 2900	1750	2,500,000
over 2.0	over 2000	2100	3,000,000

#### (See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on 1:2:4 gravel concrete show moduli of elasticity up to 3160 kg/mm² or 4,500,000 lb/in² and compressive strengths to 4.2 kg/mm² or 6000 lb/in² Tensile strengths average to per cent of values shown from compressive strengths. Shearing strengths average from 75 to 125 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength). Compressive strengths of natural compressive strengths of partial compressive strengths of partial compressive strengths of partial compressive strengths.

representing the shear of the leaner mixtures (for direct shear, flattigives by to 60 so per cent of creshing strength). Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland cement concrete of the same proportioned mix.

Transverse strength; modulus of rupture of r: 2½: 5 concrete at r and 2 months equal to one sixth crushing strength at same age (Hatt).

Weight of granite, gravel and limestone, r: 2: 4 concretes averages about 2.33 g/cm³ or 145 lb/ft³; that of cinder concrete of same mix is about r.85 g/cm³ or r15 lb/ft³.

Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests made on 203.2 mm (8 in.) diameter cylinders, 406.4 mm (16 in.) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165–166.)

C	Unit.		A	ge.	
Coarse aggregate.	Onit.	14 days.	30 days.	60 days.	180 days.
Gravel	kg/mm²	1.35	1.61	2.06	2.67
	lb/in²	1921	2294	2925	3798
Limestone	kg/mm²	1.24	1.53	2.35	3.11
	lb/in²	1758	2174	3343	4426
Trap rock	$kg/mm^2$	1.45	1.67	2.36	3.39
	lb/in²	2063	2386	3360	4819
Granite	kg/mm²	1.49	1.61	2.14	2.92
	lb/in²	2122	2292	3043	4151
Slag No. 1	kg/mm²	1.75	2.16	2.37	3.38
	lb/in²	2484	3075	3365	4803
Slag No. 2	kg/mm ²	1.37	1.78	2.06	2.64
	lb/in²	1941	2525	2930	3753

Note. — Maximum and minimum test results varied about 5 per cent above or below average values shown above. SMITHSONIAN TABLES.

#### TABLE 69.

#### MECHANICAL PROPERTIES.

# TABLE 69. - Stone and Clay Products.

# (a) STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONES.*

	Weight, average.  Compress Ultimate st				Mo	lexure odulus upture	oí		Shear. Ultimat strength	c	Flexure, modulus of elastici			
Stone.			Ave	rage.	e it.	Ave	rage.	it.	Ave	rage.	نب به	Λ	verage.	); ;;
	g/cm³	IS THE	kg/mm ²	lb/in²	Range per cent.	kg/mm²	lb/in²	Range per cent.	kg/mm²	l5./in²	Range per cent.	kg/mm²	lb/in²	Range per cent.
Granite Marble	2.6	165		20,200 12,600			1600			2300 1300	20 25		7,500,000 8,200,000	
Limestone Sandstone.		160	6.30		95	0.85		100	1.00	1400	45	5900	8,400,000	65

^{*} Values based on tests of American building stones from upwards of twenty-five localities, made at Watertown (Mass.) Arsenal (Moore, p. 184). Each value shown under "Range" is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone.

# (b) STRENGTH AND STIFFNESS OF BAVARIAN BUILDING STONE.*

	Weight, average,			mpressio ate strei		M	lexure odulus upture	of		Shear. Ultimat trength			Flexure. Modulus of clasticity.		
Stone.			Ave	rage.	at.	Avei	age.	e at.	Ava	rage.	e it.	Λ	verage.	e Jt.	
	£ (cm ₃	l5/ft³	kg/mm²	lb/in²	Range per cent.	kg/mm²	lb/in²	Renge per cen	kg/mm²	lb/in²	Range per cent.	kg/mm²	lb/in²	Range per cent.	
Granite Marble ‡, Limestone Sandstone		165 135 155 145	5.60 8.10	19,500 8,000 11,500	15	0.90 0.30 1.10 0.45	1300 450 1550 650		0.45 0.60 0.50	620	50 20 35	3450 2350	2,300,000 4,900,000 3,350,000 3,550,000	30 90 35	

^{*} Values based on careful tests by Bauschinger, "Communications," Vol. 10. † Shearing strength determined perpendicular to bed of stone.

General Notes.—1. Later transverse strength (flexure) tests on Wisconsin building stones (Johnson's "Materials of Construction," 1918 cd., p. 255) show moduli of rupture as follows: Granite, 1.90 to 2.75 kg/mm² or 2710 to 3910 lb/in²; limestone, 0.80 to 3.30 kg/mm² or 1160 to 4660 lb/in²; sandstone, 0.25 to 0.95 kg/mm² or 360 to 1320 lb/in².

2. Good slate has a modulus of rupture of 4.90 kg/mm² or 7000 lb/in² (loc. cil., p. 257).

Values are for Jurassic limestone.

# TABLE 69 (continued). MECHANICAL PROPERTIES. TABLE 69.— Stone and Clay Products.

# (c) STRENGTHS OF AMERICAN BUILDING BRICKS.*

Brick — description.	Absorption average		pression. t. strength.	Flexure. Min. modulus rupture.			
	per cent.	kg/mm²	lb/in²	kg/mm²	lb/in²		
Class A (Vitrified)	5	3.50	5000	0.65	900		
Class B (Hard burned)	12	2.45	3500	0.40	600		
Class C (Common firsts)	18	1.40	2000	0.30	400		
Class D (Common)		1.05	1500	0.20	300		

^{*} After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee C-3 (Johnson, p. 281).

(d) STRENGTH IN COMPRESSION OF BRICK PIERS AND OF TERRA-COTTA BLOCK PIERS.

Tabular values are based on test data from Watertown Arsenal, Cornell University,
U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

Brick or block used.	Mortar.	Compression,* Av. ult. strength.		
		kg/mm²	lb/in²	
Vitrified brick.  Pressed (face) brick.  Pressed (face) brick.  Common brick.  Common brick.  Terra-cotta brick.	part P.† cement : 3 parts sand part P. cement : 3 parts sand part lime : 3 parts sand part P. cement : 3 parts sand part lime : 3 parts sand part lime : 3 parts sand part P. cement : 3 parts sand	0.50	2800 2000 1400 1000 700 3000	

^{*}Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.

† P. denotes Portland.

# (e) STRENGTH OF COMPRESSION OF VARIOUS BRICKS.

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff., as follows:

Brick.	kg/mm²	lb/in²
sand-lime sand-lime (German) paving acid-refractory silica-refractory	1.53 5.60 0.70	3000 2180 (av. 255 tests) 8000 1000 2000

The specific gravity of brick ranges from 1.0 to 2.6 (corresponding to 120 to 160 lb/ft³). Building tile: hollow clay blocks of good quality, — minimum compressive strength: 0.70 kg/mm² or 1000 lb/in². Tests made for A. S. T. M. Committee C-10 (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to 8.70 kg/mm² or 640 to 12,360 lb/in² of net section, corresponding to 0.05 to 4.20 kg/mm² or 95 to 6000 lb/in² of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles 0.06 kg/mm² or 80 lb./in²; ordinary clay tiles 0.04 kg/mm² or 60 lb/in²; porous terracotta tiles 0.03 kg/mm² or 40 lb/in.² The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to 155 lb/ft³.

#### TABLE 70.

#### MECHANICAL PROPERTIES.

# TABLE 70. - Rubber and Leather.

# (a) RUBBER, — SHEET.*

		Ultimate	e strength.		Ult. elo	ongation.	Set.‡		
Grade.	Longitu	dinal.†	Trans	verse.	Longit.	Transv.	Longit.	Transv.	
	kg/mm²	lb/in²	kg/mm²	lb/in²	per	cent.	per	cent.	
I	1.92	1.92 2730		2575	630	640	11.2	7.3	
2	1.45	2070	1.43	2030	640	670	6.0	5.0	
3	0.84	1200	0.89	1260	480	555	22.1	16.3	
- 4	1.30	1850	1.20	1700	410	460	34.0	24.0	
5	0.48	690	0.36	510	320	280	27.5	25.0	
6	0.62 880		0.48	690	315	315	34.3	25.9	

^{*} Data from Bureau of Standards Circular 38.

The specific gravity of rubber averages from 0.95 to 1.25, corresponding to an average weight of 60 to 80 lb/ft³.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to 0.65 kg/mm² or 890 to 930 lb./in² (Benjamin), and a working tensile stress of 0.07 to 0.11 kg/mm² or 100 to 150 lb./in² is recommended (Bach).

# (b) LEATHER, - BELTING.

Oak tanned leather from the center or back of the hide:

Minimum tensile strengths of belts single 2.8 kg/mm² or 4000 lb./in² (Marks, p. 622) double 2.5 kg/mm² or 3600 lb./in²

Maximum elongation for one hour application of single 13.5 per cent 1.6 kg/mm² or 2250 lb./in² stress double 12.5 per cent.

Modulus of elasticity of leather varies from an average value of 12.5 kg/mm² or 17,800 lb/in² (new) to 22.5 kg/mm² or 32,000 lb./in² (old).

Chrome leather has a tensile strength of 6.0 to 9.1 kg/mm² or 8500 to 12,900 lb/in².

The specific gravity of leather varies from 0.86 to 1.02, corresponding to a weight of 53.6 to 63.6 lb./ft³.

[†] Longitudinal indicates direction of rolling through the calendar.

[‡] Set measured after 300 per cent elongation for 1 minute with 1 minute rest.

# MECHANICAL PROPERTIES.

#### TABLE 71. - Manila Rope.

Manila Rope, Weight and Strength — Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand,* medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

mm		Circumi	ierence.	Maximum	net weight.	Minimum breaking strength.		
	in in	. mm	in.	kg/m	lb/ft.	kg	lb.	
6.		19.1	3 4	0.029	0.0196	320	700	
7.			I.	0.044	0.0286	540	1,200	
9.			118	0.061	0.0408	660	1,450	
11.			114	0.080	0.0539	790	1,750	
II.			13/8	0.095	0.0637	950	2,100	
12.			1 ½	0.109	0.0735	1,110	2,450	
14.			13/4	0.153	0.1029	1,430	3,150	
15.		50.8	2	0.195	0.1307	1,810	4,000	
19.		57.2	$2\frac{1}{4}$	0.241	0.1617	2,220	4,900	
20.		8 63.5	2 1/2	0.284	0.1911	2,680	5,900	
22.	2 78	69.9	2 ³ / ₄	0.328	0.2205	3,170	7,000	
25.	4 1	76.2	3	0.394	0.2645	3,720	8,200	
27.			31/4	0.459	0.3087	4,310	9,500	
28.	.6 1 <del>1</del> 8	88.9	31/2	0.525	0.3528	4,990	11,000	
31.	8 14	95.2	3 4	0.612	0.4115	5,670	12,500	
33.	_	~	4	0.700	0.4703	6,440	14,200	
34.	-		41/4	0.787	0.5290	7,260	16,000	
38.		, , ,	41/2	0.875	0.5879	7,940	17,500	
39		-	4 ³ / ₄	0.984	0.6615	8,840	19,500	
41.	, ,		5	1.094	0.7348	9,750	21,500	
44.	5 I ³ / ₄	140.0	5½	1.312	0.8818	11,550	25,500	
50.		152.4	6	1.576	1.059	13,610	30,000	
52.	4 21	165.1	61/2	1.823	1.225	15,420	34,000	
57			7	2.144	1.44Î	17,460	38,500	
63.			71/2	2.450	1.646	19,730	43,500	
66.	7 25	203.2	8	2.799	1.881	22,220	49,000	
73	.O 278	215.9	81/2	3.136	2.107	24,940	55,000	
76.	. 2 3	228.6	9	3 · 543	2.381	27,670	61,000	
79			91/2	3.936	2.645	30,390	67,000	
82	$\cdot 5$ $3\frac{1}{4}$	254.0	10	4.375	2.940	33,110	73,000	

^{*} Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

96 MECHANICAL	PRO	PERT	ES. 1	TABLI	E 72	– Har	dwood:	s Grov	vn in	σ. s.	(Metri	c Unit	ts).	
		cific	Sta	tic bend	ing.		t bend- ng.	Co	mpress	ion.	Shear. Tension.		Haro	lness.
Common and botanical name.	oven base vol.	vity, dry, d on vol.	P-limit, kg/mm²	Modulus of rupture, kg/mm² Modulus of elasticity, kg/mm²		nit, kg/mm²	kg bammer or failure— m.		rallel rain.	Perpendicular to grain P-limit, kg/mm²	Parallel to grain ult. st. kg/mm²	Perpendicular to grain ult. st. kg/mm³	11.3 d.	d to nbed mm ball
	when green.	oven- dry.	P-Ii	Modu rupture,	elasti	P-limit,	22.7 kg fall for i	kg/	mm²	Perg	Par.	Perg	end kg	side kg
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Alder, red(Alnus oregona)	0.37	0.43	2.65	4.55	830	5.60	0.56	1.85	2.10	0,22	0.54	0.27	250	200
Ash, black (Fraxinus nigra)	0.46	0.53	1.85	4.20	720	5.10	0.81	1.15	1.65	0.31	0.61	0.35	270	250
Ash, white (forest grown) (Fraxinus americana)	0.52	0.60	3.45	6.40	950	8.25	0.91	2.30	2.70	0.57	0.89	0.44	455	401
Ash, white (second growth) (Fraxinus americana)	0.58	0.71	4.30	7.60	1150	9.70	1.19	2.70	2.90	0.56	1.13	0.56	515	490
Aspen (Populus tremuloides)	0.36	0,42	2.05	3.75	590	4.85	0.71	1.10	1.50	0.14	0.44	0.13	120	145
Basswood(Tilia americana)	0.33	0.40	1.90	3.50	725	4.35	0.43	1.20	1.55	0.15	0.43	0.20	1 25	115
Beech. (Fagus atropunicea) Birch, paper.	0.54	0.60	2.05	5.80	710	7.30	1.02	1.80	2.30	0.43	0.85	0.56	430 185	370
(Betula papyrifera) Birch, yellow	0.54	0.66	3.25	6.05	1080	8.25	1.02	1.90	2.40	0.32	0.73	0.34	370	340
(Betula lutea)   Butternut	0.36	0.40	2.05	3.80	630	5.15	0.61	1.40	1.70	0.19	0.53	0.30	185	175
(Juglans cinerca) Cherry, black	0.47	0.53	2.95	5.65	920	7.20	0.84	2.10	2.50	0.31	0.80	0.40	340	300
(Prunus serotina) Chestnut	0.40	0.46	2.20	3.95	655	5.55	0.61	1.43	1.75	0.27	0.56	0.30	240	190
(Castanea dentata)	0.37	0.43	2.05	3.75	710	5.05	0.53	1.25	1.65	0.17	0.48	0.29	175	155
(Populus deltoides) Cucumber tree	0.44	0.52	2.95	5.20	1100	6.55	0.76	1.95	2.20	0.29	0.70	0.31	270	235
(Magnolia acuminata) Dogwood (flowering)	0.64	0.80	3.40	6.20	830	5.00	1.47	_	2.55	0.73	1.07	_	640	640
(Cornus florida) Elm, cork	<b>0.5</b> 8	0.66	3.25	6.70	840	7.75	1.27	2.00	2.70	0.53	0.89	0.47	445	450
(Ulmus racemosa) Elm, white	0.44	0.54	2.55	4.85	725	5.70	0.85	1.65	2.00	0.28	0.65	0.39	275	250
(Ulmus americana) Gum, blue	0.62	ი.80	5.35	7.85	1430	10.00	1.02	3.40	3.70	0.72	1.09	0.45	595	610
(Eucalyptus globulus) Gum, cotton	0.46	0.52	2.95	5.15	740	6.30	0.76	1.95	2.40	0.42	0.84	0.42	365	320
(Nyssa aquatica) Gum, red(Liquidambar styraciflua)	0.44	0.53	2.60	4.80	810	7.05	0.84	1.70	1.95	0.32	0.75	0.36	285	235
Hickory pecan	0.60	0.69	3.65	6.90	960	8.65	1.35	2.15	2.80	0.63	1.04	0.48	575	595
Hickory, shagbark	0.64	_	4.15	7.75	1105	10,10	1.83	2.40	3.20	0.70	0.93	_		-
Holly, American	0.50	0.61	2.40	4.55	630	6.25	1.30	1.40	1.85	0.43	0.85	0.43	390	360
Laurel, mountain	0.62	0.74	4.10	5.90	650	7.20	0.81	-	3.00	0.78	1.18	-	635	590
Locust, black	0.63	0.71	6.20	9.70	1300	12.90	1.12	4.40	4.85	1.01	1.24	0.54	740	715
Locust, honey(Gleditsia triacanthos)	<b>0</b> .65	0.67	3.95	7.20	910	8.30	1.20	2.35	3.10	1.00	1.17	0.66	655	630
Magnolia (evergreen) (Magnolia foetida)	0.45	0.53	2.55	4.85	780	6.20	1.37	1.55	1.90	0.40	0.73	0.43	355	335
Maple, silver(Acer saccharinum)	0.44	0.51	2.20	4.10	665	4.80	0.74	1.35	1.75	0.32	0.74	0.39	305	270
Maple, sugar	0.55	0.65	3.50	6.40	1040	8.50	0.91	2.20	2.80	0.53	0.97	0.54	455	415
Oak, canyon live	0.70	0.84	4.45	7.45	945	7.90	1.20	2.83	3.30	1.04	1.20	0.63	720	715
Oak, red(Quercus rubra)	0.56	0.65	2.60	5.40	910	7.30	1.04	1.65	2.25	0.51	0.79	0.52	465	430 480
Oak, white(Quercus alba) Persimmon	0.65	0.71	3.30	5.85	965	7.55 8.50	1.07	2.10	2.50	0.59	0.83	0.54	565	5So
(Diospyros virginiana) Poplar, yellow.	0.37	0.42	3.95	3.95	850	5.65	0.43	1.40	1.80	0.73	0.56	0.54	190	155
(Liriodendron tulipifera) Sycamore.	0.46	0.54	2.30	4.60	745	6.20	0.84	1.70	2.00	0.32	0.71	0.44	320	275
(Platanus occidentalis) Walnut, black	0.51	0.56	3.80	6.70	1000	8.40	0.04	2.55	3.05	0.42	0.86	0.43	435	410
(Juglans nigra) Willow, black	0.34	0.41	1.25	2.75	395	3.60	0.91	0.70	1.05	0.15	0.44	0.30	160	165
(Salix nigra)				/3	093	0.00								

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 50.8 by 50.8 mm in section, 762 mm long for bending; others, shorter. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 87 and 99 for explanation of columns.

		cific	Sta	Static bending.			t bend- ng.	Co	mpressi	on.	Shear	Ten- sion.	Har	dness.																								
Common and botanical name.	over base	oven-dry, based on		oven-dry,		oven-dry,		oven-dry,		oven-dry,		oven-dry,		oven-dry,				oven-dry,		Modulus of oture, kg/mm ²	dulus of y, kg/mm²	, kg/mm²	g hammer ailure — m.		rain.	Perpendicular to grain P-limit, kg/mm ²	el to grain , kg/mm²	Perpendicular to grain ult. st. kg/mm²	1 ir	nbed mbed mm ball								
	vol. when green.	vol. oven- dry.	P-limit,	Modu rupture,	Modulus of elasticity, kg/r	P-limit,	22.7 kg ham fall for failure	limit.			Parallel ult. st, k	Perpenc grain kg/	end kg	side kg																								
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17																								
Cedar, incense(Libocedrus decurrens)	0.35	0.36	2.75	4.35	590	5.15	0.43	2.00	2.20	0.32	0.58	0.20	260	175																								
Cedar, Port Orford, (Chamaecyparis lawsoniana)	0.41	0.47	2.75	4.80	1055	6.55	0.64	2.10	2.30	0.27	0.62	0.17	255	220																								
Cedar, western red (Thuja plicata) Cedar, white	0.31	0.34	2.30	3.65	670	5.05	0.43	1.75	2.00	0.22	0.51	0.15	195	118																								
(Thuja occidentalis)	0.29	0.32	1.85	2.95	450	3.75	0.38	1.00	1.40	0.20	0.44	0.17	145	104																								
(Taxodium distichum)	0.41	0.47	2.80	4.80	835	ქ. 60	0.61	2.20	2.45	0.33	0.58	0.20	215	175																								
Fir, amabilis	0.37	0.42	2.75	4.45	915	5.50	0.53	1.70	2,00	0,22	0.47	0.17	165	140																								
Fir, balsam(Abies balsamea)	0.34	0.41	2.10	3.45	675	4.85	0.41	1.55	1.70	0.15	0.43	0.23	135	135																								
Fir, Douglas (1)	0.45	0.52	3.50	5.50	1110	6.65	0.63	2.40	2.80	0.37	0.64	0.14	230	215																								
Fir, Douglas (2)	0.40	0.44	2.55	4.50	830	6.40	0.51	1.80	2.10	0.32	0.62	0.25	205	180																								
Fir, grand	0.37	0.42	2.55	4.30	915	5.70	0.56	1.90	2,10	0.24	0.53	0.16	190	165																								
Fir, noble(Abies nobilis)	0.35	0.41	2.40	4.00	900	5.55	0.51	1.70	1.90	0,22	0.49	0.13	135	115																								
Fir, white	0.35	0.44	2.75	4.20	795	5.05	0.45	1.85	1.95	0.31	0.51	0.18	175	150																								
Hemlock, eastern (Tsuga canadensis)	0.38	0.44	2.95	4.70	790	5.55	0.51	1.90	2.30	0.35	0.62	0.18	230	185																								
Hemlock, western (Tsuga heterophylla)	0.38	0.43	2.40	4.30	835	5.50	0.51	1.60	2.05	0.25	0.57	0.18	245	195																								
Larch, western	0.48	0.59	3.25	5.25	950	6.65	0.61	2.30	2.70	0.39	0.65	0.16	215	205																								
(Pinus heterophylla) Pine, loblolly	0.58	0.59	3.95		1150	7.95 6.70	0.94	2,80	3.15	0.41	0.72	0,20	185																									
(Pinus taeda) Pine, lodgepole	0.38	0.44	2.10	3.85	970 760	5.05	0.51	1.50	1.85	0.39	0.49	0.20	145	150																								
(Pinus contorta)		26.		6		. 6-	- 06																															
Pine, longleaf	0.55	0.64	3.80	6.10	1150	7.60	0.86	2.70	3.10	0.42	0.75	0.20	250	270																								
Pine, Norway. (Pinus resinosa) Pine, pitch.	0.44	0.51	2.60	4.50	970 790	5.35 6.40	0.71	1.75	2.20	0.25	0.55	0.13	210	220																								
(Pinus rigida) Pine, shortleaf	0.50	0.58	3.15	5.65	1020	7.90	0.74	2.50	2.15	0.30	0.63	0.23	220	255																								
(Pinus echinata) Pine, sugar	0.36	0.39	2.30	3.75	685	4.70	0.43	1.65	1.85	0.25	0.50	0.19	150	145																								
(Pinus lambertiana) Pine, western white	0.39	0.45	2.45	4.00	935	5.35	0.58	1.95	2.15	0.21	0.50	0.18	150	150																								
(Pinus monticola) Pine, western yellow	0.38	0.42	3.20	3.65	710	4.70	0.48	1.45	1.75	0.24	0.43	0.20	140	145																								
(Pinus ponderosa)			3.23	5.55	,	4.75	5,40	2,43	2.,5	3124	5,45	3.23	.40	243																								
Pine, white	0.36	0.39	2.40	3.75	750	4.55	0.46	1.65	1.90	0,22	0.45	0.18	135	135																								
(Ficea rubens)	0.48	0.41	2.40	4.00	830	5.05	0.46	1.65	1.95	0.25	0.54	0.15	190	160																								
Spruce, Sitka	0.34	0.37	2.10	3.85	830	5.05	0.74	1.60	1.85	0.23	0.55	0.16	195	170																								
(Larix laricina)	0.49	0.56	2.95	5.05	875	5.50	0.71	2.20	2.45	0.34	0.65	0.18	r85	170																								
Yew, western(Taxus brevifolia)	0.60	0.67	4.55	7. 10	695	9.20	0.97	2.40	3.25	0.73	1.14	0.32	610	520																								
Spruce, red. (Ficea rubens) Spruce, Sitka (Picea sitchensis) Tamarack.	0.34	0.37	2.10	3.85	830	5.05	0.74	1.60	1.85 2.45	0.23	0.55	0.16	195	170																								

Note. — The data above are extracted from tests on one hundred and twenty-six species of wood made at the Forest Products Laboratory, Madison, Wisconsin. Bulletin 556 records results of tests on air-dry timber also, but only data on green timber are shown, as the latter are based on a larger number of tests and on tests which are not influenced by variations in moisture content. The strength of dry material usually exceeds that of green material, but allowable working stresses in design should be based on strengths of green timber, inasmuch as the increase of strength due to drying is a variable, uncertain factor and likely to be offset by defects. All test specimens were two inches square, by lengths as shown.

COLUMN NOTES. —2, Locality where grown, — see Tables 74 and 75; 3, Moisture includes all matter volatile at 100° C expressed as per cent of ordinary weight; 5, Weight, air dry is for wood with 12 per cent moisture; for density, see metric unit tables 72 and 73; 6-10, 762 mm (30 in.) long specimen on 711.2 mm (28 in.) span, with load at center.

9	8 MECHANICAL	PROPERTIE	s. TA	BLE 7	74. —	Hardw	oods G	rown	in U. S	. (Engl	ish Ur	rits).	
			foisture content, green, per cent.	Wei	ight.	Sta	tic bendi	ing.	Impact bending.	Compr	ession.	Shear.	Ten- sion.
	Common and botanical name.			Green.	Air-dry.	P-limit, lb/in²	Modulus of rupture, lb/in²	Modulus of elasticity 1000×lb/in²	P-limit, lb/in²	Parallel to grain.  P- limit.  lb/in²	Perpendicular to grain, P-limit lb/in³	Parallel to grain, ult. st. lb/in²	Perpendicular to grain, ult. st. ll/in2
	1	2	3	4	5	6	7	8	9	11	13	14	15
Н	Alder, red	Wash.	98	46	28	3800	6500	1170	8000	2650	310	770	390
I		Mich. and	83	53	34	2600	6000	1020	7200	1620	430	870	490
I	(Fraxinus nigra) Ash, white (forest grown).	Wis. Ark. and W. Va.	43	46	40	4900	9100	1350	11700	3230	800	1260	620
ı	(Fraxinus americana) Ash, white (2d growth) (Fraxinus americana)	N. Y.	40	51	46	6100	10800	1640	13800	3820	790	1600	790
	Aspen (Populus tremuloides)	Wis.	107	47	27	2900	5300	840	6900	1620	200	620	180
	Basswood(Tilia americana)	Wis. and Pa.	103	41	26	2700	5000	1030	6200	1710	210	610	280
	Beech(Fagus alropunicea)	Ind. and Pa.	62	55	44	4500	8200	1240	10400	2550	610	1210	760
ı	Birch, paper (Betula papyrifera)	Wis. and Pa.	72	51	38	2900	5800	1010	7800	1650	300	790	380
1	Birch, yellow	Wis.	68	58	45	4600	8600	1540	11700	2760	450	1110	480
ı	Butternut	Tenn. and Wis. Pa.	104	46	27	2900	5400	970	7300	1960	270	760	430
ı	(Prunus serotina)		55 122	46	36 30	4200	8000 5600	1310	10200	29.10	380	800	570
П	Chestnut (Castanea dentata)	Md. and Tenn.	111	55	29	3100	5300	930	7900	2040	240	680	430
ı	Cottonwood	Tenn.	80	50	33	4200	7400	1560	9300	2760	410	990	440
Н	(Magnolia acuminata) Dogwood (flowering)	Tenn.	62	65	54	4800	8800	1180	7100		1030	1520	_
ı	(Cornus florida) Elm, cork	Wis.	50	54	45	4600	9500	1100	11000	2870	750	1270	660
ı	(Utmus racemosa) Elm, white	Wis. and Pa.	88	52	35	3600	6900	1030	8100	2200	390	020	560
ı	(Úlmus americana) Gum, blue	Cal.	79	70	54	7600	11200	2010	14200	4870	1020	1550	640
П	(Eucalyptus globulus) Gum, cotton	La.	97	56	34	4200	7300	1050	9000	2760	590	1190	600
ı	(Nyssa aquatica) Gum, red	Mo.	81	50	36	3700	6800	1150	10000	2360	460	1070	510
ı	(Liquidambar styraciflua) Hickory, pecan	Mo.	63	61	46	5200	9800	1370	12300	3040	960	1480	630
ì	(Hickory, shagbark	O., Miss., Pa. and W. Va.	60	64	51	5900	11000	1570	14400	3430	1000	1320	-
ı	(Hicoria ovata) Holly, American	Tenn.	82	57	40	3400	6500	900	8900	1970	610	1130	610
1	(Ilex opaca) Laurel, mountain (Kalmia latifolia)	Tenn.	62	62	49	5800	8400	920	10200	-	1110	1670	-
ı	Locust, black	Tenn.	40	58	49	8800	13800	1850	18300	6280	1430	1760	770
ı	Locust, honey	Mo. and Ind.	63	or	47	5600	10200	1290	11800	3320	1420	1660	930
ı	Magnolia (evergreen) (Magnolia foetida)		117	62	35	3600	6800	1110	8800	2 200	570	1040	610
ı	Maple, silver		66	46	34	3100	5800	940	6800	1950	460	1050	560
ı	Maple, sugar(Acer saccharum)	Ind., Pa. and Wis.		56	44	5000	9100	1480	12100	3120	750	1380	770
	Oak, canyon live	Cal.	62	71	56	6300	10600	1340	11200	4050	1480	1700	970
	Oak, red(Quercus rubra)	Ark., La., Ind.	8 ₄ 68	64	45	3700	7700	1290	10400	2330	730	1120	740
	Oak, white(Quercus alba)	Ark., La. and Ind. Mo.		63	53	4700 5600	8300	1250	10700	3030	830	1250	770
	Persimmon(Diospyros virginiana) Poplar, yellow	Tenn.	58 64	38	28	3200	5600	1370	8000	2000	310	790	460
	(Liriodendron tulipifera Sycamore			52	35	3300	6500	1060	8800	2390	450	1000	630
	(Platanus occidentalis) Walnut, black		81	58	39	5400	9500	1420	11900	3600	600	1220	570
	(Juglans nigra)	1-7.		"-		J 755	,,,,,,		1	1			

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 2 by 2 inches in section, 30 inches long tor bending; others, shorter. Tested in a green condition. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 97 and 99 for explanation of columns.

												99
		t t	We	ight.	St	atic bend	ling.	Impact bending.	Compr	ression.	Shear.	Ten- sion.
Common and botanical	Locality	e content, per cent.	_		/in²	of o/in²	i elas- Ib/in²	/in²	Parallel to grain	lar to mit	rain,	ar to lb/in²
name.	where grown.	Moisture co	Green.	Air- dry.	P-limit, lb/in²	Modulus of rupture, lb/in2	ulus of	P- limit, lb/in²	P- limit.	Perpendicular to grain, P-limit lb/in²	Parallel to grain, ult. st. lb/in²	Perpendicular to rain, ult. st. lb/in²
		Z	lb/	/ft³	II-d	und	Modulus of e	P-1	lb/in²	Регр gra	Paral ult	Perpe grain, 1
1	2	3	4	5	6	7	8	9	11	13	14	15
Cedar, incense(Libocedrus decurrens)	Cal. and Ore.	108	45	24	3900	6200	840	7300	2870	460	830	280
Cedar, Port Orford (Chamaecyparis law- soniana)	Ore.	52	39	31	3900	6800	1500	9300	3970	380	880	240
Cedar, western red (Thuja plicata)	Wash. and Mont.	39	27	23	3300	5200	950	7100	2500	310	720	210
Cedar, white	Wis.	55	28	21	2600	4200	640	5300	1420	290	620	240
(Taxodium distichum)	La. and Mo.	87	48	30	4000	6800	1190	8000	3100	470	820	280
Fir, amabilis	Ore. and Wash.	102	47	27	3900	6300	1300	7800	2380	320	670	240
Fir, balsam (Abies balsamea)	Wis.	117	45	25	3000	4900	960	6900	2220	210	610	180
Fir, Douglas (1) (Pseudotsuga taxifolia)	Wash. and Ore.	36	38	34	5000	7800	1580	9400	3400	530	910	200
Fir, Douglas (2) (Pseudotsuga taxifolia)	Mont. and Wyo.	38	34	32	3600	6400	1180	9100	2520	450	880	350
Fir, grand	Mont. and Ore.	94	44	27	3600	6100	1300	8100	2680	340	700	230
Fir, noble	Ore.	41	31	26	3400	5700	1280	7900	2370	310	700	180
Fir, white	Cal.	156	56	26	3900	6000	1130	7200	2610	440	730	260
Hemlock (eastern)	Tenn. and Wis.	105	48	29	4200	6700	1120	7900	2710	500	880	260
(Tsuga canadensia) Hemlock (western) (Tsuga heterophylla)	Wash.	71	41	29	3400	6100	1190	7800	2290	350	810	260
Larch, western (Larix occidentalis)	Mont. and Wash.	58	48	37	4600	7500	1350	9400	3250	560	920	230
Pine, Cuban (Pinus heterophylla)	Fla.	47	53	45	5600	8800	1630	11300	3950	590	1030	290
Pine, loblolly (Pinus taeda)	Fla., N. and S. Car.	70	54	39	4400	7500	1380	9500	2870	550	900	280
Pine, lodgepole (Pinus contorta)	Col., Mont.	65	39	28	3000	5500	1080	7200	2100	310	690	220
Pine, longleaf	Fla., La. and	47	50	43	5400	8700	1630	10800	3840	600	1070	290
Pine, Norway	Wis.	54	42	34	3700	6400	1380	7500	2470	360	780	190
Pine, pitch(Pinus rigida)	Tenn.	85	54	35	3700	6700	1120	9100	2100	510	950	350
Pine, shortleaf	Ark. and La.	64	50	37	4.500	8000	1450	11200	3650	480	890	330
Pine, sugar(Pinus lambertiana)	Cal.	123	50	26	3300	5300	970	6700	2 <b>3</b> 40	350	710	270
Pine, western white (Pinus monticola)	Mont.	58	39	30	3500	5700	1330	7600	2770	300	710	250
Pine, western yellow (Pinus ponderosa)	Col., Mont., Ariz., Wash. and Cal.	95	46	28	3100	5200	1010	6700	2080	340	680	280
Pine, white	Wis.	74	39	27	3400	5300	1070	6500	2370	310	640	260
Spruce, red (Picea rubens)	N. H. and Tenn.	43	34	28	3400	5700	1180	7200	2360	350	770	220
Spruce, Sitka(Picea sitchensis)	Wash.	53	33	26	3000	5500	1180	7900	2280	330	780	230
(Larix laricina)	Wis.	52	47	38	4200	7200	1240	7800	3010	480	860	260
Yew, western	Wash.	44	54	45	6500	10100	990	13100	3400	1040	1620	450

COLUMN NOTES (continued).— (7) recommended allowable working stress (interior construction): \(\frac{1}{2}\) tabular value; experimental results on tests of air-dry timber in small lear pieces average 50 per cent higher; kiin-dry, double tabular values; (10) repeated falls of 50-lb. hammer from increasing heights; 11-12, 203.2-mm (8 in.) long specimen loaded on ends with deformations measured in a 152.4-mm (6 in.) gage length; (12) allowable working stress \(\frac{1}{2}\) tabular crushing strength; (13) 152.4-mm (6 in.) long block loaded on its side with a central bearing area of 2580.6-mm² (4 in²) allowable working stress, \(\frac{1}{2}\) tabular value; (14) 50.5-mm (2 in.) projecting lip sheared from block; allowable working stress, \(\frac{1}{2}\) tabular value; (15) 63.5-mm (2\(\frac{1}{2}\) in.) specimen with 25.4-mm (1 in.) free loaded length; allowable working stress, \(\frac{1}{2}\) tabular value. (16-1/) for values in lbs. multiply values of metric tables by 2.2.

### TABLES 76-77.

### ELASTIC MODULI. TABLE 76 .- Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	Substance.	Rigidity Modulus.	Refer- ence.
Aluminum  " cast Brass  " cast, 60 Cu + 12 Sn Bismuth, slowly cooled Bronze, cast, 88 Cu + 12 Sn Cadmium, cast Copper, cast  " " Gold  " Iron, cast  " " " " " " " " Magnesium, cast Nickel Phosphor bronze	3350 2580 3550 3715 3700 1240 4060 2450 4780 4213 4450 4664 2850 3950 5210 6706 7975 6940 8108 7505 1710 7820 4359	14 5 10 11 5 5 5 5 5 18 10 19 5 14 5 15 10 17 16 14 5 16 17 16 17 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Quartz fibre  "" " hard-drawn Steel. " cast " cast, coarse gr. " silver- Tin, cast " Zinc " Platinum " Glass " Clay rock Granite Marble Slate	2888 2380 2960 2650 2566 2816 8290 7458 8070 7872 1730 1543 3880 3820 6630 6220 2350 2730 1770 1280 1190 2290	20 21 5 10 16 11 16 15 5 11 5 19 5 19 16 22 

References 1-16, see Table 48. 17 Grätz, Wied. Ann. 28, 1886.

18 Savart, Pogg. Ann. 16, 1829.19 Kiewiet, Diss. Göttingen, 1886.20 Threlfall, Philos. Mag. (5) 30, 1890.

21 Boys, Philos. Mag. (5) 30, 1890.

22 Thomson, Lord Kelvin. 23 Gray and Milne.

24 Adams-Coker, Carnegie Publ. No. 46, 1906.

### TABLE 77. - Variation of the Rigidity Modulus with the Temperature.

72,	$n = n_o$ (1	— at —	- <b>\beta</b> t^2	$\gamma t^3$ ), w	here t	= temperati	ure Centigra	de.	
Substance.		Ro	a106	β108	γ1010		Author	ity,	
Brass		2652 3200 3972 3900 8108 6940 6632 2566 8290	2158 455 2716 572 206 483 111 387 187	48 36 -23 28 19 12 50 38 59	32 -47 -11 -8 11 -9	Kohlrause Pisati, loc K and L, Pisati, loc K and L, Pisati, loc	loc. cit. . cit. loc. cit. . cit.		
ħ	ne* == 1115	[1 - a	(1-15)	]; Ho	rton, P	hilos. Trans	. 204 A, 190	5.	
Copper (com- mercial)	4.37* a= 3.80 8.26 8.45	.00039 .00038 .00029	Gold Silve Alun					1.50* 0.80 2.31 3.00	α == .00416 .00164 .0058 .00012

^{*} Modulus of rigidity in 1011 dynes per sq. cm.

### TABLE 78 .- Interior Friction at Low Temperatures.

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

Substance	Cu	Ni	Au	Pd	Pt	Ag	Quartz
Length of wire in cm.	22.5	22.2	22.3	22.2	23.0	17.2	17.3
Diameter in mm	.643	.411	.609	•553	.812	.601	.612
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7·54 ·417 3·754s 7·85 ·556	2.55 4.82 2.969s 2.62 6.36	1.67 2.579 5.08 1.25 2.571S 5.12 .744 2.552S 5.19	2.98 1.143s 5.77 4.60 1.133s 3.02 1.111s 6.10	55.8 ·1.808s 2.7! 7.19 1.759s 2.87 1.64 1.694s 3.18	4.69 1.408s 2.26 1.02

#### TABLE 79 .- Hardness.

Agate 7. Alabaster 1.7 Alum 2-2.5 Aluminum 2. Amber 2-2.5 Andalusite 7.5 Anthracite 2.2 Antimony 3.3 Apatite 5. Arsenic 3.5 Aspestos 5. Asphalt 1-2. Augite 6. Barite 3.3 Beryl 7.8 Bell-metal 4. Bismuth 2.5 Boric acid 3.	Brass 3-4- Calamine 5. Calcite 3. Copper 2.5-3. Corundum 9. Diamond 10. Dolomite 3.5-4. Feldspar 6. Flint 7. Fluorite 4. Galena 2.5-3. Garnet 7. Glass 4.5-6.5 Gold 2.5-3. Graphite 0.5-1. Gypsum 1.6-2. Hematite 6. Hornblende 5.5 Iridium 6.	Phosphorbronze Platinum Platin-iridium Pyrite Quartz Rock-salt  4.3 6.5 6.3 7.	Steel 5-8.5 Talc 1. Tin 1.5 Topaz 8. Tourmaline 7.3 Wax (0°) 0.2 Wood's metal 3.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------	----------------------------------------------------------------------------------

From Landolt-Börnstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 1891.

### TABLE 80 .- Relative Hardness of the Elements.

C         10.0         Ru         6.5         Cu         3.0           B         9.5         Mn         5.0         Sb         3.0           Cr         9.0         Pd         4.8         Al         2.9           Os         7.0         Fe         4.5         Ag         2.7           Si         7.0         Pt         4.3         Bi         2.5           Ir         6.5         As         3.5         Zn         2.5	Te 2.3 Cd 2.0 S 2.0 Se 2.0	Sn 1.8 Li 0.1 Sr 1.8 P 0. Ca 1.5 K 0. Ga 1.5 Na 0. Pb 1.5 Rb 0. In 1.2 Cs 0.
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------	---------------------------------------------------------------------------------------------

Rydberg, Zeitschr. Phys Chem 33, 1900

## TABLE 81.—Ratio, ρ, of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

#### TABLE 82.

### **ELASTICITY OF CRYSTALS.***

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols  $\alpha \beta \gamma, \alpha_1 \beta_1 \gamma_1$  and  $\alpha_2 \beta_2 \gamma_2$  represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite. 
$$\frac{10^{10}}{E} = 16.13\alpha^{4} + 18.51\beta^{4} + 10.42\gamma^{4} + 2(38.75\beta^{3}\gamma^{2} + 15.21\gamma^{2}\alpha^{2} + 8.88\alpha^{2}\beta^{2})$$

$$\frac{10^{10}}{T} = 69.52\alpha^{4} + 117.66\beta^{4} + 116.46\gamma^{4} + 2(20.16\beta^{3}\gamma^{2} + 85.29\gamma^{2}\alpha^{2} + 127.35\alpha^{2}\beta^{2})$$
Beryl (Emerald). 
$$\frac{10^{10}}{E} = 4.325\sin^{4}\phi + 4.619\cos^{4}\phi + 13.328\sin^{2}\phi\cos^{2}\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675\cos^{4}\phi_{2} - 17.536\cos^{2}\phi\cos^{2}\phi$$
where  $\phi \phi_{1} \phi_{2}$  are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.

Fluorite. 
$$\frac{10^{10}}{E} = 13.05 - 6.26(\alpha^{4} + \beta^{4} + \gamma^{4})$$

$$\frac{10^{10}}{T} = 58.04 - 50.08(\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Pyrite. 
$$\frac{10^{10}}{E} = 18.60 - 17.95(\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Rock salt. 
$$\frac{10^{10}}{T} = 18.60 - 17.95(\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Sylvite. 
$$\frac{10^{10}}{T} = 154.53 - 77.28(\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Sylvite. 
$$\frac{10^{10}}{T} = 306.0 - 192.8(\beta^{3}\gamma^{2} + \gamma^{2}\alpha^{2} + \alpha^{2}\beta^{2})$$
Topaz. 
$$\frac{10^{10}}{E} = 4.341\alpha^{4} + 3.460\beta^{4} + 3.771\gamma^{4} + 2(3.875\beta^{2}\gamma^{2} + 2.856\gamma^{2}\alpha^{2} + 2.39\alpha^{2}\beta^{2})$$

$$\frac{10^{10}}{T} = 14.88\alpha^{4} + 16.54\beta^{4} + 16.45\gamma^{4} + 30.89\beta^{2}\gamma^{2} + 40.89\gamma^{2}\alpha^{2} + 43.51\alpha^{2}\beta^{2}$$
Quartz. 
$$\frac{10^{11}}{E} = 12.734(1 - \gamma^{2})^{2} + 16.693(1 - \gamma^{2})\gamma^{2} + 9.705\gamma^{4} - 8.466\beta\gamma(3\alpha^{2} - \beta^{2})$$

=  $19.665 + 9.060\gamma_2^2 + 22.984\gamma^2\gamma_1^2 - 16.920 \left[ (\gamma \beta_1 + \beta \gamma_1) (3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2 \right]$ 

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

### ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

		1	_		1
Substance.	$\mathbf{E}_{a}$	$\mathbf{E}_{b}$	$\mathbf{E}_{c}$	$T_a$	Authority.
Fluorite	1473 × 10 ⁶	1008 × 106	010 × 10 ₆	24 F \ 70f	Voiet t
Pyrite		$2530 \times 10^6$	2310 × 10 ⁶	$345 \times 10^{6}$	Voigt.†
	$3530 \times 10^{6}$		2310 X 10°	1075 × 106	
Rock salt	$419 \times 10^{6}$	$349 \times 10^{6}$	$303 \times 10^{6}$	$129 \times 10^{6}$	1
	$403 \times 10^{6}$	$339 \times 10^{6}$	-		Koch.‡
Sylvite	$401 \times 10^{6}$	$209 \times 10^{6}$	_	_	"
"	$372 \times 10^{6}$	$196 \times 10^{6}$		655×105	Voigt.
Sodium chlorate .	$405 \times 10^{6}$	$310 \times 10^{6}$		_	Koch.
Potassium alum	$181 \times 10^{6}$	$199 \times 10^{6}$	_	_	Beckenkamp.
Chromium alum .	$161 \times 10^{6}$	$177 \times 10^{6}$			"
Iron alum	$186 \times 10^{6}$		_		"

### (b) ORTHORHOMBIC SYSTEM.

Substance.	E ₁	$\mathbf{E}_2$	E ₃	$\mathbf{E}_4$	$\mathbf{E}_{5}$	$\mathbf{E}_{6}$	Authority.
Parite . Topaz .	$620 \times 10^{6}$ $2304 \times 10^{6}$	540 X 1 2890 X 1	$\begin{array}{c c} 06 & 959 \times 10^6 \\ 06 & 2652 \times 10^6 \end{array}$	$376 \times 10^{6}$ $2670 \times 10^{6}$	$702 \times 10^{6}$ $2893 \times 10^{6}$	740 × 106 3180 × 106	Voigt.
5	Substance.		T ₁₂ = T ₂₁	$T_{13} = T_3$	T ₂₃ =	= T _{3 2}	Authority.
Barite . Topaz .			283 × 10 ⁶ 1336 × 10 ⁶	293 × 10	06 121 06 1104	× 10 ⁶ V	oigt.

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
,  $E_{45} = 1796 \times 10^6$ ,  $E_{90} = 2312 \times 10^6$ ,

prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
,  $E_{-45} = 1305 \times 10^6$ ,  $E_{+45} = 850 \times 10^6$ ,  $E_{90} = 785 \times 10^6$ ,  $T_0 = 508 \times 10^6$ ,  $T_{90} = 348 \times 10^6$ .

Baumgarten ¶ gives for calcite

$$E_0 = 501 \times 10^6$$
,  $E_{-45} = 441 \times 10^6$ ,  $E_{+45} = 772 \times 10^6$ ,  $E_{90} = 790 \times 10^6$ .

^{*} In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

† Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.

‡ Koch, "Wied. Ann." 18, p. 325, 1882.

§ Beckenkamp, "Zeit. für Kryst." vol. 10.

I The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

¶ Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

### COMPRESSIBILITY OF GASES.

TABLE 84.—Relative Volumes at Various Pressures and Temperatures, the volumes at 0°C and at 1 atmosphere being taken as 1 000 000.

		Oxygen.			Air.		1	Nitrogen		ŀ	Iydrogen	
Atm.	00	99 ⁰ -5	199 ⁰ .5	oo	99 ⁰ •4	200 ⁰ .4	00	99°-5	1990.6	00	99 ⁰ ·3	2000.5
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1800 1735	7000 4843 3830 3244 2867 2610 2417 2268 2151	9095 6283 4900 4100 3570 3202 2929 2718	9730 5050 3658 3036 2680 2450 2288 2168 2070 1992	7360 5170 4170 3565 3180 2904 2699 2544 2415	9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	9532 6715 5331 4515 3973 3589 3300 3085	5690 4030 3207 2713 2387 2149 1972 1832 1720	7567 5286 4147 3462 3006 2680 2444 2244 2093	9,420 6,520 507,5 4210 3627 3212 2900 2657

Amagat: C. R. 111, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

### TABLE 85 .- Ethylene.

pv at oo C and I atm. = I.

Atm.	oo	100	200	30°	40 ⁰	60 ⁰	80°	1000	137°-5	1980.5
46 48		0.562	• 0.684	-	-	-	- 1	-		- 1
50 52	0.176	อ.420	0.629	0.731	0.814	0.954	1.077	1.192	1.374	1.652
52 54	_	0.240	0.598 0.561	_	_	Ξ	_	-	_	_
54 56	-	0.227	0.524	-	_		-	-	-	-
100	0.310	0.331	0.360	0.403	0.47 I	0.668	0.847	1.005	1.247	1.580
150	0.441	0.459	0.485	0.515	0.551	0.649	0.776	0.924	1.178	1.540
200	0.565	0.585	0.610	0.638	0,669	0.744	0.838	0.946	1.174	1.537
300	0.806	0.827	0.852	0.878	0.908	0.972	1.048	1.133	1.310	1.628
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798	-

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

#### TABLE 86,-Relative Gas Volumes at Various Pressures.

The following table, deduced by Mr. C. Cochrane, from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to 1 atmosphere:

Gas. (Temp.= 16°C.).	Relative	volume wh	ich the gas	will occupy mospheric	when the	pressure
	ı atm.	50 atm.	100 atm.	120 atm.	150 atm.	200 atm.
"Perfect" gas	I	50	100	120	150	200
Hydrogen	I	48.5	93.6	111.3	136.3	176.4
Nitrogen	I	50.5	100.6	120.0	147.6	190.8
Air	I	50.9	101.8	121.9	150.3	194.8
Oxygen	I		105.2			212.6
Oxygen (at o° C.)	I	52.3	107.9	128.6	161.9	218.8
Carbon dioxide	Ĭ	69.0	477*	485*	498*	515*

^{*} Carbon dioxide is liquid at pressures greater than 90 atmospheres.

### COMPRESSIBILITY OF GASES.

TABLE 87 .- Carbon Dioxide.

	I				Relativ	ve values	of pv at —				
Pressure in meters of mercury.	180.2	350	P.1 4	0°.2	50°.0	60°.0	700.	1	٥.٥	900.0	0.0001
30 50 80 110 140 170 200 230 260 290 320	liqui - 625 825 1020 1210 1405 1590 1770 1950 2135	17 7 9 11 13 15 16	25   1 50 30 20   1 10   1 00   1 90   1 70   1	2460 900 825 980 175 360 550 730 920 920 1100 280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2870 252 197 1550 152 164 1810 1990 2160 2340 252	5 26 5 22 5 18 5 17 5 17 0 20 0 20 6 22 0 24	585 225 345 715 780 930 930 965	31 20 2845 2440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830
			R	elative va	lues of pz	v; pv at c	o ^o C. and	ı atm. =	r,		
Atm	oo	100	20 ⁰	30°	40 ⁰	60°	800	1000	1370	1980	2580
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	- 1.582 1.530 1.493 1.678	1.847 1.818 1.820

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 88. - Compressibility of Gases.

Gas.	p.v. (½ atm.) povo (1 atm.).	$ \frac{1}{p.v.} \frac{d(p.v.)}{dp} = a. $	t	t = 0	Density. O = 32, 0°C P = 76°m	Density Very small pressure.
$\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$	1.00038 0.99974 1.00015 1.00026 1.00279 1.00327 1.00026 1.00632	00076 +.00052 00030 00052 00558 00654 00046	11.2° 10.7 14.9 13.8 15.0 11.0	00094 +00053 00056 00081 00668 00747	32. 2.015 (16°) 28.005 28.000 44.268 44.285	32. 2.0173 28 016 28.003 44.014 43.996

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 89. — Compressibility of Air and Oxygen between  $18^{\circ}$  and  $22^{\circ}$  C.

Pressures in meters of mercury, pv, relative.

Air	p pv	24.07 26968	34.90 26908	45.24 26791	55.30 26789	64.00 26778	72.16 26792	84.22 26840	101.47 27041	214.54	304.04 32488
O ₂	p pv	24.07 26843	34.89 26614	-	55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.06 25639	214.52 26536	303.03 28756

Amagat, C. R. 1879.

# RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

#### TABLE 90 .- Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in nos.	Correspon periment	ding Volum s at Tempe	ne for Ex-	Volume.	Pressure Experime	in Atmosph nts at Temp	heres for berature —
Pressure i	58°.0	99°.6	183°.2	Voidine.	58°.0	99 ⁰ .6	183°.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120 140	8560 6360 4040 - - - - - - - - - -	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450	- - - 3180 2640 2260 2040 1640 1375 1130 930 790 680 545 430	10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2000 1500	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	- - - - - 29.10 33.25 40.95 55.20 76.00

#### TABLE 91. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon perimen	nding Volun ts at Tempe	ne for Ex- rature —	Volume.	Pressure in Atmospheres for Experiments at Temperature —				
Pressure Atmos.	46°.6	99 ⁷ .6	183°.6	v orume.	30°.2	46°.6	99°.6	183°.0	
10 12.5 15 20 25	9500 7245 5880 -	- 7635 6305 4645 3560	- - 4875 3835	10000 9000 8000 7000	8,85 9.60 10.40 11.05	9.50 10.45 11.50 13.00	12.00 13.60	- - -	
30 35 40 45 50		2875 2440 2080 1795 1490 1250	3185 2680 2345 2035 1775	6000 5000 4000 3500 3000	11.80 12.00 - -	14.75 16.60 18.35 18.30	15.55 18.60 22.70 25.40 29.20	19.50 24.00 27.20	
55 60 70 80 90	-	975 - - - -	1590 1450 1245 1125 1035 950	2500 2000 1500	- - -	- - -	34·25 41·45 49·70 59·65	31.50 37.35 45.50 58.00 93.60	

* From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

### COMPRESSIBILITY OF LIQUIDS.

At the constant temperature t, the compressibility  $\beta = (1/V_0)(dV/dP)$ . In general as P increases,  $\beta$  decreases rapidly at first and then slowly; the change of  $\beta$  with t is large at low pressures but very small at pressures above 1000 to 2000 megabars. In megabar = 0.987 atmosphere = 106 dyne/cm².

Substance.	Temp. ° C	Compressibility per megabars. $\beta \times 10^6$ .	Reference.	Substance.	Temp. °C	Pressure, megabars.	Compressibility per megabars. $\beta \times 10^6$ .	Reference.
Acetone.  ""  Amyl alcohol.  "" iso  "" iso  "" "  Benzene.  "" iso  "	20	9 23 88 84 84 800 70 61 800 88 97 800 56 800 88 21 86 800 821 86 800 86 800 77 800 66 800 86 800 70 90 90 90 90 90 90 81 90 90 90 90 90 82 90 90 90 82 90 90 90 82 90 90 90 90 82 90 90 90 90 82 90 90 90 90 90 90 90 90 90 90 90 90 90	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethyl ether, ct'd  """""""""""""""""""""""""""""""""	20 20 20 20 20 20 20 20 20 20	I,000 12,000 300 500 I,000 12,000 300 500 I,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000	61 10 81 69 64 50 8 3.97 22 117 91 55 45 8 8 3.97 3.91 2.37 103 80 65 54 8 8 77 65 47 7 7 64 74 64 74 49 43 41 43 49 69 60 60 60 60 60 60 60 60 60 60	1 1 1 1 6 16 1 1 1 1 1 1 1 1 1 1 1 1 1

For references, see page 108.

#### COMPRESSIBILITY OF SOLIDS.

If V is the volume of the material under a pressure P megabars and Vo is the volume at atmospheric pressure, then the compressibility  $\beta = -(1/V_0) (dV/dP)$ . Its unit is cm²/megadynes (reciprocal megabars).  $10^6/\beta$  is the bulk modulus in absolute units (dynes/cm²). The following values of  $\beta$ , arranged in order of increasing compressibility, are for P = 0 and room temperature. It megabar =  $10^6$  dynes = 1.013 kg/cm² = 0.987 atmosphere.

Substance.	Compression per unit vol. per megabar × 106	Bulk modulus. dynes/cm² × 10 ¹²	Reference.	Substance.	Compression per unit vol. per megabar × 106	Bulk modulus. dynes/cm ² × 10 ¹²	Reference.
Tungsten. Doron. Silicon. Platinum Nickel. Molybdenum Tantalum. Palladium. Iron. Gold. Pyrite. Copper. Manganese. Brass. Chromium Silver. Mg. silicate, crys. Aluminum Calcite. Zinc. Tin Gallium. Cadmium	0.3 0.32 0.38 0.43 0.46 0.53 0.60 0.60 0.7 0.75 0.84 0.99 0.99 1.33 1.39 1.74 1.89 2.09	3.7 3.0 3.1 2.6 2.3 2.2 1.9 1.67 1.67 1.67 1.12 1.12 1.12 1.12 1.01 0.97 0.75 0.75 0.48 0.46	2 2 2 2 2 2 2 2 2 3 1,2 4 1 1 1,2 4 1 1,2 4 1,2 1,1 1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1	Plate glass Lead. Thallium Antimony Quartz Magnesium Bismuth Graphite Silica glass Sodium chloride Arsenic Calcium Potassium chloride Lithium Phosphorus (red) Selenium Sulphur Lodine Sodium Phosphorus (white) Potassium Rubidium Rubidium Rubidium	2.23 2.27 2.3 2.4 2.7 2.9 3.0 3.1 4.12 4.5 5.7 7.4 9.0 9.2 12.0 12.0 12.0 15.6 20.5 31.7 40.0	0.45 0.44 0.43 0.42 0.37 0.33 0.33 0.32 0.24 0.22 0.175 0.111 0.109 0.083 0.078 0.077 0.064 0.049 0.032 0.025 0.016	4 I, 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

Note. — Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897, 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:

No.	Glass.	Compressibility.	No.	Glass.	Compressibility.
665 1299 16 278	Barytborosilicat Natronkalkzinksilicat	7520 5800 4530 3790	2154 S 208 500 S 196	Kalibleisilicat Heaviest Bleisilicat. Very Heavy Eleisilicat. Tonerdborat with sodium, baryte	3660 3550 3510 3470

The following values in cm²/kg of ro⁶ × Compressibility are given for the corresponding temperatures by Grüneisen, Ann. der Phys. 33, p. 65, 1910.

### References to Table 92, p. 107:

- (1) Bridgman, Pr. Am. Acad. 49, 1, 1913; (2) Roentgen, Ann. Phys. 44, 1, 1801; (3) Pagliani-Paluzzo, Mem. Acad. Lin. 3, 18, 1883; (4) Bridgman, Pr. Am. Acad. 43, 341, 1912; (5) Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19, 1919; (6) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 389, 1918; (7) Richards, J. Am. Ch. Soc. 37, 1646, 1915; (8) Bridgman, Pr. Am. Acad. 47, 381, 1911;

- (2) Amagat, C. R. 73, 143, 1872; (10) Amagat, C. R. 68, 1170, 1869; (11) Amagat, Ann. chim. phys. 29, 68, 505, 1893; (12) de Metz, Ann. Phys. 41, 663, 1890; (13) Adams, Williamson, Johnston, J. Am. Chem. Soc.
- (14) Colladon, Sturm, Ann. Phys. 12, 39, 1828; (15) Quincke, Ann. Phys. 19, 401, 1833; (16) Richards *et al.* J. Am. Ch. Soc. 34, 988, 1912.

#### References to Table 93, p. 108:

- (1) Adams, Williamson, Johnston, J. Am. Ch. Soc. 41, 39,
- 1919; (2) Richards, *ibid*. 37, 1646, 1915; (3) Bridgman, Pr. Am. Acad. 44, 279, 1909; 47, 366, 1911;
- (4) Adams, Williamson, unpublished;
  (5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
  (6) Voigt, Ann. Phys. 31, 1887; 36, 1888.

### SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé = 
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé = 
$$145 - \frac{145}{\text{Specific Gravity}}$$

	Specific Gravities less than 1.										
Specific	0.00	10.0	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
Gravity.	Degrees Baumé.										
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41	
	Specific Gravities greater than 1.										
Specific	0,00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
Gravity.					Degrees	Baumé.			·		
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	* 2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20	6.91 18.91 29.00 37.59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.93 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99	

#### TABLE 94 (a). Degrees A. P. I. Corresponding to Specific Gravities at 60°/60° F.

(15.56°/15.56° C) for petroleum oils.

In order to avoid confusion and misunderstanding the American Petroleum Institute, the Bureau of Mines, and the Bureau of Standards have agreed that a scale based on the modulus 141.5 shall be used in the United States Petroleum Industry and shall be known as the A. P. I. scale. The United States Baumé scale based on the modulus 140 will continue to be used for other liquids lighter than water.

Calculated from the formula, degrees A. P. I. = 
$$\frac{141.5}{\text{Sp. Gr. }60^{\circ}/60^{\circ}\text{ F}} - 131.5$$

Degrees A. P. I. 60°/60°F	0	I	2	3	4	5	6	7	8	9
0.6 .7 .8 .9	104.33 70.64 45.38 25.72 10.00	100.47 67.80 43.19 23.99	96.73 65.03 44.06 22.30	93.10 62.34 38.98 20.65	89.59 59.72 36.95 19.03	86.19 57.17 34.97 17.45	82.89 54.68 33.03 15.90	79.69 52.27 31.14 14.38	76.59 49.91 29.30 12.89	73.57 47.61 27.49 11.43

### DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.	Physical State.	Grams per cu. cm.*	Tempera- ture °C.†	Authority.
Aluminum	commercial h'd d'n	2.70	20°	Wolf, Dellinger, 1910
Antimony	wrought vacuo-distilled	2.65-2.80 6.618	20	Kahlbaum, 1902.
"	ditto-compressed	6.691	20	"
Argon	amorphous liquid	6.22 1.3845	- 183	Hérard. Baly-Donnan.
"	66	1.4233	<b>—</b> 189	
Arsenic	crystallized amorph. brblack	5.73 3.70	14	Geuther.
n- *-	yellow	3.70 3.88		Linck.
Barium Bismuth	solid	3.78 9.70–9.90		Guntz.
66	electrolytic	9.747		Classen, 1890.
66	vacuo-distilled liquid	9.781	20	Kahlbaum, 1902.
46	solid	9.67	27 I 27 I	Vincentini-Omodei.
Boron	crystal	2.535		Wigand.
Bromine	amorph. pure liquid	2.45 3.12		Moissan. Richards-Stull.
Cadmium	cast	8.54-8.57		Richards-tituit,
"	wrough <b>t</b> vacuo-distilled	8.67		V-hlb
	solid	8.648 8.37	318	Kahlbaum, 1902. Vincentini-Omodei.
"	liquid	7.99	318	66 66
Cæsium Calcium		1.873	20	Richards-Brink.
Carbon	diamond	3.52		Wigand.
Coming	graphite	2.25		Muthmann-Weiss.
Cerium "	electrolytic pure	6.79		Witthmann-Weiss.
Chlorine	liquid	1.507	- 33.6	Drugman-Ramsay.
Chromium	pure	6.52-6.73 6.92	20	Moissan.
Cobalt	puic	8.71	21	Tilden, Ch. C. 1898.
Columbium		8.4	15	Muthmann-Weiss.
Copper	cast annealed	8.30 <b>–</b> 8.95 8.89	20	Dellinger, 1911
44	wrought	8.85-8.95		
"	hard drawn vacuo-distilled	8.89 8.9326	20 20	Kahlbaum, 1902.
. "	ditto-compressed	8.9376	20	"
Erbium	liquid	8.217 4.77		Roberts-Wrightson. St. Meyer, Z. Ph. Ch. 37.
Fluorine	liquid	1.14	<del></del> 200	Moissan-Dewar.
Gallium		5.93	23	de Boisbaudran. Winkler.
Germanium Glucinum		5.46 1.85	20	Humpidge.
Gold	cast	19.3		
,	wrought vacuo-distilled	19.33 18.88	20	Kahlbaum, 1902.
44	ditto-compressed	19.27	20	66
Helium	liquid	0.15	- 269	Onnes, 1908. Dewar, Ch. News, 1904.
Hydrogen Indium	liquid	0.070 7.28	252	Richards.

Compiled from Clarke's Constants of Nature, Landoh-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

^{*}To reduce to pounds per cu. ft. multiply by 62 4.
† Where the temperature is not given, ordinary atmospheric temperature is understood.

### DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State	Grams per	Tempera- ture °C.†	Authority.
Iridium		22.42	17	Deville-Debray
Indium		22.42	20	Richards-Stull
Iron	pure	4.940	20	Richards-Stuff
46	gray cast			
44	white cast	7.03-7.13		
46	wrought	7.80-7.90		
64	liquid	688		Roberts-Austen
44	steel	7.60-7.So		
Krypton	liquid	2 16	-146	Ramsay-Travers
Lanthanum	-	6.15		Muthmann-Weiss
Lead	vacuo-distilled	11.342	20	Kahlbaum, 1902
66	ditto-compressed	11.347	20	"
"	solid	11.005	325	Vincentini-Omodei
"	liquid	10.645	325	
"	46	10.597	400°	Day, Sosman, Hostetter,
Lithium		10.078	850°	Pichards Brink 'on
Magnesium		0.534	20	Richards-Brink, '07 Voigt
Manganese		7.42		Prelinger
Mercury	liquid	13.596	0	Regnault, Volkmann
66	"	13.546	20	regnatit, voikinaini
"	66	13.690	<b>—</b> 38.8	Vincentini-Omodei
44	solid	14.193	<b>—</b> 38.8	Mallet
44	46	14.383	-38.8 -188	Dewar, 1902
Molybdenum		9.01		Moissan
Neodymium		6.96		Muthmann-Weiss
Nickel		8.60-8.90		
Nitrogen	liquid	0.810	<del>-195</del>	Baly-Donnan, 1902
	46	0.854	-205	
Osmium	111.1	22.5	-0.	Deville-Debray
Oxygen	liquid	1.14	<b>—</b> 184	Richards-Stull
Palladium Phosphorus ‡	white	12.16		Richards-Stuff
1 nosphorus 1	red	2.20		
44	metallic	2.34	15	Hittorf
Platinum	310141110	21.37	20	Richards-Stull
Potassium		0.870	20	Richards-Brink, '07
	solid	0.851	62.1	Vincentini-Omodei
"	liquid	0.830	62.1	44 44
Præsodymium		6.475		Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium		1.532	20	Richards-Brink, '07
Ruthenium Samarium		12.06	0	Toby
Selenium Selenium	•	7.7-7.8		Muthmann-Weiss
Silicon	cryst.	4.3-4 8 2.42	20	Richards-Stull-Brink
"	amorph.		20	Vigoroux
Silver	cast	10.42-10.53	15	V Igoroux
"	wrought	10.42 10.55		X
	vacuo-distilled	10.492	20	Kahlbaum, 1902
46	ditto-compressed	10.503	20	
44	liquid	9.51		Wrightson
Sodium		0.9712	20	Richards-Brink, '07
"	solid	0.9519	97.6	Vincentini-Omodei
"	liquid	0.9287	97.6 —188	75
Canonai		1.0066	188	Dewar
Strontium		2.50-2.58		Matthiessen
Sulphur	liquid .	2.0-2.1 1.811	112	Vincentini-Omodei
	nquiu	1.011	113	vincentini-Omodei
			<u> </u>	

^{*}To reduce to pounds per cubic ft. multiply by 62.4.
† Where the temperature is not given, ordinary atmosphere temperature is understood.
‡ Black phosphorus, 2.69, Bridgman, 1918.

### 112 TABLES 95 (continued) AND 96. DENSITY OF VARIOUS SUBSTANCES.

TABLE 95 (continued). — Density in grams per cubic centimeter and pounds per cubic foot of the elements, liquid or solid.

Thallium	jankin. hards-Stull. ton. tthiessen.  centini-Omodei  See Table 65  kter.  mmermann. ff-Martin. msay-Travers. Meyer.  hlbaum, 1902. " berts-Wrightson.

TABLE 96. — Density in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood.

Wood is to be seasoned and of average dryness. See also pages 96 to 99 and 114.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds per cubic foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart	0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.56 0.83-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60 0.93-1.04	26-42 41-52 40-53 19-25 43-56 62 32-48 59-72 65 24 30-35 43-56 14-16 47 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 27-33 30-44 27-33 30-44 27-35 8-65	Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden of Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.60-0.80 0.60-0.93 0.76 1.03 0.56 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 .91 0.66 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.35-0.5 0.95 0.40-0.60 0.66-0.88 0.98 0.64-0.70 1.00 0.40-0.60	37-49 37-58 47 64 35 57 42-62 73-83 20-37 42-44 57 41 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

# DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per cu. cm.	Pounds per cu. foot.	Material.	Grams per cu. cm.	Pounds per cu. foot.
Agate Alabaster: Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax	2.5-2.7 2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97	156-168  168-173 141-145 163-165 66- 69 180-200 171-172 87-112 125-175 69- 94 150-190 60- 61	Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava: basaltic trachytic Leather: dry greased	1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 4.5-5. 1.83-1.92 2.7-2.72 2.8-3.0 2.0-2.7 0.86 1.02	80- 85 144-145 306-330 187 57-2 280-310 114-120 168-170 175-185 125-168 54 64
Beryl Biotite Bone Brick Butter Calamine	2.69-2.7 2.7-3.1 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5	16S-168 170-190 106-125 87-137 53-54 255-280	Lime: mortar slaked Limestone Litharge: Artificial Natural Magnetite	1.65–1.78 1.3–1.4 2.68–2.76 9.3–9.4 7.8–8.0 4.9–5.2	103-111 81- 87 167-171 580-585 490-500 306-324
Caoutchouc Celluloid Cement, set Chalk Charcoal: oak pine	0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44	57- 62 87 170-190 118-175 35 18- 28	Malachite Marble Meerschaum Mica Muscovite Ochre	3.7-4.1 2.6-2.84 0.99-1.28 2.6-3.2 2.76-3.00	231-256 160-177 62- 80 165-200 172-225 218
Chrome yellow Chromite Cinnabar Clay Coal, soft Cocoa butter Coke	6.00 4.32-4.57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7	374 270-285 507 122-162 75-94 56-57 62-105	Oligoclase Olivine Opal Orthoclase Paper Paraffin Peat	2.65-2.67 3.27-3.37 2.2 2.58-2.61 0.7-1.15 0.87-0.91	165-167 204-210 137 161-163 44- 72 54- 57 52
Copal Corundum Diamond: Anthracitic Carbonado Diorite Dolomite	1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.52 2.84	65-71 245-250 104 188-203 157	Pitch Porcelain Porphyry Pyrite Quartz Quartzite Resin	1.07 2.3-2.5 2.6-2.9 4.95-5.1 2.65 2.73	67 143-156 162-181 309-318 165
Ebonite Emery Epidote Feldspar Flint Fluorite	1.15 4.0 3.25–3.5 2.55–2.75 2.63 3.18	72 250 203–218 159–172 164 198	Rock salt Rutile Sandstone Serpentine Slag, furnace Slate	1.07 2.18 6.00–6.5 2.14–2.36 2.50–2.65 2.0–3.9 2.6–3.3 2.6–2.8	67 136 374-406 134-147 156-165 125-240 162-205
Gamboge Garnet Gas carbon Gelatine Glass: common flint Glue Granite	1.2 3.15-4.3 1.88 1.27 2.4-2.8 2.9-5.9 1.27 2.64-2.76	75 197-268 117 180 150-175 180-370 80 165-172	Soapstone Starch Sugar Talc Tallow Topaz Tourmaline Zircon	2.0–2.8 1.53 1.61 2.7–2.8 0.91–0.97 3.5–3.6 3.0–3.2 4.68–4.70	162–175 95 100 168–174 57– 60 219–223 190–200 292–293
Graphite	2.30-2.72	144-170			

# DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS.

Alloy.	Grams per cubic centimeter.	Pounds per cubic foot.
Brasses: Yellow, 70Cu + 30Zn, cast.  " " " rolled  " " drawn  " Red, 90Cu + 10Zn  " White, 50Cu + 50Zn  Bronzes: 90Cu + 10Sn  " 85Cu + 15Sn  " 80Cu + 20Sn  " 75Cu + 25Sn  " 80Cu + 20Sn  " 75Cu + 25Sn  German Silver: Chinese, 26.3Cu + 36.6Zn + 36.8Ni  " " Berlin (1) 52Cu + 26Zn + 22Ni  " " (2) 59Cu + 30Zn + 11Ni  " " " (3) 63Cu + 30Zn + 6Ni  " " Nickelin  Lead and Tin: 87.5Pb + 12.5Sn  " " " 84Pb + 16Sn  " " " 77.8Pb + 22.2Sn  " " " 63.7Pb + 36.3Sn  " " " 46.7Pb + 53.3Sn  " " " 40.7Pb + 53.3Sn  " " " 30.5Pb + 69.5Sn  Bismuth, Lead, and Cadmium: 53Bi + 40Pb + 7Cd  Wood's Metal: 50Bi + 25Pb + 12.5Cd + 12.5Sn  Cadmium and Tin: 32Cd + 68Sn  Gold and Copper: 98Au + 2Cu  " " " 96Au + 4Cu  " " 96Au + 4Cu  " " 99Au + 8Cu  " " 99Au + 8Cu  " " 99Au + 8Cu  " " 88Au + 12Cu  " " " 88Au + 12Cu		

### TABLE 96 (a).—Densities (g/cm³) of some foreign woods on the American market. (See also Tables 72-75 and 96.)

Almon Bullet-wood, Guiana Boxwood, West India Balsa Balsa Carreto Bullet-wood, Guiana Boxwood, West India Balsa LII Carpenter Boulger Orange Wood Padouk Padouk Prima Vera S9-1.29 WSFPL Purple-heart 1.7207 Boulger  .7207 Boulger									
Cedar, Spanish         .38         "         Quebracho         1.25         "         "         Quebracho         I.25         "         "         "         Quebracho         Rosewood, Brazil         .7784         "         "         "         "         Rosewood, Honduras         1.09 - 1.23         "         "         "         Sabicu         .9096         "         "         "         Sabicu         Snakewood         1.05 - 1.33         "         "         "         Tamarind         1.32         "         "         Gardner         Tanguile         .4751         Gardner         Gardner         Wallaba         .9394         Boulger         Boulger         Wallaba         .9394         Boulger           Oak, English         .6078         "         Zebra Wood         1.03         "         "	Bullet-wood, Guiana Boxwood, West India Balsa Carreto Cedar, Spanish Cocobola Cocus Fustic Koa Lauaan Red Mahogany, African Mahogany, E. Indian Mora	1.03 – 1.23 .83 – .88 .11 .84 .38 1.20 1.25 .68 .83 .41 .55 .38 1.07 – 1.09	Boulger Carpenter USFPL " Boulger Stone Boulger Howard Gardner Boulger " "	Orange Wood Padouk Prima Vera Purple-heart Quebracho Rosewood, Brazil Rosewood, Honduras Sabicu Snakewood Tamarind Tanguile Wallaba	.70 .89 – 1.29 .58 .72 – .97 1.25 .77 – .84 1.09 – 1.23 .90 – .96 1.05 – 1.33 1.32 .47 – .51	Howard Boulger " " " " Gardner			

# TABLE 99. - DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 97.)

Pure compounds, all at 25°C  Magnesia, MgO  Lime, CaO  Forms of SiO ₂ :  Quartz, natural  Cristobalite; artificial Silica glass  Forms of Al ₂ SiO ₅ :  Silica glass  Forms of Al ₂ SiO ₅ :  Silica glass  Forms of Al ₂ SiO ₅ :  CaAl ₂ Si ₂ O ₈ , art.  Soda anorthite,								
25°C Magnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural Cristobalite; artificial Silica glass Forms of Al ₂ SiO ₅ :  Quarts of Al ₂ SiO ₅ :  Quarts of Al ₂ SiO ₅ :  Cristobalite; artificial Silica glass Cristobalite; artificial Silica glass Forms of Al ₂ SiO ₅ :  Albite glass, NaAlSi ₃ O ₈ , art. Anorthite glass, CaAl ₂ Si ₂ O ₈ , art. Anorthite cryst., NaAlSi ₃ O ₈ , art. CaAl ₂ Si ₂ O ₈ , art. Soda anorthite,	Name and Formula.	grains	cc. per	Reference.	Name and Formula.	grams	cc. per	Reference.
Sillimanite cryst. Forms of MgSiO ₃ : $\beta$ Monoclinic pyroxene $\alpha'$ Orthorhombic pyroxene $\beta'$ Monoclinic amphibole $\gamma'$ Orthorhombic amphibole Glass Forms of CaSiO ₃ : $\alpha$ (Pseudo-wollastonite) $\beta$ (Wollastonite) Glass Forms of Ca ₂ SiO ₄ : $\alpha$ — calcium-orthosilicate $\beta$ — " $\beta'$	Agnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural "artificial Cristobalite; artificial Silica glass Forms of Al ₂ SiO ₅ : Sillimanite glass Sillimanite cryst. Forms of MgSiO ₃ : β Monoclinic pyroxene a' Orthorhombic pyroxene b' Monoclinic amphibole γ' Orthorhombic amphibole γ' Orthorhombic amphibole β (Wollastonite) β (Wollastonite) Glass Forms of CaSiO ₃ : α (Pseudo-wollastonite) β (Wollastonite) Glass Forms of Ca ₂ SiO ₄ : α — calcium-orthosilicate β — " γ — " β' —	3.603 3.306 2.646 2.642 2.319 2.206 2.53 3.022 3.183 3.166 2.849 2.735 2.904 2.906 2.895 3.27 2.965 3.27 2.965	.3025 .3779 .3785 .4312 .4533 .395 .3399 .3142 .3159 .3510 .3656 .3444 .3454 .307 .306 .337 .3301 .3546 .3365 .329 .3069 .3069 .3063	3. 5	Albite glass, NaAlSi ₃ O ₈ , art. Albite cryst., NaAlSi ₃ O ₈ , art. Anorthite glass, CaAl ₂ Si ₂ O ₈ , art. Anorthite cryst., CaAl ₂ Si ₂ O ₈ , art. Soda anorthite, NaAlSiO ₄ , art. Borax, glass, Na ₂ B ₄ O ₇ "cryst." Fluorite, natural, CaF ₂ (20°) (NH ₄ ) ₂ SO ₄ (30°) K ₂ SO ₄ (30°) K ₂ Cl, fine powder (30°) Forms of ZnS: Sphalerite, natural* Wurtzite, artificial† Greenockite, artificial Forms of HgS: Cinnabar, artificial Metacinnabar, artificial Metacinnabar, artificial Minerals: Gehlenite, from Velardena, 2Ca ₂ SiO ₄ CaCO ₃ Hillebrandite, from Velardena, CaSiO ₃ Ca(OH) ₂ Pyrite, natural, FeS Marcasite, natural, FeS Marcasite, natural, FeS *Only 0.15% Fe total impurity, Same composition as Sphaler-	2.375 2.597 2.692 2.757 2.563 2.36 2.27 3.180 1.765 2.657 1.984 4.090 4.087 4.820 8.176 7.58 3.03 3.005	.3851 .3715 .3627 .3902 .423 .440 .3145 .5666 .3764 .5040 .2444 .2447 .2075 .1223 .132	10 " " " " " " " " " "

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4. Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

### TABLE 100. - DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Temperature Molten tin 37 pts. Pb, 63, Sn.*	250°C. 6.982 8.011	300° 6.943 7.965	400° 6.875 7.879	500° 6.814 7.800	600° 6.755 7.731	900° 6.578	1200° 6.399	1400° 6.280	1600° 6.162
3/ pts. 13, 03, 51.	0.011	7,903	7.079	7.000	7.73.				

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 219.

# TABLES 101-102. WEIGHT OF SHEET METAL.

### TABLE 101.- Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness in thou- saudths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
1 2 3 4 5	78.0 156.0 234.0 312.0 390.0	89.0 178.0 267.0 356.0 445.0	85.6 171.2 256.8 342.4 428.0	26.7 53.4 80.1 106.8 133.5	215.0 430.0 645.0 860.0	193.0 380.0 579.0 772.0 965.0	105.0 210 0 315.0 420.0 525.0
6 7 8 9 10	468.0 546.0 624.0 702.0 780.0	534.0 623.0 712.0 801.0 890.0	513.6 599.2 684.8 770.4 8 <b>5</b> 6.0	160.2 186.9 213.6 240.3 267.0	1290.0 1505.0 1720.0 1935.0 2150.0	1158.0 1351.0 1544.0 1737.0 1930.0	630.0 735.0 840.0 945.0 1050.0

TABLE 102. - Weight of Sheet Metal. (British Measure.)

Thickness	Iron.	Iron. Copper.		Alum	inum.	Platinum,		
in Mils.	Pounds per	Pounds per	Pounds per	Pounds per	Ounces per	Pounds per	Ounces per	
	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	
1 2 3 4 5	.04058 .08116 .12173 .16231 .20289	.04630 .09260 .13890 .18520	.04454 .08908 .13363 .17817 .22271	.01389 .02778 .04167 .05556	.2222 .4445 .6667 .8890	.1119 .2237 .3356 .4474 .5593	1.790 3.579 5.369 7.158 8.948	
6	.24347	.27780	.26725	.08334	1.3335	.6711	10.738	
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527	
8	.32463	.37041	.35634	.11112	1.7780	.8948	14.317	
9	.36520	.41671	.40088	.12501	2.0002	1.0067	16.106	
10	.40578	.46301	•44542	.13890	2.2224	1.1185	17.896	

	Go	old.	Silver.		
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	
1 2 3 4 5	1.4642 2.9285 4.3927 5.8570 7.3212	702.8 1405.7 2108.5 2811.3 3514.2	0.7967 1.5933 2.3900 3 1867 3 9833	382.4 764.8 1147.2 1529.6 1912.0	
6 7 8 9	8.7854 10.2497 11.7139 13.1782 14.6424	4217.0 4919.8 5622.7 6325.5 7028.3	4.7800 5.5767 6.3734 7.1700 7.9667	2294.4 2676.8 3059.2 3441.6 3824.0	

### DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Acetone	Liquid.	Grams per cubic centimeter.	Pounds per cubic foot.	Temp. C.
Alcohol, ethyl	A 4	0.500	40.4	
Anilline				
Aniline				1
Benzene     0.899   56.1   0   0   190.0   0   Carbonica acid (crude)   0.950-0.965   59.2-60.2   15   Carbon disulphide   1.293   80.6   0   Chloroform   1.480   92.3   18   Cocoa-butter   0.857   53.5   100   Chloroform   0.736   45.9   0   Gasoline   0.66-0.69   41.0-43.0   - Glycerine   1.260   78.6   0   O.875   54.6   0   O.875   54.6   O.875   54.6   O.875   O.875   54.6   O.875   O.875				- 1
Bromine   3,187   199.0   0   0   Carbolic acid (crude)   0.950-0.965   59.2-60.2   15   Carbon disulphide   1.293   80.6   0   0   Chloroform   1.480   92.3   18   Cocoa-butter   0.736   45.9   0   Chloroform   1.260   73.6   45.9   0   Chloroform   1.260   73.6   45.9   0   Chloroform   1.260   73.6   Chloroform   1.260   Chlorof				
Carbolic acid (crude)         0.950-0.965         59.2-60.2         15           Carbon disulphide         1.293         80.6         0           Chloroform         1.480         92.3         18           Cocoa-butter         0.857         53.5         100           Ether         0.736         45.9         0           Gasoline         0.66-0.69         41.0-43.0         -           Glycerine         1.260         78.6         0           Japan wax         0.875         54.6         100           Milk         1.028-1.035         64.2-64.6         -           Naphtha (wood)         0.848-0.810         52.9-950.5         0           Naphtha (petroleum ether)         0.665         41.5         15           Oils: Amber         0.800         49.9         15           Anise-seed         0.996         62.1         16           Camphor         0.900         60.5         15           Clove         1.04-1.06         6566.         25           Cocoanut         0.9025         57.7         15           Cotton Seed         0.926         57.4         15           Lard         0.926         57.4				- 1
Carbon disulphide         1.293         80.6         0           Chloroform         1.480         92.3         18           Cocoa-butter         0.857         53.5         100           Ether         0.736         45.9         0           Gasoline         0.66-0.69         41.0-43.0         -           Glycerine         1.260         78.6         0           Japan wax         0.875         54.6         100           Milk         1.028-1.035         64.2-64.6         -           Naphtha (wood)         0.848-0.810         52.9-50.5         0           Naphtha (petroleum ether)         0.665         41.5         15           Oils: Amber         0.665         41.5         15           Oils: Amber         0.800         49.9         15           Anise-seed         0.996         62.1         16           Camphor         0.996         62.1         16           Carmphor         0.9096         60.5         15           Clove         1.04-1.06         6566         25           Covoanut         0.925         57.7         15           Cotton Seed         1.040-1.100         64.9-68.6         <				1
Chloroform   1.480   92.3   18			59.2-60.2	
Cocoa-butter	Carbon disulphide		80.6	
Cocoa-butter	Chloroform	1.480	92.3	
Gasoline	Cocoa-butter	0.857	53.5	100
Gasoline	Ether	0.736	45.9	0
Glycerine				-
Japan wax				0
Milk		0.875	54.6	100
Naphtha (wood)   0.848-0.810   52.9-50.5   0   Naphtha (petroleum ether)   0.665   41.5   15   15   Oils: Amber   0.800   49.9   15   16   Camphor   0.996   62.1   16   Camphor   0.910   56.8   - Castor   0.969   60.5   15   Clove   1.04-1.06   6566.   25   Cocoanut   0.925   57.7   15   Cotton Seed   0.926   57.8   16   Creosote   1.040-1.100   64.9-68.6   15   Lard   0.920   57.4   15   Lavender   0.877   54.7   16   Linseed (boiled)   0.942   58.8   15   Neat's foot.   0.913   57.0   55.3   15   Palm   0.905   56.5   15   Palm   0.650   40.6   0.623   38.9   25   Peppermint   0.90-92   50-57   25   Petroleum   0.878   54.8   0.090-92   50-57   25   25   Poppy   0.924   57.7   - Poppy   0.924   57.7   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.0   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1   57.1		1.028-1.035	64.2-64.6	-
Naphtha (petroleum ether)       0.665       41.5       15         Oils: Amber       0.800       49.9       15         Anise-seed       0.996       62.1       16         Camphor       0.910       56.8       -         Castor       0.969       60.5       15         Clove       1.04-1.06       6566.       25         Cocoanut       0.925       57.7       15         Cotton Seed       0.926       57.8       16         Creosote       1.040-1.100       64.9-68.6       15         Lard       0.920       57.4       15         Lavender       0.877       54.7       16         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913-917       57.0-57.2       -         Ollive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.650       40.6       0         0.623       38.9       25         Petroleum       0.878       54.8       0         0.90-092       56-57       25 <td></td> <td></td> <td></td> <td>0</td>				0
Oils: Amber       0.800       49.9       15         Anise-seed       0.996       62.1       16         Camphor       0.910       56.8       -         Castor       0.969       60.5       15         Clove       1.04-1.06       6566.       25         Cocoanut       0.925       57.7       15         Cotton Seed       0.926       57.8       16         Creosote       1.040-1.100       64.9-68.6       15         Lard       0.920       57.4       15         Lavender       0.877       54.7       16         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913-917       57.0-57.2       -         Olive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.623       38.9       25         Peppermint       0.09-92       56-57       25         Petroleum       0.623       38.9       25         Peppermint       0.09-92       56-57       25         Petroleum       0.878       <				
Anise-seed			, ,	
Camphor .				
Castor       0.969       60.5       15         Clove       1.04-1.06       6566       25         Cocoanut       0.925       57.7       15         Cotton Seed       0.926       57.8       16         Creosote       1.040-1.100       64.9-68.6       15         Lard       0.920       57.4       15         Lavender       0.877       54.7       16         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913917       57.0-57.2       -         Olive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.650       40.6       0         "(light)       0.9092       56-57       25         Petroleum       0.878       54.8       0         "(light)       0.795-0.805       49.6-50.2       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         Resin       0.924       57.7       -         Resin       0.995       5				1
Clove       1.04-1.06       6566.       25         Cocoanut       0.925       57.7       15         Cotton Seed       0.926       57.8       16         Creosote       1.040-1.100       64.9-68.6       15         Lard       0.920       57.4       15         Lavender       0.877       54.7       16         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913-917       57.0-57.2       -         Olive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.650       40.6       0         6.50       40.6       0       0       0.623       38.9       25         Peptralem       0.878       54.8       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0				1
Cotton Seed         0.925         57.7         15           Cotton Seed         0.926         57.8         16           Creosote         1.040-1.100         64.9-68.6         15           Lard         0.920         57.4         15           Lavender         0.877         54.7         16           Lemon         0.844         52.7         16           Linseed (boiled)         0.942         58.8         15           Neat's foot.         0.913917         57.0-57.2         -           Olive         0.918         57.3         15           Palm         0.905         56.5         15           Pelm         0.905         56.5         15           Pentane         0.623         38.9         25           Peppermint         0.9092         56-57         25           Petroleum         0.878         54.8         0           "(light)         0.795-0.805         49.6-50.2         15           Poppy         0.878         54.8         0           "(refined)         0.913         57.0         15           Resin         0.905         57.1         15           Sperm				
Cotton Seed         0.926         57.8         16           Creosote         1.040-1.100         64.9-68.6         15           Lard         0.920         57.4         15           Lavender         0.877         54.7         16           Lemon         0.844         52.7         16           Linseed (boiled)         0.942         58.8         15           Neat's foot         0.913917         57.0-57.2         -           Olive         0.918         57.3         15           Palm         0.905         56.5         15           Pentane         0.650         40.6         0           "         0.623         38.9         25           Petroleum         0.9092         56-57         25           Petroleum         0.878         54.8         0           0.795-0.805         49.6-50.2         15           Pine         0.878         54.8         0           0.795-0.805         49.6-50.2         15           Poppy         0.924         57.7         -           Rapeseed (crude)         0.913         57.0         15           Resin         0.955         59.6				
Creosote       1.040-1.100       64.9-68.6       15         Lard       0.920       57.4       15         Lavender       0.877       54.7       10         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913917       57.0-57.2       -         Olive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.650       40.6       0         6       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum       0.795-0.805       49.6-50.2       15         Pine       0.878       54.8       0         0.795-0.805       49.6-50.2       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         "(refined)       0.913       57.0       15         Sperm       0.88       55.       25         Soya-bean       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7<			57.7	
Lard       0.920       57.4       15         Lavender       0.877       54.7       16         Lemon       0.844       52.7       16         Linseed (boiled)       0.942       58.8       15         Neat's foot       0.913917       57.0-57.2       -         Olive       0.918       57.3       15         Palm       0.905       56.5       15         Pentane       0.650       40.6       0         "       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum       0.878       54.8       0         "(light)       0.795-0.805       49.6-50.2       15         Pine       0.876       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         Resin       0.905       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7			57.8	1
Lavender Lemon . 0.844 52.7 16 Linseed (boiled) . 0.942 58.8 15 Neat's foot. Olive . 0.918 57.3 15 Palm . 0.905 56.5 15 Pentane . 0.623 38.9 25 Petroleum . 0.9092 56-57 25 Petroleum . 0.878 54.8 0 . (light) Pine . 0.850-0.860 53.0-54.0 Pine . 0.924 57.7 Rapeseed (crude) . 0.915 57.1 15 Poppy . 0.924 57.7 Rapeseed (crude) . 0.913 57.0 15 Sperm . 0.924 57.7 Rapeseed (crude) . 0.913 57.0 15 Sperm . 0.925 59.6 15 Sperm . 0.936 55. 25 Soya-bean . 0.919 57.3 30 . Train or Whale . 0.918-0.925 57.3-57.7 Turpentine . 0.873 54.2 Turpentine . 0.873 54.2 Pyroligneous acid . 0.980 49.9				
Lemon		1 2 -		15
Linseed (boiled).  Neat's foot.  O.942  S8.8  I5  Neat's foot.  O.913917  Olive  O.908  Palm  O.905  Pentane  O.650  O.623  Repermint  O.9092  Poppy  O.878  O.905-0.805  Poppy  O.879-0.805  Poppy  O.924  For order  O.915  Poppy  O.924  For order  O.915  Resin  Resin  O.905  Sperm  O.905  Sperm  O.905  Sperm  O.915  Sperm  O.905  O.905  O.905  O.905  O.905  O.905  O.905  O.905  Sperm  O.906  O.915  Sperm  O.906  O.915  Sperm  O.906  O.915  Sperm  O.906  O.906  O.906  Train or Whale  O.918-0.925  O.906  O.906  O.918-0.925  O.906  O.906  O.906  O.906  O.906  O.906  O.906  O.907  O.906  O.906  O.906  O.907  O.906  O.908-0.925  O.909  O				
Neat's foot.       0.913917       57.0-57.2       -         Olive.       0.918       57.3       15         Palm.       0.905       56.5       15         Pentane       0.650       40.6       0         "       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum.       0.878       54.8       0         " (light)       0.795-0.805       49.6-50.2       15         Pine.       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Sperm       0.88       55.       25         Soya-bean       0.905       50.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0		0.844	52.7	1
Olive .       0.918       57.3       15         Palm .       0.905       56.5       15         Pentane .       0.650       40.6       0         " (loght) .       0.9092       56-57       25         Petroleum .       0.878       54.8       0         " (light) .       0.795-0.805       49.6-50.2       15         Pine .       0.850-0.860       53.0-54.0       15         Poppy .       0.924       57.7       -         Rapeseed (crude) .       0.915       57.1       15         Resin .       0.913       57.0       15         Sperm .       0.88       55.       25         Soya-bean .       0.919       57.3       30         "".       0.906       56.5       90         Train or Whale .       0.918-0.925       57.3-57.7       15         Turpentine .       0.873       54.2       16         Valerian .       0.965       60.2       16         Wintergreen .       1.18       74.       25         Pyroligneous acid .       0.800       49.9       0	Linseed (boiled)	0.942	58.8	15
Palm       0.905       56.5       15         Pentane       0.650       40.6       0         "       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum       0.878       54.8       0         " (light)       0.795-0.805       49.6-50.2       15         Pine       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0		0.913917	57.0-57.2	-
Palm       0.905       56.5       15         Pentane       0.650       40.6       0         "       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum       0.878       54.8       0         " (light)       0.795-0.805       49.6-50.2       15         Pine       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0	Olive		57.3	15
Pentane       0.650       40.6       0         "       0.623       38.9       25         Peppermint       0.9092       56-57       25         Petroleum       0.878       54.8       0         " (light)       0.795-0.805       49.6-50.2       15         Pine       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         " "       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Walerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0			56.5	15
"Peppermint       0.623       38.9       25         Petroleum       0.878       54.8       0         "(light)       0.795-0.805       49.6-50.2       15         Pine       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         "(refined)       0.913       57.0       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         """       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0	Pentane	0.650	40.6	0
Peppermint Petroleum.       0.9092 0.878       56-57 54.8 0 0.878       25 54.8 0 0.795-0.805       49.6-50.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.850-0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15 0.860       15 90.2 15	- 44			25
Petroleum .	Pennermint			
" (light)       0.795-0.805       49.6-50.2       15         Pine       0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         """       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0				_
Pine        0.850-0.860       53.0-54.0       15         Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0				1
Poppy       0.924       57.7       -         Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0				
Rapeseed (crude)       0.915       57.1       15         " (refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         ""       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0				_
"(refined)       0.913       57.0       15         Resin       0.955       59.6       15         Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         """       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0				15
Resin				
Sperm       0.88       55.       25         Soya-bean       0.919       57.3       30         """       0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0	(termed)	, , ,		
Soya-bean       0.919       57.3       30         0.906       56.5       90         Train or Whale       0.918-0.925       57.3-57.7       15         Turpentine       0.873       54.2       16         Valerian       0.965       60.2       16         Wintergreen       1.18       74.       25         Pyroligneous acid       0.800       49.9       0		0.955		
Train or Whale				
Train or Whale 0.918-0.925 57.3-57.7 15 Turpentine 0.873 54.2 16 Valerian 0.965 60.2 16 Wintergreen 1.18 74. 25 Pyroligneous acid 0.800 49.9 0	Soya-bean			1
Turpentine.       .       .       0.873       54.2       16         Valerian       .       0.965       60.2       16         Wintergreen       .       1.18       74.       25         Pyroligneous acid       .       0.800       49.9       0	70 . 11/1			
Valerian				
Wintergreen 1.18 74. 25 Pyroligneous acid				1
Pyroligneous acid				1
T J T T T T T T T T T T T T T T T T T T				
Water 1.000 62.4 4				1
	Water	1.000	62.4	4
				1

### DENSITY OF PURE WATER FREE FROM AIR. 0° TO 41° C.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 00 to 410 C, in grams per milliliter 1]

De- grees				Ten	ths of De	grees.					Mean Differ-
Centi- grade.	0	1	2	3	4	5	6	7	8	9	ences.
0 I 2 3 4	0.999 8681 9267 9679 9922 1.000 0000	8747 9315 9711 9937 *9999	8812 9363 9741 9951 *9996	8875 9408 9769 9962 *9992	8936 9452 9796 9973 *9986	8996 9494 9821 9981 *9979	9053 9534 9844 9988 *9970	9109 9573 9866 9994 *9960	9163 9610 9887 9998 *9947	9216 9645 9905 *0000 *9934	+ 59 + 41 + 24 + 8 - 8
5 6 7 8 9	0.999 9919 9682 9296 8764 8091	9902 9650 9249 8703 8017	9884 9617 9201 8641 7940	9864 9582 9151 8577 7863	9842 9545 9100 8512 7784	9819 9507 9048 8445 7704	9795 9468 8994 8377 7622	9769 9427 8938 8308 7539	9742 9385 8881 8237 7455	9713 9341 8823 8165 7369	- 24 - 39 - 53 - 67 - 81
10 11 12 13 14	7282 6331 5248 4040 2712	7194 6228 5132 3912 2572	7105 6124 5016 3784 2431	7014 6020 4898 3654 2289	6921 5913 4780 3523 2147	6826 5805 4660 3391 2003	6729 5696 4538 3257 1858	6632 5586 4415 3122 1711	6533 5474 4291 2986 1564	6432 5362 4166 2850 1416	- 95 -108 -121 -133 -145
15 16 17 18	1 266 0.998 9705 8029 6244 4347	9542 7856 6058 4152	0962 9378 7681 5873 3955	0809 9214 7505 5686 3757	0655 9048 7328 5498 3558	0499 8881 7150 5309 3358	0343 8713 6971 5119 3158	0185 8544 6791 4927 2955	0026 8373 6610 4735 2752	*9865 8202 6427 4541 2549	-156 -168 -178 -190 -200
20 21 22 23 24	2343 0233 0.997 8019 5702 3286	2137 0016 7792 5466 3039	1930 *9799 7564 5227 2790	1722 *9580 7335 4988 2541	1511 *9359 7104 4747 2291	1301 *9139 6873 4506 2040	1090 *8917 6641 4264 1788	0878 *8694 6408 4021 1535	0663 *8470 6173 3777 1280	0449 *8245 5938 3531 1026	-211 -221 -232 -242 -252
25 26 27 28 29	0,996 81 58 5451 2652 0,995 9761	0513 7892 5176 2366 9466	0255 7624 4898 2080 9171	*9997 7356 4620 1793 8876	*9736 7087 4342 1505 8579	*9476 6817 4062 1217 8282	*9214 6545 3782 0928 7983	*8951 6273 3500 0637 7684	*8688 6000 3218 0346 7383	*8423 5726 2935 0053 7083	-261 -271 -280 -289 -298
30 31 32 33 34	6780 3714 0561 0.994 7325 4007	6478 3401 0241 6997 3671	6174 3089 *9920 6668 3335	5869 2776 *9599 6338 2997	5564 2462 *9276 6007 2659	5258 2147 *8954 5676 2318	4950 1832 *8630 5345 1978	4642 1515 *8304 5011 1638	4334 1198 *7979 4678 1296	4024 0880 *7653 4343 0953	-307 -315 -324 -332 -340
35 36 37 38 39	0610 0.993 7136 3585 0.992 9960 6263	6784 3226 9593	*9922 6432 2866 9227 5516	*9576 6078 2505 8859 5140	2144 8490	*8883 5369 1782 8120 4389	*8534 5014 1419 7751 4011	*8186 4658 1055 7380 3634	*7837 4301 0691 7008 3255	*7486 3943 0326 6636 2876	-347 -355 -362 -370 -377
40 41	0.991 8661		1734	1352	0971	0587	0203	*9818	*9433	*9047	-384

¹ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907.

SMITHSONIAN TABLES.

# VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO 36° C.

### Hydrogen Thermometer Scale.

Temp. C.	.0	.1	.2	•3	-4	-5	.6	-7	.8	-9
0 I 2 3 4	1.000132 073 032 008 000	125 069 029 006 000	118 064 026 005 000	059 023 004 001	106 055 020 003 001	100 051 018 002 002	095 047 016 001 003	089 043 013 001 004	084 039 011 000 005	079 035 009 000 007
5 6 7 8 9	008 032 070 124	010 035 075 130 198	012 039 080 137 206	014 042 085 142 214	016 046 090 149 222	018 050 095 156 230	021 054 101 162 238	023 058 106 169 246	026 062 112 176 254	029 066 118 184 263
10 11 12 13 14	272 367 476 596 729	281 377 487 609 743	290 388 499 623 757	299 398 511 636 772	308 409 522 649 786	317 420 534 661 800	327 430 547 675 815	337 441 559 688 830	347 453 571 702 844	357 464 584 715 859
15 16 17 18	873 1.001031 198 378 568	890 047 216 396 588	905 063 233 415 606	920 680 252 433 626	935 097 269 452 646	951 113 287 471 667	967 130 305 490 687	983 147 323 510 707	998 164 341 529 728	015* 182 358 548 748
20 21 22 23 24	769 981 1.002203 436 679	790 002* 226 459 704	S11 024* 249 483 729	832 046* 271 507 754	853 068* 295 532 779	874 091* 319 556 804	895 113* 342 581 829	916 135* 364 605 854	938 158* 389 629 879	960 181* 412 654 905
25 26 27 28 29	932 1.003195 467 749 1.004041	958 221 495 776 069	983 248 523 806 100	010* 275 550 836 129	036* 302 579 865 160	061* 330 607 893 189	088* 357 635 922 220	384 663 951 250	141* 412 692 981 280	168* 439 720 011* 310
30 31 32 33 34	341 651 968 1.005296	371 682 001* 328 665	403 713 033* 361 698	432 744 066* 395 732	464 777 098* 1 427 768	494 808 132* 461 802	526 840 163* 496 836	557 872 197* 530 871	588 904 229* 562 904	619 936 263* 597 940
35	975	009*	041*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

### Influence of Pressure.*

kg/cm²	O _o C	20° C	40° C	$kg/cm^2$	20° C	40° C
I	1.0000	1.0016	1.0076	7,000	0.8404	0.8485
500	.9771	.9808	.9873	8,000	.8275	.8360
1,000	.9578	.9630	.9700	9,000	.8160	.8249
2,000	.9260	.9327	.9403	10,000	-	.8149
3,000	.9015	.9087	.9164	11,000		.8056
5,000	.8632	.8702	.8778	12,000		.7966
6,000	.8480	.8545	.8623	12,500		.7922

^{*} Williamson, Change of Physical Properties with Pressure, J. Frank. Inst. 193, p. 491, 1922.

### DENSITY AND VOLUME OF WATER. -10° TO +250° C.

The mass of one cubic centimeter at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10° -9 -8 -7 -6	0.99815 843 869 892 912	1.00186 157 131 108 088	+35° 36 37 38 39	0.99406 371 336 300 263	1.00598 633 669 706 743
-5	0.99930	1.00070	40	0.99225	1.00782
-4	945	055	41	187	821
-3	958	042	42	147	861
-2	970	031	43	107	901
-1	979	021	44	066	943
+0	0.99987	1.00013	<b>45</b>	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
<b>5</b> 6 7 8 9	0.99999	1.00001	50	0.98807	1.01207
	997	003	51	762	254
	993	007	52	715	301
	988	012	53	669	349
	981	019	54	621	398
10	0.99973	1.00027	<b>55</b>	0.98573	1.01448
11	963	037	60	324	705
12	952	048	65	059	979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	·9434	1.0601
22	780	220	130	·9352	1.0693
23	757	244	140	·9264	1.0794
24	733	268	150	·9173	1.0902
25	0.99708	1.00293	160	0.9075	1.1019
26	682	320	170	.8973	1.1145
27	655	347	180	.8866	1.1279
28	627	375	190	.8750	1.1429
29	598	404	200	.8628	1.1590
30	0.99568	1.00434	210	o.850	1.177
31	537	465	220	.837	1.195
32	506	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	563	250	.794	1.259

^{*} From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41°, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of Ramsey, Young, Waterston, and Hirn.

### DENSITY OF MERCURY

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp	o. C.	Mass in grams per cu. cm.	Volume of 1 gram in cu. cms.	Temp. C	Massin grams per cu. cm.	Volume of 1 gram in cu. cms.
li —	<b>o°</b> -9 -8 -7 -6	13.6198 6173 6148 6124 6099	0.0734225 4358 4492 4626 4759	30° 31 32 33 34	13.5213 5189 5164 5140 5116	0.0739572 9705 9839 9973 40107
=	5 -4 -3 -2 -1	13.6074 6050 6025 6000 5976	0.0734893 5026 5160 5293 5427	35 36 37 38 39	13.5091 5066 5042 5018 4994	0.0740241 0374 0508 0642 0776
	0 1 2 3 4	13.5951 5926 5901 5877 5852	0.0735560 5694 5828 5961 6095	40 50 60 70 80	13.4969 4725 4482 4240 3998	0.0740910 2250 3592 4936 6282
	<b>5</b> 6 7 8 9	13.5827 5803 5778 5754 5729	0.0736228 6362 6496 6629 6763	90 100 110 120 130	13.3723 3515 3279 3040 2801	0.0747631 8981 50305 1653 3002
1	0 11 12 13	13.5704 5680 5655 5630 5606	0.0736893 7030 7164 7298 7431	140 150 160 170 180	13.2563 2326 2090 1853 1617	0.0754 [°] 54 5708 7064 8422 9784
	5 16 17 18	13.5581 5557 5532 5507 5483	0.0737565 7699 7832 7966 8100	190 200 210 220 230	13.1381 1145 0910 0677 0440	0.0761149 2516 3886 5260 6637
2	0 21 22 23 24	13.5458 5434 5409 5385 5360	0.0738233 8367 8501 8635 8768	240 250 260 270 280	13.0206 12.9972 9738 9504 9270	0.0768017 9402 7090 2182 3579
2 2	<b>5</b> 26 27 28	13.5336 5311 5287 5262 5238	0.0738902 9036 9170 9304 9437	300 310 320 330	12.9036 8803 8569 8336 8102	0.0774979 6385 7795 9210 80630
3	0	13.5213	0.0739571	340 350 360	12.7869 7635 7402	0.0782054 3485 4921

Based upon Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter = 1.000027 cu. dm.

### DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

	117	-1-16	Al 31-								
Substance.	***	eight of	the diss	th	e soluti	on.	parts b	y weign	1 01	p. C.	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
K ₂ O	1.047	1.098				1.354	1.503				Schiff.
$\begin{array}{cccc} \text{KOH} & \dots & \\ \text{Na}_2\text{O} & \dots & \end{array}$	1.040	1.082	1.127 1.218	1.176	1.229	1.286	1.410	1.538	1.666		66
NaOH NH ₃	1.058	1.114		1.224	1.279	1.331	1.436	1.539	1.642		"
	0.978	0.9 <b>5</b> 9			0.909		_	_	_		Carius.
NH ₄ Cl   KCl	1.015	1.030	1.044		1.072	_	_	_	_	15.	Gerlach.
NaCl LiCl	1.035	1.072	1.110	1.150	1.191		_	-	-	15.	66
CaCl ₂	1.029	1.057	1.085	1.116	1.147	1.181	1.255	_	_	15.	"
$CaCl_2 + 6H_2O$	1.019	1.040	1.061	1.083	1.105	1.128	1.176	1.225	1.276	18.	Schiff.
AlCl ₃	1.030	1.072	1.111	1.153	1.196	1.241	1.340	_	_	15.	Gerlach.
MgCl ₂   MgCl ₂ +6H ₂ O	1.041	1.085	1.130		1.226	1.278	1.141	1.183	1.222	15. 24.	Schiff.
$ZnCl_2$	1.043	1.089	1.135	1.154	1.236	1.289	1.417	1.563	1.737	19.5	Kremers.
CdCl ₂	1.043	1.087	1.138	1.193	1.254	1.319	1.469	1.653	1.887	19.5	"
$SrCl_2$ $SrCl_2 + 6H_2O$	1.044	1.092	1.143 1.052	1.198	1.257	1.321	1.242	1.317		15.	Gerlach.
$\begin{array}{c} BaCl_2 & . & . \\ BaCl_2 + 2H_2O \end{array}$	1.045	1.094	1.147	1.205	1.269	1.273	_		-	15.	Schiff.
									_		
CuCl ₂ NiCl ₂	1.044	1.091 1.09S	1.155	1.221	1.291	1.360	1.527	_	_	17.5 17.5	Franz.
HgCl ₂	1.041	1.092	1.130	T T 7 O		- 7.000	-	-	- 668	20.	Mendelejeff.
PtCl ₄	1.041 1.046		1.153	1.179	1.285	1.290	1.413 1.546	1.545 1.785	1.668	17.5	Hager. Precht.
$SnCl_2 + 2H_2O$	1.032	1.067	1.104	1.143	1.185			1.444		15.	Gerlach.
$SnCl_4 + 5H_2O$ LiBr	1.029	1.058	1.089	1.122	1.157	1.193	1.274	1.365 1.498	1.467	15.	Kremers.
KBr	1.035	1.073	1.114	1.157	1.205	1.254	1.364	-	-	19.5	"
NaBr	1.038	1.078	1.123	1.172	1.224	1.279	1.408	1.563	-	19.5	
MgBr ₂ ZnBr ₂	1.041	1.085	1.135	1.189	1.245	1.308	1.449 1.473	1.623 1.648	- 1.873	19.5	"
CdBr ₂	1.041	1.088	1.139	1.197	1.258	1.324	1.479	1 678	-	19.5	66
CaBr ₂	1.042	1.087	1.137	1.192	2.250 1.260		1.459 1.483	1.683	_	19.5 19. <b>5</b>	"
SrBr ₂	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953	19.5	<b>16</b>
KI	1.036	1.076	1.118	1.164	1.216	1.269	1.394	1.544	1.732	19.5	66
LiI	1.036	1.077 1.080	1.122	1.170	1.222	1.278	1.412	1.573	1.775 1.808	19.5	"
$ZnI_2$	1.043	1.089	1.138	1.194	1.253	1.316	1.467	1.648	1.873	19.5	66
$CdI_2 \dots$	1.042	1.086	1.136	1.192	1.251	1.317	1.474	1.678	-	19.5	"
$MgI_2$ Ca $I_2$	1.041		1.138	1 196	1.258	1.319			1.908		46
$SrI_2$ Ba $I_2$	1.043	1.089	I.I40 I.I.11	1.198	1.260 1.263	1.328	1.489	1.693		19.5	66
NaClO ₃		1.068	1.106		1.188				_		44
NaBrO ₃	1.035	1.081	1.127	1.176	1.229	1.233	1.329	1-	_	19.5	"
$NaNO_3$	1.031	1.064	1.009		1.180	- 1	- 1 212	- 1.416	-	I 5. 20.2	Gerlach. Schiff.
AgNO ₃	1.031				1.255		1.313		1.918		Kohlrausch.
							ا				

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

### DENSITY OF AQUEOUS SOLUTIONS.

Substance.	w	eight of	the diss	solved s	ubstanc e solutio	e in 100	parts b	y weigh	t of	. c.	Authority.
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Huthorky.
$NH_4NO_3$ $Z_n(NO_3)_2$	1.020	1.041	1.063 1.146	1.201	1.107	1.131 1.325 1.178	1.178	1.597	1.282	17.5 17.5	Gerlach. Franz. Oudemans.
$\begin{bmatrix} \operatorname{Zn}(\operatorname{NO_3})_2 + 6\operatorname{H}_2\operatorname{O} \\ \operatorname{Ca}(\operatorname{NO_3})_2 & \cdot & \cdot \\ \operatorname{Cu}(\operatorname{NO_3})_2 & \cdot & \cdot \end{bmatrix}$	1.037	1.054 1.075 1.093	1.118	1.113 1.162 1.203	1.211	1.260	1.250 1.367 1.471	1.329 1.482 -	1.604	17.5	Gerlach. Franz.
$\begin{array}{c cccc} Sr(NO_3)_2 & . & . & . \\ Pb(NO_3)_2 & . & . & . \\ Cd(NO_3)_2 & . & . & . \end{array}$	1.039 1.043 1.052	1.083 1.091 1.097	1.129 1.143 1.150	1.179 1.199 1.212	1.262 1.283	1.332 1.355	1.536	1.759	-	19.5 17.5 17.5	Kremers. Gerlach. Franz.
$\begin{array}{cccc} \operatorname{Co(NO_3)_2} & \cdot & \cdot & \cdot \\ \operatorname{Ni(NO_3)_2} & \cdot & \cdot & \cdot \end{array}$	1.045	1.090	1.137	1.192	1.252		1.465		-	17.5	"
Fe ₂ (NO ₃ ) ₆ Mg(NO ₃ ) ₂ +6H ₂ O   Mn(NO ₃ ) ₂ +6H ₂ O   K ₂ CO ₃	1.039 1.018 1.025 1.044	1.076 1.038 1.052 1.092	1.117 1.060 1.079 1.141	1.160 1.082 1.108 1.192	1.210 1.105 1.138 1.245	1.129 1.169 1.300	1.373 1.179 1.235 1.417	1.496 1.232 1.307 1.543	1.657	17.5 21 8 15	Schiff. Oudemans. Gerlach.
$K_2CO_3 + 2H_2O$ . $Na_2CO_3toH_2O$ . $(NH_4)_2SO_4$ .	1.037 1.019 1.027	1.072 1.038 1.055	1.110 1.057 1.084	1.150 1.077 1.113	1.191 1.098 1.142		1.320	1.415	1.511	15. 15. 19.	" Schiff.
$Fe_2(SO_4)_3$ $FeSO_4 + 7H_2O$ . $MgSO_4$	1.045 1.025 1.051	1.096 1.053 1.104	1.150 1.081 1.161	I.207 I.111 I.221	1.270 1.141 1.284	1.336 1.173	1.489 1.238 -	- ´ -	-	18. 17.2 15	Hager. Schiff. Gerlach.
$MgSO_4 + 7H_2O$ . $Na_2SO_4 + 10H_2O$ $CuSO_4 + 5H_2O$ . $MnSO_4 + 4H_2O$ .	1.025 1.019 1.031 1.031	1.050 1.039 1.064 1.064	1.075 1.059 1.098 1.099	1.101 1.081 1.134 1.135	I.129 I.102 I.173 I.174	1.155 1.124 1.213 1.214	1.215	1.278 - - 1.398	- - -	15. 15. 18.	" Schiff. Gerlach.
$Z_{\text{nSO}_4} + 7H_2O$ . $Fe_2(SO_4)_3 \cdot K_2SO_4$	1.027	1.057	1.089	1.122	1.156	1.191	1.269	1.351	1.443	20.5	Schiff.
$\begin{array}{c} + 24 H_2 O \\ Cr_2(SO_4)_8 \cdot K_2 SO_4 \\ + 24 H_2 O \end{array}$	1.026	1.045	1.066	1.088	1.112	1.141	1.188	1.287	- 1.454	17.5	Franz.
$\begin{array}{c} \text{MgSO}_4 + \text{K}_2\text{SO}_4 \\ + 6\text{H}_2\text{O} & \cdot & \cdot \end{array}$	1.032	1.066	1.101	1.138	-	-	-	-	-	15.	Schiff.
$(NH_4)_2SO_4 + FeSO_4 + 6H_2O = K_2CrO_4$	1.028	1.058 1.082	1.090	1.122 1.174	1.154	1.191	- 1.397	-	~	19. 19.5	"
$K_2Cr_2O_7$ Fe(Cy) ₆ K ₄ Fe(Cy) ₆ K ₃ Pb(C ₂ H ₃ O ₂ ) ₂ +	1.035 1.028 1.025	1.071 1.059 1.053	1.108 1.092 1.070	1.126 1.113	-	-	-	- - -	1 1 1	19.5 15. 13	Kremers. Schiff.
$3H_2O \cdot \cdot$	1.031	1.064	1.100	1.137	1.177		1.315	1.426	-	15.	Gerlach.
+ 24H ₂ O	I.020 5	1.042	1.066	1.089	30	40	60	 80	-	14.	Schiff.
$SO_3$	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.840	-	15.	Brineau.
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1.013	1.028 1.069 1.047	1.045 1.104 1.070	1.063 1.141 1.096	- 1.217 1.150	1.294 1.207	1.422	1.506		4. 15. 15.	Schiff. Kolb. Gerlach.
C ₆ H ₈ O ₇		1.030	1.060	1.082	1.123 1.129 1.151	1.170 1.178 1.200	_ 1	-	-	15. 17.5 15.	" Kolb.
HBr	1.035 1.037 1.032	1.073		1.158 1.165	1.257 1.271 1.223		1.501	- L:732	1.838	14. 13. 15.	Topsöe.  Kolb.
$H_2SiF_6$	1.040 1.035	1.082	1.127	1.174	I.273 I.271	1.385	1.676	-	-	17.5	Stolba. Hager.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.027 1.028 1.007	1.057 1.056	1.086		1.184 1.041	1.250	1.43 ^S 1.373 1.068	- 1.459 1.075	- 1.528 1.055	15. 15.	Schiff. Kolb. Oudemans

# DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C, as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

Per cent				Temperatures.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
1	785	725	636	520	379	217	034
2	602	542	453	336	194	031	.98846
3	426	365	275	157	014	.98849	663
4	<b>2</b> 58	195	103	.98984	•98839	672	485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	•97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	.97875	685	475
11	267	171	047	.97897	723	527	312
12	145	041	•97910	753	573	371	150
13	026	•97914	775	611	424	216	.96989
14	.97911	790	643	472	278	063	829
15 16 17 18	800 692 583 473 363	669 552 433 313 191	514 387 259 129 .96997	334 199 062 .96923 782	133 .96990 844 697 547	.96911 760 607 452 294	670 512 352 189 023
20	252	068	864	639	395	134	.95856
21	139	.96944	729	495	242	•95973	687
22	024	818	592	348	087	809	516
23	.96907	689	453	199	.95929	643	343
24	787	558	312	<b>0</b> 48	769	476	168
25	665	424	168	.95895	607	306	.94991
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	•94955	625
28	268	.95996	710	410	098	774	438
29	125	844	548	241	.94922	590	248
30	•95977	686	382	067	741	403	055
31	823	524	212	.94890	557	214	.93860
32	665	357	038	709	370	021	662
33	502	186	.94860	525	180	.93825	461
34	334	011	679	337	.93986	626	257
35	162	.94832	494	146	790	425	051
36	.94986	650	306	•93952	591	221	.92843
37	805	464	114	756	390	016	634
38	620	273	•93919	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	.92940	558	170	774
42	-93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	. <b>9</b> 1910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	776	384	.90985	580	168	750

# DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

Per cent				Temperature.			
by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° ℃.	40° C.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.897 50
51	.91943	555	160	760	353	.89940	519
52	723	333	.90936	534	125	710	288
53	502	110	711	307	.89896	479	056
54	279	.90885	485	079	667	248	.88823
55	055	659	258	.89850	437	016	589
56	.90831	433	031	621	206	.88784	356
57	607	207	.89803	392	.88975	552	122
58	381	.89980	574	162	744	319	.87888
59	154	752	344	.88931	512	085	653
60 61 62 63 64	.89927 698 468 237 006	523 293 062 .88830 597	.88882 650 417 183	699 466 ² 33 .8 ₇ 998 7 ⁶ 3	278 044 .87809 574 337	.87851 615 379 142 .86905	417 180 .86943 705 466
65 66 67 68 69	.88 ₇₇₄ 541 308 074 .8 ₇ 8 ₃₉	364 130 .87895 660 424	.87948 713 477 241 004	527 291 054 .86817 579	100 .86863 625 387 148	667 429 190 .85950	227 .85987 747 507 266
70	602	187	.86766	340	.85908	470	025
71	365	.86949	5 ² 7	100	667	228	.84783
72	127	710	287	.85859	426	.84986.	540
73	.86888	470	047	618	184	743	297
74	648	229	.85806	376	.84941	500	053
75	408	.85988	564	134	698	257	.83809
76	168	747	322	.84891	455	013	564
77	.85927	505	079	647	211	.83768	319
78	685	262	.84835	403	.83966	523	074
79	442	018	590	158	720	277	.82827
80 81 82 83 84	.84950 702 453 203	.84772 525 277 028 .83777	344 096 .83848 599 348	.83911 664 415 164 .82913	473 224 .82974 724 473	029 .82780 530 279 027	578 329 079 .81828 576
85	.83951	525	095	660	220	.81774	322
86	697	271	,82840	405	.81965	519	067
87	441	014	583	148	708	262	.80811
88	181	.82754	323	.81888	448	003	552
89	.82919	492	062	626	186	.80742	291
90	654	227	.81797	362	.80922	478	028
91	386	.81959	529	094	655	211	.79761
92	114	688	257	.80823	384	•79941	491
93	.81839	413	.80983	549	111	669	220
94	561	134	705	272	.79835	393	.78947
95	278	.80852	424	.79991	555	.78831	670
96	.So991	566	138	706	271	.78831	388
97	698	274	.79846	415	.78981	.542	100
98	399	•79975	547	117	684	.247	.77806
99	094	670	243	.78814	382	.77946	507
100	.79784	360	.78934	506	075	641	203

### DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUCAR, OR SULPHURIC ACID.

Per cent by weight of substance.	Methyl Alcohol. D $\frac{15^{\circ}}{4^{\circ}}$ C.	Cane Sugar. 200 See p. 444	Sulphuric Acid, D $\frac{20^{\circ}}{4^{\circ}}$ C.	Per cent by weight of substance.	Methyl Alcohol. D $\frac{15^{\circ}}{4^{\circ}}$ C.	Cane Sugar. 200 See p. 444	Sulphuric Acid. D $\frac{20^{\circ}}{4^{\circ}}$ C.
0 I 2 3	0.99913 .99727 .99543 .99370	0.998234 1.002120 1.006015 1.009934	0.99823 1.00506 1.01178 1.01839	50 51 52 53	0.91852 .91653 .91451 .91248	1.229567 1.235085 1.240641 1.246234	1.39505 1.40487 1.41481 1.42487
5 6 7 8	.99198 .99029 .98864 .98701	1.013881 1.017854 1.021855 1.025885 1.029942	1.02500 1.03168 1.03843 1.04527 1.05216	54 55 56 57 58	.91044 .90839 .90631 .90421	1.251866 1.257535 1.263243 1.268989	1.43503 1.44530 1.45568 1.46615 1.47673
9 10 11 12 13	.98394 .98241 .98093 .97945 .97802	1.034029 1.038143 1.042288 1.046462 1.050665	1.05909 1.06609 1.07314 1.08026 1.08744	59 60 61 62 63	.89996 .89781 .89563 .89341 .89117	1.286456 1.292354 1.298291 1.304267	1.48740 1.49818 1.50904 1.51999 1.53102
14 15 16 17 18	.97660 .97518 .97377 .97237 .97046	1.054900 1.059165 1.063460 1.067789	1.09468 1.10199 1.10936 1.11679 1.12428	64 65 66 67 68	.88890 .88662 .88433 .88203 .87971	1.316334 1.322425 1.328554 1.334722	1.54213 1.55333 1.56460 1.57595 1.58739 1.59890
20 21 22 23	.96955 .96814 .96673 .96533 .96392	1.076537 1.080959 1.085414 1.089900 1.094420	1.13183 1.13943 1.14709 1.15480 1.16258	69 70 71 72 73	.87739 .87507 .87271 .87033 .86792	1.340928 1.347174 1.353456 1.359778 1.366139	1.61048 1.62213 1.63384 1.64560
24 25 26 27 28	.96251 .96108 .95963 .95817 .95668	1.103557 1.108175 1.112828 1.117512	1.17041 1.17830 1.18624 1.19423 1.20227	74 75 76 77 78	.86546 .86300 .86051 .85801 .85551	1.372536 1.378971 1.385446 1.391956 1.398505	1.65738 1.66917 1.68095 1.69268 1.70433
30 31 32 33	.95518 .95366 .95213 .95056 .94896	1.122231 1.126984 1.131773 1.136596 1.141453	1.21036 1.21850 1.22669 1.23492 1.24320	79 80 81 82 83	.85300 .85048 .84794 .84536 .84274	1.405091 1.411715 1.418374 1.425072 1.431807	1.71585 1.72717 1.73827 1.74904 1.75943
34 35 36 37 38	.94734 .94570 .94404 .94237 .94067	1.146345 1.151275 1.156238 1.161236 1.166269	1.25154 1.25992 1.26836 1.27685 1.28543	84 85 86 87 88	.84009 .83742 .83475 .83207 .82937	1.438579 1.445388 1.452232 1.459114 1.466032	1.76932 1.77860 1.78721 1.79509 1.80223
39 40 41 42 43	.93894 .93720 .93543 .93365 .93185	1.171340 1.176447 1.181592 1.186773 1.191993	1.29407 1.30278 1.31157 1.32043 1.32938	89 90 91 92 93	.82667 .82396 .82124 .81849 .81568	1.472986 1.479976 1.487002 1.494063 1.501158	1.80864 1.81438 1.81950 1.82401 1.82790
44 45 46 47 48	.93001 .92815 .92627 .92436 .92242	1.197247 1.202540 1.207870 1.213238 1.218643	1.33843 1.34759 1.35686 1.36625 1.37574	94 95 96 97 <b>9</b> 8	.81285 .80999 .80713 .80428 .80143	1.508289 1.515455 1.522656 1.529891 1.537161	1.83115 1.83368 1.83548 1.83637 1.83605
49 50	.92048 .91852	1.224086	1.38533	99	.79859 .79577	1.544462	

 Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.
 According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900.
 Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. 131, 1900.

All reprinted from Circular 19, U.S. Bureau of Standards, 1913.

### DENSITY OF CASES.

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at o° C, 76 cm pressure and standard gravity, 980.665 cm/sec2, (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights. The following data are derived from advance sheets of "A Review of the Densities of Various Gases," to be published by the U. S. Bureau of Standards.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sulphur dioxide       SO2       2.9267       2.2636       2.0481       0.18271       24         Xenon       X       5.851       4.514       4.094       0.3653       15

(1) Stahrfoss; (2) average; (3) Guye; (4) Ramsay, Leduc; (5) Guye, Puitza; (6) Rayleigh; (7) Jaquerod, Tourapian; (8) Batuecas; (9) Moissan; (10) Taylor; (11) Morley; (12) Moles, Reemair; (13) Gray, Burt; (14) Baume, Perrot; (15) Moore; (16) Baume; (17) Batuecas, Moles; (18) Watson; (19) Gray, Guye, Davila; (20) Gray, Moles; (21) Ter Gazarian; (22) Timmeraus; (23) Germann, Booth; (24) Scheuer.

The weight of the normal liter of the following gases has been determined with less accuracy: Arsine, 3.484, Dumas; Carbon oxysulphide, 2.7208, Von Than; Bulane, 2.504, Frankland; Cyanogen, 2.335, Gay-Lussac; Hydrogen fluoride, 0.9212, Thorpe, Hambly; Hydrogen iodide, 5.657, Thomson; Hydrogen selenide, 3.6702, Bruylante; Hydrogen telluride, 5.805, Ernyei; Methylamine, 1.396, Leduc; Nitrosyl chloride, 2.9919, Wourtzel.

#### TABLE 112.

### VOLUME OF CASES.

#### Values of 1 + .00367 t.

The quantity t + .00367 t gives for a gas the volume at  $t^0$  when the pressure is kept constant, or the pressure at  $t^0$  when the volume is kept constant, in terms of the volume or the pressure at  $o^0$ .

- (a) This part of the table gives the values of t + .00367t for values of t between  $0^{\circ}$  and  $10^{\circ}$  C. by tenths of a degree.
- (b) This part gives the values of t + .00367 t for values of t between  $-90^{\circ}$  and  $+1990^{\circ}$  C. by  $10^{\circ}$  steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows: In the  $(\delta)$  table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the  $(\alpha)$  table which corresponds to the difference between the nearest temperature in the  $(\delta)$  table and the actual temperature. For example, let the temperature be  $682^{\circ}.2:$

We have for 680 in table (b) the number . . . . 3.49560 And for 2.2 in table (a) the decimal . . . . .  $\frac{.00807}{3.50367}$  Hence the number for 682.2 is . . . . . . .  $\frac{.00807}{3.50367}$ 

- (c) This part gives the logarithms of t + .00367 t for values of t between  $-49^{\circ}$  and  $+399^{\circ}$  C. by degrees.
- (d) This part gives the logarithms of t + .00367 t for values of t between 400° and 1990° C. by 10° steps.

### (a) Values of 1+.00367t for Values of t between $0^{\circ}$ and $10^{\circ}$ C. by Tenths of a Degree.

0.0	0.1	0.2	0.3	0.4
1.00000	1.00037	1.00073	1.00110	1.00147
.00367	.00404	.00440	.00477	.00514
.00734	.0077 I	.00Š07	.00844	.00Š8i
10110.	.01138	.01174	.01211	.01248
.01468	.01 505	.01541	.01578	.01615
1.01835	1.01872	1.01908	1.01945	1.01982
.02202	.02239	.02275	.02312	.02349
.02569	.02606		.02679	.02716
.02936				.03083
.03303	.03340	.03376	.03413	.03450
0.5	0.6	0.7	0.8	0.9
7.00784	7.00220	T 00257	T 00304	7.00220
				.00330
	.00367			.01064
.01284				.01431
.01652	.01688	.01725	.01762	.01798
1.02018	1 02055	1.02002	1.02120	1.02165
.02386		_		.02532
.02752		.02826	.02863	.02899
.03120				.03266
.03486	.03523	.03560	.03597	.03633
	.00367 .00734 .01101 .01468 1.01835 .02202 .02569 .02936 .03303 0.5	1.00000	1.00000         1.00037         1.00073           .00367         .00404         .00440           .00734         .00771         .00807           .01101         .01138         .01174           .01468         .01505         .01541           1.01835         1.01872         1.01908           .02202         .02239         .02275           .02936         .02973         .03009           .03303         .03340         .03376           0.5         0.6         0.7           1.00184         1.00220         1.00257           .00550         .00587         .00624           .00918         .00954         .00991           .01284         .01321         .01358           .01652         .01688         .01725           1.02018         1.02055         1.02092           .02386         .02422         .02459           .02752         .02789         .02826           .03120         .03156         .03193	1.00000         1.00037         1.00073         1.00110           .00367         .00404         .00440         .00477           .00734         .00771         .00807         .00844           .01101         .01138         .01174         .01211           .01468         .01505         .01541         .01578           1.01835         1.01872         1.01908         1.01945           .02202         .02239         .02275         .02312           .02936         .02973         .03009         .03046           .03303         .03340         .03376         .03413           0.5         0.6         0.7         0.8           1.00184         1.00220         1.00257         1.00294           .00550         .00587         .00624         .0061           .00918         .00954         .00991         .01028           .01284         .01321         .01358         .01395           .01652         .01688         .01725         .01762           1.02018         1.02055         1.02092         1.02129           .02386         .02422         .02459         .02496           .02752         .02789         .02826

# TABLE 112. (continued). VOLUME OF GASES.

(b) Values of  $1+.00367\,t$  for Values of t between  $-90^\circ$  and  $+1990^\circ$  C. by  $10^\circ$  Steps.

	1			1	1	
	t	00	10	20	30	40
-	-000	1.00000	0.96330	0.92660	0.88990	0.85320
-	000	1.00000	1.03670	1.07340	1.11010	1.14680
	100	1.36700	1.40370	1.44040	1.47710	1.51380 1.88080
	200	1.73400	1.77070	1.80740	1.84410	2.24780
	300 400	2.10100 2.46800	2.1 3770 2.50470	2.17440 2.54140	2.57810	2 61480
	500	2 82500	2.87170	2.90840	2.94510	2.98180
1	600	2.83500 3.20200	3.23870	3.27510	3.31210	3.34880
	700	3.56900	3.23870 3.60570	3.27540 3.64240	3.67910	3.71580 4.08280
	800	3.93600	3.97270	4.00940	4.04610	4.08280
1	900	4.30300	4.33970	4.37640	4.41310	4.44980
	1000	4.67000	4.70670	4.74340	4.78010	4.81680
	1100	5.03700	5.07370	5.11040	5.14710	5.18380
1	1200	5.40400	5.44070	5.47740 5.84440	5.51410	5.55080 5.91780
ı	1300	5.77100 6.13800	5.80770	6.21140	6.24810	6.28480
	1500	6.50500	6.54170	6.57840	6.61510	6.65180
1	1600	6.87200	6.90870	6.94540	6.98210	7.01880
Ш	1700 1800	7.23900	7.27570	7.31240	7.34910	7.38580
Ш		7.60600	7.64270	7.67940 8.04640	7.34910 7.71610 8.08310	7.75280 8.11980
	1900	7.97300	8.00970	8.04640	8.08310	8.11980
	2000	8.34000	8.37670	8.41340	8.45010	8.48680
I				1	1	
	t	50	60	70	80	90
		0.81650	0.77980	0.74310	<b>80</b> 0.70640	0.66970
	-000	0.81650		0.74310	0.70640	
		0.81650	0.77980		0.70640 1.29360 1.66060	0.66970 1.33030 1.69730
	-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
	-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390 1.99090 2.35790	0.70640 1.29360 1.66060	0.66970 1.33030 1.69730 2.06430
	-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
	-000 +000 100 200 300 400 500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
	-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
	-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630
	-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66660 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930
	-000 +000 100 200 300 400 500 600 700 800 900	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.38550 3.75250 4.11950 4.48650	0.77980  1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690	0.70640 1.29360 1.66660 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.96360	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030
	-000 +000 100 200 300 400 500 600 700 800 900 1100	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	0.70640  1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.53230 4.26630 4.63330  5.00030 5.36730
	-000 +000 100 200 300 400 500 600 700 800 900 11000 11000 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090	0.70640  1.29360 1.60660 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.22960 4.59660  4.96360 5.33060 5.69760	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430
	-000 +000 100 200 300 400 500 600 700 800 900 1100	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390	0.70640  1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.53230 4.26630 4.63330  5.00030 5.36730
	-000 +000 100 200 300 400  500 600 700 800 900  1000 1100 1200 1300	0.81650  1.18350 1.55050 1.59050 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980  1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66690 6.02790 6.39490	0.70640  1.29360 1.60660 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.22960 4.59660  4.96360 5.33660 5.69760 6.06460 6.43160	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.73430 6.10130 6.46830  6.83530
	-000 +000 100 200 300 400  500 600 700 800 900  1100 1200 1300 1400	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.75250 4.11950 4.48650  4.85350 5.22050 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.266090 6.02790	0.70640  1.29360 1.66660 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.2960 4.59660  4.96360 5.69760 6.06460 6.43160  6.79860 7.16560	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230
	-000 +000 100 200 300 400 500 600 700 800 900 1100 11200 11200 11400 1500 1600 1700	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.68850 7.05550 7.42250	0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 6.72520 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.86260 4.22960 4.59660  4.96360 5.69760 6.06460 6.43160 6.79860 7.16560 7.53260	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230 7.56930
	-000 +000 100 200 300 400  500 600 700 800 900  1100 1200 1300 1400  1500 1500 1700 1800	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920 7.852620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.2960 4.59660 4.59660 6.643160 6.79860 7.16560 7.89960	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 6.10130 6.46830  6.83530 7.20230 7.593630 7.93630
	-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1200 1400 1500 1600 1700 1800 1900	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 5.95450 6.32150  6.68850 7.05550 7.78950 8.15650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.692420 5.99120 6.35820 6.72520 7.45920 7.82620 8.19320	0.74310  1.25690 1.62390 1.99090 2.35790 2.72490  3.09190 3.45890 3.82590 4.19290 4.55990  4.92690 5.29390 5.69690 6.02790 6.39490  6.76190 7.12890 7.49590 7.86290 8.22990	0.70640  1.29360 1.60660 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.2960 4.59660  4.96360 5.69760 6.06440 6.43160  6.79860 7.16560 7.89960 8.26660	0.66970  1.33030 1.09730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230 7.56930 7.93630 8.30330
	-000 +000 100 200 300 400  500 600 700 800 900  1100 1200 1300 1400  1500 1500 1700 1800	0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920 7.852620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 6.02790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.2960 4.59660 4.96360 5.33060 5.69760 6.06460 6.43160  6.79860 7.16560 7.89960	0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 6.10130 6.46830  6.83530 7.20230 7.593630 7.93630

VOLUME OF

(c) Logarithms of 1 + .00367 t for Values

t	0	1	2	3	4	Mean diff. per degree.
-40	ī 931051	7.929179	ī.927299	1.925410	1.923513	1884
-30	.949341	.947546	·945744	.943934	.942117	1805
-20	.966892	.965169	·963438	.961701	.959957	1733
-10	.983762	.982104	·980440	.978769	.977092	1667
-0	0.000000	.998403	·996801	.995192	.993577	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1 <b>582</b>
10	.015653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	147 <b>4</b>
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078522	1 <b>335</b>
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150 160 170 180 190	0.190472 .200632 .210559 .220265	0.191498 .201635 .211540 .221224 .230697	0.192523 .202635 .212518 .222180 .231633	0.193545 .203634 .213494 .223135 .232567	0.194564 .204630 .214468 .224087 .233499	1023 1000 976 956 935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	.249044	.249942	.250837	.251731	897
220	.257054	.257935	.258814	.259692	.260567	878
230	.265784	.266648	.267510	.268370	.269228	861
240	.274343	.275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	.329947	.330692	.331435	•332178	.332919	743
320	.337339	.338072	.338803	•339533	.340262	730
330	.344608	.345329	.346048	•346766	.347482	719
340	.351758	.352466	.353174	•353880	.354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361 573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	.373875	.374549	.37 5221	674
380	.379233	.379898	.380562	.381225	.381887	664
390	.385439	.386494	.387148	.387801	.388453	654

CASES.

of t between  $-49^{\circ}$  and  $+399^{\circ}$  C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.	
-40	ī.921608	7.919695	7.917773	1.915843	1.913904	1 <b>926</b>	
-30	.946292	.938460	.936619	.934771	.932915	184 <b>5</b>	
-20	.958205	.956447	.954681	.952909	.951129	1771	
-10	.975409	.973719	.972022	.970319	.968609	1699	
-0	.991957	.990330	.988697	.987058	.985413	1636	
+0	0.00789 <b>7</b>	0.009459	0.011016	0.012567	0.014113	1554	
10	.023273	.024781	.026284	.027782	.029274	1500	
20	.038123	.039581	.041034	.042481	.043924	1450	
30	.052482	.053893	.055298	.056699	.058096	1402	
40	.066382	.067748	.069109	.070466	.071819	1359	
50 60 70 80 90	0.079847 .092914 .105595 .117917 .129899	0.081174 .094198 .106843 .119130	0.082495 .095486 .108088 .120340 .132256	0.083811 .096765 .109329 .121547 .133430	0.085123 .098031 .110566 .122750 .134601	1315 1281 1243 1210 1175	
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144	
110	,152915	.1 54034	.155151	.156264	.157375	1115	
120	,163981	.164072	.166161	.167246	.168330	1087	
130	,174772	.17 58 36	.176898	.177958	.179014	1060	
140	,185301	.186340	.187377	.188411	.189443	1035	
150	0.195581	0.196596	0.197608	0.198619	0.199626	1011	
160	.205624	.206615	.207605	.208592	.209577	988	
170	.215439	.216409	.217376	.218341	.219304	966	
180	.225038	.225986	.226932	.227876	.228819	946	
190	.234429	.235357	.236283	.237207	.238129	925	
200	0.243621	0.244529	0.245436	0.246341	0.247244	906	
210	.252623	.253512	.254400	.255287	.256172	887	
220	.261441	.262313	.263184	.264052	.264919	870	
230	.270085	.270940	.271793	.272644	.273494	853	
240	.278559	.279398	.280234	.281070	.281903	836	
250	0.286872	0.287694	0.288515	0.289326	0.290153	820	
260	.295028	.295835	.296640	.297445	.298248	805	
270	.303034	.303827	.304618	.305407	.306196	790	
280	.310895	.311673	.312450	.313226	.314000	776	
290	.318616	.319381	.320144	.320906	.321667	763	
300	0.326203	0.326954	0.327704	0.328453	0.329201	750	
310	.333659	•334397	·335 ¹ 35	.335871	.336606	737	
320	.340989	•341715	·34244 ¹	.343164	.343887	724	
330	.348198	•348912	·349624	.350337	.351048	713	
340	.355289	•355991	·356693	.357394	.35 ⁸ 093	701	
350	0.362266	0.362957	0.363648	0.364337	0.365025	6go	
360	.369132	•369813	·370493	.371171	.371849	678	
370	.375892	•376562	·377232	.377900	.378567	668	
380	.382548	•383208	·383868	.384525	.385183	658	
390	.389104	•389754	·390403	.391052	.391699	648	

### VOLUME OF GASES.

(d) Logarithms of  $1+.00367\,t$  for Values of t between  $400^\circ$  and  $1990^\circ$  C. by  $10^\circ$  Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.515264	.520103	.524889
700	-552547	.556990	.561388	.565742	.570052
800	.595055	.599086	.603079	.607037	.610958
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	.702172	.705325	.708455	.711563	.714648
1200	.732715	.735655	.73 ⁸ 575 .766740	.741475	.744356
1 300	.761251	.764004,		.769459	.772160
1400	.788027	.790616	.793190	.795748	.798292
1500	0.813247 0.815691		0.818120	0.820536	0.822939
1600	.837083 .839396		.841697	.843986	.846263
1700	.859679	.861875	.864060	.866234	.868398
1800	.881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	.905602	.907578	.909545
t	50	60	70	80	90
400	0.423492	0.429462	0.435351	80 0.441161	90 0.446894
		0.429462	0.435351		
400	0.423492	0.429462	0.435351 0.490225 .538938	0.441161 0.495350 .543522	0.446894 0.500415 .548058
400 500 600 700	0.423492 0.479791 .529623 .574321	0.429462 0.485040 •534305 •578548	0.435351 0.490225 .538938 .582734	0.441161 0.495350 •543522 •586880	0.446894 0.500415 .548058 .590987
400 500 600 700 800	0.423492 0.479791 .529623 .574321 .614845	0.429462 0.485040 •534305 •578548 •618696	0.435351 0.490225 .538938 .582734 .622515	0.441161 0.495350 .543522 .586880 .626299	0.446894 0.500415 .548058 .590987 .630051
400 500 600 700	0.423492 0.479791 .529623 .574321	0.429462 0.485040 •534305 •578548	0.435351 0.490225 .538938 .582734	0.441161 0.495350 •543522 •586880	0.446894 0.500415 .548058 .590987
400 500 600 700 800	0.423492 0.479791 .529623 .574321 .614845	0.429462 0.485040 .534305 .578548 .618696 .655446	0.435351 0.490225 .538938 .582734 .622515 .658955	0.441161 0.495350 .543522 .586880 .626299 .662437	0.446894 0.500415 .548058 .590987 .630051
400 500 600 700 800 900	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755	0.435351 0.490225 .538938 .582734 .622515 .658955	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776	0.446894 0.500415 .548058 .590987 .630051 .605890 0.698996 .720756
400 500 600 700 800 900 1000 1100	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .750061	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692	0.446894 0.500415 .548058 .500987 .630051 .665890 0.698996 .729756 .758480
400 500 600 700 800 900 1000 1100 1200 1300	0.423492 0.479791 .529623 .574,321 .614845 .651908 0.686055 .717712 .747218 .774845	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422
400 500 600 700 800 900 1000 1100	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218	0.429462 0.485040 .534395 .578548 .618696 .655446 0.689327 .720755 .750061	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692	0.446894 0.500415 .548058 .500987 .630051 .665890 0.698996 .729756 .758480
400 500 600 700 800 900 1000 1100 1200 1300	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319	0.446894 0.500415 .548058 .500987 .630051 .605890 0.698996 .729756 .738480 .785422 .810790
400 500 600 700 800 900 1000 1100 1200 1300 1400	0.423492 0.479791 .529623 .574,321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253	0.446894 0.500415 .548058 .500987 .630051 .655890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .58680 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .500987 .650051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550 .891510	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692 .893551	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824 .895583	0.441161 0.495350 .543522 .586880 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945 .897605	0.446894 0.500415 .548058 .590987 .630051 .665890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056 .899618
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700	0.423492 0.479791 .529623 .574321 .614845 .651908 0.686055 .717712 .747218 .774845 .800820 0.825329 .848528 .870550	0.429462 0.485040 .534305 .578548 .618696 .655446 0.689327 .720755 .750061 .777514 .803334 0.827705 .850781 .872692	0.435351 0.490225 .538938 .582734 .622515 .658955 0.692574 .723776 .752886 .780166 .805834 0.830069 .853023 .874824	0.441161 0.495350 .543522 .58680 .626299 .662437 0.695797 .726776 .755692 .782802 .808319 0.832420 .855253 .876945	0.446894 0.500415 .548058 .590987 .630051 .605890 0.698996 .729756 .758480 .785422 .810790 0.834758 .857471 .879056

# RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 113.—Values of  $\frac{h}{760}$ , from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h=B-0.378e, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 189 and then 0.378e from Table 115, or the dew-point may be found and the value of 0.378e taken from Table 115.

lı	760
1	0.0013158
2	.0026316
3	.0039474
<b>4</b>	0.0052632
5	.0065789
6	.0078947
<b>7</b>	0.0092105
8	.0105263
9	.0118421

Examples of Use of the Table.

To find the value of  $\frac{h}{760}$  when h = 5.73 h = 5 gives .0056789 .0009210 .0009305 .0075304

TABLE 114. — Values of the logarithms of  $\frac{h}{760}$  for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

				Chara	cteristic, a	110 50 011.				
h	Values of $\log \frac{h}{7^{60}}$ .									
	0	1	2	3	4	5	6	7	8	9
<b>80</b>	ī.02228	ī.02767	ī.03300	ī.03826	ī.04347	ī.04861	ī.05368	ī.05871	ī.06367	ī.06858
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100 110 120 130 140	ī.11919 .16058 .19837 .23313	1.12351 .16451 .20197 .23646 .26841	1.12779 .16840 .20555 .23976	1.13202 .17226 .20909 .24304 .27452	1.13622 .17609 .21261 .24629	1.14038 .17988 .21611 .24952 .28055	1.14449 .18364 .21956 .25273 .28354	1.14857 .18737 .22299 .25591 .28650	7.15261 .19107 .22640 .25907 .28945	7.15661 .19473 .22978 .26220 .29237
150	7.29528	7.29816	1.30103	1.30388	7.30671	1.30952	ī.31231	7.31509	7.31784	1.32058
160	.32331	.32601	.32870	·33137	·33403	.33667	.33929	.34190	•34450	.34707
170	.34964	.35218	.35471	·35723	·35974	.36222	.36470	.36716	•36961	.37204
180	.37446	.37686	.37926	·38164	·384co	.38636	.38870	.39128	•39334	.39565
190	.39794	.40022	.40249	·40474	·40699	.40922	.41144	.41365	•41585	.41804
200	1.42022	1.42238	1.42454	1.42668	7.42882	1.43094	7.43305	ī.43516	1.43725	1.43933
210	.44141	·44347	·44552	·44757	.44960	.45162	.45364	.45565	.45764	.459 ⁶ 3
220	.46161	·46358	·46554	·46749	.46943	.47137	.47329	.47521	.47712	.47902
230	.48091	·48280	·48467	·48654	.48840	.49025	.49210	.49393	.49576	.4975 ⁸
240	.49940	·50120	·50300	·50479	.50658	.50835	.51012	.51188	.51364	.51539
250	7.51713	7.51886	7.52059	7.52231	1.52402	ī.52573	7.52743	7.52912	7.53081	1.53249
260	.53416	·53583	•53749	·53914	·54079	·54243	.54407	.54570	·54732	.54894
270	.55055	·55216	•55376	·55535	·55694	·55852	.56010	.56167	·56323	.56479
280	.56634	·56789	•56944	·57097	·57250	·57403	.57555	.57707	·57858	.58008
290	.58158	·58308	•58457	·58605	·58753	·58901	.59048	.59194	·59340	.59486
300	7.59631	7.59775	1.59919	ī.60063	7.60206	7.60349	7.60491	7.60632	7.60774	7.6c914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	.62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201

### DENSITY OF AIR.

Values of logarithms of  $\frac{\hbar}{760}$  for values of  $\hbar$  between 350 and 800.

h	Values of $\log \frac{\hbar}{76\circ}$ .									
	0	1	2	3	4	5	6	7	8	9
350 360 370 380 390	7.66325 .67549 .68739 .69897 .71025	7.66449 .67669 .68856 .70011 .71136	ī.66573 .67790 .68973 .70125 .71247	7.66696 .67909 .69090 .70239	7.66819 .68029 .69206 .70352 .71468	7.66941 .68148 .69322 .70465 .71578	ī.67064 .68267 .69437 .70577 .71688	ī.67185 .68385 .69553 .70690 .71798	ī.67307 .68503 .69668 .70802 .71907	ī.67428 .68621 .69783 .70914 .72016
400	7.72125	7.72233	7.72341	7.72449	7.72557	7.72664	1.72771	7.72878	ī.72985	7.73091
410	.73197	-73303	.73408	.73514	.73619	•73723	.73828	.73932	.74036	.74140
420	.74244	-74347	.74450	.74553	.74655	•74758	.74860	.74961	.75063	.75164
430	.75265	-75366	.75467	.75567	.75668	•75768	.75867	.75967	.76066	.76165
440	.76264	-76362	.76461	.76559	.76657	•76755	.76852	76949	.77046	.77143
450	7.77240	7.77336	ī.77432	7.77528	ī.77624	ī.77720	7.77815	7.77910	7.78005	7.78100
460	.78194	.78289	.78383	•78477	.78570	.78664	.78757	.78850	.78943	.79036
470	.79128	.79221	.79313	•79405	.79496	.79588	.79679	.79770	.79861	.79952
480	.80043	.80133	.80223	•80313	.80403	.80493	.80582	.80672	.80761	.80850
490	.80938	.81027	.81115	•81203	.81291	.81379	.81467	.81554	.81642	.81729
500	7.81816	7.81902	7.81989	7.82075	7.82162	T.82248	7.82334	7.82419	7.82505	1.82590
510	.82676	.82761	.82846	.82930	.83015	.83c99	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	ī.85955	7.86034	ī.86113	7.86191	7.86270	7.86348	ī.86426	7.86504	ī.86582	7.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87582	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	7.89734	7.89806	7.89878	7.89950	7.90022	1.90094	7.90166	7.90238	ī.90309	7.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	7.93210	7.93277	7.93343	7.93410	1.93476	ī.93543	1.936 <b>0</b> 9	7.93675	ī.93741	7.93807
660	•93873	.93939	.94004	.94070	.94135	.94201	.94266	•94331	.94396	.94461
670	•94526	.94591	.94656	.94720	.94785	.94849	.94913	•94978	.95042	.95106
680	•95170	.95233	.95297	.95361	.95424	.95488	.95551	•95614	.95677	.95741
690	•95804	.95866	.95929	.95992	.96055	.96117	.96180	•96242	.96304	.96366
700	7.96428	7.96490	7 96552	7.96614	7.96676	ī.96738	ī.96799	7.96861	1.96922	7.96983
710	.97044	.97106	.97167	.97228	.97288	·97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	·97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	·98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	·99134	.99193	.99251	.99309	.99367
750	7.99425	ī.99483	1.99540	7.99598	7.99656	7.99713	7.99771	7.99828	7.99886	7.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173

#### TABLE 115. - Values of 0.378e.*

This table gives the humidity term 0.378e, which occurs in the equation  $\delta = \delta_0 \frac{h}{760}$  =  $\delta_0 \frac{B - 0.378e}{760}$  for the calculation of the density of air containing aqueous vapor at pressure e;  $\delta_0$  is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378e, the pressure corrected for humidity. For values of  $\frac{760}{h}$ , see Table 113. Temperatures are in degrees Centigrade, and pressures in milli-

lifeters of fi	ilereury.							
Dew point.	Vapor pressure (ice).	0.378e	Dew point.	Vapor pressure (water).	0.378e	Dew point.	e Vapor pressure (water).	0.378e
_50°	mm	mm	0°	.mm	mm	30°	mm	mm
	0.029	0.0I 0.02	ı	4.58	1.73 1.86		31.86	12.0
-45 -40	0.054	0.02	2	4.92 5.20	2.00	31 32	33.74	12.8
-35	0.160	0.04	3	5.68	2.15	33	35.70 37.78	13.5
-30	0.288	0.11	3	6.10	2.31		39.95	15.1
-25	0.480	0.18	4 5	6.54	2.47	34 <b>35</b>	42.23	16.0
24	0.530	0.20	6	7.01	2.66	36	44.62	16.9
23	0.585	0.22	7 8	7.51	2.84	37	47.13	17.8
22	0.646	0.24	8	8.04	3.04	38	49.76	18.8
21	0.712	0.27	9 <b>10</b>	8.61	3.25	39 <b>40</b>	52.51	19.8
-20	0.783	0.30		9.21	3.48		55.40	20.9
19	0.862	0.33	II	9.85	3.72	41	58.42	22.I
18	0.947	0.36	12	10.52	3.98	42	61.58	23.3
17	1.041	0.39	13	11.24	4.25	43	64.89	24.5
16 - <b>15</b>	1.142	0.43	14 15	11.99	4.53	44 <b>45</b>	68.35	25.8
	1.252	0.47 0.52	16	12.79 13.64	4.84 5.16	46	71.97	27.2 28.6
14	1.373	0.52	17	14.54	5.50	47	75·75 79·70	30.1
12	1.644	0.62	18	15.49	5.85	48	83.83	31.7
II	1.798	0.68	10	16.49	6.23	49	88.14	33.3
-10	1.064	0.74	20	17.55	6.63	50	92.6	35.0
9	2.144	0.81	21	18.66	7.06	51	97.3	36.8
9 8	2.340	0.88	22	19.84	7.50	52	102.2	38.6
7	2.550	0.96	23	21.09	7.97	53	107.3	40.6
6	2.778	1.05	24	22.40	8.47	54	112.7	42.6
-5	3.025	1.14	25	23.78	8.99	55	118.2	44.7
4	3.291	I.24	26	25.24	9 · 54	56	124.0	46.9
3	3.578	1.35	27	26.77	10.12	57	130.0	49.1
2	3.887	1.47	28	28.38	10.73	58	136.3	51.5
0	4.220	1.60	29 <b>30</b>	30.08 31.86	11.37	59 <b>60</b>	142.8	54.0 56.5
	4.300	1./5	00	31.00	12.04	00	149.,0	50.5

^{*} Table quoted from Smithsonian Meteorological Tables.

#### TABLE 116. - Maintenance of Air at Definite Humidities.

Taken from Stevens, Phytopathology, 6, 428, 1916; see also Curtis, Bul. Bur. Standards, 11, 359, 1914; Dieterici, Ann. d. Phys. u. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

Density of	Relative	Vapor	pressure.	Density of	Relative	Vapor pressure.		
acid sol.	humidity.	20° C	30° C	acid sol.	humidity.	20° C	30° C	
		mm	mm			mm	mm	
1.00	100.0	17.4	31.6	1.30	58.3	10.1	18.4	
1.05	97.5	17.0	30.7	1.35	47.2	8.3	15.0	
1.10	93.9 88.8	16.3	29.6	1.40	37.I	6.5	11.9	
1.15	88.8	15.4	28.0	1.50	18.8	3.3	6.0	
1.20	80.5	14.0	25.4	1.60	8.5	1.5	2.7	
1.25	70.4	12.2	22.2	1.70	3.2	0.6	1.0	

SMITHSONIAN TABLES.

meters of mercury.

# PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at 0° C. for mercury and at 4° C. for water.

	METRIC MEAS	URE.		British Meas	URE.
Cms. of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34-533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0 0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8 .	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

#### REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

	or brass scale and h measure.		r brass scale and measure.	Corrections for metric	or glass scale and measure.
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in n m.	in mm. for temp. C.
15.0	0.00135	400	0.0651	50	0.0086
16.0	.00145	410	.c668	100	.0172
17.0	.00154	420	.0684	150	.0258
17.5 18.0	.001 58	430	.0700	200	.0345
	.00163	440	.0716	250	.0431
18.5	.00167	450	.0732	300	.0517
19.0	.00172	460	.0749	350	.0603
19.5	.00176	470	.0765	400	
000	0-	480	.0781	400	0.0689
200	0.00181	490	.0797	450	.0775
20.5		500	2.22.2	500	.0861
21.5	.00190 .00194	510	0.0813	520	.0895
22.0	.00194	520	.oS46	540	.0930
22.5	.00203	530	.0862	560 580	.0965
23.0	.00208	540	.0878	300	.0999
23.5	.00212	550	.0894	600	0.1034
-3.3		560	1100.	610	.1051
24.0	0.00217	570	.0927	620	.1068
24.5	.00221	580	.0943	630	.1085
25.0	.00226	590	.0959	640	.1103
25.5	.00231			650	.1120
26.0	.00236	600	0.0975	660	.1137
26.5	.00240	610	.0992		Ŭ.
27.0	.00245	620	.1008	670	0.1154
27.5	.00249	630	.1024	6So	.1172
000		640	.1040	690	.1189
28.0 28.5	0.00254	650 660	.1056	700	.1206
20.5	.00258	670	.1073	710	.1223
29.0	• .00265	6So	.1105	720	.1240
29.4	.00203	690	.1121	730	.1258
29.6	.00268			740	0.1275
29.8	.00270	700	0.1137	750	.1292
30.0	.00272	710	.1154	760	.1309
	•	720	1170	770	.1327
30.2	0.00274	730	.1186	7S0	.1344
30.4	.00276	740	.1202	790	.1361
30.6	.00277	750	.1218	800	.1378
30.8	.00279	760	.1235		
31.0	.00281	770	.1251	850	0.1464
31.2	.00283	780	.1267	900	.1551
31.4	.00285	790 <b>800</b>	.1283	950	.1639
31.6	.00287	800	.1299	1000	.1723

*The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Metecrological Tables. The numbers tabulated under a are the values of a in the equation  $H_1 = H' - a(l' - l')$  where  $H_1$  is the height at the standard temperature, H' the observed height at the temperature l', and a(l'-l) the correction for temperature. The standard temperature is  $0^{\circ}$  C. for the metric system and  $20^{\circ}$ ,  $5^{\circ}$ , for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately  $20^{\circ}$ ,  $5^{\circ}$ , because of the fact that the brass scale is graduated so as to be standard at  $62^{\circ}$  F., while mercury has the standard density at  $32^{\circ}$  F.

EXAMPLE.—A barometer having a brass scale gave H = 765 mm. at  $25^{\circ}$  C.; required, the corresponding reading at  $0^{\circ}$  C. Here the value of a is the mean of .1235 and .1251, or .1243; ...  $a(l'-l) = .1243 \times 25 = 3.11$ . Hence  $H_0 = 765 - 3.11 = 761.89$ N. B.—Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for a, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

mined by experiment.

#### Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is  $(g_1-g)/g \times B$  where B is the barometer reading and g and  $g_1$  the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity  $g_1$  (Table 565). It has been customary to assume for mountain stations that the value of  $g_1$  = say about  $\frac{2}{3}$  the free-air value, but a comparison of modern determinations of  $g_1$  in this country shows that little reliance can be placed on such an assumption. Where  $g_1$  is known its value should be used in the above correction term. (See Tables 566 and 567. Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 565.)

Height				Obse	rved he	ight of l	oaromet	er in mi	llimeter	s.		
above sea-level.	g1 — g	400	450	500	550	600	650	700	750	800		
meters.												
100	0.031		Correction in mm to be subtracted for .o2 .o2 .o2 — height above sea-level in first column and .o4 .o5 .o5 —									
300	0.093			ding in				.07	.07	.07	_	
500 600	0.154				_	=	.12	.11	.12	.13		
700 800	0.216	_	=		=	=	.14	.13	.14			
900	0.278				.18	.10	.18	. 20	.22	=	=	=
1100 1200	0.339	Ξ			.19	. 21	.20	.22	.24	=	_	=
1300	0.370	_			.21	.23	.24	.26				
1400 1500 1600	0.432	=	=	.24	.24	.26	.28	.31		] =	=	=
1700	0.494		_	.25 .27 .28	.30	.30	.32	=		<u> </u>		-
1900	0.555		-28	.30	.31	.36	.36		<u> </u>	.020	.0463	15000
2100	0.617 0.648 0.679		.30	.31	.34 .36	.38	.4I —	=	.021	.019	.0432	14000 13500
2300	0.710		.31	.35 .36 .38	.40	.4I .43	Ξ	.021	.020	.017	.0401	13000 12500 12000
2500	0.740 0.771 0.802	.31	·34 ·35	.39	· 42 · 43	· 45 · 47	.021	.020	.018	.015	.0370	11500
2700 2800	0.833	-33 -34	.37 .38	.42	=		.020	.018	.016	.013	.0339	10500
2000	0.895	.35 .36 .38	.41	.46	_	.020	.018	.016	.015	.013	.0293	9500
3100 3200	0.957	.39	.44	-47		.018	.016	.015	.013		.0262	8500 8000
3300 3400	1.019	.42	.47 .48	_	.017	.016	.014	.013		_	.0231	7500
3500 3600	1.080	·44 ·45	.49		.015	.014	.012	.011	=	_	.0200	6500
3700	1.142	.46 .48	_		.013	.012	.010	_	=	_	.0170	5500
3900 4000	1.204	• 49 • 50	_	.010	.010	.010	_	_	=	=	.0139	4500 4000
	_	_	.003	.003	.007	.007		rections			.0092	3000
=	=	.006   .005   .004   —   subtracted for height above   .0062   .003   .003   —   =   sea-level in last column and   .0031									2000 1000	
		barometer reading in bottom line.										
												feet.
		30	28	26	2.4	22	20	18	16	1.4		Height
		Observed height of barometer in inches.								above sea-level.		

#### METRIC MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

ati-ide.         520         540         560         580         600         620         640         660         680         700         720         740           mm.         mm.<	mm. mm. 98—2.04—2.09 95—2.00—2.06 94—1.99—2.02 92—1.98—2.01 93—1.94—1.99 94—1.89—1.99 94—1.89—1.99 94—1.89—1.99 94—1.89—1.99 94—1.89—1.99 94—1.89—1.99 95—1.80—1.83—1.88 95—1.80—1.83—1.88
0       —1.39       —1.45       —1.50       —1.55       —1.61       —1.66       —1.77       —1.77       —1.82       —1.87       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.93       —1.	08-2.04-2.00 05-2.00-2.06 04 1.99 2.02 02 1.98 2.03 05 1.96 2.03 05 1.94 1.99 06-1.92-1.93 06-1.89 1.93 07-1.80 1.83 07-1.80 1.83 07-1.80 1.83
5 —I.37 —I.42 —I.48 —I.53 —I.58 —I.64 —I.69 —I.74 —I.79 —I.85 —I.90 —I.66 —I.36 —I.42 —I.48 —I.52 —I.57 —I.63 —I.68 —I.74 —I.79 —I.85 —I.90 —I.74 —I.75 —I.85 —I.90 —I.74 —I.75 —I.85 —I.90 —I.74 —I.75 —I.85 —I.90 —I.74 —I.75 —I.85 —I.90 —I.74 —I.76 —I.85 —I.90 —I.77 —I.82 —I.87 —II.87 —II.8	05 -2.00 -2.06 04 1.99 2.02 1.98 2.03 05 1.96 2.03 06 1.94 1.99 06 1.92 -1.93 06 1.89 1.93 08 1.88 1.88 08 1.83 1.88
6       1.36       1.42       1.47       1.52       1.57       1.63       1.68       1.73       1.78       1.83       1.89       1.         7       1.35       1.40       1.46       1.51       1.56       1.61       1.66       1.72       1.77       1.82       1.87       1.         8       1.34       1.39       1.44       1.49       1.55       1.60       1.65       1.70       1.75       1.80       1.85       1.         9       1.33       1.38       1.43       1.48       1.53       1.58       1.63       1.70       1.75       1.80       1.85       1.         10       -1.31       -1.36       -1.41       -1.46       -1.51       -1.56       -1.61       -1.66       1.71       -1.75       1.81       1.         11       1.29       1.34       1.39       1.44       1.49       1.54       1.59       1.64       1.69       1.74       1.79       1.51         12       1.27       1.32       1.37       1.42       1.47       1.52       1.57       1.62       1.67       1.72       1.76       1.1         13       1.25       1.30       1.35       1.40	1.99 2.02 1.98 2.03 1.96 2.03 1.96 2.03 1.96 1.94 1.89 1.92 1.80 1.93 1.81 1.83 1.88 1.83 1.83
7	1.98 2.00 1.96 2.01 1.96 2.01 1.94 1.99 36 -1.92 -1.95 1.89 1.93 1.86 1.95 1.81 1.88 1.83 1.88
8   1.34   1.39   1.44   1.49   1.55   1.60   1.65   1.70   1.75   1.80   1.85   1.9   1.33   1.38   1.43   1.48   1.53   1.58   1.63   1.68   1.73   1.78   1.84   1.9   1.31   1.30   1.41   1.46   1.51   1.56   1.61   1.66   1.71   1.76   1.81   1.1   1.29   1.34   1.39   1.44   1.49   1.54   1.59   1.64   1.69   1.74   1.79   1.1   1.27   1.32   1.37   1.42   1.47   1.52   1.57   1.62   1.67   1.72   1.76   1.1   1.25   1.30   1.35   1.40   1.45   1.50   1.54   1.59   1.64   1.69   1.74   1.1   1.1   1.23   1.28   1.33   1.38   1.42   1.47   1.52   1.56   1.61   1.66   1.71   1.1   1.1   1.21   1.23   1.23   1.32   1.35   1.40   1.44   1.49   1.54   1.55   1.56   1.61   1.66   1.71   1.1   1.1   1.23   1.23   1.28   1.32   1.37   1.41   1.46   1.50   1.55   1.60   1.64   1.67   1.1   1.1   1.1   1.23   1.23   1.28   1.32   1.37   1.41   1.46   1.50   1.55   1.60   1.64   1.67   1.54   1.55   1.60   1.64   1.65   1.64   1.65   1.64   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65   1.65	1.96 2.00 1.94 1.99 1.94 1.99 1.89 1.99 1.80 1.83 1.83 1.83 1.83 1.83
10 —I.3I—I.36—I.4I—I.46—I.5I—I.56—I.66—I.7I—I.76—I.8I—I.  II I.29 I.34 I.39 I.44 I.49 I.54 I.59 I.64 I.69 I.74 I.79  I2 I.27 I.32 I.37 I.42 I.47 I.52 I.57 I.62 I.67 I.72 I.76 I.1  I3 I.25 I.30 I.35 I.40 I.45 I.50 I.54 I.59 I.64 I.69 I.74 I.  I4 I.23 I.28 I.33 I.38 I.42 I.47 I.52 I.56 I.61 I.66 I.71 I.  15 —I.21—I.26—I.30—I.35—I.40—I.44—I.49—I.54—I.58—I.63—I.67—I.  16 I.19 I.23 I.28 I.32 I.37 I.41 I.46 I.50 I.55 I.60 I.64 I.67	66—1.92—1.9; 84 1.89 1.93 81 1.86 1.9; 88 1.83 1.88 75 1.80 1.83
11     1.29     1.34     1.39     1.44     1.49     1.54     1.59     1.64     1.69     1.74     1.79     1.8       12     1.27     1.32     1.37     1.42     1.47     1.52     1.57     1.62     1.67     1.72     1.76     1.8       13     1.25     1.30     1.35     1.40     1.45     1.50     1.54     1.59     1.64     1.69     1.74     1.1       14     1.23     1.28     1.33     1.38     1.42     1.47     1.52     1.50     1.61     1.66     1.71     1.       15     -1.21     -1.26     -1.30     -1.35     -1.40     -1.44     -1.49     -1.54     -1.58     -1.63     -1.67     -1.       16     1.19     1.23     1.28     1.32     1.37     1.41     1.46     1.50     1.55     1.60     1.64     1.6	34 1.89 1.92 31 1.86 1.93 88 1.83 1.88 75 1.80 1.83
12	31 1.86 1.93 28 1.83 1.88 25 1.80 1.83
13	78 1.83 1.88 75 1.80 1.83
15 — 1.21 — 1.26 — 1.30 — 1.35 — 1.40 — 1.44 — 1.49 — 1.54 — 1.58 — 1.63 — 1.67 — 1. 16 1.19 1.23 1.28 1.32 1.37 1.41 1.46 1.50 1.55 1.60 1.64 1.6	
16 1.19 1.23 1.28 1.32 1.37 1.41 1.46 1.50 1.55 1.60 1.64 1.6	2-1.77-1.81
11/ 1.10 1.20 1.29 1.34 1.30 1.43 1.4/ 1.52 1.50 1.00 1.0	
18	
	1.61 1.65
20 -1.07 -1.11 -1.16 -1.20 -1.24 -1.28 -1.32 -1.36 -1.40 -1.44 -1.49 -1. 21 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.	
22 1.01 1.05 1.09 1.13 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.4	4 1.48 1.51
23   0.98   1.01   1.05   1.09   1.13   1.16   1.20   1.24   1.28   1.31   1.35   1.24   0.94   0.98   1.01   1.05   1.08   1.12   1.16   1.19   1.23   1.27   1.30   1.21   1.22   1.31   1.23   1.24   1.31   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35   1.35	
25 -0.90 -0.94 -0.97 -1.01 -1.04 -1.08 -1.11 -1.15 -1.18 -1.22 -1.25 -1.2 26 0.87 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.13 1.17 1.20 1.2	
27   0.83   0.86   0.89   0.92   0.96   0.99   1.02   1.05   1.08   1.12   1.15   1.1	8 1.21 1.24
28 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09 1.29 0.75 0.78 0.81 0.84 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.0	
<b>80</b>   -0.71   -0.74   -0.76   -0.79   -0.82   -0.85   -0.87   -0.90   -0.93   -0.95   -0.98   -1.6   -0.67   0.69   0.72   0.74   0.77   0.80   0.82   0.85   0.87   0.90   0.92   0.92   0.92   0.92   0.93   -0.95   -0.95   -0.96   0.92   0.92   0.92   0.93   -0.95   -0.96   0.92   0.92   0.93   -0.95   -0.96   0.92   0.92   0.93   -0.95   -0.96   0.92   0.93   -0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   0.95   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96   -0.96	
32 0.62 0.65 0.67 0.70 0.72 9.74 0.77 0.79 0.82 0.84 0.86 0.8	9 0.91 0.94
33	
0.45	
37 0.40 0.42 0.43 0.45 0.46 0.48 0.49 0.51 0.52 0.54 0.56 0.5	7 0.59 0.60
38	
41 0.21 0.22 0.23 0.24 0.25 0.26 0.26 0.27 0.28 0.29 0.30 0.3	
42 0.17 0.17 0.18 0.19 0.19 0.20 0.21 0.21 0.22 0.22 0.23 0.2 43 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.16 0.16	4 0.24 0.25
44 0.07 0.07 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.10	
45 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03	3-0.03-0.04
3.03 3.03 3.03 3.03 3.03 3.03 3.03	3.03-0.04

^{* &}quot;Smithsonian Meteorological Tables."

#### METRIC MEASURES.

From Latitude 46° to 90°, the Correction is to be Added.

Lati- tude.		540	560	580	600	620	640	660	680	700	720	740	760	780
45	mm. -0.02	mm. -0.02	mm. 0.03	mm. 0.03	mm. —0.03	mm. 0.03	mm. 0.03	mm. —0.03	mm. 0.03	mm. 0.03	mm. 0.03	mm. —0.03	mm. —0.03	тп —0.
46 47 48 49 50	+0.02 0.07 0.12 0.17 0.22	0.08 0.12 0.17	+0.03 0.08 0.13 0.18 0.23	0.08 0.13 0.19	0.08 0.14 0.19	0.09 0.14 0.20	0.09 0.15 0.21	0.09 0.15 0.21	0.09 0.16 0.22	0.16 0.23	0.10 0.17 0.23	0.10 0.17 0.24	0.10 0.18 0.25	0. 0. 0.
51 52 53 54 55	+0.26 0.31 0.36 0.40 0.45	0.32 0.37 0.42	0.33 0.38 0.43	0.34 0.40 0.45	0.36 0.41 0.46	0.37 0.42 0.48	0.38 0.44 0.49	0.39 0.45 0.51	0.40 0.46 0.52	0.48	0.43 0.49 0.56	0.44 0.51 .057	0.45 0.52 0.59	03
56 57 58 59 60	+0.49 0.54 0.58 0.62 0.66	0.56 0.60 0.65	0.58 0.62 0.67	0.60 0.65 0.69	0.62 0.67 0.72	0.64 0.69 0.74	0.66	0.68 0.74 0.79	0.70 0.76 0.81	0.78 0.84	0.74 0.80 0.86	0.76 0.82 0.89	0.78 0.85 0.91	00 07 03
61 62 63 64 65	+0.71 0.74 0.78 0.82 0.86	0.77 0.81 0.85	0.80 0.85 0.89	0.83 0.88 0.92	0.85 0.91 0.95	0.88	0.91 0.97 1.01	0.94 1.00 1.04	0.97 1.03 1.08	1.06	I.02 I.09 I.14	I · 05 I · 12 I · 17	I.08 I.15 I.20	1 8 1 8
66 67 63 69 70	+0.90 0.93 0.97 1.00 1.03	0.97 1.00 1.04	I.00	I.04 I.08 I.11	I.08 I.11 I.15	I.11 I.15 I.19	I.15 I.19 I.23	I.18 I.23 I.27	I . 22 I . 26 I . 31	1.30 1.34	I.29 I.34 I.38	I.33 I.37 I.42	1.36 1.41 1.46	I 0 I 5 I 0
71 72 73 74 75	+1.06 1.09 1.12 1.14 1.17	1.13 1.16 1.19	I.17 I.20 I.23	I.22 I.25 I.28	I.26 I.29 I.32	1.30 1.33 1.36	I · 34 I · 37 I · 41	I.42 I.42 I.45	1.42 1.46 1.50	I.50 I.54	1.51 1.55 1.58	I.55 I.55 I.63	1.59 1.63 1.67	I 3 I 7 I 2
76 77 78 79 80	+1.19 1.21 1.23 1.25 1.27	I.26 I.28 I.30	1.31 1.33 1.35	I.35 I.38 I.40	I.40 I.42 I.45	1.45 1.47 1.49	I.49 I.52 I.54	I.54 I.57 I.59	1.59 1.61	1.66	1.68 1.71 1.73	1.73 1.76 1.78	1.77 1.80	1 2 1 5 1 8
81 82 83 84 85	+1.29 1.30 1.31 1.32 1.33	1.35 1.36 1.37	I.40 I.41 I.42	I.45 I.46 I.48	1.50 1.51 1.53	1.55 1.56	1.60	1.65 1.67	1.70 1.72 1.73	1.77	1.80 1.82 1.83	1.85 1.87 1.88	1.90 1.92 1.93	105
90	+1.35	+1.41	+1.46	+1.51	+1.56	+1.61	+1.67	+1.72	+1.77	+1.82	+1.87	+1.93	+1.98	+:)3

* "Smithsonian Meteorological Tables."

# ENGLISH MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

_												
Lati- ude.	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
0	-0.05I	_0.054	-0.056							-0.075	_	
١	-0.051	-0.054	0.050	-0.039	-0.002	0.004	0.007	0.070	0.072	0.0/3	0.070	-0.000
5	-0.050	-0.053	-0.055	<b></b> 0.058	<del></del> 0.061	-0.063	-o.o66	-0.060	-0.071	<b>-0</b> ,074	-0.077	-0.070
6	0.050	0.052	0.055	0.058	0.060	0.063	0.066		0.071	0.073	0.076	/ -
	0.049	0.052	0.055	0.057	0.060	0.062	0.065	0.068	0.070	0.073	0.075	0.078
7 8	0.049	0.025	0.054	0.057	0.059	0.062	0.064	0.067	0.070	0.072	0.075	0.077
9	0.048	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	
10	<b>0.048</b>	-0.050	o.o53	-0.055	-0.058	-0.060	-0.063	<b>−</b> 0.066	<b>−</b> 0.068	-0.07I	-0.073	-0.076
II	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070		0.075
12	0.047	0.049	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074
13	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	0.071
15	0 044	0.047	-0.040	-0.051	0.051	0.056	-0.058	-0.060	0.063	<b>-0.</b> 065	0.067	0.250
16	-0.044	-0.047 0.046	-0.049 0.048	-0.051 0.050	-0.053 0.052	0.056 0.055	0.057	0.059	0.062	-0.003 0.064	0.066	1 -1
	0.043	0.045	0.047	0.049	0.051	0.053	0.056	0.059	0.060	0.062	0.065	4.400
17 18	0.042 0.041	0.043	0.047	0.048	0.050	0.053	0.054	0.057	0.059	0.061	0.063	
19	0.041	0.044	0.045	0.047	0.049		0.053	0.055	0.057	0.059	0.062	0.065
19	0.040	0.042	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.002	0.004
20	-0.039	-0.041	-0.043	-0.045	<b>-</b> 0.047	-0.050	-0.052	-0.054	-o.o56	-o.o58	<b>—</b> о.обо	-0.062
21	0.038	0.040	0.042	0.044	0.046	0.048	0.050		0.054	0.056		
22	0.037	0.039	0.041	0.043	0.045	0.047	0.049	0.050		0.054		
23	0.036	0.038	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.054	
24	0.034	0.036	0.038	0.040	0.042	0.043	0.045	0.047	0.049	0.051	0.052	
	Ŭ .		_		·			.,				
25	-0.033	-0.035	-0.037	-0.0 <b>3</b> 8	<b>-0.</b> 040	-0.042	-0.043	-0.045	<del>-</del> 0.047	<b>-0.</b> 049	-0.050	-0.052
26	0.032	0.033	0.035	0.037	0.038	0.040	0.042	0.043	0.045	0.047	0.048	0.050
27	0.030	0.032	0.033	0.035	0.037	0.038	0.040	0.041	0.043	0.045	0.046	0.048
28	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.043	0.044	
29	0.027	0.029	0.030	0.032	0.033	0.035	0.036	0.037	0.039	0.040	0.042	0.043
00										0		
30	-0.026	-0.027	-0.029	-0.030	-0.031	<b>-</b> 0.033	-0.034	-0.035	-0.037	-o.o38		
31	0.024	0.020	0,027	0.028	0.030	0.031	0.032	0.033	0.035	0.036		0.038
32	0.023	0.024	0.025	0.026	0.028	0.029	0.030		0.032	0 034	0.035	
33	0.021	0.022	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	- 1
34	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
35	-0.018	-0.019	-0.020	-0.021	-0.022	-0.023	-0.024	-0.025	-0.026	-0.027	-0.027	-0.028
36	0.016	0.017	810.0	0.019	0.020	0.023	0.022	0.023	0.023	0.024	0.025	
37	0.015	0.015	0.016	0.017	0.018	0.019	0.010	0.020	0.021	0.022	0.022	
38	0.013	0.014	0.014	0.015	0.016		0.017	0.018		0.010	0.020	
39	0.011	0.012	0.012	0.013	0.014		0.015	0.015	0.016	0.017	0.017	0.018
6					·			Ü				
40	-0.010	-0.010	-0.011	-0.011	-0.012	-0.012	-0.013	-0.013	-0.014	<u>-0.014</u>	-0.015	-0.015
41	0.008	0.008	0.009	0.009	0.009	0.010	0.010		0.011	0.012		
42	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	
43	0.004	0.005	0.005	0.005	0.005	0.005	0.006			0.006		
44	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
45				0.00				0		0	0.00	0.00
15	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001

^{* &}quot;Smithsonian Meteorological Tables."

# ENGLISH MEASURES.

From Latitude 46° to 90° the Correction is to be Added.

Lati-	10	00	0.1	00	00	0.4	OF.	00	0.77	00		
tude.	19	20	21	22	23	24	25	26	27	28	29	30
	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.
45	-0.001	-0.001	-0,001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	-0.001	0.001	-0.00i
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
47	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
48	0.004											0.007
49 50	0.006				0.007			_		0.009	0.009	0.010
51							+0.013					
52	0.011	0.012							0.016	0.016	0.017	0.018
53	0.013	0.014	i -							0.019	0.020	0.020
54	0.015					_		0.020	0.021	0.022	0.025	
56							+0.024					
57 58	0.020 0.021	0.021			0.024 0.026	0.025	0.026	0.027	0.028	0.029	0.030	0.031
59	0.021	0.022		0.025	0.028			_	0.030	0.031	0.032	0.033
60	0.023	0.024				-	-		0.034	0.035		0.038
	ļ. j											
61							+0.034					40
62	0.027	0.029	_		0.033				0.039	0.040		0.043
64	0.029				0.035 0.036				0.041	0.042 0.044	0.044	0.04
65	0.031	_						0.041	0.043	0.044		
			-		_		·					
66							+0.043					
67	0.034	0.036		,		0.043			0.048		_	0.052
69	0.035 0.036	0.037	0.039		0.043		0.046	0.048	0.050 0.052		0.054 0.056	0.056
70	0.038								0.052	0.055	0.057	
71							+0.051					
72	0.040							0.054	0.057	0.059	0.061	0.06
73	0.04I 0.042	, , , , ,			0.049			0.056	0.058	0.062	0.064	0.002
74   75	0.042								0.059	0.063	0.065	0.06;
76							+0.057			+0.064	0.066	0.069
77 78	0.044			_		-		0.061	0.063	0.065	0.068	0.070
70	0.045 0.046	0.047					0.059	0.062	0.064	0.067	0.009	0.072
79 80	0.046							0.063	0.066	0.068	0.071	0.07
	100		_					1000	1006	10.06	10.000	10.07
81 82							+0.062	0.065	+0.007	+0.009 0.070	+0.072	0.07
83	0.047	0.050 0.050			0.057 0.058		_	0.065	0.007	0.070	0.072	0.07
84	0.048						0.064	0.066		0.071	0.074	0.070
85	0.049						0.064	0.067	0.069	0.072	0.074	0.07
	1	100=			1 0 00	1 = = = =	10.00	1 0 000	10.050	10.050	10.055	10.07
90	+0.049	+0.052	+0.055	+0.057	+0.000	+0.002	+0.065	+0.008	+0.070	+0.073	+0.075	70.0/

* "Smithsonian Meteorological Tables."

# TABLE 124. - Correction of the Barometer for Capillarity.*

			ı. Me	TRIC ME	ASURE.				
			Неібн	r of Menis	cus in Mil	LIMETERS.			
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
			Corre	ction to be a	dded in mill	imeters.			
4 5 6 7 8 9 10 11 12 13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
			2. Bri	TISH MEA	ASURE.				
			Не	GHT OF М	ENISCUS IN ]	NCHES.			
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08	
			Cor	rection to be	e added in ir	iches.			
.15 .20 .25 .30 .35 .40 .45 .50	0.024 .011 .006 .004 - - -	0.047 .022 .012 .008 .005 .004	0.069 .033 .019 .013 .008 .006 .003 .002	0.092 .045 .028 .018 .012 .008 .005 .004	0.116 .059 .037 .023 .015 .010 .007 .005	0.078 .047 .029 .018 .012 .008 .006	0.059 .035 .022 .014 .010 .c06	- 0.042 .026 .016 .012 .007	

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 125. - Volume of Mercury Meniscus in Cu. Mm.

Height	of	Diameter of tube in mm.									
menisc	14	15	16	17	18	19	20	21	22	23	24
mm. 1.6 1.8 2.0 2.2 2.4 2.6	1 57 181 206 223 262 291	185 211 240 271 303 338	214 244 278 313 350 388	245 281 319 358 400 444	280 320 362 406 454 503	318 362 409 459 511 565	356 407 460 515 573 633	398 455 513 574 639 706	444 507 571 637 708 782	492 560 631 704 781 862	541 616 694 776 859 948

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

# BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

Useful when a boiling-point apparatus is used in the determination of heights. Copied from the Smithsonian Meteorological Tables, 4th revised edition.

(A) METRIC UNITS.

11	MET	RIC	TINI	TS.

Tem- perature.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
80° 35 81 37 82 38 83 40	5.40 5.03 5.16 5.81 5.99	mm. 356.84 371.52 386.70 402.40 418.64	404.00	389.80 405.61	mm. 361.19 376.02 391.36 407.22 423.61	392.92 408.83	410.45	396.06 412.08	mm. 367.06 382.09 397.64 413.71 430.32	mm. 368.54 383.62 399.22 415.35 432.01
86 45 87 46 88 48	0.99 8.84	435.41 452.75 470.66 489.16 508.26	454·51 472·48	456.28	440.55 458.06 476.14 494.82 514.11	459.84 477.99 496.72 516.07	498.63	463.42 481.68 500.54 520.01	447 · 49 465 · 22 483 · 54 502 · 46 521 · 99	449.24 467.03 485.41 504.39 523.98
91 92 56 93 58 94 61	5.97 5.26 7.20 8.80 1.08	591.00	529.98 550.40 571.47 593.20 615.62	552.48 573.61 595.41	554.56 575.76	556.65 577.92 599.86	538.07 558.75 580.08 602.09 624.79	560.85 582.25 604.33	562.96 584.43 606.57 629.41	544.21 565.08 586.61 608.82 631.73
96 65 97 68 98 70 99 73	7.75 2.18 7.35 3.28	660.16 684.66 709.90 635.92	662.58 687.15 712.47 738.56	665.00 689.65 715.04 741.21	667.43 692.15 717.63 743.87	669.87 694.67 720.22 740.54	672.32 697.19 722.81 749.22	699.71 725.42	652.96 677.23 702.25 728.03 754.59	679.70 704.79 730.65 757.29

				(B) EN	GLISH 1	UNITS.				
Tem- perature	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
F. 185° 186 187 188 189	Inches. 17.075 17.450 17.832 18.221 18.618	Inches. 17.112 17.488 17.871 18.261 18.658	Inches. 17.150 17.526 17.910 18.300 18.698	Inches. 17.187 17.564 17.948 18.340 18.738	Inches. 17.224 17.602 17.987 18.379 18.778	Inches. 17.262 17.641 18.026 18.419 18.818	Inches. 17.300 17.679 18.065 18.458 18.859	Inches. 17.337 17.717 18.104 18.498 18.899	Inches. 17.375 17.756 18.143 18.538 18.940	Inches. 17.413 17.794 18.182 18.578 18.980
190 191 192 193 194	19.849	19.062 19.473 19.892 20.318 20.751	19.102 19.514 19.934 20.361 20.795	19.143 19.556 19.976 20.404 20.839	19.184 19.598 20.019 20.447 20.883	19.225 19.639 20.061 20.490 20.927	19.266 19.681 20.104 20.533 20.971	19.308 19.723 20.146 20.577 21.015	19.349 19.765 20.189 20.620 21.059	19.390 19.807 20.232 20.664 21.103
195 196 197 198 199	21.597 22.053	21.192 21.642 22.099 22.564 23.038		21.733 22.192	21.778	21.371 21.824 22.284 22.752 23.229			21.506 21.961 22.424 22.895 23.374	21.551 22.007 22.471 22.942 23.422
200 201 202 203 204	23.470 23.959 24.457 24.963 25.478		23.568 24.058 24.557 25.065 25.582	24.108 24.608	23.665 24.157 24.658 25.168 25.686	24.207	23.763 24.257 24.759 25.271 25.791	23.812 24.307 24.810 25.322 25.843	23.861 24.357 24.861 25.374 25.896	23.910 24.407 24.912 25.426 25.948
205 206 207 208 209	26.001 26.534 27.075 27.626 28.185	27.130	26.107 26.641 27.184 27.737 28.298	26.160 25.695 27.239 27.793 28.355	26.213 26.749 27.294 27.848 28.412		26.319 26.857 27.404 27.960 28.526		26.426 26.966 27.515 28.073 28.640	26.480 27.021 27.570 28.129 28.697
210 211 212 213 214	28.754 29.333 29.921 30.519 31.127	29.391 29.981 30.580	28.869 29.450 30.040 30.640 31.250	1 - 2	28.985 29.567 30.159 30.761 31.373		29.100 29.685 30.279 30.883 31.497	29.158 29.744 30.339 30.944 31.559	29.216 29.803 30.399 31.005 31.621	29.275 29.862 30.459 31.065 31.683

# DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet: 
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.  
 $C$  (in feet) = 52494  $\left[ x + \frac{t_0 + t - 64}{900} \right]$  English measures.  
 $C$  (in meters) = 16000  $\left[ x + \frac{2(t_0 + t)}{1000} \right]$  metric measures.

In which Z = difference of height of two stations in feet or meters.

 $B_0$ , B = barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 $t_0$ , t = air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	ures.	ME	TRIC MEAS	URES.
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C
Fahr. 10° 15 20 25 30 35 40 45 50 55	Feet. 49928 50511 51094 51677 52261 52844 53428 54011 54595 55178	4.69834 .70339 4.70837 .71330 4.71818 .72300 4.72777 .73248 4.73715 .74177	Cent10° -8 -6 -4 -2  0 +2 4 6 8  10 12 14	Meters. 15360 15488 15616 15744 15872 16000 16128 16256 16384 16512	4.18639 .19000 .19357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780 4.22115 .22448 .22778
60 65 .	55761 56344	4.74633 .75085	16	17024 17152	.23106 .23431
70 75 <b>80</b> 85	56927 57511 58094 58677	4.7553 ² .75975 4.76413 .76847	20 22 24 26 28	17280 17408 17536 17664 17792	4.23754 .24075 .24393 .24709 .25022
90 95 100	59260 59844 60427	4.77276 .77702 4.78123	30 3 ² 34 36	17920 18048 18176 18304	4.25334 .25643 .25950 .26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

# TABLE 128.

# VELOCITY OF SOUND IN SOLIDS.

The velocity of sounds in solids varies as  $\sqrt{E/\rho}$ , where E is Young's Modulus of elasticity and  $\rho$  the dusty. These constants for most of the materials given in this table vary through a somewhat ide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

and 20° is to be understood.				
Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Metals: Aluminum	0	5104	16740	Masson,
Brass	_	5104 3500	11480	Various,
Cadmium	_	2307	7570	Masson.
Cobalt	-	4724	15500	4.6
Copper	20	3560	11670	Wertheim.
	100	3290	10800	"
11	200	2950	9690	"
Gold (soft)	20	1743 2100	5717 6890	Various.
Iron and soft steel	_	5000	16410	4.
Iron	20	5130	16820	Wertheim.
66	100	5300	17390	66
"	200	4720	1 5480	"
" cast steel	20	4990	16360	66
Lead	200	4790 1227	1 57 10 4026	66
Magnesium	-	4602	15100	Melde.
Nickel	-	4973	16320	Masson.
Palladium	-	3150	10340	Various.
Platinum	20	2690	8815	Wertheim.
66	100	2570	8437	66
C'1	200	2460 2610	8079	"
Silver · · ·	100	2640	8553 8658	66
Tin .	_	2500	8200	Various.
Zinc	-	3700	12140	4.6
Various: Brick	-	3652 3480	11980	Chladni.
Clay rock	~	3480	11420	Gray & Milne.
Cork	_	500	1640 12960	Stefan.
Marble	_	3950 3810	12500	Gray & Milne.
Paraffin	15	1304	4280	Warburg.
Slate	-	4510	14800	Gray & Milne.
Tallow	16	390	1280	Warburg.
Tuff	_	2850	9350	Gray & Milne.
Glass $\begin{cases} from \\ to \end{cases}$	_	5000 6000	16410 19690	Various.
Ivory	_	3013	9886	Ciccone & Campanile,
Vulcanized rubber	0	54	177	Exner.
(black)	50	31	102	"
" " (red) .	0	69	226	"
Wax	70 17	34 88 <b>o</b>	2890	Stefan.
Wax	28	441	1450	sterati.
Woods: Ash, along the fibre	-	4670	15310	Wertheim.
" across the rings .	-	1 390	4570	6
" along the rings	-	1260	4140	66
Beech, along the fibre .	_	3340	10960 6030	46
" across the rings . " along the rings .	_	1840 1415	4640	66
Elm, along the fibre .	-	4120	13516	"
" across the rings .	-	1420	4665	46
" along the rings .	-	1013	3324	66
Fir, along the fibre.	-	4640	15220	66
Maple " Oak "	_	3850	13470	66
Pine "	_	3320	10900	66
Poplar "	-	4280	14050	66
Sycamore "	-	4460	14640	"
	l			

#### VELOCITY OF SOUND IN LIQUIDS AND GASES.

For gases, the velocity of sound= $\sqrt{\gamma P/\rho}$ , where P is the pressure,  $\rho$  the density, and  $\gamma$  the ratio of specific heat at constant pressure to that at constant volume (see Table 253). For moderate temperature changes  $V_t = V_0(1 + \alpha t)$  where  $\alpha = 0.00367$ . The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive are for closed tubes.

or closed tubes.				
Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol, 95%	° 12.5	1241.	4072.	Dorsing, 1908.
	20.5	1213.	3980.	46
Ammonia, conc	16.	1663.	5456	44
Benzol Carbon bisulphide .	17.	1166.	3826.	"
Chloroform	15. 15.	983.	3809. 3225.	44
Ether	15.	1032.	3386.	ч
NaCl, 10% sol	15.	1470.	4823.	66
" 15% "	15.	1530.	5020.	*6
" 20% "	15.	1650.	5414.	"
Turpentine oil	15.	1326.	4351.	"
Water, air-free .	13.	1441.	4728.	46
	19.	1461.	4794	"
" Lake Geneva	31. 9.	1505.	4938. 4708.	Colladon-Sturm.
" Seine river.	15.	1435.	4714.	Wertheim.
" Sellie Hver .	30.	1528.	5013.	44
66 66 66	60.	1724.	5657.	46
Explosive waves in water:				
Guncotton, 9 ounces		1732.	5680.	Threlfall, Adair,
" IO " · ·		1775	5820.	1889, see Bar-
10		1942.	6372.	ton's Sound, p.
04		2013.	6600.	518. Rowland.
Gases: Air, dry, CO2-free .	0.	331.78	1088.5	Violle, 1900.
" " CO2-free .	0.	331.92	1089.0	Thiesen, 1908.
" 1 atmosphere.	0.	331.7	1088.	Mean.
" 25 "	0.	332.0	1080.	" (Witkowski).
" 50 ". ,	0.	334.7	1098.	" "
" 100 "	0.	350.6	1150.	-6 66
	20.	344.	1129.	G.
	100.	386.	1266.	Stevens.
	500.	553.	1814.	и
Explosive waves in air:	1000.	700.	2297.	
Charge of powder, 0.24 gms		336.	1102.	7 " "
" " " 3.80 "		500.	1640.	Violle, Cong. In-
""""17.40"		931.	3060.	tern. Phys. 1,
" " " 45.60 "		1268.	4160.	243, 1900.
Ammonia	0,	415.	1361.	Masson.
Carbon monoxide .	0.	337.1	1106.	Wullner.
" dioride	0.	337.4	1107.	Dulong. Brockendahl, 1906.
" dioxide " disulphide .	0,	189.	846. 620.	Masson.
Chlorine	0.	206.4	677.	Martini.
	0.	205.3	674.	Strecker.
Ethylene	0,	314.	1030.	Dulong.
Hydrogen	0.	1269.5	4165.	"
"	0.	1286.4	4221.	Zoch.
Illuminating gas .	0.	490.4	1609.	
Methane Nitric oxide	0.	432.	1417.	Masson.
Nitrous oxide	0.	325.	859.	Dulong.
Oxygen	0.	317.2	1041.	Bulong.
Vapors: Alcohol	0.	230.6	756.	Masson.
Ether	0.	179.2	588.	46
Water	0.	401.	1315.	" ————————————————————————————————————
44 • • • •	100.	404.8	1328.	Treitz, 1903.
	130.	424.4	1392.	
	L	1		

# MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 130 gives data for the middle octave, including vibration frequencies for three standards of pitch; A₃=435 double vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

4: 5: 6

4 6 C 6 E 36

Other equivalent ratios and their values in E. S. are given in Table 131. By transferring D to the left and using the ratio 10: 12: 15 the scale of A-minor is obtained, which agrees with that of C-major except that D=262/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 131. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enhammonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 130.

	Inte	rval.	Ra	tios.	Logar	ithms.	Numb	erofo	louble V	ibratio	ns per se	cond.
Note.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered-	Tem- pered.	Tem- pered
C ₈	E. S.	E. S.	1.00	1.00000	•0000	.00000	256	264	258.7	258.7	261.6 277.2	271.1
D ₈	2.04	2 3	1.125	1.12246	+05115	.05017	288	297	291.0	290.3	293.7 311.1	304.3
E ₈ F ₈	3.86 4.98	4 5	1.25	1.25992 1.33484 1.41421	.09691 .12494	.10034 -12543 -15051	320 341.3	330 352	323.4 344.9	325·9 345·3 365.8	329.6 349.2 370.0	341.6 361.9 383.4
G ₈	7.02	7 8	1.50	1.49831	.17609	.17560 2006g	384	396	388	387.5	392.0 415.3	406.2
A ₃	8.84	9 10	1.67	1.68179	.22185	.22577	426.7	440	431.1	435.0	440.0 446.2	456.0 483.1
R ₃ C ₄	10.88	11 12	2.00	1.88775	.27300	.27594 .30103	480 512	495 528	485.0	488.3	493.9 523.2	511.8 542.3

#### TABLE 131.

Ke	y of	С		D		E	F		G		A		В	С
7 #s 6 " 5 " 4 " 3 " 2 " 1 # 1 b 2 bs 3 " 4 " 7 "	C# F# B E A DG C FF Bb G5 C C C C C C C C C C C C C C C C C C	0.00 0.00 0.00 0.00 22 22	1.14 0.92 1.14 0.92 1.14 0.92 0.70 0.92 0.70 0.92 0.70 0.92	2.04 1.82 2.04 2.04 2.04 1.82 1.82	3.18 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.96 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.68 5.90 5.68 5.90 5.88 5.88	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.84 8.84 8.84	9.98 9.76 9.98 9.76 9.96 9.76 9.96 9.96 9.974 9.74	11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fourths ne	8 0.0 0.0 0.0 0.0	(17) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 (4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	13 8.41 9.06 8.82 8.90 8.57	9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

# MISCELLANEOUS SOUND DATA.

# TABLE 132. — A Fundamental Tone, Its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale.

No. of partial. Frequency Nearest tempered note. Corresponding frequency	1	2	3	4	5	6	7	8	9	10
	129	259	388	517	647	776	905	1035	1164	1293
	C	C	G	C	E	G	Bb	C	D	E
	129	259	388	517	652	775	922	1035	1164	1293
No. of partial. Frequency Nearest tempered note. Corresponding frequency.	Gb	12 1552 G 1550	13 1681 G# 1642	14 1811 Bb 1843	15 1940 B 1953	16 2069 C 2069	17 2199 C# 2192	18 2328 D 2323	19 2457 D# 2461	20 2586 E 2607

NOTE. — Overtones of frequencies not exact multiples of the fundamental are sometimes called inharmonic partials.

#### TABLE 133. - Relative Strength of the Partials in Various Musical Instruments.

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in

T4		Strength of partials in per cent of total tone strength.										
Instrument.	ı	2	3	4	5	6	7	8	9	Io	11	12
Tuning fork on box. Flute Violin, A string. Oboe Clarinet Horn Trombone.	100 66 26 2 12 36 6	24 25 2 0 26 11	4 9 4 10 17 35	6 10 29 3 7 12	27 35 5 4 8	1 14 0 3 11	0 48 2 6		3 15 1 3	- - - 18 1 2		- - 0 6 1 1

#### TABLE 134. - Characteristics of the Vowels.

The larynx generates a fundamental tone of a chosen pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular fixed pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a chosen pitch is in those partials reinforced by resonance. The vowels may be divided into two classes, — the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table.

Vowel indicated by italics in the words.	Pitch of maximum resonance.	Vowel indicated by italics in the words.	Pitch of maximum resonance.
father, far, guardraw, fall, haulno, rode, goalgloom, move, group	732 461	mat, add, cat	800 and 1840 691 and 1953 488 and 2461 308 and 3100

#### TABLE 135. - Miscellaneous Sound Data.

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches,  $n_t =$ 

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches.  $n_\ell = n_0(1-\alpha)\cos(1t^2)$ C), Ann. d. Phys. 9, p. 408, 1880. Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, to or more per second. Helmholtz' value of 32 per sec. may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity. Pitch limits of voice: 60 to 1200 vibrations per second. (See also page 440.) Piano pitch limits: 27.2 to 4138.4 v. per sec. (over 7 octaves). Organ pitch limits: 16 (32 ft. pipe), sometimes 8 (64 ft.) to 4138 (1½ in.) (9 octaves). Ear can detect frequencies up to 00.000.

Ear can detect frequencies of 20,000 to 30,000 v. per sec. Knowing, by means of dust figures, measured sounds from steel forks with frequencies up to 90,000. The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and probably not at all on their phases.

The wave-lengths of sound issuing from a closed pipe of length L are 4L, 4L/3, 4L/5, etc., and from an open pipe, 2L, 2L/3, etc. The end correction for a pipe with a flange is such that the antinode is  $0.82 \times 10^{-2}$  radius of pipe beyond the end; with no flange the correction is  $0.57 \times 10^{-2}$  radius of pipe.

The energy of a pure sine wave is proportional to  $n^2A^2$ ; the energy per cm³ is on the average  $2\rho\pi^2U^2A^2/\lambda^2$ ; the energy of the energy of a pure sine wave is proportional to  $n^2A^2$ ; the operation is  $2n\pi^2U^3A^2/\lambda^2$ ; the pressure is  $\frac{1}{2}(\gamma + 1)$ 

passing per sec. through 1 cm² perpendicular to direction of propagation is  $2n\pi^2 U^3 A^2/\lambda^2$ ; the pressure is  $\frac{1}{2}(\gamma+1)$  (average energy per cm²); where n is the vibration number per sec.,  $\lambda$  the wave-length, A the amplitude, V the velocity of sound,  $\rho$  the density of the medium,  $\gamma$  the specific heat ratio. Altherg (Ann. d. Phys. 11, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes/cm² = 0.00018 mm Hg.

#### TABLE 136. - Aerodynamics.

KINETICS OF BODIES IN RESISTING MEDIUM.

The differential equation of a body falling in a resisting medium is  $du/dt = g - ku^2$ . The velocity tends asymptotically to a certain terminal velocity,  $V = \sqrt{g/k}$ . Integration gives u =V· tanh (gt/V),  $x = \frac{V^2}{g} \log \cosh (gt/V)$  if u = x = t = 0.

When body is projected upwards,  $du/dt = -g - ku^2$ , and if  $u_0$  is velocity of projection, then  $\tan^{-1} u/V = \tan^{-1} (u_0/V) - gt/V$ ,  $x = (V^2/2g) \log (V^2 + u_0^2) (V^2 + u^2)$ . The particle comes to rest when  $t = (V/g) \tan^{-1} (u_0/V)$  and  $x = (V^2/2g) \log (1 - u_0^2/V^2)$ .

For small velocities the resistance is more nearly proportional to the velocity.

Stokes' Law for the rate of fall of a spherical drop of radius a under gravity g gives for the velocity, v,

$$v = \frac{2ga^2}{\alpha \eta}(\sigma - \rho),$$

where  $\sigma$  and  $\rho$  are the densities of the drop and the medium,  $\eta$  the viscosity of the medium. This depends on five assumptions: (1) that the sphere is large compared to the inhomogeneities of the medium; (2) that it falls as in a medium of unlimited extent; (3) that it is smooth and rigid; (4) that there is no slipping of the medium over its surface; (5) that its velocity is so small that the resistance is all due to the viscosity of the medium and not to the inertia of the latter. Because of 5, the law does not hold unless the radius of the sphere is small compared with  $\eta/v\rho$  (critical radius). Arnold showed that a must be less than 0.6 this radius.

If the medium is contained in a circular cylinder of radius R and length L, Ladenburg showed

that the following formula is applicable (Ann. d. Phys. 22, 287, 1907, 23, 447, 1908):

$$V = \frac{2}{9} \frac{ga^2(\sigma - \rho)}{\eta(1 + 2.4a/R)(1 + 3.1a/L)}.$$

As the spheres diminish in size the medium behaves as if inhomogeneous because of its molecular structure, and the velocity becomes a function of l/a, where l is the mean free path of the molecules. Stokes' formula should then be modified by the addition of a factor, viz.:  $v_1 = \frac{2}{9} \frac{ga^2}{\eta} (\sigma - \rho) \left\{ 1 + (0.864 + 0.29e^{-1.25} (a/l)) \frac{l}{a} \right\}$ 

$$v_1 = \frac{2}{9} \frac{ga^2}{n} (\sigma - \rho) \left\{ 1 + (0.864 + 0.29e^{-1.25(a/l)}) \frac{l}{a} \right\}$$

(See chapter V, Millikan, The Electron, 1917; also Physical Review 15, p. 545, 1920.)

# TABLE 137. - Flow of Gases through Tubes.*

When the dimensions of a tube are comparable with the mean free path (L) of the molecules of a gas, Knudsen (Ann. der Phys. 28, 75, 199, 1908) derives the following equation correct to 5% even when D/L= 0.4: Q, the quantity of gas in terms of PV which flows in a second through a tube of diameter D, length L, connecting two vessels at low pressure, difference of pressure  $P_2-P_1$ , equals  $(P_2-P_1)/W\sqrt{\rho}$  where  $\rho$  is the density of the gas at one bar (1 dyne/cm²) = (molecular weight)/(83.15 × 106 T) and W, which is of the nature of a resistance, = 2.3941/ $D^3$  + 3.184/ $D^2$ . The following table gives the cm³ of air and H at 1 bar which would flow through different sized tubes, difference of pressure I bar, room temperature.

$$I = \text{Icm.}$$
  $D = \text{Icm.}$   $W = 5.58$   $Q, \text{cm}^3 \text{ of air, 5200.}$   $\text{cm}^3 \text{ of } H_2, \text{19700.}$  1070. 4050. 1 1070. 40.5 10 0.1 24300. 1.20 3.60

Knudsen derives the following equation, equivalent to Poiseuille's at higher, and to the above at lower pressures:

 $Q = (P_2 - P_1) \{aP + b (1 + c_1P)/(1 + c_2P)\}$  where  $a = \pi D^4/128\eta l$  (Poiseuille's constant);  $b = \frac{1}{2} (P_1 - P_2) \{aP + b (1 + c_1P)/(1 + c_2P)\}$  $1/W\sqrt{\rho_r}$  (coefficient of molecular flow);  $c_1 = \sqrt{\rho} D/\eta$ ; and  $c_2 = 1.24 \sqrt{\rho} D/\eta$ ;  $\eta = \text{viscosity coefficient.}$  The following are the volumes in cm³ at 1 bar,  $20^{\circ}C$ , that flow through tube, D = 1 cm, l = 1ocm,  $P_2 - P_1 = 1$  bar, average pressure of P bars:  $P = 10.6 \quad Q = 13,000,000. \quad P = 5. \quad Q = 1026. \quad P = 1. \quad Q = 1044. \text{ cm}^8$   $100. \quad 2,227. \quad 4. \quad 1024. \quad 0.1 \quad 1065.$   $10. \quad 1,058. \quad 3. \quad 1025. \quad 0.01 \quad 1070.$ 

$$P = 10.6$$
  $Q = 13,000,000$ ,  $P = 5$ ,  $Q = 1026$ ,  $P = 1$ ,  $Q = 1044$ , cm⁸
100, 2,227, 4, 1024, 0.1 1065,
10. 1,058, 3, 1025, 0.01

When the velocity of flow is below a critical value, F (density, viscosity, diameter of tube), the stream lines are parallel to the axis of the tube. Above this critical velocity,  $V_{e}$ , the flow is turbulent.  $V_0 = k\eta'\rho r$  for small pipes up to about 5 cm diameter, where K is a constant, and r the tube radius. When these are in cgs units, k is 10³ in round numbers. Below  $V_0$  the pressure drop along the tube is proportional to the velocity of gas flow; above it to the square of the velocity.

* See Dushman, The Production and Measurement of High Vacua, General Elec. Rev. 23, p. 493, 1920 SMITHSONIAN TABLES.

#### AERODYNAMICS.

#### TABLE 138. — Air Pressures upon Large Square Normal Planes at Different Speeds through the Air.

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

$$F = \rho L^2 V^2 f(LV/\nu)$$

in which  $\rho$  denotes the fluid density,  $\nu$  the kinematic viscosity, L a linear dimension of the body, V the speed of translation. In general f is not constant, even for constant conditions of the fluid, but is practically so for normal impact on a plane of fixed size. In the following,  $\rho$  is taken as 1.230 g/l (.0768 lbs./ft²). The mean pressure on thin square plates of 1.1 m² (12 ft²), or over, moving normally through air of standard density at ordinary transportation speeds may be written  $P = .00502^{\circ}$  for P in lbs. per ft² and v in miles per hour. The following values are computed from this formula. For smaller areas the correction factors as given in the succeeding table (Table 139) derived from experiments made at the British National Physical Laboratory, may be applied

Physical Laboratory, may be applied.

Units: the first of each group of three columns gives the velocity; the second, the corresponding pressure in kg/m² when the first column is taken as km per hour; the third in pds/ft² when in miles per hour.

Veloc-	Pres	sure.	Veloc-	Pres	ssure.	Veloc-	Pres	sure.	Veloc-	Pres	sure.
ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.	ity.	Metric.	English.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	0.60 0.73 0.86 1.01 1.18 1.35 1.54 1.73 2.40 2.17 2.40 3.17 3.45 4.06 4.37 5.05 5.40 6.54 6.93 7.35 6.93 7.74 8.22 8.66 9.12	0.32 0.39 0.46 0.54 0.63 0.72 1.08 1.128 1.141 1.55 1.84 2.00 2.16 2.31 2.51 2.69 2.88 3.28 3.28 3.48 3.72 4.15 4.37 4.48 4.87	40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 60 61 62 63 64 65 66 67 68 69	9.60 10.09 10.58 11.09 11.09 11.06 12.1 12.7 13.3 14.4 15.0 15.6 16.2 16.9 17.5 18.1 18.8 19.5 20.2 20.9 21.6 22.3 23.0 23.8 24.6 25.4 26.0 27.7 28.6	5.12 5.38 5.04 6.20 6.48 6.77 7.07 7.68 8.32 8.69 9.33 9.68 10.04 11.14 11.91 12.3 12.7 13.5 13.5 13.5 13.5 14.4 14.8 15.2	70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	29.4 30.2 31.1 32.8 33.7 35.5 37.4 36.5 37.4 38.4 40.3 41.3 42.3 44.3 44.4 45.4 45.4 46.4 47.5 60.5 51.9 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6	15.7 16.1 16.6 17.0 17.5 18.0 19.5 20.0 20.5 21.0 21.0 22.0 22.0 22.0 22.0 22.5 23.7 24.2 24.8 25.4 25.9 26.5 27.1 28.9 29.5 30.7 28.9 29.5 30.7 31.4	100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	60.0 61.2 62.4 63.7 64.9 66.1 77.0 71.3 72.6 78.0 78.0 78.0 82.1 83.5 84.9 86.4 87.8 89.3 90.8 92.2 93.7 95.3 96.8	32.0 32.6 33.3 33.9 34.6 35.3 36.0 38.0 38.7 38.7 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1

#### TABLE 139. - Correction Factor for Small Square Normal Planes.

The values of Table 138 are to be multiplied by the following factors when the area of the surface is less than about

	Me	tric.		English.						
Area. m²	Factor.	Area. m²	Factor.	Area. ft²	Factor.	Area. ft²	Factor			
0.03	0.845	5.0	0.969	0.03	0.842	5.0	0.968			
0.10	0.859	6.0	0.975	0.10	0.857	6.0	0.973			
0.50	0.884	7.0	0.979	0.50	0.884	7.0	0.977			
0.75	0.892		0.984	0.75	0.889	8.0	0.981			
1.00	0.898	9.0	0.989	1.00	0.896	9.0	o. 986			
2.00	0.919	10.0	0.993	2.00	0.917	10.0	0.990			
3.00	0.933	11.0	0.999	3.00	0.930	11.0	0.994			
4.00	0.950	12.0	1.000	4.00	0.943	12.0	1.000			

or

### TABLE 140. - Effect of Aspect Ratio upon Normal Plane Pressure (Eiffel).

The mean pressure on a rectangular plane varies with the "aspect ratio," a name introduced by Langley to denote the ratio of the length of the leading edge to the chord length. The effect of aspect ratio on normally moving rectangular plates is given in the following table, derived from Eiffel's experiments.

Aspect ratio			20.00 30.00 41.500 50.00
--------------	--	--	--------------------------

TABLE 141. - Ratio of Pressures on Inclined and Normal Planes.

The pressure on a slightly inclined plane is proportional to the angle of incidence a, and is given by the formula  $P_a = c \cdot P_{90} \cdot a$ . The value of c, which is constant for incidences up to about 12°, is given for various aspect ratios. The angle of incidence is taken in degrees.

	,					ı				
Aspect ratio	0.036	2 0.043	3 0.050	4 0.053	5 0.057	6 0.061	7 0.065	8 0.070	9 0.075	10 0.08c

TABLE 142. - Skin Friction.

The skin friction on an even rectangular plate moving edgewise through ordinary air is given by Zahm's equation,

$$F(\text{kg/m}^2) = 0.00030\{A(\text{m}^2)\}^{0.93}\{V(\text{km/hr.})\}^{1.86}$$
 in metric units  $F(\text{pds./ft.}^2) = 0.000082\{A(\text{ft.}^2)\}^{0.93}\{V(\text{ft./sec.})\}^{1.86}$ ,

where A is the surface area and V the speed of the plane. The following table gives the friction per unit area on one side of a plate.

5 0.0059 10 0.0217 15 0.0464 20 0.079 25 0.112 30 0.169 40 0.288	0.0047 0.0171 0.0364 0.062 0.095	5 10 15 20	7·3 14.7 22.0	0.00033 0.00121 0.00258	32 ft. long. 0.00026 0.00095
10 0.0217 15 0.0464 20 0.079 25 0.122 30 0.169	0.0171 0.0364 0.062	10	14.7	0.00121	
50 0.439 60 0.616 70 0.82 80 1.06 90 1.31 100 1.58 110 1.89 120 2.20 125 2.39 130 2.56 135 2.68 140 2.94 145 3.15	0.133 0.225 0.346 0.482 0.64 0.83 1.03 1.24 1.49 1.73 1.87 2.01 2.10 2.31	25 30 40 50 60 70 80 90 100 110 120 125 130 135 140	29.3 36.7 44.0 58.7 73.3 88.0 102.7 117.3 132.0 146.7 161.2 175.8 183.4 190.5 197.8 205.4 212.5	0.00238 0.00439 0.0068 0.0094 0.0160 0.0244 0.0342 0.0455 0.0587 0.073 0.088 0.105 0.122 0.133 0.142 0.149 0.164 0.175	0.00202 0.00345 0.00530 0.0074 0.0125 0.0192 0.0268 0.0357 0.0461 0.0572 0.069 0.083 0.096 0.104 0.112 0.117

The following tables, based on Eiffel, show the variation of the resistance coefficient K, with the angle of impact i, the aspect (ratio of leading edge to chord length), shape and velocity V in the formula

 $R(kg/m^2) = KS(m^2) \{V(m/sec.)\}^2$ 

The value of K for km/hour would be 0.77 times greater.

TABLE 143. - Variation of Air Resistance with Aspect and Angle.

		Values of i.											
Size of plane.	Aspect.	6°	10°	20°	30°	40°	45°	60°	75°	Value.	i.		
		Values of K; /K ₉₀ .											
15 x 90 cm 15 x 45 cm 25 x 25 cm 30 x 15 cm 45 x 15 cm 90 x 15 cm	1613 1236	.07 .11 .20 .26 .31 .37	.13 .21 .36 .43 .50 .58	.40 .51 .80 .91 .77 .70	0.67 0.89 1.24 0.72 0.77 0.78 0.80	0.92 1.20 1.17 0.79 0.84 0.84	1.08 1.22 1.08 0.82 0.88 0.88	1.07 1.06 1.03 0.90 0.94 0.93	1,03 1.02 1.02 0.97 0.99 0.98	1.07 1.22 1.46 0.91 0.77 0.69	60 45 38 20 20 15		

#### TABLE 144. - Variation of Air Resistance with Shape and Size.

Cylinder, base $\perp$ to wind:	Length.	o cm	$_{1}R^{*}$	$_2R^*$	4R*	6 <b>R*</b>	8 <b>R</b> *	14R*
Diameter of base, 30 cm	K =	.0675	.068	.055	.050	_	—	_
Diameter of base, 15 cm	K =	.066	.066	.055	.051	.051	.0515	.059
Cylinder, base    to wind:	diameter	base, 1	5 cm, le	ength,	o cm	K = .0	40	
Cylinder, base   to wind:	diameter	base, 3	cm, ler	igth, 10	o cm	K = .06	o o	
Cone, angle 60°, diam. ba	se, 40 cm	, point t	o wind	, solid	j	K = .03	32	
Cone, angle 30°, diam. ba	se, 40 cm	, point t	o wind	, solid	i	K = .02	21	
Sphere, 25 cm diam.					1	K = .01	I	
Hemisphere, same diam.,	convex to	wind				K = .0	2 <b>I</b>	
Hemisphere, same diam.,	concave t	o wind				K = .08	33	
Sphero-conic body, diam.,	20 cm, c	one 20°,	point:	forwar	$\mathbf{d}$	K = .0	10	
Sphero-conic body, diam.,	20 cm, c	one 20°	point	to rear		K = .00	25.5	
Cylinder, 120 cm long, sp.						K = .01	12	
6701 - 1 1 1 1 1 1 1 1								

The wind velocity for the values of this table was 10 m/sec.

Tables 143 and 144 were taken from "The Resistance of the Air and Aviation," Eiffel, translated by Hunsaker, 1913.

#### TABLE 145. - Variation of Air Resistance with Shape, Size and Speed.

This table shows the peculiar drop in air resistance for speeds greater than 4 to 12 meters per second. Another change occurs when the velocity approaches that of sound.

Shape.					V	alues o	f K.			
Shape.	Speed, m/sec.	4	6	8	10	12	14	16	20	32
Sphere, 16.2 cm diameter Sphere, 24.4 cm diameter Sphere, 33 cm diameter Concave cup, 25 cm diameter Convex cup, 25 cm diameter Disk, 25 cm diameter Cylinder element \( \perp \) to wind, \( d = 15 \) element \( \perp \) to wind, spherical ends,	cm, l = 15.0 30.0 7.5 12.0 22.5	.025 .023 .090 .027 .071 .043 .045 .035 .038	.025 .017 .090 .022 .070 .042 .032 .034 .037	.021 .012 .089 .021 .070 .037 .037 .036 .038	.013 .010 .087 .022 .070 .030 .031 .032 .034	.010 .01c .087 .022 .07c .025 .024 .031 .030	.010 .088 .021 .070 .022 .025 .031 .028 .028	.010 .011 .089 .020 .070 .021 .025 .030 .027 .025 .051	.010 .012 .095 .019 .070 .022 .025 .030 .025 .022	.011 .010 .012 .100 .018 .068 .022 .023 .030 .025 .020

Taken from "Nouvelles Recherches sur la résistance de l'air et l'aviation," Eiffel, 1914. SMITHSONIAN TABLES

^{*} In the case of these cylinders the percentages due to skin friction are 2, 3, 6, 8, 11 and 16 per cent respectively, excluding the disk.

# TABLES 146-148. TABLE 146.—Friction.

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose  $\Phi$  (tan  $\Phi = F/N$ ) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

Material.		f	1/f	φ
Wood on wood, dry		.2550	4.00~2.00	14.0–26.5
" " soapy		.20	5.00	11.5
Metals on oak, dry	.	.50–.60	2.00-1.67	26.5-31.0
" " wet		.2426	4.17-3.85	13.5-14.5
" " soapy	. 1	.20	5.00	11.5
" " 1 1	.	.2025	5.00-4.00	11.5-14.0
Hemp on oak, dry		·53	1.89	28.0
" " wet		•33	3.00	18.5
Hemp on oak, dry  " " wet  Leather on oak		.2738	3.70-2.86	15.0-19.5
" " metals, dry	.	.56	1.79	29.5
" " wet	.	.36	2.78	20.0
	- ,	.23	4.35	13.0
" " " oily		.15	6.67	8.5
Metals on metals, dry		.1520	6.67-5.00	8.5-11.5
" " wet		٠3	3.33	16.5
Smooth surfaces, occasionally greased	.	.0708	14.3-12.50	4.0-4.5
		.05	20.00	3.0
" best results	. [	.03036	33.3-27.6	1.75-2.0
" continually greased	. 1	.20	5.00	11.5
" " " oiled *		.107	9.35	6.1
Iron on stone		.3070	3.33-1.43	16.7-35.0
Wood on stone	.	About .40	2.50	22.0
Maconry and brick work dry	.	.6070	1.67-1.43	33.0-35.0
" " " damp mortar .	. 1	·74	1.35	36.5
" on dry clay		.5i	1.96	27.0
" " moist clay		·33	3.00	18.25
Earth on earth		.25-1.00	4.00-1.00	14.0-45.0
" " dry sand, clay, and mixed earth	1.	.3875	2.63-1.33	21.0-37.0
" " damp clay	1	1.∞	1.00	45.0
" " wet clay	.	.31	3.23	17.0
" " shingle and gravel		.81–1.11	1.23-0.9	39.0-48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

#### TABLE 147. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 148. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil or s. w. oil or s. w. dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/3 crude petroleum, 3/5 lard oil. Oil = sperm or lard.

Tables 147 and 148 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons.

#### VISCOSITY.

#### TABLE 149. - Viscosity of Fluids and Solids.

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit s₁ ed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$\mu$$
, the viscosity,  $=\frac{\gamma \pi g d^4 t}{128Q(l+\lambda)} \left(h-\frac{mv^2}{g}\right)$ ,

where  $\gamma$  is the density (g/cm³), d and l are the diameter and length in cm of the tube, Q the volume in cm³ discharged in t sec.,  $\lambda$  the Couette correction which corrects the measured to the effective length of the tube, h the average head in cm, m the coefficient of kinetic energy correction,  $m^2/g$ , necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity (cm/sec/sec), v the mean velocity in cmp er sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1917–1918, for discussion of this correction and  $\lambda$ .)

The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are  $ML^{-1}T^{-1}$ . It is generally expressed in egs units as dyne-seconds per cm² or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 78). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0°, 51 × 10°, at 15°, 1.3 × 10°; of shoemakers' wax at 8°, 4.7 × 10°; of soda glass at 575°, 11 × 10°; Deeley (1908) of glacier ice as 12 × 10°3.

#### TABLE 150. — Viscosity of Water in Centipoises. Temperature Variation.

Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917.

° C.	Vis- cosity.	°C.	Vis- cosity. cp	°C.	Vis- cosity. cp	°C.	Vis- cosity. cp	°C.	Vis- cosity.	°C.	Vis- cosity. cp	° C.	Vis- cosity. cp
0 1 2 3 4	1.7921 1.7313 1.6728 1.6191 1.5674	10 11 12 13 14	1.3077 1.2713 1.2363 1.2028 1.1709	20 21 22 23 24 25	1.0050 0.9810 0.9579 0.9358 0.9142	30 31 32 33 34	0.8007 0.7840 0.7679 0.7523 0.7371	40 41 42 43 44 45	o.6560 o.6439 o.6321 o.6207 o.6097	50 51 52 53 54	0.5494 0.5404 0.5315 0.5229 0.5146	60 65 70 75 80 85	0.4688 0.4355 0.4061 0.3799 0.3565
6 7 8 9	1.4728 1.4284 1.3860 1.3462	16 17 18 19	1.1111 1.0828 1.0559 1.0299	26 27 28 29	0.8737 0.8545 0.8360 0.8180	36 37 38 39	0.7085 0.6947 0.6814 0.6685	46 47 48 49	0.5883 0.5782 0.5683 0.5588	56 57 58 59	0.4985 0.4907 0.4832 0.4759	95 100 153	0.3165 0.2994 0.2838 0.181 *

^{*} de Haas, 1894. Undercooled water: -2.10°, 1.33 cp; -4.70°, 2.12 cp; -6.20°, 2.25 cp; -8.48°, 2.46 cp; 0.30°, 2.55 cp; White, Twining, J. Amer. Ch. Soc., 50, 380, 1913.

TABLE 151. - Viscosity of Alcohol-water Mixtures in Centipoises. Temperature Variation.

					Percen	tage by	weight o	f ethyl a	lcohoL				
°C.	0	10	20	30	39	40	45	50	60	70	80	90	100
0 5 10 15 20	1.792 1.519 1.308 1.140 1.005	3.311 2.577 2.179 1.792 1.538	5.319 4.065 3.165 2.618 2.183	6.94 5.29 4.05 3.26 2.71	7.25 5.62 4.39 3.52 2.88	7.14 5.59 4.39 3.53 2.91	6.94 5.50 4.35 3.51 2.88	6.58 5.26 4.18 3.44 2.87	5.75 4.63 3.77 3.14 2.67	4.762 3.906 3.268 2.770 2.370	3.690 3.125 2.710 2.309 2.008	2.732 2.309 2.101 1.802 1.610	1.773 1.623 1.466 1.332 1.200
25 30 35 40 45 50	0.894 0.801 0.722 0.656 0.599 0.549	1.323 1.160 1.006 0.907 0.812 0.734	1.815 1.553 1.332 1.160 1.015 0.907	2.18 1.87 1.58 1.368 1.189 1.050	2.35 2.00 1.71 1.473 1.284 1.124	2.35 2.02 1.72 1.482 1.289 1.132	2.39 2.02 1.73 1.495 1.307 1.148	2.40 2.02 1.72 1.499 1.294 1.155	2.24 1.93 1.66 1.447 1.271 1.127	2.037 1.767 1.529 1.344 1.189 1.062	1.748 1.531 1.355 1.203 1.081 0.968	1.424 1.279 1.147 1.035 0.939 0.848	1.096 1.003 0.914 0.834 0.764 0.702
60 70 80	0.469 0.406 0.356	0.609 0.514 0.430	0.736 0.608 0.505	0.834 0.683 0.567	0.885 0.725 0.598	0.893 0.727 0.601	0.907 0.740 0.609	0.913 0.740 0.612	0.902 0.729 0.604	0.856	0.789 0.650	0.704 0.589	0.592

Same authority as preceding table.

#### TABLE 152. - Viscosity and Density of Sucrose in Aqueous Solution.

See Scientific Paper 298, Bingham and Jackson, Bureau of Standards, 1917, and Technologic Paper 100, Herschel, Bureau of Standards, 1917.

	,	Viscosity in	centipoises		Density det.						
Tempera- ture.	Pe	er cent suci	ose by weig	ht.	Per cent sucrose by weight.						
	0	20	40	60	0	20	40	60			
o° C 5 10 15 20	1.7921 1.5188 1.3077 1.1404 1.0050	3.804 3.154 2.652 2.267 1.960	14.77 11.56 9.794 7.468 6.200	238. 156. 109.8 74.6 56.5	0.99987 0.99999 0.99973 0.99913 0.99823	1.08546 1.08460 1.08353 1.08233	1.18349 1.18192 1.18020 1.17837 1.17648	1.29560 1.29341 1.29117 1.28884 1.28644			
30 40 50 60 70 80	0.8007 0.6560 0.5494 0.4688 0.4061	1.504 1.193 0.970 0.808 0 685 0.590	4.382 3.249 2.497 1.982 1.608	33.78 21.28 14.01 9.83 7.15 5.40	0.99568 0.99225 0.98807 0.98330	1.07767 1.07366 1.06898 1.06358	1.17214 1.16759 1.16248 1.15693	1.28144 1.27615 1.27058 1.26468			

TABLE 153. - Viscosity and Density of Glycerol in Aqueous Solution (20° C).

% Glycerol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	roo X Kine- matic viscos- ity.	Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	roo X Kine- matic viscos- ity.	Glyc- erol.	Den- sity. g/cm³	Viscos- ity in centi- poises.	roo X Kine- matic viscos- ity.
5	1.0098			35	1.0855	3.115	2.870	65	1.1662	14.51	12.44
10	1.0217	1.364	1.335	40	1.0989		3.450	70	1.1797	21.49	18.22
15	1.0337	1.580	1.529	45	1.1124	4.692	4.218	75	1.1932	33.71	28.25
20	1.0461	1.846	1.765	50	1.1258	5.908	5.248	80	1.2066	55 - 34	45.86
25	1.0590	2.176	2.055	55	1.1393	7.664	6.727	85	1.2201	102.5	84.01
30	1.0720	2.585	2.411	60	1.1528	10.31	8.943	90	1.2335	207.6	168.3

The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density.

TABLE 154. - Viscosity and Density of Castor Oil (Temperature Variation).

Density,	Viscosity in poises.  Kinematic viscosity.	O Density,	Viscosity in poises.	viscosity.	Density, g/cm³	Viscosity in poises.  Kinematic viscosity.	°C	Density, g/cm ³	Viscosity in poises.	Kinematic viscosity.
11 .966	34.5 35.5 3 31.6 32.6 6 28.9 29.8 9 26.4 27.3 2 24.2 25.0	15 .963 16 .963 17 .962 18 .961 19 .961 20 .960 21 .959	8 15.14 15 1 13.80 14 4 12.65 13 7 11.62 12 0 10.71 11 3 9.86 10 6 9.06 0	5.71 24 4.33 25 3.14 26 2.09 27 1.15 28	. 9576 . 9569 . 9562 . 9555 . 9548 . 9541 . 9534	7.06 7.37 5.51 6.80 5.04 6.32 7.61 5.87 7.21 5.46 7.85 5.08	32 33 34 35 36 37 38 39 40	.9478	3.65 3.40 3.16 2.94 2.74 2.58 2.44	3.84 3.58 3.33 3.10 2.89 2.72

Tables 153 and 154, taken from Technologic Paper 112, Bureau of Standards, 1918. Glycerol data due to Archbutt, Deeley and Gerlach; Castor Oil to Kahlbaum and Räber. See preceding table for definition of kinematic viscosity. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6° C, 0.9284 and 0.605, respectively; at 100° C, 0.9050 and 0.169.

SMITHSONIAN TABLES.

#### VISCOSITY OF LIQUIDS.

Viscosities are given in cgs units, dyne-seconds per cm2, or poises.

			Refer-			1	Refer-
Liquid.	° C	Viscosity.	ence.	Liquid.	° C	Viscosity.	ence
23 quidi						, recogney.	
Acetaldehyde	٥.	0.00275	I	* Dark cylinder	37.8	7.324	10
"	10. 20.	0.00252	I	*" Evtra T T "	100.0	0.341	10
Air	-102.3	0.00231	2	* "Extra L. L."	37.8	0.451	10
Aniline	20.	0.04467	3	Linseed .925 ‡	30.	0.331	9
	60.	0.0156	3	.922	50.	0.176	9
Bismuth	285.	0.0161	4	" .914	90. 10.	0.071	9
Copal lac	365. 22.	4.80	4 5	""	15.	1.38	11
Glycerine	2.8	42.2	5 6	" .9130	20.	0.840	II
44	14.3	13.87	6	.9065	30.	0.540	11
"	20.3	8.30	6	" .9000	40.	0.363	II
" 80.31% H ₂ O	26.5 8.5	4.94 I.02I	6	" .8935 " .8800.	50. 70.	0.258	II
" 80.31% H ₂ O " 64.05% H ₂ O " 49.79% H ₂ O Hydrogen, liquid	8.5	0.222	6	† Rape	15.6	1.118	10
49.79% H ₂ O	8.5	0.092	6		37.8	0.422	10
Menthol, solid	<del>-</del>	0.00011 2 × 10 ¹²	2	" (another)	100.0	0.080	10
" liquid	14.9 34.9	0.060	7	'' (another)	100.0	0.085	10
Mercury	-20.	0.0184	7 8	Soya bean . 919 ‡ · · · · ·	30.0	0.406	9
"	0.	0.01661	4	" " .915	50.0	0,206	9
"	20.	0.01547	4	.900	90.0	0.078	9
"	34. 98.	0.01476	4	† Sperm	15.6 37.8	0.420	10
"	193.	0.01070	4	"	100.0	0.046	10
, ····································	299.	0.00975	4	Paraffins:			
Oils: Dogfish-liver . 923 ‡	20			Pentane	21.0	0.0026	12
" " " .018	30. 50.	0.414	9	Hexane	23.7	0.0033	12
.908	90.	0.080	9	Octane	22.2	0.0053	12
Linseed .925	30.	0.331	9	Nonane	22.3	0.0062	I 2
" .922	50.	0.176	9	Decane	22.3	0.0077	12
* Spindle oil .885	15.6	0.453	9 10	Dodecane	23.3	0.0095	12
" " "	37.8	0.162	10	Tridecane	23.3	0.0155	12
	100.0	0.033	10	Tetradecane	21.9	0.0213	12
* Light machinery	15.6	1.138	10	Pentadecane	22.0	0.0281	12
* Light machinery	37.8	0.342	10	Phenol.	18.3	0.0359	13
" "	100.0	0.049	10	44	90.0	0.0126	13
*" Solar red" engine	15.6	1.915	10	Sulphur	170.	320.0	14
	37.8	0.496	10	"	180. 187.	550.0 560.0	14
* " Bayonne" engine.	15.6	2.172	10	"	200.	500.0	14
	37.8	0.572	10	"	250.	104.0	14
* "Queen's red" engine	100.0	0.063	10		300.	24.0	14
	15.6 37.8	2.995 0.711	10	"	340. 380.	6.2 2.5	14
66 66 66	100.0	0.070	10	"	420.	1.13	14
* " Galena " axle oil	15.6	4.366	10	"	448.	0.80	14
* Heavy machinery	37.8	0.909 6.606	10	† Tallow	66. 100.	0.176	10
" "	15.6 37.8	I.274	10	Zinc	280.	0.078	10
* Filtered cylinder	37.8	2.406	10	"	357.	0.0142	4
	100.0	0.187	10	"	389.	0.0131	4
* Dark cylinder	37.8	4.224	10				
" "	100.0	0.240	10				
				<del></del>			

^{*}American mineral oils; based on water as .01028 at 20° C. † Based on water as per 1st footnote. ‡ Densities. References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüss. Z. An. Ch. 93, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (9) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (11) Higgins, Nat. Phys. Lab. 11, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (14) Rotinganz, Z. Ph. Ch. 62, 1908.

# Ratio of Viscosity at High to that at Atmospheric Pressure.

Pressu tons/in 2	re Kg/cm ²	Bayonne oil (mineral)	FFF cylinder (mineral)	Trotter (animal)	Rape (veget	castor table)	Sperm (fish)
1	157.5	1.3	1.4	1.2	1.1	1.2	1.2
2	315.	2.0	2.0	1.6	I.4	1.6	1.5
4	630.	4.0	4.5	2.4	2.3	2.7	2.4
6	945.	7.8	8.9	3.5	3.5	4.2	3.5
8	1200.	16.1	-	5.0		5.8	_

Hyde, Pr. Roy. Soc. 97A, 240, 1920.

# VISCOSITY OF LIQUIDS.

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894–97. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm².

Liquid.			Vis	cosity in	centipo	ises.			
2194141	Formula.	o° C	10° C	20° C	30° C	40° C	50° C	70° C	100° C
Acids: Formic	$\mathrm{CH_2O_2}$	solid	2.247	1.784	1.460	1.219	1.036	. 780	-549
Acetic	$C_2H_4O_2$	solid	solid	I.222	1.040	0.905	0.796	.631	.465
Propionic	$C_3H_6O_2$	1.521	1.289	1.102	0.960	0.845	0.752	.607	.450
Butyric	$C_4H_8O_2$	2.286	1.851	1.540	1.304	1.120	0.975	. 760	.551
i-Butyric	$C_4H_8O_2$				1.129				.501
Alcohols: Methyl	$CH_4O$ $C_2H_6O$	0.817	0.090	0.590	0.520	0.450	0.403	-	_
Ethyl *	$C_3H_6O$	2.772	1.400	1 262	1.003	0.034	0.702	.510	
Propyl	$C_3H_8O$				1.779				_
i-Propyl	$C_3H_8O$				1.757				
Butyric	C ₄ H ₁₀ O	5.186	3.873	2.048	2.267	1.782	1.411	. 030	. 540
i-Butyric	$C_4H_{10}O$	8.038	5.548	3.907	2.864	2.122	1.611	<u> </u>	.527
Amyl, op. act	$C_5H_{12}O$	11.129	7.425	5.092	3.594	2.607	1.937	-	.610
Amyl, op. inact	$C_5H_{12}O$				3.207				.632
Aromatics: Benzene	$C_6H_6$				0.567				-
Toluene	C ₇ H ₈				0.525				
Ethylbenzole	$C_8H_{10}$				0.594				
Orthoxylene  Metaxylene	$C_8H_{10} \\ C_8H_{10}$				0.709				
Paraxylene	$C_8H_{10}$	solid	0.702	0.648	0.552	0.497	0.451	382	200
Bromides: Ethyl	$C_2H_5Br$				0.368		- 403	- 303	
Propyl	$C_3H_7Br$	0.651	0.582	0.524	0.475	0.433	0.307	. 338	
i-Propyl	C ₃ H ₇ Br				0.443				_
Allyl	C ₃ H ₅ Br	0.626	0.560	0.504	0.458	0.419	0.384	. 328	_
Ethylene	C ₂ H ₄ Br	2.438	2.039	1.721	1.475	1.286	1.131	.903	.678
Bromine	Br				0.911			-	-
Chlorides: Propyl	C ₃ H ₇ Cl				0.326				
Allyl	C ₃ H ₅ Cl				0.307				_
Ethylene Chloroform	C ₂ H ₄ Cl CHCl ₃				0.736				
Carbon-tetra	CCl ₄				0.519				
Ethers: Diethyl	C ₄ H ₁₀ O				0.223			- 334	_
Methyl-propyl	$C_4H_{10}O$				0.237		_	-	_
Ethyl-propyl	$C_5H_{12}O$				0.294		0.245	_	
Dipropyl	$C_6H_{14}O$	0.544	0.479	0.425	0.381	0.344			- [
Esters: Methylformate	$C_2H_4O_2$	0.436	0.391	0.355	0.325	_		-	-
Ethylformate	C ₃ H ₆ O	0.510	0.454	0.408	0.369	0.336	0.308		_
Methylacetate	$C_3H_6O_2$	0.484	0.431	0.388	0.352	0.320	0.293	-	
Ethylacetate	$C_4H_8O_2$ $CH_3I$	0.582	0.512	0.455	0.407	0.307	333	279	
Ethyl	$C_2H_5I$				0.540			307	
Propyl	$C_3H_7I$				0.669				.371
Allyl	$C_3H_5I$				0.660				.365
Paraffines: Pentane	$C_5H_{12}$				0.220				
i-Pentane	$C_5H_{12}$		0.256			_	-	_	_
Hexane	$C_6H_{14}$				0.296				-
i-Hexane	$C_6H_{14}$				0.279				
Heptane	C ₇ H ₁₆	0.524	0.405	0.416	0.375	0.341	0.310	. 202	
i-Heptane Octane	$C_{7}H_{16}$ $C_{8}H_{18}$	0.481	0.428	0.384	0.347	0.315	0.208	243	252
Sulphides: Carbon di	$C_8H_{18}$ $CS_2$				0.483			324	.252
Ethyl	$C_4H_{10}S$				0.352			. 287	`
Turpentine†	0422100				1.272				_
			,-5	/					

^{*} Bureau of Standards, see special table. † Glaser.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity  $\times$  100 is given for two or more densities and for several temperatures in the case of each solution.  $\mu$  stands for specific viscosity, and t for temperature Centigrade.

										,	
Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	ŧ	μ	į į	μ	į	Authority.
BaCl ₂	7.60 15.40 24.34	- - -	77.9 86.4 100.7	10 "	44.0 56.0 66.2	30 "	35.2 39.6 47.7	50 "		- - -	Sprung.
Ba(NO ₃ ) ₂	2.98 5.24	1.027	62.0 68.1	15	51.1 54.2	2.5 ":	42.4 44.1	3,5	34.8 36.9	45	Wagner.
CaCl ₂	15.17 31.60 39.75 44.09	_ _ _	110.9 272.5 670.0	10 " -	71.3 177.0 379.0 593.1	30 "	50.3 124.0 245.5 363.2	50 " "		-	Sprung.
Ca(NO ₃ ) ₂	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15 "	74.6 112.7 217.1	25 "	60.0 90.7 1 56.5	35	49.9 75.1 128.1	45	Wagner.
CdCl ₂	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 "	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35	40.7 47.2 53.6	45	66 66
Cd(NO ₃ ) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15 "	50.1 58.7 69.0	25 "	41.1 48.8 57.3	3.5 "	34.0 41.3 47.5	45	66 66
CdSO ₄	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15	61.8 72.4 91.8	25 "	49.9 58.1 73.5	3.5 "	41.3 48.8 60.1	45 "	66 66
CoCl ₂	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15 "	65.1 85.1 126.6	25 "	53.6 73.7 101.6	3.5 "	44.9 58.8 85.6	45	66 66
Co(NO ₃ ) ₂	8.28 1 5.96 24·53	1.073 1.144 1.229	74.7 87.0 110.4	15 "	57.9 69.2 88.0	25 "	48.7 55.4 71.5	3,5 "	39.8 44.9 59.1	45 "	66 66 46
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	3,5	45.1 61.7 89.9	45 "	66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15 "	67.8 95.8 137.2	25 "	55.1 77.0 107.6	3,5 "	45.6 63.2 87.1	45 "	66
Cu(NO ₃ ) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97.3 126.2 382.9	15 "	76.0 98.8 283.8	25 "	61.5 80.9 215.3	3,5	51.3 68.6 172.2	45 "	66
CuSO ₄ "	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 "	61.8 74.0 96.8	25 "	49.8 59.7 75.9	3,5	41.4 52.0 61.8	4,5 "	66
HC1 "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15 "	57.9 66.5 79.9	25 "	48.3 56.4 65.9	35	40.1 48.1 56.4	45 "	66 66
HgCl ₂	0.23 3·55	1.002	- 76.75	10	58.5 59.2	20	46.8 46.6	30	38.3 38.3	40	66

	Salt.	Percentage by weight of salt in solution.	Density.	μ	ż	μ	ż	μ	ż	μ	ż	Authority.
,	HNO ₃	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 So.3	15	54.8 57.3 65.5	25 "	45·4 47·9 54·9	35	37.6 40.7 46.2	45	Wagner.
l	H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15 "	61.0 75.0 95.5	25 "	50.0 60.5 77.5	3,5	41.7 49.8 64.3	45	66 66
	KCI "	10.23 22.21	-	70.0 70.0	10	46.1 48.6	30	33.1 36.4	50	_	-	Sprung.
	KBr "	14.02 23.16 34.64	1 1 1	67.6 66.2 66.6	10	44.8 44.7 47.0	30 "	32.1 33.2 35.7	50 "	-	1 1 1	66
	KI " "	8.42 17.01 33.03 45.98 54.00	1111	69.5 65.3 61.8 63.0 68.8	10 "	44.0 42.9 42.9 45.2 48.5	30 " " "	31.3 31.4 32.4 35.3 37.6	50 " "	-	11111	66 66 66 66
ı	KClO ₃	3.51 5.69	- -	71.7	10	44·7 45.0	30	31.5 31.4	50	_	<u>-</u>	66
	KNO ₃ "	6.32 12.19 17.60	- - -	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30 "	31.8 32.3 33.4	50 "	-	- - -	66 66
١	$K_2$ SO ₄	5.17 9.77	-	77-4 81.0	10	48.6 52.0	30	<b>3</b> 4·3 <b>36</b> .9	50	_	-	e6 66
	K ₂ CrO ₄ " "	11.93 19.61 24.26 32.78	1.233	75.8 85.3 97.8 109.5	10 " "	62.5 68.7 74.5 88.9	30 " "	41.0 47.9 54.5 62.6	40 " "			" Slotte. Sprung.
١	K ₂ Cr ₂ O ₇	4.71 6.97	1.032 1.049	72.6 73.1	10	55.9 56.4	20	45·3 45·5	30 "	37·5 37·7	40	Slotte.
	LiCl "	7.76 13.91 26.93	- - -	96.1 121.3 229.4	10	59.7 75.9 142.1	30 "	41.2 52.6 98.0	50 "	=	- - -	Sprung.
	Mg(NO ₃ ) ₂	18.62 34.19 39.77	I.102 I.200 I.430	99.8 213.3 317.0	15 "	81.3 164.4 250.0	25 "	66.5 132.4 191.4	3.5 "	56.2 109.9 158.1	45 "	Wagner.
	MgSO ₄	4.98 9.50 19.32	- - -	96.2 1 30.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50	- - -	1 1 1	Sprung.
	MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	30	55.0 79.4 106.6	40 "	Slotte.
	MnCl ₂ " "	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 130.9 256.3 537·3	15 " "	71.1 104.2 193.2 393.4	25 "	57·5 84.0 155.0 300.4	35	48.1 68.7 123.7 246.5	45 "	Wagner.

Salt.	Percentage by weight of salt in solution.	Density.	μ	e	μ	t	μ	t	μ	ż	Authority.
Mn(NO ₃ ) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 3968	15 "	76.4 126.0 301.1	25 "	64.5 104.6 221.0	3.5	55.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15 "	98.6 172.2 474.3	25 "	78.3 137.1 347.9	3,5	63.4 107.4 266.8	45	66 66
NaCl "	7.95 14.31 23.22		82.4 94.8 1 :8.3	10 "	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50 "		1 1 1	Sprung.
NaBr "	9.77 18.58 27.27	-	75.6 82.6 95.9	10 "	48.7 53.5 61.7	30 "	34·4 38.2 43.8	50 "	111		46 46
NaI " "	8.83 17.15 35.69 55.47	-	73.1 73.8 86.0 157.2	10 "	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 "		1111	46 46 44
NaClO ₃	11.50 20.59 33.54	1 1 2	78.7 88.9 121.0	10 "	50.0 56.8 75.7	30 "	35·3 40·4 53·0	50	- - -	1 1 1	66 66
NaNO ₃ " "	7.25 12.35 18.20 31.55	_ _ _	75.6 81.2 87.0 121.2	10 " "	47.9 51.0 55.9 76.2	30 " "	33.8 36.1 39.3 53.4	50 "		1111	44 44 44
Na ₂ SO ₄ " "	4.98 9 50 14.03 19.32	-	96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 " "	40.9 53.0 71.1 106.0	50		1111	46 46 46
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10 "	66.6 79.3 97.1	20 "	53·4 63·5 77·3	30 "	43.8 52.3 63.0	40 "	Slotte.
NH ₄ C1 "	3.67 8.67 1 5.68 23.37	-	71.5 69.1 67.3 67.4	10 " "	45.0 45.3 46 2 47.7	30 " "	31.9 32.6 34.0 36.1	50 "	- - -	1111	Sprung. " "
NH ₄ Br "	15.97 25.33 36.88	111	65.2 62.6 62.4	10 "	43.2 43.3 44.6	30 "	31.5 32.2 34.3	50	- - -		77 78 . 99
NH4NO3 " " "	5.97 12.19 27.08 37.22 49.83	11111	69.6 66.8 67.0 71.7 81.1	10 " " "	44·3 44·3 47·7 51.2 63·3	30 "	31.6 31.9 34.9 38.8 48.9	50 "	-		66 66 66
(NH ₄ ) ₂ SO ₄ "	8.10 15.94 25.51	- -	107.9 120.2 148.4	10 "	52.3 60.4 74.8	30 "	37.0 43.2 54.1	50 "	-		и и

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
(NH ₄ ) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79·3 88.2 101.1	10	62.4 70.0 80.7	20 "	57.8 60.8	30	42.4 48.4 56.4	40 - -	Slotte.
(NH ₄ ) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10 "	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40 "	66 66
NiCl ₂	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15.	70.0 109.7 171.8	25 "	57·5 87.8 139.2	35 "	48.2 72.7 111.9	45 "	Wagner. "
Ni(NO ₃ ) ₂ "	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15 "	70.1 105.9 169.7	25 "	57·4 85·5 128.2	35 "	48.9 70.7 152.4	45 "	66 66 66
NiSO ₄	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15 "	73.5 119.9 224.9	25 "	60.1 99.5 173.0	35 "	49.8 75.7 152.4	45	66
Pb(NO ₃ ) ₂	17.93 32.22	1.179 1.362	74.0 91.8	15	59.1 72.5	25	48.5 59.6	3,5	40.3 50.6	45	66 66
Sr(NO ₈ ) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	15 "	56.0 69.2 93·3	25 "	45.9 57.8 76.7	35	39.1 48.1 62.3	45	ee ee
ZnCl ₂	1 5.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15 "	72.7 86.6 117.9	25 "	57.8 69.8 90.0	35	48.2 57.5 72.6	45 "	66 66
Zn(NO ₃ ) ₂ "	15.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35	43.8 57.7 87.9	45	66 66
ZnSO4	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15 "	79.3 118.6 177.4	25 "	62.7 94.2 135.2	3,5	51.5 73.5 108.1	45 "	66

# TABLE 158. SPECIFIC VISCOSITY.*

	Normal s	solution.	½ nor	mal.	l nor	mal.	l nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscoeity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{cccc} \text{Acids}: \text{Cl}_2\text{O}_3 & . & . \\ \text{HCl} & . & . \\ \text{HClO}_3 & . & . \\ \text{HNO}_3 & . & . \\ \text{H}_2\text{SO}_4 & . & . \end{array}$	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043	1.0143 1.0045 1.0126 1.0086 1.0074	1.000 1.017 1.014 1.005 1.022	1.0074 1.0025 1.0064 1.0044 1.0035	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride   " nitrate Calcium chloride .   " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	66 66 66 86
Cadmium chloride .  " nitrate .  " sulphate .  Cobalt chloride  " nitrate  " sulphate	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032 1.077	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018 1.040	66 66 66 66
Copper chloride	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066	1.0158 1.0185 1.0205 1.0351 1.0062	1.047 1.040 1.080 1.017 1.031 1.065	1.0077 1.0092 1.0103 1.0175 1.0030 1.0057	1.027 1.018 1.038 1.007 1.012 1.032	66 66 66 66
Magnesium chloride  " nitrate.  " sulphate  Manganese chloride  " nitrate.  " sulphate	1.1375 1.0512 1.0584 1.0513 1.0690 1.0728	1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	1.044 1.040 1.078 1.048 1.043	1.0043 1.0066 1.0076 1.0063 1.0093	1.021 1.020 1.032 1.023 1.023	66 66 66 68
Nickel chloride " nitrate " sulphate Potassium chloride . " chromate " nitrate . " sulphate	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605 1.0664	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161	1.044 1.042 1.075 0.990 1.022 0.987 1.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075 1.0084	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66 66 66
Sodium chloride bromide	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065 1.058	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1.020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	1.013 1.008 1.012 1.007 1.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate " sulphate	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	66 66 65 66

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation  $\mu = \mu_1^n$ , where  $\mu_1$  is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for  $25^{\circ}$  C

#### TABLE 159.

#### VISCOSITY OF GASES AND VAPORS.

The values of  $\mu$  given in the table are 10⁶ times the coefficients of viscosity in C. G. S. units.

Substance.	Temp.	μ	Refer- ence.	Substance.	Temp.		Refer- ence.
Acetone	18.0	78.	I	Ether	16.1	73.2	I
Air *	-21.4	163.9	2	"	36.5	79.3	ī
777	0.0	173.3	2	Ethyl chloride	0,	93.5	4
"	15.0	180.7	2	Ethyl iodide	72.3	216.0	3
"	99.I	220.3	2	Ethylene.	0.0	06.1	2
"	182.4	255.9	2	Helium	0.0	180.1	
44	302.0	299.3	2	44		1 - 3 -	5
Alcohol, Methyl	66.8			66	15.3	196.9	5
		135.	3	"	66.6	234.8	5
Alcohol, Ethyl	78.4	142.	3	TTduamen	184.6	269.9	5
Alcohol, Propyl,				Hydrogen	-20.6	81.9	2
norm	97.4	142.	3.	"	0.0	86.7	10
Alcohol, Isopropyl	82.8	162.	3		15.	88.9	2
Alcohol, Butyl, norm.		143.	3 3		99.2	105.9	2
Alcohol, Isobutyl	108.4	144.			182.4	121.5	2
Alcohol, Tert. butyl.	82.9	160.	3		302.0	139.2	2
Ammonia	0.0	96.	4	Krypton	15.0	246.	II
"	20.0	108.	4	Mercury	270.0	489.†	8
Argon	0.0	210.4	5		300.0	532.†	8
"	14.7	220.8	5 5 5		330.0	582.†	8
"	17.0	224.I	5	"	360.0	627.1	8
"	99.7	273.3	5	"	390.0	671.	8
"	183.7	322.I	5	Methane	20.0	120.1	4
Benzene	õ.	70.	10	Methyl chloride	0.0	98.8	2
"	10.0	79.	6	" "	15.0	105.2	2
"	100.0	118.	6	"	302.0	213.0	2
Carbon bisulphide	16.9	02.4	I	Methyl iodide	44.0	232.	3
Carbon dioxide	-20.7	120.4	2	Nitrogen	-21.5	156.3	7
Carron distribution	0.	142.	10	"	0.	166.	10
"	15.0	145.7	2	"	10.0	170.7	7
" "	00.1	186.1	2	"	53.5	180.4	7
" "	182.4	222.1	2	Nitric oxide	0.	179.4	10
11 11 11	302.0	268.2	2	Nitrous oxide	0.	138.	10
Carbon monoxide	0.0	163.0	10	Oxygen	0.	180.	
11 11				117		1	10
Chlorino	20.0	184.0	4		15.4	195.7	7
Chlorine	0.0	128.7	4	Water Vener	53.5	215.9	7
Chlamafanna	20.0	147.0	4	Water Vapor	0.0	90.4	I
Chloroform	0.0	95.9	I	" "	16.7	96.7	I
	17.4	102.9	I		100.0	132.0	9
	61.2	189.0	3	Xenon	15.	222.	11
Ether	0.0	68.9	I				
						1	1

¹ Puluj, Wien. Ber. 69 (2), 1874.

² Breitenbach, Ann. Phys. 5, 1901.

Steudel, Wied. Ann. 16, 1882.
Graham, Philos. Trans. Lond. 1846, III.
Schultze, Ann. Phys. (4), 5, 6, 1901.
Schumann, Wied. Ann. 23, 1884.
Obermayer, Wien. Ber. 71 (2a), 1875.

⁷ Obermayer, Wied. Ber. 7. 8 Koch, Wied. Ann. 14, 1881, 19, 1883.

⁹ Meyer-Schumann, Wied. Ann. 13, 1881.

¹⁰ Jeans, assumed mean, 1916.

¹¹ Rankine, 1910.

¹² Vogel (Eucken, Phys. Z. 14, 1913). For summaries see: Fisher, Phys. Rev. 24, 1904; Chapman, Phil. Tr. A. 211, 1911; Gilchrist, Phys. Rev. 1, 1913. Schmidt, Ann. d. Phys. 30, 1909.

^{*}Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at 20.2° C is  $1.812 \times 10^{-4}$ . The temperature variation given by Holman (Phil. Mag. 1886) gives  $\mu = 1715.50 \times 10^{-7} (1 + .00275t - .0000034t^2)$ . See Phys. Rev. 1, 1913. Millikan (Ann. Phys. 41, 759, 1913) gives for the most accurate value  $\mu_t = 0.00018240 - 0.000000493(23 - t)$  when (23 > t > 12) whence  $\mu_{20} = 0.0001809 \pm 0.1\%$ . For  $\mu_0$  he gives

[†] The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883) by the formula  $\mu = 489 [1 + 746(t - 270)]$ .

# TABLE 160. VISCOSITY OF GASES.

#### Variation of Viscosity with Pressure and Temperature.

According to 'he kinetic theory of gases the coefficient of viscosity  $\mu=\frac{1}{4}(\rho \bar{c}l)$ ,  $\rho$  being the density,  $\bar{c}$  the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume,  $\rho l$  is a constant and  $\mu$  should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below  $\epsilon^1_0$  atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g.,  $CO_2$  at 33° and above 50 atm. See Jeans, "Dynamical Theory of Gases."

If B is the amount of momentum transferred from a plane moving with velocity U and parallel to a stationary plane distant d, and s is a quantity (coefficient of slip) to allow for the slipping of the gas molecules over the plane, then  $\mu = (B/U)$  (d+2s); s is of the same magnitude as l, probably between .7 (Timiriazeff) and .9 (Knudsen) of it; at low pressures d becomes negligible compared with 2s and the viscosity should vary inversely as the pressure.

 $\bar{c}$  depends only on the temperature and the molecular weight; viscosity should, therefore, increase with the pressures for gases.  $\bar{c}$  varies as the  $\sqrt{T}$ , but  $\mu$  has been found to increase much more rapidly. Meyer's formula,  $\mu_t = \mu_0(1 + at)$ , where a is a constant and  $\mu_0$  the viscosity at  $o^\circ$  C, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 31, 1893).

$$\mu_t = \mu_o \, \frac{273 + C}{T + C} \left( \frac{T}{273} \right)^{\frac{3}{2}},$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form  $T = KT^{\frac{3}{2}}/\mu - C$  which is linear in terms of T and  $T^{\frac{3}{2}}/\mu$ , with a slope equal to K and the ordinate intercept equal to -C. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula  $\mu = \mu_0 (T/273.1)^n$ .

The following table contains the constants for the above three formulae, T being always the absolute temperature, Centigrade scale.

Gas.	С	К × 10 ⁷	a	n*	Gas.	С	K × 10 ⁷	<i>a</i>	n *
Air	102 240 454 226	150 206 135 158 159 106 148	.00269	.754 .819 .74 .98 — — .683 .647	Hydrogen Krypton Neon Nitrogen Nitrous oxlde, N ₂ O Oxygen Xenon		66 — 143 172 176 —	.00269	.69 — -74 .93 .79

*The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; CO, CO₂, N₂, N₂O, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2d value, low temperature work of Onnes; H₂, O₂, Mean, Rayleigh, von Obermayer.

# DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time  $dt_1$  at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dr} dt.$ 

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

	7								
Substance.	С	t°	k	Refer- ence	Substance.	с	t°	k	Refer- ence.
Bromine	0.1	12.	0.8	I	Calcium chloride .	0,864	0 -	0.70	
Chlorine	0.1	12.	1.22	1 66	Calcium chloride .	1.22	8.5	0.70	4
Copper sulphate	"	17.		2	" "	0.060	9.	0.72	- 66
Glycerine	66	10.14	0.39		"	0.000	9. 9.	0.68	66
Hydrochloric acid .	66	10.14	0.357	3	Copper sulphate .		_	0.03	2
Iodine	46	12.	(0.5)	I	copper surpliate .	0.95	17. 17.	0.23	16
Nitric acid	66	19.5	2.07	2	66 66	0.30	17.	0.33	66
Potassium chloride .	66	17.5	1.38	2		0.005	17.	0.47	66
" hydroxide .	66	13.5	1.72	2	Glycerine	2/8	10.14	0.354	2
Silver nitrate	46	12.	0.985	2	"	6/8	10.14	0.345	3 "
Sodium chloride .	"	15.0	0.94	2	66	10/8	10.14	0.329	"
Urea	66	14.8	0.97	3	"	14/8	10.14	0.300	"
Acetic acid	0.2	13.5	0.77	4	Hydrochloric acid .	4.52	11.5	2.93	4
Barium chloride .	"	8.	0.66	4	" " .	3.16	11.	2.67	7.
Glycerine	66	10.1	3.55		" "	0.945	11.	2.12	66
Sodium actetate .	66	12.	0.67	3 5 2	" "	0.387	11.	2.02	- 66
" chloride .	46	15.0	0.94	2		0.250	11.	1.84	"
Urea	"	14.8	0.969	3 6	Magnesium sulphate	2.18	5.5	0.28	4 "
Acetic acid	0.1	I 2.	0.74		" .	0.541	5.5	0.32	
Ammonia	46	15.23	1.54	7	" " .	3.23	10.	0.27	"
Formic acid	66	I 2.	0.97		" "	0.402	10.	0.34	"
Glycerine	"	10.14	0.339	7 3 6	Potassium hydroxide	0.75	12.	1.72	6
Hydrochloric acid .	"	12.	2.09	4 - 1	" "	0.49	12.	1.70	66
Magnesium sulphate	"	7.	0.30	8		0.375	I 2.	1.70	"
Potassium bromide.	"	10.	1.13	8	" nitrate .	3.9	17.6	0.89	2
" hydroxide . Sodium chloride .	"	12.	1.72	6	46 66	1.4	17.6	1.10	66
Sodium chioride .	1 "	150	0.94	2		0.3	17.6	1.26	".
" hydroxide .	"	14.3	0.964	3		0.02	17.6	1.28	"
" iodide .	- "	12.	11.1	8	" sulphate	0.95	19.6	0.79	"
Sugar		10.	0.80	6		0.28	19.6	0.86	"
Sulphuric acid		12.	0.254	6	" "	0.05	19.6	0.97	66
Zinc sulphate	"	14.8	0.236		Silver nitrate	0,02	19.6	1.01	"
Acetic acid	2.0	14.0	0.230	9	sliver intrate	3.9 0.9	12.	0.535	16
Calcium chloride .	2.0	10.	0.68	8	" "	0.02	12.	1.035	66
Cadmium sulphate.	"	19.04	0.03		Sodium chloride .	2/8	14.33	1.033	2
Hydrochloric acid .	66	19.04	2.21	9	" "	4/8	14.33	0.996	3
Sodium iodide .	"	10.	0.90	8	46 46	6/8	14.33	0.980	2
Sulphuric acid .	"	12.	1.16	6		10/8	14.33	0.948	"
Zinc acetate	"	18.05	0.210	9	" "	14/8	14.33	0.917	46
66 66	"	0.04	0.120	9	Sulphuric acid .	9.85	18.	2.36	2
Acetic acid	3.0	12.	0 68	1	· · · · · ·	4.85	18.	1.90	"
Potassium carbonate	"	10.	0.60	8	16 16	2.85	18.	1.60	66
" hydroxide	64	12.	1.89	6	" "	0.85	18.	1.34	66
Acetic acid	4.0	12.	0.66	6	" "	0.35	18.	1.32	46
Potassium chloride.	66	10.	1.27	8	" "	0.005	18.	1.30	66

¹ Euler, Wied. Ann. 63, 1897.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

<sup>Thovert, C. R. 133, 1901; 134, 1902.
Heimbrodt, Diss. Leipzig, 1903.
Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.</sup> 

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892.

⁷ Abegg, Zeitschr. Phys. Chem. 11, 1893. 8 Schuhmeister, Wien. Ber. 79 (2), 1879. 9 Seitz, Wied. Ann. 64, 1898.

### DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

Vap	or.				Temp. C.	kt for vapor diffusing into	kt for vapor diffusing into	kt for vapor diffusing into
						hydrogen.	air.	carbon dioxide.
Acids: Formic								0
Acids: Formic	•	•	•	•	65.4	0.5131	0.1315	0.0879
66	•	•	•	•	84.9	0.8830	0.2035	0.1343
Acetic				:	0.0	0.4040	0.1061	0.1519
"					65.5	0.6211	0.1578	0.1048
66					98.5	0.7481	0.1965	0.1321
Isovaleric					0.0	0.2118	0.0555	0.0375
"					, 98.0	0.3934	0.1031	0.0696
Alcohols: Methyl	•	•	•	•	0.0	0.5001	0.1325	0.0380
	•	•	•	•	25.6	0.6015	0.1620	0.1046
Ethyl	•	•	•	•	49.6	0.6738	0.1809	0.1234
Ethyl "	•	•	•	•	0.0	0.3806	0.0994	0.0693
66	•		•	•	40.4 66.9	0.5030	0.1372	0.0898
Propyl				•	. 0.0	0.5430	0.1475	0.1020
					66.9	0.4832	0.1237	0.03//
66					83.5	0.5434	0.1379	0.0976
Butyl				•	0.0	0.2716	0.0681	0.0476
"					99.0	0.5045	0.1265	0.0884
Amyl					0.0	0.2351	0.0589	0.0422
"					99.1	0.4362	0.1094	0.0784
Hexyl			•		0.0	0.1998	0.0499	0.0351
**	•	•	•	•	99.0	0.3712	0.0927	0.0651
D								
Benzene	•	•	•	•	0.0	0.2940	0.0751	0.0527
"	•	•	•	•	19.9	0.3409	0.0877	0.0609
• •	•	•	•	•	45.0	0.3993	0.1011	0.0715
Carbon disulphide					0.0	0.3690	0.0883	0.0629
" "					19.9	0.4255	0.1015	0.0726
66 66					32.8	0.4626	0.1120	0.0789
					1			
Esters: Methyl ace	etate				0.0	0.3277	0.0840	0.0557
	"		•	•	20.3	0.3928	0.1013	0.0679
Littly 1	66 6	•	•	•	0.0	0.2373	0.0630	0.0450
		•	•	•	46.1	0.3729	0.0970	0.0666
Methyl bu	iyrate	•	•	•	0.0	0.2422	0.0640	0.0438
Ethyl	"	•	•	•	92.I 0.0	0.4308	0.1139	0.0809 0.0406
Ethyl "	**				96.5	0.2230	0.0573	0.0400
" vale	rate				0.0	0.2050	0.0505	0.0366
" "					97.6	0.3784	0.0932	0.0676
					, -	3, 1	75	·
Ether					0.0	0.2960	0.0775	0.0552
"	•	•			19.9	0.3410	0.0893	0.0636
***						60	0	
Water	•	•	•	•	0.0	0.6870	0.1980	0.1310
	•	•	•	•	49.5	1.0000	0.2827	0.1811
	•	•	•	•	92.4	1.1794	0.3451	0.2384

^{*} Taken from Winkelmann's papers (Wied, Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Oberneyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula  $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{76}{p}$ , where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air  $-CO_2$ , n=1.068;  $CO_2 - N_2O_3$ , n=2.05;  $CO_3 - H$ , n=1.742; CO - O, n=1.785; H - O, n=1.755; O - N, n=1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

# DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 163. - Coefficients of Diffusion for Various Gases and Vapors.*

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

#### TABLE 164,- Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2}; \text{ where } x \text{ is the distance in direction of diffusion; } v, \text{ the degree of concentration of the diffusing metal; } t, \text{ the time; } k, \text{ the diffusion constant} = \text{ the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.}$ 

Diffusing Metal.	Dissolving Metal.	Tempera-	k.	Diffusing Metal.	Dissolving Metal.	Tempera- ture OC.	k.
Gold	Lead . " " " Bismuth Tin	555 492 251 200 165 100 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead . Rhodium . Tin . Lead . Zinc . Sodium . Potassium Gold .	Lead . Tin Lead . Mercury	492 555 550 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

* These values are from Guthrie.

# SOLUBILITY OF INORCANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.					Tempe	erature C	Centigrade	e.			
Sait.	oo	100	20°	30°	400	50°	60°	70°	Soo	900	1000
$\begin{array}{c} \operatorname{AgNO_3} \dots \dots \\ \operatorname{Al_2(SO_4)_3} \dots \dots \\ \operatorname{Al_2K_2(SO_4)_4} \dots \dots \end{array}$	313	1600 335	21 50 362	2700 404 84	3350 457	4000 521	4700 591	5500 662	6500 731	7600 808	9100
$A_{12}^{12}(SO_{4})_{4}$ $A_{12}(NH_{4})_{2}(SO_{4})_{4}$ $B_{2}O_{3}$	30 26	45	66	91	124	159	248 211 62	270	35 ² 95	_	1540
$BaCl_2$ Ba(NO ₃ ) ₂	316 50	333	357 92	382 116	408 142	436 171	464	494 236	524 270	556 306	588 342
$egin{array}{cccc} \operatorname{CaCl_2} & \ldots & \ldots & \ldots \\ \operatorname{CoCl_2} & \ldots & \ldots & \ldots \\ \operatorname{CsCl} & \ldots & \ldots & \ldots \end{array}$	595 405 1614	650 450 1747	745 500 1865	565	650 2080	935	1368	950	960	1527 - 2601	1590
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	149 1731	230 1787	339 1841	472 1899	644	2290 838 1999	2395 1070 2050	2500 1340 2103	1630	2705 1970 2203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149	_	1250 - 685	255	295 295	336 820	390	457	2078 535 1040	627 1050	735 1060
$  Fe_2Cl_6  $ $  FeSO_4  $ $  HgCl_2  $	744 156 43	819 208 66	918 264 74	330 84	402 96	3151 486 113	550	560 173	5258 506 243	430	5357
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	540 1050	-	650	1140	760 1170	1210	860	1330	955 1400	371	1050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	285 33 589	31 <i>2</i> 50 609	343 71 629	373 101 650	401 145 670	429 197 690	455 260 710	483 325 730	396 751	538 475 771	566 560 791
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 225	85 277	131 332	390	292 453	522	505 600	_	730	-	1020
KNO ₃	1279 133 970	1361 209 1030	1442 316 1120	1523 458 1260	1600 639 1360	1680 855 1400	1760 1099 1460	1840 1380 1510	1920 1690 1590	2010 2040 1680	2090 2460 1780
$egin{array}{ccccc} K_2 Pt Cl_6 & \ldots & \ldots \\ K_2 SO_4 & \ldots & \ldots \\ Li OH & \ldots & \ldots \end{array}$	7 74 127	9 92 127	11 111 128	14 130 129	148	165	26 182 138	3 ² 198	38	45 228 -	52 241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	528 260	535 309	545 356	409	575 456	133	610	144	153 660 -	-	730
" (баq) NH ₄ Cl NH ₄ HCO ₃	408 297 119	333 159	439 372 210	453 414 270	458 -	504 504	550 552	596 602 -	642 656	689 713	738 773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	706 795	730 845	- 754 903	2418 780	2970 810 1058	3540? 844 1160	4300? 880 1170	5130? 916	5800 953 1185	7400 992	8710 1033 1205
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	16 126	214	39 409	_	105	200	244	314	408	523
" (7aq)   NaCl     NaClO ₃	204 356 820	263 357 890	335 358 990	435 360	(1aq) 363 1235	475 367	464 371 1470	45 ⁸ 375	452 380 1750	45 ² 385	452 391 2040
Na ₂ CrO ₄	317 1630	502 1700	900	- 1970	960 2200	1050 2480	1150 2830	- 3230	1240 3860	-	1260
Na ₂ HPO ₄	69 25 1590	39 1690	96 93 1790	24I 1900	639 2050	145 - 2280	164 - 2570	949 -	- 2950	-	988 3020
NaNO ₃	730	865	88o	962	1049	1140	1246	1360	1480	1610	1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

# SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 165 (concluded) - Solubility of Inorganic Salts in Water; Variation with the Temperature.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.	Temperature Centigrade.										
Sait.	o ⁰	100	200	300	400	50°	60°	7º°	80°	900	100°
NaOH Na4P2O7. Na2SO3 Na2SO4 (10aq) (7aq) Na2S2O3 NiCl2 NiSO4 Pbl8r2 Pb(NO3)2 RbCl RbNO3 Rb2SO4 SrCl2 SnI2 Sr(NO3)2 Th(SO4)2 (9aq) (11Cl TlNO3 Tl2SO4 Yb2(SO4)3 Zn(NO3)2 ZnSO4	420 32 141 50 196 525 - 272 5 365 770 195 364 442 - 395 7 - 2 39 27 442 948 -	515 39 90 305 610 600 - 644 484 330 426 483 - 549 10 - 2 62 37 - -	1090 62 287 194 447 700 640 8 523 911 533 482 10 708 14 -	1190 99 -400 -47 680 425 12 607 976 813 535 600 12 876 20 - 143 62 -	1290 135 495 482 1026 720 - 15 694 1035 1167 585 667 14 913 30 40 6 209 76 - 2069 700	1450 174 - 468 1697 760 502 20 787 1093 1556 631 744 17 926 51 25 8 304 92 - 768	1740 220 - 455 2067 810 548 24 880 1155 2000 674 831 21 940 - 16 10 462 109 104	- 255 - 445 - 594 28 977 1214 2510 714 896 - 11 13 695 127 72 890	3130 300 - 437 2488 - 632 33 1076 1272 3090 750 924 30 972 - 16 1110 146 69 860	- - - - - - - - - - - - - - - - - - -	- - 330 427 2660 - 776 48 1270 1389 4520 818 1019 40 1011 - - 4140 - 785

# TABLE 166.—Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	00	100	200	30°	40 ⁰	50°	60°	<b>7</b> °	800	90 ⁰	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 28 1150 92 2900 3	140	69 I	1 59 106 560 291	228 162 1760 433 3810 13	321 244 1950 595 18	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 - 3070 1530 - 57	- 1209 3430 1850 7900 69

### TABLE 167,- Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	00	100	200	30 ⁰	40 ⁰	50°	60 ⁰	70 ⁰	80°
$\begin{array}{c c} O_2 \\ H_2 \\ N_2 \\ Br_2 \\ Cl_2 \\ CO_2 \\ H_2S \\ NH_3 \\ SO_2 \end{array}$	.0705 .00192 .0293 431. - 3.35 7.10 987. 228.	.0551 .00174 .0230 248. 9.97 2.32 5.30 689. 162.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535. 113.	.0368 .00147 .0161 94. 5.72 1.26 - 422. 78.	.0139	.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58	.0181 .00102 .0089 18. 2.79	.0135 .00079 .0069 111. 2.23

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

# CHANCE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

	CdSO ₄ 8/ ₃	H ₂ O at 25°	ZnSO _{4.7}	H ₂ O at 25°	Mannite	e at 24.05°	NaCl	at 24.05°
Pressure in atmospheres.	Conc. of satd. solu. gs. CdSO ₄ per 100 gs. H ₂ O	Percentage change.	Conc. of satd. solu. gs. ZnSO ₄ per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. mountie per roo gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. NaCl. per roo gs. H ₂ O.	Percentage change.
I	76.80	-	57.95	_	20.66	_	35.90	_
500	78.01	+ 1.57	57.87	-0.14	21.14	+ 2.32	36.55	+ 1.81
1000	78.84	+ 2.68	57.65	-0.52	21.40	+ 3.57	37.02	+ 3.12
1500	_	_	_		21.64	+ 4.72	37.36	+ 4.07

^{*} E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical resume of earlier work along this line.

#### ABSORPTION OF CASES BY LIQUIDS.*

Temperature			ABSOR	PTION COEFFI	CIENTS, at,	FOR GASE	s in W	ATER.		
Centigrade.	Carbon		Carbon Onoxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxid N(	le.	Nitrou oxide N ₂ O	.   '	Oxygen. O
0 5 10 15 20 25 30 40 50	1.4 1.1 0.9 0.7	150 185 1902 1901 1772 - 1506	.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608 .01600	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195	0.073 .064 .057 .051 .047 .043 .046 .031	16 15 11 13 13 13 15	1.048 0.8778 0.7377 0.6294 0.5443 - - -		.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080
Temperature Centigrade.	Ai		nmonia. N H ₃	Chlorine. Cl	Ethylene. C ₂ H ₄	Metha CH	ilic.	Hydrog sulphid H ₂ S	le.	Sulphur dioxide. SO ₂
0 5 10 15 20 25	10.	953 795 704	174.6 971.5 840.2 756.0 683.1 610.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 .048 .043 .039 .034	89 67 03 99	4·37 3.96 3·58 3·23 2.90 2.60	5 6 3 5	79·79 67·48 56·65 47·28 39·37 32·79
T		ABSO	RPTION C	COEFFICIENTS,	at, for Ga	ses in A	LCOHOL,	C ₂ H ₅ 0	эн.	
Temperature Centigrade.	Carbon dioxide. CO ₂	Ethylene C ₂ H ₄	Methano CH4	e. Hydrogen. H	Nitrogen.	Nitric oxide. NO	Nitro oxide N ₂ O	.   51	ydrogen alphide. H ₂ S	Sulphur dioxide. SO ₂
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3.595 3.323 3.086 2.882 2.713 2.578	0.5226 .5086 .4953 .4828 .4710 .4598	.0685 .0679 .0673 .0667	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	4.19 3.83 3.52 3.21 3.01 2.81	S 5 5	17.89 14.78 11.99 9.54 7.41 5.62	328.6 251.7 190.3 144.5 114.5 99.8

^{*} This table contains the volumes of different gases, supposed measured at 0° C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

#### CAPILLARITY, -SURFACE TENSION OF LIQUIDS.*

TABLE 170. - Water and Alcohol in Contact with Air.

TABLE 172. —Solutions of Salts in Water.

Temp.	Surface tensi in dynes p centimeter.		Temp.	in dy	e tension nes per neter.	Temp.	Surface tension in dynes per cen- timeter.
C.	Water.	Ethyl alcohol.	C	Water. Ethylalcoho		C.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5

Salt in solution.	Density.	Temp. C.°	Tension in dynes per cm.
BaCl ₂ "CaCl ₂ "HCl " "KCl " "NaCl " "SrCl ₂ " "K ₂ CO ₃ " " "Na ₂ CO ₃ " " " " " " " " " " " " " " " " " " "	1.2820 1.0497 1.3511 1.2773 1.1190 1.0242 1.1699 1.1011 1.0463 1.2338 1.1694 1.0362 1.1932 1.1074 1.0360 1.0758 1.05281 1.3114 1.1204 1.0567 1.3575 1.1576 1.0400 1.1329 1.0605 1.0283 1.1263 1.1263 1.1311 1.1775 1.0226	C.°  15-16 15-16 19 20 20 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16 15-16	in dynes per cm.  81.8 77.5 95.0 90.2 73.6 74.5 75.3 82.8 80.1 85.2 78.0 85.8 80.5 77.6 84.3 81.7 78.8 85.6 77.8 90.9 81.8 77.5 77.8 90.9 81.8 77.5 78.9 81.8 77.5 79.3 77.8 77.6 83.5 80.6 77.6
H ₂ SO ₄ " " K ₂ SO ₄ " MgSO ₄ " Mn ₂ SO ₄ " ZnSO ₄ "	1.0276 1.8278 1.4453 1.2636 1.0744 1.0360 1.2744 1.0680 1.1119 1.0329 1.3981 1.2830 1.1039	15-16 15 15-16 15-16 15-16 15-16 15-16 15-16 15-16	77.0 63.0? 79.7 79.7 78.0 77.4 83.2 77.8 79.1 77.3 83.3 80.7 77.8

TABLE 171. - Miscellaneous Liquids in Contact with Air.

Liquid.	Temp.	Surface tension in dynes per cen- timeter.	Authority.
Aceton Acetic acid Amyl alcohol Benzole Butyric acid Carbon disulphide Chloroform Ether Glycerine Hexane " Mercury Methyl alcohol Olive oil Petroleum Propyl alcohol " Toluol " Turpentine	16.8 17.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 68.0 18.0 15.0 20.0 20.0 18.0 15.0 20.0 19.0 20.0 19.0 19.0 19.0 20.0	23.3 30.2 24.8 28.8 28.7 30.5 28.3 18.4 63.14 21.2 520.0 24.7 34.7 34.7 25.9 25.9 18.0 29.1 18.9 28.5	Ramsay-Shields. Average of various.  " Quincke. Average of various.  Hall. Schiff.  " Average of various.  " Magie. Schiff. " " " Average of various.

^{*} This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

I From Volkmann (Wied. Ann. vol. 17, p. 353).

For more recent data see especially Harkins, J. Am. Ch. Soc., 39, p. 55, 1917 (336 liquids). and 42, p. 702, 2543, 1920.

p. 702, 2543, 1920.

#### TABLES 173-175.

#### TENSION OF LIQUIDS.

#### TABLE 173. - Surface Tension of Liquids.*

I	iquid	1.			Specific	Surface tension in dynes per centimeter of liquid in contact with—				
	•					gravity.	Air.	Water.	Mercury.	
Water							1.0	75.0	0.0	(392)
Mercury							13.543	513.0	392.0	0
Bisulphide of carbon							1.2687	30.5	41.7	(387)
Chloroform						-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol .							0.7906	(24.1)		364
Olive oil							0.9136	34.6	18.6	317
Turpentine							0.8867	28.8	11.5	241
Petroleum							•7977	29.7	(28.9)	271
Hydrochloric acid							1.10	(72.9)	-	(392)
Hyposulphite of soda	solu	ition	•	•	•	•	1.1248	69.9	-	429

#### TABLE 174. - Surface Tension of Liquids at Solidifying Point.

Subst	tance			Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimeter.	Substance.	Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimeter.
Platinum				2000	1691	Antimony	432	249
Gold .				1200	1003	Borax	1000	216
Zinc .				360	877	Carbonate of soda .	1000	210
Tin .				230		Chloride of sodium .	_	116
Mercury				-40	599 588	Water	0	87.9‡
Lead .				330	457	Selenium	217	71.8
Silver .				1000	427	Sulphur	III	42.1
Bismuth				265	1 390	Phosphorus	43 68	42.0
Potassium				58	37 I	Wax	68	34.1
Sodium	٠	٠	٠	90	258		†	

#### TABLE 175. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of oleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micro-millimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution.

• When the percentage of KNO3 is diminished, the thickness of the black patch increases.

 $KNO_3$ For example,

 $KNO_3 = 3$  I 0.5 0.0 Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO₃ dissolved, increased the thickness of the film.

- 1 part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm. I part soap to 60 of water gave thickness 27.7 micro-mm.
- 1 part soap to 80 of water gave thickness 29.3 micro-mm.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or * This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogs. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20 °C.

† Quincke, "Pogg. Ann." vol. 135, p. 661.

‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

# "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Krypton.

Xenon.

# VAPOR PRESSURE. TABLE 176. — Vapor Pressure of Elements.

Argon.

Nitrogen.

Hydrogen.

Oxygen.

H scale.	mm	H scale.	mm	Т	mm	° K	mm	° K	mm	° K	mm
20.41° K 20.22 19.93 19.41 18.82 18.15 17.36 16.37 14.93 Travers, J.	760 700 600 500 400 300 200 100		760 700 600 500 400 300 200	77. 33° K 76. 83 76. 65 75. 44 74. 03 72. 39 70. 42 67. 80 63. 65	714.5 700. 600. 500. 400. 300. 200. 100.	137.8 136.8 123.1 87.8 86.5 85.5 83.8 82.6 81.7 77.3	23251. 21334. 20700. 10313. 821.2 704.5 633.4 524.3 465.0 410.1 215.0	273·3 255·6 254·0 252·6 248·7 244·2 239·7 237·4 231·4 183·2	31501 21967 21512 19984 18153 15868 13971 13505 11134 2020	206.4 204.1 201.5 201.0 197.9 170.9 112.7 88.6 84.2	9.
							nsay, Tra		. phys.		
Cl	nlorine.		Bre	omine.	Iod	line.	C	opper.		Sil	/er.
°C	Pr	essure.	° C	mm	° C	mm	° C	Atm	е.	° C	Atme.
+146. +100. +50.	93.50 atm. 41.70 atm. 14.70 atm.		+58. 56.	700	+55 50 45	3.084 2.154 1.498	2310 2180 1980	1.0 0.33 0.13	8 1	1955 1780 1660	1.0 0.346 0.1355
+20.		62 atm.	46.		40	1.025	I	Lead		Bism	uth.
0. -20.		66 atm. 84 atm.	40 33		35	0.699	° C	Atm	е.	°C	Atme.
-33.6 -40. -50.	760. 560. 350.	mm mm mm	23 16.6 8.	45   200 95   150 20   100	25 15 0	0.305 0.131 0.030	2100 1870 1525	11.7 6.3 1.0	1	060 1950 1740	16.5 11.7 6.3
-60. -70.	118.	mm	-5.0 -7.0	9 45		Hick-		0.3		310	0.338
-80. -85.	62. 45.	5 mm mm	-8.4 -12.6	30		Holmes, m. Ch		inc.	1	200	0.134 in.
-88.			-16.0	55 20	Soc.	1907.			_ -		
Cu to Sn, C Roy. So	Knietsch, W. Ann. 1890. Cu to Sn, Greenwood, Pr. Roy. Soc. 83A, 1910; Zs. ph. Ch. 76, 1911.			y, Young Ch. Soc.			°C 1510 1280 1230 1120	53.0 21. 11. 6.	0 2 5 2 7 1	°C 270 100 970	1.0 0.345 0.133
		TADIE 1		Zanar Dra			of Emp				

TABLE 177. — Vapor Pressure and Rate of Evaporization.

° K	Мо	W		tion rate. 12/sec.	Platinum.			
	mm	mm	Мо	W	° K	mm	g/cm²/sec.	
1800 2000 2200 2400 2600 2800 3000 3200 3500	0.08643 0.06789 0.04396 0.021027 0.0160 0.1679 3890° 760 mm	0.0 ₁₁ 645 0.0 ₉ 849 0.0 ₇ 492 0.0 ₅ 151 0.0 ₄ 286 0.0 ₃ 362 0.0 ₂ 333 0.0572	0.0 ₁₀ 863 0.0 ₇ 100 0.0 ₆ 480 0.0 ₄ 120 0.0 ₃ 179 0.0 ₂ 181	0.0 ₁₂ 114 0.0 ₁₀ 144 0.0 ₉ 798 0.0 ₇₂ 36 0.0 ₆₄ 29 0.0 ₅₅ 23 0.0 ₄₄ 67 0.0 ₃ 769	Rev.	0.017324 0.012111 0.09188 0.07484 0.05330 0.03107 760 mm muir, MacK 2, 1913; 4, of vacuum,	1914.	

# VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Tem- pera- ture Cent.	Acetone, C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form. CHCl ₈	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol, CH ₄ O	Turpen- tine. C ₁₀ H ₆
-25° -20 -15 -10 -5	1111	.58 .88 1.29 1.83	4.73 6.16 7.94 10.13	- .98 1.35 1.85 2.48	- - - -	- .33 .51 .65	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35	1 1 1 1
0 5 10 15 20	17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05 - 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	- .21 - .29 - .44
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	- .69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
75 80 85 90 95	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 9.06
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 27 5.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621·46 693·33 771·92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80	1111	736.22 811.65 892.19 977.96	498.05 569.13 647.93 733.71 830.89	34.90 - 46.40
150 155 160 165 170	11111	433·37 478.65 527·14 568.30 634.07	909.59	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92 - - -		11111	936.13	60.50 68.60 77.50 -

#### VAPOR PRESSURES.

			,							
Tem- pera- ture, Centi- grade.	Ammonia. NH ₃	Carbon diexide. CO ₂	£thyl chloride. C₂H₅Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
_30°	86.61	-	11.02	-	57.90	57.65	-	58.52	28.75	-
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	11111	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374.93 443.85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 69.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11	415.10 477.80 - - -	4664.14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	1111	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22	-	-	1111	521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219. <b>5</b> 7		498.27 561.41 630.16 704.75 785.39		- - - -	-	-	-	11111	- - - -
100	4660.82	-	872.28	-	-	-	-	-	-	_

#### TABLE 178 (a). — Vapor Pressures at Low Temperatures.

Many of the following values are extrapolations made by Langmuir by means of plots of log. p against 1/T. Gen. Elect. Rev. 23, 681, 1920. 1 bar = 0.00000097 atm. = 0.000750 mm Hg.

Gas	°C	mm	Gas	°C	bars
O ₂	-182.9 -211.2 -195.8	760. 7.75 760.	CO ₂	-148 -168 -182	100.
CO CH4	-210.5 -190. -200. -185.8	86. 863. 249. 79.8	Ice	-193 -60 -75 -89	.0001 9.6 1.0
A C ₂ H ₄	-201.5 -186.2 -194.2 -175.7	50.2 760. 300.	Hg	-100 -110 +30 +20	,01 ,001 3.7 1.6
C ₂ H ₆	- 188. - 197. - 205. - 150.	.076 .0076 .00076 7.6		+10 0 -10 -20	.65 ,25 ,087 ,029
2218	-180. -190. -198.	.076 .0076 .00076		- 40 - 78 - 180	.0023 4.3 × 10 ⁻⁸ 2.3 × 10 ⁻²⁴

#### VAPOR PRESSURE.

TABLE 179. - Vapor Pressure of Ethyl Alcohol.*

Ü	0°	1°	2°	3°	4°	5°	<b>6</b> °	<b>7</b> °	<b>8</b> °	9°			
Temp.			Vaj	por pressur	e in millim	eters of me	ercury at o	° C.					
0° 10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86			
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	155.80 253.80 400.40 613.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45			
From	From the formula $\log p = a + b\alpha^t + c\beta^t$ Ramsay and Young obtain the following numbers.												
<u>ن</u>	0°	10°	20°	30°	<b>40</b> °	50°	60°	70°	80°	90°			
Temp.		Vapor pressure in millimeters of mercury at 0° C.											
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45 <b>5</b> 19.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.			

TABLE 180. - Vapor Pressure of Methyl Alcohol.

. c.	0°	1°	<b>2</b> °	3°	4°	<b>5</b> °	6°	<b>7</b> °	8°	9°					
Тетр.		Vapor pressure in millimeters of mercury at 0° C.													
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0					
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 3 ² 7.3 5 ⁰ 7.7 7 ⁶ 1.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4					

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301;  $\log b = \overline{2}.6406131$ ;  $\log c = 0.6050854$ ;  $\log a = 0.003377538$ ;  $\log \beta = \overline{1.99682424}$  (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

TABLE 181.

#### **VAPOR PRESSURE.***

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Anfiine.

Temp. 0° 1° 2° 3° 4° 5° 6° 7° 8° 9°												
Temp.	0°	1°	2°	<b>3</b> °	4°	5°	<b>6</b> °	<b>7</b> °	8°	9°		
				(a) CAR	BON DIS	SULPHIDE	Ε.					
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 20 <b>7</b> .00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254 25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25		
				( <b>b</b> ) C	HLOROBI	ENZENE.	,	<del> </del>				
20° 3° 4°	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	13.42 22.69 37.08	14.17 23.87 38.88		
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 1 56.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25		
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454·65 608·75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65		
				(c) 1	Вкомовь	ENZENE.	,					
40°	-	-	-	-	-	1 2.40	13.06	13.75	14.47	15.22		
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24:88 39.60 61.26 92.28 135.08		
100 110 120 130 140	140.10 198.70 274.90 372 65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	1 56.03 219 58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25		
150	649.05	666.25	683.80	701.65	719.95	738-55	757-55	776.95	796.70	816.90		
				(0	a) Anil	INE.						
<b>80</b> °	18.80	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37-30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06		
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.38	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82		
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45		

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

SMITHSONIAN TABLES.

#### VAPOR PRESSURE.

# Methyl Salicylate, Bromonaphthalene, and Mercury.

Temp. C.	<b>0</b> °	1°	2°	3°	4°	5°	6°	<b>7</b> °	<b>8</b> °	9°
				(e) ME	THYL SA	LICYLAT	Е.			
<b>70°</b>	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125 66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455·35 585.70 744·35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
				( <b>f</b> ) Bro	MONAPH	THALEN	E.			
110°	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150 160 170 180 190	19.80 28.85 40.75 56.45 77.15	20.59 29.90 42.12 58.27 79.54	21.41 30.98 43.53 60.14 81.99	22.25 32.09 44.99 62.04 84.51	23.11 33.23 46.50 64.06 87.10	24.00 34.40 48.05 66.10 89.75	24.92 35.60 49.64 68.19 92.47	25.86 36.83 51.28 70.34 95.26	26.83 38.10 52.96 72.55 98.12	27.83 39.41 54.68 74.82
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	39 <b>5</b> .60	405.05	414.65	424.45	434·45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545·35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
	•			(g	) Merci	JRY.				
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	1 50.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	3 ² 4.37	331.c8	337.89	344.81	351.85	359.co	366.28
320	373 67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
<b>350</b> 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

#### TABLE 182.

# VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

Subst	tance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
Al ₂ (SO ₄ ) ₃ AlCl ₃ . BaS ₂ O ₆ Ba(OH) ₂ Ba(NO ₃ ) ₂		12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
Ba(ClO ₃ ) ₂ BaCl ₂ . BaBr ₂ . CaS ₂ O ₃ Ca(NO ₃ ) ₂		16.4 16.8 9.9 16.4	33·3 36·7 38·8 23·0 34·8	70.5 77.6 91.4 56.0 74.6	150.0 106.0 139.3	204.7	205.4			
$\begin{array}{c} \operatorname{CaCl_2}. \\ \operatorname{CaBr_2}. \\ \operatorname{CdSO_4} \\ \operatorname{CdI_2}. \\ \operatorname{CdBr_2}. \end{array}$		17.7	39.8 44.2 8.9 14.8 17.8	95.3 135.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3 80.0	319.5 368.5			
CdCl ₂ . Cd(NO ₃ ) ₂ Cd(ClO ₃ ) ₂ CoSO ₄ CoCl ₂ .		15.9	18.8 36.1 10.7 34.8	36.7 78.0 22.9 83.0	57.0 122.2 45.5 136.0	77.3	99.0			
Co(NO ₃ ) ₂ FeSO ₄ H ₃ BO ₃ H ₃ PO ₄ H ₃ AsO ₄		17.3 5.8 6.0 6.6	39.2 10.7 12.3 14.0 15.0	89.0 24.0 25.1 28.6 30.2	152.0 42.4 38.0 45.2 46.4	218.7 51.0 62.0 64.9	282.0	332.0	146.9	189.5
H ₂ SO ₄ KH ₂ PO ₄ KNO ₃ . KClO ₃ KBrO ₃	• • •	12.9	26.5 19 5 21.1 21.6 22.4	62.8 33.3 40.1 42.8 45.0	104.0 47.8 57.6 62.1	148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄ KNO ₂ KClO ₄ KCl .	• • •	11.1	21.9 22.8 22.3 24.4	43·3 44.8 48.8	65.3 67.0 74.1	85.5 90.0	107.8 110.5	129.2 130.7	170.0 167.0	198.8
KHCO ₂ KI  K ₂ C ₂ O ₄ K ₂ WO ₄ K ₂ CO ₃ KOII		13.9	23.6 25.3 28.3 33.0 31.0 29.5	59.0 52.2 59.8 75.0 68.3 64.0	77.6 82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	132.0 141.5 226.4 209.0 181.8	160.0 171.8 258.5 223.0	210.0 225.5 350.0 309.5	255.0 278.5 387.8
K ₂ CrO ₄ LiNO ₃ LiCl . LiBr . Li ₂ SO ₄	• • •	12.2	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393.5 438.0
LiHSO ₄ LiI . Li ₂ SiFl ₆ LiOH . Li ₂ CrO ₄		12.8 13.6 15.4 15.9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0	130.0 154.5 171.0	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f Phys." ch. 2, 42, 1886.

# VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5 1.	0 2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 39 17.6 42 17.9 44	2.0 24.5 0.0 100.5 2.0 101.0 1.0 115.8 5.0 116.0	47·5 183·3 174·8 205·3	277.0	377.0			
MnSO ₄	15.0 34 10.5 20 10.9 22	21.0 76.0 0.0 36.5 2.1 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
NaClO ₈	10.5 23	3.0 48.4	73-5	98.5	123.3	147.5	196.5	223.5
NaOH	11.6 24	2.8 48.2 4.4 50 0 3.5 43.0	77.3 75.0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₈	12.9 24 12.6 29	48.2 48.9	77.6	102.2	127.8	152.0	198.0	239.4
NaCl	12.3 25	5.2 52.1 5.0 54.1 5.9 57.0	74.2 80.0 81.3 89.2	111.0	143.0 136.0 159.5	176.5	268.0	
NaI	12.1 29	3.6 60.2	99.5	136.7	177.5	221.0	301.5	370.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.3 27 14.5 30	53.5 5.0 65.8 6.6 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5 30 17.1 36 12.8 22 11.5 25 12.0 23	.5 .0 42.1 .0 44.5	62.7 69.3	82.9 94.2	103.8	121.0	152.2	180.0
NH ₄ HSO ₄ (NH ₄ ) ₂ SO ₄ NH ₄ Br NH ₄ I NiSO ₄	11.5 22 11.0 24 11.9 23 12.9 25 5.0 10	.0 46.5 .9 48.8 .1 49.8	71.0 69.5 74.1 78.5	94.5 93.0 99.4 104.5	118. 117.0 121.5 132.3	139.0 141.8 145.5 156.0	181.2 190.2 200.0	218.0 228.5 243.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.1 37 16.1 37 12.3 23 7.2 20 15.8 31	.3 91.3 .5 45.0 .3 47.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 38 17.8 42 4.9 10 9.2 18 16.6 39	.0 101.1 .4 21.5 .7 46.2	156.8 179.0 42.1 75.0 157.5	223.3 267.0 66.2 107.0 223.8	281.5 153.0	195.0		

### PRESSURE OF SATURATED AQUEOUS VAPOR.

The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 183. — At Low Temperatures, -69° to 0° C over Ice.

Temp.	0	I	2	3	4	5	6	7	3	9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
-6o	0.008	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002
-50	0.020	0.026	0.023	0.020	0.017	0.015	0.013	0.012	0.010	0.009
-40	0.096	0.086	0.076	0.068	0.060	0.054	0.048	0.042	0.037	0.033
-30	0.288	0.259	0.233	0.209	0.188	0.169	0.151	0.135	0.121	0.108
-20	0.783	0.712	0.646	0.585	.0.530	0.480	0.434	0.392	0.354	0.319
-10	1.964	1.798	1.644	1.503	1.373	1.252	1.142	1.041	0.947	0.861
- 0	4.580	4.220	3.887	3.578	3.291	3.025	2.778	2.550	2.340	2.144

#### TABLE 184. — At Low Temperatures, - 16° to 0° C over Water.

Tem	0. 0	I	2	3	4	5	6	7	8	ð
-10 - 0		mm 1.979 4.255	mm 1.826 3.952	mm 1.684 3.669	mm 1.551 3.404	mm 1.429 3.158	mm 1.315 2.928	mm — 2.712	mm — 2.509	mm 

#### TABLE 185. - For Temperatures 0° to 374° C over Water.

Temp.	.0	. 1	. 2	.3	-4	-5	.6	.7	.8	.9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
o°	4.580	4.614	4.647	4.681	4.715	4.750	4.784	4.810	4.854	4.880
I	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.201	5.329	5.368	5.406	5.445	5.484	5.523	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
5 6	7.012	7.061	7.110	7.159	7.209	7.259	7.309	7.360	7.410	7.462
7 8	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.991
	8.045	8. 100	8.156	8.211	8.267	8.324	8.380	8.437	8.494	8.552
9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	9.21	9.27	9.33	9.40	9.46	9.52	9.59	9.65	9.72	9.78
II	9.85	9.91	9.98	10.04	10.11	10.18	10.25	10.31	10.38	10.45
12	10.52	10.59	10.66	10.73	10.80	10.87	10.94	11.02	11.09	11.16
13	11.24	11.31	11.38	11.46	11.53	11.61	11.68	11.76	11.84	11.92
14	11.99	12.07	12.15	12.23	12.31	12.39	12.47	12.55	12.63	12.71
15	12.79	12.88	12.96	13.04	13.13	13.21	13.30	13.38	13.47	13.56
16	13.64	13.73	13.82	13.91	14.00	14.08	14.17	14.26	14.36	14.45
17	14.54	14.63	14.73	14.82	14.91	15.01	15.10	15.20	15.29	15.39
	15.49	15.58	15.68	15.78 16.80	15.88	15.98	16.08	16.18	16.28	16.39
19	16.49	16.59	16.70	10.00	16.91	17.01	17.12	17.22	17.33	17.44
20	17.55	17.66	17.77	17.88	17.99	18.10	18.21	18.32	18.44	18.55
	18.66	18.78	18.90	19.01	19.13	19.25	19.36	19.48	19.60	19.72
22	19.84	19.96	20.09	20.21	20.33	20.46	20.58	20.71	20.83	20.96
23	21.09	21.22	21.34	21.47	21.60	21.73	21.87	22.00	22.13	22.26
24	22.40	22.53	22.67	22.80	22.94	23.08	23.22	23.36	23.50	23.64
25	23.78	23.92	24.06	24.21	24 · 35	24.50	24.64	24.79	24.94	25.09

### PRESSURE OF SATURATED AQUEOUS VAPOR.

# TABLE 185. - For Temperatures 0° to 374° C over Water.

Tempera- ture.	.0	. 1	. 2	-3	-4	- 5	.6	.7	.8	.9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
25°	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94	25.09
26	25.24	25.38	25.54	25.69	25.84	25.99	26.14	26.30	26.46	26.61
27	26.77	26.92	27.08	27.24	27.40	27.56	27.72	27.89	28.05	28.22
28	28.38	28.55	28.71	28.88	29.05	29.22	29.39	29.56	29.73	29.90
29	30.08	30.25	30.43	30.60	30.78	30.96	31.14	31.32	31.50	31.68
30	31.86	32.04	32.23	32.41	32.60	32.79	32.97	33.16	33·35	33.54
31	33.74	33.93	34.12	34.32	34.51	34.71	34.91	35.10	35·30	35.50
32	35.70	35.91	36.11	36.32	36.52	36.73	36.94	37.14	37·35	37.56
33	37.78	37.99	38.20	38.42	38.63	38.85	39.06	39.28	39·50	39.72
34	39.95	40.17	40.39	40.62	40.85	41.07	41.30	41.53	41·76	41.99
35	42.23	42.46	42.70	42.93	43.17	43.41	43.65	43.89	44.13	44.37
36	44.62	44.86	45.11	45.36	45.61	45.86	46.11	46.36	46.62	46.87
37	47.13	47.38	47.64	47.90	48.16	48.43	48.69	48.95	49.22	49.49
38	49.76	50.02	50.30	50.57	50.84	51.12	51.39	51.67	51.95	52.23
39	52.51	52.79	53.08	53.36	53.65	53.94	54.23	54.52	54.81	55.10
40	55.40	55.69	55.99	56.29	56.59	56.89	57.19	57.50	57.80	58.11
41	58.42	58.73	59.04	59.35	59.66	59.98	60.30	60.62	60.94	61.26
42	61.58	61.90	62.23	62.56	62.89	63.22	63.55	63.88	64.22	64.55
43	64.89	65.23	65.57	65.91	66.26	66.60	66.95	67.30	67.64	68.00
44	68.35	68.70	69.06	69.42	69.78	70.14	70.50	70.87	71.23	71.60
45	71.97	72.34	72.71	73.09	73.46	73.84	74.22	74.60	74.98	75.36
46	75.75	76.14	76.53	76.92	77.31	77.70	78.10	78.50	78.90	79.30
47	79.70	80.11	80.51	80.92	81.33	81.74	82.16	82.57	82.99	83.41
48	83.83	84.25	84.63	85.10	85.53	85.96	86.39	86.83	87.26	87.70
49	88.14	88.58	89.02	89.47	89.92	90.36	90.82	91.27	91.72	92.18
	0.	ı.	2.	3.	4+	5.	6.	7.	8.	9.
50	92.6	97.3	102.2	107.3	112.7	118.2	124.0	130.0	136.3	142.8
60	149.6	156.6	164.0	171.6	179.5	187.8	196.3	205.2	214.4	224.0
70	233.9	244.2	254.9	266.0	277.4	289.3	301.6	314.4	327.6	341.2
80	355.4	370.0	385.2	400.8	417.0	433.7	451.0	468.8	487.3	506.3
90	526.0	546.3	567.2	588.8	611.1	634.1	657.8	682.2	707.4	733.3
100	760.0	787.5	815.9	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
140	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632	4751	4873	4997	5123	5252	5383	5518	5654	5794
170	5936	6080	6228	6378	6532	6688	6847	7009	7174	7342
180	7513	7688	7865	8046	8230	8417	8608	8802	8999	9200
190	9404	9612	9823	10040	10260	10480	10700	10940	11170	11410
200	11650	11890	12140	12400	1 2650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21330	21720	22120	22520	22930	23350	23770	24100	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	43840	44520	45200	45900	46600	47320
280	48040	48760	49500	50250	51000	51770	52540	53320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300	64300	65210	66130	67060	68000	68960	69920	70890	71870	72860
310	73870	74880	75910	76940	77990	79050	80120	81200	82290	83390
320	84500	85630	86760	87910	89070	90250	91430	92630	93840	95060
330	96290	97530	98790	100060	101350	102640	103950	105280	106600	108000
340	109300	110700	112100	113500	114900	116300	117800	119200	120700	122200
350 360 370	123700 139600 157000	125200 141200 158800	126800 142900 160700	128300 144600 162600	120000 146300 164400	131400	133000	134600	136300 153400	137900 155200

TABLE 186. - Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor.

Temp.	o°	1°	2°	3°	4°	5°	6°	7°	8°	9°			
-20°	0.894	0.816	0.743	0.677	0.615	0.559	0.508	0.461	0.418	0.378			
-10	2.158	1.983	1.820	1.671	1.531	1.403	1.284	1.174	1.073	0.980			
- 0	4.847	4.482	4.144	3.828	3.534	3.261	3.006	2.770	2.551	2.347			
+ 0°	4.847	5.192	5.559	5.947	6.36c	6.797	7.261	7.751	8.271	8.821			
+10	9.401	10.015	10.664	11.348	12.070	12.832	13.635	14.482	15.373	16.311			
+20	17.300	18.338	19.430	20.578	21.783	23.049	24.378	25.771	27.234	28.765			
+30	30.371	32.052	33.812	35.656	37.583	39.599	41.706	43.908	46.208	48.609			
	For higher temperatures, see Table 259.												

TABLE 187. - Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor.

Temp.	o°	1°	2°	3°	4°	5°	6°	7°	8°	9°
-20°	0.167	0.158	0.150	0.141	0.134	0.126	0.119	0.112	o.106	0.100
-10	0.286	0.272	0.258	0.244	0.232	0.220	0.208	0.197	o.187	0.176
- 0	0.479	0.455	0.433	0.411	0.391	0.371	0.353	0.335	o.318	0.302
+ 0°	0.479	0.503	0.529	0.556	0.584	0.613	0.644	0.676	0.709	0:744
+ 10	0.780	0.818	0.858	0.900	0.943	0.988	1.035	1.084	1.135	1.189
+ 20	1.244	1.301	1.362	1.425	1.490	1.558	1.629	1.703	1.779	1.859
+ 30	1.042	2.028	2.118	2.200	2.286	2.375	2.466	2.560	2.658	2.759
+40	2.863	2.970	3.082	3.196	3.315	3.436	3.563	3.693	3.828	3.965
+50	4.108	4.255	4.407	4.564	4.725	4.891	5.062	5.238	5.420	5.607
+60	5.800	5.999	6.203	6.413	6.630	6.852	7.082	7.317	7.560	7.809
+70	8.066	8.329	8.600	8.879	9.165	9.460	9.761	10.072	10.392	10.720
+80 +90	11.056 14.951 19.966 26.343	11.401 15.400 20.538 27.066	11.756 15.858 21.123 27.807	12.121 16.328 21.723 28.563	12.494 16.810 22.337 29.338	12.878 17.305 22.966 30.130	13.272 17.812 23.611 30.940	13.676 18.330 24.271 31.768	14.090 18.863 24.946 32.616	14.515 19.407 25.636 33.482

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

#### TABLE 188. - Pressure of Aqueous Vapor in the Atmosphere.

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature  $t_1$  below the air temperature t. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 185. The temperature corresponding to this vapor pressure taken from Table 185 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 189. Example:  $t = 35^{\circ}$ ,  $h = 30^{\circ}$ , barometer 74 cm. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure; the dew point is  $28.6^{\circ}$  C.

Abridged from Smithsonian Meteorological Tables, 1907.

$t-t_1$					Ва	rometri	c pressu	re in ce	entimete	ers.				
° C	74	72	70	68	66	64	62	60	58	56	54	52	50	48
1° 2 3 4	mm 0.50 0.98 1.47 1.97	mm 0.48 0.96 1.43 1.91	mm 0.47 0.93 1.39 1.86	mm 0.46 0.90 1.35 1.81	mm 0.44 0.88 1.32 1.75	mm 0.43 0.85 1.28 1.70	mm 0.42 0.82 1.24 1.65	mm 0.40 0.80 1.20 1.60	mm 0.39 0.77 1.15 1.54	mm 0.38 0.75 1.12 1.40	mm 0.36 0.72 1.08	mm 0.35 0.69 1.04 1.38	mm 0.34 0.67 I.00 I.33	mm 0.32 0.64 0.96 1.28
56 78 9	2.46	2.39	2.32	2.26	2.19	2.13	2.06	1.99	1.93	1.86	1.80	1.73	1.66	1.60
	2.95	2.87	2.79	2.71	2.63	2.55	2.47	2.39	2.32	2.24	2.16	2.08	2.00	1.92
	3-45	3.36	3.26	3.17	3.08	2.99	2.89	2.80	2.71	2.61	2.52	2.43	2.33	2.24
	3.95	3.84	3.73	3.63	3.53	3.42	3.31	3.20	3.10	2.99	2.88	2.78	2.67	2.56
	4.44	4.32	4.21	4.09	3.97	3.85	3.73	3.61	3.49	3.37	3.25	3.13	3.00	2.88
10	4.94	4.81	4.68	4.54	4.41	4.28	4.14	4.01	3.88	3.74	3.61	3.48	3.34	3.21
11	5.44	5.30	5.15	5.00	4.86	4.71	4.56	4.42	4.27	4.12	3.97	3.83	3.68	3.53
12	5.94	5.78	5.62	5.46	5.30	5.14	4.98	4.82	4.66	4.50	4.34	4.18	4.02	3.85
13	6.45	6.27	6.10	5.92	5.75	5.57	5.40	5.23	5.05	4.88	4.70	4.53	4.36	4.18
14	6.95	6.76	6.58	6.39	6.20	6.01	5.83	5.64	5.45	5.26	5.07	4.88	4.70	4.51
15	7.46	7.26	7.06	6.85	6.65	6.45	6.25	6.05	5.85	5.64	5.44	5.24	5.04	4.84
16	7.96	7.75	7.54	7·32	7.11	6.89	6.68	6.46	6.24	6.03	5.81	5.60	5.38	5.17
17	8.47	8.24	8.02	7·79	7.56	7·33	7.10	6.87	6.64	6.41	6.18	5.95	5.72	5.50

#### PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference  $t-t_1$  between the readings of dry and wet bulb thermometers and the temperature  $t_1$  of the wet bulb thermometer. The difference  $t-t_1$  is given by two-degree steps in the top line, and  $t_1$  by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

-													
	$t_1$	$t - t_1 = 0^{\circ}$	2°	4°	6°	8°	10°	I2°	14°	16°	18°	20°	Differ- ence for
	Correc for B p		.013	.026	.040	.053	.066	.079	.092	.106	.119	.132	0.1° in 1 — l ₁
	-10 -9 -8 -7 -6	1.96 2.14 2.34 2.55 2.78	0.97 1.15 1.35 1.56 1.78	0.16 0.35 0.66 0.79	    0.03	= = = = = = = = = = = = = = = = = = = =	Fro For	$-t_1 = 7$	= 10.0;			07	0.050 0.050 0.050 0.050 0.050
	- 4 - 3 - 2 - 1	3.29 3.58 3.89 4.22	2.29 2.58 2.89 3.22	1.29 1.58 1.89 2.22	0.29 0.58 0.88 1.21	0.21	=	=	=	=	=	=	0.050
	0 1 2 3 4	4.58 4.92 5.29 5.68 6.10	3.58 3.92 4.29 4.68 5.09	2.57 2.92 3.28 3.67 4.08	1.57 1.91 2.27 2.66 3.07	0.57 0.91 1.27 1.66 2.07	 0.26 0.65 1.06	   0.05	=	= =			0.050 0.030 0.030 0.030 0.050
	5 6 7 8 9	6.54 7.01 7.51 8.04 8.61	5.53 6.00 6.50 7.03 7.60	4.52 4.99 5.49 6.02 6.58	3.51 3.98 4.48 5.01 5.57	2.51 2.97 3.47 4.00 4.56	1.50 1.96 2.46 2.98 3.54	0.49 0.95 1.45 1.97 2.53	0.43 0.96 1.52	0.50	11111		0.030 0.030 0.030 0.050 0.050
	10 11 12 13 14	9.21 9.85 10.52 11.24 11.99	8.20 8.83 9.50 10.22 10.97	7.18 7.81 8.49 9.20 9.95	6.17 6.80 7.47 8.18 8.93	5.15 5.78 6.45 7.16 7.91	4.14 4.77 5.44 6.14 6.90	3.12 3.75 4.42 5.13 5.88	2.11 2.73 3.40 4.11 4.86	1.09 1.72 2.38 3.09 3.84	0.03 0.70 1.37 2.07 2.82	0.35 1.05 1.80	0.050 0.051 0.051 0.051
	15 16 17 18	12.79 13.64 14.54 15.49 16.49	11.77 12.62 13.52 14.46 15.46	10.75 11.60 12.49 13.44 14.44	9.73 10.58 11.47 12.42 13.41	8.71 9.96 10.45 11.39 12.39	7.69 8.53 9.42 10.37 11.36	6.67 7.51 8.40 9.34 10.34	5.65 6.49 7.38 8.32 9.31	4.63 5.47 6.36 7.30 8.29	3.61 4.45 5.33 6.27 7.26	2.59 3.43 4.31 5.25 6.24	0.051 0.051 0.051 0.051
	20 21 22 23 24	17.55 18.66 19.84 21.09 22.40	16.52 17.64 18.82 20.06 21.37	15.50 16.61 17.79 19.03 20.34	14.47 15.58 16.76 18.00 19.31	13.44 14.56 15.73 16.97 18.27	12.42 13.53 14.70 15.94 17.24	11.39 12.50 13.67 14.91 16.21	10.36 11.47 12.64 13.83 15.18	9.34 10:45 11.62 12.85 14.15	8.31 9.42 10.59 11.82 13.12	7.29 8.39 10.57 10.79 12.09	0.051 0.051 0.051 0.051
	25 26 27 28 29	23.78 25.24 26.77 28.38 30.08	22.75 24.20 25.73 27.34 29.04	21.71 23.17 24.70 26.31 28.00	20.68 22.14 23.66 25.27 26.97	19.65 21.10 22.63 24.24 25.93	18.62 20.07 21.60 23.20 24.89	17.59 19.04 20.56 22.17 23.86	16.56 18.00 19.53 21.13 22.82	15.52 16.97 18.49 20.10 21.78	14.49 15.94 17.45 19.05 20.75	13.46 14.90 16.42 13.02 19.71	0.052 0.052 0.052 0.052 0.052
	30 31 32 33 34	31.86 33.74 35.70 37.78 39.95	30.82 32.70 34.66 36.73 38.90	29.78 31.66 33.62 35.69 37.86	28.75 30.62 32.58 34.65 36.82	27.71 29.58 31.54 33.61 35.78	26.67 28.54 30.50 32.57 34.73	25.63 27.50 29.46 31.53 33.69	24.60 26.46 28.42 30.49 32.65	23.56 25.42 27.38 29.44 31.61	22.52 24.38 26.34 28.40 30.57	21.48 23.34 25.30 27.36 29.52	0.052 0.052 0.052 0.052 0.052
	35 36 37 38 39	42.23 44.62 47.13 49.76 52.51	41.18 43.57 46.08 48.71 51.46	40.14 42.53 45.04 47.66 50.41	39.10 41.48 43.99 46.61 49.37	38.05 40.44 42.94 45.57 48.32	37.01 39.40 41.90 44.52 47.27	35.97 38.35 40.85 43.47 46.22	34.92 37.31 39.81 42.43 45.17	33.88 36.26 38.76 41.38 44.12	32.83 35.22 37.71 49.33 43.08	31.79 34.17 36.67 39.29 42.03	0.052 0.052 0.052 0.052 0.052
	40	55.40	54.35	53.30	52.25	51.20	50.15	49.10	48.05	47,00	45.95	44.00	0.052

#### RELATIVE HUMIDITY.

Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 188 or 189. The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3d Revised Edition, 1907.

Vapor	1	_					Air	Ten	npera	tures,	dry b	ulb,	o Cei	ntigra	ıde.					_	
Pressure.	-	)°	-1°	-2°	-30	-4	_ م	.50	<b>-6</b> °	_7°	—8°	8	° _	100 -	-11°	-12°	-13	ю <b>—1</b>	<b>4</b> ° –	15°	-20°
0.25 0 50 0.75	I		6 12 18	6 13 19	7 14 21	8 15 23	I		9 18 27	10 20 30	11 21 32	12 23 35	1 ( 2 3		14 28 12	15 30 46	17 34 50	18 37 55	4	0	32 64 96
1.00 1.25 1.50 1.75	333	7	24 30 36 42	26 32 39 45	28 35 42 49	30 38 46 53	4 5	2	36 45 54 63	40 49 59 69	42 54 64 75	47 58 70 82	51 62 76 89	1 7	56 70 84 98	61 76 92	67 84 100	74 92		0	
2.00 2.25 2.50 2.75 3.00 3.25 3.50	44 49 51 66 66 71 77	5 6	48 53 59 65 71 77	52 58 65 71 78 84 90	56 63 70 77 84 91 98	61 69 76 84 92 99	9	5	72 81 90 100 - -	79 89 99 - -	86 96 - - -	93			3. 3. 4. 4.		77 82 88 93 99	83 89 95	9		-8° 98 - - -
Vapor	1						Air	Ten	npera	tures,	dry b	ulb,	Cei	ntigra	ıde.						
Pressure.	0°	1°	2°	3°	40	60	60	7°	80	9°	10°	11°	120	13°	140	<b>15</b> °	16°	170	16°	190	20°
0.5 1.0 1.5 2.0 2.5	11 22 33 44 55	10 20 31 41 51	9 19 28 38 47	9 18 27 35 44	8 16 25 33 41	8 15 23 31 38	7 14 22 29 36	7 13 20 27 33	6 13 19 25 31	6 12 18 23 29	5 11 16 22 27	5 10 15 20 26	5 10 14 19 24	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 7 11 15 18	3 7 10 14 17	3 7 10 13 16	3 6 9 12	3 6 9 12 14
3.0 3.5 4.0 4.5 5.0	66 77 88 99	61 71 81 92	57 66 76 85 95	53 62 71 80 88	49 58 66 74 83	46 54 61 69 77	43 50 57 65 72	40 47 54 60 67	38 44 50 56 63	35 41 47 53 58	33 38 44 49 55	31 36 41 46 51	29 34 38 43 48	27 31 36 40 45	25 29 34 38 42	24 28 32 36 39	22 26 30 33 37	21 24 28 31 35	20 23 26 29 33	18 21 25 28 31	17 20 23 26 29
5.5 6.0 6.5 7.0 7.5	11111			97 - - -	91 99 - -	85 92 100 -	79 86 93	74 80 87 94	69 75 81 85 94	64 70 76 82 88	60 66 71 77 82	56 61 67 72 77	53 58 62 67 72	49 54 58 63 67	46 51 55 59 63	43 47 51 55 59	41 44 48 52 55	38 42 45 49 52	36 39 42 46 49	34 37 40 43 46	3 ² 34 37 40 43
8.0 8.5 9.0 9.5 10.0	1111		-		-				100	94 99 - -	88 93 98 - -	82 87 92 97	77 82 86 91 96	72 76 81 85 90	67 72 76 80 84	63 67 71 75 79	59 63 67 70 74	56 59 62 66 69	5 ² 55 59 6 ₂ 6 ₅	49 52 55 58 61	46 49 52 55 57
11.0 12.0 13.0 14.0 15.0	11111		-								-			94	93	87 94 - -	81 89 96 -	76 83 90 97	72 78 85 91 97	67 74 80 86 92	63 69 75 80 86
16.0 17.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	98 -	92 98

# TABLE 190 (continued). RELATIVE HUMIDITY.

Vapor							Air	Ten	npera	tures,	, dry b	ulb,	o Cer	ıtigra	de.						
Pressure.	20°	21°	220	230	24°	25°	26°	27°	28°	29°	<b>30</b> °	310	32°	33°	340	35°	36°	37°	382	39°	40°
1 2 3 4	6 12 17 23	5 11 16 22	5 10 15 20	5 10 14 19	5 9 14 18	4 8 13 17	4 8 12 16	4 8 11 15	4 7 11 14	3 7 10 13	3 6 10 13	3 6 9 12	3 6 9	3 5 8 11	3 5 8 10	3 5 7	2 5 7 9	2 4 6 9	2 4 6 8	2 4 6 8	2 4 5 7
5 6 7 8 9	29 34 40 46 52	27 32 38 43 49	25 31 36 41 46	24 29 34 38 43	23 27 32 36 41	21 26 30 34 38	20 24 28 32 36	19 23 26 30 34	18 21 25 29 32	17 20 24 27 30	16 19 22 25 29	15 18 21 24 27	14 17 20 23 25	13 16 19 21 24	13 15 18 20 23	12 14 17 19 22	11 14 16 18	11 13 15 17	10 12 14 16 18	10 12 13 15	9 11 13 15 16
10 11 12 13 14	57 63 69 75 80	54 60 65 70 76	51 56 61 66 71	48 53 58 62 67	45 50 54 59 63	43 47 51 55 60	40 44 48 52 56	38 42 45 49 53	36 39 43 46 50	34 37 40 44 47	3 ² 35 38 41 44	30 33 36 39 42	28 31 34 37 40	27 29 32 35 37	25 28 30 33 35	24 26 29 31 33	23 25 27 29 32	21 24 26 28 30	20 22 24 26 28	19 21 23 25 27	18 20 22 24 26
15 16 17 18 19	86 92 98 -	81 87 92 97	76 82 87 92 97	72 77 81 86 91	68 72 77 81 86	64 68 72 77 81	60 64 68 72 76	57 60 64 68 72	53 57 61 64 68	50 54 57 60 64	48 51 54 57 60	45 48 51 54 57	42 45 48 51 54	40 43 45 48 51	38 41 43 46 48	36 38 41 43 45	34 36 38 41 43	32 34 36 39 41	30 32 34 37 39	29 31 33 35 36	27 29 31 33 35
20 21 22 23 24			-	96	90 95 1∞ -	85 89 94 98	80 84 88 92 96	76 79 83 87 91	71 75 78 82 85	67 71 74 77 81	63 67 70 73 76	60 63 66 69 72	57 59 62 65 68	53 56 59 62 64	51 53 56 58 61	48 50 53 55 57	45 48 50 52 54	43 45 47 49 51	41 43 45 47 49	38 40 42 44 46	36 38 40 42 44
25 26 27 28 29		1 1 1 1					100	94 98 - -	89 93 96 100	84 87 91 94 97	79 83 86 89 92	75 78 81 84 87	71 74 76 79 82	67 70 72 75 78	63 66 68 71 73	60 62 65 67 69	56 59 61 63 65	54 56 58 60 62	51 53 55 57 59	48 50 52 54 56	46 47 49 51 53
30 31 32 33 34							-				95 98 - - -	90 93 96 99	85 88 91 93 96	80 83 86 88 91	76 78 81 84 86	72 74 77 79 81	68 70 72 75 77	64 66 69 71 73	61 63 65 67 69	58 60 62 63 65	55 56 58 60 62
35 36 37 38 39	-	1 1 1 1 7								1 1 1 1 1	-		99	94 96 99 -	89 91 94 96 99	84 86 89 91 93	79 81 84 86 88	75 77 79 81 83	71 73 75 77 79	69 71	64 66 67 69 71
40 41 42 43 44				11111								1111			11111	96 98 100 -	90 93 95 97 99	86 88 90 92 94	81 83 85 87 89	77 79 81 83 84	73 75 77 78 80
45 46 47 48 49		-							71111			1111	11111		11111	11.11	11111	96 99 - -	91 93 95 97 99	88 90 92	82 84 86 87 89
50 51 52 53 54	11111		-		7 1 1 1 1		7771	~		11111			1111				11111	11111		98 100	91 93 95 97 98
55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100

# TABLES 190 (concluded), 191. TABLE 190 (concluded).—Relative Humidity.

(Data from 20° to 60° C. based upon Table 185).

Vapor Pressure.							Air	Ten	npera	tures	dry	bulb,	° Ce	ntigr	ade.						
mm.	40°	410	<b>42</b> °	<b>43</b> °	440	45°	46°	47°	480	49°	50°	51°	<b>52</b> °	53°	5 <b>4</b> °	55°	<b>56</b> °	570	58°	59°	60°
5 10 15 20 25	9 18 27 36 45	9 17 26 34 43	8 16 24 33 41	8 15 23 31 39	7 15 22 29 37	7 14 21 28 35	7 13 20 26 33	6 13 19 25 31	6 12 18 24 30	6 11 17 23 28	5 11 16 22 27	5 10 15 21 26	5 10 15 20 24	5 9 14 19 23	4 9 13 18 22	4 8 13 17 21	4 8 12 16 20	4 8 12 15	4 7 11 15 18	4 7 10 14 18	3 7 10 13 17
30 35 40 45 50	54 63 72 81 90	51 60 68 77 86	49 57 65 73 81	46 54 62 69 77	44 51 59 66 73	42 49 56 63 70	40 46 53 59 66	38 44 50 57 63	36 42 48 54 60	34 40 45 51 57	32 38 43 49 54	31 36 41 46 51	29 34 39 44 49	28 33 37 42 47	27 31 36 40 44	25 30 34 38 42	24 28 32 36 40	23 27 31 35 38	22 26 29 33 37	21 25 28 32 35	20 23 27 30 33
55 60 65 70 75	99 -	94	89 98 - -	85 93 100 -	81 88 95 -	76 83 90 97	73 79 86 92 99	69 75 82 88 94	66 72 78 84 90	62 68 74 80 85	59 65 70 76 81	57 62 67 72 77	54 60 64 68 74	51 56 61 65 70	49 53 58 62 67	46 51 55 59 64	44 48 52 56 60	42 46 50 54 58	40 44 48 51 55	39 42 46 49 53	37 40 43 47 50
80 85 90 95 100			- - nm. 25	- 57° 96	- 58° 92	- 69, 88	- 60° S4	100	96 - - -	91 97 - -	86 92 97 -	82 87 93 98	78 84 88 94 98	75 79 84 89 93	71 75 80 84 89	6S 72 76 80 85	64 69 73 77 81	62 65 69 73 77	59 62 66 70 73	56 60 63 67 70	54 57 60 64 67
105 110 115 120 125	-	1	30 35 40 45 50	100 - - -	95 99 - - -	91 95 98 - -	87 90 94 97 100	- - - -	-					98 - - -	93 98 - - -	89 93 97 - -	85 89 93 97 -	81 85 88 92 96	77 81 84 88 92	74 77 81 84 88	70 74 77 80 84

#### TABLE 191. - Relative Humidity.

This table gives the relative humidity direct from the difference between the reading of the dry ( $t^{\circ}$  C.) and the wet ( $t_{1}^{\circ}$  C.) thermometer. It is computed for a barometer reading of 76 cm. The wet thermometer should be ventilated about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

to	1					Depre	ssion	of wet	-bulb	thermo	meter,	t ⁰ -t ₁ ⁰					
	0.20	0.40	0.6°	0.80	1.00	1.2°	1.40	1.6°	1.89	2.00	2.50	3.0°	3.5°	4.00	4.50	5.00	5.5°
-15 -12 -9 -6 -3 -0 +3	90 92 94 95 96 96 97	91 85 88 89 91 92 94	72 77 81 85 87 89	62 69 75 80 82 85 87	53 62 70 74 78 81 84	44 54 62 69 74 78 81	35 47 56 64 69 74 78	25 39 50 59 66 71 75	16 32 44 54 61 67 72	7 25 39 49 57 64 69	7 23 36 46 55 62	9 25 36 46 54	- 13 26 38 46	- - 2 17 29 40	- - - 7 21 32	- - - - 13 25	- - - - 6 18
	0.50	1.0°	1.50	2.00	2.5°	3.00	3.5°	4.0°	4.5°	5.0°	6.00	7.00	8.00	9.00	10.0	11.0	12.0
+3 +6 +9 +12	92 94 94 94	84 87 88 89	76 80 82 84	69 73 76 78	62 66 70 73	54 60 65 68	46 54 59 63	40 47 53 58	32 41 48 53	25 35 42 48	12 23 32 38	11 22 30	- I 2 2 I	- 3 12	- - 4		-
+15 +18 +21 +24	95 95 96 96	90 90 91 92	85 86 87 88	80 82 83 85	76 78 79 81	7 t 73 75 77	66 69 71 74	62 65 67 70	58 61 64 66	53 57 60 63	44 49 53 56	36 42 46 49	28 35 39 43	20 27 32 37	13 20 26 31	4 13 19 26	6 13 21
+27 +30 +33 +36 +39	96 96 96 97 97	93 93 93 93 94	90 90 90 90	86 86 86 87 88	82 82 83 84 85	79 79 80 81 82	76 76 <b>77</b> 78 79	72 73 74 75 76	68 70 71 72 74	65 67 68 70 71	59 61 63 64 66	53 55 57 57 61	47 50 52 54 56	41 44 47 50 52	36 39 42 45 47	35 37 41 43	26 30 33 36 39

# CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD.

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to  $n\beta(T-t)$ , where n is the number of degrees in the exposed stem,  $\beta$  the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100° C, the value of  $\beta$  is for Jena 16¹¹¹ or Greiner and Friedrich resistance glass, 0.000159, for Jena 59¹¹¹, 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 192 is taken from the Smithsonian Meteorological Tables, Tables 193–195 from Rimbach, Z. f. Instrumentenkunde, 10, p. 153, 1890, and apply to thermometers of Jena or resistance glass.

TABLE 192. — Stem Correction for Centigrade Thermometers.

	_			
Values	of o.	200155	n(T -	t).

				(T-	-t).			
n	100	20°	30°	40°	50°	60°	.70°	80°
10° C 20 30 40 50	0.02 0.03 0.05 0.06 0.08	0.03 0.06 0.09 0.12 0.16	0.05 0.09 0.14 0.19 0.23	0.06 0.12 0.19 0.25 0.31	0.08 0.16 0.23 0.31 0.39	0.09 0.19 0.28 0.37 0.46	0.11 0.22 0.33 0.43 0.54	0.12 0.25 0.37 0.50 0.62
60 70 80 90	0.09 0.11 0.12 0.14 0.16	0.19 0.22 0.25 0.28 0.31	0.28 0.33 0.37 0.42 0.46	0.37 0.43 0.50 0.56 0.62	0.46 0.54 0.62 0.70 0.78	0.56 0.65 0.74 0.84 0.93	0.65 0.76 0.87 0.98 1.08	0.74 0.87 0.99 1.12 1.24

TABLE 193. - Stem Correction for Thermometer of Jena Glass (0° to 360° C).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t' = that of the surrounding air 1 dm. away; n = the length of the exposed thread.

			Corre	ction to be	added to	the readin	ıg <i>t</i> .			
					t-	· t'				
n	70°	80°	90°	100°	120°	140°	160°	180°	200°	220 °
10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 220	0.01 0.08 0.25 0.30 0.41 0.52 0.63 0.75 0.87 0.98	0.01 0.12 0.28 0.35 0.46 0.60 0.74 0.87 0.99 1.12	0.03 0.14 0.32 0.41 0.52 0.68 0.85 1.01 1.13 1.29	0.04 0.19 0.36 0.48 0.59 0.79 0.98 1.15 1.28 1.47 1.88	0.07 0.25 0.42 0.60 0.79 0.99 1.20 1.38 1.62 2.28 2.75	0.10 0.28 0.48 0.67 0.89 1.11 1.32 1.53 1.82 2.03 2.49 2.97 3.35	0.13 0.32 0.54 0.77 0.98 1.23 1.45 1.70 2.68 3.22 3.80 4.37	0.17 0.40 0.66 0.92 1.16 1.70 1.98 2.25 3.13 3.75 4.35 4.99 5.68	0.19 0.49 0.78 1.08 1.38 1.70 1.99 2.26 2.60 2.92 3.59 4.24 4.92 5.63 6.34 7.05	0.21 0.54 0.87 1.20 1.53 1.87 2.21 2.54 2.89 3.24 3.96 4.69 5.45 6.22 6.98 7.82

# CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 194, - Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length 1 to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; u = the length of the exposed thread

		Co	ORRECTION	N TO BE	ADDED TO	THERM	OMETER	Reading	.*		
					t —	- t'					
n	70°	80°	90°	100°	120°	1 <b>40</b> °	160°	180°	200°	220°	n
10° 20 30 40	0.02 0.13 0.24 0.35	0.03 0.15 0.28 0.41	0.05 0.18 0.33 0.48	0.07 0.22 0.39 0.56	0.11 0.29 0.48 0.68	0.17 0.38 0.59 0.82	0.21 0.46 0.70 0.94	0.27 0.53 0.78 1.04	0.33 0.61 0.88 1.16	0.38 0.67 0.97 1.28	10° 20 30 40
<b>50</b> 60 70 80	0.47 0.57 0.69 0.80	0.53 0.66 0.79 0.91	0.62 0.77 0.92 1.05	0.72 0.89 1.06 1.21	0.88 1.09 1.30 1.52	1.03 1.25 1.47 1.71	1.17 1.42 1.67 1.94	1.31 1.58 1.86 2.15	1.44 1.74 2.04 2.33	1.59 1.90 2.23 2.55	50 60 70 80
90 100 110 120	0.91 1.02 - -	1.04 1.18 - -	1.19	1.38 1.56 1.78 1.98	1.73 1.97 2.19 2.43	1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.42 2.70 2.98 3 26	2.64 2.94 3.26 3.58	2.89 3.23 3.57 3.92	90 100 110 120
130 140 150 160	- - -	-	- - -		2 68 2.92 - -	2.94 3.22 -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160
170 180 190 200	-	-	-	-		-	4.27 4.54 - -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200
210	-	-	-	-	-	-	-	-	6.68 7.04	7·35 7·7 <b>5</b>	210 220

^{*} See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 195. — Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° C).

Divided into tenth degrees; degree length about 4 mm.

			Со	RRECTIO	N TO BE	ADDED 1	о тнв Б	READING	t.			
						t-	·ť					
n	30°	35°	40°	<b>45</b> °	50°	55°	60°	65°	<b>70</b> °	75°	80°	85°
10 20 30 40 50 60 70 80 90 100	0.04 0.12 0.21 0.28 0.36 0.45	0.04 0.12 0.22 0.29 0.38 0.48	0.05 0.13 0.23 0.31 0.40 0.51	0.05 0.14 0.24 0.33 0.42 0.53	0.05 0.15 0.25 0.35 0.44 0.55	0.06 0.16 0.25 0.37 0.46 0.57 0.66	0.06 0.17 0.27 0.39 0.48 0.60 0.69 0.76	0.07 0.18 0.29 0.41 0.50 0.63 0.71 0.81	0.08 0.19 0.31 0.43 0.53 0.66 0.75 0.87 0.99	0.09 0.20 0.33 0.45 0.57 0.69 0.81 0.93 1.06 1.18	0.10 0.22 0.35 0.48 0.61 0.73 0.87 1.00 1.13	0.10 0.23 0.37 0.51 0.65 0.78 0.92 1.06 1.20

#### THERMOMETERS.

#### TABLE 196, - Gas and Mercury Thermometers.

If  $t_{\rm B}$ ,  $t_{\rm N}$ ,  $t_{\rm co2}$ ,  $t_{\rm 16}$ ,  $t_{\rm 59}$ ,  $t_{\rm r}$ , are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16^{III}, 59^{III}, and "verre dur" (Tonnelot), respectively, then

Verification (100 metot), respectively, then
$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.55541 + 0.0048240.t - 0.000024807 t^2 \right] *$$

$$t_{\rm CO2} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{\rm H} = \frac{(100 - t)t}{100^2} \left[ -0.67039 + 0.0047351.t - 0.000011577.t^2 \right] t$$

$$t_{\rm H} - t_{\rm 59} = \frac{(100 - t)t}{100^2} \left[ -0.31089 + 0.0047351.t - 0.000011577.t^2 \right] t$$

TABLE 197.  $t_H - t_{16}$  (Hydrogen - 16^{III}).

	00	10	20	3°	4°	5°	6°	7°	80	9°
o°	.000°	—.007°	013°	—.019°	—.025°	— 031°	—.036°	042°	—.047°	051°
10	056	061	<del>0</del> 65	069	073	- 077	<b></b> .080	084	087	090
20	<b>—</b> .093	096	098	101	103	105	107	109	110	112
30	113	114	115	116	117	118	119	119	119	120
40	120	—.I 2O	120	120	119	119	118	—.11S	117	116
50	<b>—</b> .116	115	114	113	111	110	109	107	106	104
60	103	101	099	<b>—.097</b>	<b>—.0</b> 96	094	092	090	087	085
70	083	—.oS1	—.o ₇ 8	076	074	—.07 I	069	066	064	061
80	<b></b> .058	<del></del> .056	<b>—</b> .053	<b>—</b> .050	048	045	042	<b>—</b> .039	036	<b>—</b> .033
90	030	027	024	021	018	<b>—.015</b>	012	009	006	003
100	.000									
<u> </u>										

TABLE 198.  $t_H - t_{50}$  (Hydrogen - 59¹¹¹).

	oo	10	20	30	40	5°	60	70	80	90
0° 10 20 30 40 50 60 70 80 90	.000°024035038026016008001 +.002 .000	co3°o25o36o37o33o25o15o07o01 +.oo2	006°027036037032024015006 .000 +.002	009°028037037032023014005 .000 +.002	011°030037037031022013005 +.001 +.002	014°0310370360300210012004 +.001 +.002	016°032038036029020011003 +.001	033	020°034038035028018009002 +.002 +.001	022°035038034027017008001 +.002

TABLE 199. (Hydrogen - 16111), (Hydrogen - 59111).

	-5°	-10°	-15°	<del>-20</del> °	-25°	-300	-35°
t _H — t ₁₆	+0.04°	+0.08°	+0.13°	+0.10°	+0.25°	+0.32°	+0.40°
t _H — t ₅₉	+0.02°	+0.04°	+0.07°		+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

^{*} Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888. † Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1897.

#### AIR AND MERCURY THERMOMETERS.

TABLE 200.  $t_{AIR} - t_{16}$ . (Air - 1611.)

°C.	00	ı°	20	3°	40	5°	60	7°	80	90
0 10 20 30 40 50 60 70 80 90	.000 049 083 103 110 107 096 078 054 028	006 053 086 104 110 107 095 076 052 025	012 057 089 105 111 106 093 074 049 023	017 061 091 106 111 105 092 072 047 020	022 065 093 107 110 104 090 070 044 017	027 068 095 108 110 103 088 067 041	032 071 097 109 110 102 086 065 039 011	037 074 099 110 101 084 062 036 009	04I 077 10I 110 109 100 082 060 034 006	045 080 102 110 108 098 080 057 031
100 110 120 130 140 150 160 170 180	.000 +.028 +.053 +.074 +.090 +.098 +.097 +.084 +.059 +.019	+.003 +.030 +.055 +.076 +.091 +.098 +.096 +.082 +.055 +.014	+.006 +.033 +.057 +.078 +.092 +.095 +.080 +.052 +.052	+.008 +.035 +.060 +.080 +.093 +.099 +.094 +.078 +.048	+.011 +.038 +.062 +.081 +.094 +.099 +.093 +.076 +.045	+.014 +.041 +.064 +.083 +.095 +.099 +.092 +.073 +.041 007	+.017 +.043 +.066 +.084 +.096 +.098 +.090 +.071 +.037 013	+.019 +.046 +.068 +.086 +.096 +.098 +.089 +.068 +.033 019	+.022 +.048 +.070 +.087 +.097 +.098 +.088 +.065 +.028	+.025 +.050 +.072 +.059 +.097 +.097 +.086 +.062 +.023 031
200 210 220 230 240 250 260 270 280 290 300	038113208325466632825 -1.048 -1.301 -1.588 -1.908	045 122 219 338 481 650 846 -1.072 -1.328 -1.618	051 130 230 351 497 668 867 -1.096 -1.356 -1.649	058139241365513687889 -1.121 -1.384 -1.680	066148252378529706911 -1.146 -1.412 -1.711	073 158 264 392 546 725 933 1.171 1.440 1.743	080 168 275 407 562 745 955 1.196 1.469 1.776	088177287421579765978 -1.222 -1.498 -1.808	096187300436597785 -1.001 -1.248 -1.528 -1.841	105 198 312 450 614 805 -1.025 -1.274 -1.558 -1.874

Note: See Circular 8. Bureau of Standards relative to use of thermometers and the various precautions and corrections.

TABLE 201. taik-top. (Air-5911.)

°C.	00	i _o	20	3°	·4°	5°	60	<b>7</b> °	80	90
100 110 120 130 140 150 160 170 180 190 200	.000 .000 002 004 008 013 019 028 039 052 067	.000 .000 002 004 008 013 020 029 040	.000 .000 —.002 —.005 —.009 —.014 —.021 —.030 —.041 —.055	.000001002005009015021031043056	.000 001 002 006 010 016 022 032 044 057	.000 001 003 006 010 016 023 033 045 059	.000001003006011016024034046060	.000 —.001 —.003 —.007 —.011 —.017 —.025 —.035 —.048 —.062	.000002004007012018026037049064	.000 002 004 008 012 019 027 038 051 066

# GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 202. - tH-tm (Hydrogen-Mercury).

Temperature, C.	Thuringer Glass.*	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass.*	Choisy-le- Roi.*	122 ^{III} .*	Nitrogen Thermometer. T _H —T _N .†	CO ₂ Thermometer. T _H —T _{CU₂} .†
0	0	٥	0	0	0	0	0	0
0	.000	.000	.000	.000	.000	.000	.000	.000
10	075	052	066	008	007	005	<b>—</b> .006	025
20	<b>—</b> .125	<b></b> .085	108	001	004	<b>—</b> .006	-010	043
30	156	102	131	+.017	+ 004	002	—.oii	054
40	<b>—</b> .168	107	140	十.037	+.014	100.+	110.—	059
50	<del></del> .166	103	135	+.057	+.025	+.004	009	059
60	—.1 50	090	119	十.073	+.033	+.008	005	053
70	124	072	095	+.079	+.037	+.009	001	044
80	088	050	<b>—.</b> 068	十.070	+.032	十.007	+.002	o3I
90	047	<b>—</b> .026	034	+.046	+.022	+.006	+.003	016
100	.000	.000	.000	.000	.000	.000	.000	.000
L								

^{*} Schlösser, Zt. Instrkde. 21, 1901.

#### TABLE 203. - Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of  $50^{\rm HI}$  glass.

Air.	59 ^{III} .	Air.	. 59111.
٥	0	٥	0
0	0.	375	385.4
100	100.	37.5 400	412.3
200	200.4	425	440.7
300	304.1	450	469.1
300 325 350	304.1 330.9 358.1	450 475 500	498.0
350	358.1	500	527.8

Mahlke, Wied Ann. 1894.

#### TABLE 204. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
0 -10 -20 -30 -40 -50 -60 -70 -100 -150 -200	0.00 -8.54 -16.90 -25.10 -33.15 -41.08 -48.90 -56.63	0.00 -9.31 -18.45 -27.44 -36.30 -45.05 -53.71 -62.31	0.00 -9.44 -18.71 -27.84 -36.84 -45.74 -54.55 -63.31		0.00 -9.03 -17.87 -26.55 -35.04 -43.36 -51.50 -59.46 -82.28 -116.87 -146.84

^{*} Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

#### TABLE 205 .- Platinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by pt = 100 {  $(R-R_0)/(R_{100}-R_0)$  }, where R is the observed resistance at t° C.,  $R_0$  that at 0°,  $R_{100}$  at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by  $t-pt=\delta$  { t/100-1 } t/100 where  $\delta$  is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between  $-23^\circ$  and  $450^\circ$  when  $\delta$  has been determined by the boiling point of sulphur (445°.)

See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909. Also Bureau reprints 124, 143 and 149.

TABLE 206.—Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

Mean =  $273.1^{\circ}$  C. (ice point).

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

#### Scale Corrections for Gas Thermometers.

Temp.	Cons	tant pressure = 1	00 cm.	Constant vol	., p ₀ = 100 cm,	to = 0°C
Co.	He	Н	N .	He	Н	N
- 240° - 200 - 100 - 50 + 25 + 50 + 75 + 150 + 200 + 450 + 1500	+0.13 + .04 + .012 003 003 007 + .01 + .1 + 0.3	+1.0 + .26 + .03 + .02 003 003 003 + .01 + .02 +0.04		+0.02 + .01 .000 .000 .000 .000 + .000 .000	+0.18 + .06 + .010 + .004 .000 .000 .000 + .001 + .002 +0.01	

See also Appendix, p. 438.

TABLE 207 .- Standard Points for the Calibration of Thermometers.

Substance.	Point.	Atmos-	Crucible.	Temper	atures.
Substance.	Foint.	phere.	Crucible.	Nitrogen Scale.	Thermodynamic.
Water Naphthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li ₂ SiO ₈ Diopside, pure Nickel  Cobalt Palladium Anorthite, pure Platinum	boiling, 760 mm.  """"  """"  boiling, 760 mm.  melting or solidify.  boiling, 760 mm.  melting or solidify.  solidification  melting or solidify.  """  melting or solidify.  """  melting  melting  melting  melting  melting  """  """  melting  """  """  """  """  """  """  """	" CO ₂ " " " " air " "	graphite  graphite  graphite  ""  ""  platinum  magnesia and Mg. aluminate magnesia  platinum	°C. 100.00 218.0 305.85 ± 0.1 320.8 ± 0.2 419.3 ± 0.3 444.45 = 0.1 629.8 ± 0.5 658.5 ± 0.6 960.0 ± 0.7 1062.4 ± 0.8 1082.6 ± 0.8 1201.0 ± 1.0 1391.2 ± 1.5 1452.3 ± 2.0 1489.8 ± 2.0 1549.2 ± 2.0 1752. ± 5.†	°C. 100.00 218.0 305.9 320.9 419.4 444.55 630.0 658.7

* Thermoelectric extrapolation. † Optical extrapolation.

(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils — 252.65; O, boils — 182.7°; CO₃, sublimes — 78.5°; Hg. freezes — 38.87°; Alumina melts 2000°; Tungsten melts 3400°. Quartz, a to \$\beta\$ change, 573.3° \pm 1.

TABLE 208. - Standard Calibration Curve for Pt. - Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by cali-bration of the particular element at some of the following fixed points:

Water Naphthalene Tin Benzophenone Cadmium Zinc Sulphur	boiling-pt. melting-pt. boiling-pt. melting-pt. melting-pt.	100.0 217.95 231.9 305.9 320.9 419.4	643mv. 1585 1706 2365 2503 3430	Silver Gold Copper Li ₂ SiO ₃ Diopside Nickel	melting-pt. " " " " " " " " " "	960.2 1062.6 1082.8 1201. 1391.5 1452.6	9111mv. 10296 10534 11941 14230 14973
Antimony Aluminum	melting-pt.	444.5 <b>5</b> 630.0 658. <b>7</b>	3672 5530 5827	Palladium Platinum	ee ee	1549.5 1755.	16144 18608

E micro- volts.	0	1000.	2000.	3000.	4000. Cemperat	5000		7000.	8000.	9000.	E micro- volts.	
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3 147.1	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 265.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7 374.3	374-3 384-9 395-4 405-9 416.3 426.7 437-1 447-4 457-7 467-9 478.1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 548.6 558.4 578.3	578. 588. 597. 607. 617. 627. 636. 646. 656. 665.	1 684.8 9 694.3 7 703.8 4 713.3 1 722.7 8 732.1 5 741.5 1 750.9 7 760.2	778.8 788.0 797.2 806.4 815.0 824.7 833.8 842.9 852.0	861.1 870.1 879.1 888.1 897.1 906.1 915.0 923.9 932.8 941.6 950.4	950.4 959.2 968.0 976.7 985.4 994.1 1002.8 1011.5 1020.1 1028.7 1037.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	
E micro- volts.	10000.	11000.	12000	1	13000. 14000. 15000. TEMPERATURES, °C.							
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	1037.3 1045.9 1054.4 1062.9 1071.4 1070.9 1088.4 1096.9 1105.4 1113.8 1122.2	1122.2 1130.6 1139.0 1147.4 1155.8 1164.2 1172.5 1180.9 1189.2 1197.6	1205. 1214- 1222. 1230. 1239. 1247- 1255- 1264- 1272- 1281. 1289.	9 128 2 129 6 130 9 131 3 132 6 133 9 133 3 134 6 135 0 136	9.3   13 7.7   13 6.0   13 2.6   14 0.9   14 0.9   14 9.2   14 15.8   14	372.4 380.7 389.0 397.3 405.6 413.8 422.0 430.2 438.4 446.6 454.8	1454.8 1463.0 1471.2 1479.4 1487.7 1496.0 1504.3 1512.6 1520.9 1529.2 1537.5	1537.5 1545.8 1554.1 1562.4 1570.8 1579.1 1587.5 1595.8 1604.2 1612.5 1620.9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1696.0 1704.3	1704.3 1712.6 1721.0 1729.3 1737.7 1746.0 1754.3	volts.	

#### TABLE 209. - Standard Calibration Curve for Copper - Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

following fixed points:
Water, boiling-point, 100°, 4276 microvolts; Naphthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, boiling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

		-									
E.	0	1000. 2	000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.	E
micro- volts.					Темре	CRATURES,	°C.				micro- volts.
0. 100. 200. 300. 400. 500. 600.	0.00 2.60 5.17 7.73 10.28 12.81 15.33 17.83	27.72 5 30.15 5 32.57 5 34.98 5 37.38 6	3.85 3.85 36.16 38.46	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56	94.07 96.23 98.38 100.52 102.66 104.79 106.91 100.02	115.31 117.40 119.48 121.56 123.63 125.69 127.75	135.91 137.94 139.96 141.98 143.99 146.00 148.00	155.95 157.92 159.89 161.86 163.82 165.78 167.73	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78	0. 100. 200. 300. 400. 500. 600.
800. 900. 1000.	20.32 22.80 25.27	44.51 6	57.58 59.83 72.08	89.74 91.91 94.07	111.12 113.22 115.31	131.84 133.88 135.91	151.99 153.97 155.95	171.62 173.56 175.50	190.83 192.73 194.62	209.64 211.50 213.36	800. 900. 1000.
E	10000.	11000.	1200	0.   1	3000.	14000.	15000.	16000.	17000.	18000.	E
micro- volts.					Темри	ERATURES,	°C.				micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000.	213.36 215.21 217.06 218.91 220.75 222.59 224.43 226.26 228.09 229.92 231.74	231.74 .233.56 235.38 237.20 239.01 240.82 242.63 244.43 246.23 248.03 249.82	249. 251. 253. 255. 256. 258. 260. 262. 264. 265.	61 40 18 96 74 52 29 06 83	267.60 269.36 271.12 272.88 274.64 276.40 278.15 279.90 281.65 283.39 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

Cf. Day and Sosman, Am. Jour. Sci. 29, p. 93, 32, p. 51; ; ibid. R. B. Sosman, 30, p. 1.

# MECHANICAL EQUIVALENT OF HEAT.

TABLE 210 .- Summary of Older Work.

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900. Reduced to Gram-calorie at 20° C. (Nitrogen thermometer).

Joule Rowland Griffiths Schuster-Gannon Callendar-Barnes
----------------------------------------------------------

* Admitting an error of 1 part per 1000 in the electrical scale. The mean of the last four then gives

1 gram (20° C) calorie = 4.181 × 107 ergs. See next table. I gram (15° C.) calorie =  $4.185 \times 10^7$  ergs assuming sp. ht. of water at  $20^\circ = 0.9990$ .

#### TABLE 211. - (1923.) Best Value, Electrical and Mechanical Equivalents of Heat.

The following values have been adopted for the International Critical Tables, prepared under the auspices of the International Research Council, 1923.

g (20° C) calorie = 4.180 international electrical joules = 4.181 
$$\times$$
 10⁷ ergs g (15° C) calorie = 4.185  $\times$  10⁷ ergs

The equivalence, 1 20° calorie = 4.183 joules, is so widely used it has been thought best to retain the following table computed with it as a basis:

TABLE 212 - Conversion Factors for Units of Work.

	Joules.	Foot-pounds.	Kilogram- meters.	200 Calories.	British ther- mal units.	Kilowatt- hours.
I Joule = I Foot-pound . = I Kilogram-meter = I 20° Calorie . = I British thermal unit = I Kilowatt-hour . =	1 1.356* 9.807* 4.183 1054. 3 600 000.	7.234 3.085† 777.5†	0.1020† 0.1383 I 0.4267† 107.5† 367 200.†	0.2391 0.3241* 2.345* 1 251.9 860 800.	0.001286*	0.2778×10 ⁻⁶ 0.3767×10 ^{-6*} 2.724×10 ^{-6*} 1.162×10 ⁻⁸ 0.0002928

The value used for g is the standard value, c8o.665 cm. per sec. per sec. = 32.174 feet per sec. per sec. * The values thus marked vary directly with "g." for values of "g" see Tables 565-567.

TABLE 213.—Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes.

	K	ilogram-	meters pe	er second	1.	Foot-pounds per second.					
Altitude,	Altitude, Latitude.						Latitude.				
	o°	30°	45°	60°	90°	o°	30°	45°	60°	90°	
o km. 1.5 " 3.0 "	76.275 76.297 76.320	76.175 76.197 76.220	76.074 76.095 76.119	75.973 75.995 76.018	75.873 75.895 75.918	551.70 551.86 552.03	550.97 551.13 551.30	550.24 550.41 550.57	549.52 549.68 549.85	548.79 548.95 549 12	

The metals in heavier type are often used as standards.

The melting points are reduced as far as possible to a common (thermodynamic) temperature scale. This scale is defined in terms of Wien's law, with C₂ taken as 14,350, and on which the melting point of platinum is 1755°C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Day and Sosman, 1755; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100°C, the temperatures are expressed to the nearest 5°C. Temperatures above the platinum point may be uncertain by over 50°C.

platinum point	may be un	certain by over 50	o C.	_	
Element.	Melting point.	Remarks.	Element.	Melting point. o° C	Remarks.
Aluminum.	658.7	Most samples	Manganese	1230	Burgess-Waltenberg.
Antimony .	630.0	give 657 or less (Burgess).	Mercury Molybdenum Neodymium.	840?	Mendenhall-Forsythe (Muthmann-Weiss.)
Argon	-188 850	Ramsay-Travers.	Neon Nickel	-253? 1452	Day, Sosman, Burgess, Waltenberg.
Barium Beryllium	850	(Guntz.)	Niobium		
Bismuth	1280 271	Adjusted.	Nitrogen Osmium	-211 About 2700	(Fischer-Alt.) (Waidner-Burgess, unpublished.)
Boron Bromine			Oxygen Palladium	$-218$ $1549 \pm 5$	(Waidner-Burgess,
Cadmium		Range: 320.7-		1349 - 3	Nernst-Wartenburg, Day and Sosman.)
Cæsium	26	Range: 26.37-	Phosphorus	44.2	
Calcium Carbon	810 (>3500)	25.3 Adjusted. Sublimes.	Platinum	1755 = 5	See Note.
Cerium	640		Praseodymium.	62.3 940	(Muthmann-Weiss.)
Chlorine		(Olszewski.)	Radium Rhodium	700 1950	(Mendenhall-Inger-
Chromium.	1615	Burgess-Walten- berg.	Rubidium	38	soll.)
Cobalt	1480	Burgess-Walten- berg.	Ruthenium Samarium	2450? 1300~1400	(Muthmann-Weiss.)
Copper	1083 ± 3	Mean, Holborn- Day, Day-	Scandium Selenium Silicon	217-220 1420	Adjusted.
Erbium		Clement.	Silver Sodium		Adjusted.
Fluorine	-223	(Moissan-Dew- ar.)	Strontium	, ,	Between Ca and Ba? Various Forms. See
		, ar.,	Sulphur	Sii 119.2 Siii 106.8	
Gallium Germanium	30.1 958		Tantalum	2900	Adjusted from Waid-
Gold Helium	1063.0	Adjusted.			ner-Burgess = 2910.
Hydrogen Indium	-259 155	(Thiel.)	Tellurium Thallium	452 302	Adjusted.
Iodine	113.5	Range: 112-115.	Thorium		v. Wartenburg.
Iridium	2350?		Tin	231.9 ± .2	Burgess-Waltenberg.
Iron	1530	Burgess-Walten- berg.	Tungsten		Adjusted.
Krypton Lanthanum	-169 810?	(Ramsay.) (Muthmann-	Uranium	<1850	Moissan.
Lead	327 ± 0.5	Weiss.)	Vanadium Xenon		Burgess-Waltenberg. Ramsay.
			Ytterbium Yttrium	1490	
Lithium Magnesium	186 651	(Kahlbaum.) (Grube) in clay	Zinc Zirconium	419.4	Troost.
		crucibles, 635.			

# BOILING-POINTS OF THE CHEMICAL ELEMENTS.

Element.	Range.	Boiling- point. °C	Observer; Remarks.
	0	0	
Aluminum	_	1800.	Greenwood, Ch. News, 100, 1909.
Antimony	-	1440.	" " " "
Argon	-	<del>-</del> 186.1	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450		Gray, sublimes, Conechy.
"	-0	>360.	Black, sublimes, Engel, C. R. 96. 1883.
Barium	280-310		Yellow, sublimes.
Bismuth	1420-1435	1430.	Boils in vacuo, Guntz, 1903. Barus, 1894; Greenwood, l. c.
Boron	-	-	Volatilizes without melting in electric arc.
Bromine	59-63	61.1	Thorpe, 1880; van der Plaats, 1886.
Cadmium	-	778.	Berthelot, 1902.
Cæsium	-	670.	Ruff-Johannsen.
Carbon	-	3600.	Conputed, Violle, C. R. 120, 1895.
••	-	-	Volatilizes without melting in electric oven.
Chlorine		-33.6	Moisson. Regnault, 1863.
Chromium	_	2200.	Greenwood, Ch. News, 100, 1909.
Copper	2100-2310	2310.	" 1. c.
Fluorine	_	<del>-187</del> .	Moisson-Dewar, C. R. 136, 1903.
Helium	-	-267.	Computed, Tracers Ch. News, 86, 1902.
Hydrogen	-252.5-252.8	-252.6	Mean.
Iodine	-	>200.	
Iron	-	2450.	Greenwood, I. c.
Krypton Lead	_	·—151.7 1525.	Ramsay, Ch. News, 87, 1903. Greenwood, 1. c.
Lithium	_	1323.	Ruff-Johannsen, Ch. Ber. 38, 1905.
Magnesium	_	1120.	Greenwood, 1 c.
Manganese	-	1900.	u u
Mercury	-	357 •	Crafts; Regnault.
Molybdenum	-	3620.	Langmuir, Mackay, Phys. Rev. 1914.
Neon Nitrogen	-	-239.	Dewar, 1901.
Oxygen	—195.7-194.4 —182.5-182.9	—195. —182.7	Mean.
Ozone	-	-11Q.	Troost. C. R. 126, 1898.
Phosphorus	287-290	288.	
Platinum	-	3910.	Langmuir, Mackay, Phys. Rev. 1914.
Potassium	667-757	712.	Perman; Ruff-Johannsen.
Rubidium Selenium	66 , 60 ;	696.	Ruff-Johannsen.
Silver	664-694	690. 1955.	Greenwood, 1. c.
Sodium	742-757	750.	Perman; Ruff-Johannsen.
Sulphur	444.7-445	444.7	Mean.
Tellurium	- '	1390.	Deville-Troost, C. R. 91, 1880.
Thallium	-	1280.	v. Wartenberg, 25 Anorg. Ch. 56, 1908
Tin	-	2270.	Greenwood, 1. c.
Tungsten Xenon	_	5830. —109.1	Langmuir Phys. Rev. 1913. Ramsay, Z. Phys, Ch. 44, 1903.
Zinc	916-942	930.	Kamsay, 2. 1 Hys, Ch. 44, 1903.
	9.0 977	3301	

#### TABLE 216. - Effect of Pressure on Melting Point.

Substance.	Melting point at 1 kg/sq. cm	Highest experimental pressure: kg/sq. cm	at 1 kg/sq. cm.	$\Delta t$ (observed) for 1000 kg/sq. cm	Reference
Hg	-38.85 59.7 97.62 271.0 231.9 270.9 320.9 327.4	12,000 2,800 12,000 12,000 2,000 2,000 2,000 2,000	0.00511 0.0136 0.00860 -0.00342 0.00317 -0.00344 0.00609 0.00777	5.1* 13.8 +12.3† -3.5† 3.17 -3.44 6.09 7.77	1 2 4 4 3 3 3 3 3 3 3

*  $\Delta t$  (observed) for 10,000 kg/sq. cm is 50.8°.

† Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, 3623° K; 8, 3594; 18, 3572; 28, 3564.

Phys. Rev. 1917.

References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391-96, 416-19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98-99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, 1, 1915.

A large number of organic substances, selected on account of their low melting points, have also been investigated: by Tammann, loc. cit.; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 217. - Effect of Pressure on the Freezing Point of Water (Bridgman*).

Pressure: † kg/sq. cm	Freezing point.	Phases in Equilibrium.
1 1,000 2,000 2,115 3,000 3,530 4,000 6,000 6,380 8,000 12,000	0.0 -8.8 -20.15 -22.0 -18.40 -17.0 -13.7 -1.6 +0.16 12.8 37.9 57.2	Ice I — liquid. Ice I — liquid. Ice I — liquid. Ice I — liquid. Ice III — liquid (triple point). Ice III — liquid. Ice III — ice V — liquid (triple point). Ice V — liquid. Ice V — liquid. Ice V — ice VI — liquid (triple point). Ice VI — liquid.

* P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912.  $\dagger$  r atm. = 1.033 kg/sq. cm.

TABLE 218. - Effect of Pressure on Boiling Point.*

Metal.	Pressure.	° C	Metal.	Pressure.	° C	Metal.	Pressure.	° C
Bi Bi Bi Bi Ag	10.2 cm Hg. 25.7 cm Hg. 6.3 atme. 11.7 atme. 16.5 atme. 10.3 cm Hg.	1200 1310 1740 1950 2060 1660	Ag Cu Cu Sn Sn Pb	26.3 cm Hg. 10.0 cm Hg. 25.7 cm Hg. 10.1 cm Hg. 26.2 cm Hg. 10.5 cm Hg.	1780 1980 2180 1970 2100 1315	Pb Pb Pb Zn Zn Zn	20.6 cm Hg. 6.3 atme. 11.7 atme. 11.7 atme. 21.5 atme. 53.0 atme.	1410 1870 2100 1230 1280 1510

* Greenwood, Pr. Roy. Soc., p. 483, 1910.

Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Aluminum chloride	AlCl₃	_	190.	I	183.°	752	I
" nitrate	$Al(NO_3)_3 + 9H_2O$		72.8	2	134.*	-	
oxide	$Al_2O_3$	4.00	2050.	28			
Ammonia	$ m NH_3 \ NH_4NO_3$	T 70	-75.	3	-33.5 210.*	760	7
" sulphate		I.72 I.77	165. 140.	4	210.		
" phosphite	NH ₄ H ₂ PO ₃	1 /	123.	5	150.*		
Antimony trichloride	SbCl₃	3.06	73.		223.	760	1
" pentachloride		2.35	3.	II	102.	68	14
Arsenic trichloride Arsenic hydride	AsCl ₃ AsH ₃	2.20	-18.	8	130.2	760	23
Barium chloride	BaCl ₂	3.86	960.	6	-54.8	760	6
" nitrate	$Ba(NO_3)_2$	3.24	575.	24			_
" perchlorate	$Ba(ClO_4)_2$		505.	IO		<u> </u>	—
Bismuth trichloride	BiCl ₃	4.56	232.5	—	440.	760	—
Boric acid	$H_3BO_3$	1.46	185.	_		-	
" anhydride Borax (sodium borate)	$egin{array}{c} \mathrm{B_2O_3} \\ \mathrm{Na_2B_4O_7} \end{array}$	1.79	577.	27			
Cadmium chloride	CdCl ₂	2.36	741. 560.	27	000 ±		9
" nitrate	$Cd(NO_3)_2 + 4H_2O$	2.45	59.5	2	132.	760	4
Calcium chloride	$CaCl_2$	2.26	774.0	-		—	
" chloride	$CaCl_2 + 6H_2O$	1.68	29.6		_	<b>—</b>	
mirate	$Ca(NO_3)_2$	2.36	499.	24	*		
" nitrate oxide	$Ca(NO_3)_2 + 4H_2O$ $CaO$	1.82	42.3	26	132.*		
Carbon tetrachloride	CCl₄	3.3	2570. -24.	22	76.7	760	23
" trichloride	$C_2Cl_6$	1.63	184.			-	-3
" monoxide	CO		-207.	6	-190.	760	6
" dioxide	$CO_2$	1.56	-57.	3	-8o.	subl.	
usuidnide	CS ₂	1.26	-110.	13	46.2	760	
Chloric (per) acid Chlorine dioxide	$\mathrm{HClO_4} + \mathrm{H_2O} \ \mathrm{ClO_2}$	1.81	50. -76.	15		727	21
Chrome alum	$KCr(SO_4)_2 + 12H_2O$	1.83	89.	3 16	9.9	731	_
" nitrate	$Cr_2(NO_3)_6 + 18H_2O$		37.	2	170.	760	2
Chromium oxide	$Cr_2O_3$	5.04	1990.	28			
Cobalt sulphate	CoSO ₄	3.53	97.	16	880.*		
Cupric chloride Cuprous chloride	$\begin{array}{c c} & \text{CuCl}_2 \\ & \text{Cu}_2\text{Cl}_2 \end{array}$	3.05	498.	9	1000 ±	760	_
Cupric nitrate	$Cu(NO_3)_2 + _3H_2O$	3.7	421. 114.5	2	170.*	760	9 2
Hydrobromic acid	HBr		-86.7	3	-68.7	760	
Hydrochloric acid	HCl		-111.3	17	-83.1	755	17
Hydrofluoric acid	HFI	0.99	-92.3	6	-36.7	755	17
Hydriodic acid Hydrogen peroxide	$\begin{array}{c} \operatorname{HI} \\ \operatorname{H_2O_2} \end{array}$		-51.3 -2.	17	-35.7 80.2	760	20
" phosphide	PH ₃	1.5	-2.	6	- 00.2	47	20
" sulphide	$H_2\tilde{S}$		-86.	3	-62.	_	
Iron chloride	FeCl ₃	2.80	301.		_	—	
" nitrate	$Fe(NO_3)_3 + 9H_2O$	1.68	47.2	2		-	
" sulphate Lead chloride	$FeSO_4 + 7H_2O$ $PbCl_2$	1.90	64.	16	000 +	760	
" metaphosphate	$Pb(PO_3)_2$	5.8	500. 800.	9	900 ±	760 —	
Magnesium chloride	$MgCl_2$	2,18	708.			_	
oxide	MgO	3.4	2800.	9 28			
" nitrate	$Mg(NO_3)_2 + 6H_2O$	1,46	90.	2	143.	760	2
" sulphate Manganese chloride	$MgSO_4 + 5H_2O$ $MnCl_2 + 4H_2O$	1,68	150.	16	706	760	
" nitrate	$MnCl_2 + 4H_2O$ $Mn(NO_8)_2 + 6H_2O$	1.82	87.5 26.	19	106.	760 760	19
sulphate	$MnSO_4 + 5H_2O$	2.09	54.	16		700	
Mercurous chloride	$Hg_2Cl_2$	7.10	450 ±	_			
Mercuric chloride	$\mathrm{HgCl}_2$	5.42	282,		305.		
	The second secon						

⁽¹⁾ Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (10) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (21) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

DENSITIES AND MEL	TING AND BOILING			RGA	NIC COMP	POUND	S.
Substance.	Chemical formula.	Density, about 20° C	Melting point C	Authority.	Boiling point C	Pres- sure mm	Authority.
Nickel carbonyl	$ \begin{array}{c} \operatorname{NiC_4O_4} \\ \operatorname{Ni(NO_3)_2} + 6\operatorname{H_2O} \end{array} $	1.32	-25. 56.7	I 2	43.° 136.7	760 760	_
" oxide	NiO	6.69		_			_
suipnate	NiSO ₄ + 7H ₂ O	1.98	99.	3	96	-6-	_
Nitric acid	$HNO_3$ $N_2O_5$	1.52	-42. 30.	4 5	86. 48.	760 760	16
" oxide *	$ m N_2O_5 \ NO$	1.27	-167.		-153.	760	6
" peroxide	$N_2O_4$	1.49	-9.6	8	21.6	760	
Nitrous anhydride oxide	$egin{array}{c}  m N_2O_3 \  m N_2O \end{array}$	1.45	-III. -I02.4	7 8	3·5 -89.8	760 760	8
Phosphoric acid (ortho).	$H_3PO_4$	1.88	40 ±	_	-09.0	<del></del>	_
Phosphorous acid	$H_3PO_3$	1.65	72.	-	_	_	
Phosphorus trichloride	PCl ₃	1.61	-111.8	10	76.	760	19
" oxychloride disulphide	POCl ₃ P ₃ S ₆	1.68	+1.3 297.	12	108.	760 760	
" pentasulphide	$P_2S_5$	_	275.	13	522.	760	_
" sesquisulphide	$P_4S_3$	2.00	168.	_	400.	760	<b> </b>
trisuipinde			290 ±	14	490.	760	25
Potassium carbonate	${ m K_2CO_3} \ { m KClO_3}$	2.29	909.	<u> </u>			
" chromate	K ₂ CrO ₄	2.72	357· 975·	17		_	_
" cyanide	KCN	1.52	red h't	<u> </u>	<b>—</b> .	_	
perchiorate	KClO ₄	2.52	610.	15	410.†	760	
" chloride " nitrate	KCl KNO ₃	1.99	772. 341.	_	1500. 400.†	760	
" acid phosphate		2.34	96.	3	<del></del>	_	<u></u>
" acid sulphate	KHSO ₄	2.35	205.	—	dec.	—	-
Silver chloride	AgCl AgNO ₃	5.56	451.	15			
" nitrate " perchlorate	AgNO ₃ AgClO ₄	4.35	218. 486.	<u></u>	dec.		
" phosphate	Ag ₃ PO ₄	6.37	849.	15			-
" metaphosphate	AgPO ₃	_	482.	15		—	
" sulphate Sodium chloride	Ag₂SO₄ NaCl	5.45	655 ± 800.		1085.†	760	
" hydroxide		2.17 2.1	318.	27	1490.	700	
" nitrate	NaNO ₃	2.26	315.		38o.†	_	
" chlorate	NaClO ₃	2.48	248.	28	†	-	
" perchlorate carbonate	NaClO ₄ Na ₂ CO ₃	2.48	482. 852.	18	+		
" carbonate	$Na_2CO_3 + 10H_2O$	1.46	34.	3		_	_
" phosphate	$Na_2HPO_4 + 12H_2O$	1.54	38.		—	-	
metaphosphate.	NaPO ₃	2.48	617.	15		_	
" pyrophosphate.	$Na_4P_2O_7$ $(H_2NaPO_3)_2 + 5H_2O$	2.45	970. 42.	30 20			
" sulphate	Na ₂ SO ₄	2.67	884.	11	_	_	
" sulphate	$Na_2SO_4 + 10H_2O$	1.46	32.38	17	<u> </u>	_	
nyposuipnite		1.73	48.16	_	†	760	
Sulphur dioxide	$SO_2 \\ H_2SO_4$	1.83	-76. 10.4	21	-10. 338.	760	22
acid	$12H_2SO_4 + H_2O$		-0.5	22		_	_
" acid	$H_2SO_4 + H_2O$	_	8.5	_			
" acid (pyro) Sulphur trioxide	$ m H_2S_2O_7 \ SO_3$	1.89	35· 16.8	22	† 44.9	760	
Tin, stannic chloride	SnCl ₄	2.28	-33.	23	114.	760	19
" stannous chloride	SnCl ₂	<u> </u>	250.	24	605.	760	
Zinc chloride	ZnCl	2.91	365.	29	710.	760	
" chloride	$ZnCl_2 + 3H_2O$ $Zn(NO_2) + 6H_2O$	2 06	6.5	26	727	760	_

References: (1) Mond, Langer, Quincke; (2) Ordway; (3) Tilden; (4) Erdmann; (5) R. Weber; (6) Olszewski; (7) Birhaus; (8) Ramsay; (9) Deville; (10) Wroblewski; (11) Day, Sosman, White; (12) Ramme; (13) Meyer; (14) Lemoine; (15) Carnelly; (16) Mitscherlich; (17) LeChateller; (18) Carnelly, O'Shea; (10) Thorpe; (20) Amat; (21) Mendelejeff; (22) Marignac; (23) Besson; (24) Clarke, Const. of Nature; (25) Isambert; (26) Mylius; (27) Hevesy; (28) Retgers; (20) Grünauer; (30) Richards and others.

2.06

2.02

3

131.

760

2

36.4

50.

 $Zn(NO_3)_2 + 6H_2O$ 

 $ZnSO_4 + 7H_2O$ 

nitrate.....

sulphate.....

^{*} Under pressure 138 mm mercury. † Decomposes.

### DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

Substance.	Formula	Temp.	Den- sity.	Melting- point	Boiling-point.	Authority.					
	(a) Paraffin Series · C _n H _{2n+2} .										
Methane* Ethane† Propane Butane Pentane Hexane Heptane Octane Nonane Decane Undecane Tridecane Tridecane Hexadecane Hexadecane Hexadecane Hexadecane Hexadecane Tetradecane Tetradecane Heptadecane Toctadecane Hexadecane Tricosane Tricosane Tricosane Tricosane Tricosane Tetracosane	CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀ C ₅ H ₁₂ C ₆ H ₁₄ C ₇ H ₁₆ C ₈ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂₂ C ₁₁ H ₂₄ C ₁₂ H ₁₆ C ₁₃ H ₂₈ C ₁₄ H ₃₀ C ₁₅ H ₃₂ C ₁₆ H ₃₄ C ₁₇ H ₃₆ C ₁₈ H ₃₈ C ₁₇ H ₃₆ C ₁₈ H ₃₈ C ₁₉ H ₄₀ C ₂₀ H ₄₂ C ₂₁ H ₄₄ C ₂₂ H ₄₆ C ₂₃ H ₄₈ C ₂₄ H ₅₀	-164. 0 0 0 17. 0 0 0 0 18. 22. 28. 32. 37. 40. 44. 48. 51.	.446 .536 .60 .647 .663 .701 .719 .733 .745 .755 .775 .775 .777 .777 .777 .777	—184. —171.4 —195. —135. —131. —97. —56.6 —51. —26. —12. —6. 5. 10. 18. 22. 28. 32. 37. 40. 44. 48. 51.	-1659345. 1. 36.3 69. 98.4 125.5 150. 173. 195. 214. 234. 252. 270. 287. 303. 317. 333. 121. \$ 129. \$ 142.5 \$ 243. \$ 243.	Olszewski, Young. Ladenburg, " Young, Hainlen. Butlerow, Young. Thorpe, Young. Schorlemmer. Thorpe, Young. " " " " " " " " " " " " " " " " " " "					
Heptacosane Pentriacontane Dicetyl Penta-tria-contane	$ \begin{array}{c c} C_{27}H_{56} \\ C_{31}H_{64} \\ C_{32}H_{66} \\ C_{35}H_{72} \end{array} $	60. 68. 70. 75.	.780 .781 .781 .782	60. 68 70. 75.	172.§ 199.§ 205.§ 331.‡						
	(b)	Olefines,	or the	Ethylen	e Series : C _n H	I 2n.					
Ethylene Propylene Butylene Amylene Hexylene Heptylene Octylene Nonylene Decylene Undecylene Tridecylene Tetradecylene Hexadecylene Hexadecylene Eicosylene Cerotene Melene	C ₂ H ₄ C ₃ H ₆ C ₄ H ₈ C ₅ H ₁₀ C ₆ H ₁₂ C ₇ H ₁₄ C ₈ H ₁₆ C ₉ H ₁₈ C ₁₀ H ₂₀ C ₁₁ H ₂₂ C ₁₂ H ₂₆ C ₁₄ H ₂₈ C ₁₅ H ₃₀ C ₁₆ H ₃₀ C ₁₆ H ₃₀ C ₁₆ H ₃₆ C ₂₀ H ₄₀ C ₂₇ H ₅₄ C ₈₀ H ₆₀		0.610 635 76 .703 .722 .767 773 .795 .774 .794 .814 .792 .791 .871			Wroblewski or Olszewski. Ladenburg, Krügel. Sieben. Wagner or Saytzeff. Wreden or Znatowicz. Morgan or Schorlemmer. Möslinger. Beilstein, "Org. Chem." """" Bernthsen. Krafft. Bernthsen. Krafft, Mendelejeff, etc. Krafft. Reilstein, "Org. Chem." Bernthsen.					

^{*} Liquid at—11.0 C. and 180 atmospheres' pressure (Cailletet), the state of the

### DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp.	Specific gravity.	Melting- point.	Boiling- point.	Authority.				
(c) Acetylene Series: $C_nH_{2n-2}$ .										
Acetylene	$C_2H_2$	80.	.613	-81.8	-83.6	Villard.				
Allylene	$C_3H_4$	-	-	-110.	-23. <b>5</b>	7 2744 47				
Ethylacetylene	C ₄ H ₆	-	-	<b>—</b> 130.	+8.	Bruylants, Kutsche-				
						roff, and others.				
Propylacetylene	$C_5H_8$	-	-	-	4850.	Bruylants, Taworski.				
Butylacetylene	$C_6H_{10}$	_	_	_	6870.	Taworski.				
Oenanthylidene	$C_7H_{12}$	_	_	-	100101.	Beilstein, and others.				
Caprylidene	$C_8H_{14}$	0.	0.771	_	133134.	Behal.				
Undecylidene	$C_{11}H_{20}$			_	210215.	Bruylants.				
Dodecylidene	$C_{12}H_{22}$	9.	.810	<del></del> 9.	105.*	Krafft.				
Tetradecylidene	C ₁₄ H ₂₆	+ 6.5	.806	+ 6.5	134.*	"				
Hexadecylidene	C ₁₆ H ₃₀	20.	.804	20.	160.*	"				
Octadecylidene	$C_{18}H_{34}$	30.	.802	30.	184.*					
	(d) Mona	tomic al	cohols:	$C_nH_{2n-}$	μOΗ.					
Meshyl alcohol	СН₃ОН	0.	0.812	<b>-94.9</b>	64.6					
Et nyl alcohol	$C_2H_5OH$	0.	.8c6	-114.2						
Propyl alcohol	C ₃ H ₇ OH	0.	.817	-127.	97.	From Zander, "Lieb.				
Butyl alcohol	$C_4H_9OH$	0.	.823	—8o.	117.	Ann." vol. 224, p. 85,				
Amyl alcohol	$C_5H_{11}OH$	0.	.829	-	138.	and Krafft, "Ber."				
Hexyl alcohol	$C_6H_{13}OH$	0.	.833	-26	155.	vol. 16, 1714,				
Heptyl alcohol Octyl alcohol	$C_{8}H_{17}OH$	0.	.836	—36. —18.	176.	" 19, 2221, " 23, 2360,				
	$C_9H_{19}OH$	0.	.842	<u></u>	195.	and also Wroblew-				
Decyl alcohol	$C_{10}H_{21}OH$	+ 7.	.839	+ 7.	231.	ski and Olszewski,				
Dodecyl alcohol	C ₁₂ H ₂₅ OH	24.	.831	24.	143.*	"Monatshefte,"				
Tetradecyl alcohol	$C_{14}H_{29}OH$	38.	.824	38.	167.*	vol. 4, p. 338.				
Hexadecyl alcohol		50.	.818.	50.	190.*					
Octadecyl alcohol	$C_{18}H_{37}OH$	59.	.813	59-	211,*					
	(e) Ald	coholic e	thers:	$C_nH_{2n+}$	₂ O.					
Dimethyl ether	C ₂ H ₆ O	-	-	-	- 23.6	Erlenmeyer, Kreich- baumer.				
Diethyl ether	C ₄ H ₁₀ O	4.	0.731	- 117	+ 34.6	Regnault, Olszewski.				
Dipropyl ether	$C_6H_{14}O$	0.	.763	-	90.7	Zander and others.				
Di-iso-propyl ether	C ₆ H ₁₄ O	0.	.743	-	69.	T :-1 D : 1				
Di-n-butyl ether	$C_8H_{18}O$	0.	.784	-	141.	Lieben, Rossi, and others.				
Di-sec-butyl ether	C ₈ H ₁₈ O	21.	.756	_	121.	Kessel.				
Di-iso-butyl "	C ₈ H ₁₈ O	15.	.762	-	122.	Reboul.				
Di-iso-amyl "	$C_{10}H_{22}O$	ō.	•799	-	170175.	Wurtz.				
Di-sec-hexyl "	$C_{12}H_{26}O$	_	_	-	203.–208.	Erlenmeyer and				
Di-norm-octyl "	C ₁₆ H ₃₄ O	17.	.805		280282.	Wanklyn. Moslinger.				
	( <b>f</b> ) E	thyl eth	ers: C _n	H _{2n+2} O						
Ethyl-methyl ether	C ₃ H ₈ O	0.	0.725	_	11.	Wurtz, Williamson.				
" propyl "	$C_5H_{12}O$	20.	0.739	-	6364.	Chancel, Brühl.				
iso-propyl ether .	$C_5H_{12}O$	0.	-745	-	54.	Markownikow.				
" norm-butyl ether	$C_6H_{14}O$	0,	.769	_	92.	Lieben, Rossi.				
" iso-butyl ether . " iso-amyl ether .	$\begin{array}{c c} C_6H_{14}O \\ C_7H_{16}O \end{array}$	18.	.751	_	78.–80. 112.	Wurtz. Williamson and				
iso-amyrether .	711160	10.	.764		112.	others.				
" norm-hexyl ether	C ₈ H ₁₈ O	-	-	_	134137.	Lieben, Janeczek.				
" norm-heptyl ether	$C_9H_{20}O$	16.	.790	-	165.	Cross.				
" norm-octyl ether	$C_{10}H_{22}O$	17.	•794	_	182.–184.	Moslinger.				

^{*} Boiling-point under 15 mm. pressure. † Liquid at —11.° C. and 180 atmospheres' pressure (Cailletet).

# DENSITIES AND MELTING AND BOILING POINTS OF SOME ORGANIC COMPOUNDS.

(g) MISCELLANEOUS.

Substance	Chemical formula.	Density and temperature.	Melting point C	Boiling point C	Authority.
Acetic acid	$\mathrm{CH_3COOH} \ \mathrm{CH_3COCH_3} \ \mathrm{C_2H_4O} \ \mathrm{C_6H_5NH_2} \ \mathrm{C_7H_6O_2}$	1.115 0° 0.812 0 0.806 0 1.038 0 0.96 ± 1.293 4	16.7 -94.6 -120. -8. 62.	118.5 56.1 +20.8 183.9	Young, '09
Benzene	${}^{\mathrm{C_6H_6}}_{\mathrm{^{\circ}(C_6H_5)_2CO}}$	0.879 20 1.090 50	5.48 48.	80.2 305.9	Richards Holborn- Henning
Butter	$egin{array}{c} C_{10}H_{16}O \ C_6H_5OH \ CS_2 \end{array}$	0.86-7 0.99 10 1.060 21 1.292 0	30 ± 176. 43. -110.	209. 182. 46.2	
ide	$CCl_4$ $C_6H_5Cl$ $CHCl_3$ $C_2N_2$	1.582 21 1.111 15 1.257 0	-30. -40. -65. -35.	76.7 132. 61.2 -21.	Young
Ethyl bromide " chloride " ether " iodide Formic acid	$egin{array}{c} C_2H_5\mathrm{Br} \ C_2H_5\mathrm{Cl} \ C_4H_{10}\mathrm{O} \ C_2H_5\mathrm{I} \ H\mathrm{COOH} \end{array}$	1.45 15 0.918 8 0.736 0 1.944 14 1.242 0	-117. -141.6 -118. 	38.4 14. 34.6 72.	
Gasolene Glucose Glycerine Glycerine Glodoform	CHO(HCOH) ₄ CH ₂ OH C ₃ H ₅ O ₃ CHI ₃	o.68 ±	146. 20.	70–90 — 290.	
Lard	CH₃Cl CH₃I C ₆ H₄·C₄H₄	0.992 -24 2.285 15 1.152 15	29 ± -103.6 -64. 80.	-24.I 42.3 218.	Holborn- Henning
Nitrobenzene Nitroglycerine Olive oil Oxalic acid Paraffin wax, soft .	$C_{6}H_{5}O_{2}N \ C_{3}H_{5}N_{3}O_{9} \ C_{2}H_{2}O_{4}\cdot {}_{2}H_{2}O$	1.212 7.5 1.60 0.92 1.68	5. 20 ± 190. 38-52	211. 300 ± — 350-390	3
" " hard Pyrogallol Spermaceti Starch	$\mathrm{C_6H_3(OH)_3}$ $\mathrm{C_6H_{10}O_5}$	1.46 40 0.95 15 1.56	52-56 133. 45 = none	390–430 293. —	
Sugar, cane Stearine Tallow, beef "mutton Tartaric acid	$C_{12}H_{22}O_{11} \ (C_{18}H_{36}O_2)_3C_3H_5 \ C_4H_6O_6$	1.588 20 0.925 65 0.94 15 0.94 15	160. 71. 27–38 32–41		
Toluene   Xylene (o)	$C_6H_6CH_3$ $C_6H_4(CH_3)_2$ $C_6H_4(CH_3)_2$ $C_6H_4(CH_3)_2$	1.754 0.882 00 0.863 20 0.864 20 0.861 20	170. -92. -28. 54. 15.	110.31 142. 140. 138.	Richards

#### TABLE 221. - Melting-point of Mixtures.

	Melting-points, C°.							ce.				
Metals.	Percentage of metal in second column.								Reference.			
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %	Rei
Pb. Sn.	326	295	276	262	240	220	190	185	200	216	232	I
Bı.	322	290	-	-	179	145	126	168	205	-	268	7 8
Te.	322	710	790	88o	917	760	600	480	410	425	446	
Ag.	328	460	545	590	620	650	705	775	840	905	959	9
Na.		360	420	400	370	330	290	250	200	130	96	13
Cu.	326	870	920	925	945	950	955	985	1005	1020	1084	2
Sb.	326	250	275	330	395	440	490	525	560	600	632	16
Al. Sb. Cu.	650	750	840 600	925 <b>5</b> 60	945	950 580	970	1000	1040	1010	632	17
Au.	650 655	630 675		800	540		610	755	930	1055	1084	10
	650	625	740 615	600	855	915 580	970	1025	1055	675		
Ag. Zn.	654	640	620	600	590 580	560	575	570	650	750	954	17
Fe.	653	86o	1015	1110	1145	1145	530 1220	510 1315	475 1425	425	419	11
Sn.	650	645	635	625	620	605	590	570	560	1500	1515	3
Sb. Bi.	632	610	590	575	555	540	520	470	405	540 330	268	17
Ag.	630	595	570	545	520	500	505	545	680	85 <b>o</b>	959	
Sn.	622	600	570	525	480	430	395	350	310	255	232	9
Zn.	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.	1455	1380	1290	1200	1235	1290	1305	1230	1060	800	232	17
Na. Bi.	96	425	520	590	645	690	720	730	715	570	268	13
Cd.	96	125	185	245	285	325	330	340	360	390	322	13
Cd. Ag.	322	420	520	610	700	760	805	850	845	940	954	17
Tl.	321	300	285	270	262	258	245	230	210	235	302	14
Zn.	322	280	270	295	313	327	340	355	370	390	419	11
Au. Cu.	1053	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag.	1064	1062	1061	105Š	1054	1049	1039	1025	1006	982	963	5
Pt.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	—io	-3.5	5	II	26	41	58	77	97.5	15
Hg.	-	-	-	-	-	90	110	135	162	265		13
TÎ.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu. Ni.	1080	1180	1240	1290	1320	1335	1380	1410	1430	1440	1455	17
Ag.	1082	1035	990	945	910	870	830	788	814	875	960	9
Sn.	1084	1005	890	755	725	680	630	58o	530	440	232	12
Zn.	1084	1040	995	930	900	88o	820	780	700	58o	419	6
Ag. Zn.	959	850	755	705	690	660	630	610	570	505	419	11
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	80	70	60	45	22	55	95	215	-	13

- 1 Means, Landolt-Börnstein-Roth Tabellen,
  2 Friedrich-Leroux, Metal. 4, 1907.
  3 Gwyer, Zs. Anorg. Ch. 57, 1908.
  4 Means, L.-B.-R. Tabellen.
  5 Roberts-Austen Chem. News, 87, 2, 1903.
  6 Shepherd J. ph. ch. 8, 1904.
  7 Kapp, Diss., Königsberg, 1901.
  8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov.
- 1901. 9 Heycock and Neville, Phil. Trans. 189A, 1897.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.

  12 '' '' Phil. Trans. 202A, 1, 1903.

  13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900.

  14 '' '' '30, 86, 1902.

  15 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896.

  17 Gautier, '' '' (5) 1, ''

  18 Le Chatelier, '' '' (4) 10, 573,
- 1895. 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw.
  - Sachsen. 1879, 17.

#### TABLE 222. - Alloy of Lead, Tin, and Bismuth.

	Per cent.									
Lead Tin	32.0 15.5 52 5	25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33·3 33·3 33·3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.0 9.1 20.0
Solidification at	960	1010	1250	1280	1450	1480	1610	1810	1820	234 ⁰

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 223. - Low Melting-point Alloy.

	Per cent.								
Cadmium Tin	10.8 14.2 24.9 50.1	10,2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9 4 34.4 50.0	7.1 - 39.7 53.2	6.7 43·4 49·9		
Solidification at	65.5°	67.5°	68.5°	68.5°	76.5°	89.50	95 ⁰		

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

## TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

Substance.	% C	aO Al	₂ O ₃	SiO ₂		Transforma	tion.		Т	emp.
CaSiO ₃	1 /	2 - - 2 - 6 - 2 37.4 8 52. 8 75. 62.4 1 36.4 3 37.	- 3 - 3 - 3 - 4 - 2 - 2 - 6 - 6 - 2 - 8 8 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	(1.8 (1.8 (5.5) (5.5) (5.1) (6.4 		Melting	Ca ₂ SiC	D ₄ and liquid	120 213 67 142 147 190 153 145 160 172 181 155 159	0° ±2° 0° ±10 15 ±5 0° ±2 5 ±5 0° ±5 0° ±5 0° ±5 0° ±10 0° ±2 0° ±2 0° ±2 0° ±2
E	UTECT	ics.					EUTEC	rics.		
Crystalline Phases.	% CaO	Al ₂ O ₃	SiO ₂	Meltin Temp	ng p.	Crystalline Phases.	% CaC	Al ₂ O ₃	SiO ₂	Melting Temp.
CaSiO ₃ ,SiO ₂ Ca,SiO ₃ 3CaO,2SiO ₂ Ca,SiO ₄ CaO. Al ₂ SiO ₅ ,SiO ₂ Al ₂ SiO ₅ ,Al ₂ O ₃ CaAl ₂ Si ₂ O ₃ CaSiO ₃	37· 54·5 67·5 — 34·I		63. 45.5 3 ² .5 87. 36. 47.3	1436 1455: 2065: 1610 1810	± ±	$ \left. \begin{array}{c} CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ CaSiO_3 \\ CaAl_2SiO_7 \\ Al_2O_3 \\ Ca_2SiO_4 \\ CaAl_2O_4 \\ Ca_5Al_6O_{14} \end{array} \right\} $	38. 29.2 49.5	20. 39. 43.7	42. 31.8 6.8	1265° 1380
$ \begin{array}{c c} CaAl_2Si_2O_8 & \\ SiO_2 & \\ CaAl_2Si_2O_8 & \\ \end{array} $	10.5	19.5	70. 62.	1359		QUIN	TUPLE	POINTS		
SiO ₂ ,CaSiO ₃ { Ca ₂ Al ₂ SiO ₇ { Ca ₂ SiO ₄	49.6	23.7	26.7	1545		Ca ₂ Al ₂ SiO ₇ )				
Al ₂ O ₃ CaAl ₂ Si ₂ O ₈ CaAl ₂ Si ₂ O ₈	19.3	39-3	41.4	1 547		$ \begin{array}{c} Ca_3SiO_7 \\ Ca_2SiO_4 \\ Ca_2Al_2SiO_7 \end{array} $	48.2	11.9	39.9	1335
$\begin{array}{c c} Al_2SiO_5,SiO_2 \\ Ca_2Al_2SiO_7 \end{array}$	9.8 35·	19.8 ⁻	70.4	1345		$Ca_2SiO_4$ $CaAl_2O_4$	48.3	42.	9.7	1380
$\begin{bmatrix} Ca_3Al_{10}O_{18} & \\ Ca_2Al_2SiO_7 & \\ CaAl_2O_4 & \\ \end{bmatrix}$	37.8	52.9	9.3	1512		$ \left\{ \begin{array}{c} \operatorname{CaAl_2Si_2O_8} \\ \operatorname{Al_2O_3} \\ \operatorname{Al_2SiO_5} \end{array} \right\} $	15.6	36.5	47.9	1512
$ \begin{array}{c} Ca_2Al_2SiO_7 \\ CaAl_2O_4 \\ Ca_3Al_{10}O_{18} \end{array} $	37-5	53.2	9.3	1505		$\left. \begin{array}{c} Ca_{3}Al_{10}O_{18} \\ Ca_{2}Al_{2}SiO_{7} \\ Al_{2}O_{3} \end{array} \right\}$	31.2	44-5	24.3	1475
$\begin{bmatrix} CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ Ca_2Al_2SiO_7 \end{bmatrix}$	30.2	36.8	33-	1385	j	QUAD	RUPLE	POINTS	S.	
$Ca_3Si_2O_7$ $CaSiO_3$ $Ca_2Al_2SiO_7$	47.2	11.8	41.	1310		3CaO.2SiO ₂ {				
CaSiO ₃	45.7	13.2	41.1	1316		2CaO.SiO ₂	55.5	_	44.5	1475

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

SMITHSONIAN TABLES.

## LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

		ce number.					
g. mol.	Molecular Lowering.	g. mol. 1000 g H ₂ O	Molecular Lowering.	g. mol.	Molecular Lowering.	_g, mol. 1000 g. H ₂ O	Molecular Lowering.
Pb(NO ₃ ) ₂ , 331.0:	1. 2.	0.0500	3.47°	0.4978	2.020	MaCl. of 26 6	.,
0.000362	5.5°	.1000	3.42	.8112	2.01	MgCl ₂ , 95.26: 6,	5.1°
.001 204	5.30	.2000	3.32	1.5233	2.28	.0500	4.98
.002805	5.17	.500	3.26			.1 500	4.96
.005570	4 97	1.000	3.14	BaCl ₂ , 208.3: 3,6	7, 13.	.3000	5.186
.01737	4.69	L1NO ₃ , 69.07: 9.	3.14	0.00200	5.5°	.6099	5.69
.5015	2.99	0.0398	3.4°	.00498	5.2		
Ba(NO ₃ ) ₂ , 261.5:		.1671	3.35	.0100	5.0	KCl, 74.60: 9, 17-	-19.
0.000383	5.6°	.4728	3.35	.0200	4.95	0.02910	3.54°
.001259	5.28	1.0164	3.49	.04805	4.80	.05845	3.46
.002681	5.23	Al ₂ (SO ₄ ) ₃ , 342.4:		.100	4.69	.112	3.43
.005422	5.13	0.0131	5.6°	.200	4.66	.3139	3.41
.008352	5.04	.0261	4.9	.500 .586	4.82	.476	3.37
Cd(NO ₃ ) ₂ , 236.5:		.0543	4.5		5.03	1.000	3.286
0.00298	5.4°	.1086	4.03	.750	5.21	1.989	3.25
.00689	5.25	.217	3.83	CdCl ₂ , 183.3: 3, 1	4.	3.269	3.25
.01997	5.18	CdSO ₄ , 208.5: 1, 1		0.00299	5.00	NaCl, 58.50: 3, 20	, 12, 16.
.04873	5.15	0.000704	3.35°	.00690	4.8	0.00399	3.7°
		.002685	3.05	.0200	4.64	.00010.	3 67
AgNO ₃ , 167.0: 4, 0.1506	3.32°	,01151	2.69	.0541	4.11	.0221	3.55
.5001	2.96	.03120	2.42	.0818	3 93	.04949	3.51
.8645	2.87		2.13	.214	3.39	.1081	3.48
	2.27	.1473	1.80	.429	3.03	.2325	3.42
1.749	1.85	.4129	1.76	.858	2.71	.4293	3.37
2.953 3.856	1.64	.7501	1.86	1.072	2.75	.700	3.43
0.0560	3.82	1.253		CuCl ₂ , 134.5: 9.		NH4Cl, 53.52: 6,	15.
.1401	2.68	K ₂ SO ₄ , 174.4: 3, 5,	5.40	0.0350	4.9°	0.0100	3.6°
	3.58	0.00200		.1337	4.81	.0200	3.56
.3490	3.28	.00398	5.3	.3380	4.92	.0350	3.50
KNO ₃ , 101.9: 6, 7.		.0200	4.9 4.76	.7149	5.32	.1000	3.43
.0200	3.5	.0500	4.60	CoCl ₂ , 129.9: 9.		.2000	3.396
	3.5	.000	4.32	0.0276	5.0°	.4000	3.393
.0500	3.41	.200	4.07	.1094	4.9	.7000	3.41
,200	3.31		3.87	.2369	5.03	LiCl, 42.48: 9, 15.	
,250	3.19	·454		.4399	5.30	0.00992	3.7°
.500	2.94	CuSO ₄ , 159.7: 1, 4	3.3°	.538	5.5	.0455	3.5
.750	2.81	.000843	3.15		1	.09952	3.53
1.000	2.66	.002279	3.03	CaCl ₂ , 111.0: 5, 1;	5.10	.2474	3.50
NaNO ₃ , 85.09: 2,	6 7	.006670	2.79	.05028	4.85	.5012	3.61
0.0100	3.60	.01463	2.59	.1006	4.79	· <b>7</b> 939	3.71
.0250	3.46	.1051	2.28	.5077		BaBr2, 297.3: 14.	
.0500	3.44	.2074	1.95	.946	5.33	0.100	5.10
.2000	3.345	.4043	1.84	2.432	5.3 8.2	.150	4.9
.500	3.24	.8898	1.76	3.469	11.5	.200	5.00
.5015	3.30	MgSO ₄ , 120.4: 1, 4		3.829	14.4	.500	5.18
1.000	3.15	0.000675	3.29	0.0478	5.2	AlBr ₃ , 267.0: 9.	-
1.0030	3.03	.002381	3.10	.153	4.91	0.0078	1.40
NH ₄ NO ₃ , 80.11: 6		.01263	2.72	.331	5.15	.0559	1.2
0.0100	3.60	.0580	2.65	.612	5.47	.1971	1.07
.0250	3.50	.2104	2.23	.998	6.34	·4355	1.07
.0230	3.30	12.04	2.23	-220	٠,٥٠	*4333	0/
	للل						
. Hausrath, Ann. P				11 Kahlenberg, I			

¹ Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 1, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
5 Loomis, Wied. Ann. 6, 1897.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

## LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol 1000 g. H ₂ O	Molecular Lowering.	g mol.	Molecular Lowering.
CdBr ₂ , 272.3: 3,	14.	KOH, 56.16: 1, 1	5, 23.	Na ₂ SiO ₃ , 122.5: 1	15.	0.472	2.200
0.00324	5.1°	0.00352	3.60°	0.01052	6.4°	.944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28	(COOH) ₂ , go.o ₂ : 0.01002	4, 15.
.0719	3.39	.05006	3.43	.2099	4.66	0.01002	3.3°
.1122	3.18	.1001	3.42	·5 ² 33	3.99	.02005	3.19
.220	2.96	.2003	3.424	HCl, 36.46:	-0	.05019	3.03
.440	2.76	-230	3.50	0.00305	3.68°	.1006	2.83
.800	2.59	.465	3.57	.00695	3.66	.2022	2.64
CuBr ₂ , 223.5: 9.	0	CH ₃ OH, 32.03: 2 0.0100	4, 25.	.0100	3.6	.366	2.56
0.0242	5.1°		1.82	.01703	3.59	.648	2.3
.0817	5.1	.0301 .2018	1.811	.0500	3.59	C ₃ H ₅ (OH) ₃ , 92.06	: 24, 25.
.2255	5.27	11 -	1.86	.1025	3.56	0.0200	1.86°
.6003	5.89	1.046	1.88	.2000	3.57	.1008	1.86
CaBr ₂ , 200.0: 14.	- 0	3.41 6.200	1.944	.3000	3.612	.2031	1.85
0.0871	5.1°		1.944	.464	3.68	·535	1.91
.1742	5.18	$C_2H_5OH, 46.04:$		.516	3.79	2.40	1.98
.3484	5.30	0.000402	1.67°	1.003	3.95	5.24	2.13
.5226	5.64	,	1.67	1.032	4.10	(C ₂ H ₅ ) ₂ O, 74.08:	24
MgBr ₂ , 184.28: 1	14.	.004993	1.81	1.500	4.42	0.0100	1.60
0.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.10		1.85	2.115	4.52	1101.	1.72
.207	5.26	.0705	1.829	3.000	6.03	.2038	1.702
.517	5.85	.2024	1.832	3.053	4.90	Dextrose, 180.1:	
KBr, 119.1: 9, 21		.5252	1.834	4.065	5.67	0.0198	1.84°
0.0305	3.61°	1.0891	1.826	4.657	6.19	.0470	1.85
.1850	3.49	1.760	1.83	HNO ₃ , 63.05: 3, 1		.1326	1.87
.6801	3.30	3.901	1.92	0.02004	3.55°	.4076	1.894
.250	3.78	7.91	2.02	.05015	3.50	1.102	1.921
.500	3.56	11.11	2.12	.0510	3.71	Levulose, 180.1:	24 25
CdI2, 366.1: 3, 5,	22.	18.76	1.81	.1004	3.48	0.0201	1.87°
0.00210	4.5°		1.80	.1059	3.53	.2050	1.871
.00626	4.0	0.0173 .0778	1.79	.2015	3.45	•554	2,01
.02062	3.52	K ₂ CO ₃ , 138.30: 6	/5	.250	3.50	1.384	2.32
.04857	2.70	0.0100	5.1°	.500	3.62	2.77	3.04
.1360	2.35	,0200	4.93	1.000	3.80	C12H22O11, 342.2: 1	
•333 •684	2.13	.0500	4.71	2.000	4.17	0.000332	1.900
.684	2.23	.100	4.54	3.000	4.64	.001410	1.87
.888	2.51	.200	4.39	H ₃ PO ₂ , 66.0: 29.		.009978	1.86
KI, 166.0: 9, 2.		Na ₂ CO ₈ , 106.10:	s I	0.1260	2.90°	.0201	1.88
0.0651	3.5°	0.0100	5.10	.2542	2.75	.1305	1.88
.2782	3.50	.0200	4.93	.5171	2.59	H ₂ SO ₄ , 98.08:	
.6030	3.42	.0500	4.64	1.071	2.45	13. 20.	31-33.
1.003	3.37	.1000	4.42	H ₃ PO ₃ , 82.0: 4, 5		0.00461	4.8°
SrI ₂ , 341.3: 22.		.2000	4.17	0.0745	3.0°	.0100	4.49
0.054 .108	5.1°	Na ₂ SO ₃ , 126.2: 28		.1241	2.8	.0200	4.32
	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
.216	5.35	•3397	3.74	1.00	2.39	.100	3.96
•327	5.52	.7080	3.74 3.38	H ₃ PO ₄ , 98.0: 6, 2:	2.	.200	3.85
NaOH, 40.06: 15	i	Na ₂ HPO ₄ , 142.1:	22, 20.	0.0100	2.80	.400	3.98
0.02002	3.45°	0.01001	5.0°	.0200	2.68	1.000	4.19
.05005	3.45	.02003	4.84	.0500	2.49	1.500	4.96
.1001	3.41	.05008	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4.34	.2000	2.25	2.500	6.53

SMITHSONIAN TABLES.

27 Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 9, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902. 33 Jones-Murray, Am. Ch. J. 30, 1903.

¹⁻²⁰ See page 217.
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894.
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

## RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.	1° C. 2°	3°	4°	5ე	<b>7</b> °	10°	15°	20°	<b>25</b> °
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.0 31. 6.0 11. 12.0 25. 4.7 9. 6.0 12.	5 16.5 5 39.5 3 13.6	63.5 21.0 53.5 17.4 24.5	(71.6 g 25.0 68.5 20.5 31.0	32.0 301.0 26.4 44.0	.5 rise 41.5 152.5 34.5 63.5	of temp 55.5 240 0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl	9 2 16. 11.5 22. 13.2 27. 15.0 30. 15.2 31.	32.0 8 44.6 0 45.0	29.9 40.0 62.2 60.0 64.5	36.2 47·5 74·0 82.0	48.4 60.5 99.5 120.5	(57.4 78.5 134. 188.5	103.5	rise of 8 127.5 (220 giv	3°.5) 152.5 res 18°.5)
$\begin{array}{c} K_2C_4H_4O_6+\frac{1}{2}H_2O \\ KNaC_4H_4O_6 \\ KNaC_4H_4O_6+4H_2O \\ LiCl \\ LiCl \\ LiCl+2H_2O \\ \end{array}$	18.0 36.0 17.3 34. 25.0 53. 3.5 7.0 6.5 13.0	5 51.3 5 84.0 0 10.0	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0 32.0	126.5 119.0 266.0 20.0 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510.0 50.0 160.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.0 22.0 41.5 87. 4.3 8.0 6.6 12 9.0 18.	5 138.0 11.3 17.2	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	30.0 (40.7 99.5	170.0 41.0 gives 8° 156.0	241.0 51.0 .8 rise) 222.0	334-5 60.1
$\begin{array}{c} NaC_2H_3O_2 + 3H_2O \ . \\ Na_2S_2O_3 \ . \ . \\ Na_2HPO_4 \ . \ . \\ Na_2C_4H_4()_6 + 2H_2O \ . \\ Na_2S_2O_3 + 5H_2O \ . \end{array}$	14.9 30.0 14.0 27.0 17.2 34.0 21.4 44.0 23.8 50.0	39.0 51.4 68.2	62.5 49.5 68.4 93.9 108.1	79.7 59.0 85.3 121.3	118.1 77.0 183.0 216.0		480.0 152.0 gives 8 1765.0	6250.0 214.5 °.4 rise)	311.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.1 86.9 39. 93. 6.5 12.6 10.0 20.6 15.4 30.	2 254.2 3 19.0 30.0	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8	gives 39.6 74.0 99.1	56.2	88.5		337.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0 40.0 24.0 45.0 17.0 34. 19.0 40.0 29.0 58.0	63.6 4 52.0 62.0	81.0 81.4 70.0 86.0 116.0	103.0 97.6 87.0 112.0 145.0	1 50.0 123.0 169.0 208.0	234.0 177.0 262.0 320.0	524.0 272.0 540.0 553.0	374.0 1316.0 952.c	484.0 50000.0
Salt. 40	° 60°	80°	100°	120°	140°	160	180	○ 200	° 240°
CaCl ₂ 137 KOH 92 NaOH 93 NH ₄ NO ₃ 682 C ₄ H ₆ O ₆ 98c	.5 121.7 .5 150.8 .0 1370.0	314.0 152.6 230.0 2400.0 (infinit	185.0 345.0 4099.0 y gives	526.3 8547.0	800.0				

^{*} Compiled from a paper by Gerlach, "Zeit. f. Aual. Chem." vol. 26.

### FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (small calories when A is grants). Temperatures are in Centigrade degrees.

Substance.	A	В	С	D	E	F	G	· H
Substance.	85 30 75 1140 250 60 25 25 25 25 25 25 25 25 25 25 25 25 25	## H2O-100  " " " " " " " " " " " " " " " " " "	NH4NO3-25 """ NH4Cl-25 """	D	E  - 4.7 - 5.1 - 5.3 - 8.0 - 11.7 - 12.4 - 13.6	F 15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 20.0 20.0 17.0 0.9 1.0 1.85 9.9 14.4 1.5.75 20.3 36.0 24.0 24.0 15.0 		- H 
NH ₄ NO ₃ .	I I I I I I	Snow " H ₂ O-1.20 Snow " H ₂ O-1.31 Snow " H ₂ O-3.61 Snow "		0 10 0	- 4.0 - 14.0 - 14.0 - 17.5† - 17.5† - 8.0 - 8.0	111111	-	122.2 17.9 129.5 10.6 131.9 0.4 327.0

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.
† Lowest temperature obtained.

### TABLE 228.

## CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 $\theta$  = Critical temperature.

P = Critical pressure in atmospheres.

 $\phi$  = Critical volume referred to volume at 0° and 76 centimeters pressure.

d = Critical density in grams per cubic centimeter.

a, b, Van der Waals constants in 
$$\left(p + \frac{a}{v^2}\right) \left(v - b\right) = r + \alpha t$$
.

Substance.	θ	P	φ	d	a × 10 ⁵	b × 106	Observer
Air	<b>—</b> 140.0	39.0	_	-	257	1560	I
Alcohol ( $C_2H_6O$ ).	243.6	62.76	0.00713	0.288	2407	3769	2
$\parallel$ " (CH ₄ O) .	239.95	78.5	-		1898	2992	3
Ammonia	130.0	115.0	-	-	798	1606	4
Argon	-117.4	52.9	-	-	259	1348	5
Benzene	288.5	47.9		0.305	3726	5370	<b>5</b> 3 6
Bromine	302.2	-	0.00605	1.18	1434	2020	6
Carbon dioxide .	31.2	73.	0.0044	0.46	717	1908	-
monoxide.	-141.1	35.9	-	-	275	1683	7 8
disdipinde	273.	72.9	0,0090	-	2316	3430	
Chloroform	260.0	54.9	_	_	2930	4450	9
Chlorine	141.0	839	_	_	1157	2259	4
Ether	146.0	93.5	0.07.584	0.208	1063	2050	10
Ether	197.0	35.77	0.01584	0.262	3496	6016 6002	11
Ethane	194.4	35.61	0.01344	0.202	3464	2848	3
Ethylene .	32.1	49.0			1074 886		12
Helium .	9.9 <-268.0	51.1	_			² 533	72
Hydrogen	<del>-240.8</del>	2.3 14.	_		5 42	880	13
" chloride.	51.25	86.0	_		692	1726	15
" "	52.3	86.0	_	0.61	697	1731	4
" sulphide.	100.0	88.7	_		888	1926	1 1
Krypton	-62.5	54.3	_	_	462	1776	5
Methane .	-81.8	54.9	_	_	376	1557	i
"	-95.5	50.0	_		357	1625	4
Neon	<205.0	29.	_	_	-		5,13
Nitric oxide (NO).	-93.5	71.2	_	-	2 57	1160	i
Nitrogen	-146.0	35.0	_	0.44	259	1650	I
" monoxide							
$(N_2O)$	35.4	75.0	0.0048	0.41	720	1888	4,17
Oxygen .	—118.o	50.0	-	0.6044	273	1420	I
Sulphur dioxide .	155.4	78.9	0.00587	0 49	1316	2486	9,17
Water	358.1	-	0.001874	0.429	-	-	6
"	374.	217.5	-	-	1089	1 362	16
<u> </u>	f						

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.

- (3) Young, Phil. Mag. 1900. (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84,
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.

(6) Nadejdine, Beibl. 9, 1885.(7) Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.

(8) Batelli, 1890.

- (9) Sajotschewsky, Beibl. 3, 1879.
- (10) Knietsch, Lieb. Ann. 259, 1890. (11) Batelli, Mem. Torino (2), 41, 1890.
- (12) Cardozo, Arch. sc. phys. 30, 1910. (13) Kamerlingh-Onnes, Comno. Phys. tab. Leiden, 1908, 1909, Proc. Amst. 11, 1908, C. R. 147, 1908.
  (14) Olszewski, Ann. Phys. 17, 1905.

(15) Ansdell, Chem. News, 41, 1880. (16) Holborn, Baumann Ann. Phys. 31, 1910. (17) Cailletet, C. R. 102, 1886; 104, 1887.

"Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

### CONDUCTIVITY FOR HEAT, METALS AND ALLOYS.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation  $k_t = k_0[1 + \alpha(t - t_0)]$ .  $k_0$  is the conductivity at  $t_0$ , the lower temperature of the bracketed pairs in the table,  $k_t$  that at temperature t, and  $\alpha$  is a constant.  $k_t$  in g-cal. per degree C per sec. across cm cube =  $0.239 \times k_t$  in watts per degree C per sec. across cm cube.

Substance	t°C	$k_t$	а	Refer- ence.	Substance.	ℓ°C	k _t	а	Refer- ence.
Aluminum		0.514		1	Mercury		0.0148	+.0055	7
		0.480}	+.0030	2	Molybdenum		0.0189 \$		6
"		0.492 {			Nickel		0.346 0.120	0001	1
"		0.760	+.0020	3	"		0.1420		2
"		0.885	+.0014	2	"		0.1425	00032	3
"		1.01	7.0014	3	"		0.1380 {	00032	3
Antimony		0.0442	00104	4	"		0.1325	00095	3
Bismuth		0.0396 5		5	"		0.064		
46		0.0104		_	"		0.058	00047	3
"		0.0161	0021	2	Palladium		0.1683	+.0010	2
Brass		0.181		I			0.182 {	7.0010	-
" rollow	1 .	0.260		I	Platinum		0.1664	÷.00051	2
", yellow	1	0.204	+.0024	4	Pt 10% Ir		0.1733 S	+.0002	6
Cadmium, pure		0.230	0015	4	Pt 10% Rh.		0.072	+.0002	6
" ""		0.222	0	-	Platinoid		0.060	<u> </u>	I
46	100	0.215	00038	2	Potassium		0.232	0013	8
Constantan		0.0540	+.00227	2	" ···		0.216 }	Ŭ	
(60 Cu+40 Ni)		0.0640 }	,,		Rhodium		0.210	0010	6
Copper,* pure.		0.018	_	I	Silver, pure		0.998 1.006 \		
" "		0.008	00013	2	"		0.002	00017	2
German silver.	1	0.070	+.0027	4	Sodium		0.321	0010	8
Gold	17	0.705	00007	6	"	88.1	0.288 }	0012	
Graphite		0.037	+.0003	6	Tantalum		0.130	0001	6
Iridium Iron,† pure		0.141	0005	8	,,		0.174		9
"" pare		0.161	0008	2	"		o. 186 } o. 198 }	+.00032	9
Iron, wrought.		0.152		ı	Tin		0.155	6-	
" " .		0.144	00008	2	"		0.145	00069	4
	100	0.143	00008	2	", pure	-160	0.192		I
" steel, 1 %		0.108	0001	2	Tunneton		6	2007	6
Lead, pure		0.107 }	_	ı	Tungsten	17	0.476	0001	"
"""		0.083			Tungsten	1600	0.240		
" "		0.081	0001	2	ii		0.272	+.00023	10
Magnesium	oto	0.376	i _	4	"		0.294	+.00016	10
	100)			1			0.313		
Manganin	100	0.035		1	Wood's alloy Zinc, pure		0.319		7
Ni 12 Mn)		0.0519	+.0026	2	Zinc, pure				
,							0.2653	00016	2
						100	0.2019)		
	<u> </u>		·		<u>'L</u>		<u>'</u>		

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 1911; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (10) Worthing, Phys. Rev. 1917.

ing; for reference see next page).

† Iron: 100-727° C, k_i = 0.202; 100-912°, 0.184; 100-1245°, 0.191 (Hering). SMITHSONIAN TABLES.

^{*}Copper: 100–197° C,  $k_t$  = 1.043; 100–268°, 0.969; 100–370°, 0.931; 100–541°, 0.902 (Her-

#### CONDUCTIVITY FOR HEAT.

## TABLE 230. - Thermal Conductivity at High Temperatures.

(See also Table 229 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

Material.	Tempera- ture, ° C	k	Reference.	Material.	Tempera- ture, ° C	k	Reference
Amorphous carbon  Graphite (artificial)	37-163 170-330 240-523 283-597 100-360 100-751 100-842 100-390 100-546 100-720 100-914 30-2830 2800-3200 90-110 180-120 500-700	.028003 .027004 .020003 .011004 .089 .124 .129 .338 .324 .306 .201 .162 .002 .5545 .4434	1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1	Brick: Carborundum Building Terra-cotta Fire-clay Gas-retort. Graphite Magnesia Silica. Granite.  Limestone.  Porcelain (Sèvres). Stoneware mixtures.	150-1200 15-1100 125-1220 100-1125 300-700 50-1130 100-1000 100 500 40 100 350 165-1055 70-1000	.0032027 .00180038 .00320054 .0038 .024 .00270072 .0020033 .00450050 .00460057 .00300049 .00320035	3 3 3 3 3 4 4 4 4 4 4 4 4 3 3

References: (1) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1009; (2) Hering, Tr. Am. Inst. Elect. Eng. 1010; (3) Bul. Soc. Encouragement, 111, 870, 1909; Electroch. and Met. Ind. 7, 383, 433, 1909; (4) Poole, Phil. Mag. 24, 45, 1912; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1909; Dewey, Progressive Age, 27, 772, 1909; Woolson, Eng. News, 58, 166, 1907, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1913. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 231. - Thermal Conductivity of Various Substances.

Substance, temperature.	kt	Refer- ence.	Substance, temperature.	kŧ	Refer- ence.
Aniline BP 183° C., -160. Carbon, gas. Carbon, graphite. Carborundum. Concrete, cinder. Stone. Diatomaceous earth. Earth's crust. Fire-brick. Fluorite, -190. Fluorite, o Glass: window. crown, 03572, -190. crown, 03572, 000. h'vy flint 0165, -190. h'vy flint 0165, -100. Granite. Ice, -160. Ice, o. Iceland spar, -190. Iceland spar, -190. Lime. Limestones, calcite Marbles, dolomite Mica. Flagstone   to cleavage. Micaceous   to cleavage.	.000112 .010 .012 .00050 .00081 .00022 .00013 .004 .00028 .003 .0025 .0018 .0025 .0018 .0026 .0038 .0019 .0018 .00077 .0053 .0018 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050 .0050	1 - 2 - 34 - 455 - 55555566 + 155466 - 66	Naphthalene MP 70° C., -160  Naphthalene MP 70° C., 0  Naphthol, -  Naphthol, -  Nitrophenol, MP 114° C., -160  Nitrophenol, MP 114° C., -160  Nitrophenol, -  Parafiin, 0 -  Porcelain.  Quartz   to axis, -190  ", 0  ", 100  Quartz   to axis, -190  ", 100  Rock salt, 30  Rock salt, 30  Rubber, vulcanized, -160  Rubber, para  Sand, white, dry.  Sandstone, dry.  Sawdust  Slate   to cleavage  Slate   to cleavage  Slate   to cleavage  Slate   to cleavage  Slow, fresh, dens. = 0.11  Snow, old  Soil, average, sl't moist  Soil, very dry.  Sulphur, rhombic, 0  Vaseline, 20  Vulcanite	.0013 .00081 .00068 .00062 .00106 .00062 .00059 .0025 .0386 .0173 .0167 .0150 .00033 .00037 .0005 .00012 .00012 .0007 .0007 .0007	1 1 1 1 1 5 5 5 5 5 5 5 5 5 6 6 6 7 7 7 - 5 8 9

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 1911; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, 1911; (9) Stefan.

#### TABLE 232.

# THERMAL CONDUCTIVITIES OF INSULATING MATERIALS.

Conductivity in g-cal. flowing in 1 sec. through plate 1 cm thick per cm² for 1° C difference of temperature.

Material.	Conduc- tivity.	Density. g/cm³	Remarks.
Air Calorox. Hair felt Keystone hair Pure wool """ "" Cotton wool. Insulite. Linofelt	0.00006 0.00076 0.00085 0.000093 0.000084 0.000090 0.000101 0.000102 0.000103	 0.064 0.27 0.30 0.107 0.102 0.061 0.039  1.9 0.18	Horizontal layer, heated from above. Fluffy, finely divided mineral matter.  Felt between layers of bldg. paper. Firmly packed.  Loosely packed. Very loosely packed. Firmly packed. Pressed wood-pulp—rigid, fairly strong. Vegetable fibers between layers of paper—soft and flexible.
Corkboard (pure)  Eel grass. Flaxlinum Fibrofelt Rock cork Balsa wood Waterproof lith	0.000106 0.00011 0.000113 0.000113 0.000119 0.00012	0.18 0.25 0.18 0.18 0.33 0.12 0.27	Inclosed in burlap. Vegetable fibers — firm and flexible.  Rock wool pressed with binder, rigid. Very light and soft. Rock wool, vegetable fiber and binder, not flexible.
Pulp board. Air cell ½ in. thick. Air cell 1 in. thick. Asbestos paper. Infusorial earth, block. Fire-felt, sheet. Fire-felt, roll. Three-ply regal roofing. Asbestos mill board. Woods, kiln dried:	0.00015 0.000154 0.000165 0.00017 0.00020 0.000205 0.00022 0.00024 0.00029	0.14 0.14 0.50 0.69 0.42 0.68 0.88	Stiff pasteboard. Corr. asbestos paper with air space. Fairly firm, but easily broken.  Asbestos sheet coated with cement, rigid. Soft, flexible asbestos. Flexible tar roofing. Pressed asbestos, firm, easily broken.
Cypress. White pine. Mahogany. Virginia pine. Oak. Hard maple. Asbestos wood, sanded.	0.00023 0.00027 0.00031 0.00033 0.00035 0.00038	0.46 0.50 0.55 0.55 0.61 0.71 1.97	Asbestos and cement, very hard, rigid.

Dickinson and van Dusen, Am. Soc. Refrigerating Eng. J. 3, Sept. 1916.

## TABLES 233-234.

## CONDUCTIVITY FOR HEAT.

#### TABLE 233. - Various Substances.

 $k_t$  is the heat in gram-calories flowing in 1 sec. through a plate 1 cm. thick per sq. cm. for 1°C drop in temperature.

Substance.	Density.	°C.	k,	Substance.	k,	Authority.
Asbestos fiber  85% magnesia asbestos  Cotton  Eiderdown  Lampblack, Cabot number 5  Quartz, mesh 200  Poplox, popped Na ₂ SiO ₃ Wool fibers	0.201 ,216 ,021 ,101 ,0021 ,109 ,193 1.05 0.093 ,015 ,054	\$500 \$100 \$500 100 "" \$150 "" \$100 \$500 \$200 \$500 \$100 ""	.00019 .00016 .00017 .00011 .000071 .00015 .000074 .000107 .00016 .000118 .00018	Asbestos paper Blotting paper Portland cement Cork, t, o°C Chalk Ebonite, t, 49° Glass, mean Ice Leather, cow-hide chamois Linen Silk Caen stone, limestone Free stone, sandstone	0.00043 .00015 .00071 .0007? .0020 .00037 .002 .0057 .00042 .00015 .00021 .00095	Lees-Chorl- ton. Forbes. H, L, D, see p. 205. Various. Neumann. Lees-Chorl- ton. H, L, D.

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI., p. 550, 1912; k_t (Randolph's values) is mean conductivity between given temperature and about 10°C. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

Substance.	Density.	k _t		Substance.	Density.	kŧ	
Dubstance. Densit		at 20°C.	at 100°C.			at 20°C.	at 100°C.
Brick, fire Carbon, gas Ebonite Fiber, red Glass, soda Silica, fused	1.73 1.42 1.19 1.29 2.59 2.17	.00110 .0085 .00014 .00112 .00172 00237	.00109 .0095 .00013 .00119 .00182	Boxwood Greenheart Lignumvitæ	0.90 1.08 1.16 0.55 0.65 0.58	.00036 .00112 .00060 .00051 .00058 .00041	.00041 .00110 .00072 .00060 .00061

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm. cube per °C. when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts/inch²/inch/°C.) =  $\frac{r}{10.6}$  conductivity.

Substance.	Grams.		Conductivity.							
Substance.	per cm³.	100° C.	200° C.	300° C.	400° C.	500° C.	temp.			
Air-cell asbestos	0.232 .168 .326 .506 .321 .450 .362	0.00034 .00015 .00028 .00034 .00030 .00023 .00049	0.00043 .00019 .00032 .00032 .00029 .00025 .00066	0.00050 .00037 .00040 .00033 .00025 .00079	.00036 .00090	0.00046	320 180 600 400 300 600			

### TABLE 234 .- Water and Salt Solutions.

Substance.	°C.	k _t	Authority.	Solution in water.	Density.	°C.	k,	Authority.
Water {	0 11 25 20	0,00150 .00147 .00136 .00143	Goldschmidt, '11. { Lees, '98. Milner, Chattock, '98	CuSO ₄ KCl NaCl " H ₂ SO ₄ ZnSO ₄	1.160 1.026 1.178 1.054 1.180 1.134 1.136	4.4 13. 4.4 26.3 20.5 21. 4.5	0.00118 .00116 .00115 .00135 .00126 .00130 .00118	H. F. Weber. Graetz.  H. F. Weber.  Chree.  H. F. Weber.

### TABLE 235. - Thermal Conductivity of Organic Liquids.

Substance.	°C	kt	Refer.	Substance.	°C	kt	Refer.	Substance.	°C	kı	Refer.
Acetic acid Alcohols: methyl " ethyl " amyl Aniline Benzene	11 0 0	.03472 .0352 .0346 .03345 .02434	2 2 3 —	Chloroform	9-15 9-15 25 13		1 1 2 5	Oils: olive. " castor Toluene. Vaseline. Xylene.	 0 25 0	. 03395 . 03425 . 03349 . 0344 . 03343	4 3 2
Reference	s: (I	) H. F.	We	ber; (2) Lees; (3) G	oldsc	hmidt;	(4)	Wachsmuth; (5) Gr	aetz.		

### TABLE 236. - Thermal Conductivity of Gases.

The conductivity of gases,  $k_t = \frac{1}{4}(9\gamma - 5)\mu C_v$ , where  $\gamma$  is the ratio of the specific heats,  $C_p/C_v$ , and  $\mu$  is the viscosity coefficient (Jeans, Dynamical Theory of Gases, 1916). Theoretically  $k_t$  should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

Gas.	ℓ° C	kı	Ref.	Gas.	ℓ° C	ke	Ref.	Gas.	t° C	kt	Ref.
Air* Ar " CO CO2	-191 0 100 -183 0 100 -78 0	0.0000180 0.0000566 0.0000719 0.0000142 0.0000388 0.0000509 0.0000542 0.0000219 0.0000332	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CO ₂ C ₂ H ₄ He " H ₂ " CH ₄	100 0 -193 0 100 -192 0 100	0.0000496 0.000395 0.000146 0.000344 0.000398 0.000133 0.000416 0.000499 0.0000720	1 2 1 4 1 1 4 1 4	Hg N ₂ " " O ₂ " NO N ₂ O	203 -191 0 100 -191 0 100 8	0.0000185 0.0000183 0.0000568 0.0000172 0.0000570 0.0000570 0.000046 0.0000353	3 1 1 1 1 1 1 2

References: (1) Eucken, Phys. Z. 12, 1911; (2) Winkelmann, 1875; (3) Schwarze, 1903; (4) Weber, 1917.

### TABLE 237. - Diffusivities.

The diffusivity of a substance  $=h^2=k/\epsilon\rho$ , where k is the conductivity for heat,  $\epsilon$  the specific heat and  $\rho$  the density (Kelvin). The values are mostly for room temperatures, about  $18^\circ$  C.

Material.	Diffusivity.	Material.	Diffusivity.
Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air Asbestos (loose) Brick (average fire) Brick (average fire) Brick (average building)	1.133 1.182 0.173 0.121 0.237 0.883 0.0327 0.152 0.240 1.737 0.407 0.407 0.179 0.0035	Coal. Coucrete (cinder). Concrete (stone). Concrete (light slag). Cork (ground). Ebonite. Glass (ordinary). Granite. Lice. Limestone. Marble (white). Paraffin. Rock material (earth aver.). Rock material (crustal rocks). Sandstone. Snow (fresh). Soil (clay or sand, slightly damp). Soil (very dry). Water. Wood (pine, cross grain). Wood (pine with grain).	0.0155 0.0112 0.0092 0.0090 0.00098 0.0118 0.0064 0.0133 0.0033 0.005 0.0031

Taken from An Introduction to the Mathematical Theory of Heat Conduction, Ingersoll and Zobel, 1913.

SMITHSONIAN TABLES.

^{*} Air: k₀ = 5.22 (10⁻⁵) cal. cm ⁻¹ sec. ⁻¹ deg. C⁻¹; 5.74 at 22⁰; temp. coef. = .0029; Hercus-Laby, Pr. R. Soc. A95, 190, 1919.

#### LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion;  $A_1$  is the authority for C; M is the mean coefficient of expansion between o° and 100° C;  $\alpha$  and  $\beta$  are the coefficients in the equation  $l_t = k(1 + \alpha_t + \beta_t^2)$ , where b is the length at o° C and  $l_t$  the length at t° C;  $A_2$  is the authority for a, B, and M. See footnote for Molybdenum and Tungsten.

Substance.	t	C × 104	$A_1$	M × 104	a × 104	β× 10 ⁶	A2
Aluminum	40	0.2313	ı	0.2220			2
"	600	0.3150	3			_	
"	-191 to +16	0.1835	4		. 23536	.00707	5
							Ĭ
Antimony:    to axis	40	0.1692	I	—	_	<b>—</b>	-
1 to axis	40	0.0882	I	- ,		_	
Arsenic	40	0.1152	I	0.1056	.0923	.0132	6
Auscule	40	0.0559	I	_	_	-	-
Bismuth:    to axis	40	0.1621	1	_	_		l
⊥ to axis	40	0.1208	ī			_	_
Mean	40	0.1346	I	0.1316	.1167	.0140	6
Cadmium	40	0.3069	1	0.3159	. 2603	.0466	6
0 1 51 1							1
Carbon: Diamond	40	0.0118	I	_	_	_	-
Gas carbon	40	0.0540	I	_			_
Graphite	40	0.0786	I	_	.0055	.0016	13
Cobalt	40 40	0.2078 0.1236	ı	_		_	_
Copper	40	0.1230	ī	0.1666	.1481	.0185	6
Copper		0.1078	4	0.1000	.16070	.00403	
Gold	40	0.1443	ī	0.1470	.1358	.0112	5 6
"	-170	0.117	15				
Indium	40	0.4170	Ĭ		_ :	_	_
Iridium	18	0.088	16	0.090		—	16
Iron: Soft	40	0.1210	1		_	_	
Cast	40	0.1061	1	_	_	_	_
Cast Wrought	-191 to +16	0.0850	4	_			
Steel	-18 to 100	0.1140	7	_	.11705	.005254	8 8
Steel annealed	40	0.1322	1 1	0.1080	.00173	.008336	
Lead	40	0.2924	Î	0.2700	.273	.0074	9
Lead (cast)	-170	0.24	15				
Magnesium	40	0.2694	I	0.261		_	16
Nickel	40	0.1279	I	-	.13460	.003315	8
0	-191 to +16	0.1012	4	_		_	—
Osmium	40	0.0657	I	_			_
PalladiumPhosphorus	40 0-40	0.1176	10	-	.11670	.002187	8
Platinum	40	0.0800	10		. 08868	.001324	8
Potassium	0-50	0.8300	11		.00000	.001324	°
Rhodium	40	0.0850	ī		_		-
Ruthenium	40	0.0063	ī			_	_
Selenium	40	0.3680	1	0.6604	- 1	_	12
Silicon	40	0.0763	1	- 1		_	
Silver	40	C.1921	I	-	.18270	.004793	8
Sadium		0.1704	4	0.189	_		16
Sodium	o to go 40	2.26 0.6413	14	1.180			12
Tellurium	40	0.1675	ī	0.3687			12
Thallium	40	0.1075	ī	0.3007			12
Tin	40	0.2234	ī	0.2296	. 2033	.0263	6
Zinc	40	0.2918	I	0.2976	.274I	.0234	6
Zinc (cast)	-170	0.190	15			-	-

References: (1) Fizeau; (2) Calvert, Johnson and Lowe; (3) Chatelier; (4) Henning; (5) Dittenberger; (6) Matthiessen; (7) Andrews; (8) Holborn-Day; (9) Benoit; (10) Pisati and De Franchis; (11) Hagen; (12) Spring; (13) Day and Sosman; (14) Griffiths; (15) Dorsey; (16) Gritneisen.

Tungsten: (L - Lo)/L₀ = 4.44 × 10⁻⁶(T - 300) + 45 × 10⁻¹¹(T - 300)² + 2.20 × 10⁻¹³(T - 300)³. L₀ = length at 300° K. Coefficient at 300° K = 4.44 × 10⁻⁶; 1300° K, 5.19 × 10⁻⁶; 2300° K, 7.26 × 10⁻⁶. Worthing, Phys. Rev. 1017.

Molybdenum:  $Lt = L_0(\tau + 5.15t \times 10^{-6} + 0.00570t^2 \times 10^{-6})$ , for 19° to  $-142^{\circ}$  C;  $= L_0(\tau + 5.01t \times 10^{-6} + 0.00138t^2 \times 10^{-6})$ , for 19° to  $+305^{\circ}$  C; Schad and Hidnert. Phys. Rev. 1919. The Holborn-Day and Sosman data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

## LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A, the authority.

			_				
Substance.	t	C × 104	A.	Substance.	t	C × 104	A.
Brass:							
Cast	0-100	0.1875	I	Platinum -silver:			
Wire	"	0.1930	I	I Pt + 2Ag	0-100	0.1523	4
	•	.1783193	2	Porcelain	20-790	0.0413	19
71.5 Cu + 27.7 Zn + 0.3 Sn + 0.5 Pb 71 Cu + 29 Zn	10	o. 1859	3	Ouartz: Bayeux	1000-1400	0.0553	20
71 Cu + 20 Zn	0-100	0.1906	4	Parallel to axis	<b>o</b> –80	0.0707	6
Bronze:					-190 to +16	0.0521	21
3 Cu + 1 Sn	16.6-100	0.1844	5	Perpend. to axis	o-8o	0.1337	6
				Quartz glass	-190  to + 16	-0 0026	13
	16.6-350	0.2116	5	" "	16 to 500 16–1000	0.0057	26
1	10.0 330	0.222	٦	Rock salt		0.0058	3
				Kubber, hard	40 0°	0.691	27
	16.6-957	0.1737	5	C1	-160	0.300	27
86.3 Cu + 9.7 Sn +	40	0.1782	,	Speculum metal	0-100	0.1933	1
97.6 Cu + 1 (1)	1		3	Parallel to lesser			
97.6 Cu +   { hard soft	0-80	0.1713	6	horizontal axis	££ .	0.0832	8
0.2 P (SUIT		0.1708		Parallel to greater	46		
Caoutchouc		0.657-0.686	2	horizontal axis		0.0836	8
Constantan	16.7-25.3 4-20	0.770 0.1523	7	Parallel to vertical	66	0.0470	8
Ebonite	25.3-35.4	0.1323	7	axis		C.0472	١
Ebonite	0-100	0.1950	7 8	Parallel to longi-			
German silver	"	0.1836	8	tudinal axis	44	0.0937	8
Gold-platinum:	**			Parallel to horizon-	"		0
2 Au + 1 Pt		0.1523	4	tal axis Type metal	16.6-254	0.0773	8
2 Au + 1 Cu	66	0.1552	4	Vulcanite	0-18	0.1952	5 22
Glass:				Wedgwood ware	0-100	0.0890	5
Tube	""	0.0833	I	Wood:			
Plate	"	0.0828	10	Parallel to fiber:	44		
Plate Crown (mean)	"	0.0897	10	Ash Beech	2.34	0.0951	23 24
_ " "	50-60	0.0954	II	Chestnut	• • • • • • • • • • • • • • • • • • • •	0.0649	24
Fint	"	0.0788	11	Elm	"	0.0565	24
Jena ther- 16 ^{IU} mometer normal	0-100	0.081	12	Mahogany	"	0.0361	24
				Maple Oak	44	0.0638	24 24
" 59 ^{III}	- (6	0.058	12	Pine	44	0.0541	24
	- 191 to + 16	0.424	13	Walnut	44	0.0658	24
Gutta percha	20	1.983	14	Across the fiber:	"		
Ice	- 20 to - 1	0.51	15	Beech	66	0.614	24
Parallel to axis	0-80	0.2631	6	Elm	46	0.443	24
Perpendicular to axis	"	0.0544	6	Mahogany	44	0.404	24
Lead-tin (solder)				Maple	"	0.484	24
2 Pb + 1 Sn Magnalium	0-100 12-39	0.2508 0.238	16	Oak	"	0.544	24
Manganin	- 39	0.181		PineWalnut	44	0.341	24 24
Marble	15-100	0.117	17	Wax: White	10-26	2.300	25
Paraffin	0-16	1.0662	18	" "	26–31	3.120	25
"	16-38 38-49	1.3030	18 18		31-43	4.860	25
Platinum-iridium	30 49	4.7707	10		43-57	15.227	25
10 Pt + 1 Ir	40	0.0884	3				
		<u> </u>		·			
References:							
	(A) D						
(1) Smeaton.	(8) Pfaff. (9) Deluc.			(15) Mean.		(22) Mayer	
(2) Various.	(g) Deluc.	sier and Laplac	·e.	(16) Stadthagen (17) Fröhlich.	•	(23) Glatze (24) Villari	l.
(4) Matthiessen.	(11) Pulfrio	ch.		(18) Rodwell.		(25) Kopp.	
(5) Daniell.	(12) Schott			(19) Braun.	_	(26) Randa	11.
(6) Benoit. (7) Kohlrausch.	(13) Henni (14) Russn	ng.		(20) Deville and (21) Scheel.	Troost.	(27) Dorsey	7.
(/) Komiauscii.	(14) Kussn	C1.		(21) Scheel.			

## CUBICAL EXPANSION OF SOLIDS.

If  $v_2$  and  $v_1$  are the volumes at  $t_2$  and  $t_1$  respectively, then  $v_2 = v_1$   $(1 + C\Delta t)$ , C being the coefficient of cubical expansion and  $\Delta t$  the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance.	t or $\Delta t$	C × 104	Authority.
Antimony Beryl Bismuth Copper Diamond Emerald Galena Glass, common tube "hard Jena, borosilicate 59 111 "pure silica Gold Ice Iron Lead Paraffin Platinum Porcelain, Berlin Potassium chloride "nitrate "sulphate Quartz Rock salt Rubber Silver Sodium Stearic acid Sulphur, native Tin Zinc	0-100 0-100 0-100 0-100 0-100 40 40 40 0-100 0-100 0-100 0-100 0-100 -20-1 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 20 0-100 50-60 20 0-100 20 33.8-45.5 13.2-50.3 0-100 0-100	0.3167 0.0105 0.3948 0.4998 0.0354 0.0168 0.558 0.276 0.214  0.156 0.0129 0.4411 1.1250 0.3550 0.8399 5.88 0.265 0.8399 5.88 0.265 0.814 1.094 1.967 1.0754 0.3840 1.2120 4.87 0.5831 2.1364 8.1 2.23 0.6889 0.8928	Matthiessen Pfaff Matthiessen " Fizeau " Ffaff Regnault " Scheel Chappuis Matthiessen Brunner Dulong and Petit Matthiessen Russner Dulong and Petit Chappuis and Harker Playfair and Joule " " Tutton Pfaff Pulfrich Russner Matthiessen E. Hazen Kopp " Matthiessen "

^{*} For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289.

SMITHSONIAN TABLES.

# CUBICAL EXPANSION OF LIQUIDS.

If  $V_0$  is the volume at  $0^0$  then at  $t^0$  the expansion formula is  $V_t = V_0 (1 + \alpha t + \beta \ell^2 + \gamma \ell^3)$ . The table gives values of  $\alpha$ ,  $\beta$  and  $\gamma$  and of C, the true coefficient of cubical expansion, at  $20^0$  for some liquids and solutions.  $\Delta t$  is the temperature range of the observation and A the authority.

Liquid.	Δ <i>t</i>	a 10 ³	β 10 ⁶	γ 10 ⁸	C 10 ⁸ al 20 ⁰	A
Acetic acid Acetone	16-107 0-54	1.0630 1.3240	0.12636 3.8090	1.0876 —0.87983	1.071 1.487	3
Alcohol:			ŭ í	.,,		
A myl Ethyl, 30% by vol	15-80 18-39	0.9001 0.2928	0.6573 10.790	1.18458 —11.87	0.902	4a
" 50% "	0-39	0.7450	1.85	0.730	<del></del>	6
" 99.3% " · · · · · · · · · · · · · · · · · ·	27-46 0-40	0.866	2.20	Ξ	1.12	6
" 3000 " " .	0-40	0 524	-	_	-	I
Methyl	0-61 11-81	1.1342	1.3635 1.27776	0.8741 0.80648	1.199 1.237	5a   5a
Bromine	0-59	1.06218	1.87714	-0.30854	1.132	2
5.8% solution	18-25	0.07878	4.2742	_	0.250	7
40.9% " · · · · Carbon disulphide · · ·	17-24	0.42383	0.8571	-	0.458	7
500 atmos, pressure .	-34-60 0-50	0.940	1.37065	1.91225	1.218	4a 1
3000 " "	0-50 0-76	0.581	0.89881	-	- 1 226	1 4b
Chloroform	0-63	1.10304	4.66473	1.35135 —1.74328	1.236 1.273	4b
Ether	<b>—</b> 1 5–38	0.4853	2.35918 0.4895	4.00512	0.505	4a 8
Hydrochloric acid:			0.4095	_		0
33.2% solution	0-33	0.4460	0.215	_	0.455	9
Olive oil	_	0.6821	1.1405	-0.539	0.721	10
Pentane	0-33	1.4646	3.09319	1.6084	1.608	14
24.3% solution	16-25	0.2695	2.080	-	0.353	7
Phenol	36-157	0.8340	0.10732	0.4446	1.090	11
Density 0.8467	24-120	0.8994	1.396	-	0.955	12
Sodium chloride:	0-29	0 3640	1.237	_	0.414	9
Sodium sulphate:	11-40		1.258		0.410	
Sulphuric acid:	11-40	0.3599			0.410	9
10.9% solution	0-30 0-30	0.2835	2.580 0.432		0.387	9
Turpentine	<del></del> 9-106	0.9003	1.9595	-0.44998	0.973	5b
Water	0-33	-0.06427	8.5053	-6.7900	0.207	13
	1	1			1	

### AUTHORITIES.

- Amagat: C. R. 105, p. 1120; 1887.
   Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
- 3. Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855. b. Lieb. Ann. 93, p. 129; 1855.
- 6. Recknagel: Sitzber. bayr. Ak. p. 327, 2 Abt.; 1866.
- Drecker: Wied. Ann. 34, p. 952; 1888.
   Emo: Ber. Chem. Ges. 16, 1857; 1883.
- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.

- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
  11. Pinette: Lieb. Ann. 243, p. 32; 1888.
  12. Frankenheim: Pogg. Ann. 72, p. 422; 1847.
- 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1;
- 1903. 14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

### TABLE 242.

## COEFFICIENTS OF THERMAL EXPANSION.

### Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Volu	ıme.		Coefficient al	Constant Pres	sure.	
Substance.	Pressure cm.	Coefficient ×	Reference.	Substance.	Pressure cm.	Coefficient X	Reference.
Air  " " " " " " " " " " " " " " " " " "	.6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 99.8 100.0 76. 56.7 .0077 .025 .47 .93 11.2 76.4 100.0 .06 .53 100.2 100.2 7651 19 18.5 75.9 76.	.37666 .37172 .36630 .36580 .36650 .36744 .36650 .38566 .4100 .3668 .36856 .36753 .36641 .37264 .36985 .37262 .36981 .37335 .37248 .36667 .3623 .3623 .3656 .37262 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .363626 .3021 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681 .36681	1 " " " 2 3 3 " " " 4 4 3 1 1 " " " 4 4 3 1 1 " " " 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Oxygen, $E = 0$ . Nitrogen, $E = 0$ .	ne calculation of and 100° C e change of vertical change of a change of vertical change of a change of vertical change of a change of vertical cha	on of the C. Expar colume u $v = v = v = v = v = v = v = v = v = v $	e ex- nsion nder ), ), ), ), ),

- Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.
- Meas. 13, 1903.
  3 Regnault, Ann. chim. phys. (3) 5, 1842.
  4 Keunen-Randall, Proc. R. Soc. 59, 1896.
- 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894.
  7 Andrews, Proc. Roy. Soc. 24, 1876.
  8 Meleander, Acta Soc. Fenn. 19, 1891.
  9 Amagat, C. R. 111, 1890.
  10 Hirn, Théorie méc. chaleur, 1862.

### SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range * of temperature, ° C	Specific heat.	Refer- ence.	Element.	Range * of temperature,	Specific heat.	Reference.
				Calada			-0
Aluminum	-240.6	,0002	45	Cobalt	500 1000	.1452	18
	-190.0	.0889	45 46	"	-182 to +15	.0822	10
"	-73.0 -100 to -82	.1466	47	"	15-100	.1030	10
"	-76 to -1	.1962	47	Copper †	-249.5	.0035	45
46	+16 to +100	.2122	48	46"	- 223	.0208	46
"	+16 to +304	. 2250	48	"	-185	.0532	45
"	-250	. 1428	r		-63	.0865	46
	•	. 2089	1		+25	.0017	44
	100	. 2226	I	"	76 84	.0937	51 51
	250 500	. 2382	I	"	100	.0012	2
"	16–100	.2122	43	"	362	.0007	51
Antimony	15	.0480	2	a	900	.1259	20
"	100	.0503	2	"	15-238	.0951	43
. "	200	.0520	2	"	-181 to 13	.0868	21
Arsenic, gray	0-100	.0822	3	Gallium, liquid	23-100	.0940	21
Arsenic, black Barium	0-100 -185 to +20	.0861	3	Gallium, liquid	12 to 113 12-23	.080	22
Bismuth	-105 to +20 -186	.068	4 5 6	Germanium	0-100	.0737	23
66	-180	.0301	6	Gold	-185 to +20	.033	4
"	75	0300	6	"	0-100	.0316	24
"	20-100	.0302	7 8	Indium	0-100	.0570	13
" fluid	280-380	.0363		Iodine	-90 to +17	.0485	49
Boron	0-100	.307	9	"	-191 to -80	.0454	49
44	-191 to -78	.0707	47	********	9-98 -186 to +18	.0541	25 26
Bromine, solid	-76 to -0 -78 to -20	.1677	47	Iridium	18-100	.0282	26
" solid	-102 to -80	.0843	49	Iron	-223	.0176	46
" fluid	13-45	.107	11	"	-163	.0622	46
Cadmium	- 223	.0308	46	"	-63	.0961	46
"	-173	.0478	46	<u>"</u>	+37	.1092	46
46	-73	.0533	46	cast	20-100	.1189	27 28
	21	.0551	2	wrought		.1152	28
"	100	.0570	2 2	" wrought	1000-1200 500	1.1989	28
"	300	.0594	2 2	" hard-drawn	0-18	.0986	20
Cæsium		.0482	12	" hard-drawn	20-100	.1146	20
Calcium	-185 to +20	.157	4	- 44	-185 to +20	.0958	4
"	0-181	.170	13	"	o to +200	.1175	53
Carbon, graphite	-191 to -79	.0573	47		o to +300	.1233	53
" " …	-76 to -0	.1255	47		o to +400	.1282	53
	-50 +11	.114	14	"	o to +500 o to +600	.1338	53
	977	.160	14	(E	o to +700	1.1390	53
" "	1730	.50	52	"	o to +800	.1597	53
l i	[ _ 0.44	.005	50	"	o to +000	.1644	53
Acheson	1 ( -186	.027	50	66	o to +1000	.1557	53
Carbon, diamond	-50	.0635	47		o to +1100	1534	53
" "	+11	.113	47	Lanthanum	0-100 250	.0448	15
Cerium	985	.459	47	Lead	-250 -236	.0143	46
Chlorine, liquid	0-100 0-24	.0448	15	"	-103	.0217	46
Chromium	-24 -200	.0666	17	44	-73	.0205	46
16	0	.1039	17	44	15	,0299	2
44	100	.1121	17	44	100	.0311	2
"	600	.1872	17	"	300	.0338	2
"	-185  to  +20	.086	4	" fluid	310	.0356	30
	l		<u> </u>			1	

^{*}When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat.  $\uparrow 0.3834 + 0.00020(t-25)$  intern. j per g degree = 0.0917 + 0.000048(t-25) calm per g degree. (Griffith, 1913.)

# SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Lead.								
18-100	Element.				Element.			Refer- ence.
18-100								
18-100	Lead	90	0.0312	51	Potassium	-101 to -80	0.7568	47
18-100	"							
10-256	44		0.0310	43				
Lithjum			0.0319		Rhodium			
-78 to -9			0.521		Rubidium		0.0802	-3
				47	Ruthenium	0-100		13
				47	Selenium		0.068	36
					Silicon	-185 to +20	0.123	
						-39 8	0.1360	
Magnesium						+57.I		14
Magnesium								
"								
"   0.325   0.325   7   "   -73   0.5340   40   40   40   40   42   42   42								
						-173		
Manganese			0.3235			<del>-73</del>		40
Manganese								
	44							
## 325	**				44			
	"				"			34
					** *			43 78
	44				" fluid			
Mercury, sol.	44				Sodium	-185 to +20		
Mercury, sol.		100			"			
" liq.         -36 to -3         0.0324         47         " -233         0.152         46           " -185 to +20         0.032 do 0.0328         42         " thombic.         -188 to +18         0.137         36           " .00         0.03284 do 0.0328         22         " thombic.         0-52         0.180 33         33           " .00         0.03284 do 0.0321 do 0.0321 do 0.0321 do 0.032         250         0.03212 do 0.0321 do 0.032         " thombic.         0-52 do 0.180 33         4           " .00         0.0627 do 0.0627 do 0.0627 do 0.0647 do 0.0647         Tantalum.         -185 to +20 do 0.033 do 0.043 do 0.0	Mercury, sol	-77 to -42			"			
		-36  to  -3						46
	"	-185 to $+20$			"			46
""         85         0.0328         32         "monoclin         0-54         0.1728         33           ""         100         0.03284         2         "monoclin         0-52         0.1829         33           Molybdenum         -185 to +20         0.062         4         Tantalum         -185 to +20         0.033         4           ""         475         0.0750         7         Tellurium         -188 to +120         0.043         4           Nickel         -185 to +20         0.002         4         Thallium         -185 to +20         0.033         3           "         100         0.1608         18         20-100         0.043         7           "         100         0.1608         18         20-100         0.026         27           "         1000         0.1608         18         "         20-100         0.0216         25           "         1000         0.1608         18         "         20-100         0.0216         25         0.0311         10         10         26         "         4         10         0.026         25         0.0311         10         "         4         11         10					Sulphur			36
Nickel	"	85	0.0328		" rhombic.	0~54		
Molybdenum	[ ······				monocim.		0.1809	
"					iquia			
" 475 0.0750 7 7 Tellurium				4	Tantalum			4
Nickel				7	T. II	1400		_
Nickel				7				
" 100 0.1128 18 " 20-100 0.0326 27   " 300 0.1493 18	Niekol			7	Crys		0.0483	
"			0.092	-4	I namum			
"   500   0.1205   18   "   -196 to -79   0.0486   26   26   0.0518   26   0.0518   26   0.0518   26   0.0518   26   0.0518   26   0.0518   27   0.0518   26   0.0518   27   0.0518   26   0.0518   27   0.0518   27   0.0518   28   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518   0.0518	44			10	Thorium			27
"         Tooo         0.1668         18         "         -76 to +18         0.0518         26           Osmium         19-08         0.0311         10         "faid         250         0.0573         30           Palladium         -186 to +18         0.0528         26         "fluid         250         0.05799         18           "         0-100         0.0592         24         Titanium         -185 to +20         0.078         18           Phosphorus, red.         0-51         0.1829         33         Tungsten         -185 to +20         0.036         4           "yellow         13-36         0.202         33         "         0-100         0.0336         40           Platfinum         -186 to +20         0.178         4         "         1000         0.0337         52           "         100         0.0275         34         "         1000         0.042         52           "         200         0.0349         35         Vanadium         0-100         0.153         40           "         1000         0.0381         35         "         21m         -153         0.0788         46           "	44				Tin			
"         13-100         0.109         26         " cast         21-109         0.0551         30           Palladium         -186 to +18         0.0528         26         " fluid         250         0.05790         18           "         0-100         0.0592         24         " fluid         1100         0.0753         18           "         0-1265         0.0714         24         " O-100         0.125         30           Phosphorus, red.         0-51         0.1829         33         Tungsten         -185 to +20         0.036         4           "         yellow         -186 to +20         0.178         4         1000         0.0336         40           "         100         0.0275         34         " 2000         0.045         52           "         200         0.0349         35         Vanadium         0 -100         0.153         40           "         1000         0.0365         35         Zinc         -243         0.0144         46           "         750         0.0365         35         Zinc         -243         0.0144         46           "         1000         0.0313         35         <	44							
Osmium	44							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Osmium				" fluid			18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Palladium				" fluid		0.0758	
"							0.082	
Phosphorus, red.	**	0-1265						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phosphorus, red	0-51	0.1820					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" yellow.	13-36			"	0-100		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	yenow.			4				
" 200 0.0330 35 Uranium 0-98 0.028 41								
" 500 0.0350 35 Vanadium 0-100 0.153 40 1							0.045	
" 500 0.0349 35 Vanadum. 0 -100 0.1153 40  " 750 0.0365 35 Zinc243 0.0144 46  " 1000 0.0381 35 " -193 0.0625 46  " 1300 0.0400 35 " -153 0.0788 46  " 20-100 0.0319 35 " 20-100 0.0931 27  " 20-500 0.0333 35 " 100 0.0951 22								
" 1000 0.0381 35 "193 0.0625 46   " 1300 0.0400 35 "153 0.0788 46   " 20-100 0.0319 35 " 20-100 0.0931 27   " 20-500 0.0333 35 " 100 0.0951 22			0.0349					
" 20-100 0.0310 35 " 20-100 0.0931 27 20-500 0.0333 35 " 100 0.0951 2								
" 20-500   0.0333   35   " 100   0.0951   2								
"		20-1000	0.0333		4	300	0.1040	2 2
" 20-1300 0.0359 35 Zirconium 0-100 0.0660 42	44							
33 25000 42		25 -355	0339	33	Z.I.COMIGNIT.	<b>-</b>	_,,0005	4.
	L							

^{*}When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. See page 226 for references.

# HEAT CAPACITIES, TRUE AND MEAN SPECIFIC HEATS, AND

### LATENT HEATS AT FUSION.

The following data are taken from a research and discussion entitled "Die Temperatur-Wärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, Forschungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1918.

(a) There follow the constants of the equation for the heat capacity:  $W = a + bt + ct^2$ ; for the mean specific heat:  $s = at^{-1} + b + ct$ ; and for the true specific heat: s' = b + 2ct; also the latent heats at fusion. (See also Table 243, pp. 223-224.)

Ele- ment.	Tempera- ture range. ° C	а	ь	c × 106	La- tent heat. cal./g	Ele- ment.	Tempera- ture range. ° C	а	ь	c×108	La- tent heat cal./g.	
Cr Mo W Pt Sn Bi Cd Pb Zn Sb	0-1500 0-1500 0-1500 0-1500 0-232 232-1000 0-270 270-1000 0-321 321-1000 0-327 327-1000 0-419 419-1000 0-630 630-1000 0-657 657-1000	14.33 10.31 6.30 6.07 14.34	0.22200	10.99 1.07 3.54 -18.30 5.22 5.41 6.28 6.37 -11.47 3.30 43.48 -16.10 3.00 2.96 38.57	13.8. 10.2 10.8 - 10.8 - 23.0 38.9 94.0	Cu Mn Ni	1064-1300 0-1084 1084-1300	53.17 26.35 130.74 -7.41 3.83 0.41 50.21 22.00 57.72 -1.63 18.31 -77.18	0.12037 0.17700 0.19800 0.10950 0.12931 0.13380 0.09119 0.11043 0.14720 0.10545 0.1592	28.30 1.30 8.52 3.05 65.6 25.41 — 52.40 0.11 40.77 14.57 56.84 0.05	15.9 41.0 36.6 24.14* 56.1 1.33* 58.2 14.70* 49.4 6.56*	

^{*} Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-330°; Co, 950-1100°; Fe,  $725-785^{\circ}$ ;  $919^{\circ} = 1$ ;  $1404.5^{\circ} = 0.5$ .

## (b) TRUE SPECIFIC HEATS.

° C	Pb Zn	Al	Ag	Au	Cu	Ni	Fe	Со	Quartz.
100	0.0359 0.0878 0.0336 0.0965 0.0313 0.1052 0.0290 0.1152 0.0259 0.1173 0.0252 0.1141 0.0246 0.1109 0.0233 0.1044 0.0226 0.1012	0. 2297 0. 2374 0. 2451 0. 2529 0. 2606 0. 2683 0. 2523 0. 2571 0. 2619 0. 2667	0.0583 0.0594 0.0605 0.0616 0.0627 0.0638 0.0660 0.0671 0.0637 0.0694	0.0320 0.0322 0.0325 0.0328 0.0330 0.0333 0.0335 0.0338	0. 1014 0. 1020 0. 1026 0. 1032 0. 1038 0. 1045 0. 1051 0. 1063 0. 1069 0. 10291	0.1200 0.1305 0.1409 0.1294 0.1295 0.1295 0.1295 0.1295 0.1296 0.1296 0.1296 0.1338	0.1168 0.1282 0.1396 0.1509 0.1623 0.1737 0.1850 0.1592 0.1592 0.1448 0.1448 0.1448	0.0993 0.1073 0.1154 0.1235 0.1316 0.1477 0.1558 0.1639 0.1424 0.1454 0.1453 0.1512 0.1472	0.2372 0.2416 0.2460 0.2504 0.2548 0.2592 0.2636 0.2724 0.2768 0.2724 0.2856 0.29200 0.2944

For more elaborate tables and for all the elements in upper table, see original reference. SMITHSONIAN TABLES.

# ATOMIC HEATS (50° K), SPECIFIC HEATS (50° K), ATOMIC VOLUMES OF THE ELEMENTS.

The atomic and specific heats are due to Dewar, Pr. Roy. Soc. 89A, 168, 1913.

Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat -223° C.	Atomic heat -223°C.	Atomic volume.	Ele- ment.	Specific heat - 223° C.	Atomic heat -223°C.	Atomic volume.
Li Gl B C * C † Na Mg Al Si ‡ Si § P yel. P red S	0.1924 0.0137 0.0212 0.0137 0.0028 0.1519 0.0713 0.0413 0.0303 0.0303 0.0774	1.35 0.125 0.24 0.16 0.03 3.50 1.74 1.12 0.86 0.77 2.40 1.34 1.75 3.43	13.0 4.9 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4 17.0	Cr Mn Fe Ni Co Cu Zn As Se Br Rb Sr¶ Zr Mo Ru Rh	0.0142 0.0229 0.0175 0.0208 0.0207 0.0245 0.0361 0.0453 0.0711 0.0550 0.0262 0.0141 0.0109	0.70 1.26 0.98 1.22 1.56 2.52 1.94 2.86 3.62 6.05 4.82 2.38 1.36 1.11	7.6 7.4 7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 55.8 34.5 21.8 9.3 9.0	Sn Sb I Te Cs Ba¶ La Ce W Os Ir Pt Au Hg Tl Pb	0.0286 0.0240 0.0361 0.0288 0.0513 0.0350 0.0322 0.0330 0.0095 0.0078 0.0099 0.0135 0.0160 0.0232 0.0235	3.41 2.89 4.59 3.68 6.82 4.80 4.60 4.64 1.75 1.49 2.63 3.16 4.65 4.80	20.3 18.2 25.7 21.2 71.0 36.6 22.6 20.3 9.8 8.5 8.6 9.2 10.2 14.8 17.2 18.3
K Ca Ti	0.1280 0.0714 0.0205	5.01 2.86 0.99	44.7 25.9 10.7	Pd Ag Cd	0.0190 0.0242 0.0308	2.03 2.62 3.46	9.2 10.2 13.0	Bi Th U	0.0218 0.0197 0.0138	4.54 4.58 3.30	21.3 21.1 12.8

* Graphite. † Diamond. ‡ Fused. § Crystallized. ¶ Impure.

## References to Table 243:

- (1) Bontschew.
- (2) Naccari, Atti Torino, 23, 1887–88. (3) Wigand, Ann. d. Phys. (4) 22, 1907. (4) Nordmeyer-Bernouli, Verh. d. phys.
- Ges. 9, 1907; 10, 1908. (5) Giebe, Verh. d. phys. Ges. 5, 1903.
- (6) Lorenz, Wied. Ann. 13, 1881.
- (7) Stücker, Wien. Ber. 114, 1905.(8) Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847; 24, 1848.
- (9) Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
- (10) Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861.
- (11) Andrews, Pog. Ann. 75, 1848.
- (12) Eckardt-Graefe, Z. Anorg. Ch. 23, 1900. (13) Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887.
- (14) Weber, Phil. Mag. (4) 49, 1875.
- (15) Hillebrand, Pog. Ann. 158, 1876.
- (16) Knietsch.
- (17) Adler, Beibl. 27, 1903. (18) Pionchon, C. R. 102-103, 1886. (19) Tilden, Phil. Trans. (A) 201, 1903. (20) Richards, Ch. News, 68, 1893.
- (21) Trowbridge, Science, 8, 1898. (22) Berthelot, Ann. d. chim. (5) 15, 1878.
- (23) Pettersson-Hedellius, J. Pract. Ch. 24, 1881.
- (24) Violle, C. R. 85, 1877; 87, 1878.
- (25) Regnault, Ann. d. chim (2) 73, 1840;
- (3) 63, 1861. (26) Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.

- (27) Schmitz, Pr. Roy. Soc. 72, 1903.
- (28) Nichol, Phil. Mag. (3) 12, 1881. (29) Hill, Verh. d. phys. Ges. 3, 1901. (30) Spring, Bull. de Belg. (3) 11, 1886; 29, 1895.
- (31) Laemmel, Ann. d. Phys. (4) 16, 1905.
- (32) Barnes-Cooke, Phys. Rev. 16, 1903.
- (32) Barnes-Cooke, Frys. Rev. 10, 1903.
  (33) Wiegand, Fort. d. Phys. 1906.
  (34) Tilden, Pr. Roy. Soc. 66, 1900; 71, 1903; Phil. Trans. (A) 194, 1900; 201, 1903.
  (35) White, Phys. Rev. 12, 436, 1918.
  (36) Dewar, Ch. News, 92, 1905.
  (37) Kopp, Phil. Trans. London, 155, 1865.
  (38) Nilson C. P. 66, 1882.

- (38) Nilson, C. R. 96, 1883.
- (39) Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
- (40) Mache, Wien, Ber. 106, 1897
- (41) Blümcke, Wied. Ann. 24, 1885. (42) Mixter-Dana, Lieb Ann. 169, 1873.
- (43) Magnus, Ann. d. Phys. 31, 1910. (44) Harper, Bull. Bureau of Stds. 11, p.
- 259, 1914.

- (45) Nernst, Lindemann, 1910, 1911.
  (46) Nernst, Dewar.
  (47) Kosef, Ann. d. Phys. 36, 1911.
  (48) Magnus, Ann. d. Phys. 31, 1910.
  - (49) Estreicher, Straniewski, 1912.
  - (50) Nernst, Ann. d. Phys. 36, 395, 1911. (51) King, Phys. Rev. 11, 1918.
- (52) Worthing, Phys. Rev. 12, 1918. (53) Harker, Pr. Phys. Soc. London, 19, 703, 1905; Fe .01; C .02; Si .03; S .04; P, Mn trace.

## TABLE 246 .- Specific Heat of Various Solids.

Solic.	Temperature °C.	Specific heat.	Au- thority.
Alloys: Bell metal	5-50	0.0858 .08991 .08831 .0862 .10432 .09464	R L R Ln T
Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn	100-150 77-20 20-89	.0426 .0356 .0552	S "
Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn " (fluid)	5-50 100-150	.0352 .0426	M "
17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn	20-99 10-98 16-99 144-358	.05657 .03880 .03165 .03500	R "P
63.7 Pb + 36.3 Sn	12-99 10-99 20-99 20-99	.04073 .04507 .04001 .04504	R "
Gas coal. Glass, normal thermometer 76111 French hard thermometer crown	20-1040 19-100 	.3145 .1988 .1869	W Z H M
" flint		.117	" D "
India rubber (Para)	?-100 20 20- +3	.481	GT RW
" ifluid	-19- +20 0-20 35-40 60-63	.5251 .6939 .622 .712	" B
Vulcanite	20-100	.3312	A M —

## TABLE 247 .- Specific Heat of Water and of Mercury.

		Specifi	Specific Heat of Mercury.							
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes	Barnes- Regnault.	Temper- ature, °C.	Specific Heat.	Temper- ature, °C.	Specific Heat.
-5	1.0155	-	-	60	0.9988	0.9994	0	0.03346	90	0.03277
o	1.0001	1.0070	1.0094	65	.9994	1.0004	5	.03340	100	.03269
+5	1,0050	1.0039	1.0053	70	1,0001	1.0015	10	.03335	110	.03262
10	1.0020	1.0016	1.0023	80	1.0014	1.0042	15	.03330	120	.03255
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	.03325	130	.03248
20	0.9987	1000	0.9990	100	1.0043	1.0101	25	.03320	140	.03241
25	.9978	•9989	.9981	120	-	1.0162	30	.03316	150	.0324
30	.9973	•9990	.9976	140	-	1.0223	35	.03312	170	.0322
35	.9971	-9997	.9974	160	-	1.0285	40	.03308	190	.0320
40	.9971	1.0006	•9974	180	_	1.0348	50	.03300	210	.0319
45	.9973	1.0018	.9976	200	-	1.0410	60	.03294	-	-
50	.9977	1.0031	.9980	220	-	1.0476	70	.03289	-	-
55	.9982	1.0045	.9985	-	_	-	80	.03284	-	-

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)
Bousfield, Phil. Trans. A 211, p. 193, 1911. Barnes-Regnault's as revised by Peabody; Steam Tables.
The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

## TABLE 248. - Specific Heat of Various Liquids.

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H–D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 249. — Specific Heat of Liquid Ammonia under Saturation Conditions. Expressed in Calories₂₀ per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temp.	0	r	2	3	4	5	6	7	8	9
-40 -30 -20 -10 - 0 + 10 +20 +30 +40	1.062 1.070 1.078 1.088 1.099 1.099 1.112 1.126 1.142	1.061 1.069 1.077 1.087 1.098 1.100 1.113 1.128 1.144 1.164	1.060 1.068 1.076 1.086 1.097 1.101 1.114 1.129 1.146	1.059 1.067 1.075 1.085 1.096 1.103 1.116 1.131 1.148	1.058 1.066 1.074 1.084 1.104 1.117 1.132 1.150	1.058 1.065 1.074 1.083 1.093 1.105 1.118 1.134 1.152	1.057 1.064 1.073 1.082 1.092 1.106 1.120 1.136 1.154	1.056 1.064 1.072 1.081 1.091 1.108 1.122 1.137 1.156 1.178	1.055 1.063 1.071 1.080 1.090 1.109 1.123 1.139 1.158	1.055 1.062 1.070 1.079 1.089 1.110 1.125 1.141 1.160

#### TABLE 250. - Heat Content of Saturated Liquid Ammonia.

Heat content =  $H = \epsilon + pv$ , where  $\epsilon$  is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

Temperature $\begin{vmatrix} -50^{\circ} \\ -43 \cdot 3 \end{vmatrix} = 6 + pv \cdot \begin{vmatrix} -50^{\circ} \\ -53 \cdot 8 \end{vmatrix} = -43 \cdot 3 \begin{vmatrix} -30 \\ -32 \cdot 8 \end{vmatrix}$	0 -20° -10° 0° +10° 0 +11.	1 +20° +30° +40° +50° 1 +22.4 -33.9 -45.5 -57.4
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------	----------------------------------------------------

# SPECIFIC HEATS OF MINERALS AND ROCKS.

TABLE 251 .- Specific Heat of Minerals and Rocks.

Substance.	Tempera- ture ° C.	Specific Heat.	Refer- ence.	Substance.	Tempera-	Specific Heat.	Refer- ence.
Andalusite Anhydrite, CaSO ₄ .	0-100 0-100	0.1684 .1753	I I 2	Rock-salt Serpentine	13-45 16-98 9-98	0.219 .2586 .1934	6 2 4
Apatite	15–99 20–98	.1953	3	Spinel	15-47	.1934	6
Augite	20-98	.1931	3	Talc	20–98	.2092	3
Barite, BaSO ₄	10-98	.1128	4 2	Topaz	0-100 19-51	.2097	6
Beryl	15 <b>–</b> 99 16 <b>–</b> 98	.19/9	4	Zinc blende, ZnS.	0-100	.1146	I
Calcite, CaCO ₈	0-50	.1877	ĭ	Zircon	21-51	.132	6
" "	0-100	.2005	I	Rocks:			
	0-300	.2204	I	Basalt, fine, black		.1996	6
Cassiterite SnO ₂ Chalcopyrite	16-98 15-99	.0933	4 2	" " "	20-470 470-750	.199	9
Corundum	9-98	.1976	4		750-880	.626	9
Cryolite, Al ₂ F ₆ .6NaF .	16-99	.2522	2		880-1190	-323	9
Fluorite, CaF ₂	15-99	.2154	4	Dolomite	20-98	.222	3
Galena, PbS	0-100	.0466	5	Gneiss	17-99	.196	IO
Garnet	16-100	.1758	2 2	Granite :	17-213	.192	10
Hematite, Fe ₂ O ₃ Hornblende	15-99 20-98	.1645	3	Kaolin	20-98	.224	7 3
Hypersthene	20-98	.1914	3	Lava, Aetna .	23-100	.201	II
Labradorite	20-98	.1949	3	"""	31-776	.259	II
Magnetite	18-45	.156	1	" Kilauea .	25-100	.197	II
Malachite, Cu ₂ CO ₄ H ₂ O	15-99	.1763	2	Limestone	15-100	.216	12
Mica (Mg)	20-98	.2061	3	Marble Ouartz sand .	0-100 20-98	.21	3
Oligoclase	20-98 20-98	.2048	3 3	Sandstone	20-90	.22	3
Orthoclase	15-99	.1877	2				
Pyrolusite, MnO ₂ .	17-48	.1 59	6	I Lindner. 6 K	opp. I	r Barto	li.
Quartz, SiO ₂	12-100	.188	7 8			2 Mora	
" "	0	.1737	8	3 Ulrich. 8 Pi	onchon.		
"	350 400-1200	.305	8		oberts-Aus . Weber.	ten, Rüc	ker.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 252 .- Specific Heats of Silicates.

Albite	Silicate.	М	ean spec	ific hea	ts.	True specific heats. at					
Glass		100°	500°	<b>9</b> 00°	1400°	o°C	100°	500°	1000°	1300°	
	" glass Amphibole, Mg. silicate glass Andesine " glass Anorthite " glass Cristobalite Diopside " glass Microcline " glass Pyroxene Quartz Silica glass Wollastonite " glass	. 1977 . 2033 . 2040 . 1925 . 1934 . 1901 . 1883 . 1924 . 1939 . 1871 . 1919 . 2039 . 1868 . 1845	.2410 .2461 .2474 .2330 - .2296 .2305 .2426 .2314 .2332 .2262 .2321 .2484 .2379 .2302	.2640 .2661 2525 .2615 02481 2568 .2500 .2450 .2514 2596 .2512 .2344	.2731* - .2674 - .2680 .2604† - .2598* -	.174176176168	.219 - .205 - .207 - .201 .206 - .204	-279 -265 -260 -260 -258 -258 -258 -264 -294	.286	.318	

*o°-1100°; †o°-1250°;

Taken from White, Am. J. Sc. 47, 1, 1919.

## SPECIFIC HEATS OF GASES AND VAPORS.

	Substance.	Range of temp. ° C	Sp. ht. constant pres- sure.	Authority.	Range of temp.	Mean ratio of specific heats. $C_p/C_v$ .	Authority.
Ш	Acetone, C ₃ H ₆ O	26-110	0.3468	Wiedemann.			
Ш	Air	-30-+10	0.2377	Regnault.	20	1.4011	Moody.
Ш	"	0-200	0.2375	**	-79.3	1.405	Koch, 1907.
Ш		20-440	0. 2366	Holborn and	-79.3	2.333	" 200 atm
Ш	"	20-630	0.2429	Austin.		1.828	" " "
Ш	"	20-800	0.2430	"		1.300	Fürstenau.
ш	Alcohol, C ₂ H ₅ OH	108-220	0.4534	Regnault.	53	1.133	Jaeger.
Ш	"	100 220	0.4334		100	1.134	Stevens.
Ш	" СН₃ОН		1.500	Regnault.			66
н		101-223	0.4580		100	1.256	3372:11m.on
Ш	Ammonia	23-100	0.5202	Wiedemann.	0	1.3172	Wüllner.
Ш		27-200	0.5356	Div. 1	100	1.2770	371
Ш	Argon	20-90	0.1233	Dittenberger.	0	1.667	Niemeyer.
Ш	Benzene, C ₆ H ₆	34-115	0.2990	Wiedemann.	20	1.403	Pagliani.
Ш	" "	35-180	0.3325	**	60	1.403	••
	" "	116-218	0.3754	Regnault.	99.7	1.105	Stevens.
Ш	Bromine	83-228	0.0555	**	20-388	1.293	Strecker.
	Carbon dioxide, CO ₂	-28-+7	0.1843	"	4-11	1.2995	Lummer and
Н	" " "	15-100	0.2025	"		1 //0	Pringsheim.
		11-214	0.2160	"	0	1.3003	
Ш	" monoxide, CO	23-00	0.2425	Wiedemann.	0	1.403	Wüllner.
Н	" " "	26-198	0.2426	"	100	1.395	"
Ш	" disulphide, CS2.	86-190	0.1506	Regnault.	3-67	1.205	Beyme.
ш	Chlorine		0.1125	Strecker.	307		Martini.
Н	Chloreform CHCl	16-343		Wiedemann.		1.336	Beyme.
ш	Chloroform, CHCl ₃	27-118	0.1441	Wiedemann.	22-78	1.102	
Ш	Ethan CH O	28-189	0.1489	D	99.8	1.150	Stevens.
Ш	Ether, C ₄ H ₁₀ O	69-224	0.4797	Regnault.	42-45		Müller.
Н		25-111	0.4280	Wiedemann.	12-20	1.024	Low, 1894.
	Helium		-		0	1.64	Mean, Jeans.
Н	Hydrochloric acid, HCl.	13-100	0.1940	Strecker.	20	1.389	Strecker.
ш	•	22-214	0.1867	Regnault.	100	1.400	
ш	Hydrogen	-28-+9	3.3996	"	4-16	1.4080	
Ш	**	12-198	3.4090	"			Pringsheim.
н		21-100	3.4100	Wiedemann.	<u> </u>	1.419	Hartmann.
н	" sulphide, H ₂ S	20-206	0.2451	Regnault.	l —	1.324	Capstick.
	Krypton	_	—·		19	1.666	Ramsay, '12.
Н	Mercury		1		310	1.666	Kundt and
1					1		Warburg.
п	Methane, CH4	18-208	0.5929	Regnault.	11-30	1.316	Müller.
1	Neon		1		10	1.642	Ramsay, '12
1	Nitrogen	0~200	0.2438	Regnault.		1.41	Cazin.
1	"	20-440	0.2410	Holborn and		1.405	Masson.
1	66	20-440	0.2419	Austin.	1	1.405	TITUSSOII.
1	66	20-030		11 46			
1	Nitric oxide, NO	ł	0.2497	Regnault.		T	**
1		13-172	0.2317			1.394	Natancon
1	Nitrogen tetroxide, NO2.		1.625	Berthelot and		1.31	Natanson.
		27-150	1.115	Olger.	1		
1		27-280	0.65	D			Wall
1	Nitrous oxide, N ₂ O	16-207	0.2262	Regnault.	0	1.311	Wüllner.
I		20-103	0.2126	Wiedemann.	100	1.272	T . 1 . 1 0
1		27-206	0.2241			1.324	Leduc, '98.
	Oxygen	13-207	0.2175	Regnault.	5-14	1.3977	Lummer and
1	,,	20-440	0.2240	Holborn and			Pringsheim.
1		20-630	0.2300	Austin.	-		2 5000
	Sulphur dioxide, SO2	16-202	0.1544	Regnault.	16-34		Müller.
I	Water vapor, H ₂ O	0	0.4655	Thiesen.	78	1.274	Beyme.
I		100	0.421	"	94	1.33	Jaeger.
	""""	180	0.51	"	100	1.305	Makower.
1	Xenon	_	<u> </u>	_	19	1.666	Ramsay,' 12.
1			1		<u> </u>		

# LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by t, the latent heat in arge calories per kilogram or in small calories or therms per gram by r; the total heat from o° t, in the same units by H. The pressure is that due to the vapor at the temperature t.

Substance.	Formula.	t° C	· r	Н	Authority.
Substance.					
Acetic acid	$C_2H_4O_2$	118°	84.9	_	Ogier.
Air	— C ₅ H ₁₂ O		50.97 120	_	Fenner-Richtmyer. Schall.
Alcohol: Amyl	$C_2H_6O$	131 78.1	205	255	Wirtz.
"	"	0	236	236	Regnault.
"	"	50 100	. =	264 267	"
"	u	150	_	285	"
Methyl	CH ₄ O	64.5	267	307	Wirtz.
"	"	o 50	289	289 274	Ramsay and Young.
"	"	100	_	246	" " "
46	"	150	_	206	tt tt tt
"	"	200 238.5		152 44.2	16 16 16
Aniline	$C_6H_7N$	184	110	<del></del>	Mean.
Benzene	$C_6H_6$	80.1 61	92.9	127.9	Wirtz. Andrews.
Bromine	$\frac{\mathrm{Br}}{\mathrm{CO_2}}$	— —	45.6	138.7	Favre.
" " liquid	"	-25	72.23		Cailletet and Mathias.
	"	0	57.48	_	Mathias.
" " " "	"	12.35 22.04	44.97 31.8	_	44
" " "	"	29.85	14.4	—	"
" disulphide	CS ₂	30.82 46.1	$\frac{3 \cdot 7^2}{83.8}$	94.8	Wirtz.
ιι τι	46	40.1	90	90	Regnault.
" "	"	100	<u> </u>	100.5	"
Chloroform	CHCl ₃	140 6 <b>0</b> .9	58.5	72.8	Wirtz.
Ether	$C_4H_{10}O$	34.5	88.4	107	"
"	"	34.9	90.5	<u> </u>	Andrews.
"	"	o 50	94	94 115. <b>1</b>	Regnault.
"	"	120	_	140	"
Ethyl bromide	C ₂ H ₅ Br	38.2	60.4		Wirtz.
" chloride	$C_2H_5Cl$ $C_2H_5I$	12.5 71	47	93	Regnault. Mean.
Heptane	C7H16	90	77.8		Young.
Hexane	$C_6H_{14}$ $I$	. 70	79.2	_	Favre and Silbermann.
Iodine	Hg	357.	23.95 65		Mean.
Nitrogen	$N_2$	-195.6	47.65	<u> </u>	Alt.
Octane	$C_8H_{18}$ $O_2$	130 -182.9	70.0 50.97		Young. Alt.
Pentane	$C_5H_{12}$	30	85.8		Young.
Sulphur	S	316	362.0	<u> </u>	Person.
Sulphur dioxide	SO ₂	30	91.2 80.5		Cailletet and Mathias.
" "	"	65	68.4	_	
Toluene	C ₇ H ₈	111	86.0	-	Mean. Brix.
Turpentine	$C_{10}H_{10}$	159.3	74.04		DIIX.
	<u>.                                    </u>			<u> </u>	

### LATENT HEAT OF VAPORIZATION.

### TABLE 255. - Formulae for Latent and Total Heats of Vapors.

r = latent heat of vaporization at  $t^{\circ}$  C; H = total heat from fluid at  $o^{\circ}$  to vapor at  $t^{\circ}$  C.  $T^{\circ}$  refers to Kelvin scale. Same units as preceding table.

Acetone, C ₃ H ₆ O	$H = 140.5 + 0.36644t - 0.000516t^2$	-3° to 147	° R
,	$= 139.9 + 0.23356t + 0.00055358t^2$	-3 147	11
	$r = 139.9 - 0.27287t + 0.0001571t^2$	-3 147	R C R
Benzene C ₆ H ₆	$H = 109.0 + 0.24429t - 0.0001315t^2$	7 215	R
Carbon dioxide	$r^2 = 118.485(31 - t) - 0.4707(31 - t)^2$	-25 31	1 c
Carbon bisulphide, CS2	$H = 90.0 + 0.14601t - 0.0004123t^2$	-6 143	
	$II = 89.5 + 0.16993t - 0.0010161t^2 + 0.05342t^3$	<del>-6 143</del>	l y
	$r = 89.5 - 0.06530t - 0.0010976t^2 + 0.05342t^3$	-6 <b>1</b> 43	
Carbon tetrachloride, CCl4.	$H = 52.0 + 0.14625t - 0.000172t^2$	8 163	
	$H = 51.9 + 0.17867t - 0.0003599t^2 + 0.053733t^3$	8 163 8 163	, V
	$r = 51.9 - 0.01931t - 0.0010505t^2 + 0.053733t^3$		j ž
Chloroform, CHCl3	H = 67.0 + 0.1375t	<b>-5</b> 159	I V
	$H = 67.0 + 0.14716t - 0.0000937t^2$	-5 159	
7.1 0 77 0	$r = 67.0 - 0.08519t - 0.0001444t^2$	-5 159	I V
Ether, C ₄ H ₁₀ O	$H = 94.0 + 0.45000l - 0.0005556l^2$	<b>-4</b> 121	1 7
36333	$r = 94.0 - 0.07900t - 0.0008514t^2$	<b>-</b> 4 121	I I
Molybdenum	r = 177000 - 2.5T(cal/g-atom)		1 7
Nitrogen, N2	r = 68.85 - 0.2736T		I A
Nitrous oxide, N2O	$r^2 = 131.75(36.4 - t) - 0.928(36.4 - t)^2$	<b>-20</b> 36	R R L A C
Oxygen, O ₂	r = 69.67 - 0.2080T		A
Platinum	r = 128000 - 2.5T (cal/g-atom) $r = 91.87 - 0.3842t - 0.000340t^2$	0 20	1 1
Sulphur dioxide	$r = 91.87 - 0.3842i - 0.000340i^{3}$ r = 217800 - 1.8T(cal/g-atom)	0 20	i f
Tungsten	$H = 638.9 + 0.3745(t - 100) - 0.00099(t - 100)^2$		L
Water, 1120	$r = 04.210(365 - t)^{0.31249}$ (See Table 250)	0 100	I
	7 - 94.210(305 - 1) (See Table 259)	0 100	1

### TABLE 256.—Latent Heat of Vaporization of Ammonia.

CALORIES PER GRAM.

-40 331.7 332.3 333.0 333.6 334.9 335.5 336.2 336.8 337.5 -30 324.8 325.5 326.2 326.9 327.6 328.3 320.0 329.7 339.3 331.0 -20 317.6 318.3 319.1 319.8 320.6 321.3 322.0 322.7 323.4 324.1 -10 309.0 310.7 311.5 312.2 313.0 313.8 314.6 315.3 316.1 316.8 -0 301.8 302.6 303.4 304.3 305.1 305.9 306.7 307.5 308.3 309.1 +0 301.8 300.9 300.1 299.2 298.4 297.5 296.6 295.7 294.9 294.0 +10 293.1 292.2 291.3 290.4 280.5 288.6 287.6 286.7 285.7 284.8 +20 283.8 282.8 281.8 280.9 279.9 278.9 277.9 276.9 275.9 275.9 274.9 293.0 273.0 272.8 273.8 280.7 268.6 267.5 266.4 265.3 264.3 264.3 265.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 266.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 264.3 267.5 266.4 267.5 266.4 265.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3 264.3	° C	0	ı	2	3	4	5	6	7	8	9
	-30 -20 -10 - 0 + 0 +10 +20 +30	324.8 317.6 309.9 301.8 301.8 293.1 283.8 273.9	325.5 318.3 310.7 302.6 300.9 292.2 282.8 272.8	326.2 319.1 311.5 303.4 300.1 291.3 281.8 271.8	326.9 319.8 312.2 304.3 299.2 290.4 280.9 270.7	327.6 320.6 313.0 305.1 298.4 289.5 279.9 269.7	328.3 321.3 313.8 305.9 297.5 288.6 278.9 268.6	329.0 322.0 314.6 306.7 296.6 287.6 277.9 267.5	329.7 322.7 315.3 307.5 295.7 286.7 276.9 266.4	330.3 323.4 316.1 308.3 294.9 285.7 275.9 265.3	331.0 324.1 316.8 309.1

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

### TABLE 257. - "Latent Heat of Pressure Variation" of Liquid Ammonia.

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per kg/cm². Osborne and van Dusen, loc. cit., p. 433, 1918.

Temperature ° C -44.1 Latent heat055	-39.0 057	-24.2 068	-0.2 088	+16.5 107	+26.5 123	+35·4 140	+40.3

#### LATENT AND TOTAL HEATS OF VAPORIZATION OF THE ELEMENTS.

The following table of theoretical values is taken from J. W. Richards, Tr. Amer. Electr. ch. Soc. 13, p. 447, 1908. They are computed as follows:  $8T_m$  (8 = mean value atomic specific heat, Dulong-Petit constant,  $o^{\circ}$  to  $T^{\circ}$  K,  $T_m$  = melting point, Kelvin scale) plus  $2T_m$  (latent heat of fusion is approximately  $2T_m$ , J. Franklin Inst. 1897) plus  $10(T_b - T_m)$  (specific heat of liquid metals is nearly constant and equal to that of the solid at  $T_m$ ,  $T_b$  = boiling point, Kelvin scale) plus  $23T_b$  (23 = Trouton constant; latent heat of vaporization of molecular weight in grams is approximately 23 times  $T_b$ ) =  $33T_b$ . Total heat of vapor when raised from 273° K ( $o^{\circ}$  C) equals  $33T_b - 1700$  (mean value of Dulong-Petit constant between  $o^{\circ}$  and  $273^{\circ}$  K is 1700). Heats given in small calories per gram.

Ele- ment.	<i>T_b</i> ° K	23 <i>T</i> b	Latent heat of vapori- zation.	33Tb — 1700	Total heat vapor from 273° K	Ele- ment.	$^{T_b}_{ m ^{\circ}K}$	23 <i>T</i> b	Latent heat of vapori- zation.	33 <i>T</i> _b — 1700	Total heat of vapor from 273° K
Hg K Cd Na Zn In Mg Te Bi Sb Tl Pb Ag Cu Sn Mn Ni Cr Fe Pt Ti	630 993 1050 1170 1200 1270 1370 1660 1710 1870 2070 2310 2370 2440 2440 2690 2640 2690 2720 2750	14,500 22,800 24,200 27,700 29,300 31,600 38,200 39,300 45,400 45,400 47,700 54,500 56,500 56,500 59,800 60,700 62,600 63,200	72 590 230 1170 430 — 1320 300 190 360 220 230 490 860 480 1030 1010 1170 1110 320 1320	19,100 31,100 33,000 37,000 38,000 40,300 43,600 56,400 60,000 63,400 66,700 74,600 76,600 78,800 79,500 84,000 85,400 85,400 88,000	96 800 310 1610 580 — 1820 430 270 510 310 320 690 1210 670 1440 1420 1640 1560 450 1850	Rh Ru Au Pd Ir Os U Mo W H ₂ N ₂ Cl ₂ Br ₂ I ₃ P ₃ As ₃ Se ₃ B ₂ C ₂	2773 2790 2800 2810 2820 2870 3170 3470 3970 20 77 85 251 331 447 560 723 963 3970 3970	63,800 64,100 64,500 64,600 64,800 66,000 73,000 80,000 91,400 1,770 1,960 5,780 7,600 10,300 13,000 16,600 22,100 91,000	630 330 610 340 350 305 830 500 230 63 61	90,000 90,000 91,000 91,000 91,300 93,000 103,000 129,000	870 880 460 850 470 490 430 1180 700 — — — — — —

#### I ABLE 200.

## PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, 8th edition, rewritten in 1909. Calorie used is heat required to raise 1 Kg, water from 15° to 16° C. B. T. U. is heat required to raise 1 pd. water from 62° to 63° F. Mechanical Equiv. of heat used, 778 ft. pds. or 427 m. Kg. Specific heats, see Barnes-Regnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise 1 Kg. (1 lb.) to corresponding temperature from 6° C. Heat of vaporization, r. heat required to vaporize 1 Kg. (1 lb.) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.

	=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.										
Temperature Degrees Centigrade.		Pressure,		Heat o Liqu	of the		at of ization.		quivalent of al Work.	Temperature Degrees Fahrenheit.	
Tem F Do	Mm. of Mercury, p.	Kg. per sq. cm. P.	Pds. per sq. in. p.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	Β. Τ. U. ρ.	Tem Fal	
0	4.579	0.00623	0.0886	0.00	0.0	595.4	1071.7	565.3	1017.5	32.0	
5	6.541	.00889	.1265	5.04	9.1	592.8	1067.1	562.2	1011.9	41.0	
10	9.205	.01252	.1780	10.06	18.1	590.2	1062.3	559.0	1006.2	50.0	
15	12.779	.01737	.2471	15.06	27.1	587.6	1057.6	555.9	1000.5	59.0	
20	17.51	.02381	.3386	20.06	36.1	584.9	1052.8	552.7	994.8	68.0	
25 30 35 40 45	23.69 31.71 42.02 55.13 71.66	.03221 .04311 .05713 .07495	.4581 .6132 .8126 1.0661 1.3858	25.05 30.04 35.03 40.02 45.00	45.1 54.1 63.1 72.0 81.0	582.3 579.6 576.9 574.2 571.3	1048.1 1043.3 1038.5 1033.5 1028.4	549.5 546.3 543.1 539.9 536.5	989.1 983.4 977.6 971.7 965.7	77.0 86.0 95.0 104.0	
50	92.30	.12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0	
55	117.85	.16023	2.279	54.98	99.0	565.6	1018.1	529.7	953.5	131.0	
60	149.19	.20284	2.885	59.97	108.0	562.8	1013.1	526.4	947.5	140.0	
65	187.36	.2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0	
70	233.53	.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158.0	
75	289.0	.3929	5.589	74.99	135.0	554.0	997·3	516.0	928.8	167.0	
80	355.1	.4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176.0	
85	433.5	.5894	8.383	85.04	153.1	548.1	986.5	509.1	916.3	185.0	
90	525.8	.7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194.0	
91	546.1	.7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8	
92	567.1	.7710	10.966	92.08	165.7	543.7	978.7	504.0	907.2	197.6	
93	588.7	.8004	11.384	93.09	167.5	543.1	977.6	503.3	906.0	199.4	
94	611.0	.8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201.2	
95	634.0	.8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203.0	
96	657.7	.8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8	
97	682.1	.9274	13.190	97.12	174.8	540.6	973.1	500.4	900.8	206.6	
98	707.3	.9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208.4	
99	733.3	.9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210.2	
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0	
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	497.5	895.5	213.8	
102	815.9	1.1093	15.778	102.2	183.9	537.4	967.3	496.8	894.1	215.6	
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4	
104	875.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219.2	
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221.0	
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222.8	
107	970.6	1.3196	18.769	107.2	193.0	534.2	961.6	493.1	887.6	224.6	
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4	
109	1038.8	1.4123	20.089	109.3	196.7	532.9	959.3	491.6	885.0	228.2	
110	1074.5	1.4608	20. <b>7</b> 77	110.3	198.5	532.3	958.1	490.9	883.6	230.0	
111	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8	
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6	
113	1187.4	1.6144	22.962	113.3	203.9	530.3	954.5	488.7	879.5	235.4	
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2	
115	1267.9	1.7238	24.518	115.3	207.6	528.9	952.1	487.1	876.8	239.0	
116	1309.8	1.7808	25.328	116.4	209.4	528.2	950.8	486.3	875.4	240.8	
117	1352.8	1.8393	26.160	117.4	211.2	527.5	949.5	485.5	873.9	242.6	
118	1397.0	1.8993	27.015	118.4	213.0	526.9	948.4	484.8	872.6	244.4	
119	1442.4	1.9611	27.893	119.4	214.9	526.2	947.2	484.0	871.3	246.2	

#### Metric and Common Units.

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and  $\sigma$  the specific volumes of the quid and the saturated vapor,  $s = -\sigma$ , the change of volume, then the heat equivalent of the external work is  $Apu = p(s = -\sigma)$ . Heat equivalent of internal work,  $\rho = r = Apu$ . For experimental sp. vols. see Knoblauch, Linde and lebe, Mitt. über Forschungarbeiten, 21, p. 33, 1905. Entropy = S dQ/T, where dQ = amount of heat added at ablute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Phys. 26, p. 833, 1908; r temperatures above 205° C. corrected from Regnault.

Heat Equivalent									
grees igrade.	of Ex	ternal	Entropy	Entropy of Evapo-	Specific '	Volume.	De	nsity.	Temperature Degrees Fahrenheit.
Cent	Calories.	B.T.U.	Liquid.	ration.	per Kilo-	per	Kilograms per Cubic	Pounds per	rempe Deg Fahre
t	Apu.	Apu.	θ	T	gram.	Pound.	Meter. 1 8	Cubic Foot.	t
o 5	30.1 30.6	54.2 55.2	0.0000	2.1804 2.1320	206.3 147.1	3304.	0.00485	0.000303	32.0 41.0
10 15 20	31.2 31.7 32.2	56.1 57.1 58.0	.0361 .0537 .0709	2.0850 2.0396 1.9959	106.3 77.9 57.8	1703. 1248. 926.	.00941 .01283 .01730	.000587	50.0 59.0 68.0
25 30	32.8 33.3	59.0 59.9	.0878	1.9536 1.9126	43.40 32.95	695. 528.	.02304 .03035	.001439 .001894	77.0 86.0
40 45	34.3 34.8	61.8	.1368	1.8341	19.57 15.25	404.7 313.5 244.4	.03960 .0511 .0656	.002471 .003190 .004092	95.0 104.0 113.0
50 55	35·4 35·9	63.6 64.6	.1682	1.7597 1.7242	12.02 9.56	192.6 153.2	.0832 .1046	.00519	122.0 131.0
65 70	36.9 37.4	66.5 67.4	.2135	1.6563	6.19 5.04	99.2 80.7	.1305 .1615 .1984	.01008	140.0 149.0 158.0
75 80 85	38.o 38.5	68.5 69.3	.2427	1.5918	4.130 3.404	66.2 54.5	.2421	.01510 .01835	167.0 176.0 185.0
90	39.5	71.0	.2851	1.5010	2.358 2.358	45.23 37.77	.3541	.02211	185.0
92		71.3 71.5 71.6	.2906	1.4952 1.4894 1.4826	2.275 2.197	36.45 35.19	·4395 ·4552	.02743	195.8
94	39.9	71.8	.2961	1.4779	2.050	32.86	.4878	.03043	201.2
	40.1	72.1	.3016	1.4723 1.4666	1.980 1.913	31.75 30.67	.505 .523	.03149	203.0 204.8 206.6
98 99	40.3	72.5 72.6	.3070	1.4552	1.787 1.728	28.64 27.69	.560 .579	.033/3	208.4
100	40.5 40.6	72.8 73.0	.3125	1.4441 1.4386	1.671 1.617	26.78 25.90	.598 .618	.03734 .03861	21 <b>2</b> .0 213.8
103	40.7 40.8	73.2 73.3 73.5	.3205	1.4330 1.4275 1.4220	1.564 1.514 1.465	25.00 24.25 23.47	.639 .661 .683	.03990 .04124 .04261	215.6 217.4 219.2
105	40.9 41.0	73.7 73.8	.3259 .3286	1.4165	1.419 1.374	22.73 22.01	.705 .728	.04400 .04543	221.0
108 109	41.2	74.2 74.3	·3312 ·3339 ·3365	1.4057 1.4003 1.3949	1.331 1.289 1.248	21.31 20.64 19.99	.751 .776 .801	.04692 .04845 .0500	224.6 226.4 228.2
110	41.4 41.4	74.5 74.6	·3392 ·3418	1.3895	1.209 1.172	19.37 18.77	.827 .853	.0516 .0533	230.0
113	41.6	74.8 75.0 75.1	·3445 ·3471 ·3498	1.3789 1.3736 1.3683	1.136	18.20 17.64 17.10	.880 .908 .936	.0550 .0567 .0585	233.6 235.4 237.2
115 116	41.8 41.9	75·3 75·4	.3524 .3550	1.3631	1.036	16.59 16.09	.965	.0603	239.0
119	42.I 42.2	75.8 75.9	.3602	1.3527 1.3475 1.3423	0.9460 0.9183	15.16 15.16 14.72	1.057 1.089	.0641 .0659 .0679	242.6 244.4 246.2
	0 5 10 10 11 15 20 25 30 35 40 45 50 66 65 70 75 80 85 90 91 92 93 94 99 99 99 100 100 100 100 100 100 100 10	of Ex Wc	t Apu. Apu.  O 30.1 54.2 530.6 55.2 10 31.2 56.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 31.7 57.1 115 41.8 75.3 41.9 75.4 8111 41.7 75.1 115 41.8 75.3 41.9 75.4 8111 41.4 74.5 41.6 75.0 114 41.7 75.1 115 41.8 75.3 41.9 75.4 8111 41.4 74.5 111 41.5 74.8 11.5 74.8 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.6 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8 11.5 75.8	Heat Equivalent of External Work.   Entropy of the Liquid.     Apu.   Apu.   θ     O   30.1   54.2   0.0000     5   30.6   55.2   0.183     10   31.2   56.1   0.361     15   31.7   57.1   0.537     20   32.2   58.0   0.0709     25   32.8   59.0   0.878     30   33.3   59.9   1044     33.8   60.9   1.207     40   34.3   61.8   1.368     45   34.8   62.7   1.526     50   35.4   63.6   1.682     55   35.9   64.6   1.835     60   30.4   65.6   1.986     65   35.9   64.6   1.835     60   30.4   65.6   1.986     65   36.9   66.5   2.2135     70   37.4   67.4   2.282     75   38.0   68.5   2.427     80   39.5   71.0   2.851     91   39.6   71.3   2.879     92   39.7   71.5   2.906     93   39.8   71.6   2.934     94   39.9   71.8   2.961     95   40.0   72.0   2.989     96   40.1   72.1   3016     97   40.2   72.3   3043     98   40.3   72.5   3070     99   40.4   72.6   3097     100   40.5   72.8   3125     101   40.6   73.0   3152     102   40.6   73.2   3179     103   40.7   73.3   3205     104   40.8   73.5   3232     105   40.9   73.7   32.59     106   41.4   74.6   3312     107   41.4   74.6   3418     118   41.6   75.0   3471     114   41.7   75.1   3498     115   41.8   75.3   3524     116   41.9   75.4   3550     117   42.1   75.8   3606     118   42.1   75.8   3606     118   42.1   75.8   3606     118   42.1   75.8   3606     118   42.1   75.8   3606     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000     3000   3000   3000	Heat Equivalent of External Work.   Entropy of the Liquid.     Entropy of the Liquid.     Entropy of the External Work.     Entropy of Exapolation.       Entropy of Exapolation.     Entropy of Exapolation.       Entropy of Exapolation.	Heat Equivalent of External work.   Entropy of the Liquid.	Heat Equivalent of External Work.   Entropy of the Liquid.	Heat Equivalent of External Work.   Entropy of the Liquid.   Liquid.	Heat Equivalent of External Work.   Calories   B.T.U.   Apu.   Apu.

Metric and Common Units.

1											
	Temperature Degrees Centigrade.		Pressure		Hea the L	it of iquid.	Hea Vapor	t of zation.	Heat Equ Interna	ivalent of Work.	Temperature Degrees Fahrenheit.
	Tempe Deg Centig	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.	Tempe Degi Fahre
ı	t.	p.	р.	p.	q.	q	r	r.	ρ.	ρ.	t.
	120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
	121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	249.8
	122	1586	2.156	30.66	122.5	220.4	524.2	943.5	481.8	867.1	251.6
	123	1636	2.224	31.64	123.5	222.2	523.5	942.3	481.0	865.8	253.4
	124	1688	2.294	32.64	124.5	224.1	522.8	941.0	480.2	864.3	255.2
	125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
	126	1795	2.440	34.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
	127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
	128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
	129	1966	2.673	38.01	129.6	233.3	519.3	934.8	476.3	857.4	264.2
	130	2026	2.754	39.17	130.6	235.1	518.6	933.6	475.5	856.0	266.0
	131	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
	132	2150	2.923	41.57	132.6	238.7	517.3	931.1	474.0	853.2	269.6
	133	2214	3.010	42.81	133.7	240.6	516.6	929.8	473.3	851.8	271.4
	134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5	850.4	273.2
	135	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
	136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
	137	2487	3.382	48.10	137.7	247.9	513.7	924 6	470.1	846.1	278.6
	138	2560	3.480	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
	139	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	843.3	282.2
	140	2710	3.684	52.39	140.8	253.4	511.5	920.7	467.6	841.8	284.0
	141	2787	3.789	53.89	141.8	255.3	510.7	919.3	466.8	840.2	285.8
	142	2866	3.897	55.43	142.8	257.1	510.1	918.1	466.1	838.9	287.6
	143	2948	4.008	57.00	143.9	259.0	509.3	916.7	465.3	837.4	289.4
	144	3030	4.121	58.60	144.9	260.8	508.6	915.4	464.4	835.9	291.2
	145 146 147 148	3115 3202 3291 3381 3474	4.236 4.354 4.474 4.597 4.723	60.24 61.92 63.64 65.39 67.18	145.9 146.9 148.0 149.0	262.7 264.5 266.4 268.2 270.1	507.8 507.1 506.4 505.6 504.9	914.1 912.8 911.5 910.1 908.8	463.6 462.8 462.0 461.2 460.4	834.5 833.1 831.6 830.1 828.7	293.0 294.8 296.6 298.4 300.2
	150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
	151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
	152	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
	153	3865	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
	154	3968	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
	155	4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311.0
	156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
	157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
	158	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
	159	4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
	160	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	812.2	320.c
	161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
	162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
	163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
	164	5124	6.967	99.09	165.4	297.7	493.4	888.1	447.9	806.2	327.2
	165	5253	7.142	101.6	166.5	299.6	492.6	886.7	447.0	804.7	329.6
	166	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
	167	5518	7.502	106.7	168.5	303.3	491.1	883.9	445.4	801.7	332.6
	168	5655	7.688	109.4	169.5	305.1	490.3	882.5	444.6	800.1	334.2
	169	5794	7.877	112.0	170.6	307.0	489.5	881.0	443.7	798.5	336.2
-											

Metric and Common Units.

e .	Heat Ed	quivalent	Work		Specific	Volume.	Det	asity.	e .
ratu rees rade	of Exteri	nal Work.	Entropy of the	Entropy of Evapo-	- Options				ratur rees sheit
Temperature Degrees Centigrade.	Calories.	B. T. U.	Liquid.	ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
t.	Apu.	Apu.	θ.	$\frac{\mathbf{r}}{\mathbf{T}}$ .	S.	S.	Ĭ. s	1. 8	t.
120 121 122 123 124	42.2 42.3 42.4 42.5 42.6	76.0 76.2 76.4 76.5 76.7	0.3654 .3680 .3705 .3731 .3756	1.3372 1.3321 1.3269 1.3218 1.3167	0.8914 .8653 .8401 .8158	14.28 13.86 13.46 13.07 12.69	1.122 1.156 1.190 1.226 1.262	0.0700 .0721 .0743 .0765	248.0 249.8 251.6 253.4 255.2
125 126 127 128 129	42.7 42.8 42.9 43.0 43.0	76.8 77.0 77.1 77.3 77.4	.3782 .3807 .3833 .3858	1.3117 1.3067 1.3017 1.2967 1.2917	.7698 .7479 .7267 .7063 .6867	12.33 11.98 11.64 11.32 11.00	1.299 1.337 1.376 1.416 1.456	.0811 .0835 .0859 .0883 .0909	257.0 258.8 260.6 262.4 264.2
130 131 132 133 134	43.1 43.2 43.3 43.3 43.4	77.6 77.7 77.9 78.0 78.1	.3909 •3934 •3959 •3985 •4010	1.2868 1.2818 1.2769 1.2720 1.2672	.6677 .6493 .6315 .6142	10.70 10.40 10.12 9.839 9.569	1.498 1.540 1.583 1.628 1.674	.0935 .0961 .0988 .1016	266.0 267.8 269.6 271.4 273.2
135 136 137 138 139	43.5 43.6 43.6 43.7 43.8	78.3 78.4 78.5 78.7 78.8	.4035 .4060 .4085 .4110	1.2623 1.2574 1.2526 1.2479 1.2431	.5812 .5656 .5506 .5361 .5219	9.309 9.060 8.820 8.587 8.360	1.721 1.768 1.816 1.865 1.916	.1074 .1104 .1134 .1165	275.0 276.8 278.6 280.4 282.2
140 141 142 143 144	43.9 43.9 44.0 44.0 44.2	78.9 79.1 79.2 <b>7</b> 9.3 79.5	.4160 .4185 .4209 .4234 .4259	1.2383 1.2335 1.2288 1.2241 1.2194	.5081 .4948 .4819 .4694 .4574	8.140 7.926 7.719 7.519 7.326	1.968 2.021 <b>2.</b> 075 2.130 2.186	.1229 .1262 .1296 .1330 .1365	284.0 285.8 287.6 289.4 291.2
145 146 147 148 149	44.2 44.3 44.4 44.4 44.5	79.6 79.7 79.9 80.0 80.1	.4283 .4307 .4332 .4356 .4380	1.2147 1.2100 1.2054 1.2008 1.1962	.4457 .4343 .4232 .4125 .4022	7.139 6.957 6.780 6.609 6.443	2.244 2.303 2.363 2.424 2.486	.1401 .1437 .1475 .1513 .1552	293.0 294.8 296.6 298.4 300.2
150 151 152 153 154	44.6 44.6 44.7 44.8 44.8	80.2 80.4 80.5 80.6 80.7	.4405 .4429 .4453 .4477 .4501	1.1916 1.1870 1.1824 1.1778 1.1733	.3921 .3824 •3729 .3637 •3548	6.282 6.126 5.974 5.826 5.683	2.550 2.615 2.682 2.750 2.818	.1592 .1632 .1674 .1716 .1759	302.0 303.8 305.6 307.4 309.2
155 156 157 158 159	44.9 45.0 45.0 45.1 45.2	80.9 81.0 81.1 81.2 81.4	•4525 •4549 •4573 •4596 •4620	1.1688 1.1644 1.1599 1.1554 1.1509	.3463 .3380 .3298 .3218 .3140	5.546 5.413 5.282 5.154 5.029	2.888 2.959 3.032 3.108 3.185	.1803 .1847 .1893 .1940 .1988	311.0 312.8 314.6 316.4 318.2
160 161 162 163 164	45·3 45·3 45·4 45·5 45·5	81.5 81.6 81.7 81.8 81.9	.4644 .4668 .4692 .4715 .4739	1.1465 1.1421 1.1377 1.1333 1.1289	.3063 .2989 .2920 .2855 .2792	4.906 4.789 4.677 4.571 4.469	3.265 3.345 3.425 3.503 3.582	.2038 .2088 .2138 .2188 .2238	320.0 321.8 323.6 325.4 327.2
165 166 167 168 169	45.6 45.6 45.7 45.7 45.8	82.0 82.1 82.2 82.4 82.5	.4763 .4786 .4810 .4833 .4857	1.1245 1.1202 1.1159 1.1115 1.1072	.2729 .2666 .2603 .2540 .2480	4.368 4.268 4.168 4.070 3.975	3.664 3.751 3.842 3.937 4.032	.2289 .2343 .2399 .2457 .2516	329.0 330.8 332.6 334.4 336.2

Metric and Common Units.

ture es ide.		Pressure.			at of siquid.	Hez Vapori	it of zation.		quivalent al Work.	es es neit.
Temperature Degrees Centigrade.	Mm. of Mercury.	Kg. per sq. cm.	Pds. per sq. in.	Calories.	B. T. U.	Calories.	B. T. U.	Calories.	B. T. U.	Temperature Degrees Fahrenheit.
t.	p.	р.	p.	q.	q.	r,	r.	ρ.	ρ.	t.
170	5937	8.071	114 8	171.6	308.9	488.7	879.6	442.8	797.0	338.0
171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8
172	6229	8.469	120 4	173.7	312.6	487.1	876.9	441.1	794.1	341.6
173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	343.4
174	6533	8.882	126.3	175.7	316.3	485.5	873.9	439.4	790.9	345.2
175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0
176	6848	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8
177	7010	9.531	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6
178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0	784.7	352.4
179	7343	9.983	142.0	180.9	325.6	481.4	866.6	435.0	783.1	354.2
180	7514	10.216	145.3	181.9	327.5	480.6	865.1	434.2	781.5	356.0
181	7688	10.453	148.7	183.0	329.3	479.8	863.6	433.3	779.9	357.8
182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	359.6
183	8046	10.940	155.6	185.0	333.0	478.2	860.7	431.6	776.9	361.4
184	8230	11.189	159.2	186.1	334.9	477.4	859.2	430.8	775.3	363.2
185	8417	11.44	162.8	187.1	336.8	476.6	857.7	429.9	773.7	365.0
186	8608	11.70	166.5	188.1	338.6	4757	856.3	429.0	772.2	366.8
187	8802	11.97	170.2	189.2	340.5	474.8	854.7	428.0	770.5	368.6
188	8999	12.24	174.0	190.2	342.4	474.0	853.2	427.2	768.9	370.4
189	9200	12.51	177.9	191.2	344.2	473.2	851.7	426.3	767.4	372.2
190	9404	12.79	181.8	192.3	346.1	472.3	850.2	425.4	765.8	374.0
191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823	13.36	190.0	194.4	349.8	470.6	847.1	423.6	762.5	377.6
193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4
194	10256	13.94	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195	10480	14.25	202.6	197.5	355.4	468.1	842.5	421.0	757.7	383.0
196	10700	14.55	207.0	198.5	357.3	467.2	841.0	420.1	756.1	384.8
197	10930	14.87	211.4	199.5	359.2	466.4	839.5	419.2	754.6	386.6
198	11170	15.18	216.0	200.6	361.1	465.6	838.0	418.4	753.0	388.4
199	11410	15.51	220.6	201.6	362.9	464.7	836.4	417.4	751.3	390.2
200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0
201	11890	16.17	223.0	203.7	366.7	462.9	833.3	415.6	748.1	393.8
202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12650	17.20	244.7	206.8	372.3	460.3	828.6	412.9	743.3	399.2
205	12920	17.56	249.8	207.9	374.1	459.4	827.0	412.0	741.6	401.0
206	13180	17.92	254.9	208.9	376.0	458.6	825.4	411.1	740.0	402.8
207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14010	19.04	270.8	212.0	381.6	455.9	820.6	408.4	735.1	408.2
210	14290	19.43	276.3	213.1	383.5	455.0	819.1	407.5	733.6	410.0
211	14580	19.82	281.9	214.1	385.4	454.1	817.4	406.6	731.9	411.8
212	14870	20.22	287.6	215.2	387.3	453.2	815.8	405.7	730.2	413.6
213	15170	20.62	293.3	216.2	389.2	452.4	814.3	404.9	728.7	415.4
214	15470	21.03	299.2	217.3	391.1	451.5	812.7	404.0	727.1	417.2
215	15780	21.45	305.1	218.3	392.9	450.6	811.0	403.I	725.4	419.0
216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.I	723.7	420.8
217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	426 2
220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0

Metric and Common Units.

es de.	Heat Eq	uivalent al Work.	Entropy	Entropy	Specific V	olume.	Dens	sity.	ature tes heit.
Lemperature Degrees Centigrade.	Calories.	B. T. U.	of the Liquid.	of Evapo- ration.	Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	Temperature Degrees Fahrenheit.
t.	Apu.	Apu.	θ.	<u>r</u> .	s.	s.	<u>I</u> .	1. 8	t.
170	45.9	82.6	0.4880	1.1029	0.2423	3.883	4.127	0.2575	338.0
171	46.0	82.7	.4903	1.0987	.2368	3.794	4.223	.2636	339.8
172	46.0	82.8	.4926	1.0944	.2314	3.709	4.322	.2696	341.6
173	46.1	82.9	.4949	1.0901	.2262	3.626	4.421	.2758	343.4
174	46.1	83.0	.4972	1.0859	.2212	3.545	4.521	.2821	345.2
175	46.2	83.1	.4995	1.0817	.2164	3.467	4.621	.2884	347.0
176	46.2	83.2	.5018	1.0775	.2117	3.391	4.724	.2949	348.8
177	46.3	83.3	.5041	1.0733	.2072	3.318	4.826	.3014	350.6
178	46.3	83.4	.5064	1.0691	.2027	3.247	4.933	.3080	352.4
179	46.4	83.5	.5087	1.0649	.1983	3.177	5.04	.3148	354.2
180 181 182 183 184	46.4 46.5 46.5 46.6 46.6	83.6 83.7 83.8 83.8 83.9	.5110 .5133 .5156 .5178 .5201	1.0608 1.0567 1.0525 1.0484 1.0443	.1941 .1899 .1857 .1817	3.109 3.041 2.974 2.911 2.849	5.15 5.27 5.38 5.50 5.62	.3217 .3288 .3362 .3435 .3510	356.0 357.8 359.6 361.4 363.2
185	46.7	84.0	.5224	1.0403	.1740	2.787	5.75	.3588	365.0
186	46.7	84.1	.5246	1.0362	.1702	2.727	5.88	.3667	366.8
187	46.8	84.2	.5269	1.0321	.1666	2.669	6.00	.3746	368.6
188	46.8	84.3	.5291	1.0280	.1632	2.614	6.13	.3826	370.4
189	46.9	84.3	.5314	1.0240	.1598	2.560	6.26	.3906	372.2
190	46.9	84.4	.5336	1.0200	.1565	2.507	6.39	.3989	374 °
191	47.0	84.5	.5358	1.0160	.1533	2.456	6.52	.4072	375.8
192	47.0	84.6	.5381	1.0120	.1501	2.405	6.66	.4158	377.6
193	47.0	84.6	.5403	1.0080	.1470	2.355	6.80	.4246	379.4
194	47.0	84.7	.5426	1.0040	.1440	2.306	6.94	.4336	381.2
195	47.1	84.8	.5448	1.0000	.1411	2.259	7.09	.4426	383.0
196	47.1	84.9	.5470	0.9961	.1382	2.214	7.23	.4516	384.8
197	47.2	84.9	.5492	.9922	.1354	2.169	7.38	.4610	386.6
198	47.2	85.0	.5514	.9882	.1327	2.126	7.53	.4704	388.4
199	47.3	85.1	.5536	.9843	.1300	2.083	7.69	.4801	390.2
200	47 3	85.1	•5558	.9804	.1274	2.041	7.84	.4900	392.0
201	47·3	85.2	•5580	.9765	.1249	2.001	8.00	.4998	393.8
202	47·3	85.2	•5602	.9727	.1225	1.962	8.16	.510	395.6
203	47·4	85.3	•5624	.9688	.1201	1.923	8.33	.520	397.4
204	47·4	85.3	•5646	.9650	.1177	1.885	8.50	.531	399.2
205	47.4	85.4	.5668	.9611	.1153	1.847	8.67	•541	401.0
206	47.5	85.4	.5690	.9572	.1130	1.810	8.85	•552	402.8
207	47.5	85.5	.5712	.9534	.1108	1.774	9.03	•564	404.6
208	47.5	85.5	.5733	.9496	.1086	1.739	9.21	•575	406.4
209	47.5	85.5	.5755	.9458	.1065	1.705	9.39	•587	408.2
210	47.5	85.5	·5777	.9420	.1044	1.673	9.58	.598	410.0
211	47.5	85.5	·5799	.9382	.1024	1.640	9.77	.610	411.8
212	47.5	85.6	·5820	.9344	.1004	1.608	9.96	.622	413.6
213	47.5	85.6	·5842	.9307	.0984	1.577	10.16	.634	415.4
214	47.5	85.6	·5863	.9269	.0965	1.546	10.36	.647	417.2
215 216 217 218 219	47·5 47·5 47·5 47·5 47·5	85.6 85.6 85.6 85.6 85.6	.5885 .5906 •5927 .5948 •5969	.9232 .9195 .9157 .9120 .9084	.0947 .0928 .0910 .0893 .0876	1.516 1.486 1.458 1.430 1.403	10.56 10.78 10.99 11.20	.660 .673 .686 .699	419.0 420.8 422.6 424.4 426.2
220	47.5	85.6	.5991	.9047	.0860	1.376	11.62	.727	428.0

### LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	С	T	Н	Authority.
Alloys: 30.5Pb + 69.5Sn	PbSn ₄	183	17.	Spring.
36.9Pb $+ 63.1$ Sn	PbSn ₃	179	15.5	"
63.7 Pb + 36.3Sn	PbSn	177.5	11.6	66
77.8 Pb + 22.2 Sn .	Pb₂Sn	176.5	9.54	
Britannia metal, 9Sn + 1Pb . Rose's alloy,	-	236	28.0*	Ledebur.
24 Ph \(\perp \) 27 28n \(\perp \) 48 7 Ri	-	98.8	6.85	Mazzotto.
Wood's alloy $\begin{cases} 25.8 \text{Pb} + 14.7 \text{Sn} \\ + 52.4 \text{Bi} + 7 \text{Cd} \end{cases}$	-	75.5	8.40	"
Aluminum	Al	658.	76.8	Glaser.
Ammonia	$NH_3$	<del></del> 75.	108.	Massol.
Bromine	C ₆ H ₆ Br	5.4	30.6 16.2	Mean. Regnault.
Bismuth	Bi	<del>-7.3</del>	10.2	Person.
Cadmium .	Ĉd	320.7	13.66	"
Calcium chloride	CaCl ₂ +6H ₂ O	28.5	40.7	66
Copper	Cu	1083	42.	Mean.
Iron, Gray cast	-	_	23.	Gruner.
" White "	-	-	33.	"
" Slag	Ī	_	50.	Favre and Silbermann.
Iodine			11.71	Dickinson, Harper,
Ice · · · · ·	H ₂ O	0	79.63	Osborne.†
"	( ) ( )	0	79-59	Smith.‡
" (from sea-water)	$   \left\{     H_2O + 3.535 \right\}   $ of solids	-8.7	54.0	Petterson.
Lead	Pb	327	5.36	Mean.
Mercury	Hg	-39	2.82	Person.
Naphthalene	. C ₁₀ H ₈ Ni	79.87	35.62	Pickering. Pionchon.
Nickel	Pd	1435	4.64 36.3	Violle.
Phosphorus	P	44.2	4.97	Petterson.
Platinum .	Pt	1755	27.2	Violle.
Potassium	K	62	15.7	Joannis.
Potassium nitrate	$KNO_3$	333-5	48.9	Person.
Phenol	C ₆ H ₆ O	25.37	24.93	Petterson.
Paraffin		52.40	35.10	Batelli, Person.
Silver	Ag Na	961	21.07 31.7	Joannis.
" nitrate	NaNO ₃	97 305.8	64.87	J Canalian
" phosphate	∫ Na ₂ HPŎ₄ {	36.1	66.8	66
• • •	1 + 12H ₂ O 5			D-4-112
Spermaceti	s	43.9	36.98	Batelli. Person.
Sulphur	Sn	232	9.37	Mean.
Wax (bees)	-	61.8	42.3	"
Zinc	Zn	419	28.13	"

^{*} Total heat from 0° C.
† U. S. Bureau of Standards, 1913, in terms of 15° calorie.
‡ 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

TABLE 261. - Heat of Combustion of Some Carbon Compounds.

Ethane, g. C.4Ha 371\$\(\phi\) 12.4\$\(\phi\) Ethyl, 1. C.4HaO 327\$\(\phi\) 7.10\$\(\phi\) Propane, g. C.4Ha 528\$\(\phi\) 12.4\$\(\phi\) n-propyl, 1. C.4HaO 483\$\(\phi\) 8.68\$\(\phi\) n-Heytane, 1. C.4HaO 644\$\(\phi\) 8.68\$\(\phi\) n-Heytane, 1. C.4HaO 644\$\(\phi\) 8.68\$\(\phi\) n-Heytane, 1. C.4HaO 644\$\(\phi\) 8.68\$\(\phi\) n-Heytane, 1. C.4HaO 664\$\(\phi\) 1335\$\(\phi\) 11.5\$\(\phi\) n-butyl, 1. C.4HaO 660\$\(\phi\) 8.96\$\(\phi\) n-Dekane, 1. CaHaO 660\$\(\phi\) 8.96\$\(\phi\) 11.4\$\(\phi\) Dekane, 1. CaHaO 660\$\(\phi\) 8.96\$\(\phi\) 11.4\$\(\phi\) 11.8\$\(\phi\) 11.8	Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal. per g	Compound.	Formula.	Kg. cal. per g- mol.	Kg. cal. per g
Carbon disulphide, I         CS1         253p         3.28v         Starch, s         CeH ₁₀ Ot         68s         4.23           Methyl-chloride, g         CH ₃ Cl         169p         3.26p         Thymol, l         CubH ₄ O         1353         9.02p           Ethyl-chloride, v         C ₂ H ₅ Cl         332p         5.10p         Urea, l         CO(NH ₂ )z         152         2.53	Methane, g Ethane, g Propane, g i-Butane, g n-Hexane, l n-Heptane, l n-Octane, l Dekane, l Olefines: Ethylene, g Amylene, l Hexylene, l Acetylene, g Trimethylene, g Benzene, l Senzene, l Chloroform, v Carbon disulphide, l	C-His CaHis	371 p 528 p 687 p 905 p 1139 p 1026 p 1315 p 1626 p 343 p 496 p 651 p 804 p 902 p 313 p 781 p 788 p 1235 p 937 p 1236 p	12.4v 12.2p 11.6v 11.4v 11.4v 12.2p 11.4v 12.2p 11.5p 11.5p 11.5p 11.20p 12.0p 10.0p 10.0p 0.2v 0.2v 0.2v 0.2v 0.2v 0.2v 0.2v 0.2v	Methyl, I Ethyl, I n-propyl, I n-butyl, I Amyl, I Ethers: Dimethyl, y Ethyl-methyl, v Acids: Formic, I Acetic, I Propionic, I n-butyric, I Lactic, I Cellulose, s Destrine, s Glycerine, I Phenol, I Sugar, cane, s Starch, s Thymol, I	C2H 60 C3H 80 C3H 80 C4H 100 C4H 110 C5H 110 C	327 p 483 p 644 p 788 p 346 p 660 p 506 p 62 p 210 p 368 p 525 p 680 414 397 735 1353 685	8.96p 7.60p 8.92p 8.43p 1.357v 3.49v 4.96v 5.95v 3.66v 4.18v

v, p, following the heats of combustion, signify at constant volume and pressure respectively. When referred to constant pressure, the values are 0.58 Kg-cal. greater (at about 18°C) for each condensed gaseous molecule. The values are means from various observers. The combustion products are gaseous CO2, liquid water, etc.

TABLE 262. - Heat of Combustion - Miscellaneous.

Substance.	Small calories per g substance.	Reference.	Substance.	Small calories per g substance.	Reference.
Asphalt Butter Carbon: amorphous charcoal. diamond graphite. Copper (to CuO) Dynamite, 75% Egg, white of Egg, yolk of Fats, animal Hemoglobin Hydrogen Iron (to Fe2O ₃ ) Magnesium (to MgO) Oils: cotton-seed lard oilve.	9530 9200 8080 8100 7860 7900 5900 1290 5700 8100 9500 5900 33900 1582 6080 9500 9300 9400	1 2 2 3 3 5 4 - - 2 - - 2 - - - - - - - - - - - - -	Oils: petroleum:	11500 10000 10200 9500 10000 11140 10340 8400 2240 9500 4170 4210 3990 4420	2 2 2 6 7 6 6 1 2 5 6 8 8 8 8

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

THEONIAN TABLES

### HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

(a) Coals.											
Coal.	Moisture.	Volatile matter.	Fixed Carbon.	Ash.	Sulphur.	Hydrogen.	Carbon.	Nitrogen.	Oxygen.	Calories per gram.	B. T. U.'s per pound.
Lignite { Low grade. High grade Sub-bitu- low grade. High grade Bitu- Low grade. minous { High grade Semi-shitu- Low grade. minous { High grade Semi-shitacite Anthracite Oven { Low grade. Coke { High grade coke { High grade } }	33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33 1.92	25.48 27.44 34.78 33.93 33.93 34.36 14.5 14.57 9.81 2.48 3.27 1.58 0.04	27.29 29.62 36.60 46.06 43.92 58.83 75.5 78.20 78.82 82.07 84.28 83.87 94.66	8.42 9.56 5.91 5.37 10.71 3.39 7.3 3.97 9.30 12.69 9.12 8.99 3.57	0.97 0.94 0.29 0.58 4.94 0.58 0.99 0.54 1.74 0.60 1.18 0.69	7.09 6.77 6.14 5.89 5.25 4.58 4.76 3.62 2.23 3.08	37.45 41.31 52.51 60.08 60.06 77.98 80.65 84.62 80.28 79.22 81.35	0.50 0.67 1.03 1.05 1.02 1.29 1.82 1.02 1.47 0.68 0.79	45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417 7946 8006	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351 14300 14410

# (b) PEATS AND WOOD (air dried).

	Vol. hydro- carbon.	Fixed carbon.	Ash.	Sul- phur.	Hydro- gen.	Carbon.	Nitro- gen.	Oxygen.	Calories per gram.	B.T.U.'s per pound.		
Peats: Franklin Co., N. Y. Sawyer Co., Wis Woods: Oak, dry. Birch, dry. Pine, dry.	67.10 56.54	28.99 27.92 — —	3.91 15.54 0.37 0.29 0.37	0.15 0.29 — —	5.93 4.71 6.02 6.06 6.20	57.17 51.00 50.16 48.88 50.31	1.48 1.92 0.09 0.10 0.04	31.36 26.54 43.36 44.67 43.08	5726 4867 4620 4771 5085	10307 8761 8316 8588 9153		

# (c) LIQUID FUELS.

Fuel.	Specific gravity at 15° C.	Calories per gram.	British thermal units per pound.		
Petroleum ether	.710730 .790800 .960970	12210-12220 11100-11400 11000-11200 10200-10500 6440-6470	21978-21996 19980-20520 19800-20160 18360-18900 11592-11646		

## (d) GASES.

Gas.	$_{ m H_2}$	СН4	C ₂ H ₂	"lumi- ants.	CO ₂	со	O ₂	N ₂	Cal. per m ⁸	B.T.L per cu. ft
Natural gas, Cal. Natural gas, Pa. Natural gas, France Coal gas, low grade. Coal gas, high grade Water gas, low grade. Water gas, high grade.	34.80 57.2 52.88 36.4	88.0 53.3 98.81 28.80 18.8 2.16 23.2	45.8* 9.50	- 1.70 0.8 3.47 14.05	0.58 0.20 2.00 — 3.02	- IO.40 3.20 36.8 I9.1	- 0.1 0.40 - 1.15	0.90 0.90 0.48 14.20 18.0 4.69 3.08	8339 12635 9364 6151 3736 2642 6140	937 1420 1052 657 399 280 657

^{*} C₂H₆. Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snel z (Van Nostrand's Chemical Annual).

## CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

	Explosive.	Specific gravity.	Number of large calories developed by 1 kilogram of the explosive,	Pressure developed in own volume after elimination of surface in- fluence.	Unit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 14 in. diam.	Duration of flame from 100 grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in. transmitted explosion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% fire damp & coal dust mixture with
				Kg. per sq. cm.	Grams,	Meters per second.	Millisec- onds.	Inches.	Inches.	Grams.	Grams.
(A)	Forty-per-cent nitro- glycerin dynamite	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
(B)	FFF black blasting powder	1.25	789.4	4817	374 [†] 45 ⁸ *	469.4‡	925.	54.32	-	1 54.4 126.9 4.1	25
(C)	Permissible explo- sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000
(D)	Permissible explo- sive; ammonium nitrate class	0.97	992.8	7300	279*	3438§	.483	25.68	I	89.8 27.5 75.5	800
(E)	Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000
			(	Chemical	Analyse	s.					
(B)	Moisture Nitroglycerin Sodium nitrate Wood pulp Calcium carbonate Moisture Sodium nitrate Charcoal Sulphur Moisture Nitroglycerin Sodium nitrate Wood pulp and crud grains Starch Calcium carbonate Magnesium "	e fibr		0.91 39.68 42.46 13.58 3.37 0.80 70.57 17.74 10.89 7.89 24.02 36.25 9.20 21.31 0.97 0.36		Moisture Ammon Sulphur Starch Wood p Poisono Mangan Sand Moisture Nitrogly Ammon Sand . Coal . Clay . Ammon Zinc sul Potassiu	ium n ulp us ma ese pe cerin ium n ium s	itter . eroxide			0.23 83.10 0.46 2.61 1.89 2.54 2.64 6.53 2.34 30.85 9.94 1.75 11.98 7.64 8.96 6.89 19.65

^{*} One pound of clay tamping used. Cartridges 13 in. diam.

[‡] Rate of burning.

^{*} One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning § Cartridges 13 in. diam. || For 300 grammes.

Compiled from U. S. Geological Survey Results, — "Investigation of Explosives for use in Coal Mines, 1909." MITHSONIAN TABLES.

#### TABLE 265. - Additional Data on Explosives.

Explosive. (Ref. Young, Nature, 102, 216, 1918.)	Vol. gas per g in cc = V	Calories per g = Q	Coefficient = QV + 1000	Coefficient $GP = \tau$	Calculated Temperature Q/C C, sp. ht. gases = 0.24
Gunpowder Nitroglycerine Nitrocellulose, 13% N2 Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5) Cordite, MD (NG, 30; NC, 65; Vaseline, 5) Ballistite (NG, 50; NC, 50; Stabilizer, 5) Picric acid (Lyddite)	923 871 888	738 1652 931 1242 1031 1349 810	207 1224 859 1082 915 1102 710	1 6 4.3 5.2 4.4 5.3 3.4	2240° C 6880 3876 5175 4225 5621 3375

Shattering power of explosive = vol. gas per  $g \times cals./g \times V_d \times density$  where  $V_d$  is the velocity of detonation. Trinitrotoluene:  $V_d = 7000$  m/sec. Shattering effect = .87 picric acid. Amatol (Ammonium nitrate + trinitrotoluene, TNT):  $V_d = 4500$  m/sec. Ammonal (Ammonium nitrate, TNT, Al): 1578 cal/g; 682 cc gas;  $V_d = 4000$  m/sec. Sabulite (Ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

#### TABLE 266. — Ignition Temperatures Gaseous Mixtures.

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O₂ (Dixon, Conrad, *loc. cit.* 95, 1909).

Benzene and air
-----------------

## TABLE 267. - Time of Heating for Explosive Decomposition.

Temperature ° C.	170	180	190	200	220	Ignition tem	perature.
Time.	sec.	sec.	sec.	sec.	sec.	°C†	° C‡
Black powder. Smokeless powder A. Smokeless powder B Celluloid Pyroxylin Collodion cotton Celluloid * Safety matches. Parler matches. Cotton wool	190	n 195 130 60 165 100 340 n	n 130 — 67 60 240 n	n 45 90 21 56 50 150 590	n 23 25 9 18 30 60 480	440 300 	45°

n, failure to explode in twenty minutes. *The decomposition of nitrocellulose in celluloid commences at about 100° C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with porcelain tube of given temperature.

† Measured by contact with molten lead. Average.

Taken from Technologic Paper of Bureau of Standards, No. 98, 1917.

#### TABLE 268. - Flame Temperatures.

Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

Alcohol, with NaCl. Bunsen flame, no air. Bunsen flame, † air. Bunsen flame, full air. Illuminating gas-oxygen.	1705° C 1712 1812 1871 2200	Hydrogen flame. Hydrogen-oxygen Acetylene burner Acetylene-oxygen Cooper-Hewlit Hg	1900° C 2420 2458 3000 3500
-----------------------------------------------------------------------------------------------------------------	-----------------------------------------	------------------------------------------------------------------------------------	-----------------------------------------

## THERMO-CHEMISTRY, CHEMICAL ENERGY DATA.

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or  $\operatorname{mol}(c)$ ; treat reaction equations like algebraic equations:  $\operatorname{CO} + \operatorname{O} = \operatorname{CO}_2 + 68 \, \operatorname{Kg-cal}$ ; subtract  $\operatorname{C} + 2 \, \operatorname{O} = \operatorname{CO}_2 + 97 \, \operatorname{Kg-cal}$ , then  $\operatorname{C} + \operatorname{O} = \operatorname{CO}_2 + 29 \, \operatorname{Kg-cal}$ . We may substitute the negative values of the formation heats in an energy equation and solve  $\operatorname{MgCl}_2 + 2 \, \operatorname{Na} = 2 \, \operatorname{NaCl} + \operatorname{Mg} + x \, \operatorname{Kg-cal}$ ; -151 = -196 + x;  $x = 45 \, \operatorname{Kg-cal}$ . Heats of formation of organic compounds can be found from the heats of combustion since burned to  $\operatorname{H_2O}$  and  $\operatorname{CO}_2$ . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at  $\operatorname{T}_K^c$  the energy of the substance is decreased (increased) by  $0.002 \cdot \operatorname{N} \cdot \operatorname{T}_K \, \operatorname{Kg-cal}$ .  $\operatorname{H}_2 + \operatorname{O} = \operatorname{H}_2 \operatorname{O} + 67.5 \, \operatorname{Kg-cal}$ . at  $\operatorname{constant}$  volume;  $\frac{1}{4}(2 \, \operatorname{H}_2 + \operatorname{O}_2 - 2 \, \operatorname{H}_2 \operatorname{O} = 135.0 + 0.002 \times 3 \times 201 = 136.7) = 68.4 \, \operatorname{Kg-cal}$ .

 $\frac{1}{2}(2 \text{ H}_2 + \text{O}_2 - 2 \text{ H}_2\text{O} = 135.0 + 0.002 \times 3 \times 291 = 136.7) = 68.4 \text{ Kg-cal.}$ The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies

this amount of water; H₂O, one mol.; NH₃ + Aq = NH₄OH · Aq. + 8 Kg-cal.

TABLE 269. (a). Heats of Formation from Elements in Kilogram Calories.

At ordinary temperatures.

Compound.	Heat of Forma-	Compound.	Heat of Forma-	Compound.	Heat of Forma- tion.	Compound	Heat of Forma-
Compound.  Al ₂ O ₃ Ag ₂ O BaO BaO BaO ₂ Bi ₂ O ₃ CO am CO ₂ di CO ₂ di CaO CeO ₂ cl ₂ O g COO am COO cr Co ₃ O ₄ CrO ₃ Cs ₂ O Cu ₂ O MgO MgO MmO		Compound.  HgO Na ₂ O Na ₂ O Nd ₂ O ₃ NiO P ₂ O ₅ sgs PbO PbO ₂ Pr ₂ O ₃ Rb ₂ O SO ₂ rh sgg SiO ₂ SnO SnO ₂ cr SrO ₂ ThO ₂ TiO ₂ am TiO ₂ cr TiO ₂ wO ₂ WO ₃ ZnO AgCl AgCl AlCl ₃ AuCl y AuCl ₃ AuCl y SaCl ₄ am CaCl ₄ CdCl ₂ CdCl ₂ CoCl ₂		Compound.  KCl LiCl MgCl ₂ MnCl ₂ NaCl NdCl ₃ NH ₄ Cl NiCl ₂ PbCl ₂ PdCl ₂ PtCl ₄ SnCl ₂ SnCl ₄ SrCl ₂ ThCl ₄ TlCl RbCl ZnCl ₂ HBr glg NH ₄ Br HI gsg HF ggg Ag ₂ S CS ₂ sgg CS ₂ Sgg CaS (NH ₄ ) ₂ S Cu ₂ S Cu ₂ S Cu ₂ S Cu ₂ S MgS Na ₂ S Na ₂ S		Compound.  Li ₂ SO ₄ (NH ₄ ) ₂ SO ₆ Na ₂ SO ₄ MgSO ₄ PbSO ₄ Tl ₂ SO ₄ ZnSO ₄ CaCO ₃ CuCO ₃ FeCO ₃ K ₂ CO ₃ MgCO ₃ Na ₂ CO ₃ ZnCO ₃ ZnCO ₃ ZnCO ₃ ZnCO ₃ AgNO ₃ Ca(NO ₃ ) ₂ Cu(NO ₃ ) ₂ 6 H ₂ O HNO ₃ gggl KNO ₃ LiNO ₃ NH ₄ NO ₃ NH ₄ NO ₃ NH ₄ NO ₃ NH ₄ NO ₃ CH ₄ sgg C ₂ H ₆ sgg C ₂ H ₇ sgg NH ₃ ggg C ₄ (OH) ₂ NH ₄ OH NaOH NaOH	Heat of Formation.  334-2 283. 328-3 301.6 216.2 221.0 229.6 270. 143. 179. 280. 267. 272. 194. 28.7 209. 92.9 41.6 119.2 88.3 111.0 58.2 20. 255330.5 112.0 230. 88.8 102. 44.*
MnO ₂ Mn ₃ O ₄ MoO ₂ MoO ₃ N ₂ O ggg NO ggg NO ₂ Na ₂ O ₄	123. 325. 143. 174. -18.2 -21.6 - 8.1 - 2.6	CuCl ₂ CuCl FeCl ₂ FeCl ₃ GlCl ₂ HCl ggl HgCl HgCl ₂	51.5 34.1 82.1 96.0 155. 22. 31.3 53.3	PbS CaSO ₄ CuSO ₄ H ₂ SO ₄ sggg -SO ₃ · H ₂ O* Hg ₂ SO ₄ Hg ₂ SO ₄ K ₂ SO ₄	19.3 262. 111.5 193. 21.3 175. 165.	$\begin{array}{l} \frac{1}{2}(2 \text{ Na} \cdot \text{O} \cdot \text{H}_2\text{O}) \\ \frac{1}{2}(\text{Na}_2\text{O} \cdot \text{H}_2\text{O} \cdot \text{Aq}) \\ \text{KOH} \\ \text{K} \cdot \text{H}_2\text{O} \cdot \text{Aq-H} \\ \frac{1}{2}(2 \text{ K} \cdot \text{O} \cdot \text{H}_2\text{O}) \\ \frac{1}{2}(\text{K}_2\text{O} \cdot \text{H}_2\text{O} \cdot \text{Aq}) \end{array}$	68.* 30.* 103.5 45.* 69.* 35.5*

am = amorphous; di = diamond; gr = graphite; cr = crystal; g = gas; l = liquid; s = solid; y = yellow (gold); rh = rhombic (sulphur). * Heats of formation not from elements but as indicated.

## HEATS OF FORMATION OF IONS IN KILOGRAM-CALORIES.

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.03 gr. Al = 9.03 gr. Al + + 40.3 Kg. cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows:  $FeCl_2Aq = +22.2 + 2 \times 39.1 = 100.4$  Kg. cal.  $CuSO_4Aq = -15.8 + 214.0 = 198.2$  Kg. cal.

## TABLE 271 .- Heats of Neutralization in Kilogram-Calories.

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg. cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. (See also p. 209).

Base.	HCl-aq	HNO₃•aq	H₂SO₄-aq	HCN•aq	CH ₃ COOH∙aq	H ₂ ·CO ₃ ·aq
KOH · aq NaOH · aq NH ₄ OH · aq ½ Ca(OH) ₂ · aq ½ Zn(OH) ₂ · aq ½ Cu(OH) ₂ · aq	13.7 13.7 12.4 14.0 9.9 7.5	13.8 13.7 12.5 13.9 9.9 7.5	15.7 15.7 14.5 15.6 11.7 9.2	2.9 2.9 1.3 3.2 8.1	13.3 13.3 12.0 13.4 8.9 6.2	10.1 10.2 8. 9.5 5.5

#### TABLE 272 .- Heat of Dilution, H.SO.

In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

Commence of the last of the la	 				,					
m Kg. Cal.	 i 6.38	2 9.42	3	5 13.11	19 16.26	49 16.68	99 16.86	199 17.06	399 17.31	1599

#### RADIATION CONSTANTS.

#### TABLE 273.-Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature  $T^{\circ}$  (absolute, C) to one at  $\ell^{\circ}$  is equal to

$$J=\sigma(T^4-t^4)$$
 (Stefan-Boltzmann);  
where  $\sigma=1.364\times 10^{-12}$  gram-calories per second per sq. centimeter.  
= 8.20 × 10⁻¹¹ " " minute " " = 5.71 × 10⁻¹² watts per sq. centimeter.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$\int_{\lambda} = C_1 \lambda^{-5} \left[ e^{\lambda T} - 1 \right]^{-1}$$

where  $f_{\lambda}$  is the intensity of the energy at the wave-length  $\lambda$  ( $\lambda$  expressed in microns,  $\mu$ ) and  $\epsilon$  is the base of the Napierian logarithms.

$$C_1 = 8.86 \times 10^3$$
 for  $f$  in  $\frac{gram.\ cal.}{sec.\ cm.^2} = 3.70 \times 10^4$  for  $f$  in  $\frac{watts}{cm.^2}$   
 $C_2 = 14325$  for  $\lambda$  in  $\mu$ 

$$J_{\text{max}} = 3.11 \times 10^{-16} \ T^5 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 1.30 \times 10^{-15} \ T^5 \text{ for } J \text{ in } \frac{voatts}{cm.^2}$$

 $\lambda_{\text{max}} T = 2885 \text{ for } \lambda \text{ in } \mu$ 

h = Planck's unit = elementary "Wirkungs quantum" =  $6.554 \times 10^{-27}$  ergs. sec.

k = constant of entropy equation = 1.37  $\times$  10⁻¹⁶ ergs./degrees.

## TABLE 274.—Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at $t^{\circ}$ C to an absolutely Cold Space ( $-273^{\circ}$ C).

Computed from the Stefan-Boltzmann formula.

t° C J	t° C	J	t ^o C	J	t° C	J	t° C	J	t° C	J
-273 0 -220 1 -210 2 -200 3 -190 5 -180 9 -170 13 -160 19 -150 27 -140 38 -130 50	-90 -80 -70 -60 -50 -40 -30	65 83 106 132 164 201 243 292 348 410 483	-10 -8 -6 -4 -2 0 +2 +4 +6 +8 +10	565 582 600 618 636 655 675 695 715 736 757	+12 +14 +16 +18 +20 +22 +24 +26 +28 +30 +32	778 801 823 846 870 893 918 943 969 995	+34 +36 +38 +40 +42 +44 +46 +48 +50 +52 +54	1048 1076 1104 1133 1162 1192 1222 1253 1277 1316 1348	+56 +58 +60 +70 +80 +90 +1000 +2000 +5000	$\begin{array}{c} 1380 \\ 1420 \\ 1450 \\ 1630 \\ 1830 \\ 2050 \\ 2280 \\ 5905 \\ 310 \times 10^{8} \\ 315 \times 10^{4} \\ 912 \times 10^{5} \end{array}$

#### TABLE 275. — Values of $J_{\lambda}$ for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used  $C_1 = 8346$  and  $C_2 = 14349$ , and for the unit of time the day. For 100°, the values for J $\lambda$  have been multiplied by 10, for the other temperatures by 100.

λ	T= 100° C	30° C	15° C	.° C	-30° C	—80° C	λ	100° C	30° C	15° C	•° C	-30° C	—80° C
μ2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683 590	0 41 508 1777 3464 4954 5928 6382 6386 6127 5712 5222 4712 4220 3759 3340	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4330 3930 3556 3198 2862	0 7 7 138 628 1454 2353 3088 3646 3781 3798 3676 3467 3215 2944 2417	0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760 1626	0 0 1 8 39 105 203 316 426 520 592 640 666 673 663 649	# 18 19 20 21 22 23 24 25 26 28 30 40 50 60 80 100	511 443 386 337 295 259 228 202 179 142 114 44 20 10 4 2	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77 12	2557 2281 2034 1816 1622 1448 1298 1165 1047 850 696 285 135 72 25 11	2175 1954 1754 1754 1413 1270 1141 1028 926 757 623 259 124 66 24	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 555 20	623 594 561 527 494 460 428 398 369 317 272 130 67 38 14

#### BLACK-BODY SPECTRUM INTENSITIES (JA)-

Values of  $J_{\lambda}$  using for  $C_1$ ,  $9.23 \times 10^3$ ,  $C_3$ , 14350,,  $\lambda$  in  $\mu$ . If the figures given for  $J_{\lambda}$  are plotted in cms as ordinates to a scale of abscissae of r cm to r  $\mu$ , then the area in cm² between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from r cm³ of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when  $\lambda T$  is small, a small change in  $C_3$  produces a great change in  $J_{\lambda}$ ; e.g., when  $C_2/\lambda T$  is 100 or 10, the change is 100 and 10 fold respectively; as  $\lambda T$  increases, the change hecomes proportional; e.g., when  $C_2/\lambda T$  is less than 0.05, the change in  $J_{\lambda}$  is proportional to the change in  $C_3$ .

λ	50° K.	100° K.	150° K.	200° K.	250° K.	273° K.	300° K.	373° K.	400° K.	500° K.	600° K.
1.0		.0583	. 0372	. 0276	. O20I	.0181	.0161	.0122	.01124	.0831	.0638
1.5		.0383	. 0242	.0172	0133	. 0127	.0102	.088	.0740	.0558	.03143
2.0	. O69 I	. O282	. 0185	. 0137	. O9 I	. O9 I I	.0712	.0513	.0546	.03168	.00184
2.5	. 047 I	. O22 I	. 0142	.0103	.0710	.077	. 0646	.0419	.0450	.0397	.0066
3.0	. 0409	.0196	. 0125	.082	.0618	.069	.0545	.03102	.03242	.00265	.0131
3.5	.0344	.0163	.0102	.072	.0513	.065	.0420	.0329	.03620	.00482	.0189
4.0	.0306	.0142	. 094	.0614	.0552	.0418	.0457	. 0360	.00115	.00690	.0229
5.0	. 0243	.0111	.0714	.0517	.0430	.048	.0321	.00134	.00226	.00952	.0249
6.0	.02019	.0105	.0614	.058	.048	.0318	.0341	.00195	.00301	.01001	.0224
7.0 8.0	.01883	.096 .085	.066	.0419	.0315 .0322	.0330	.0359 .0371	.00225	.00328	.00925	.0140
9.0	.01672	.085	.0538	.0454	.0322	.0339	.0377	.00232	.00321	.00672	.0149
9.0	.01422	.0/10	.000	.0454	.0327	.0343	.0077	.00220	.00293	.00072	.0110
10.0	.01331	.0754	.0565	.0471	.0330	.0348	.0378	.00201	.00262	.00554	.00020
12.0	.01115	.0624	.0413	,0404	.0331	.0347	.0370	.00157	,00106	.00374	.00585
14.0	. O102I	.0661	.0418	.04102	.0320	.034I	.0358	.00117	.00144	.00254	.00380
16.o	.0914	.0511	.0422	.04100	.0325	.0334	.0846	.0387	.00105	.00176	.00254
18.0	.0957	.0517	.0424	.0492	.0321	.0328	.03368	.03653	.03760	.00124	.00176
20.0	.0816	.0522	.0424	.0482	.0317	.03224	.03290	.03493	.03575	.03902	.00125
25.0	.0897	.0530	.0421	.0457	.03122	.03131	.03164	.03258	.03295	.03439	.03589
30.0	. 0726	.0532	.0416	.0438	.0466	.0479	.0497	.03146	.03164	-03237	.03311
40.0	.0769	.0526	. 059	.0418	.04282	.0433	.04301	.04558	.04620	.04858	.03110
50.0 75.0	.0795	.0667	.0551	.0592	.04150	.04158 .05383	.04184	.04255 .05580	.04201	.04301	.04402
100.0	.0755	.0607	.0657	.0524	.05330	.05303	.05430	.05197	.06214	.05277	.05342
100.0	.0/55	.0029	.003/	.000	.03119	.00134	.00130	.00197	.00214	.002//	.03342

λ 800° 1000° 1500° Κ. Κ.	K. K.	K.			8000°	10000°	20000°
	1 1		K.	K.	K.	K.	K.
$\mu$							
0.1 0	0.0226 0.01115	0.0624	0.0331	0.038	15.	540.	710000.
	0.0012	0.46	15.4	184.	3660. 9640.	22100. 31000.	820000. 3820000.
	0.0315 0.44	24.2 II5.	263. 690.	1310.	10300.	25600.	180000.
1 0.4		226.	952.	2490.	8400.	17800.	92300.
0.60548 0.014 0		301.	1000.	2240.	6290.	11950.	51460.
		328.	925.	1860.	4590.	8110.	30700.
		32I. 295.	800. 671.	1490.	3350. 2470.	5620. 3980.	19400.
0.9 .0434 .00103 0.376	3.33 1/1.3	293.	7,1.	//-		Ü	
		262.	554.	928.	1842.	2880.	8800.
		122.	210.	309.	527.	758.	1980. 668.
	8.19   29.0 5.68   16.4	57.6	90.2 43.9	125. 58.9	198.	275. 121.0	284.
	3.82 9.66	16.4	23.7	31.1	46.4	61.0	140.7
	2.60 6.02	9.84	13.8	17.9	26.3	34.7	77.3
			٠. ا				
	1.80 3.90 0.923 1.84	6.20	8.59 3.81	11.0 4.81	15.9 6.84		45.9 19.15
	0.514 0.973		1.935	2.42	3.40	4.39	9.34
	0.307 0.560	0.820	1.165	1.348	1.88	2.41	5.00
	0.344		0.653	0.808	1.20	1.43	3.00
9.0   .0247   .0398   0.0824   0	0.128 0.223	0.319	0.416	0.513	0.709	0.90	1.87
10.0 .0184 .0288 0.0575 0	0.0880 0.151	0.214	0.278	0.342	0.470	0.598	1.24
12.0 .01072 .0160 0.0304 0	0.0553 0.0757	0.107	0.1373	0.168	0.230	0.292	0.602
	0.0256 0.0421		0.0754	0.0921	0.125	0.159	0.326
	0.0155 0.0253		0.0448	0.0546	0.0742	0.0938	0.192
	0.00668 0.01068		0.01868	0.0227	0.0307	0.0388	0.0789
	0.00284 0.00448		0.00777	0.00941	0.0127	0.0160	0.0325
	0.00141 0.00220		0.00378	0.00455		0.00775	0.0157
	0.03191 0.03294		0.03500	0.03603	0.03303	0.00101	0.00204
75.0 .04144 .04184 0.04286 0	0.04387 0.04591	0.04794	0.04997	0.03120	0.03161	0.03201	0.03426
100.0 .05470 .05598 0.05919	0.04124   0.04188	0.04252	0.04317	0.04381	0.04510	0.04639	0.03128
		1	- 1				

See Forsythe, J. Opt. Soc., 4,331, 1920, relative values, 0.4 to 0.76 μ (steps 0.01 μ), 12 temperatures, 1000 to 5000 K.

#### RADIATION EMISSIVITIES.

#### TABLE 277. - Relative Emissive Powers for Total Radiation.

Emissive power of black body = 1. Receiving surface platinum black at 25°C; oxidized surfaces oxidized at 600 + °C. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

	Temperature, Deg. C.					
	200	400	600			
Silver	0,020	0.030	9,938			
Platinum (I)	0.060	0.086	0.110			
Oxidized zinc		0.110	_			
Oxidized aluminum.	0.113	0,153	0.102			
Calorized copper, oxidized	0,180	0,185	0,190			
Cast iron	0.210					
Oxidized nickel	o.369	0.424	0.478			
Oxidized monel	0.411	0,439	0.463			
Calorized steel, oxidized	0.521	0.547	0.570			
Oxidized copper	0.568	p.568	0.568			
Oxidized brass	0.610	0,600	9.589			
Oxidized lead	0.631		(Marieman)			
Oxidized cast iron	0.643	0.710	0.777			
Oxidized steel	0.790	0,788	0.787			
Black body	1.00	1.00	1.00			

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave-length greater than  $20 \mu$  or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave-lengths or greater. For instance, see Table 379 for the transparency of soot.

#### TABLE 278. - Emissivities of Metals and Oxides.

Emissivities for radiation of wave-length 0.55 and 0.65 \(\mu\). Burgess and Waltenberg, Bul. Bureau of Standards,

Emissivities for radiation of wave-length 0.55 and 0.05  $\mu$ . Durgess and waitemberg, but. Dureau of Standards, 11, 501, 1014.

In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for  $\lambda = 0.55$  and 0.65  $\mu$  within the temperature range 20° C to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in emissivity, for  $\lambda = 0.65$   $\mu$  at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity ( $\lambda = 0.65$   $\mu$ ) natural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains killiberaphy. tains bibliography.

Metals.	Cu	Ag	Au	Pđ	Pt	Ir	Rh	Ni	Со	Fe	Mn	Ti
ex, 0.55 μ solid 0.55 μ liquid	o.38 o.36	0.35	0.38	0.38	0.38	=	0.29	0.44	=	=	=	0.75
o.65 μ solid liquid	0.10	0.04	0.14	0.33 0.37	0.33	0.30	0.29	0.36	0.36	0.37	0.59	0.63
Metals	Zr	Th	Y	Er	Ве	Cb	v	Cr	Мо	w	U	
eλ, 0.55 μ solid liquid	=	0.36	=	0,30	0.61	0.61	0.29	0.53	=	=	0.77	
0.65 μ solid liquid	0.32	0.36	0.35	0.55	0.61 0.61	0.49	0.35	0.39	0,43	0.39	0.54	
Oxides: 0.65 μ	NiO	C03O4	Fe ₃ O ₄	Mn ₂ O ₄	TiO ₂	ThO ₂	Y ₂ O ₃	BeO	$CbO_x$	V ₂ O ₃	Cr ₂ O ₃	U ₃ C ₈
ea, solidliquid	o.89 o,68	0.77	0.63	 o.47	0.52	0.57	0.61	0.37	0.71	0.69	0.60	0.30

#### RADIATION EMISSIVITIES.

## TABLE 279. - Relative Emissivities of Metals and Oxides.

Emissivity of black body taken as 100.

True temperature C.	500°	600°	700°	800°	9	oo°	1000°	1100°	12	∞°	Ref.
60 FeO.40 Fe ₂ O ₃ Total = Fe heated in air $\lambda$ = 0.65 $\mu$	1	85	86	87 98		87 97	88 95	88 93		39	1
NiO	=	54	62 98	68 96		72 94	75 92	81 83	8	36	2 2
App.* temp. C —	- 1 -	300	.	<del>-</del>	750 	1000 486 12.4	630	1400 780 15.5	1600 930 16.9	1700 1005 17.5	3
Tungsten:     True temp. K (abs.)	200 51.8 48.2	50.8	1000 49.8 46.3	48.9	1800 47.9 44.3	2200 47.0 43.3		3000 45.0 41.4	3400 44.1 40.4	3800 39·5	4

## TABLE 280. - Temperature Scale for Tungsten.

Hyde, Cady, Forsythe, J. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10, 395, 1917. The color temperature = temperature of black body at which its color matches the given radiation.

Lumens/watt	Color temperature.	Black-body temperature.	True temperature.	True temperature.	True — color.	True — brightness.
1 2 3 4 5 6 7 8 9	1763° K. 1917 2025 2109 2179 2237 2290 2338 2383 24425	1627° K. 1753 1840 1909 1967 2017 2062 2102 2140 2174	1729° K. 1875 1976 2056 2125 2184 2238 2286 2332 2373	1700° 1800 1900 2000 2100 2200 2300 2400	12° 20 26 31 36 39 41 43	100° 115 128 142 158 175 191 208

## TABLE 281. - Color minus Brightness Temperatures for Carbon.

Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.

Brightness temp. * K	1600°	1700° 7	1800° 12	1900° 16	2000° 22	2100° 28	2200° 33
----------------------	-------	------------	-------------	-------------	-------------	-------------	-------------

^{*} As observed with total radiation pyrometer sighted on the platinum.

References: (1) Burgess and Foote, Bul. Bureau of Standards, 12, 83, 1915; (2) Burgess and Foote, loc. cit.

11, 41, 1914; (3) Foote, loc. cit. 11, 607, 1914; (4) Worthing, Phys. Rev. 10, 377, 1917.

#### COOLING BY RADIATION AND CONVECTION.

#### TABLE 282. - At Ordinary Pressures.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^2$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-3}t^{2}$$

when the surface is that of polished copper. In these equations, e is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Valu	e of e.	Ratio.
Polished surface.	Blackened surface,	Katio.
.000178	.000252	.707
.000186	.000266	.699
.000193	.000279	.692
.000201	.000289	.695
.000207	.000298	.694
.000212	.000306	.693
.000217	.000313	.693
,000220	.000319	.693
.000223	.000323	.690
.000225	.000326	.690
.000226	.000328	.69 <b>0</b>
.000226	.000328	.69 <b>0</b>
	Polished surface.  .000178 .000186 .000193 .000201 .000207 .000212 .000217 .000220 .000223 .000225 .000226	.000186 .000266 .000193 .000279 .000201 .000289 .000207 .000298 .000212 .000306 .000217 .000313 .000220 .000319 .000223 .000323 .000225 .000326 .000226 .000328

#### TABLE 283. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

Polish	ed surface.	Blacker	ed surface.							
t	et	t	et							
PR	essure 76 cm	s. of Me	RCUR <b>Y.</b>							
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455							
PRES	PRESSURE 10.2 CMS. OF MERCURY.									
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791 .00490							
PR	ESSURE I CM	of Merc	CURY.							
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00446							

^{* &}quot;Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal, de chi. et phys. 26, p. 526.

#### COOLING BY RADIATION AND CONVECTION.

## TABLE 284. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t = 408^{\circ}$$
 C.,  $et = 378.8 \times 10^{-4}$ , temperature of enclosure 16° C.  
 $t = 505^{\circ}$  C.,  $et = 726.1 \times 10^{-4}$ , " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosur	re 16° C., $t = 408^{\circ}$ C.	Temp. of enclosure 17° C., $t = 505^{\circ}$ C.				
Pressure in mm.	et	Pressure in mm.	et			
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached but not measured	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "			

#### TABLE 285.-Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square contimeter per second.

Temp. of	Pressure in mm.						
Temp. of wire in C ³ .	10.0	1.0	0.25	0.025	About o.1 M.		
100°	0.14	0.11	0.05	10.0	0.005		
300	.31 .50	-24 -38	.11.	.02	.0055		
400 500	·75	·53 .69 .85	.25 .33 .45	.07	.025 .055		
600 700	_	.85	·45 -	.23	.13		
800	_	_		•37 •56	.40 .61		

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

#### TABLE 286. — Conduction of Heat across Air Spaces (Ordinary Temperatures).

Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature difference; follows Stefan-Boltzmann formula, see p. 247), conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical

Vertical spaces: The following table shows that for spaces of less than r cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerating Engineers J. 3, 1916.

HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH.

Air			nduction. r/cm²/° C.	Thermal resistance. Same units.  Temperature difference.				
space, cm.		Temperature	e difference.					
	10°	15°	20°	25°	10°	15°	20°	25°
0.5 1.0 1.5 2.0 3.0	0.46 0.24 0.160 0.161 0.172	0.46 0.24 0.172 0.178 0.196	0.46 0.24 0.182 0.200 0.208	0.46 0.24 0.192 0.217 0.217	2.17 4.25 6.25 6.20 5.80	2.17 4.20 5.80 5.60 5.10	2.17 4.15 5.50 5.00 4.80	2.17 4.10 5.20 4.60 4.60

Variation with height of air space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.

## TABLE 287. - Heat Convection in Air at Ordinary Temperatures.

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical vertical.

Taken from White, Physical Review, 10, 743, 1917.

Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal	8 mm	gap.	12 mr	n gap.	24	mm gap.
head.	Total.	Convection.	Total.	Convection.	Total.	Convection.
0.99°	_	_	.000 083 9	_	.000 065	_
1.980	{ .000 109	_	.000 084 0	.000 000 I 000 4	_	-
4-95°	.000 111	.000 001	{ .000 086 6 88 1	.000 002 8	.000 000	over .000 025
9.89°	{ .000 112 113	.000 003	.000 093 7	010 000.	.000 106	over .000 040
19.76°	.000 116	.000 007	{ .000 107 7 109 4	026	.000 126	over .000 060

#### CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES.

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula  $b \cdot \log b/a = 2B$ , where  $B = \mathrm{constant}$  for any gas,  $b = \mathrm{diameter}$  of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function  $\phi$  of the heat conductivity of the gas. If  $W = \mathrm{the}$  energy loss in watts/cm, then  $W = s(\phi_2 - \phi_1)$ . s may be found from the relation

$$\frac{s}{\pi}e^{-\frac{2\pi}{s}} = \frac{a}{B}; \quad \phi = 4.19 \int_0^{\tau} k dt.$$

where k is the heat conductivity of the gas at temperature T in calories/cm  $^{\circ}$  C.  $\phi_2$  is taken at the temperature  $T_2$  of the wire,  $\phi_1$  at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 280(b)) B may be taken as 0.43 cm; for H₂, 3.05 cm; for Hg vapor as 0.078. Obtain a/B; then from section (b) obtain a/B; then from section (b) obtain a/B; then from section (b) obtain a/B; the loss will be a/B of the proper temperatures; the loss will be a/B of the proper temperatures.

## (a) s AS FUNCTION OF a/B.

s	a/B	s	a/B	s	a/B	s	a/B
0.0	0.0	5.0	0.453	10	1.696	30	7.73 8.37
0.5	0.735 × 10 ⁻⁶	5.5	0.558	12	2.263	32	8.370
1.0	0.504 × 10 ⁻³	6.0	0.671	14	2.844	34	8.99
1.5	0.725 × 10 ⁻²	6.5	0.788	14 16	3.438	34 36 38	9.62
2.0	2.75 × 10 ⁻²	7.0	0.908	18	4.040	38	10.25
2.5	0.0644	7.5	1.032	20	4.645	40	10.87
3.0	0.1176	8.0	1.160	22	5.263	42	11.50
3.5	0.185	8.5	1.201	24	5.877	44	12.14
4.0	0.265	9.0	1.424	26	6.505	46	12.77
4.5	0.354	9.5	1.561	28	7.122	46 48	13.14
5.0	0.453	10.0	1.696	30	7.738	50	14.03

#### (b) Table of $\phi$ in Watts per Cm as Function of Absolute Temp. (°K.).

<i>T</i> ° K.	H ₂	Air	Hg	<i>T</i> ° K.	$H_2$	Air	Hg
0°				1500°			0-
	0.0000	0.0000	_		4.787	0.744	0.1783
100	0.0329	0.0041	-	1700	5.945	0.931	0.228
200	0.1294	0.0168	_	1900	7.255	1.138	0.284
300	0.278	0.0387	<u> </u>	2100	8.655	1.363	0.345
400	0.470	0.0669	-	2300	10.18	1.608	0.411
500	0.700	0.1017	0.0165	2500	11.82	1.871	0.481
700	1.261	0,180	0.0356	2700	13.56		0.556
900	1.061	0.207	0.0621	2000	15.54	_	0.636
1100	2.787	0.426	0.0041	3100	17.42	_	0.710
1300	3.726	0.576	0.1333	3300	19.50	_	0.807
1500	4.787	0.744	0.1783	3500	21.79	_	0.898

^{*} Langmuir Physical Review, 34, p. 401, 1912.

## TABLE 289. HEAT LOSSES FROM INCANDESCENT FILAMENTS.

(a) Wires of Platinum Sponge Served as Radiators (to Room-temperature Surroundings). Hartman, Physical Review, 7, p. 431, 1916.

(A) Observed beat losses in watts per cm.														
				(A)	Obser	ved bear	losses	in watts	per cm.					
Diameter	-				A	bsolute	temper	atures.						
wire,	l ——													
CIII.	900°	1000°	1100°	1200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°		
								<del></del>						
0.0690	1.70	2.26	3.01	3.88	4.92	6.18	7.70	9.63	12.15	15.33	19.25	23.75		
0.0420	1.35	1.75	2.26 1.76	2.84	3.53	4.29	5.33	6.60	8.25	10.20	12.45	14.75		
0.0275	I.I2 O.Q2	1.40	1.70	2.23 1.74	2.73	3.23	3.91	4.67	5.72	7.00	8.64	10.45		
0.0194	0.92	1.13	1.39	1.74	2.12	2.54	3.04	3.64	4.32	5.10	6.10	7.35		
		(B) H	eat losse	es corre	ted for	radiatio	n, watt	s per cn	n (A-C).					
0.0600	0.01	1.05	I,23	1.36	T 45	TET	1.54	1.66	2,00	2 56	2 40	1 20		
0.0420 0.87 1.02 1.17 1.31 1.42 1.45 1.57 1.76 2.08 2.43 2.80 3.26														
0.0275	0.0420         0.87         1.02         1.17         1.31         1.42         1.45         1.57         1.76         2.08         2.43         2.80         3.26           0.0275         0.80         0.92         1.05         1.22         1.35         1.37         1.46         1.50         1.67         1.91         2.32         2.70													
0.0194	0.70	0.81	0.89	1.03	1.15	1.23	1.31	1.40	1.47	1.51	1.64	1.88		
		(0) 0		, ,,										
		(C) C	ompute	d radia	tion, wa	tts per	cm, $\sigma =$	= 5.61	× 10 ⁻¹² .*	·				
0.0690	0.70	1.21	1.78	2.52	3.47	4.67	6.16	7.97	10.15	12.77	15.85	10.45		
0.0420	0.48	0.73	1.00	1.53	2.11	2.84	3.74	4.84	6.17	7.77	9.65	11.85		
0.0275	0.32	0.48	0.71	1.01	1.38	1.86	2.45	3.17	4.05	5.00	6.32	7.75		
0.0195	0.22	0.34	0.50	0.71	0.97	1.31	1.73	2,24	2.85	3.59	4.46	5 - 47		
		(]	O) Con	duction	loss by	silver le	ads, wa	tts per	cm.					
0.0420	0.42	0.46	0.40	0.61	0.75	0.88	1.00	1.07	1.13	1.22				
0.0275	0.18	0.21	0.28	0.35	0.43	0.48	0.55	0.57	0.60	0.67	_	_		
0.0195	0.06	0.08	0.08	0.00	0.11	0.12	0.14	0.15	0.22	0.23	_	-		
			(E) (	Convect	ion loss	by air.	watts n	er cm						
	1					1								
0.0420	0.45	0.56	0.68	0.70	0.67	0.57	0.59	0.69	0.95	1.21	_	_		
0.0275	0.62	0.71	0.77	0.87	0.92	0.89	0.01	0.93	1.07	1.24	_	_		
0.0195	0.04	0.73	0.81	0.94	1.04	I.II	1.17	1.25	1.29	1.30				
	* TI	is value	is lowe	r than	the pres	ently (1	919) ac	cepted '	value of	5.72.				

(b) Wires of Bright Platinum 40-50 Cm Long Served as Radiators to Surroundings at 300° K. Langmuir, Physical Review, 34, p. 401, 1912.

				(	Observe	ed er	ergy los	ses in wa	atts p	er cm.			
Diameter wire,						Abs	olute te	mperatu:	res.				
cm.	500	°	'00°	9	oo°	1	100°	1300	•	1500°	1700°	1900°	
0.0510 0.02508 0.01262 0.00691 0.00404	0.2 0.1 0.1 0.1 0.1	7 0	0.39 0 0.31 0 0.29 0		.90 .68 .53 .48		1.42 1.02 0.79 0.72 0.61	2.03 I.45 I.II 0.99 0.84		2.89 2.00 1.46 1.33 1.14	4.10 2.68 1.95 1.79 1.54	5.65 3.55 2.71 2.48 2.13	
			E	nergy	radiat	ted i	n watts	per cm.*					
0.0510 0.02508 0.01262 0.00691 0.00404	0.00 0.00 0.00 0.00	I 0 0 0	.013 .007 .003 .002	0. 0. 0.	049 024 012 007 004	0	.137 .067 .034 .019	0.323 0.159 0.086 0.044 0.026		0.67 0.33 0.17 0.09 0.05	1.25 0.62 0.31 0.17 0.10	2.15 1.06 0.53 0.29 0.17	
			"(	Conve	ction"	losse	s in wat	ts per cr	n.				
0.0510 0.02508 0.01262 0.00691 0.00404	0.22 0.17 0.17 0.18	3 0	.51 .38 .31 .29	0.	.85 .65 .52 .47	0	2.28 0.95 0.75 0.70 0.60	1.71 1.29 1.03 0.95 0.81		2.22 1.67 1.29 1.24 1.09	2.85 2.05 1.64 1.62 1.44	3.50 2.49 2.18 2.19 1.96	
			Thick	ness c	of theor	etic	l condu	cting air	film.				
0.0510 0.02508 0.01262 0.00691 0.00404 Means.	0.28 0.30 0.42 0.31 0.27 0.31	0.30 0.37 0.42 0.32 0.43 0.37	0.37 0.37 0.42 0.44 0.32 0.33 0.43 0.43		0.3 0.4 0.4 0.4 0.4	9 0 7	0.36 0.45 0.56 0.43 0.56	0. 0. 0. 0.	45 65 47 47	0.35 0.51 0.69 0.38 0.40 0.47	0.36 0.56 0.47 0.26 0.25 0.38	Means. 0.34 0.43 0.54 0.37 0.41 10.43	
* Comp	uted with $\sigma$	= 5.32.	black-b	ođy el	ficienc	v of i	olatinun	as follo	ws (L	immer and	l Kurlbaum	): 402° K	

*Computed with  $\sigma = 5.32$ , black-body efficiency of platinum as follows (Lummer and Kurlbaum):  $492^{\circ}$  K. 0.033;  $654^{\circ}$ , 0.063;  $795^{\circ}$ , 0.075;  $1105^{\circ}$ , 0.112;  $1431^{\circ}$ , 0.154;  $1761^{\circ}$  K., 0.180. For significance of last group of data, see next page. † Weightel mean.

#### THE EYE AND RADIATION.

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The millilambert (0.001 lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing .oo1 lumen/cm². A brightness of 10 meter-candles equals 1 millilambert. o.001 ml corresponds roughly to night exteriors, 0.1, to night interiors, 10 ml to daylight interiors and 1000, to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500, on a cloudy day, 4, 1st magnitude stars just visible, 0.2, full moon in zenith, .001, by starlight; in winter the intensity at noon may drop about \( \frac{1}{2} \).

## TABLE 290. - Spectral Variation of Sensitiveness as a Function of Intensity.

Radiation is easily visible to most eyes from 0.330  $\mu$  (violet) to 0.770  $\mu$  (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503  $\mu$  (green) for 90% of all persons. At higher intensities, after the establishment of cone vision, the max, shifts as far as 0.500  $\mu$ . See Table 207 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above 10 millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at  $0.535\mu$  (green).

Intensity (meter-candles) = Ratio to preceding step =	.00024	.00225 9.38	.0360	·575	2.30 4	9.22 4	36.9 4	147.6	590.4
Wave-length, λ.				Se	ensitivenes	s.			
0. 430 μ 0. 450 0. 470 0. 490 0. 505 0. 520 0. 535 0. 555 0. 575 0. 590 0. 605 0. 625 0. 650 0. 670 λ, maximum sensitiveness	0.081 0.33 0.63 0.96 1.00 0.88 0.61 0.26 0.074 0.025 0.008 0.004 0.000 0.503	0.093 0.30 0.59 (0.89) 1.00 0.86 0.62 0.30 0.102 0.034 0.012 0.004 0.000 0.504	0.127 0.29 0.54 (0.76) 1.00 0.86 0.63 0.34 0.122 0.054 0.011 0.003 0.001 0.504	0.128 0.31 0.58 (0.89) 1.00 0.94 0.72 0.41 0.168 0.091 0.056 0.027 0.007 0.002 0.508	0.114 0.23 0.51 (0.83) 0.99 0.91 0.62 (0.39) 0.27 0.173 0.098 0.025 0.007	0.114 0.175 0.29 0.50 (0.76) (0.88) 0.84 (0.63) 0.49 0.35 0.20 0.060 0.017			0.35 0.54 0.82 0.98 0.98 0.69 0.55 0.35 0.33 0.030

#### TABLE 291. - Threshold Sensibility as Related to Field Brightness.

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B, the field flashed off, and immediately the intensity, T, of a test spot (angular size at eye about  $5^\circ$ ) adjusted to be just visible. This table gives a measure of the brightness, T, necessary to just pick up objects when the eye is adapted to a brightness, B. Intensities are indicated log intensities in milliamberts. Blanchard, Physical Review, 11, p. 81, 1918.

Log B	-7.0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	+1.0	+2.0	+3.0
$\left\{ \begin{array}{l} \operatorname{Log} T, \operatorname{white} \dots \\ T/B \dots \end{array} \right.$	=	-5.81 1.5	-5.42 0.38	-4.87	-4.17 .068	-3.30 .050	-2.59 .026	-2.02 .0096	-1.42 .0038	-0.75 .0018	+0.28
Log T, blue	-6.70	<b>-6.3</b> 8	-5.82	-5.12	-4.23	-3.46	-2.70	-2.18	-1.62	_	-
Log T, green	-6.42	-6.20	-5.62	-5.00	-4.23	-3.39	-2.60	-2.08	-r.62	-0.90	_
Log T, yellow		-5.47	-5.17	-4.61	-4.03	-3.33	-2.57	-r.97	<b>-1</b> .62	-	-
Log T, red	-	-	-4.27	-4.00	-3.47	-2.96	-2.43	-1.92	-1.37	-0.90	-

#### THE EYE AND RADIATION.

## TABLE 292. - Heterochromatic Threshold Sensibility.

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T/B of Table 291. The intensity of the field was probably between 10 and 100 milliamberts (25 photons).

Comparison color.		ο.693 μ	ο.640 μ	ο. 575 μ	ο. 505 μ	ο.475 μ	ο. 430 μ
Standard color: red	0.693 μ	0.044	0.088	0.165	0.180	0.197	0.150
	0.575 μ	0.174	0.160	0.032	0.166	0.174	0.134
	0.505 μ	0.211	0.180	0.138	0.030	0.116	0.126
	0.475 μ	0.168	0.180	0.130	0.130	0.068	0.142

## TABLE 293. — Contrast or Photometric Sensibility.

For the following table the eye was adapted to a field of o.r millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, 5 × 2.5°) the two halves of which had the contrast indicated (\frac{1}{2}\) transparent, \frac{1}{2}\) covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, 11, p. 88, 1918. Values are log brightness of brighter field in milliamberts.

Time in seconds.	o	ı	2	5	10	20	40	60
Contrast: 0.00	-2.80	-3.47	-3.82	-4.30	-4.49	-4.60	-4.89	-5.03
	-2.63	-3.36	-3.58	-3.74	-3.85	-3.97	-4.06	-4.23
	-2.40	-3.00	-3.13	-3.22	-3.21	-3.33	-3.46	-3.48
	-2.10	-2.46	-2.49	-2.48	-2.55	-2.54	-2.67	-2.73
	-1.20	-1.57	-1.67	-1.69	-1.59	-1.63	-1.73	-1.78

## TABLE 294. - Glare Sensibility.

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4°. Blancbard, Physical Review, loc. cit.

Log. field Log. glare	-6.o 1.35	-4.0 1.90	-2.a 2.60	-1.0 2.90	o.o 3.28	+1.0	2.0 3.90	3.0 4 18	4.0

#### TABLE 295. - Rate of Adaptation of Sensibility.

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.9°, viewed at 35 cm. Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing			Lo	garithn	nic thres	sholds in	n millila	mberts	after		
field.	o sec.	ı sec.	2 sec.	5 sec.	10 Sec.	20 Sec.	40 sec.	60 sec.	5 min.	30min.	60 min.
White, o. 1 ml.  10 o ml.  10 o ml.  10 o ml.  Blue o. 1 ml.  Green o. 1 ml.  Yellow o. 1 ml.  Red o. 1 ml.	-2.20 -1.60 -0.90 -2.82 -2.69 -2.61	-2.99 -2.30 -1.66 -3.92 -4.08 -3.84	-3.27 -2.53 -2.00 -4.36 -4.39 -4.17	-3.79 -3.08 -2.46 -4.91 -4.82 -4.41	-4.15 -3.54 -2.64 -5.27 -5.11 -4.65	-4.51 -3.94 -2.88 -5.53 -5.26 -4.78	-4.82 -4.31 -3.20 -5.68 -5.43 -5.02	-5.00 -4.61 -3.84 -5.81 -5.56 -5.00	-5.52 -5.22 -4.76 -6.23 -5.80	-5.86 -5.83 -5.77 -	-6.04 -6.01

#### THE EYE AND BADIATION.

## TABLE 296. - Apparent Diameter of Pupil and Flux Density at Retina.

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensirissing it measures of the pupil (och eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 milliambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about  $r_{10}$ , whereas the light intensities investigated vary over 1,000,000,000,000.

Field	Diamet	er, mm	Effective	Flux at retina.
millilamberts.	Observed.	(1.14/1.02) X Obs.	area, mm²	lumens per mm²
0.0000I 0.00I 0.1 10 1000	8 7.6 6.5 4.0 2.07	8.96 8.51 7.28 4.48 2.35	64 57 42 16 4.3	8.4 × 10 ⁻¹² 7.6 × 10 ⁻¹⁰ 5.6 × 10 ⁻⁸ 2.1 × 10 ⁻⁶ 5.8 × 10 ⁻⁶

#### TABLE 297. - Relative Visibility of Radiation.

This table gives the relation between luminous sensation (light) and radiant energy. The results of two methods are given: one from measures of the direct equality of brightness, which some consider the true method, as more direct, but criticized because of the difficulty of judging heterochromatic light (Hyde, Forsythe, Cady, A. J. 48, 87, 1918, 29 observers); the other (Coblentz, Emerson, Bul. Bureau of Standards, 14, 219, 1917, 130 observers) depends on the disappearance of flicker when two lights of different color and intensity are alternated rapidly. Color has a lower critical frequency than brightness and disappears first. Data determined for intensities above Purkinje effect. See Table 290. Ratio of light unit (lumen) to energy unit (watt) at 0.55 $\mu$ , 0.00162 (Ives, Coblentz, Kingsbury).

λ	Visib	ility.	λ	ı		λ	Visib	oility.	λ	Visit	oility.	λ	Visil	bility.
μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE	μ	HFC	CE
.40 .41 .42 .43 .44 .45 .46	.049 .0362 .0041 .0115 .022 .036 .055	.010 .017 .024 .029 .033 .041 .056	.48 .49 .50 .51 .52 .53 .54	.138 .216 .328 .515 .698 .847 .968	.125 .194 .316 .503 .710 .862 .954	.56 .57 .58 .59 .60 .61 .62 .63	.995 .944 .855 .735 .600 .464 .341 .238	.998 .968 .898 .800 .687 .557 .427 .302	.64 .65 .66 .67 .68 .69 .70	.154 .094 .051 .026 .0125 .0062 .0031	.194 .115 .0645 .0338 .0178 .0085 .0040	.72 .73 .74 .75 .76	.0374 .0336 .0318 .049 .045	.0397 .0348 .0328 .0320

#### TABLE 298. - Miscellaneous Eye Data.

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, .o6 cm); (c.) back surface cornea (curv., 7.9 mm); (d) aqueous humour (equiv. H2O, .34 cm, n = 1.337); (e) front surface lens (c., 10 mm); (f) lens (equiv. E2O, .42 cm, n = 1.445); (g) back surface lens (c., 6 mm); (h) vitreous humour (equiv. H2O, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm. in front of (a), curvature, 5.125 mm. At the rear surface of the retina (.15 mm thick) are the rods (30 × 2μ) and cones (10 60 outside fovea) μ long). Rods are more numerous, 2 to 3 between 2 cones, over 3,000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis), 3 mm diameter, 7000 cones alone present, 6 × 2 or 3μ. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50° to 70° = 3.65 to 5.14μ at retina; 50 cones in 100μ here; 4μ between centers, 3μ to cone, 1μ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot. nasal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. 11, 257, 1900) and intensity (Porter, Pr. Roy. Soc. 70, 313, 1912) is measured by increasing speed of rotating sector until flicker disappears: for color, 4μ, 0.03 sec; .55μ, .015 sec; .57μ, .015 sec; .65μ, .015 sec; .15μ, .015 sec; .100 mc, .010 sec; .142 mc, .007 sec.

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechner's law) as indicated by the following data due to König:

I/I ₀	1,000,000	100,000	10,000	1000	100	50	10	5	1	0.1	Io in me
dI/I, white .6ο μ .5ο μ .43 μ	.036	.019	.018	.018 .020 .018	.030 .028 .024 .025	.032 .038 025 .027	.048 .061 .036 .040	.059 .103 .049 .049	.123 .212 .080	.133	.00072 .0056 .00017 .00012

#### PHOTOMETRIC DEFINITIONS AND UNITS.

Radiant flux =  $\Phi$  = rate of flow of radiation as energy, measured as ergs per second or watts. Luminous flux = F or  $\Psi$  = rate of flow of radiation measured according to power to produce visual sensation. Although strictly thus defined, for photometric purposes it may be regarded as an entity, since the rate of flow for such purposes is invariable. Unit is the *lumen*, the flux emitted in a unit solid angle (steradian) by a point source of unit candle power.

Visibility of radiation of wave-length  $\lambda=K_{\lambda}=$  ratio of luminous to radiant flux for that  $\lambda,=F_{\lambda}/\Phi_{\lambda}.$ 

Mechanical equivalent of light = ratio of  $\Phi/F$  for the  $\lambda$  of max. visibility expressed in ergs/sec /lumen or watts/lumen; it is the reciprocal of max. visibility. See p. 261.

Luminosity at wave-length  $\lambda = (K_{\lambda})$  ( $\Phi_{\lambda}$ ). Spectral luminosity curve expresses this as a function of  $\lambda$  and is different for various sources.

Luminous efficiency =  $F/\Phi$  expressed in lumens/watt.

Luminous intensity of (approximate) point source = I = solid-angle ( $\omega$ ) density of luminous flux in direction considered =  $dF/d\omega$ , or  $F/\omega$  when the intensity is uniform. Unit, the candle.

Illumination on surface = E = flux density on surface = dF/dS (S is surface area) = F/S when uniform. Units, meter-candle, foot-candle, phot, lux.

Lux = one lumen per m²; phot one lumen per cm².

Brightness of a luminous surface may be expressed in two ways:

- (1) bI = dI/dS. cos  $\theta$  where  $\theta$  is the angle between normal to surface and the line of sight; normal brightness when  $\theta$  is zero.
- (2) b_F = dF/dS' assuming that the surface is a perfect diffuser, obeying cos. law of emission or reflection. Unit, the lambert.

Specific luminous radiation,  $E' = \text{luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm². For surfaces obeying Lambert's cosine law, <math>E' = \pi b_0$ .

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm². Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft² has a brightness of 1.076 millilamberts. Brightness in candles per cm² is reduced to lamberts by multiplying by  $\pi$ .

A uniform point source of one candle emits  $4\pi$  lumens.

One lumen is emitted by .07958 spherical candle power.

One lumen emitted per ft² = 1.076 millilamberts (perfect diffusion).

One spherical candle power emits 12.57 lumens.

One lux = 1 lumen incident per  $m^2 = .0001$  phot = .1 milliphot.

One phot = 1 lumen incident per cm² = 10,000 lux = 1000 milliphots.

One milliphot = .001 phot = .929 foot-candle.

One foot-candle = 1 lumen incident per ft2 = 1.076 milliphots = 10.76 lux.

One lambert = 1 lumen emitted per cm² of a perfectly diffusing surface.

One millilambert = .929 lumen emitted per ft² (perfect diffusion).

One lambert = .3183 candle per cm² = 2.054 candles per in².

One candle per  $cm^2 = 3.1416$  lamberts.

One candle per  $in^2 = .4868$  lambert = 486.8 millilamberts.

Adapted from Reports of Committee on Nomenclature and Standards of Illuminating Engineering Society. 1916 to 1918.

#### TABLE 300. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Heiner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- I International Candle = I Pentane Candle.
- I International Candle = I Bougie Decimale.
- I International Candle = I American Candle.
- I International Candle = 1.11 Hefner Unit.
  I International Candle = 0.104 Carcel Unit.

Therefore 1 Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- 1. Standard Pentane Lamp, burning pentane . . . . . 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate . . . . . 0.9 candles.
- 3. Standard Carcel Lamp, burning colza oil . . . . . . . 96 candles.
- 4. Standard English Sperm Candle, approximately . . . . 1.0 candles.

TABLE 301. - Intrinsic Brightness of Various Light Sources.

	Barrows.	Ives & Luckies	h.	National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000 200,000	84,000	130.	600,000 200,000
Open carbon arc	5,000	4,000	6,2	5,000
Nernst Glower	800-1,000	(115v.6 amp. d.c.) 3,010	4-7	(1.5 W.p.c.) 2,200 1,000
Tungsten incandescent, 1.25 w. p. c. Tantalum incandescent, 2.0 w. p. c. Graphitized carbon filament, 2.5	750	1,000 580	0.9	875 750
w. p. c	625 480	75° 485	0.75	625 480
Carbon incandescent, 3.5 w. p. c Carbon incandescent, 4.0 w. p. c Inclosed carbon arc (d. c.)	375 300	400 325	0.63	375
Inclosed carbon arc (a. c.)  Inclosed carbon arc (a. c.)  Acetylene flame (1 ft. burner)	100-500 - 75-100	53.0	0,082	75-200 75-100
Acetylene flame (1/4 ft. burner) . Welsbach mantle	20-25	33.0 31.9	0.057	20-50
Welsbach (mesh)	16.7 4-8	56.0 14.9 90	0.067 0.023 0.014	17 3-8
Candle flame	3-4 3-8	2.7	0.004	3-4 3-8
Frosted incandescent lamp	4-8 0.6		-	2-5 0-3-1-75

Taken from Data, 1911.

TABLE 302. - Visibility of White Lights.

Person		Candle Power.		
Range.			1	2
1 sea-mile = 1855 meters	•		0.47	0.41
2 44 44			1 9	1.6
5 " "		•	11.8	10.

1 Paterson and Dudding.
2 Deutsche Seewarte.
1 micro-calorie through 1 cm. at 1 m. =0.034 sperm candle =0.0385 Hefner unit (no diaphragm) =0.043 Hefner unit (diap. 14 × 50 mm.). Coblentz Bul. B. of S., 11, p. 87, 1914.

#### BRIGHTNESS OF BLACK BODY, CROVA WAVE-LENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY.

The values of L, the luminous intensity, are given in light watts/steroradian/cm2 of radiating surface =  $(1/\pi)$   $\int_0^\infty V_{\lambda} E_{\lambda} d\lambda$ , where  $V_{\lambda}$  is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility,  $\lambda=0.556~\mu$ , is the stimulus coefficient  $V_m$ ; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better term is "luminous equivalent of radiation of maximum visibility." One lumen =0.001496 watts (Hyde, Forsythe, Cady); or 1 watt of radiation of maximum visibility ( $\lambda=0.556~\mu$ ) = 668 lumens. White light has sometimes beet defined as that emitted by a black body at 6000 K. The Crova wave-length for a black body is that wave-length,  $\lambda$ , at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 303. — Brightness, Crova Wavelength of Black Body, Mechanical Equivalent of Light.*

Bright-Mech. Crova Temp. waveequiv. candles K. length, watts per cm2 μ per l. 0.584 1700° 0.001478 5.I 7.6 1750 11.3 0.582 0.001491 1850 16.3 0.581 0.580 1900 23.I 0.001498 32.2 0.579 1950 2000 44.3 0.001108 2050 0.577 2100 80.1 0.001497 105.7 0.576 2150 0.001496 2200 0.575 177. 2250 0.574 2300 0.574 0.001497 284. 2350 0.573 0.001497 2400 354· 438. 0.572 2450 0.572 2500 537. 0.001502 2550 2600 651. 785. 0.570 0.570 0.001511 2650 939. 0.569 Mean..... 0.001406

TABLE 304.—Luminous, Total Intensity and Radiant Luminous Efficiency of Black Body.*

T, degrees absolute.	Luminous intensity L watt/cm ²	Total intensity $\sigma_0$ $T^4$ watt/cm ²	Radiant luminous efficiency.
1,200 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 3,000 4,000 5,000 7,000 8,000	2.34 × 10 ⁻⁵ 3.45 × 10 ⁻³ 8.46 × 10 ⁻³ 1.88 × 10 ⁻² 3.85 × 10 ⁻² 1.32 × 10 ⁻¹ 2.26 × 10 ⁻¹ 3.69 × 10 ⁻¹ 5.79 × 10 ⁻¹ 1.29 4.66 3.85 × 10 1.36 × 10 ⁻² 3.26 × 10 ² 3.26 × 10 ² 1.36 × 10 ² 3.26 × 10 ² 1.84 × 10 ³	3.762 1.189 1.515 × 10 1.905 × 10 2.905 × 10 2.903 × 10 3.529 × 10 4.250 × 10 5.077 × 10 6.020 × 10 7.087 × 10 8.291 × 10 1.470 × 10 ² 4.645 × 10 ² 4.645 × 10 ² 4.535 × 10 1.134 × 10 ³ 4.355 × 10 ³ 7.432 × 10 ³ 1.814 × 10 ⁴	.000066 .000290 .000538 .00067 .00163 .00253 .00374 .00532 .00727 .00962 .0124 .0156 .0317 .0829 .1201 .1386 .1385 .1290

^{*} Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45,

Note. — Minimum energy necessary to produce the sensation of light: Ives,  $38 \times 10^{-10}$ ; Russell,  $7.7 \times 10^{-10}$ ; Reeves,  $19.5 \times 10^{-10}$ ; Buisson,  $12.6 \times 10^{-10}$  erg. sec. (Buisson, J. de Phys. 7, 68, 1917.)

Color temperature (temp. black-body same color) 500 w. gas-filled lamp (22 l/w) 3082°k; 900 w. gas-filled movie lamp, 22.7 l/w, 3086°k; crater 65v. 10 amp. arc, solid carbon, 3780°k; cored carbon 3420°k. Priest, 1922.

TABLE 305. - Color of Light Emitted by Various Sources.*

Source.	Color, per cent white.	Hue.	Source.	Color, per cent white.	Hue.
Sunlight. Average clear sky. Standard candle. Hefner lamp. Pentane lamp. Tungsten glow lamp, 1.25 wpc. Carbon Jow lamp, 3.8 wpc. Nernst glower, 1.50 wpc. N-filled tungsten, 1.00 wpc.	13 14 15 35 25 31	472 593 593 592 588 592 587 586	N-filled tungsten, 0.50 wpc N-filled tungsten, 0.35 wpc Mercury vapor arc	45 53 70 32 6 59 62 67 36	584 584 490 598 605 585 585 583 586

^{*} Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

^{*} Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255,

## EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

Bryant and Hake, Eng. Exp. Station, Univ. of Ill.	Amperes.	Terminal Watts.	Lumens.	Kw-hours for 100,000 Lumen- hours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., inclined electrodes Flame arc, dc., inclined electrodes Flame arc, dc., wertical electrodes Luminous arc, dc., multiple Open arc, dc., series Magnetite arc, dc., series Flame arc, ac., inclined electrodes Flame arc, ac., inclined electrodes Open arc, dc., series Tungsten series Flame arc, ac., inclined electrodes Inclosed arc, dc., series Luminous arc, dc., multiple Tungsten, multiple Nernst, ac., 3-glower Nernst, dc., 3-glower Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, ac., multiple Carbon, 3.1 w. p. c., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple	5.5 5.5 6.6 10.0 3.5 8.0 6.6 9.6 4.0 10.0 10.0 6.6 6.6 4.0 0.545 1.87 7.5 6.6 —————————————————————————————————	385 605 528 550 385 440 440 726 480 320 467 467 325 75 374 475 440 60 414 414 480 425 40 49.6 210 56 550 385 430 285	11,670 11,670 11,670 7,370 8,640 4,400 6,140 7,370 5,025 2,870 5,340 2,920 626 3,910 3,315 2,870 475 2,160 2,160 2,160 2,166 626 626 626 61,535 1,030 1,124 688	3·3 5·18 7·16 6·37 15·92 7·16 9·85 9·55 11·15 8·75 8·75 11·15 12·0 9·55 14·32 15·32 12·6 19·2 19·9 21·3 21·1 29·9 33·6 33·7 35·8 37·4 38·3 41·4	0.339 0.527 0.729 0.837 0.89 0.966 0.966 0.988 1.079 1.13 1.275 1.305 1.384 1.405 1.405 1.4459 1.547 1.55 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.47 3.50 3.66 3.84 3.94 4.265

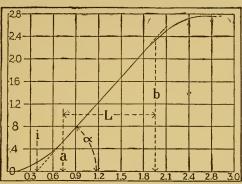
Ives, Phys. Rev., V, p. 390, 1915 (see also VI, p. 332, 1915); computed assuming 1 lumen = 0.00159 watt.	Commercial Rating .	Lumens per Watt.	Luminous Watts Flux : Watts In- put or True Efficiency.
Open flame gas burner Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """"""""""""""""""""""""""""""""""""	Bray 6' high pressure  1.0 liters per hour .350 lumens per B, t, u, per hr578 lumens per B, t, u, per hr. 220-v. 60-cycle, 113 ft. 4-watts per mean hor. C. P. 1.25 watts per hor. C. P. 9.6 amp. clear globe 500-watt multiple .7 w, p. c. 600 C. P20 amp5 w, p. c. 66 amp. direct current 40-70 volt; 3.5 amperes 174-197 volt; 4.2 amperes 10 ampere, A. C.	0.22 .26 .67 1.2 2.0 4.8 5.21 2.6 8. 11.8 15. 19.6 21.6 23. 42. 26.7 35.5 29. 27.7 31.4 34.2 44.7	0.00035 .0004 .0011 .0019 .0031 .0076 .0083 .0041 .013 .019 .024 .031 .036 .067 .042 .057 .046 .044 .050 .054 .066

#### PHOTOGRAPHIC DATA.

## TABLE 307. - Numerical Constants Characteristic of Photographic Plates.

Abscissae of  $n_{B}$  candles-seconds); Ordinates are densities, D = r/T; Ordinates are densities, D = r/T; C = exposure = I (illumination in meter-can-Abscissae of figure are  $\log E = \log It$  (meter-

E = exposure = I (illumination in meter-candles)  $\times I$  seconds; D, the density of deposit = r/T, where T is the ratio of the transmitted to incident intensity on de-


veloped plate.

i = inertia = intercept straight line portion of

curve on log E axis.  $S = \text{speed} = (\text{some constant})/i; \quad \gamma = \text{gamma} =$ 

 $S = \text{speed} = (\text{some constant})/t; \quad \gamma = \text{gamma} = \text{tangent of angle } a.$  L = latitude = projected straight line portion of characteristic curve on log E axis, expressed in exposure units = Anti log (b - a).The curve illustrates the characteristic curve of a

photographic plate.



TYPICAL CHARACTERISTIC CURVE OF PHOTOGRAPHIC PLATE.

## TABLE 308. - Relative Speeds of Photographic Materials.

The approximate exposure may be obtained when the intensity of the image on the plate is known. Let L be the intensity in meter-candles; E, the exposure in seconds; P, the speed number from the following table; then  $E = 1,350,000/(L \times P)$  approximately.

Plate.	Relative speed.	Paper.	Relative speed.
Extremely high speed High speed Medium speed Rapid high contrast Medium speed high contrast Process, slow contrast Lantern plate	60,000 50,000 25,000	Fast bromide. Slow enlarging.  Rapid gas-light, soft grade. Rapid gas-light, medium contrasty. Rapid gas-light, contrasty. Professiona.	6.5 3.5

## TABLE 309. - Variation of Resolving Power with Plate and Developer.

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

Plate.	Albumen.	Resolution.	Process.	Lantern.	Medium speed,	High speed.
Resolving power	125	8r	67	62	35	27

Developer.	Resolving power.	Developer.	Resolving power.	Developer.	Resolving power.
Pyro-caustic Glycin Hydroquinone Pyro MQ25 Metol Nepera	69 64 64 64	Pyrocatechin Pyro-metol Eikonhydroquinone Ferrous oxalate Caustic hydroquinone. Eikonogen. Kachin	62 61 61 57	Amidol Process hydroquinone. Ortol Rodinal X-ray powders. Edinol	50 49 40

#### TABLES 310-311.

## PHOTOGRAPHIC DATA

## TABLE 310. - Photographic Efficiencies of Various Lights.

1				)	Photograph	ic efficiency	·.	
ı	Source.	Visual efficiency. Lumens		(a)			(b)	
	Source.	per watt.	Ordinary plate.	Ortho- chromatic plate.	Pan- chromatic plate.	Ordinary plate.	Ortho- chromatic plate.	Pan- cbromatic plate.
H	Sun	150	100	100	100	100	100	100
Н	Sky	_	181	155	130		-	
Ш	Acetylene.,	0.7	30	44 85	52	0.14	0.21	0.24
Ш	" (screened)	0.07	81	85	89	0.037	0.040	0.042
Ш	Pentane	0.045	18 600	28	42 367	0.053	0.086	0.13
Ш	Mercury arc, quartz	40	218	500		158	132	99
Ш	" "Nultra" glass " crown glass	35	324	195 275	165 249	50 79	46 68	39 62
ı	Carbon arc, ordinary	37 12	126	112	104	10	10	8.5
Ш	" " white flame	29	257	234	215	52	45	2.0
Ш	" " enclosed	9	175	177	165	11	11	IO
Ш	Carbon arc, "Artisto"	12	796	1070	744	62	86	60
Н	Magnetite arc	18	106	115	82	12	14	IO
Н	Carbon glow-lamp	2.44	23	32	42	0.37	0.52	0.68
ı	Carbon glow-lamp	3.16	25	35	45	0.51	0.74	0.95
	Tungsten vacuum lamp	8	33	41	50	1.74	2.2	2.7
	" vacuum lamp	9.9	37 56 64	45 62	53	2.41	3.0	3.5
	nitrogen lamp	16.6	56		70	6. r	6.8	7 - 7
	nitrogen lamp	21.6	04	68	76	8.9	9.8	11.0
	blue bulb	8.9	108		106	5.5 7.8	5.2	5.6
	" blue bulb	11		99			7.3	7.9
Ш	Melculy are (Cooper newitt)	23	316	354	273	47	54.2	42

(a) Relative efficiencies based on equal illumination.
 (b) Relative efficiencies based on equal energy density.
 Taken from Jones, Hodgson, Huse, Tr. Ill. Eng. Soc. 10, p. 963, 1915.

TABLE 311. - Relative Intensification of Various Intensifiers.

Bleaching solution.	Blackening solution.	Reference	Intensi- fication.
Mercuric bromide	Amidol developer Ammonia	HgBr ₂ solution (Monckhoven sol. A).* Bleach according to Ben-	1.15
Potassium bichromate + hydro- chloric acid	Amidol developer Schlippe's salt Sodium sulphide	nett; blackener.*  Piper.* Debenham, B. J., † p. 186, '17. B. J. Almanac.* B. J. Almanac.*	2.28
Potassium permanganate + hydro- chloric acid. Cupric chloride Potassium ferricyanide + potassium	Sodium stannate Sodium stannate	Desalme, B. J.,† p. 215, '12.	2.05 1.93
bromide	Sodium sulphide Paraminophenol developer	Ordinary sepia developer. HgI ₂ according to Bennett.	I.33 I.23

See Nietz and Huse, J. Franklin Inst. March 3, 1018.

* B. J. Almanac, see annual Almanac of British Journal of Photography.

† B. J. refers to British Journal of Photography.

## WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wave-lengths lengths.

Index Letter.	Line due to —	Wave-length in centimeters X 103.	Index Letter.	Line due to-	Wave-length in centimeters X 103.
A	{°	7621.28* 7594.06*	G	{ Fe { Ca	4308.081 4307.90 <b>7</b>
a	-	7164.725	g	Ca	4226.904
В	О	6870.182†	h or H _δ	' н	4102.000
C or H _a	н	6563.045	Н	Ca	3968.625
α	0	6278.303 ‡	K	Ca	3933.825
$D_1$	Na	5896.155	L	Fe	3820.586
$\mathrm{D}_2$	Na	5890.186	M	Fe	3727.778
$D_3$	He	587 5.985	N	Fe	3581.349
E ₁	(Fe	5270.558	0	Fe	3441.155
1-1	(Ca	5270.438	P	Fe	3361.327
E ₂	Fe	5269.723	Q	Fe	3286.898
Ъ	Mg	5183.791	R	(Ca	3181.387
b ₂	Mg	5172.856	K	(Ca	3179.453
b ₃	∫ Fe	5169.220	S ₁ )	ſ Fe	3100.787
53	(Fe	5169.069	$S_1$	Fe	3100.430
b ₄	∫ Fe	5167.678	527	Fe	3100.046
	(Mg	5167.497	s	Fe	3047.725
F or H _β	Н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G' or H _γ	Н	4340.634	U	Fe	2947.99
f	Fe	4325.939			

^{*} The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge"; the second, a "single line beginning at the tail of A."

† The principal line in the head of B.

‡ Chief line in the a group.

See Table 321, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 314.

## STANDARD WAVE-LENGTHS.

TABLE 313 .- Absolute Wave-length * of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895. 6438.4722

6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907. 6438.4696 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

* In Ångströms. 10 Ångströms = 1 mμ = 10-6 mm,

## TABLE 314.-International Secondary Standards. Iron Arc Lines in Angströms.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line,  $\lambda = 6438.4696$  Ångströms (serving to define an Ångström). 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm.; 6 amp. for λ greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the —, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

| Wave-length. |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 4282.408     | 4547.853     | 4789.657     | 5083.344     | 5405.780     | 561 5.661    | 6230.734     |
| 4315.089     | 4592.658     | 4878.225     | 5110.415     | 5434.527     | 5658.836     | 6265.145     |
| 4375.934     | 4602.947     | 4903.325     | 5167.492     | 5455.614     | 5763.013     | 6318.028     |
| 4427.314     | 4647.439     | 4919.007     | 5192.363     | 5497.522     | 6027.059     | 6335.341     |
| 4466.556     | 4691.417     | 5001.881     | 5232.957     | 5506.784     | 6065.492     | 6393.612     |
| 4494.572     | 4707.288     | 5012.073     | 5266.569     | 5569.633     | 6137.701     | 6430.859     |
| 4531.155     | 4736.786     | 5049.827     | 5371.495     | 5586.772     | 6191.568     | 6494.993     |

TABLE 315 .- International Secondary Standards. Iron Arc Lines in Angströms. Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370.789 3399.337 3485.345 3513.821 3556.881	3606.682 3640.392 3676.313 3677.629 3724.380	37 53.61 5 3805.346 3843.261 3850.820 3865.527	3906.482 3907.937 3935.818 3977.746 4021.872	4076.642 4118.552 4134.685 4147.676 4191.443	4233.615 5709.396 6546.250 6592.928 6678.004	6750.250 5857.759 Ni 5892.882 Ni

(1) Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, ibid. 36, p. 1071, 1911; Buisson et Fabry, ibid. 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 316 .- Neon Wave-Lengths.

In-	Wave								
tensity.	length.								
5	3369.904	5	3515.192	2	5820.155	4	6217.280	5	6717.043
6	3417.906	8	3520.474	10	5852.488	7	6266.495	8	6929.468
6	3447.705	4	3593.526	6	5881.895	4	6304.789	3	7024.049
6	3454.197	4	3593.634	8	5944.834	8	6334.428	9	7032.413
5	3460.526	5	3600.170	4	5975.534	8	6382.991	3	7059.111
4	3464.340	5	3633.664	4	6529.997	10	6402.245	5	7173.939
5	3466.581	8	5330.779	7	6574.338	9	6506.528	8	7245.167
6	3472.578	7	5341.096	8	6696.163	4	6532.883	6	7438.902
4	3498.067	6	5400.562	9	6143.062	5	6598.953	5	7488.885
4	3501.218	4	5764.419	5	6163.594	8	6678.276	5	7535.784

International Units (Angströms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918. SMITHSONIAN TABLES.

## TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 314, p. 266. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.
*2781.840 *2886.985 *2831.559 *2858.341 *2901.382 *2926.584 *2986.460 *3000.453 *3053.070 *3100.838 *3154.202 *3217.389 *3257.603 *3397.238 *3347.932 *3389.748 *3476.705 *3556.502 *3553.741 *3617.789 *3659.521 *3749.487 *3820.430 *3859.913 *3922.917 *3956.682 *4009.718 *4062.451 †4132.063 †4175.639 †4202.031 †4250.791	br b br bz	4 7 3 3 4 4 5 5 5 6 6 8 R 8 R 7 R 6 6 5 4 7 7 7 7	4337.052 4369.777 4415.128 4443.198 44461.658 4489.746 4528.620 4619.297 4786.811 4890.769 4924.773 4939.685 4973.113 4994.133 5041.076 5041.760 5051.641 5079.227 5079.743 5098.702 5123.729 5127.366 5150.846 5151.917 5194.950 5202.341 5216.279 5227.191 5242.495 5270.356 5328.043 5328.537	b3 b1 b3 a3 c4 c4 c5 c5 a a a a a a a a a a a a a a a a a	5 3 8 r 3 4 4 3 8 7 3 3 4 4 4 3 3 5 5 5 5 8 3 8 7 4	5332.909 5341.032 5365.404 5405.780 5434.528 5473.913 5497.521 5501.471 5506.784 \$5535.419 5563.612 5975.352 6027.059 6065.495 6136.624 6157.734 6165.370 6173.345 6200.323 6213.441 6219.290 6252.567 6254.269 6265.145 6297.802 6335.342 6430.859 6494.992	a4 a1 a a a a a a b b b b b b b b b b b b	sity.  2 5 2 6 6 4 4 4 3 2 3 2 3 4 4 5 5 6 4 5 6 6 5 6

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region  $\lambda$  5975-6678 according to Gale and Adams. Group  $\varepsilon$  contains lines showing much larger displacements. The numbers in the class column have the following meaning: 1, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure that the property of the pressure of sure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

^{*} Measures of Burns. † Means of St. John and Burns. † Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

## REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS.

The international wave-length standards are measured in dry air at 15°C, 76 cm pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.:  $\delta = \lambda_0(n_0 - n_0^t)$   $(d - d_0)/d_0$  in ten-thousandths of an Angstrom, when the temperature  $t^0$  C, the pressure B in cm of Hg, and the wave-length  $\lambda$  in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript  $_0$  refers to standard conditions, none, to the observed; the prime ' to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard 6438.4606 A of the cadmium red radiation in dry air,  $t_2^{c}$  C,  $\tau_0$  cm pressure. The density factor is, therefore, zero for  $t_0^{c}$  C and  $t_0^{c}$  C and  $t_0^{c}$  cm are assumed, as  $t_0^{c}$  cm and the correction always zero for  $t_0^{c}$  cm pressure. The density factor is, therefore, zero for  $t_0^{c}$  C and  $t_0^{c}$  cm and the correction always zero for  $t_0^{c}$  cm as  $t_0^{c}$  cm as  $t_0^{c}$  cm  $t_0^{c}$ 

TABLE 318 (a). — 1000 ×  $(d - d_0)/d_0$ .

B cm	60.0	62.5	65.0	67.5	70	71	72	73	74	75	76	77	78
9° C 11 13 15 17	-192 -200 -206 -211 -216	-160 -167 -172 -178 -184	-126 -133 -139 -145 -151	-92 -100 -106 -112 -118	-59 -67 -73 -79 -86	-46 -53 -60 -66 -73	-32 -40 -46 -53 -60	-19 -27 -33 -39 -47	-5 -13 -20 -26 -34	+8 -7 -13 -21	+22 +13 +6 0 -8	+35 +27 +20 +13 +5	+48 +40 +33 +26 +19
19	-222	-189	-156	-124	-92	-79	-66	-53	-40	-27	-14	-1	+12
21	-227	-195	-163	-130	-98	-85	-72	-59	-46	-33	-21	-8	+5
23	-232	-200	-168	-136	-104	-91	-78	-65	-52	-40	-27	-14	-1
25	-238	-206	-174	-143	-111	-98	-85	-72	-60	-47	-34	-22	-9
27	-243	-211	-179	-148	-116	-104	-91	-78	-66	-53	-40	-28	-15
29	-248	-216	-185	-154	-122	-109	-97	-84	-72	-59	-46	-34	-21
31	-253	-222	-190	-159	-128	-116	-103	-91	-78	-66	-54	-41	-29
33	-258	-227	-196	-165	-134	-121	-109	-97	-84	-72	-59	-47	-34
35	-262	-231	-200	-170	-139	-127	-114	-102	-90	-77	-65	-53	-41

TABLE 318 (b). —  $\delta = \lambda_0 (n_0 - n_0) (d - d_0) / d_0$ , in Ten-thousandth Angstroms.

														_	
						Wave	e-length	s in An	gstron	ns.					
$\frac{\frac{1000 \times d_0}{d - d_0}}{\frac{d_0}{d_0}}$	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
					Corr	ections	in ten-t	housar	dth A	ngstro	ms.				
-260 -240 -220 -200	-259 -239 -219 -199	-166 -154 -141 -128	—10 —9	7 -7 S -7	8 —59 1 —59	7 -41	-28 $-26$	-17 -15	-7 -7	+r +r +r	+9 +9 +8 +7	+17 +16 +14 +13	+24 +22 +20 +19	+37 +35 +32 +29	+50 +46 +42 +38
-180 -160 -140 -120 -100	-179 -159 -139 -119 -100	-115 -102 -90 -77 -64	-7 -6 -5	1 -5 2 -4 4 -3	$     \begin{array}{r}       2 & -38 \\       5 & -38 \\       9 & -28     \end{array} $	$\frac{3}{3} - \frac{27}{2}$	7 -19 4 -16 5 -14	-10 -8	-6 -5 -4 -4 -3	+0 +1 +1 +1	+6 +6 +5 +4 +4	+12 +10 +9 +8 +7	+17 +15 +13 +11 +9	+26 +23 +20 +17 +14	+34 +31 +27 +23 +19
-80 -60 -40 -20	-80 -60 -40 -20	-51 -38 -26 -13	-2 -1	7 -1 8 -1 9 -	9 — I. 3 — 9	-10 -7 -3	-7 7 -5 -2	-2 -3 -1	-2 -1 -1		+3 +2 +1 +1	+5 +4 +3 +1	+7 +6 +4 +2 0	+12 +9 +6 +3 0	+15 +11 +8 +4
+20 +40	+20 +40	+13 +26		9 +1 8 +1		+3 +7	+2 +5	+1 +3	+1 +1	-0 -0	-r -r	-2 -3	-2 -4	-3 -6	-4 -8

## SPECTRA OF THE ELEMENTS.

The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, are spectra in the upper parts, and spark spectra by dotted lines.

.5µ .6µ	7u
Na	
K	1
Li	
Cs	
Rb	
T1	
In I	
Hg	lamp
Co	
Ni	
Cu	vacuo arc
Ag	
Zn	16 66
Mg 3	arc
Sn	
H	
He	
←viplet→ blue × green × yellow× orange×	red

The following wave-lengths are in Angstroms.

Na K Li Cs	\$889.965 \$895.932 4044 4047 \$802 77068 7702 4132 4602 6104 6707.846* 4555 4593 \$5064 5045 6011 6213 6724 6974	Rb Tl In Hg	4202 4216 5648 5724 6207 6299 5351 4102 4511 4046.8 4078.1 4358.3 4916.4 4959.7 5460.742* 5760.598* 5790.659* 6152 6232	Cu Ag Zn	4023 4063 \$105.543* \$153.251* \$218.202* \$700 \$782.090* \$782.159* 4055 4212 4660 \$209.081* \$465.489* \$4722.164* 4810.535* 4912 4925 6103	Mg Sn H	5168 5173 5184 5529 4525 5563 5580 5799 6453 3070 4102 4340 4861 6563 3187.743† 3888.646† 4026.180† 4026.180† 4471.477† 4713.143† 4921.920† 5015.675†
Spectros	other elements, scopie. bry and Perot.			a der	6362.345*		5875.618† 6678.149† 7065.188†

## SPECTRUM LINES OF THE ELEMENTS.

Table of brighter lines only abridged from more extensive table compiled from Kayser and containing 10,000 lines (Kayser's Handbuch der Spectroscopie, Vol. 6, 1912).

1														
Wave- lengths, inter-	Ele-	In	tensitie	es.	Wave- lengths, inter- national	Ele-	Ir	tensitie	es.	Wave- lengths, inter-	Ele-	1	ntensit	ics
national Ang- stroms.	ment.	Arc.	Spark.	Tube.	Ang- stroms.	ment.	Arc.	Spark.	Tube.	Ang- stroms.	ment.	Arc.	Spark.	Tube.
3802.98 08.21 10.73 14.45 19.65 22.15 28.47 29.35 32.30 36.83 38.29 38.29 48.75 51.02 56.50 58.20 60.86 64.11 71.65 73.07 74.16 76.66 88.64 88.96 91.01 94.09 94.22 96.36 97.53 3900.53 02.95 05.5 06.34 07.14 07.52 11.85 14.26 14.26 14.94 22.52 33.05 131.10 33.67 33.57 40.47 44.68 45.33 49.10 50.35 51.01 50.35 51.01 50.35 51.01 50.35 51.01 50.35 65.82 58.85 66.23 3968.40	Nb I Nha Euhh Mg Zr Mg CTh Lue Lh Nh CO Der I Tho Si La	15	4		3968.48 72.01 74.71 74.71 74.71 76.85 80.43 81.68 82.60 88.50 88.50 88.50 98.96 4000.47 05.50 05.73 08.73 10.62 22.70 23.35 12.52 130.80 33.06 33.42 33.36 33.66 44.43 44.15 45.45 45.82 46.00 44.15 45.45 45.82 46.00 47.21 48.73 55.53 57.84 77.37 77.75 77.75 77.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 79.77 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 78.79 7	Ca Eur Tbr Erm Tbr La Zr. Tbr La Zr. Tbr La GMnn Mn La K. Nh Fe Dye Cu V Pr Br La GMn Mn La K. Nh Fe Dye Cha Y Sr Dy X. Nb Ra La V V Pr Nb La V V V V V V V V V V V V V V V V V V	30 20 15 15 12 15 12 15 12 15 12 15 16 17 18 18 18 18 18 19 10 11 10 11 10 10 10 10 10 10	40 20 5 10 10 11 12 20 8 15 11 12 10 20 8 8 15 10 10 20 8 8 15 10 10 10 10 10 10 10 10 10 10	10 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	4116.50 418.48 23.24 23.3 28.70 28.91 29.75 30.42 35.20 35.80 37.13 39.744 45.12 49.20 51.12 49.20 51.12 49.20 66.66 66.43 68.14 69.0 72.05 77.53 70.04 70.43 70.43 70.43 70.43 70.41 70.43 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.43 70.41 70.42 70.53 70.70 70.82 70.70 70.82 70.70 70.82 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.83 70.70 70.70 70.83 70.70 70.83 70.7	V PTLAY I Rhudd Rh Chybry I Rhudd Rh Chybry I Rhudd Rh Chybry I S Zr F Nb S A Ar S Nb Emb Nb Emb Nb E Eub Nb F Rhb I Pr Pr G Ca X Pt Rbb X F Sc	15 15 15 15 15 15 15 15 15 15 15 15 15 1	5 10 15 8 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1

## SPECTRUM LINES OF THE ELEMENTS.

Wave- lengths, inter-	Ele-	I	ntensity	7.	Wave- lengths, inter-	Ele-	In	tensity		Wave- lengths, inter-	Ele-	1	ntensit	у.
Ang- stroms.	ment.	Arc.	Spark.	Tube.	Ang- stroms.	ment.	Arc	Spark.	Tube.	Ang- stroms.	ment.	Arc.	Spark.	Tube.
4253.61 54.34 54.42 59.69 60.84 73.96 73.96 73.96 74.80 86.97 4301.11 90.63 14.11 10.60 25.77 43.69 48.01 149.65 35.47 40.67 43.77 43.69 48.01 74.51 74.91 79.24 79.77 81.66 82.8 83.15 84.73 86.93 87.74 98.93 89.98 93.17 95.74 96.75 80.83 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93 80.93	S Crhhi Os K Cr Laby Nd Fee M X La a Cl A Em K Fr Os CR Y Y Z TMO See F V P V X V X Y Ni F V P T I MO S S M P T I UND P F X Nd I EX X I EX T T T T T T T T T T T T T T T T T T	12   15   12   10   15   15   15   15   15   15   15	12 8 8 20 5 15 15 15 15 15 15 15 15 15 15 15 15 1	10	4477.77 81.17 96.43 93.76 4510.15 22.59 22.59 72.47 54.97 89.35 94.03 96.77 97.34 90.22 24.28 27.29 33.86 34.02 27.29 33.86 34.02 27.29 33.86 66.65 71.24 72.12 75.36 80.138 80.74 82.18 87.80 470.19 30.86 38.12 85.49 94.48 48.66 68 92.21 64.66 68 92.22 64.11 11 72 75.36 80.138 80.74 82.18 87.80 670.19 30.86 63.23 61.42 22.164 30.86 63.23 61.42 22.164 30.86 63.23 61.42 22.164 30.86 63.23 61.42 22.164 30.86 63.23 61.42 22.164 66.68 68.23 68.23 68.23 68.49 69.23 69.23 69.37 60.66 68.38 68.23 69.37 69.66 68.38 69.23 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.37 69.66 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38 69.38	Br Br Prt Pru Sn Cru H Nb I X Dyu X NS r EX H H H H SC CN I U I X Nb Nb n m a Zr Er I Ni nb i Sc I Br Cl I I Cl n Sr So S X Se I Y Y Y Zn Dysr Dysr Dysr Dysr Dysr Dysr Dysr Dysr	15 12 12 12 10 10 11 15 15 15 15 15 15 15 15 15 15 15 15	10   10   10   10   10   10   10   10	10	4994. 13 5035.36 533.36 533.36 533.36 533.36 5135.08 72.68 72.68 83.60 64.51 5206.05 92.23 95.62 5330.65 32.20 32.8 32.8 35.14 50.40 96.85 74.08 95.27 5419.19 64.5 65.49 76.91 80.95 96.85 74.08 95.27 5419.19 64.5 65.49 76.91 80.95 96.75 55.42 80.95 96.75 55.44 80.95 96.75 96.78 855.44 86.33 70.05 93.77 75.64 88.33 70.05 93.51 77.14 5813.63 52.49 98.77 75.64 88.33 89.90 99.77 77.54 88.33 89.90 90.93 93.38 80.90 90.93 93.38 80.90 93.39 83.82 6000.22 6121.80	Lui W Lu Sr I Pdd Mgg Cr Cr Cr AW Sr X PO O Br Sn NYT N Mose Seed A Lui Sr I Sr MW Sr Mose Pds Sa a e e e e e e e e e e e e e e e e e	12 12 12 12 12 12 12 12 12 12 12 12 12 1	To   To   To   To   To   To   To   To	10 10 10 10 10 10 10 10 10 10 10 10 10 1

NOTE. — This table, somewhat unsatisfactory in its abridged form, is included with the hope to occupy its space later with a better table; e.g., no mercury lines appear since the scale of intensity used in the original table results in the intensity of all mercury lines falling below the critical value used in this table.

#### STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Angström units (10-7 mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from 1, just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains

only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

Wave- length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave- length.	Sub- stance.	Inten- sity.
length.  3037.5108 3047.7258 3053.5308 3054.429 3057.5528 3059.2128 3067.3698 3078.7698 3078.7698 3088.1458 3134.2308 3188.656 3236.7038 3239.170 3242.125 3247.6888 3256.021 3267.8348 3271.791 3274.0968 3277.482 3271.791 3274.0968 3277.482 3271.791 3274.0968 3277.482 3271.791 3374.0968 3277.482 3286.898 3295.9518 3302.5108 3315.807 3318.1608 3320.391 3336.820 3349.597 3361.327	Fe Fe Fe Ti, - Ti Ni, Fe Ti, - Ti Ti, - Ti Ti, - Ni Cu Fe? V Fe Ti, Fe Cu Co-Fe Fe Fe, Mn Na Ni Ni Mg Ti	sity.  10 N 20 N 7 d? 10 20 20 8 6 Nd? 8 d? 7 d? 8 6 d? 7 N 7 8 6 6 6 7 d? 7 N 6 6 7 d? 7 N 7	3372-947 3380-722 3414-911 3423-848 3433-715 3440-7628 3441-1558 3442-118 3446-406 3449-583 3453-039 3458-601 3462-950 3466-0158 3475-5948 3476-8498 3483-923 3485-493 3490-7338 3490-7338 3490-7338 3510-466 3512-785 3513-9658 3513-9658 3513-9658 3513-9648 3521-4108 3521-4108 3521-4108	Ti-Pd Ni Ni Ni Ni Ni, Cr Fe Fe Mn Fe Ni Co Ni Co Fe Fe Ni Co Fe Ni Fe	sity.  10 d? 6 N 15 7 8 d? 20 15 66 8 N 15 6d? 6d? 8 6 10 N 10 N 8 6d? 7 12 7 8 20 6	length.  3533·345 3536·709 3541·237 3542·232 3555·079 3558·6728 3505·5358 3566·522 3570·2738 3572·014 3572·712 3578·832 3581·3498 3584·800 3585·105 3585·479 3585·859 3587·130 3587.370 3587.370 3587.832 3581.3498 3696.8388 3696.8388 3609.0888 3612.882 3617·9348 3618.9198 3619.539 3621·6128 3622·1478	Fe F	6 7 7 6 9 8 20 10 20 6 6 10 30 6 6 7 7 6 8 7 7 6 8 7 6 9 6 8 7 6 6 20 8 6 6 6 6 6 6 6
3365.908 3366.311 3369.713	Ni Ti, Ni Fe, Ni	6 6d? 6	3526.988 3529.964 3533 1 56	Co Fe-Co Fe	6 6 6	3631.605s 3640.535s 3642.820	Fe Cr–Fe Ti	15 6 7

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature

Wave-length Correction

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897. SMITHSONIAN TABLES.

^{15°} C, pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron) — (Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

## STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten-	Wave-length.	Substance.	Inten-	Wave-length.	Substance.	Inten- sity.
3647.988s	Fe	12	3826.027s	Fe	20	4045.975s	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.70IS	Mn	6
3651.614	Fe	7	3829.501s	Mg	10	40 57.668	_	7
3676.457	Fe, Cr	7 6	3831.837	Ni	6	4063.759s	Fe	20
3680.069s	Fe	9	3832.450s	Mg	15	4068.137	Fe-Mn	6
3684.258s	Fe	9 7d?	3834.364	Fe	10	4071.908s	Fe	15 8
3685.339	Ti	Iod?	3838.435s	Mg-C	25 8	4077.885s	Sr	8
3686.141	Ti-Fe	6	3840.580s	Fe-C		4102.000 <b>Hδ</b>	H, In	40N
3687.610s	Fe	6	3841.195	Fe-Mn	10	4121.477s	Cr-Co	6d?
3689.614	Fe	6	3845.606	C-Co	8d?	4128.251	Ce-V,-	6d
3701.234	Fe	8	3850.118	Fe-Cr	10	4132.235	Fe-Co	10
3705.708s	Fe	6d?	3856.524s	Fe	8	4137.156	Fe	6
3706.175	Ca, Mn		3857.805	Cr–C	6d?	4140.089	Fe	6
3709.389s	Fe	8	3858.442	Ni	7	4144.038	Fe	15
37 16.591s	Fe	7	3860.055s	Fe-C	20	4167.438	_	8 1
3720.084s	Fe	40	3865.674	Fe-C	7 6	4187.204	Fe	6
3722.692s	Ni	10	3872.639	Fe	8	4191.595	Fe	6 8
3724.526	Fe Co-Fe	6	3878.152	Fe-C Fe	7Nd?	4202.198s	Fe Ca	20 d?
3732.545s			3878.720	Fe Fe		4226.904sg	Fe Ca	
3733.469s	Fe-	7d?	3886.434s	Fe	15	4233.772	Fe Fe	6   8
3735.014s	Fe Fe	40	3887.196	ге	7 8d	4236.112	Fe	8
3737.2815	re	30 6	3894.211	Fe		4250.287s	Fe	8
3738.466	Fe-Ti	6	3895.803	Fe	7 8	4250.945s	Cr	8
3743.508	Fe	8	3899.850	Cr, Fe, Mo	10	4254.505s 4260.640s	Fe	10
3745.7178 3746.058s	Fe	6	3903.090 3904.023	C1, 1 e, MO	8d	4271.9348	Fe	15
3748.408s	Fe	10	3904.023 3905.660s	Si	12	4271.9343 4274.958s	Cr	7d?
3749.6318	Fe	20	* 3906.628	Fe	10	4308.081sG	Fe	6
3753.732	Fe-Ti	6d?	3920.410	Fe	10	4325.939s	Fe	8
37 58.37 5s	Fe	15	3923.054	Fe	12d?	4340.634Hy	H	20N
37 59 447	Ti	12d?	3928.075s	Fe	8	4376.107s	Fe	6
3760.196	Fe	5	3930.450	Fe	8	4383.720s	Fe	15
3761.464	Ti	7	3033,523	_	8N	4404.927s	Fe	IO
3763.945s	Fe	10	3933.825sK	Ca	1000	4415.293s	Fe	8
3765.689	Fe	6	<b>3934.108</b>	Co, V-Cr	8N	4442.510	Fe	6
3767.341s	Fe	8	3944.160s	Al	15	4447.892s	Fe	6
3775.717	Ni	7 6	3956.819	_Fe_	6	4494.738s	Fe	6
3783.6748	Ni	6	3957.177S	Fe-Ca	7d?	4528.798	Fe	8
3788.046s	Fe	9 8 6	3961.674s	Al	20	4534.139	Ti-Co	6
3795.1478	Fe	8	3968.350	-, Zr	6N	4549.808	Ti-Co	6d?
3798.655s	Fe		3968.625sH	Ca	700	4554.2115	Ba	8
3799.693s	Fe	7 6	3968.886	75.	6N	4572.156s	Ti-	6
3805.486s	Fe		3969.413	Fe Fr	10	4603.126	Fe	6
3806.865	Mn-Fe	8d?	3974.904	Co-Fe Fe	6d?	4629.5218	Ti-Co Fe	6
3807.293	Ni V-Fe	6	3977.891s	re	6	4679.027s	Mg	- 1
3807.681	v-re	8	3986.903s	Fe	0	4703.1778	Ni Ni	10
3814.698 3815.987s	Fe		4005.408 4030.918s	Mn	Tod?	4714.599s	Fe	6
3820.586sL	Fe-C	15	4033.2248	Mn	8d?	47 36.963 47 54.22 5s	Mn	
3824.591	Fe Fe	25	4033.2248	Mn	6d	4754.2258 4783.6138	Mn	7 6
2024.291			4034.0445		Ju	1,03.0130		

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, Correction -.155 -.140 -.141 -.144 -.148 -.152 -.156 -.161 -.167 -.172 -.176 -.179 -.179

SMITHSONIAN TABLES.

2 .

## STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten-	Wave-length.	Sub- stance.	Inten- sity.
4861.527sF 4890 948s 4891.683 4919.174s 4920.685 4957.785s 5050.008s 5167.497sb4 5171.778s 5172.856sb2 5183.7918b1 5233.122s 5266.738s 5269.7238E 5283.802s 5324.3738	H Fe Fe Fe Fe Mg Fe Mg Fe Fe Fe Fe Fe		5948.765s 5985.040s 6003.239s 6008.785s 6013.715s 6016.861s 6022.016s 6024.281s 6065.709s 6102.392s 6102.937s 6108.334s 6122.434s 6137.915 6137.915 6141.938s	Substance.  Si Fe Fe Fe Mn Mn Fe Fe Ca Ni Ca Fe	sity.  6 6 6 6 7 7 6 9 6 10 8 7 7	6563.045sC 6593.161s 6867.457sB 6868.336 { 6868.478 } 6869.142s 6869.353s 6870.116 { 6870.249 } 6871.180s 6871.180s 6874.037s 6874.037s 6874.037s 6874.899s 6875.830s	H Fe A(O) A(O) A(O) A(O) A(O) A(O) A(O) A(O)	40 6 6d? 6 6d? 7 6 7 8 10 11 12 12 13
5324.3738 5328.236 5340.121 5341.213 5367.6698 5370.1665 5383.578s 5397.3448 5405.9898 5424.2908 5424.2908 5429.911 5447.1308 5528.6418 5573.075 5586.991 5588.9858 5615.8778 5688.4388 5711.3138 5713.2188	Fe Fe Fe Fe Fe Fe Fe Mg Fe Fe Na Re Re	6 7 6 6 6 7d? 6 6d? 6d? 8 6 7 6 6	6141.938s 6155.350 6162.390s 6169.249s 6169.778s 6170.730 6191.393s 6191.779s 6200.527s 6213.644s 6219.494s 6240.535s 6252.773s 6256.572s 6301.718 6318.239 6335.554 6337.84889 6393.820s	Fe, Ba  Ca  Ca  Ca  Fe-Ni  Fe  Fe  Fe  Fe  Fe  Fe  Fe  Fe  Fe  F	7 7 5 6 7 6 6 9 6 6 6 8 8 7 6 7 6 6 7 6	6875.830s 6876.958s 6877.882s 6879.288s 6886.000s 6886.000s 6886.090s 6889.192s 6890.151s 6892.618s 6893.560s 6897.208s 6900.199s 6901.117s 6904.362s 6905.271s 6908.783s 6909.676s 6013.448s	A(O) A(O) A(O) A(O) A(O) A(O) A(O) A(O)	13 13 12 12 6 10 11 12 13 14 14 15 14 15 14 15 14 15 14 15 14 15 11
5857.674s 5862.552s 5890.186sD ₂ 5896.155 D ₁ 5901.682s 5914.430s 5919.860s 5930.406s	Ca Fe Na Na A(wv) -, A(wv) A(wv) Fe	8 6 30 20 6 6 7 6	6400.2178 6411.8658 6421.5708 6439.2938 6450.0338 6494.0048 6495.213 6546.4798	Fe Fe Fe Ca Ca Ca Fe Ti-Fe	7 8 7 7 8 6 6 8 6	6914.3375 6918.370s 6919.250s 6923.553s 6924.427s 7191.755 7206.692	A(O) A(O) A(O) A(O) A(O) A, -	9 9 9 9 9 6N 6

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15 $^{\circ}$  C, pressure 760 mm.:

Wave-length Correction		4900.	5000.	5200. — •166	5300. — .172	5400. 212	5500. -,217	5600. 218		
Wave-length	5800.	5900.				6400.		6600.	6700.	6800.

#### SPECTRUM SERIES.

The flame spectrum lines of the elements are comparatively few. These remain prominent in the arc with the appearance of many more. In the spark the typical arc lines tend to disappear with the appearance of entirely new lines. Those thus intensified or only appearing in the violent action of the condensed spark have been called "enhanced" lines. This order of development may be taken as one due to increasing temperatures. The spectra of compounds are invariably banded; different sets of bands indicate oxides, chlorides, etc. Banded spectra of the elements are generally assumed to be due to molecules, the simpler spectra to atoms, and the enhanced spectra to atoms with one electron lost (ionized.) The enhanced spectrum of He is similar to that of H except that the wave-lengths are shortened because of the increased attraction of the heavier nucleus, 2e in place of e.

In the spectra of many elements and compounds certain lines or groups of lines (doublets, triplets, etc.) occur in orderly sequence, each series with definite order of intensity (generally decreasing with decreasing wave-length), pressure effect, Zeeman effect, etc. Such series generally obey approximately a law of the form

$$v = \frac{\mathbf{r}}{\lambda} = L - \frac{N}{(m+R)^2},$$

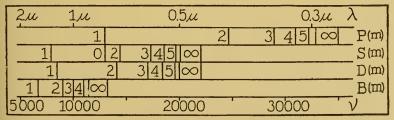
where  $\nu$  is the wave-number in vacuo (reciprocal of the wave-length  $\lambda$ ) generally expressed in waves per cm; m is a variable integer, each integer giving a line of the series; L is the wave number of the limit of the series ( $m = \infty$ ); N, the "Universal Series Constant"; and R is a function of m, or a constant in some simple cases. Balmer's formula (1885) results if  $L = N/n^2$ , where n is another variable integer and R = 0. Rydberg's formula (1889) makes R a constant, and L is not known to be connected with N. Other formulae have been used with more success. Mogendorff (1906) requires R = constant/m, while Ritz (1903) has  $R = \text{constant}/m^2$ . Often no simple formula fits the case; either R must be a more complex function of m, or the shape of the formula is incorrect. Bohr's theory (see also Table 515) gives for Hydrogen.

$$N = \left\{ 2\pi^2 m e^4 (M+m) \right\} / Mh^3,$$

where e and m are the charge and mass of an electron, M the atomic weight, and h, Planck's constant. The best value for N is 100678.7 international units (Curtis, Birge, Astrophys. J. 32, 1910). The theory has been elaborated by Sommerfeld (Ann. der Phys. 1916), and the present indications are that N is a complex function varying somewhat from element to element.

methed (Ann. der Phys. 1916), and the present indications are that N is a complex function varying somewhat from element to element.

Among the series (of singles, doublets, etc.), there is any to be one more prominent, its lines easily reversible, called the principal series, P(m). With certain relationships to this there may be two subordinate series, the first generally diffuse, D(m), and another, S(m). Related to these there is at times another, the Bergmann or fundamental series, B(m). or F(m). m is the variable integer first used above and indicates the order of the line. The following laws are in general true among these series: (1) In the P(m) the components of the lines, if double, triple, etc., are closer with increasing order; in the subordinate series the distance of the components (in vibration number) remains constant. (2) Further, in two related D(m) and S(m),  $\Delta w$  (vibration number difference) remains the same. (3) The limits (L) of the subordinate series, D(m) and S(m), are the same. (4)  $\Delta w$  of the subordinate series is the same  $\Delta w$  as for the first pair of the corresponding P(m). (5) The limits (L) of the components of the doublets (triplets, etc.) of the P(m) are the same. (6) The difference between the vibration numbers of the end of the P(m) and of the two corresponding subordinate series gives the vibration number of the first term of the P(m). The first line of the S(m) coincides with the first line of the P(m) (Rydberg-Schuster law). The limit of the Bergmann or fundamental series is the first term of the diffuse series (Runge law).


In the spectrum of an element several of these families of series P(m), D(m), S(m), B(m) may be found. For further information see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, 1016, from the latter of which is taken the following tables, based greatly upon Dunz's Die Seriengesetze der Linienspektra, Diss., Tubingen, 1011, which has also appeared in book form, Hirzel, Leipzig.

The "complexity" of the

if even, of triplets and singlets.

(discussion continued on page 441)

Series Spectra of the Elements. — The ordinary spectrum of H contains 3 series of the same kind: one in the ultraviolet region; Schumann region,  $\nu = N(^1/^2 - ^1/^2), n, 2, 3 \dots$ ; one in the visible,  $\nu = N(^1/^2 - ^1/^2), n, 3, 4, 5 \dots$ ; and one in the infra-red,  $\nu = N(^1/^3 - ^1/^2), n, 4, 5, 6 \dots$  He has three systems of series, one 'enhanced,'' including the Pickering series formerly supposed to be due to H. The next two tables give some of the data for other elements.



SERIES SYSTEM OF POTASSIUM.

# TABLES 323-324. SPECTRUM SERIES-

## TABLE 323. - Limits of Some of the Series.

	P ₁ (∞)	$\begin{vmatrix} D_1(\infty) \\ = S_1(\infty) \end{vmatrix}$	$B_1(\infty)$	P₂(∞)	$\begin{vmatrix} D_2(\infty) \\ = S_2(\infty) \end{vmatrix}$	B ₂ (∞)	P₃(∞)	$D_{\mathfrak{z}}(\infty) = S_{\mathfrak{z}}(\infty)$	B ₃ (∞)	R(∞)
H He Li Na K Rb Cs	48,764 32,031 — — — — — —	27,429 27,173 — — — —	12,186 12,204 — — — —	48,764 38,453 43,484 *41,445 35,006 33,685 31,407 62,306	27,419 { 29,221 29,222 28,581 { 24,472 24,489 21,963 22,020 20,868 21,106 19,674 20,228 31,523 31,771	12,186 12,208 12,202 12,274 13,471 14,330 16,809 16,907 12,372 12,366	48,744	27,429   	12,186	
Ag Mg	_	26,613	_	61,093 ?	30,621 31,542	12,351	20,467		13,707	_
Ca	-	27,510	-	}	60,423 60,646	28,929	17,761	39,813 33,983 34,089 34,142	28,92 <b>9</b> 28,950 28,964	42,353
Sr		25,745	-	_	55,029 55,830 \$49,926	_	-	31,026 31,420 31,607	27,605 27,705 27,766	45,895
Ba	_	-	_		51,616		3	}	}	48,318

For the series of Zn, Cd, Hg, Al, Sn, Tl, O, S, Sn, see original reference. *48 lines have been measured in this series from 16,056 to 41,417.

# TABLE 324. — First Terms of Some of the Series. Vibration Number Differences of Pairs $\Delta \nu_1$ , and Triplets $\Delta \nu_1$ , $\Delta \nu_2$ .

For the P(m) and the S(m) is given only the first or second term, since the term with index 0 may be omitted coinciding with the first term of the S(m) or P(m) respectively. Consequently the numbers always proceed fro greater to smaller wave-lengths. Which is the common line can always be recognized from the vibration number See figure on the preceding page. The vibration differences can be obtained from Table 323.

		D(1)	S(I)	B(1)		P(I)	D(t)	S(I)	B(1)		$\Delta \nu$	$\Delta \nu_1$	$\Delta \nu_2$
H He Li Na K Rb Cs Cu Ag	21,334 4,857 9,231 14,903 16,973 16,956 13,043 12,985 12,817 12,579 11,733 11,178 30,783 30,535 30,472 30,5551	15,233 14,970 {17,014 17,015 16,379 12,215 12,108 8,493 6,776 6,738 3,321 2,767 2,767 19,151 19,151 18,271 11,352 35,831	9,871 13,729 14,148 12,301 8,782 8,766 8,040 7,983 7,552 7,315 7,357 6,803 12,061 12,352 13,003 12,083	5334 5347 5416 6592 7437 9875 5495	Mg Ca Sr	\$5036 \$5020 \$5012 	25,106 26,045 26,045 20,495 11,763 11,541 5,019 5,125 5,177 19,390 9,059 9,159 3,842 3,655 3,260 12,176 10,493	19,346 19,326 19,285 19,285 19,828 25,414 25,101 16,329 16,223 23,715 23,518 14,721 14,533 14,139 21,952 20,261	6,720 22,153 21,834 21,820 21,799 20,591 20,533 20,435 13,894 13,523	He Na KRb Cs Cu Agg Ca Sr Ba Zn CH HITO OS	1 177 58 237 552 249 921 223 801 1690 872? 2484? 112 2213 7793		20 52 187 370 190 542 1769

## TABLE 325. - Index of Refraction of Glass.

Indices of refraction of optical glass made at the Bureau of Standards. Correct probably to 0.00001. The composition given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass.

Melt.	123	241	135	116	188	151	163	76
Wave-length.	Ordinary crown.	Borosili- cate crown.	Barium flint.	Light barium crown.	Light flint.	Dense barium crown.	Medium flint.	Dense flint.
Hg 4046.8 Hg 4078.1 H 4340.7	1.53189 1.53147 1.52818	1.53817 1.53775 1.53468	1.58851 1.58791 1.58327	1.59137 1.59084 1.58698	1.60507 1.60430 1.59860	1.63675 1.63619 1.63189	1.65788 1.65692 1.64973	1.69005 1.68894 1.68079
Hg 4358.6 H 4861.5 Hg 4916.4	1.52798 1.52326 1.52283	1.53450 1.53008 1.52967	1.58299 1.57646 1.57587	1.58674 1.58121 1.58071	1.59826 1.59029 1.58958	1.63163 1.62548 1.62492	1.64931 1.63941 1.63854	1.68030 1.66911 1.66814
Hg 5461.0 Hg 5769.6 Hg 5790.5	1.51929 1.51771 1.51760	1.52633 1.52484 1.52475	1.57105 1.56894 1.56881	1.57657 1.57473 1.57460	1.58380 1.58128 1.58112	1.62033 1.61829 1.61817	1.63143 1.62834 1.62815	1.66016 1.65671 1.65650
Na 5893.2 Hg 6234.6 H 6563.0	1.51714 1.51573 1.51458	1.52430 1.52297 1.52188	1.56819 1.56634 1.56482	1.57406 1.57242 1.57107	1.58038 1.57818 1.57638	1.61756 1.61576 1.61427	1.62725 1.62458 1.62241	1.65548 1.65250 1.65007
Li 6708.2 K 7682.0	1.51412	1.52145	1.56423 1.56100	1.57054 1.56762	1.57567	1.61369 1.61047	1.62157	1.64913 1.64405
			(Percenta	ige compositi	ion)			
SiO ₂ Na ₂ O K ₂ O B ₂ O ₃ B ₄ O ZnO A ₅ O ₃ CaO PbO Sb ₂ O ₃	67.0 12.0 5.0 3.5 10.6 1.5 0.4	64.2 9.4 8.3 11.0 6.1 - 0.4 1.0	53·7 1.7 8.3 2·7 14·3 2·5 —	48.0 2.0 6.1 4.0 29.5 10.0 1.4	53.9 1.0 7.6 — 0.3 2.0 35.2	37.0 2.7 5.0 47.0 7.7 —	45.6 3.4 4.1 	39.0 3.0 4.0 —————————————————————————————————

TABLE 326. - Dispersion of Glasses of Table 325.

Melt.	123	241	135	116	188	151	163	76
$ \begin{vmatrix} n_D \\ n_F - n_C \end{vmatrix} $	0.00868	1.52430	1.56819 0.01164	1.57406 0.01014	1.58038	1.61756	1.62725	1.65548
$\frac{n_D - 1}{n_F - n_C} = v$	59.6	63.9	48.8	56.6	41.7	55.1	36.9	34-4
$n_D - n_F$ $n_F - n_{G'}$	0.00612 0.00492	0.00578	0.00827	0.00715	0.00991	0.00792	0.01216	0.01363
$n_D - n_C$	0.00256	0.00242	0.00337	0.00299	0.00400	0.00329	0.00484	0.00541

## TABLE 327. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena:  $n_A$ ,  $n_C$ ,  $n_D$ ,  $n_F$ ,  $n_G$ , are the indices of refraction in air for  $A = 0.7682\mu$ ,  $C = 0.6563\mu$ , D = 0.5893, F = 0.4861, G' = 0.4341.  $v = (n_D - 1)/(n_F - n_C)$ . Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Hand-hard Scatterial and Schott and Carlot and Schott and buch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena

-							
Cata	logue Type =	O 546	() 381	O 184	O 102	O 165	S 57
De	esignation =	Zinc-Crown.	Higher Dis- persion Crown.	Light Silicate Flint.	Heavy Silicate Flint.	Heavy Silicate Flint.	Heaviest Sili-
Melt	ing Number=	1092	1151	451	469	500	163
	v =	60.7	51.8	41.1	33.7	27.6	22.2
	Cd 0.2763µ	1.56759	_		_	-	-
a .	Cd .2837	1.56372	-	-	_	-	-
gu	Cd .2980	1.55723	1.57093	1.65397	-	-	-
je je	Cd .3403	1.54369	1.55262	1.63320	1.71968	1.85487	-
ave-length	Cd .3610	1 53897	1.54664	1.61388	1.70536	1.83263	-
Wa	Н .4340µ	1.52788	1.53312	1.59355	1.67561	1.78800	1.94493
pu	H .4861	1.52299	1.52715	1.58515	1.66367	1.77091	1.91890
l a	Na .5893	1.51698	1.52002	1.57524	1.64985	1.75130	1.88995
1	H .6563	1.51446	1.51712	1.57119	1.64440	1.74368	1.87893
Light	K .7682	1.51143	1.51368	1.56669	1.63820	1.73530	1.86702
	.8nou	1.5103	1.5131	1.5659	1.6373	1.7339	1.8650
Jo	1,200	1.5048	1.5069	1.5585	1.6277	1.7215	1.8481
Kind	1.600	1.5008	1.5024	1.5535	1.6217	1.7151	1.8396
1 .2	2,000	1.4967	1.4973	1.5487	1.6171	1.7104	1.8316
	2.400		-	1.5440	1.6131	-	1.8286
		<u> </u>	<u> </u>				

Percentage composition of the above glasses:

- O 546, SiO₂, 65.4; K₂O, 15.0; Na₂O, 5.0; BaO, 9.6; ZnO, 2.0; Mn₂O₃, 0.1; As₂O₃, 0.4; O 540, S102, 05.4; K20, 15.0; Ka20, 5.0; BaC, 9.0; Ency nor sangest  $B_2O_3$ , 2.5. O 381, SiO₂, 68.7; PbO, 13.3; Na₂O, 15.7; ZnO, 2.0; MnO₂, 0.1; As₂O₅, 0.2. O 184, SiO₂, 53.7; PbO, 36.0; K₂O, 8.3; Na₂O, 1.0; Mn₂O₃, 0.06; As₂O₅, 0.3. O 102, SiO₂, 40.0; PbO, 52.6; K₂O, 6.5; Na₂O, 0.5; Mn₂O₃, 0.09; As₂O₅, 0.3. O 165, SiO₂, 29.26; PbO, 67.5; K₂O, 3.0; Mn₂O₃, 0.04; As₂O₃, 0.2. S 57, SiO₂, 21.9; PbO, 78.0; As₂O₅, 0.1.

#### TABLE 328. - Jena Glasses.

No. and Type of Jena Glass.	$n_{\rm D}$ for D	$n_{\rm F} - n_{\rm C}$	$v = \frac{n_{\mathrm{D}} - 1}{n_{\mathrm{F}} - n_{\mathrm{C}}}$	$n_D - n_A$	$n_{\rm F}-n_{\rm D}$	$n_{\mathrm{O}}, -n_{\mathrm{F}}$	Specific Weight.
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Boro-silicate crown	1.4967	0765	64.9	0504	0534	0423	2.38
UV 3199 Ultra-violet crown	1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59-4	0582	0639	0514	2.73
O 114 Soft-silicate crown	1.5151	0910	56.6	0577	0642	0521	2 55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	<b>o</b> 666	0543	2.60
UV 3248 Ultra-violet flint	1.5332	09/54	55-4	0011	06%0	0553	2.75
() 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate flint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	6819	0943	0791	3.16
O 184 " "	1.5900	1438	41-1	0882	1022	0861	3.28
O 748 Baryt flint	1.6235	1599	39.1	9965	1142	0965	3.67
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.87
0 41 " "	1.7174	2434	29.5	1439	1749	1521	4.49
O 165 " " · · · · · · · · · · · · · · · · ·	7-7541	2743	27.5	1607	1974	1730	4.78
S 386 Heavy flint	1.9170	4289 4882	19.7	2451 2767	3109	2808 3252	6.01 6.33

#### TABLE 329. - Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G/	$\frac{-\Delta n}{n}$ 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light O 225 Light phosphate crown .	58.8°	1.204	1.447	2.090	2.810	0.0166
	58.4	0.225	0.261	0.334	0.407	0.0078
	58.3	—0.008	0.014	0.080	0 137	0.0079
	58.1	—0.202	—0.190	-0.168	—0.142	0.0049

Pulfrich, Wied. Ann. 45, p. 609, 1892.

TABLE 330. - Index of Refraction of Rock Salt in Air.

λ(μ).	ж.	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	72.	Observer.
0.185409 .204470 .291368 .358702 .441587 .486149  .58902 .58932 .656304  .706548 .766529 .76824 .78576	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553399 1.544340 1.544313 1.544072 1.536072 1.53666 1.536138 1.536138	M " " " L P L P P L P P P P	0.88396 .972298 .98220 I.036758 I.1786 " 1.555137 I.7680 " 2.073516 2.35728 " 2.9466 3.5359 4.1252 " 5.0092	1.534011 1.532532 1.532435 1.531762 1.530372 1.530374 1.528211 1.527441 1.526554 1.525863 1.525849 1.524534 1.523173 1.521648 1.521648 1.521625 1.518978	L P L P L P L P L P L P L P L P	5.8932 6.4825 "7.0718 7.6611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3	1.516014 1.515553 1.513628 1.513667 1.511062 1.508318 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.454404 1.447494 1.447494 1.441032 1.3735 1.340	P L P L P " " " " " " " " " " " " " " "

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where  $a^{2} = 2.330165$   $\lambda_{2}^{2} = 0.02547414$   $b^{2} = 5.680137$   $M_{1} = 0.01278685$   $k = 0.0009285837$   $M_{3} = 12059.95$   $\lambda_{1}^{2} = 0.0148500$   $h = 0.00000286086$   $\lambda_{3}^{2} = 3600$ . (P)  $M_{2} = 0.005343924$ 

TABLE 331. - Change of Index of Refraction for 1° C in Units of the 5th Decimal Place.

0.202\mu +3.134 Mi 0.441\mu -210 +1.570 " .508 -224 -0.187 " .643 -298 -2.727 "	3.030	-3.749 Pl 0.76cμ -3.739 " 1.368 -3.648 " 1.88 -3.585 " 4.3	-3.73 L -3.88 L -3.85 L -3.82 L
---------------------------------------------------------------------------------	-------	---------------------------------------------------------------------	------------------------------------------

L Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.
M Martens, Ann. d. Phys. 6, 1901, 8, 1902.
Mi Micheli, Ann. d. Phys. 7, 1902.
P Paschen, Wied. Ann. 26, 1908.
Pulfrich, Wied. Ann. 45, 1892.
RN Rubens and Nichols, Wied. Ann. 60, 1897.

TABLE 332. - Index of Refraction of Svivite (Potassium Chloride) in Air.

λ(μ).	n	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	п.	Obser- ver.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508606 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115 1.51219 1.50044 1.49620 1.49044 1.48669 1.483282 1.481422 1.480084	M	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3039 5.8932	I.478311 I.47824 I.475890 I.47589 I.474751 I.473834 I.473049 I.47304 I.471122 I.47001 I.47001 I.468804 I.46880	P W P W P W P W P W P W	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44941 1.44346 1.44345 1.43722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W P W RN

$$n^2 = a^2 + \frac{M_1}{\lambda^2 - \lambda_1^2} + \frac{M_2}{\lambda^2 - \lambda_2^2} - k\lambda^2 - h\lambda^4 \text{ or } = b^2 + \frac{M_1}{\lambda^2 - \lambda_1^2} + \frac{M_2}{\lambda^2 - \lambda_2^2} + \frac{M_3}{\lambda_3^2 - \lambda^2}$$

$$a^2 = 2.174967 \qquad \lambda_2^2 = 0.0255550 \qquad b^2 = 3.866619$$

$$M_1 = 0.008344206 \qquad k = 0.000513495 \qquad M_3 = 5569.715$$

$$\lambda_1^2 = 0.0119082 \qquad h = 0.00000167587 \qquad \lambda_3^2 = 3292.47 \qquad \text{(P)}$$

$$M_2 = 0.00698382$$
W Weller, see Paschen's article. Other references as under Table 331, above.

## TABLES 333-336. INDEX OF REFRACTION.

#### TABLE 333. - Index of Refraction of Fluorite in Air.

λ (μ)	n	Obser- ver	λ (μ)	n	Obser- ver	λ (μ)	n	Obser- ver.
0.1856 .19881 .21441 .22645 .25713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786 1.3756	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44697 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157 1.43101 1.42982 1.42787 1.42690	S	1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	1.42641 1.42596 1.42582 1.42507 1.42437 1.42413 1.42359 1.42288 1.42288 1.42016 1.41971 1.41826 1.41971 1.41826 1.41707 1.41612 1.41379	P	4.1252 4.4199 4.7146 5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1	1.40855 1.40559 1.40238 1.39898 1.39529 1.39142 1.38719 1.37819 1.36805 1.3680 1.34444 1.33079 1.31612 3.47 2.66 2.63	P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda_{\nu}^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{\nu}^{2}}$$
where  $a^{2} = 2.03882$   $f = 0.00002916$   $M_{3} = 5114.65$ 
 $M_{1} = 0.0062183$   $b^{2} = 6.09651$   $\lambda_{\nu}^{2} = 1260.56$ 
 $\lambda_{1}^{2} = 0.007706$   $M_{2} = 0.0061386$   $\lambda_{\nu} = 0.0940\mu$ 
 $\epsilon = 0.0031999$   $\lambda_{\nu}^{2} = 0.00884$   $\lambda_{r} = 35.5\mu$  (P)

TABLE 334. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 335. - Index of Refraction of Iceland Spar (CaCO3) in Air.

λ (μ)	n _o	ne	Observer.	λ (μ)	n _o	$n_{e}$	Obser- ver	λ (μ)	no	ne	Obser- ver.
0.198 .200 .208 .226 .298 .340 .361 .410 .434 .486	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943 1.4907	M " - C M C - M	0.508 •533 •589 •643 •656 •670 •760 •768 •801 •905	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487 1.6458	1.4896 1.4884 1.4864 1.4849 1.4846 1.4843 1.4826 1.4826 1.4822 1.4810	M "" "" "" "" "" "" "" "" "" ""	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 - 1.6280 -	1.4802 1.4787 1.4783 1.4774 - 1.4764 - 1.4757	C 44 44 44 44 44 44 44 44 44 44 44 44 44

C Carvallo, J. de Phys. (3), 9, 1900. M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. P Paschen, Wied Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. Starke, Wied. Ann. 60, 1897.

TABLE 336. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

λ	n	λ	n	λ	71	λ	28	λ	28
.500 .506 .508	2.140 2.114 2.074 2.025 1.985	•.525 •536 •546 •557 •569	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o.636 .647 .659 .669 .696	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood.

Phil. Mag 1903.

# TABLES 337-338. INDEX OF REFRACTION.

TABLE 337. — Index of Refraction of Quartz (SiO₂).

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera-	Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.
0.185	1.67582	1.68999	18	o.656	1.54189	Y 55001	18
		1.00999	44	.686		1.55091	16
.193	.65997	.67343	66		.54099	.54998	66
.198	.65090	.66397		.760	-53917	.54811	"
.206	.64038	.65300	66	1.160	-5329		-
.214	.63041	.64264	"	.969	.5216	1	-
.219	.62494	.63698	41	2.327	.5156		-
.231	.61399	.62560	44	.84	.5039		-
.257	.59622	.60712	- 44	3.18	-4944		-
.274	.58752	.59811	44	.63	-4799	Rubens.	-
.340	.56748	.57738	46	.96	.4679	1	-
.396	.55815	.56771	44	4.20	.4569		-
.410	.55650	.56600	44	5.0	.417		-
.486	.54968	.55896	44	6.45	.274		
0.589	1.54424	1.55334	44	7.0	1.167		-
		33331			<u> </u>	1	

Except Rubens' values, - means from various authorities.

TABLE 338. - Indices of Refraction for various Alums.*

,	ity	c. c.		I	ndex of rei	raction for	the Fraun	hofer lines		
R	Density.	Temp.	8	В	C	D	E	b	P	G
	Aluminium Alums. RAl(SO ₄ ) ₂ +12H ₂ O.†									
Na NH ₃ (CH ₃ ) K Rb Cs NH ₄ Ti	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .453°3 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288 .50209	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923 .51076
	Chrome Alums. RCr(SO ₄ ) ₂ +1 ₂ H ₂ O.†									
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
			I	ron Alums	. RFe(SC	O ₄ ) ₂ +12H ₂	0.†			
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.481 <b>6</b> 9 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
† R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

# INDEX OF REFRACTION.

# Selected Monorefringent or Isotropic Minerals.

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Index of refraction, $\lambda = 0.589\mu$ .
Villiaumite Cryolithionite Opal Fluorite Alum Sodalite Cristobalite Analcite Sylvite Noselite Hauynite Lazurite Leucite Pollucite Halite Bauxite Spinel Berzeliite Priclasite Grossularite Helvite Pryope Arsenolite Hessonite Pleonaste Almandite Hercynite Gahnite Spessartite Lime Uvarovite Andradite Microlite Nantokite Pyrochlore Schorlomite Percylite Caragyrite Mosesite Ctromite Senarmonitie Eulytite Cerargyrite Mosesite Chromite Senarmonitie Embolite Manganosite Embolite Manganosite Embolite Manganosite Embolite Manganosite Embolite Miscelle Eulystite Embolite Manganosite Embolite Manganosite Embolite Miscelle Embolite Manganosite Embolite Miscelle Embolite Miscelle Embolite Miscelle Misc	NaF 3NaF.3LiF.2AlF3 SiO2.nH3O CaF2 K2O.Alv3.4SO3.24H2O 3Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2NaCl SiO ₂ Na ₃ O.3Al ₂ O ₃ .6SiO ₂ .2PaCl SiO ₂ Na ₃ O.3Al ₂ O ₃ .6SiO ₂ .2SO3 Like preceding + CaO 4Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .2SO3 Like preceding + CaO 4Na ₂ O.3Al ₂ O ₃ .6SiO ₂ .Na ₂ S ₆ K.O.Al ₂ O ₃ .4SiO ₂ 2CS ₃ O.2Al ₂ C ₃ .9SiO ₂ .H ₂ O NaCl * Al ₂ O ₃ .nH ₂ O 3Fe ₂ O ₃ 2As ₂ O ₄ 3K ₂ O.5H ₂ O MgO.Al ₂ O ₃ 3(Ca, Mg, Mn)O.As ₂ O ₅ MgO.Al ₂ O ₃ 3(Ca, Mg, Mn)O.As ₂ O ₅ MgO.Al ₂ O ₃ .3SiO ₂ 3(Mn, Fe)O.3BeO.3SiO ₂ .MnS 3MgO.Al ₂ O ₃ .3SiO ₂ As ₂ O ₃ 3CaO.(Al, Fe) ₂ O ₃ .3SiO ₂ CaO 3CaO.Cr ₂ O ₃ .3SiO ₂ CaO, 3Ta ₂ O ₅ .CbOF ₃ CuCl Contains CaO, Ce ₂ O ₃ , TiO ₂ , etc. 3CaO.(Fe, Ti) ₂ O ₃ .3SiO ₂ AgCl Contains Hg, NH ₄ , Cl, etc. FeO.Cr ₂ O ₃ Sb ₂ O ₃ Ag(Br, Cl) MnO NiO CuL ₄ .HqI	refraction, \(\lambda = 0.589\mu.\)  1.328  1.339 1.406-1.440 1.434 1.456 1.483 1.486 1.487 1.490 1.500 1.525 1.544 1.570 1.676 1.727 1.736 1.727 1.736 1.736 1.738 1.745 1.755 1.763 1.770 ± 1.778 1.800 ± 1.800 ± 1.800 ± 1.800 ± 1.800 ± 1.925 1.930 1.945 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.950 1.95
Bromyrite Dysanalite Marshite Franklinite Sphalerite Perovskite Diamond Eglessonite Hauerite Alabandite Cuprite	Contains CaO, FeO, TiO ₂ , etc. CuI (Zn, Fe, Mn)O.(Fe, Mn) ₂ O ₃ (Zn, Fe)S CaO.TiO ₂ C HgO.2HgCl MnS ₃ MnS ₅	2. 253 2. 336 2. 346 2. 360 (Li light) 2. 370-2. 470 2. 380 2. 419 2. 490 (Li light) 2. 690 (Li light) 2. 700 (Li light) 2. 849

# INDEX OF REFRACTION.

# Miscellaneous Monorefringent or Isotropic Solids.

Substance.	Spectrum line.	Index of refraction.	Authority.
Albite glass. Amber. Ammonium chloride Anorthite glass. Asphalt  Bell metal Boric Acid, melted.  """  Borax, melted.  """  Camphor.  Canada balsam. Ebonite Fuchsin  """  Gelatin, Nelson no. r  "various. Gum Arabic  """  Obsidian Phosphorus. Pitch Potassium bromide  "chlorstannate iodide Resins: Aloes Canada balsam Colophony Copal Mastic Peru balsam Selenium  """  Selenium  Sodium chlorate. Strontium nitrate.	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	1.4800 1.546 1.6422 1.5755 1.635 1.621 1.0052 1.4623 1.4637 1.4694 1.4624 1.4630 1.4702 1.532 1.5462 1.530 1.06 2.03 2.19 2.33 1.97 1.32 1.510-1.534 1.480 1.514 1.432-1.496 2.1442 1.531 1.5593 1.574 1.6666 1.619 1.528 1.548 1.528 1.535 1.593 2.61 2.68 2.73 2.93 1.5150 1.5167	Larsen, 1900 Mühlheim Grailich Larsen, 1900 E. L. Nichols Beer Bedson and Williams """" """" Kohlrausch Mühlheim Mean Ayrton, Perry Mean """ Jones, 1911 Jamin Wollaston Various Gladstone, Dale Wollaston Topsée, Christiansen """ Jamin Wollaston Jamin Wollaston Baden Powell Wood "" Dussaud Fock

#### TABLE 341.

#### INDEX OF REFRACTION-

#### Selected Uniaxial Minerals.

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

200	P .	Index	of refraction.
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.
	(a) Uniaxial Positive Minerals.		
Ice. Sellaite. Chrysocolla Laubanite. Chabazite. Douglasite Hydronephelite. Apophyllite Quartz. Coquimbite Brucite. Alunite. Pennnite. Cacoxenite Eudialite Dioptasite Phenacite. Parisite. Willemite. Vesuvianite Xenotime Connellite. Benitoite. Ganomalite. Scheelite. Zircon. Powellite Casiterite Zincite Phosgenite Phosgenite Benfieldite Lapricite Capitile Capitil	(a) UNIAXIAL POSITIVE MINERALS.  H2O MgF2 CuO.SiO2.2H2O 2CaO.Al ₂ O _{3.5} SiO2.6H2O (Ca, Na ₂ O.Al ₂ O _{3.4} SiO _{2.6} H ₂ O 2KCI.FeCl _{2.2} H ₂ O SiO ₂ FexO _{3.3} SO _{3.9} H ₂ O MgO.H ₂ O K ₂ O.3Al ₂ O _{3.6} SiO _{2.7} H ₂ O K ₂ O.3Al ₂ O _{3.6} SiO _{2.4} H ₂ O 5(Mg, Fe)O.Al ₂ O _{3.3} SiO _{2.4} H ₂ O 5(Mg, Fe)O.Al ₂ O _{3.3} SiO _{2.4} H ₂ O 2FexO _{3.2} PO _{3.5} T ₂ H ₂ O 6Na ₂ O.6(Ca, Fe)O.2o(Si, Zr)O _{2.} NaCl CuO.SiO _{2.} H ₂ O 2eOF.CaO. ₃ CO ₂ 2CoF.CaO. ₃ CO ₂ 2CnO.SiO ₂ 2(Ca, Mn, Fe)O.(Al, Fe)(OH, F)O. ₂ SiO ₂ Y ₂ O _{3.7} PO ₅ 2oCuO.SO _{3.2} CuCl _{2.2} OH ₂ O BaO.TiO _{2.3} SiO ₂ 6PbO.4(Ca, Mn)O.6SiO _{2.} H ₂ O CaO.WO ₃ ZrO _{2.5} SiO ₂ CaO.MoO ₃ HgCl SnO ₂ ZnO PbO.PbCl _{2.} CO ₂ PbO.2PbCl _{2.2} Co ZnS 6FeO.Sb ₂ O _{3.5} TiO ₂ CdS TiO ₂ CSi HgS	1.309 1.378 1.460 ± 1.475 1.480 ± 1.478 1.488 1.490 1.535 ± 1.550 1.550 1.550 1.572 1.576 1.582 1.606 1.654 1.654 1.676 1.654 1.676 1.710 ± 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.721 1.7	1.313 1.390 1.570 ± 1.486 1.482 ± 1.500 1.502 1.537 ± 1.553 1.556 1.580 1.592 1.579 1.645 1.611 1.707 1.670 1.757 1.723 1.718 ± 1.816 1.804 1.945 1.934 1.908 1.998 2.093 2.029 2.140 2.210 2.210 2.220 2.420 (Li light) 2.378 2.529 2.993 2.697 3.201
	(b) Uniaxial Negative Minerals.		
Chiolite Hanksite Thaumasite Hydrotalcite Cancrinite Milarite Kaliophilite Mellite Marialite Nephelite	2NaF.AlF ₃ 11Na ₂ O. ₃ SO ₃ . ₂ CO ₂ .KCl 3CaO. CO ₂ .SiO ₂ .SO ₃ . ₃ SH ₂ O 6MgO. Al ₂ OCO ₂ .15H ₂ O 4Na ₃ O. CaO. 4Al ₂ O ₃ . ₂ CO ₂ . ₃ SiO ₂ . ₃ H ₂ O K ₂ O. 4CaO. 2Al ₂ O ₃ . ₂ 4SiO ₂ .H ₂ O K ₂ O. Al ₂ O ₃ . ₂ SiO ₂ Al ₂ O ₃ .C ₁ C ₉ O ₃ .18H ₂ O "Ma" = 3Na ₂ O. ₃ Al ₂ O ₃ .18SiO ₂ . ₂ NaCl Na ₂ O.Al ₂ O ₃ . ₂ SiO ₂	1.349 1.481 1.507 1.512 1.524 1.532 1.537 1.539 1.539	1.342 1.465 1.468 1.498 1.496 1.529 1.533 1.511 1.537

# INDEX OF REFRACTION-

## TABLE 341 (Continued). - Selected Uniaxial Minerals.

		Index	of refraction.
Mineral.	Formula.	Ordinary ray.	Extraordinary ray.
	(b) UNIAXIAL NEGATIVE MINERALS (continued)		
Wernerite. Beryl. Torbernite Meionite. Meilite Apatite Calcite Gehlenite Tourmaline Dolomite. Magnesite Pyrochroite Corundum Smithsonite Rhodochrosite. Jacosite Pyromorphite Barysilite Minetite Matlockite. Stolcite. Geikielite Vanadinite. Wulfenite Octahedrite Massicotite Proustite Hematite	Me ₁ Ma ₁ ≠ 3BeO.Al ₂ O ₃ .6SiO ₂ CuO ₂ UO ₃ .P ₂ O ₅ .8H ₂ O 'Me'' = 4CaO. ₃ Al ₂ O ₃ .6SiO ₂ Contains Na ₂ O, CaO, Al ₂ O ₃ , SiO ₂ , etc. o ₂ CaO.3P ₂ O ₅ .Ca(F, Cl) ₂ CaO.CO' ₂ 2CaO.Al ₂ O ₃ .SiO ₂ Contains Na ₂ O, FeO, Al ₂ O ₂ , B ₂ O ₃ , SiO ₂ , etc. CaO.MgO.2CO ₂ MgO.CO ₂ MgO.CO ₂ MgO.CO ₂ MnO.H ₂ O Al ₂ O ₃ ZnO.CO ₂ MnO.CO ₂ K2O. ₃ Fe ₂ O _{3.4} SO _{3.6} H ₂ O FeO.CO ₂ o ₂ PbO. ₃ P ₂ O ₅ .PbCl ₂ 3PbO.2SiO ₂ o ₂ PbO.3P ₂ O ₅ .PbCl ₂ PbO.PbCl ₂ PbO.WO ₂ (Mg, Fe)O.TiO ₂ o ₂ PbO. ₃ V ₃ O ₅ .PbCl ₂ PbO.MoO ₂ TiO ₂ TiO ₂ PbO 3Ag ₂ S.As ₂ S ₃ 3Ag ₂ S.Sb ₂ S ₃ Fe ₂ O ₃	1.578 1.581 ± 1.592 1.597 1.634 1.658 1.669 ± 1.682 1.723 1.768 1.818 1.818 1.818 1.818 1.818 1.820 1.875 2.070 2.135 2.150 2.269 2.310 2.354 2.402 2.554 2.605 2.979 3.084 3.220	1.551 1.575 1.582 1.560 1.629 1.631 1.486 1.638 1.503 1.509 1.681 1.760 1.681 1.760 1.681 1.715 1.635 2.042 2.050 2.118 2.040 2.182 2.050 2.118 2.040 2.182 1.950 2.299 2.304 (Li light) 2.493 (Li light) 2.711 2.881 "" 2.881 ""

TABLE 342. - Miscellaneous Uniaxial Crystals.

	Spectrum	Index of			
Crystal.	line.	Ordinary ray.	Extraordinary ray.	Authority.	
Ammonium arseniate NH ₄ H ₂ AsO ₄ .  Benzil (C ₆ H ₅ CO) ₂ . Corundum, Al ₂ O ₃ , sapphire, ruby. Ice at -8° C. """"  Ivory. Potassium arseniate KH ₂ As ₂ O ₄ . """  Sodium arseniate Na ₂ As ₃ O ₄ .12H ₂ O "nitrate Na ₂ O ₃ . """  phosphate Na ₃ PO ₃ .12H ₂ O Nickel sulphate NiSO ₄ 6H ₂ O. """  Strychnine sulphate.	DII DE DO DO	1.5766 1.6588 1.769 1.308 1.297 1.5762 1.5674 1.5632 1.457 1.586 1.5103 1.5103 1.5103	1.5217 1.6784 1.760 1.313 1.304 1.541 1.5252 1.5179 1.5146 1.466 1.466 1.453 1.4930 1.4873 1.4844 1.599	T. and C.* Mean Osann Meyer  " Kohlrausch T. and C. " " " Mean " T. and C. " " " " " Martin	

^{*} Topsöe and Christiansen.

#### TABLE 343.

#### INDEX OF REFRACTION.

## Selected Biaxial Minerals.

The values are arranged in the order of increasing  $\beta$  index of refraction and are for the sodium D line except where noted. Selected by Dr. Edgar T. Wherry from private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

## Selected Biaxial Minerals.

}									
Mineral.	Formula.	I	ndex of refr	action.					
		$n_{\alpha}$	$^{n}\beta$	$n_{\gamma}$					
(a) BIAXIAL POSITIVE MINERALS (continued).									
Zoisite Strengite. Diasporite Staurolite. Chrysoberyl. Azurite. Scorodite. Olivenite. Anglesite Titanite. Claudetite Sulfur Cotunnite. Huebnerite. Manganite Raspite. Mendipite. Tantalite Wolframite Crocoite. Pseudobrookite. Stibiotantalite. Montryoydite.	1.700 1.710 1.702 1.736 1.747 1.736 1.772 1.877 1.900 1.871 1.950 2.200 2.170 2.240 2.260 2.310 2.310 2.310 2.374	1.702 1.710 1.722 1.741 1.748 1.758 1.758 1.774 1.810 1.882 1.907 2.043 2.217 2.220 2.240 2.270 2.270 2.370 2.370 2.390 2.404 2.500	1.706 1.745 1.745 1.750 1.746 1.757 1.838 1.894 2.034 2.010 2.240 2.260 2.320 2.530 (Li) 2.320 2.330 2.430 (Li) 2.460 (Li) 2.460 (Li) 2.460 (Li) 2.457 2.457 2.650 (Li)						
Brookite. Lithargite.	HgO TiO ₂ PbO  (b) BIAXIAL NEGATIVE MINERALS.	2.583	2.586 2.610	2.74I 2.7IO					
Mirabilite. Thomsenolite Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite Cordierite Chalcanthite Oligoclase.	Na ₂ 0.SO ₃ .1oH ₂ O NaF. CaF ₂ .AlF ₃ .H ₂ O NaF. CaF ₂ .AlF ₃ .H ₂ O Na ₂ O.CO ₂ .1oH ₂ O K ₂ O.Al ₂ O ₃ .4SO ₃ .24H ₂ O MgO.SO ₃ .7H ₂ O Na ₂ O.EO ₃ .H ₂ O Na ₂ O.EO ₃ .H ₂ O Na ₂ O.Al ₂ O ₃ .4SO ₃ .2H ₂ O Na ₂ O.Al ₂ O ₃ .4SO ₃ .2H ₂ O Na ₂ O.Al ₂ O ₃ .4SO ₃ .2H ₂ O Na ₂ O.Al ₂ O ₃ .4SO ₃ .2H ₂ O Na ₂ O.Al ₂ O ₃ .SH ₂ O Na ₂ O.CO ₂ .H ₂ O (Ca, Na ₂ O.Al ₂ O ₃ .6SiO ₂ .5H ₂ O K ₂ O.N ₂ O ₃ MgO.SO ₃ .KCl ₃ H ₂ O Na ₂ O.CaO ₃ .2CO ₂ .SH ₂ O CaO.Al ₂ O ₃ .3SiO ₂ .3H ₂ O CaO.Al ₂ O ₃ .4SiO ₂ .3H ₂ O CaO.Al ₂ O ₃ .4SiO ₂ .4H ₂ O K ₂ O.Al ₂ O ₃ .6SiO ₂ Same as preceding (Na, K.)d.Al ₂ O ₃ .6SiO ₂ Na ₂ O.CaO ₃ .SO ₃ (Mg, F)O. (Al ₂ O ₃ .SSiO ₂ Na ₂ O.CaO ₃ .SO ₃ O Al ₂ O ₃ .SSiO ₂	1.394 1.407 1.405 1.433 1.340 1.447 1.457 1.476 1.486 1.410 1.420 1.494 1.334 1.494 1.512 1.513 1.518 1.522 1.523 1.515 1.534 1.516 1.539	1.396 1.414 1.425 1.452 1.455 1.470 1.480 1.480 1.488 1.492 1.495 1.505 1.510 1.510 1.524 1.524 1.524 1.526 1.538 1.539 1.543	1.398 1.415 1.445 1.458 1.459 1.472 1.483 1.483 1.542 1.518 1.500 1.572 1.526 1.516 1.523 1.519 1.525 1.526 1.530 1.530 1.531 1.536					

# TABLE 343 (continued).

# INDEX OF REFRACTION-

# Selected Biaxial Minerals.

Mineral.	Formula.	I	ndex of refra	ction.				
Mineral.	ronnula.	na	nβ	ηγ				
(b) Blaxial Negative Crystals (continued).								
Beryllonite. Kaolinite Biotite Autunite. Autunite. Anorthite. Lanthanite. Pyrophyllite Tale. Hopeite Muscovite. Amblygonite Lepidolite. Phlogopite Tremolite. Actinolite. Wollastonite Lazulite Danburite Glaucophanite Andalusite Hornblende Datolite Erythrite Monticellite. Strontianite. Witherite Aragonite Axinite. Dumortierite Cyanite Epidote Atacamite Fayalite Caledonite Malachite Lazulite Lazulite Malachite Laturionite Malachite Lanarkite Leadhillite Cerussite Laurionite Malackite Baddeleyite Lepidorcote Limonite Goethite. Valentinite Underschiele Codethite. Valentinite Ungette Codethite. Valentinite Lendorocte Limonite Goethite. Valentinite Valentinite Valentinite Lendorocte Lugidorocte Lugid	(a) BAXIAL NEGATIVE CRYSTALS (contribution)  NagO.2BeO.P2Os AlgO.2SiO2.2H2O K2O.4(Mg, Fe)O. 2AlgOn.6SiO2.H2O K2O.4(Mg, Fe)O. 2AlgOn.6SiO2.H2O CAO.2UO3.P2Os.8H2O "An" = CAO.AlgOn.2SiO2 LAROn.3CO2.9H2O AlgOn.4SiO2.H2O 3MgO.4SiO2.H2O 3MgO.4SiO2.2H2O AlgOn.2SiO2 AlgOn.2SiO2 CAO.3MgO.AlgOn.6SiO2.2H2O CAO.3MgO.AlgOn.6SiO2.2H2O CAO.3MgO.AlgOn.6SiO2.2H2O CAO.3MgO.AlgOn.6SiO2 CAO.3MgO.AlgOn.P2Os.H2O CAO.B2On.2SiO2 NagO.ASiO2 CAO.B2On.2SiO2 NagO.ASiO2 CAO.B2On.2SiO2 NagO.ASiO2 NagO.ASiO2 NagO.ASiO2 CAO.B2On.8H2On.6SiO2 AlgOn.SiO2 CAO.B2On.8H2On.6SiO2 AlgOn.SiO2 CAO.B2On.8H2On.8H2O CAO.MgO.SiO2 STO.COP BAO.CO2 CAO.CO2	1. 552 1. 561 1. 541 1. 553 1. 576 1. 553 1. 576 1. 520 1. 552 1. 559 1. 579 1. 560 1. 560 1. 560 1. 560 1. 562 1. 601 1. 603 1. 625 1. 621 1. 625 1. 629 1. 621 1. 625 1. 629 1. 621 1. 632 1. 629 1. 621 1. 632 1. 629 1. 621 1. 632 1. 629 1. 621 1. 632 1. 629 1. 621 1. 632 1. 629 1. 621 1. 632 1. 629 1. 631 1. 678 1. 678 1. 678 1. 678 1. 678 1. 720 1. 831 1. 678 1. 720 1. 831 1. 678 1. 720 1. 818 1. 720 1. 818 1. 720 1. 818 1. 720 1. 818 1. 720 1. 818 1. 720 1. 818 1. 720 1. 818 1. 720 1. 834 1. 720 1. 834 1. 720 1. 834 1. 720 1. 834 1. 730 1. 804 2. 777 2. 040 2. 130 2. 170 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180 2. 180	1.558 1.563 1.574 1.575 1.584 1.575 1.584 1.588 1.589 1.590 1.590 1.593 1.623 1.623 1.629 1.632 1.632 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.638 1.655 1.660 1.676 1.686 1.686 1.670 1.754 1.866 1.875 1.990 2.210 2.210 2.210 2.210 2.250 2.350 2.550 2.550 2.550 2.550 2.550	1.561 1.565 1.574 1.577 1.588 1.613 1.600 1.589 1.590 1.597 1.605 1.605 1.633 1.636 1.633 1.636 1.638 1.643 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.653 1.650 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728 1.728				

#### INDEX OF REFRACTION.

## TABLE 344. - Miscellaneous Biaxial Crystals.

Crystal.	Spectrum	Ind	lex of refract	ion.	Authority.
0.750	line.	n _a	$n\beta$	$n_{\gamma}$	Authority.
Ammonium oxalate, (NH ₄ ) ₂ C ₂ O ₄ .H ₂ O. Ammonium acid tartrate, (NH ₄ )H(C ₄ H ₄ O ₆ ). Ammonium tartrate, (NH ₄ ) ₂ C ₄ H ₄ O ₆ . Antipyrin, C ₁₁ H ₁₂ NO ₂ . Citric acid, C ₄ H ₄ O ₇ . Codein, C ₁₈ H ₂ NO ₃ .H ₂ O. Codein, C ₁₈ H ₂ NO ₃ .H ₂ O. Magnesium carbonate, MgCO _{4.7} H ₂ O.  "sulphate, MgSO _{4.7} H ₂ O.	D D D D D D D D D D D D D D D D D D D	1.4381 1.5188 1.5697 1.4932 1.5390 1.495 1.432	1.5475 1.5614 1.581 1.6935 1.4977 1.5435 1.501 1.455	1.5950 1.5910 1.7324 1.5089 1.526 1.461	Brio T. and C.* Cloisaux Liweh Schrauf Grailich Genth Means
Potassium bichromate, K2Cr2O7.  chromate, K2CrO4.  nitrate, KNO2.  sulphate, K2SO4.  Racemic acid. C4HaO6-H2O.	Cd, 0. 226µ H, 0. 656µ D D red D F D F D C yellow	1.4990 1.4307 1.7202 1.6873 1.3346 1.4976 1.4932 1.4911	1.5266 1.4532 1.7380 1.7254 1.722 1.5056 1.4992 1.4946 1.4928 1.526	1.5326 1.4584 1.8197 1.7305 1.5064 1.5029 1.4980 1.4959	Borel " Dufet T. and C. Mallard Schrauf T. and C. " " " " " " " " " " " " " " " " " " "
Resorcin, C ₆ H ₆ O ₂ . Sodium bichromate, Na ₂ Cr ₂ O _{7.2} H ₂ O.  "a acid tartrate, NaH(C ₄ H ₄ O ₆ ). ₂ H ₂ O Sugar (cane), C ₁₂ H ₂₂ O ₁₁ .  "  Tartaric acid, C ₄ H ₆ O ₆ (right-). Zinc sulphate, ZnSO _{4.7} H ₂ O.	DD ped FIDLIDFDC	1.6610 1.5422 1.5397 1.5379 1.4953 1.4620 1.4568 1.4544	1.555 1.6994 1.5332 1.5685 1.5667 1.5639 1.5353 1.4860 1.4801	1.7510 1.5734 1.5716 1.5693 1.6046 1.4897 1.4836 1.4812	Dufet Brio Calderon " Means T. and C. " " " " " " " " " " " " " " " " " " "
* 7	Fopsöe and Chris	stiansen.	- ):-		

TABLE 345. — Miscellaneous Liquids (see also Table 346), Liquefied Gases, Oils, Fats and Waxes.

				1	1		1
Substance.	Temp.	Index for D	Refer- ence.	Substance.	Temp.	Index for D	Refer-
					Ŭ	V. 309pm	0.1.00.
Liquefied gases:				Oils:			
Br2	15	1.650	a	Lavendar	20	1.464-1.466	e
Cl2		1.367	b	Linseed	15	1.4820-1.4852	ĕ
CO2	15	1.195		Maize	15.5	1.4757-1.4768	
C2N2	18	1.325	b b b	Mustard seed	15.5	1.4750-1.4762	d d e d d
C2H4	6	1.180	b	Neat's foot		1.4695-1.4708	e
H ₂ S	18.5	1.384		Olive	15.5	1.4703-1.4718	d
N ₂ NH ₃	-190 16.5	1.205	c b	Palm	60	1.4510	d l
NO	-00	1.325	D	Peanut	15.5	1.4723-1.4731	
N ₂ O.		I.104	c b	Peppermint	20 15-5	1.464-1.468	4
O ₂	-181	1.221		Porpoise	25	1.4677	u
SO ₂	15.	1.350	b b	Rape (Colza)	15.5	1.4748-1.4752	e d e d
HCl	16.5	1.252	b	Seal	25	1.4741	
HBr	IO	1.325	b	Sesame	15.5	1.4742	e d
H	16.5	1.466	b	Soja bean	15.5	1.4760-1.4775	e
Oils:		_		Sperm	15.5	1.4665-1.4672	e d
Almond	15.5	1.4728-1.4753	ď	Sunflower	15.5	I.4739	
Castor Citronella	15	1.4799-1.4803	e	Tung	19	1.503	e
Clove.	20	1.47-1.48	e	Whale	40	1.4649	e
Cocoanut	20 15.5	1.5301-1.5360 1.4587	ď	Fats and Waxes:		1.4552-1.4587	
Cod liver.	15	1.4507 1.4790-1.4833		Beeswax	40 75	1.4552-1.4507	e
Cotton seed.	15.5	I.4737-I.4757	e d	Carnauba wax	84	1.4520-1.4541	e
Croton	27	1.4757-1.4768	e	Cocoa butter	40	1.4560-1.4518	ě
Eucalyptus	20	1.460-1.467	e	Lard	40	1.4584-1.4601	ě
Lard	15.5	1.4702-1.4720	d	Mutton tallow	60	1.4510	e
					- 1		

References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 330, 1884; (c) Liveing, Dewar, Phil. Mag., 1892-3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1005; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365 per ° C.

#### TABLE 346.

## INDEX OF REFRACTION.

#### Indices of Refraction of Liquids Relative to Air.

	D.			Indi	ces of refrac	ction.		
Substance.	Den- sity.	Temp.	ο. 397μ Η	ο. 434μ G	0.486μ F	0. 589µ D	ο. 656μ C	Author- ity.
Acetaldehyde, CH ₂ CHO. Acetone, CH ₂ COCH ₃ . Aniline, C ₆ H ₆ NH ₂ . Alcohol, methyl, CH ₂ OH. "ethyl C ₂ H ₆ OH. "appropriate of the color of the	0.780 0.791 1.022 0.794 0.808 0.800 0.804 0.880 1.487 1.293 1.263 1.591 1.000 1.512 1.480 0.728 0.718 0.718 0.718 0.660 0.679 3.318 0.902 0.909 0.909 1.066 0.92	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.3399 1.7289 1.7175 1.6994 1.4/3 1.8027 1.6084 1.7039 1.7039 1.6985	1.3394 1.3678 1.0204 1.3362 1.3773 1.3700 1.3908 1.5236 1.0007 1.0041 1.6020 1.6748 1.4729 1.6679 1.4679 1.458 1.4200 1.3607 1.3804 1.4928 1.4929 1.6748 1.4959 1.5439 1.4097	F  1.3359 1.5639 1.5641 1.3331 1.3739 1.36660004 1.3901 1.51320006 1.6583 1.6523 1.4676 1.6470 1.4530 1.4760 1.35760006 1.35760006 1.3764 1.4784 1.3799 1.4007 1.7602 1.3764 1.4784 1.5743 1.5647 1.5623 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628 1.3628	D  1. 3316 1.3593 1.3593 1.3590 1.3605 1.3618 1.3618 1.3618 1.3618 1.3618 1.4507 1.4108 1.3518 1.3618 1.3538 1.3714 1.4108 1.3538 1.3714 1.4108 1.3538 1.3714 1.4108 1.3538 1.3714 1.4108 1.3538 1.3714 1.4108 1.4730 1.5239 1.4077 1.4782 1.55475 1.5475 1.5475 1.5475	1.3298 1.3733 1.5793 1.3797 1.3677 1.36750006 1.3834 1.49650006 1.4473 1.4579 1.0161 1.4530 1.4443 1.35150006 1.3734 1.3920 1.3734 1.3920 1.3734 1.3920 1.7326 1.5746 1.5798 1.3987 1.4758	Means  Ib Means  Ib Means  I M
rock turpentine. Pentane, CH ₃ (CH ₂ ) ₃ CH ₄ . Phenol, C ₆ H ₅ OH	0.87 0.87 0.625 1.060	10.6 20.7 15.7 40.6 82.7	1.4939 1.4913	1.3645	1.4644 1.4817 1.4793 1.3610 1.5558 1.5356	1.4573 1.4744 1.4721 1.3581 1.5425	1.4545 1.4715 1.4692 1.3570 1.5369 1.5174	9 8 1e 1g 1h
Styrene, CeHsCH.CH2. Thymol, CubHsO. Toluene, CHs.CeHs. Water, H2O. "" ""	0.910 0.982 0.86	16.6 20 20 0 40 80	I.3435 I.3444 I.3411 I.3332	1.5816 	1.5659 1.5386 1.5070 1.3372 1.3380 1.3349 1.3270	1.5485 1.4955 1.3330 1.3338 1.3307 1.3230	1.5419 1.5228 1.4911 1.3312 1.3319 1.3290	1i 1h 10 Means

References: 1, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

## TABLE 347.

# INDEX OF REFRACTION.

# Indices of Refraction relative to Air for Solutions of Salts and Acids.

				Indi	Indices of refraction for spectrum lines.						
Substa	ance.	Density.	Temp. C.	C	D	F		нγ	н	Aut	hority.
(a) Solutions in Water.											
Ammonium	"	1.067	27°.05 29.75	1.37703	.3505	6 1.384	515	-	1.39336 .36243	3  "	
"	Calcium chloride398 .215 .143		25.65 22.9 25.8	.44000 .39411 .37152	.3965	2 .402	206	Ξ	.41078 .38666	"	1
Hydrochlo Nitric acid Potash (car	ustic)	1.166 •359 •416	20.75 18.75 11.0	1.40817 •39893 •40052	.4018	1 .408 1 .408	357 308	-	1.42816 .41961 .41637	64	nhofer.
Potassium "	chioride .	double	solution normal normal	.34087 .34982 .35831	-3517	9 .356	545 · 512 ·	35049 35994 36890	-	66	
Soda (caus Sodium chi "		1.376 .189 .109	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000	·3778	9  .383 9  .364	322 I. 42 .	- 38746 36823 34969	1.42872 - - -	Willi Schu "	igen. tt.
Sodium nit Sulphuric a		1.358	22.8 18.3 18.3	1.38283 -43444 -42227	1.3853	5 1.391	34 68	- - -	1.40121 .44883 .43694	"	
66	1032		18.3	.36793 .33663	.3700	9 ·374 2 ·342	.37468 -		.38158		
Zinc chlorie	de	1.359	26.6 26.4	1.39977	.3751			-	.38845	66	
			(b) Solu	TIONS IN	ETHYL A	Асоно	L.				
Ethyl alcoh		0.789 .932	25.5 27.6	1.35791 •35372	1.3597 ·3555			-	1.37094 .36662	Willi	gen.
urated) Cyanin (sa		-	16.0 16.0	.3918 .3831	.398	.361		-	·37 59 .3821	Kund	it.
a 4.5 per	— Cyanin cent. solut per cent.	ion $\mu_A =$	: 1.4593, A	$u_B = 1.40$	$595, \mu_{F}$	(green)	= 1.	4514,	$\mu_G$ (blue	e) = 1	·4554·
	(0	) Solutio	ns of Por	rassium :		GANATE	in W	ATER.*			
Wave- length in cms. × 106.	n for	Index for 2 % sol.	Index for 3 % sol.	Index for 4 % sol.	Wave- length in cms. X 10 ⁶ .	Spec- trum line.	Inde for 1 % s	· 1	or	ndex for % sol.	Index for 4 % sol.
68.7 B 65.6 C 61.7 - 59.4 - 58.9 D	1.3328 •3335 •3343 •3354	1.3342 .3348 .3365 .3373	- 1.3365 -3381 -3393	1.3382 .3391 .3410 .3426 .3426	51.6 50.0 48.6 48.0 46.4	- F -	1.336 ·337 ·337 ·338	74   ·3 77   ·3	395	3386	- 1.3404 .3408 .3413 .3423
56.8 - 55.3 - 52.7 E 52.2 -	.3353 .3362 .3366 .3363 .3362	·3372 ·3387 ·3395 - ·3377	.3412 .3417 - .3388	·3445 ·3448	44.7 43.4 42.3	-	·339 ·340 ·341 ·343	7   ∙3 7	421	3414 3426 - 3457	·3439 ·3452 ·3468

# TABLE 348.

# INDEX OF REFRACTION.

#### Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is  $n_t - 1 = \frac{n_0 - 1}{1 + \alpha t} \cdot \frac{\rho}{f_0}$ , where  $n_t$  is the index of refraction for temperature t,  $n_0$  for temperature zero,  $\alpha$  the coefficient of expansion of the gas with temperature, and  $\rho$  the pressure of the gas in millimeters of mercury. For air see Table 349.

(a) Indices of refraction.									
Spectrum	103 (n-1)	Spectrum	103 (n-1)	Wave-		(n-1	) 103.		
line.	Air.	line.	Air.	length.	Air.	O.	N.	н.	
A B C D E F G H K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980 .2987	M N O P Q R S T U	.2993 .3003 .3015 .3023 .3031 .3043 .3053 .3064 .3075	.4861 .5461 .5790 .6563 .4360 .5462 .6709 6.709 8.678	.2951 .2936 .2930 .2919 .2971 .2937 .2918 .2881 .2888	·2734 ·2717 ·2710 ·2698 ·2743 ·2704 ·2683 ·2643 ·2650 sons; the	.3012 .2998 	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361 .1361	

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 nm. pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh. 1.001700-1.001823	Hydrogen	white D D D white	1.000138-1.000143 1.000132 Burton. 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Bromine Carbon dioxide  "Carbon disul- { phide }	D white D white D	1.001132 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D White D	1.000444 Mascart. 1.000549-1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- { oxide { Chlorine Chloroform	white white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436-1.001464	Nitrogen  Nitrous oxide .  Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane Sulphur dioxide " " Water	D white D white	1.000271-1.000272 1.001711 Mascart. 1.000665 Dulong. 1.000686 Ketteler. 1.000261 Jamin.
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447 "	66	D	1.000249-1.000259

#### INDEX OF REFRACTION.

#### TABLE 349. - Index of Refraction of Air (15°C, 76 cm).

Corrections for reducing wave-lengths and frequencies in air (15° C, 76 cm) to vacuo.

The indices were computed from the Cauchy formula  $(n-1)10^7=2726.43+12.288/(\lambda^2\times 10^{-8})+0.3555/(\lambda^1\times 10^{-18})$ . For  $\circ^{\circ}$  C and 76 cm the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for  $30^{\circ}$  C and 76 cm, 2580.72, 12.250 and 0.2576. Sellmeier's formula for but one absorption band closely fits the observations:  $n^2=1+0.00057378\lambda^2/(\lambda^2-595260)$ . If n-1 were strictly proportional to the density, then (n-1)0/(n-1); would equal 1+ai where a should be 0.00367. The following values of a were found to hold:  $\lambda = 0.055\mu = 0.003672 = 0.003674 = 0.003674 = 0.003678 = 0.003685 = 0.003700 = 0.003738 = 0.003872$ . The indices are for dry air  $(0.05 \pm \% \text{ CO}_2)$ . Corrections to the indices for water vapor may be made for any wavelength by Lorenz's formula, +0.000041(m/760), where m is the vapor pressure in mm. The corresponding frequencies in waves per cm and the corrections to reduce wave-lengths and frequencies in air at  $1.5^{\circ}$  C and 76 cm pressure to vacuo are given. E.g., a light wave of 5000 Angstroms in dry air at  $1.5^{\circ}$  C, 76 cm becomes 5001.391 A in vacuo; a frequency of 20.000 waves per cm correspondingly becomes 19994.44. Meggers and Peters, Bul. Bureau of Standards, 14, 19, 19.31, 19.38. 1018.

Wave- length, Ang- stroms.	Dry air (n - 1) × 10 ⁷ 15° C 76 cm	Vacuo correction for $\lambda$ in air $(n\lambda - \lambda)$ . Add.	Frequency waves per cm 1 \overline{\lambda} in air.	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$ . Subtract.	Wave- length, \(\lambda\) Ang- stroms.	Dry air (n - 1) × 10 ⁷ 15° C 76 cm	Vacuo correction for $\lambda$ in air $(n\lambda - \lambda)$ Add.	cm	Vacuo correction for $\frac{\mathbf{I}}{\lambda}$ in air $\left(\frac{\mathbf{I}}{n\lambda} - \frac{\mathbf{I}}{\lambda}\right)$ . Subtract.
2000	3256	0.651	50,000	16,27	5500	2771	1.524	18,181	5.04
2100	3188	0.670	47,619	15,18	5600	2769	1.551	17,857	4.94
2200	3132	0.689	45,454	14,23	5700	2768	1.578	17,543	4.85
2300	3086	0.710	43,478	13,41	5800	2766	1.604	17,241	4.77
2400	3047	0.731	41,666	12,69	5900	2765	1.631	16,949	4.68
2500	3014	0.754	40,000	12.05	6000	2763	1.658	16,666	4.60
2600	2986	0.776	38,461	11.48	6100	2762	1.685	16,393	4.53
2700	2962	0.800	37,037	10.97	6200	2761	1.712	16,129	4.45
2800	2941	0.824	35,714	10.50	6300	2760	1.739	15,873	4.38
2900	2923	0.848	34,482	10.08	6400	2759	1.766	15,625	4.31
3000	2907	0.872	33,333	9.69	6500	2758	1.792	15,384	4.24
3100	2893	0.897	32,258	9.33	6600	2757	1.819	15,151	4.18
3200	2880	0.922	31,250	9:00	6700	2756	1.846	14,925	4.11
3300	2869	0.947	30,303	8.69	6300	2755	1.873	14,705	4.05
3400	2859	0.972	29,411	8.41	6900	2754	1.900	14,492	3.99
3500	2850	0.998	28,571	8.14	7000	2753	1.927	14,285	3.93
3600	2842	1.023	27,777	7.89	7100	2752	1.954	14,084	3.88
3700	2835	1.049	27,027	7.66	7200	2751	1.981	13,888	3.82
3800	2829	1.075	26,315	7.44	7300	2751	2.008	13,698	3.77
3900	2823	1.101	25,641	7.24	7400	2750	2.035	13,513	3.72
4000	2817	1.127	25,000	7.04	7500	2749	2.062	13,333	3.66
4100	2812	1.153	24,390	6.86	7600	2749	2.089	13,157	3.62
4200	2808	1.179	23,809	6.68	7700	2748	2.116	12,987	3.57
4300	2803	1.205	23,255	6.52	7800	2748	2.143	12,820	3.52
4400	2799	1.232	22,727	6.36	7900	2747	2.170	12,658	3.48
4500 4600 4700 4800 4900	2796 2792 2789 2786 2784	1.258 1.284 1.311 1.338 1.364	22,222 21,739 21,276 20,833 20,406	6.21 6.07 5.93 5.80 5.68	8250 8500 8750	2746 2746 2745 2744 2743	2.197 2.224 2.265 2.332 2.400	12,500 12,345 12,121 11,764 11,428	3.43 3.39 3.33 3.23 3.13
5000	2781	1.391	20,000	5.56	9000	2742	2.468	11,111	3.05
5100	2779	1.417	19,607	5.45	9250	2741	2.536	10,810	2.96
5200	2777	1.444	19,230	5.34	9500	2740	2.604	10,526	2.88
5300	2775	1.471	18,867	5.23	9750	2740	2.671	10,256	2.81
5400	2773	1.497	18,518	5.13	10000	2739	2.739	10,000	2.74

# MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

## TABLE 350. — Liquids, $n_D (0.589\mu) = 1.74$ to 1.87.

In 100 parts of methylene iodide at 20° C, the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI₃) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the  $\mathrm{SnI}_4$  will prevent discoloration.

CH1 ₃ .	SnI ₄ .	AsI ₃ .	SbI ₃ .	S.	n _{na} at 20°.
40 35	25 25 30 27 27 31 31	13 16 14 16	12 12 7 8 8	6	1.764 1.783 1.806 1.820 1.826 1.842 1.853

#### TABLE 351. — Resin-like Substances, $n_D$ (0.589 $\mu$ ) = 1.68 to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00,	10.	20.	30.	40.	50.	60,	70.	80.
Index of refraction	1,683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

#### TABLE 352. — Permanent Standard Resinous Media, $n_D$ (0.589 $\mu$ ) = 1.546 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

# TABLE 353. OPTICAL CONSTANTS OF METALS.

#### TABLE 353.

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length,  $\lambda^1$  measured in the metal, is reduced in the ratio  $1:e^{-2\pi k}$  or for any distance d,  $I: e^{-\frac{2\pi dk}{\lambda^2}}$ , for the same wave-length measured in air this ratio becomes  $I: e^{-\frac{2\pi dnk}{\lambda^2}}$ . nk is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle,  $\bar{\phi}$  (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth  $\bar{\psi}$  (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

$$k = \tan 2 \overline{\psi} \; (\mathbf{I} - \cot^2 \overline{\phi}) \; \text{and} \; n = \frac{\sin \, \overline{\phi} \; \tan \, \overline{\phi}}{(\mathbf{I} + \mathbf{k}^2)^{\frac{1}{2}}} \; (\mathbf{I} + \frac{1}{2} \cot^2 \overline{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R=computed percentage reflection.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

		7	-		Compu	ıted.		
Metal.	λ	$\overline{\phi}$	$\overline{\psi}$	n	k	nk	R	Authority.
	μ						%	
Cobalt	0.231	640311	29 ⁰ 39	1.10	1,30	1.43	32.	Minor.
	.275	70 22	29 59	1.41	1.52	2.14	46.	"
	.500 .650	77 5 79 0	31 53 31 25	2.35	1.93	3.72 4.40	66.	Ingersoll.
1	1.00	81 45	29 6	3.63	1.58	5-73	73.	ingerson.
	1.50	83 21	26 18	5.22	1.29	6.73	75.	**
,	2.25	83 48	26 5	5.65	1.27	7.18	76.	
Copper	.231	65 57	26 14	1.39	1.05	1.45	29.	Minor.
	•347	65 6	28 16	1.19	1.23	1.47	32.	"
	.500	70 44 74 16	33 46	1.10	2,13	2.34 3.26	56. 86.	Ingersoll.
	.650 .870	74 16 78 40	41 30 42 30	0.44	7.4 11.0	3.85	91.	ingerson.
	1.75	84 4	42 30	0.83	11.4	9.46	96.	"
	2.25	85 13	42 30	1.03	11.4	11.7	97.	"
	4.00	87 20	42 30	1.87	11.4	21.3		FörstFréed.
	5.50	88 00	41 50	3.16	9.0	28.4		" "
Gold	1.00	81 45	44 00	0.24	28.0	6.7		" "
	2.00 3.00	85 30	43 56	0.47	26.7	12.5		
1	5.00	87 05 88 15	43 50 43 25	1.81	24.5 18.1	19.6 33.		11 11
Iridium	1.00	82 10	20 15	3.85	1.60	6.2		46 46
	2.00	83 10	29 40	4.30	1.66	7.1		
	3.00	81 40	30 40	3.33	1.79	6.0		
	5.00	79 00	32 20	2 27	2.03	4.6		
Nickel	0.420	72 20	31 42	1.41	1.79	2.53	54.	Tool.
	0.589	76 ī	31 41	1.79	1.86	3.33	62.	Drude.
	0.750	78 45 80 33	32 6	2.19	1.99	4.36 5.26	70.	Ingersoll.
. Į	2.25	84 21	33 30	3.95	2.33	9.20	74· 85.	46
Platinum	1.00	75 30	37 00	1.14	3.25	3-7	٠,٠	FörstFréed.
	2.00	74 30	39 50	0.70	5.06	3.5		
	3.00	73 50	41 00	0.52	6.52	3.4		46 46
Silver	5.00	72 00	42 10	0.34	9.01	3.1		
Suver	0.226	62 41	22 16 18 56	1.41	0.75	1.11	18.	Minor.
	.293 .316	63 14 52 28	18 56 15 38	1.57	o 62 o.38	0.97	17. 4.	"
	.332		37 2	0.41	1,61	0.65	32.	46
	•395	52 1 66 36	43 6	0.16	12.32	1.91	87.	6.6
	.500	72 31	43 29	0.17	17 1	2.94	93•	"
	.589	75 35	43 47	0.18	20,6	3.64	95.	ζζ Τ11
	•750	79 26 82 0	44 6	0.17	30.7	5.16	97.	Ingersoll.
	1.00	82 0 84 42	44 2 43 48	0.24	29.0 23.7	6.96 10.7	98. 98.	ï
	2.25	86 r8	43 40	0.45	19.9	15.4	93.	14
	3.00	87 10	42 40	1.65	12.2	20.1	9 1.	FörstFréed.
	4.50	88 20	41 10	4.49	7.42	33.3		44 46
Steel	0.226	66 51	28 17	1.30	1.26	1.64	35•	Minor.
	.257	68 35	28 45	1.38	1.35	1.86	40.	"
	.325	69 57	30 9 29 2	1.37	1.53	2.09	45.	"
	.500	75 47 77 <b>4</b> 8	29 2	2.09	1.50	3.14 3.59	57· 59.	Ingersoll.
	1.50	77 48 81 48	28 51	3.71	1.55	5.75	73.	· u
4	2.25	83 22	30 36	4.14	1.79	7.41	80.	46
			ا نند					

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

# OPTICAL CONSTANTS OF METALS. TABLE 354.

Metal.	λ,	n.	k.	R.	Ref.	Metal.	λ.	n.	k.	R.	Ref.
Al.* Sb.* Bi.†‡ Cd.* Cr.* Cb.* Au.†	μ 0.589 •589 white •589 •579 •579 •257 •441	1.44 3.04 2.26 1.13 2.97 1.80 0.92 1.18	5.32 4.94 - 5.01 4.85 2.11 1.14 1.85	83 70 - 85 70 41 28 42	1 1 2 1 3 3 4 4	Rh.* Se.‡	μ 0.579 .400 .490 .589 .760 .589 I.25 2.25	1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53	4.67 2.31 1.49 0.45 0.06 0.09 0.08 0.08	78 44 35 25 20 38 33 31	35555666
I. crys. Ir.* Fe.\$ Pb.* Mg.* Mn.* Hg. (liq.)	.589 .589 .579 .257 .441 .589 .589 .589	0.47 3.34 2.13 1.01 1.28 1.51 2.01 0.37 2.49 0.68	2.83 0.57 4.87 0.88 1.37 1.63 3.48 4.42 3.89 2.26	82 30 75 16 28 33 62 93 64 66	4 4 3 4 4 4 1 3 4	Na. (liq.) Ta.* Sn.* W.* V.* Zn.*	.5 ⁸ 9 .579 .589 .579 .579 .257 .441 .589	2.05 1.48 2.76 3.03 0.55 0.93 1.93 2.62	2.61 2.31 5.25 2.71 3.51 0.61 3.19 4.66 5.08	99 44 82 49 58 20 73 74 73	3 3 3 4 4 4 4
Fd.* Pt.† Ni.*	.320 .441 .589 .668 .257 .441 .589 .668 .275 .441	1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	3.42 4 41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	74 75 77 65 37 58 59 59 24 25 43	4 4 4 4 4 4 4 4 4	λ = wave k = absoi (1) Drude used, Ann. 36, p. 824, deutsch. Ph Meier, Ann. (5) Wood, Ingersoll, se * solid, † as film in va	rption ir s, see Ta der Phys 1889; ( nysik. G ales der Phil. M e Table electrol	dex, R ble 205 ik und 3) v. V es. 12, Physi ag. (6), 205.	= refl; (2) K Chemi Warten p. 10, p k, 10, p	ection. (undt, p e, 34, p. berg, \ 5, 1910 b. 581, 1	vrism 477, Verh. ; (4) 903; ; (6)

TABLE 355 .- Reflecting Power of Metals. (See page 298.)

Wave- length	Al.	Sb.	Cd.	Co.	Graph- ite.	Ir.	Mg.	Mo.	Pd.	Rh.	Si.	Ţa.	Te.	Sn.	W	Va.	Zn.
μ								Pe	er cen	ts.							
.5 .6 .8 1.0 2.0 4.0 7.0 10.0	71 82 92 96 98 98	53 54 55 60 68 71 72	72 87 96 98 98 99	67 72 81 93 97 97	22 24 25 27 35 48 54 59	78 87 94 95 96 96	72 73 74 74 77 84 91 —	46 48 52 58 82 90 93 94 95	72 81 88 94 97 97	76 77 81 84 91 92 94 95	34 32 29 28 28 28 28 28	38 45 64 78 90 93 94 -	- 49 48 50 52 57 68 -	54 61 72 81 84 85	49 51 56 62 85 93 95 96 96	57 58 60 61 69 79 88	- 80 92 97 98 98 99

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 197, 1911. The surfaces of some of the samples were not perfects that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles. The following more recent values are given by Coblentz and Emerson, Bul. Bur. Stds. 14, p. 207, 1917; Stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, S1, S, P) was obtained from the Haynes Stellite Co, Kokomo, Indiana.

.900 .943 .747 .5 Wave-length, μ, .15 Tungsten, – Stellite, .32 3.00 4.00 5.00 9.00 .943 .948 .953 — .792 .825 .848 .880 .50 .50 .64 1.00 2.00 .576 .900 .689 .747 .20 .30 .02 .42 .50

According to Fresnel, the amount of light reflected by the surface of a transparent medium  $= \frac{1}{2} (A + B) = \frac{1}{2} \left\{ \frac{\sin^2 (i - r)}{\sin^2 (i + r)} + \frac{\tan^2 (i - r)}{\tan^2 (i + r)} \right\}; A \text{ is the amount polarized in the plane of inci$ dence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 356. — Light reflected when  $i=0^{\circ}$  or Incident Light is Normal to Surface  $(n-1)^2/(n+1)^2$ .

n.	$\frac{1}{2}(A+B)$ .	n.	$\frac{1}{3}(A+B).$	n.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B)$ .
1.00	0.00	1.4	2.78	2.0	11.11	5.	44-44
1.02	0.01	1.5	4.00	2.25	14.06	5.83	50.00
1.05	0.06	1.6	5.33	2.5	18.37	10.	66.67
I.I	0.23	1.7	6.72	2.75	22.89	100.	96.08
1.2	0.83	1.8	8.16	3.	25.00	∞	100.00
1.3	1.70	1.9	9.63	4.	36.00		

TABLE 357. — Light reflected when n is near Unity or equals 1+dn.

i.	А.	В.	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$ *	
o°	1.000	1.000	1.000	0.0	The values for A and B
5	1.015	.985	1.000	1.5	are strictly (dn ² /4) sec ⁴ i
10	1.063	.939	1.001	6.2	and $(dn^2/4)(1-tan^2 i)$ ;
15	1.149	.862	1.005	14.3	In columns 2, 3, and 4
20	1.282	.752	1.017	26.0	dn ² /4 is omitted.
25	1.482	.612	1.047	41.5	
30	1.778	•444	1.111	60.0	
35	2.221	.260	1.240	79.1	
40	2.904	.088	1.496	94.5	
45	4.000	.000	2.000	100.0	
50	5.857	.176	3.016	94.5	
55	9.239	1.081	5.160	79.1	
60	16.000	4.000	10.000	60.0	
65	31.346	12.952	22.149	41.5	
70	73.079	42.884	57.981	26.0	
75	222.85	167.16	195.00	14.3	
80	1099.85	971.21	1035.53	6.2	
85	17330.64	16808.08	17069.36	1.5	
90	∞	∞	∞	0.0	

TABLE 358.—Light reflected when n = 1.55.

ź,	r.	Α,	В.	dA.†	dB.†	$\frac{1}{2}(A+B).$	$\frac{A-B}{A+B}$ *
0 /	0 0.0	4.65	4.65	0.130	0.130	4.65	0.0
5	3 13.4	4.70	4.61	131.	.129	4.65	1.0
10	6 25.9	4.84	4.47	.135	.126	4.66	4.0
15	9 36.7	5.09	4.24	.141	,121	4.66	9.1
20	12 44.8	5.45	3.92	,150	,114	4.68	16.4
25	15 49.3	5.95	3.50	.161	105	4.73	25.9
30	18 49.1	6.64	3.00	.175	•094	4.82	37.8
35	21 43.1	7-55	2.40	191.	.081	4.98	51.7
40	24 30.0	8.77	1.75	.210	•066	5.26	66.7
45	27 8.5	10.38	1,08	-233	•049	5.73	81,2
50	29 37.1	12.54	0.46	.263	.027	6.50	92.9
55	31 54.2	15.43	0.05	.303	.007	7.74	99.3
60	33 58.1	19.35	0.12	-342	013	9.73	98.8
65	35 47.0	24.69	1.13	-375	032	12.91	91.2
70	37 19.1	31.99	4.00	,400	<b>−.</b> 050	18.00	77-7
75	38 32.9	42.00	10.38	.410	060	26.19	61.8
80	39 26.8	55-74	23.34	•370	069	39 54	41.0
82 30	39 45.9	64.41	34.04	.320	067	49.22	30.8
85 0	39 59.6	74.52	49.03	.250	061	61.77	20.6
86 o	40 3.6	79.02	56.62	-209	<b></b> ∙055	67.82	16.5
87 0	40 6.7	83.80	65,32	.163	046	74.56	12.4
88 •	40 8,9	88.88	75.31	811.	036	82.10	8.3
89 o	40 10.2	94.28	86.79	•063	022	90-54	4.1
90 0	40 10.7	100.00	100.00	1000	000	100.00	0.0

Angle of total polarization =  $57^{\circ}$  10'.3, A = 16.99.

^{*} This column gives the degree of polarization † Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.o.. Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

SMITHSONIAN TABLES.

#### TABLES 359-360.

## REFLECTING POWER OF METALS.

TABLE 359. — Perpendicular Incidence and Reflection. (See also Tables 352-355.)

The numbers give the per cents of the incident radiation reflected.

Wave-length, µ.	Silver-backed Glass,	Mercury-backed Glass.	Mach's Magnalium. 69Al+31Mg.	Brandes-Schünemann Alloy. $32Cn + 34Sn + 29Ni + 5Fe$ .	Ross' Speculum Metal, 68.2Cu+31.8Sn,	Nickel, Electrolytically Deposited,	Copper. Electrolytically Deposited.	Steel, Untempered,	Copper.	Platinum. Electrolytically Deposited,	Gold, Electrolytically Deposited.	Brass, (Trowbridge).	Silver. Chemically Deposited,
.251 .288 .305 .316 .326 .338 .357 .385			67.0 70.6 72.2 - 75.5 81.2 83.9	35.8 37.1 37.2 - 39.3 - 43.3 44.3	29.9 37.7 41.7 - - 51.0 53.1	37.8 42.7 44.2 - 45.2 46.5 48.8 49.6	-	32.9 35.0 37.2 - 40.3 - 45.0 47.8	25.9 24.3 25.3 - 24.9 - 27.3 28.6	33.8 38.8 39.8 - 41.4 - 43.4 45.4	38.8 34.0 31.8 - 28.6 - 27.9 27.1		34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1 89.6	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3		86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0 14.0			84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.0 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2		58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 97.9	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 360. — Percentage Diffuse Reflection from Miscellaneous Substances.

		Lai	mp-bla				es.	ai ai			Paper.			et.		
Wave- length	Paint.	Rosin.	Sperm candle,	Acetylene	Camphor.	Pt. black electrol.	Green leaves.	Lead oxide.	Al. oxide.	Zinc oxide.	White Pap	Lead carbonate.	Asphalt.	Black velvet.	Black felt.	Red brick.
*.60 *.95 4.4 8.8 24.0	3.2 3.4 3.2 3.8 4.4	1.3	1.1 .9 1.3 4.0	o.6 .8 1.2 2.1	1.3 1.2 1.6 5.7	1.1 1.4 2.1 4.2	25.	52. 51. 26. 10.	84. 88. 21. 2. 6.	82. 86. 8. 3. 5.	75. 18. 5-	89. 93. 29. 11. 7.	15.	1.8 3.7 2.7	14.	30.

^{*}Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 28 1912, contains many other materials.

## REFLECTING POWER OF PIGMENTS.

#### TABLE 361. - Percentage Reflecting Power of Dry Powdered Pigments.

Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color.	Vio- let.	BI	ue.		Green	١.	Yell	low.	C	rang	e.		Red.		sun.	light.	Tungsten. lamp.
Wave-length in μ	0.44	0.46	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	Noon	Sky	Tung
American vermilion Venetian red Tuscan red Indian red Burnt sienna Raw sienna Golden ochre. Chrome yellow ochre Yellow ochre Chrome yellow medium. Chrome green light. Chrome green medium. Cobalt blue. Ultramarine blue	5	6 5 7 7 4 13 22 9 20 5 13 10 7 58 54	5 5 7 7 4 13 23 7 21 6 18 14 10 49 38	5 5 8 7 4 13 27 7 24 8 30 23 21 35 21	6 5 8 7 5 18 40 10 32 18 56 26 21 23 10	6 6 8 7 6 26 53 19 42 48 82 23 17 15 6	9 7 8 7 9 35 63 30 53 66 88 20 13 11	11 12 12 11 14 43 71 46 63 75 89 17 11 10 3	24 19 16 15 18 46 75 60 64 78 90 14 910 3	39 24 18 18 20 46 74 62 61 79 89 11 7	53 28 20 20 21 45 73 66 60 81 88 96 11	6r 30 22 22 23 44 73 82 59 81 87 86 15	66 32 23 23 24 45 73 81 59 81 85 76 20	65 32 24 24 25 43 72 80 59 81 84 6 5 25	14 11 10 11 33 58 33 49 54 76 19 14 16 7	12 10 9 9 30 55 29 46 50 70 114 118 10	12 13 12 11 13 37 63 40 53 63 82 18 12 13 6

TABLE 362. — Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments.

Wave- length in $\mu$	Co2O3	CuO	Cr2O3	PbO	Fe ₂ O ₃	$Y_2O_3$	PbCrO4	Al ₂ O ₃	${ m ThO}_2$	ZnO	$_{ m MgO}$	CaO	ZrO ₂	PbCOs	MgCO ₃	White lead paint.	Zn oxide paint.
0.60* 0.95* 4.4 8.8 24.0	3 4 14 13 6	24 15 4	27 45 33 5 8	52 51 26 10	26 41 30 4 9	74 34 11 10	70 41 5 7	84 88 21 20 6	86 	82 86 8 3 5	86 	85 	86 84 23 5 5	88 93 29 10 7	85 89 11 4 9	76 79 —	68 72 —

* Non-monochromatic means from Coblentz, Bul. Bureau Standards 9, p. 283, 1012.

For the Reflecting (and transmissive) power of ROUGHENED SURFACES at various angles of incidence, see Gorton, Physical Review, 7, p. 66, 1016. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected 90 per cent at 4µ, approached 100 for longer waves, only 100 at 1µ, less than 5 in the visible red and approached 0 for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

#### TABLES 363-365.

## REFLECTING POWER.

## TABLE 363. - Reflecting Power of Powders (White Light).

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, 1914.

Aluminum oxide Barium sulphate Borax Boric acid Calcium carbonate	81.1 81.6 83.2 83.8	Magnesium carbonate  " " (block) Magnesium oxide Rochelle salt Salicylic acid	88.0 85.7 79.3 81.1	Sodium chloride Sodium sulphate Starch. Sugar Tartaric acid	77.5 80.3 87.8
Citric acid	81.5	Sodium carbonate	81.8		/ 9

# TABLE 364. - Variation of Reflecting Power of Surfaces with Angle.

Illumination at normal incidence, 14 watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. 11, p. 92, 1916.

Angle of observation.	o°	10	3°	5°	100	15°	30°	45°	6o°
Magnesium carbonate block.  Magnesium oxide Matt photographic paper White blotter Pot opal, ground. Flashed opal, not ground Glass, fine ground Glass, course ground Matt varnish on foil Mirror with ground face.	0.80 0.78 0.76 0.69 11.3 0.29 0.23 0.83	0.69 II.3 0.29 0.22	0.69 11.3 0.29 0.21 0.78	0.88 0.80 0.78 0.76 0.69 0.31 0.29 0.20 0.72 4.55	0.88 0.80 0.78 0.76 0.69 0.22 0.27 0.19 0.62 3.86	0.87 0.80 0.78 0.76 0.69 0.21 0.20 0.16 0.49 3.03	0.83 0.77 0.78 .0.73 0.68 0.20 0.14 0.11 0.28	0.72 0.75 0.76 0.70 0.66 0.20 0.13 0.11 0.21	0.68 0.66 0.72 0.67 0.64 0.18 0.12 0.12 0.16

The following figures, taken from Fowle, Smithsonian Misc. Col. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

ngle of reflection, 3° ±		8' 10' 600 244	15' 146	20' 107	30 <b>′</b> 66	45' 33	65' 22	100'
--------------------------	--	-------------------	------------	------------	-------------------	-----------	-----------	------

Wave-length of max. energy of Nernst lamp used as source about 2µ.

## TABLE 365. - Infra-red Reflectivity of Tungsten (Temperature Variation).

Three tungsten mirrors were used, — a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

Wave-	Absolute reflectivity at room			e in reflectiv m temperatu	
in μ.	in per cent.	1377° K	1628° K	1853° K	2056° K
0.67 0.80 1.27 1.90 2.00 2.90 4.00	51 55 70 83 85 92 93	+6.0 -0.0 -6.6 -7.5 -7.7	+7.4 -8.2 -9.3 -9.4	+8.7 -0.0 -9.6 -10.9 -11.1	+9.8 +8.2 0.0 -11.0 -12.3 -12.5 -12.5

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

## TRANSMISSIBILITY OF RADIATION BY DYES-

Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

Spectrum color →	Violet.	Blu	ıe.	(	Green.		Yell	ow.	C	)range	÷.		Red.	
• Wave-length in $\mu \rightarrow$	•44	.46	.48	.50	.52	- 54	. 56	.58	. 60	.62	.64	.66	. 68	.70
Carmen ruby opt. Amido naphthol red Coccinine. Erythrosine. Hematoxyline. Alizarinered. Acid rosolic (pure). Rapid filter red. Aniline red fast extra A Pinatype red fast. Eosine. Rose bengal. Cobalt nitrate.	6 1 4 4 80 69	3 1 3 	7 2 1 — 34 40	13 3 		12 6 1 2 -	1 13 11 2 10 12 14 67			4 38 96 95 54 54 88 95 72 35 93 97 90	18 75 98 96 63 65 90 96 84 55 98 90	37 92 98 96 73 72 91 96 88 65 92 98	49 96 98 96 78 77 92 96 90 68 92 98	60 96 98 96 82 79 92 96 92 93 90
Tartrazine. Chrysoidin Aurantia Aniline yellow phosphine. Fluorescein Aniline yellow fast S. Methyl orange indicator. Uranine Uranine naphthaline. Orange B naphthol Safranine. Martius gelb Naphthol yellow Potassium bichromate, sat. Cobalt chromate	15 15 15 17			7 1 4 - 1 18 82	7 	3 20 91 84 96 77 1 84 91 10	75 23 43 97 96 1 97 82 43 91 96 60 92	86 53 60 98 96 31 97 83 88 94 97 84 93	91 2 82 67 98 96 70 97 84 95 3 95 98 88 95	95 23 92 75 96 79 97 85 96 27 95 98 96	96 50 96 81 98 96 80 97 86 97 64 95 98 89 96	97 71 96 85 98 96 81 97 86 97 85 98 98 96	98 79 96 86 98 96 81 97 87 97 93 95 98 89	98 79 96 87 98 96 81 97 87 97 93 95 98 88
Naphthol green Brilliant green Filter blue green. Malachite green Saurgrün Methylengrün. Aniline green naphthol B. Neptune green Cupric chloride.	2 4 35 3 28 2 77	4 39 49 12 29 31 6 40 84	7 69 64 20 57 32 14 63 89	21 52 70 8 57 26 24 41 92	30 23 60 1 39 17 34 13 92	36 4 37 19 7 40 1 89	29 13 4 2 32 80	16 	7    4 52	2    1 36	I		23 12 4 3 —	64 50 30 28 - 5
Turnbull's blue. Victoria blau Prussian blue (soluble) Wasser blau Resorcine blue Toluidin blau Patent blue Dianil blue Filter blue. Aniline blue, methyl	58 52 66 89 25 66 83 77 84 92	60 23 71 75 18 31 91 69 79 88	56 9 76 51 6 13 84 59 66 78	51 69 26 2 3 76 48 44 52	38 60 7 1 65 35 27 27	28 46 1 46 24 17 9	18 32 	9 20 - 8 9 19 2	5 12 1 1 - 2 5 36 2	3 1 7 2 2 2 - 5 56 4	1 4 5 6 14 1 7 74 8	21 3 18 41 4 6 14 81 16	49 3 37 64 16 42 29 88 25	73 60 72 40 78 53 92 45
Magenta Gentiana violet. Rosazeine. Iodine (dense). Rhodamine B. Acid violet. Cyonine in alcohol. Xylene red. Methyl violet B.	21 89 50 81 84 7 39 25	8 83 28 71 76 1 23 4	64 2 45 68 1	1 44 — 13 50 —	26 - 2 33 - -	19 	1 15 — 27 —	22 10 6  23 34 	73 13 55 83 49 27	93 42 90 	97 75 98 1 96 84  97 3	97 92 98 93 96 96 1 97 26	97 93 98 11 95 96 13 97 63	97 94 98 23 94 96 23 96 89

For the infra-red transmission (to  $12\mu$ ) and reflection powers of a number of aniline dyes, see Johnson and Spence, Phys. Rev. 5, p. 349, 1915.

Scientific Paper 440 of the Bureau of Standards, 1922, gives spectrum transmission curves (0.24 to 1.36  $\mu$ ) for the following dyes. Napthol Yellow S, Orange I, Amaranth, Erythrosine, Indigo Disulpho Acid, Ponceau 3R, and Light Green S F Yellowish.

## TABLES 367-339.

# TRANSMISSIBILITY OF RADIATION BY JENA GLASSES.

#### **TABLE 367.**

Coefficients, a, in the formula  $I_t = I_0 a^t$ , where  $I_0$  is the Intensity before, and  $I_t$  after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

				Сое	fficient	of ti	rans	mission	, a.			
Unit t=1 dm.	.375 ₺	390 4	.400 /	u .434	μ .43	6 μ	•45	5 μ .4:	77 µ	503 μ	.580 µ	.677 µ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. " " O 203, " " crown O 598, (Crown)	.388	.456 .025 - .583	.463	-50	02   .9 7 57   .8	580 566 114 506	.6 .8 .8	63   .7 07   .8 22   .8	700 . 399 . 360 .	880 782 871 872 776	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
Unit t=1 cm.	ο.7 μ	0.95 μ	1.1 μ	1.4 μ	1.7 μ	2.0	ο μ	2.3 μ	2.5 μ	2.7 μ	ι 2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 - .98 .99 .98 1.00 1.00	.99 .98 - .96 - - -	•94 •95 •97 •95 •99 •99 •98	.90 .90 - .99 .99 - -	.85 .84 .95 .99 .98 .98 .99	.00	81 67 93 91 94 95 98 -	.69 .49 .90 .82 .90 .92 .98 I.00	.43 .87 .84 .71 .79 .84 .97	.29 .18 .71 60 .75 .78 .90	-47 .48 .45 .54 .66	- .27 .29 .32 .34 .50 .53

#### TABLE 368.

Note: With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of  $\tau$  mm.

						Wave	-length	in μ.					
No. and Type of Glass.			Visibl	e Spec	trum				Ultr	a-viole	t Spect	rum	
	.644 µ	- 578 μ	.546 μ	.509 μ	.48o μ	.436 μ	.405 μ	.384 μ	.361 μ	.340 µ	.332 µ	.309 µ	.28ο μ
F 3815 Dark neutral F 4512 Red filter	·35	·35	•37	-35	-34	.30	.15	.06					
F 2745 Copper ruby F 4313 Dark yellow	.72 .98	·39 ·97	·47 ·93	.47	.09	-43	-43						
F 4351 Yellow F 4937 Bright yellow F 4930 Green filter	.98 1.0	.97 1.0 .50	.96 1,0 .64	.93 .99	•44 •74 •44	.15	.31	.28	.22	.18	.14	.06	
F 3873 Blue filter F 3654 Cobalt glass,	-	-		.18	.50	•73	.69	•59	.36	.10			
transparent for outer red F 3653 Blue, ultraviolet	-	-	-	.15	·44 .11	.85 .65		I.O I.O	I.O I.O	I.O I.O	1.0	.58	.18
F 3728 Didymium, str'g bands	.99	.72	•99	.96	-95	.96	•99	.99	.89	.89	-77	•54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 369. - Transmissibility by Jena Ultra-violet Glasses.

No. and Type of Glass.	Thickness.	0.397 H	ο.383 μ	0.361 μ	ο.346 μ	9.325 μ	0.309 μ	ο.28ο μ
UV 3199 Ultra-violet " " " " " " " " " " " " "	I mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm. 1 dm.	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	o.56 o.35

SMITHSONIAN TABLES.

#### TRANSMISSIBILITY OF RADIATION BY GLASSES.

The following data giving the percentage transmission of radiation of various substances, mostly glasses, are selected from Spectroradiometric Investigation of the Transmission of Various substances, Coblentz, Emerson and Long, Bul. Bureau Standards, 14, p. 653, 1918.

					Trans	missio	n per c	ents.			
Glass or substance, manufacturer.	Thick- ness,				Wa	ve-len	gths in	μ.			
	mm	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Purple fluorite	4.98				47	48	48	57	60	62	62
Gold film on Crooke's glass	4.90	22	<b>3</b> 8	2	I	I	I	0	0	0	0
" " crown glass Molybdenite	.007	34	8 41	3 43	44	46	1 46	47	0 48	48	48
$\operatorname{Cr}_2(\operatorname{SO}_4)_3.18 \operatorname{H}_2O$	. 24	0	83	63	37	II	0	0	0	0	0
Chrome alum, 10 g to 100 g $H_2O$ CoCl ₂ , 10 g to 100 g $H_2O$			73 50	0	0	_	_				
GLASSES: Copper ruby, flashed	1.95		50	64	72	76	40	33	36	7	0
G24, Corning, red Schott's red, No. 2745	5.90	_	60 83	70 80	72 80	65	2	1 10	0	0	0
G34, Corning, orange	3.55	_	50	62	67	75 68	15	3	I	0	0
Pyrex, Corning	1.55	90 80	90	90 60	91 82	8 ₇	35	13	7	2	0
Novieweld3, Corning, dk-yellow Schott's 43111, green	1	12	I	2	6	13	6	7	7	I	0
G1710N, green, Corning	3.43	50	4 1	53 23	79 53	68	25 20	9	8	0	0
G174J, Corning, heat abs'b'g	2.6	52	2	4	12	19	3	5	6	0	0
Cobalt blue	2.43	-	74	43	63	79	36	27	28	0	0
G1013, Corning, blue	2.58	_	0	1 15	50 50	31 61	11	5	4 2	0	0
G584, Corning, blue G1711Z, Corning, blue	3.70	_	23	24 60	60 74	75 78	45 45	20 I3	20 12	I	0
Amethyst, C, Corning G172BW5. Corning, red-purple	2.11	55	91	91	91	88	42	20	25	7	0
Crookes' A, A. O. Co		90	0 92	91	90	5 83	38	8 23	12 27	5	0
" sage green 30, A. O. Co Lab. 58, A. O. Co		50 72	o 86	0 9I	4	80	8 51	35	38	3 7	0
Fieurzal B, A. O. Co	2.04	59	76	80	<b>8</b> 2	81	30	20	25	2	0
Akopos green, J. K. O. Co	1.58	76	91	91	91	90	70	52	51	10	0

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses.

TABLE 371. — Transmission of the Radiations from a Gas-filled Tungsten Lamp, the Sun, a Magnetite Arc, and from a Quartz Mercury Vapor Lamp (no Globe) through Various Substances, especially Colored Glasses.

Color.   Trade name.   Source.*   Thickness in mm   Thickness in								
Color.   Trade name.   Source.*   ness   in mm   Gas- tung.   Magnetruty   stein.   Magnetruty   Magnetr				Thick	Т	ransmissio	n, per cen	t.
"   Fieuzal 63   F. H. E.   1.86   75.5   34.2   55.0   72   " Euphos   E.   B. S.   3.27   78.8   24.7   53.0   64   Mallauer, 65   B. S.   3.12   78.8   24.7   53.0   64   Mallauer, 65   B. S.   3.12   78.8   24.7   53.0   64   Mallauer, 65   B. S.   3.12   78.8   24.7   78.9   Mallauer, 64   F. H. E.   1.35   58.7   22.0   72   Mallauer, 65   B. S.   2.36   70.3   17.7   70   Mallauer, 64   F. H. E.   1.35   58.7   25.9   74   Mallauer, 65   B. S.   2.36   70.3   17.7   70   Moviweld, 30%   F. H. E.   1.35   58.7   25.9   74   Moviweld, shade 3   C. G. W.   2.18   0.4   0.2   70   Moviweld, shade 3   C. G. W.   2.20   3.4   4.2   2.7   Moviweld, shade 6   C. G. W.   2.20   3.4   4.2   2.7   Moviweld, shade 6   C. G. W.   2.17   0.9   0.4   0.2   0.9   Moviweld, shade 7   B. S.   3.12   51.6   15.2   70   Moviweld, shade 7   B. S.   3.12   51.6   15.2   70   Moviweld, shade 7   B. S.   3.12   51.6   15.2   70   Moviweld, shade 8   C. G. W.   2.17   0.8   0.2   70   Moviweld, shade 7   B. S.   3.12   51.6   15.2   70   Moviweld, shade 8   C. G. W.   2.17   0.8   0.2   70   Moviol, shade B   C. G. W.   2.17   0.8   0.2   70   Moviol, shade B   C. G. W.   2.00   70   70   70   Moviol, shade B   C. G. W.   2.00   70   70   70   Moviol, shade B   C. G. W.   2.00   70   70   70   Moviol, shade C   C. G. W.   2.00   70   70   70   70   Moviol, shade C   C. G. W.   2.00   70   70   70   70   70   Moviol, shade C   C. G. W.   2.00   70   70   70   70   Moviol, shade C   C. G. W.   2.00   70   70   70   70   70   70   Moviol, shade C   C. G. W.   2.00   70   70   70   70   70   70   70	Color.	Trade name.	Source.*	ness	filled tung-	mercury	netite	radia-
	Smoky green Yellow-green Yellow-green  """  Amber.  Orange Yellow  Sage green Yellow-green Blue-green  Black  Neutral tint  Gold plate  "(darker). Colorless.  Amethyst. Purple.  Blue. Blue. Blue. Blue. Blue. Blue. Blue-green	Fieuzal, 63 Fieuzal, 64 Euphos, B Euphos, B Akopos green Hallauer, 65 Hallauer, 64 G 124, IP Noviweld, shade 3 Noviweld, shade 44 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 7 Saniweld, dark G G 34 Noviol, shade A Noviol, shade B Noviol, shade B Noviol, shade C Ferrous No. 30 No. 61 Lab. No. 59 G 124 JA Smoke, D Crookes, A Crookes, A Crookes, A Crookes, B Pfund Lab. No. 57 Shade C Electric smoke G 55 A 62 Shade D G 53 G 171-IZ G 584 G 172 BW 5 G 585 Selenium Flashed Window Crown Mica Mica	F. H. E. E. B. & L. L. C. C. C. G. G. G. W. W. W. W. C.	1.86 1.65 3.27 3.12 1.58 2.36 1.35 2.81 2.14 2.20 2.20 2.17 3.12 1.32 3.57 2.00 1.93 1.53 2.26 2.45 1.97 2.00 2.11 1.89 2.45 1.97 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.89 2.85 2.00 2.11 1.80 2.85 2.00 2.11 1.80 2.85 2.00 2.11 1.80 2.85 2.00 2.11 1.80 2.85 2.00 2.51 3.75 4.93 3.13 2.90 2.51 3.75	71.6 75.5 78.9 78.8 84.6 70.3 75.7 78.9 0.4 1.6 0.9 0.8 51.6 78.1 5.3 65.3 75.7 2.6 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3 80.9 83.3	34.3 22.0 24.7 29.5 17.7 25.9 0.2 7.8 4.2 1.2 0.4 0.2 15.2 10.6 17.0 32.2 17.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 17.3 21.5 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6	55.0 53.0 59.0 	72

^{*} A. O. C., Amer. Optical Co., Southbridge, Mass.; C. G. W., Corning Glass Works, Corning, N. Y.; B. & L., Bausch & Lomb, Rochester, N. Y.; J. K., Julius King Optical Co., New York City; F. H. E., F. H. Edmonds, optician, Washington, D. C.; B. S., Bureau of Standards; scrap material, source unknown.
† Infra-red radiation absorbed by quartz cell containing r cm layer of water. Taken from Coblentz-Emerson & Long, Bul. Bureau Standards, 14, 653, 7918.
‡ Transmission of r cm cell having glass windows.

#### TABLE 372.

#### TRANSMISSIBILITY OF RADIATION.

## Transmissibility of the Various Substances of Tables 330 to 338.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05μ and 30 to 40μ.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a I cm. thick plate in %:

λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7μ
70	99.5	99.5	99-3	97.6	93.1	84.6	1.66	51.6	27.5	9.6	0.6	0.

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: 280μμ, 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110\mu, 0.156, 51.2, and 87\mu.

Sylvite: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7μ
%	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at 0.114µ, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 µ.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8д	9	10	11	12μ
%	84.4	54-3	16.4	1.0	0

Metallic reflection at 24 \mu, 31.6, 40 \mu.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula  $i = i_0 e^{-kd}$  (d in cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

	λ	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.8 <b>o</b>	3.98	4.35	4.52	4.83μ
I	k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray:

I	λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67μ
١	k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5-34	5.50µ
k	1.25	2.13	4.4I	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for

a plate 1 cm. thick: at  $0.222\mu$ , 94.2%; 0.214, 92; 0.203, 83.6; 0.186, 67.2%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar): For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	4.50μ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray:

r														
١	λ	2.74	2.89	3.00	3.08	3.26	3.43	3.52	3.59	3.64	3.74	3.91	4.19	4.36µ
	k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For  $\lambda > 7 \mu$ , becomes opaque, metallic reflection at 8.50 $\mu$ , 9.02, 20.75-24.4 $\mu$ , then trans-

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

## TABLES 373-374.

#### TRANSMISSIBILITY OF RADIATION.

#### TABLE 373. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm,	Optical centre of band.	Transmission.
Red "Yellow "Green "Bright {  blue }  Dark {  blue }	20 20 20 15 15 20 20 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, Ni5O4-7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl2.2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO4.5aq. Crystal-violet, 5BO Copper sulphate, CuSO4.5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02 15. 0,005	0.66 <b>59</b> 0.5919 0.5330 0.4885 0.4482	begins about 0.718μ.   ends sharp at 0.639μ.   0.614-0.574μ,   0.540-0.505μ   0.526-0.494 and   0.494-0.458μ   0.478-0.410μ

#### TABLE 374. - Color Screens.

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R. (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365μ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916 $\mu$ .

Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + cosine transmits 0.5790 $\mu$ . The former should be dilute and the cosine added until

the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness

that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultra-violet:

* Cobalt chloride: solution in water, — absorbs 0.50-.53\mu; addition of CaCl₂ widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40µ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37 µ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-365 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42\mu, depending on the concentration.

Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23 \mu.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet.
Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33\mu. These limits vary with the concentration.

Aesculin: absorbs below 0.363µ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS₂ is opaque to the visible and transparent to the infra-red.

#### TRANSMISSIBILITY OF RADIATION.

TABLE 375. - Color Screens. Jena Glasses.

	Kind of Glass.	Maker's No	Color.	Region Transmitted.	Thick- ness. mm.
1 1a 2 2a	Copper-ruby Gold-ruby	2728 459 ^{III} 454 ^{III} 455 ^{III}	Deep red	Only red to 0.6µ	1.7
3 4 4a 4b 5 6 7 8 10 11 "	Nickel	440 ^{III} 414 ^{III} 433 ^{III} 431 ^{III} 432 ^{III}	Bright yellow-brown Yellow-green Greenish-yellow Yellow-green	Red, yellow, green (weakened),     blue (very weakened)     Yellowish-green	5. 2-5 4-5 6. 7.

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Über Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of

Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

1st by 2728 (deep red) and 2742 (blue, like copper sulphate).

2nd by 454^{III} (bright yellow) and 447^{III} (blue, like cobalt glass).

3rd by 433^{III} (greenish-yellow) and 424^{III} (blue).

Thicknesses necessary in above: 2728, 1.6-1.7 mm.; 2742, 5; 454^{III}, 16; 447^{III}, 1.5-2.0; 433^{III},

2.5-3.5; 424^{III}, 3 mm.

Three-fold division into red, green and blue (with violet):
2728, I.7 mm.; 414^{III}, 10 mm.; 447^{III}, I.5 mm., or by
2728, I.7 mm.; 436^{III}, 2.6 mm.; 447^{III}, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color projection:

2745, red; 438^{III}, green; 447^{III}, blue violet; corresponding closely to Young's three elementary color sensations.

Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

#### TABLE 376 .- Water.

Values of a in  $I = I_0 e^{ad}$ , d in c. m.  $I_0$ ; I, intensity before and after transmission.

Wave-length μ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
a	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave-length μ,	.430	.450	.487	.500	.550	.600	.650	.779	.865	.945
a	.00023	.0002	.0001	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann. 55, 1895; last 3, Nichols, Phys. Rev. 1, 1. See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs., reflective power and

index of refraction, I # to 18 #.

#### TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

(For bodies at laboratory temperatures; for transmission of shorter-wave energy, see Table 553.)

The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave-lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave-lengths greater than 18 $\mu$  are tentative and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Collections, 68, No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophysical J. 42, p. 394, 1915.

Range of wave-lengths.					Precip	oitable w	ater in	centime	eters.				
wave-lengths.	-					1		1	1	1		1	
μ μ	.001	.003	.006	.01	.03	.06	.10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to 1.0 1.0 1.2 1.25 1.5 1.5 2.0 *2 3 *4 *4 *5 6 6 7 7 8 8 9 †0 10 11	96 95 92 95 85 94 100 100	92 88 83 82 54 84 100 100	87 84 76 75 50 76 100 100	100 99 96 98 84 78 71 68 31 68 99 100	99 99 92 97 77 72 65 56 24 57 98 100	99 98 84 94 70 66 60 51 8 46 96 100	98 97 80 88 64 63 53 47 4 35 94 100	97 95 66 79 — — 35 3 16 65 100	95 92 57 73 — — — 2 10 100	93 89 51 70 — — — 0 2 100 100	90 85 44 66 — — — — 0 0	83 74 31 60 —	78 69 28 57 — — — 0 0
1I 12 12 13	100	100	100	100	100 99	99 99	98 97	96 86	95 82	93	=	=	=
* 13 14	100	100	100	99	97 80	94	90	80	бо	_	-	_	-
* 14 15 * 15 16		=	96	93	70	75 55	50 40	15	0	0	0	0	0
16 17		_		= .		50 25	20 10	0	0 0	0 0	0	0 0	0
17 18 18 ∞	98	94	89	82	45	0	0	0	ő	ő	0	o	0

^{*}These places require multiplication by the following factors to allow for losses in CO₂ gas. Under average sea-level outdoor conditions the CO₂ (partial pressure = 0.0003 atmos.) amounts to about 0.6 gram per cu. m. Paschen gives 3 times as much for indoor conditions.

2\mu to 3\mu, for 2 grams in m² path (95); for 140 grams in m² path (93);

4 "5 """ """ "(93);

13 "14, slight allowance to be made;

14 "15, 80 grams in m² path reduces energy to zero;

15 "16, """ """ """ """ """

† These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

In the above table italicized figures indicate extrapolated values.
F. Paschen gives (Annalen d. Physik u. Chemie, 51, p. 14, 1894) the absorption of the radiation from a blackened strip at 500° C by a layer 33 centimeters thick of water vapor at 100° C and atmospheric pressure as follows:

Wave-length	2.20-3.10µ	$5.33-7.67\mu$	7.67-10(?)µ
Percentage absorption	80	94	94-13

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at 100° C. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dew point at sea-level is 10° C. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave-length Percentage absorption	7.0µ 75	8.0µ 40	9.0-12.0μ 6	12.4µ 20	12.8µ 13	13.4µ 28	14.0µ
Wave-length Percentage absorption	14.3µ	15.0μ	15.7µ	16.ομ	17.5µ	18.3µ	20.CH
	43	35	65	52	88	80	100

#### TABLES 378-379.

# REFLECTION AND ABSORPTION OF LONG-WAVE RADIATIONS.

TABLE 378. - Long-wave Absorption by Gases.

Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verb. d. Phys. Ges. 13, p. 796, 1911.

Percentage absorption.						1	cm Cm	Percentage absorption.					
Gas.	ure, cm				Long A								lamp.
Gas.	Pressure,	23μ	52μ	110µ		Fil- tered, 314µ	Gas.	Pressure,	23μ	52μ	110µ		Fil- tered, 314µ
H ₂ Cl ₂ Br ₂ SO ₂ CO ₂ CO ₃ CO ₄ N ₂ O ₅ N ₂ O ₇ N ₂ O ₇	76 76 76 76 76 76 76 76 76 76	100 100 100 22.6 100 100 99.6 100	100 99.6 100 76.9 100 110 11.6 96.8 94 97.8	100 99.5 100 12.7 100 94.1 5.4 98.4 99	100 98.5 100 6 100 92.1 10.3 93.3 87.3 99.3	97.6 100 4.8 100 91.6 21.4	NH ₃ CH ₄ C ₂ H ₂ C ₂ H ₄ CS ₂ C ₂ H ₆ O. C ₄ H ₁₀ O. C ₅ H ₁₂ CH ₃ Cl H ₂ O *	76 76 76 76 26 6 51 46 14 76	83.1 91 99.5 99 97.8 85.4 26.8 66† 98 39.6	0.5 94.3 87.4 96.4 100 5.4 46 44.5	99.2 99.2 97.3 92.8 100 58 34 88.8 100 19.6	43.3 100 97.9 100 99.5 52.4 21.8 87 95.4 33.6	66.7 100 100 100 100 49.9 10.7 84.2 94.7 49.2

^{*} Tube 40 cm long.

## TABLE 379. — Properties with Wave-lengths $108 \pm \mu$ .

Rubens and Woods, Verh. d. Phys. Ges. 13, p. 88, 1911.

With	quartz, 1	.7 C	m thicl	k: 60	to 80	μ, abs	orpt	ion ver	y great; 6	3μ, 9	9%;	82µ, 9	7.5;	97µ,8	3.
	(a) Percentage Reflection.														
Wave-length.	Iceland spar.	M	arble.		Rock salt.		:				Fluo- rite. Glass		;.   ·	Water.	Alcohol.
$\lambda = 82\mu^*$ $\lambda = 108\mu^{\dagger}.$	47.1	4				36.0 19.3		82.6 31.1	29.6 35.5	19 20		19.2		9.6 11.6	1.6
,	* Restrahl	ung	from	КВт.					† Isolated	with	quar	tz lens.			
(b) Percentage Transparency. Uncorrected for reflections.															
Soli	d.		Thick	ness.	Trans	paren	cy.	1	Liquid.		Thic	kness.	pre ta	ckness ecipi- able juid.	Trans- parency.
Mica. Hard rubber Quartz    axi Quartz, amor Rock salt Fluorite Diamond Quartz \( \triangle ax """	* **		0.0 2.0 3.8 0.2 0.3 1.2 4.0	0.055 16 0.40 39 2.00 62 3.85 0 0.21 21 0.59 5 1.26 45 2.00 81 4.03 66 7.26 49 11.74 35		57.0 66.6 99.0 21.5 5.3 15.3 15.3 16.4 19.8 35.5		Benzene Ethyl alcohol. Ethyl ether Water  Vapors: Alcohol. Ether. Benzene Water  CO2.			. 0.158 0.158 0.029 0.044 . 2.00 2.00 2.00		0.023 0.350 0.063 0.21		56.8 7.9 37.1 25.8 13.6 88 33.5 100 19.6
				(c) T	RANSP.	ARENC	Y 01	F BLAC	k Absorb	ERS.		!		!	
Met	Method and wave-length.					lack pape mm		Opaque black paper, o.11 mm thick		board		d,		dle lamp- lack, m ² = 1.8 mg	
Spectrometer 2 $\mu$ 4 6				0 0.	7	0			0			0.5 8.6 16.0			
Fluorite "res Rock salt "re Quartz lens i	estrahlung	, ;"			12 26 52 08		8. 24. 46. 61.	2 2 0 ·	1.4 3.2 15.1 33.5	:					37.6 76.7 91.3

[†] Pentane vapor, pressure 36 cm.

# 310 TABLES 380, 381 .- ROTATION OF PLINE OF POLARIZED LIGHT.

TABLE 380 .- Tartaric Acid; Camphor; Santonin; Santonic Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt & Böisstein's "Phys. Chem. Tab." The following symbols are used:—

" cubic centimeter "

Right-handed rotation is marked +, left-handed -..

Line of spectrum.	Wave-length according to Angström in cms. X 106.	Tartaric acid,* $C_4H_6O_8$ , dissolved in water. g = 50 to 95, temp. = $24^3$ C.	dissolved in water. dissolved in alcohol. $q = 50$ to 95, $q = 50$ to 95,			H ₁₈ O ₃ , hloroform. 96.5, 20° C.
B C D E b ₁ b ₂ F e	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ $+ 1.950 + 0.13030 q$ $+ 0.153 + 0.17514 q$ $- 0.832 + 0.19147 q$ $- 3.598 + 0.23977 y$ $- 9.657 + 0.31437 q$	38°.549 — 51.945 — 74.331 — 79.348 — 99.601 — 149.696 —	0.0964 <i>q</i> 0.1343 <i>q</i> 0.1451 <i>q</i> 0.1912 <i>q</i>	- 140°.1 + - 149.3 + - 202.7 + - 285.6 + - 302.38 + - 365.55 + - 534.98 +	0.1555 q 0.3086 q 0.5820 q 0.6557 q - 0.8284 q
		Santonin,† $C_{15}H_{18}O_3$ , * dissolved in alcohol. $c=1.782$ . temp. = 20° C.	Santonin,†  dissolved in alcohol.  c = 4.046. temp. = 20° C.	$C_{15}H_{18}O_3$ , dissolved in chloroform c = 3.1-30.5. temp. = $20^{\circ}$ C.	Santonic acid,† $C_{15}H_{20}O_{4}$ , dissolved in chloroform. $c = 27.192$ . temp. = $20^{\circ}$ C.	Cane sugar,‡ $C_{12}H_{22}O_{11}$ , dissolved in water. $p = 10 \text{ to } 30$ .
B C D E b ₁ b ₂ F e G	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	110.4° 118.8 161.0 222.6 237.1 261.7 380.0	442° 504 693 991 1053 - 1323 2011 - 2381	484° 549 754 1088 1148 - 1444 2201 - 2610	- 49° - 57 - 74 - 105 - 112 - 137 - 197 - 230	See page 444
		* Arndtsen, "Ann. Cl	him. Phys." (3	) 54, 1858.		

^{*} Arndtsen, Ann. Chim. Phys. (3) 54, 1050 † Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.

#### TABLE 381. - Sodium Chlorate; Quartz.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quartz	(Soret & S	arasin, Arch.	de Gen.	1882, or C. R	. 95, 1882).*
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
G H L M N P Q R T Cd ₁₇ Cd ₁₈	71.769 67.889 65.073 59.085 53.233 48.912 45.532 42.834 40.714 38.412 37.352 35.818 33.931 32.341 30.645 29.918 28.270 25.038	15°.0 17°.4 20.6 18.3 16.0 11.9 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.8 12.8 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D ₁ D ₂ E F G h H K	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 37.262	12°.668 14.3°4 15.746 17.318 21.684 21.727 27.543 32.773 42.604 47.481 51.193 52.155 55.625 58.894	Cd ₉ N Cd ₁₀ O Cd ₁₁ P Q Cd ₁₂ R Cd ₁₇ Cd ₁₈ Cd ₂₃ Cd ₂₄ Cd ₂₅ Cd ₂₆	36.090 35.818 34.655 34.400 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Abbreviations: int'n'l, international; emu, electromagnetic units; esu, electrostatic units; egs, centimeter-gram-second units. (Taken from Circular 60 of U. S. Bureau of Standards, 1916, Electric Units and Standards.)

#### RESISTANCE:

I international ohm =

1.00052 absolute ohms

1.0001 int'n'l ohms (France, before 1911)

1.00016 Board of Trade units (England, 1903

1.01358 B. A. units 1.00283 "legal ohms" of 1884

1.06300 Siemens units

r absolute ohm =

o. 99948 int'n'l ohms

practical" emu

109 cgs emu

1.1124  $\times$  10⁻¹² cgs esu

## CURRENT:

1 international ampere =

o. 99991 absolute ampere

1.00084 int'n'l amperes (U.S. before 1911) 1.00130 int'n'l amperes (England, before

1906)

1.00106 int'n'l amperes (England, 1906-

1.00010 int'n'l amperes (England, 1909-1.00032 int'n'l amperes (Germany, before

1011)

1.0002 int'n'lamperes (France, before 1911)

I absolute ampere =

I 00009 int'n'l amperes

'practical' emu

o. r cgs emu

 $2.9982 \times 10^{9} \text{ cgs esu}$ 

#### ELECTROMOTIVE FORCE:

I international volt =

1.00043 absolute volts

1.00084 int'n'l volts (U. S. before 1911)

1.00130 int'n'l volts (England, before 1906)

1.00106 int'n'l volts (England, 1906-08)

1.00010 int'n'l volts (England, 1909-10)

1.00032 int'n'l volts (Germany, before

1911)

1.00032 int'n'l volts (France, before 1911)

I absolute volt =

o. 99957 int'n'l volt I "practical" emu

practical" emu

108 cgs emu

o. 0033353 cgs esu

#### QUANTITY OF ELECTRICITY:

(Same as current equivalents.)

international coulomb =

1/3600 ampere-hour

1/96500 faraday

#### CAPACITY:

I international farad =

0.99948 absolute farad

1 absolute farad =

1.00052 int'n'l farads I "practical" emu

10⁻⁹ cgs emu

 $8.9892 \times 10^{11} \text{ cgs esu}$ 

## INDUCTANCE:

r international henry = 1.00052 absolute henries

1 absolute henry =

o. 99948 int'n'l henry

1 "practical" emu

1.1124 × 10⁻¹² cgs esu

## ENERGY AND POWER:

(standard gravity = 980.665 cm/sec/sec.)

international joule =

1.00034 absolute joules

1 absolute joule =

o. 99966 int'n'l joule

107 ergs

o. 737560 standard foot-pound

o. 101972 standard kilogram-meter

o. 277778 × 10⁻⁶ kilowatt-hour

#### RESISTIVITY:

1 ohm-cm = 0.393700 ohm-inch

= 10,000 ohm (meter, mm²)

= 12,732.4 ohm (meter, mm)

= 393,700 microhm-inch

= 1,000,000 microhm-cm

= 6,015,290 ohm (mil, foot)

1 ohm (meter, gram) = 5710.0 ohm (mile, pound)

## Magnetic Quantities:

i int'n'l gilbert = 0.99991 absolute gilbert

1 absolute gilbert = 1.00009 int'n'l gilberts

1 int'n'l maxwell = 1.00043 absolute maxwells

1 absolute maxwell = 0. 99957 int'n'l maxwell

1 gilbert = 0.7958 ampere-turn

ı gilbert per cm =0.7958 ampere-turn per

= 2.021 ampere-turns per

inch

1 maxwell = I line

= 10⁻⁸ volt-second

1 maxwell per cm2 = 6.452 maxwells per in2

# COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Double Fluid Cells.												
		(a) Double Fluid C	BLLS.									
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F.							
Bunsen	Amalgamated zinc	$\left\{\begin{array}{c} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \end{array}\right\}$	Carbon	Fuming HNO3 .	1.94							
"	66 66	46	66	HNO ₃ , density 1.38	1.86							
Chromate .	66 66	$ \left\{ \begin{array}{l} \text{12 parts } K_2 C r_2 O_7 \\ \text{to 25 parts of} \\ H_2 S O_4 \text{ and 100} \\ \text{parts } H_2 O_+ \end{array} \right \right\} $	"	{ 1 part H ₂ SO ₄ to } 12 parts H ₂ O . }	2.00							
" .	66 66	{ I part H ₂ SO ₄ to } I parts H ₂ O . }	46	$ \left\{ \begin{array}{l} \text{12 parts } K_2Cr_2O_7 \\ \text{to 100 parts } H_2O \end{array} \right\} $	2.03							
Daniell* .	66 66	$ \left\{ \begin{array}{l} \text{1 part } H_2SO_4 \text{ to } \\ \text{4 parts } H_2O \end{array} \right. \right\} $	Copper	{ Saturated solution } of CuSO ₄ +5H ₂ O }	1.06							
66	"	{ 1 part H ₂ SO ₄ to } 12 parts H ₂ O . }	"	66	1.09							
66	" "	$\begin{cases} 5\% \text{ solution of } \\ ZnSO_4 + 6H_2O \end{cases}$	66	46	1.08							
"	" "	{ 1 part NaCl to } { 4 parts H ₂ O . }	66	66	1.05							
Grove	46 46	$ \left\{ \begin{array}{c} \text{I part } H_2SO_4 \text{ to } \\ \text{I2 parts } H_2O \text{ .} \end{array} \right\} $	Platinum	Fuming HNO3	1.93							
"	46 46	Solution of ZnSO ₄	"	HNO ₃ , density 1.33	1.66							
	46 46	{ H ₂ SO ₄ solution, } density 1.136 . }	44	Concentrated HNO ₃	1.93							
"		{ H ₂ SO ₄ solution, } density 1.136 . }	46	HNO ₃ , density 1.33	1.79							
"	ee ee	{ H ₂ SO ₄ solution, } density 1.06 . }	"	"	1.71							
"	66 66	{ H ₂ SO ₄ solution, } density 1.14 . }	"	HNO ₃ , density 1.19	1.66							
"	دد در	{ H ₂ SO ₄ solution, } density 1.06 . }	46	66 66 66	1.61							
"		NaCl solution	"	" density 1.33	1.88							
Marié Davy	66 66	{ I part H ₂ SO ₄ to }	Carbon	Paste of protosulphate of mercury and water	1.50							
Partz	66 66	Solution of MgSO ₄	46	Solution of K ₂ Cr ₂ O ₇	2.06							

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

# COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.
		(b) Single Fluid Cells.		
Leclanche	Amal. zinc	Solution of sal-ammo-	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon Edison-Lelande .	66 66	Solution of caustic potash	Copper. Depolar- i izer: CuO	0.98 0.70
Chloride of silver  Law	Zinc	ammoniac	zer: silver chl'ride (	1.02
Dry cell (Gassner)	"	I pt. ZnO, 1 pt. NH ₄ Cl, 3 pts. plaster of paris, 2 pts. ZnCl ₂ , and water to make a paste	66	1.3
Poggendorff	Amal.zinc	Solution of chromate (	"	1.08
u	66 46	$\left\{\begin{array}{l} \text{12 parts } K_2Cr_2O_7 + \\ \text{25 parts } H_2SO_4 + \\ \text{100 parts } H_2O \end{array}\right\}$	66 ,	2.01
J. Regnault	" "	$\left\{\begin{array}{c} \text{1 part } H_2SO_4 + \\ \text{12 parts } H_2O + \\ \text{1 part } CaSO_4 \end{array}\right\}$	Cadmium	0.34
Volta couple	Zinc	$H_2O$	Copper	0.98
		(c) STANDARD CELLS.		
Weston normal .	{Cadmi'm} { am'lgam}	Saturated solution of CdSO4	$ \left\{ \begin{array}{l} Mercury. \\ Depolarizer: paste \\ of \ Hg_2SO_4 \ and \\ CdSO_4 \ . \ . \ . \end{array} \right\} $	1.0183* at 20° C
Clark standard .	{ Zinc } { am'igam}	{ Saturated solution of } ZnSO ₄ }	$\left\{ \begin{array}{l} \text{Mercury.} \\ \text{Depolarizer: paste} \\ \text{of } \text{Hg}_2 \text{SO}_4 \text{ and} \\ \text{ZnSO}_4 \dots \end{array} \right\}$	1.434‡ at 15°C
		(d) SECONDARY CELLS.		
Lead accumulator	Lead	{ H ₂ SO ₄ solution of density 1.1 }	PbO ₂	2.2† (1.68 to
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	"	0.85, av- erage 1.3.
" (2) Main	Amal. zinc Amal. zinc		" in H ₂ SO ₄ .	2.36 2.50
Edison	Iron	KOH 20 % solution .	A nickel oxide .	of full discharge.

† F. Streintz gives the following value of the temperature variation dE at different stages of charge: dı

E. M. F. dE/dt×106 2.0084 1.9223 1.9828 2.0031 2,0105 2.0779 2.2070 140 228 335 285 255 130 73

Dolezalek gives the following relation between E. M. F. and acid concentration: Per cent  $H_2SO_4$  64.5 52.2 35.3 21.4 5.2 E.M.F., o° C 2.37 2.25 2.10 2.00 1.89

^{*} The temperature formula is  $E_t \equiv E_{20} - 0.0000406$  (t-20) - 0.00000095  $(t-20)^2 + 0.00000001$   $(t-20)^3$ . ‡ The value given for the Clark cell is the old one adopted by the Chicago International Electrical Congress in 1893. The temperature formula is  $E_t \equiv E_{15} - 0.00119$  (t-15) - 0.000007  $(t-15)^2$ .

# CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.
Distilled water	(.oI to .I7 - - - - - - about	.269 to .100127 .103 .070475396	.148653605652	.171 139 - - - 189 -	856 .059		
1 to 5 by weight	035	_	_	-	_	_	_
5 to 1 by weight	(10) to 3.0	-	-	120	-	25	-
Concentrated sulphuric acid  Concentrated nitric acid .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.113	-	to 1.252	1.3 to 1.6 .672	-	-
Mercurous sulphate paste . Distilled water containing (	-	-	-	-	-	-	-
trace of sulphuric acid	_	_	-	_	_	_	241

^{*} Everett's "Units and Physical Constants: "Table of

#### POTENTIAL IN VOLTS.,

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution: saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Distilled water	.100	.231	-	_	-	043	ı	.164	-	-
Alum solution: saturated } at 16°.5 C }	-	<b>—</b> .014	_	-	-	-	_	-	-	-
Copper sulphate solution: \\ sp. gr. 1.087 at 16°.6 C. \\	_	-	-	-		-	.090	-	-	-
Copper sulphate solution: \\ saturated at 15° C \	-	-	-	043	-	~	-	.095	.102	-
Sea salt solution: sp. gr. \ 1.18 at 20°.5 C \	-	<b>—</b> .435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: \ saturated at 15°.5 C \	-	<b>—.3</b> 48	-	-	-	-	-	-	-	-
Zinc sulphate solution: \ sp. gr. 1.125 at 16°.9 C.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: { saturated at 15°.3 C }	<b>—.</b> 284	-	-	200	-	095	-	-	-	-
One part distilled water + ) 3 parts saturated zinc sulphate solution ) Strong sulphuric acid in	-	-	-	-	-	102	-	-	-	-
distilled water: I to 20 by weight	_	_	-	-	- 1	_	-	_	-	-
I to 10 by volume	358	-	-	-	-	-	-	-	-	-
I to 5 by weight	.429	-	-	-	-	-	-	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	- •475	_	_	_	_	_	_	_
Distilled water containing trace of sulphuric acid.	-	-	-	-	-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

# DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	h of the solution in n molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.		Differe	ence of poter	tial in centiv	volts.	
0.5 1.0 1.0 0.5 1.0	$H_2SO_4$ $NaOH$ $KOH$ $Na_2SO_4$ $Na_2SO_2O_8$	0.0 -32.1 -42.5 1.4 -5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	121.3 95.8 104.0 120.9 64.8
1.0 1.0 0.5 0.5 0.5	KNO ₃ NaNO ₃ K ₂ CrO ₄ K ₂ Cr ₂ O ₇ K ₂ SO ₄	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8
0.5 0.25 0.167 1.0	(NH ₄ ) ₂ SO ₄ K ₄ FeC ₆ N ₆ K ₆ Fe ₂ (CN) ₁₂ KCNS NaNO ₈	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 — ‡ 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6?
0.5 0.125 1.0 0.2 0.167	Sr(NO ₃ ) ₂ Ba(NO ₃ ) ₂ KNO ₃ KClO ₈ KBrO ₃	14.8 21.9 — ‡ 15–10‡ 13–20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3	119.3 121.5 115.0 120.9 120.8
1.0 1.0 1.0 1.0	NH4Cl KF NaCl KBr KCl	2.9 2.8 — 2.3 —	32.4 · 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6
0.5 -    1.0 0.5 0.5	$egin{array}{ll} Na_2SO_8 & \\ NaOBr & \\ C_4H_6O_6 & \\ C_4H_6O_6 & \\ C_4H_4KNaO_6 & \\ \end{array}$	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4§ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

[‡] Not constant.

[§] After some time.

^{||} A quantity of bromine was used corresponding to NaOH = 1.

#### THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power Q = dE/dt = A + Bt, where A is the thermoelectric power at O C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per recoulomb =  $QT/\pi$ , in which Q is in volts per degree C, T is the absolute temperature of the junction, and  $\pi$  = 4.19. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect, is given in calories per coulomb =  $BTO/\pi$ , in which B is in volts per degree C, T is the mean absolute temperature of the junctions, and  $\theta$  is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of Electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and 2, igiven by subtracting the value for 2 from that for I; when this difference is positive, the cur

are given by Becquerel in the reference given below.

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (n	temp. of nicrovolts).	Neutral point $-\frac{A}{B}$	Author-
" pianoforte wire. " commercial. " " Lead. Magnesium Molybdenum Mercury. Nickel. " (—18° to 175°).	-0.76 -11.94 -1.94 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34 -1.34	+0.0039	20° C  -0.68 +6.0 +22.6 +22.6 +26.4 -12.95 -13.56 -97.0 -89.0 -65.0 -45.0 -45.0 +3.48 -1 -22 +1.52 +0.10 +3.8 -0.2 +3.0 +16.2 +17.5 -0.0 -2.03 +5.9 -0.413 -22.8	50° C  -0.56  -14.47 -12.7  -4.75 +2.45 +8.9 -19.3 +1.81 -19.10 -0.00 +1.75 -3.30 -15.50 -24.33 -15.50	+195 -236 -36 -62 -143 -143 -1436 -1-431 -1-431	TM""TBM"""TBSM TM" STTMB" TSMBT""

TABLE 386 .- Thermoelectric Power (continued).

Substance.	A Microvolts.	B Microvolts.	Thermoelec at mean junctions (r		Neutral point $-\frac{A}{B}$ .	Au- thority.
Palladium Phosphorus (red) Platinum (hardened) (malleable) "wire "another specimen	+2.57	-0.0355 - 0.0074 0.0109 	-6.9 +29.9 +0.9 +2.42 818	-7.96 - +2.20 -1.15 +0.94 -2.14	-174 - 347 -55 -	T M " T " B "
Platinum-iridium alloys: $85\%$ Pt + 15% Ir $90\%$ Pt + 10% Ir $95\%$ Pt + 5% Ir  Selenium  Silver  " (pure hard)  " wire  Steel  Tantalum  Tellurium $\beta$ " a  Thallium  Tin (commercial)	+5.90 +6.15 - +2.12 - +11.27	+0.0062 -0.0133 +0.0055 +0.0147 - -0.0325 - +0.0055	+8.03 +5.63 +6.26 +807. +2.41 +3.00 - +10.62 -2.6 +500. +160. +0.8 - -0.33	+8.21 +5.23 +6.42 +2.86 +2.18 +9.65 	[—1274] 444 [—1118] —144 — 347 — — — — — 78	T " " M T M B T - H H - H M T
Tungsten	+2.32	+0.0238	-2.0 $+2.79$ $+3.7$	+3.51	- -98 -	T M

Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards.

M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.
T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.
H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ=0.04, Tea 1.7 e. m. units.) Swisher, 1917.

#### TABLE 387 .- Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as—1.9.

Substance.	Relative quantity.	Thermoelec tric power in microvolts.	Substance.	Relative quantity.	Thermoelectric power in microvolts.	Substance,	Relative quantity.	Thermoelectric power in microvolts.
Antimony Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Antimony Zinc Bismuth Antimony Cadmium Linc Antimony Cadmium Lead Zinc Antimony Cadmium Lead Zinc Antimony Cadmium Zinc	806 } 4 } 2 } 806 } 121 } 806 } 406 } 121 } 806 } 406 } 4121 } 4	227 146 137 95 8.1	Antimony Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth Antimony	2	43 35 10.2 8.3 2.5 1.4 -0.4 -43.8 -33.4	Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic Bismuth Bismuth Bismuth	4 } 1 } 8 } 1 1	-51.4 -63.2 -68.2 -66.9 60 -24.5 -31.1 -46.0 68.1

### TABLE 388. - Thermoelectric Power against Platinum.

One junction is supposed to be at 0°C; + indicates that the current flows from the 0° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, °C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rh.
-185 -80 +100 +200 +300 +400 +500 +600 +700 +800 +1000 +1100 +(1300)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +19.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0 -	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +4.3 +4.8	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.12 +2.1 +3.1 +4.2	+0.77 +0.39 -0.56 -1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +9.2 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.65 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	-0.24 -0.31 +0.65 +1.5 +2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6

^{*} Holborn and Day.

TABLE 389. - Thermal E. M. P. of Platinum-Rhodium Alloys Against Pure Platinum, in Millivolts.*

				10 p. ct.						
t	1 p. ct.	5 p. ct.	Low.	High.	Stan- dard.	15 p. ct.	20 p. ct.	30 p. ct.†	40 p. ct.†	100 p. ct.‡
1000		0.55	0.63	0.64	0.64	0.65	• • • • • •	••••	••••	0.65
300	0.42	1.18	1.41 2.28	1.43	1.43	1.50	••••		• • • •	1.51
400	0.84	2.53	3.21	2.32 3.26	2.32 3.25	2.41 3.45	3.50	2.34 3.50	2.45 3.64	2.57
500	1.05	3.22	4.17	4.23	4.23	4.55	4.60	4.74	4.93	3.76 5.08
600	1.25	3.92	5.16	5.24	5.23	5.71	5.83	6.06	6.31	6.55
700	1.45	4.62	б. <b>1</b> 9	6.28	6.27	6.94	7.18	7.49	7.80	8.14
800	1.65	5.33	7.25	7.35	7.33	8.23	8.60	9.01	9.37	9.87
900	1.85	6.05	8.35	8.46	8.43	9.57	10.09	10.67	11.09	11.74
1000	2.05	6.79	9.47	9.60	9.57	10.96	11.65	12.42	12.94	13.74
1100	2.25	7.53	10.64	10.77	10.74	12.40	13.29	14.33	14.99	15.87
1200	2.45	8.29	11.82	11.97	11.93	13.87	14.96	16.39	17.13	18.10
1300	2.65 2.86	9.06 9.82	13.02	13.18	13.13	15.38	16.65	18.51	19.51	20.46
1400	3.06	10.56	14.22	14.39	14.34	16.98 18.41	18.39	20.67	21.73	• • • • • •
1600	3.26	11.31	15.43 16.63	16.82	15.55	19.94	20.15	••••	••••	• • • •
1700	3.46	12.05	17.83	18.03	17.95	21.47	23.65			
1755	3.56	.I2.44	18.49	18.70	18.61	22.31	24.55			
, 33	33-		",			3-	-4.33			

^{*} Carnegie Institution, Pub. 157, 1911.

† Holborn and Wien, 1892.

[‡] Holborn and Day, mean value, 1899.

#### TABLES 390-391.

#### THERMOELECTRIC PROPERTIES: PRESSURE EFFECTS. TABLE 390. - Thermoelectric Power; Pressure Effects.

The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. Arts and Sc. 53, p. 269, 1918. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at  $\circ^{\circ}$  C. The last two columns give the constants in the equation  $E = \text{thermoelectric force against lead } (\circ^{\circ} \text{ to 10°} \text{ C}) = (At + BP) \times 10^{-6} \text{ yolts, at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.$ 

			Pr	essure, k	g/cm²					rmula
Metal.	2000	4	,000	12,000		coetti	icients.			
			Te	emperatu						
	50° 1	50°	100°	50°	100°	20°	50°	100°	A	В
Zn † Tl † Cd † Constantan † Pd * Pt * W † Ni * Ag * § Fe † Pb † Au * Cu † § Al † § Mo †	6,200 I4 4,930 I0 2,940 I7 2,850 5 2,190 4 1,810 2 1,190 2 700 I 840 I 450 I 456 I +292 -70 +93 +38 -123 I		28,500 20,200 14,380 11,810 8,800 7,310 0 4,990 3,720 3,720 3,720 2,051 1,216 1 294 278 +165 2 -452	26,100 17,170 10,960 11,530 8,630 7,370 4,690 3,230 3,350 1,360 1,791 1,124 32 375 +70 -489	58,100 37,630 28,740 23,790 17,690 14,350 10,120 7,190 7,190 5,820 4,210 3,974 2,420 929 555 +292 -894	14,400 8,780 6,680 6,750 5,090 3,880 2,700 1,880 +1,900 +880 +990 +596 -68 +146 -182 -308	38,500 23,750 19,180 17,200 12,970 11,030 7,050 5,140 4,950 281 2,627 1,616 312 562 +10	87,400 52,460 45,560 35,470 26,520 21,570 15,140 10,560 7,680 6,330 5,760 3,546 1,962 833 +390 -1,314	+3.047 +1.659 +12.002 -34.76 -5.496 -3.092 +1.594 -17.61 +2.556 +16.18 -42.899 +2.777 -0.416 +5.892 +0.230 +1.366	00134 ¹ +.1619 0397 01760

* Identical wire of Table 308. † Another wire of same sample. ‡ Different sample. \$ Results too irregular for interpolation for values at other temperature and pressures; see original article. -.0556²; (2) -.0456³, annealed ingot iron; (3) -.05166³; (4) -.0411²; (5) -.0425²; (6) -.04112³.

#### TABLE 391. - Peltier and Thomson Heats; Pressure Effects.

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive  $d^2E/d^2$  means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

,		106 >	Peltier	heat,	mb.			108 X	Thoms Joules,	on hea /coulor	t, mb/° C	
Metal.		P	ressure	kg/cm	!			P	ressur	e kg/c	m²	
1.20.01.		6000			12,000		6000				12,00	0
		T	empera	ture°(			Temperature ° C					
	o°	50°	100°	o°	50°	100°	o°	50°	100°	o°	50°	100°
8 Bi †	+1070 +98 +66 +19 +46 +35 +23 +17 +11 +7 +6 +44 -2 -16 -23	+1210 +140 +95 +71 +57 +43 +37 +25 +17 +18 +10 +10 +10 +10 +11 -2 -13	+190 +124 +118 +70 +52 +35 +23 +23 +15 +16 +14 +8 +0 +1	+190 +112 +81 +90 +68 +45 +36 +24 +25 -38	+171 +148 +114 +86 +76 +49 +37 +31	+412 +229 +221 +140 +103	+38 99 +53 +48 +48 +79 +46 +46 +46 +46 +46 +46 +46 +46	+650 +488 +288 +74 +66 +77 +77 +58 +66 +44 +11 +90 -11	-+56 +26 +63 +64 -18 +66 +8 +6 -121 +10 +5 +4 +11 -11 -10 -10	+105 +13 +96 +96 +16 +7 -347	+133 +63 +92 +14 +9 +17 +14 +15 +8 +120 +8 +6 +3 +16 -11	-+220 +50 +50 +17 +8 +59 +10 +10 +10 -194 +20 +720 +720 +720 +748 +20 -28

* † ‡ § Same significance as in preceding table.

#### TABLE 392. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 386, as there shown. With Q (see Table 386) in microvolts per  $^{\bullet}$  C. and T = absolute temperature (K), the coefficient of Peltier effect  $= \frac{QT}{42}$  cal. per coulomb=0.00086 QT cal. per ampere-hour=QT/1000 millivolts (=millijoules per coulomb). Experimental results, expressed in slightly different units are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive-sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

				Calorie	s per amp	ere-hour	r.				
	Sb.‡	Sb. com- mercial.	Bi. pure,	Bi. §	Ċ.	German Silver.	Fe.	Ŋ;	Pt.	Ag.	Zn.
Jahn*	-	-	-	-	62	-,	-3.61	4.36	0.32	41	58
Le Rouxt .	13.02	4.8	19.1	25.8	0.46	2.47	2.5	_	-	-	•39

* "Wied. Ann." vol. 34, p. 767.
† "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
† Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
§ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 393. — Peltier Effect, Fe-Constantan, Ni-Cu, O - 560° C.

Temperature.	oo	200	130 ⁰	240 ^O	320 ⁰	560°	
Fe-Constantan	3,1	3.6	4.5	6.2	8.2	12.5	in Gram. Cal. X-108
Ni-Cu	1.92	2.15	2.45	2.06	1.91	2.38	per coulombi.

TABLE 394. - Peltier Electromotive Force in Millivolts.

Metal against Copper.	Sb.	Fe.	.g	Zn.	Ag.	An.	Pb.	Sn.	A1.	Pt.	Pd.	z.	Bi,
Le Roux .	-5.64	-2.93	53	45	-	-	-	-	-	-	-	-	+22.3
Jahn	~	<b>—3.68</b>	72	68	48	-	-	-	-	+.37	-	+5.07	-
Edlund	-	-2.96	16	-,01	+.03	+-33	+.50	+.56	+.70	+1.02	+2.17	-	+17.7
Caswell	-	-	-	-	+.03	-		-	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

#### TABLE 395.

#### THE TRIBO-ELECTRIC SERIES.

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions and circumstances may alter the relative positions in the list.

1 Asbestos (sheet). 2 Rabbit's fur, hair, (Hg). 3 Glass (combn. tubing). 4 Vitreous silica, opossum's fur. 5 Glass (fusn.). 6 Mica. 7 Wool. 8 Glass (pol.), quartz (pol.), glazed porcelain. 9 Glass (broken edge), ivory. 10 Calcite. 11 Cat's fur. 12 Ca, Mg, Pb, fluor spar. borax.	13 Silk. 14 Al, Mn, Zn, Cd, Cr, felt, hand, wash-leather. 15 Filter paper. 16 Vulcanized fiber. 17 Cotton. 18 Magnalium. 19 K-alum, rock-salt, satin spar. 20 Woods, Fe. 21 Unglazed porcelain, salammoniac. 22 K-bichromate, paraffin, tinned-Fe. 23 Cork, ebony.	24 Amber. 25 Slate, chrome-alum. 26 Shellac, resin, sealing-wax. 27 Ebonite. 28 Co, Ni, Sn, Cu, As, Bi, Sb, Ag, Pd, C, Te, Eureka, straw, copper sulphate, brass. 29 Para rubber, iron alum. 30 Guttapercha. 31 Sulphur. 32 Pt, Ag, Au. 33 Celluloid. 34 Indiarubber.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

#### TABLE 396,

#### AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES.

For computing resistance in ohms per meter from resistivity,  $\rho$ , in michroms per cm. cube (see Table 397, etc.).  $\epsilon$ . g, to compute for No. 23 copper wire when  $\rho = 1.724$ : I meter = 0.0387 + .0021 + .0008 + .0002 = 0.0668 ohms; for No. 11 lead wire when  $\rho = 20.4$ ; I meter = 0.0479 + .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per meter of No. N = 2(n-3) within 1%:  $\epsilon$ . g. resistance of meter of No. 18 =  $2 \times$  No. 15.

				ρ in micro-ohms per cm. cube.									
Gage. No.	Diam. in mm.	Section Inm 2.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	
				Resistance of wire 1 meter long in ohms.									
0000	22.7	107.2	.04933	.03187	.08280	.03373	.03466	.08560	.03653	.03746	• <b>0</b> ₅ 840	.0393	
00	9.27	67.43	.03148	.03297	.03445	.03593	.03742	.03890	•02104	.02119	.02133	.0214	
1	7.35	42.41	.03236	.03472	.03707	.03943	.02118	102141	102165	.02189	.02212	.0223	
3	5.83	26.67	.03375	.03750	.02112	.02150	187	.02225	.02262	.02300	•O2337	·O237	
5	4.62	16.7 <b>7</b>	.03596	.02119	.02179	.02239	.0 ₂ 298	,o ₂ 358	.02417	.02477	•°2537	10259	
7	3.66	10.55	.03948	.02190	.0 ₂ 284	.02379	.02474	. <b>o</b> ₂ 569	.02664	.02758	.02853	•O <u>2</u> 94	
9	2.91	6.634	.02151	.02301	.02452	.02603	•O2754	• <b>0</b> 29 <b>0</b> 4	.0106	:O121	.0136	•0151	
11	2.30	4.172	.02240	.02479	.02719	·O ₂ 959	.0120	.0144	.0168	.0192	.0216	•0240	
13	1.83	2.624	.02381	.02762	+0114	.0152	1010.	•0229	.0267	•0305	•0343	.0381	
15	1.45	1.650	.0₂606	.0121	.0182	.0242	•0303	•0364	.0424	.0485	.054 <b>5</b>	•0606	
17	1.15	1.038	.02963	.0193	.0289	.0385	.0482	•0578	.0674	.0771	.0867	•0963	
19	,912	.6527	.0153	.0306	.0460	.0613	€076 <u>6</u>	.0919	.1072	.1226	•1379	.1532	
21	.723	.4105	.0244	.0487	.0731	.0974	.1218	.1462	.1705	.1949	.2192	.2436	
23	•573	.2582	.0387	.0775	.1162	.1549	.1936	.2324	.2711	.3098	.3486	•3873	
25	435	.1624	.0616	.1232	.1847	•2463	-3079	.3695	.4310	-4926	-3542	.6158	
27	.361	.1021	•0979	1959	.2938	13918	·4 ⁸ 97	•5877	.6856	·7835	.8815	9794	
29	.286	.0642	.1557	.3114	.4671	.6228	.7786	•9343	1.090	1.246	2,228	1.557	
31	1227	.0404	.2476	4952	.7428 1.181	19704	1.238	2.362	1.733 2.756	1.981		2.476	
33	.180	.0254	•3037	.7874		1.575	1.968		4.383	3.150 5.000	3·543 5.636	3.937	
35	.143	0010	.6262	1,252	1.879	2.505 3.980	3.131	3·757 5·970	6.965	7.960	8.955	9.950	
37	.113	.0100	1,583	3,166	2.985	6.331	4.975 7.914	9.497	11.08	12.66	14.25	15.83	
39 40	.090	.0050	1,996	3,100	4.748 5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96	

#### RESISTIVITY OF METALS AND SOME ALLOYS.

The resistivities are the values of  $\rho$  in the equation  $R=\rho l/s$ , where R is the resistance in microhms of a length l cm of uniform cross section s cm². The temperature coefficient is  $a_s$  in the formula  $R_l = R_s | \mathbf{r} + a_s (l - l_s) |$ . The information of column 2 does not necessarily apply to the temperature coefficient. See also next table for temperature coefficients o° to roo° C.

Remarks.   Temperature,   Microhm   Reference.     Temperature coefficient.								
Advance.   See constantan   -     -			Tempera-	Microhm	Refer	Temperatu	ıre coefficient	
Advance. see constantan	Substance.	Remarks.	ture, °C			$t_8$	a _e	
Aluminum								
	Advance		- 20	2 828	_	_{18°} —	+.0030	-
	16		<b>—189.</b>	0.64	3	25	+.0034	4
## ## ## ## ## ## ## ## ## ## ## ## ##		••		1.53				
Antimony.	"		+100.	3.86	3	_	1.555	
Arsenic.  Bismuth.	Antimony	"			3	20	+ 0036	- i
Arsenic.	16	Ε	-190.			²⁰ –		-
Brass.	********	liquid			7	_	_	
Brass.		_		119.0	9	20	+.004	
Cadmium	"	=					+ 200	
"""         18.         7.54         9         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —<	Cadmium	drawn	<b>—</b> 160.					5
"		11		7 . 54		= 1		
"		liquid					_	
"	Caesium	-				_		
Calcium 99.57 pure 20. 4.6 14		solid \				=	_	_
Calido.   See constantan				36.6		_		
Chromium	Calido			4.6		=	+.0030	
Cobalt.	Chromium	<del>-</del> .				. –		
Constantan	Cobalt				16	20 —	+.0007	5
"	Constantan	60% Cu, 40% Ni	20.					
"	"	_		_				4
Copper		_		- 1			000020	4
Control   Cont		annealed		1.724				4
" pure 400 4.10 3 1000 +.0042 4 4 400 4.10 3 1000 +.0042 4 4 400 4.10 3 1000 +.0062 40062 4 4.10 3 1000 +.0062 40062 4 4.10 3 1000 +.0062 40062 40062 40062 40062 40062 40062 40062 40062 40062 40062 40062 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			20.	1.77		44 44 44	+.00382	5
" pure very pure, ann'ld very	"	electrolytic					+.0038	
Eureka         see constantan         20         92         5         20         4-00016         5           Gallium         18% Ni         20         33         12         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -			400.	4.10				
Excello.     —     20.     92.     5     20.     +.00016     5       Gallium.     —     0.     53.     12     —     +.0004     5       Gold.     99.9 pure     -183.     0.08     17     20     +.0034     5       "     pure, drawn     20.     2.44     9     500     +.0035     4       "     pure, drawn     20.     2.44     9     500     +.0035     4       "     99.9 pure     194.5     3.77     17     1000     +.0049     4       Ia Ia.     see constantan     —     —     —     —     —       Indium.     —     0.     8.37     19     —     —     —       Iridium.     —     -1866.     1.92     20     —     —     —     —       "     -1866.     1.92     20     —     —     —     —       "     -1866.     1.92     20     —     —     —     —       "     -1866.     1.92     20     —     —     —     —	Eureka		20.	1.092		=	=	
German silver	Excello					20	+.00016	5
Gold	German silver	18% Ni	20.			20	+,0004	
"         pure, drawn         20.         2.44         9         500 "         +.0035         4           Ia Ia.         99.9 pure         194.5         3.77         17         1000 "         +.0049         4           Ideal.         —         —         —         —         —         —           Indium.         —         0.         8.37         19         —         —         —           Iridium.         —         -         1.92         20         —         —         —           Iridium.         —         0.         6.10         20         —         —         —	Gold		-183.	0.68	17	20	+.0034	5
1a Ia   1a   1a   1a   1a   1a   1a	"	pure, drawn				500 "		4
Ideal.     "     "     —     —     —     —       Indium.     —     0.     8.37     19     —     —     —       Iridium.     —     -186.     1.92     20     —     —     —     —       "     —     0.     6.10     20     —     —     —		99.9 pure			17		+.0049	4
Indium	Ideal	see constantan	_	=		=	_	_
" —   O.   6.10   20   —   —   —	Indium	-		8.37			-	1-
" +100. 8.3 20	iridium	_				_	=	
	"	_					_	_
			1					<u>'</u>

Ł	Arrange	l in ore	ier of	increasing	resistivit	y (ohm-cm ³	×10-	. 20°C).

			_				
Graphite Carbon Ag Cu Au	.0008 .003 1.468 1.59 2.22 2.6	W Mn Mo Zn Ir	5.0 5.士 (5.3) 5.75 6.10	Co Pd Pt Rb Sn	9.0 10.21 10.96 13.0 13.0 14.6 17.6	Sb Ga Os Hg Bi Te	39. 53. 56. 94.07
Al Cr	2.6 2.6	K	6.1	Sn Ta Tl	14.6 17.6	Te P	2 × 108 1012
Au Al Cr Ti Na	3.2 4.3	Ni Cd ın	6.93 7.04 8.37	Ĉs Pb	19.	B Se	8 × 1013
Ca Mg	4.3 4.35	Li Fe	8.37 8.55 8.8	Sr As	(23.5) 35.	Š	. IO17

### RESISTIVITY OF METALS AND SOME ALLOYS.

		Tempera-	Microhm-	Refer-	Temperatu	re coefficient.	
Substance.	Remarks.	ture, °C	cm	ence.	$t_{s}$	$a_s$	Refer- ence.
<u> </u>							
Iron	99.98% pure pure, soft	20. -205.3	0.652	5	20	+.0050	5 21
"		-78., o.	5.32 8.85	17	25 100	+.0052 +.0068	4 4
44	" "	+98.5	17.8	17	500	十.0147	4
"	" "	196.1	21.5 43.3	17	1000	+.0050	4
steel	E. B. B. B. B.	20.	10.4	5	20 see col. 2	+.005 +.004	5 5 5
46	Siemens-Martin	20.	11.9	5 5	60 66 60 66 60 66 60 60	+.003	5
"	manganese 35% Ni, "invar."	20.	70. 81.	5 22		+.001	5
"	niano wire	0.	11.8	23	o see col. 2	+.0032 +.0016	23
	temp. glass, hard ", yellow ", blue	0.	45·7 27.	23 23	-	_	23
"	", blue ", soft	0.	20.5 15.9	23	o see col. 2	+.0033	23
Lead	cold pressed	20. -183.	6.02	5	20 18	+.0039 +.0043	5 2
66	" "	<b>−78.</b>	14.1	17		-	
"	44 46	+90.4	20.4 28.0	17	=	=	
"	" "	196.1 318.	36.9 94.	17	=	_	_
Lithium	solid	-187.	1.34	12	-		_
66	"	99-3	8.55 12.7	I 2 I 2	=		=
Magnesium	liquid	230.	45.2 4.6	25 5	20	+.004	
"	free from Zn	-183.	1.00	17	o 25	+.0038 +.0050	24
66	66 61 11 66 66 11	-78. o.	4.35	17	100	十.0045	4
	pure	+98.5	5.99	17	500 600	+.0036 +.0100	4
Manganese Manganin	84 Cu, 12 Mn, 4 Ni	20.	5.0±	15	12	+.000006	_
Manganin		-	<del>**</del> -	3	25	.000000	4
"	Ξ	. =		=	100 250	000042 000052	4
66	=	_		_	475 500	000000 000II	4
Mercury		20.	95.783	5	20	+.00080 +.00088	5
"	solid "	-183.5 -102.9	6.97 15.04	17			-
"	66	-50.3 -39.2	21.3	17	$Rt = R_0(t + 0.0089t + 0.0089t)$	_	
"	liquid	-36.1 0.0	80.6 94.07	17	.000001(2)	_	5 24 4 4 4 4 4 5 5 5 5 5 24 4 4 4 4 4 4
66	"	50.	98.50	27	_	_	-
66	44	100.	103.25	24	=	=	=
Molybdenum	drawn	350.	135.5	24	25	+.0033	
**			3.7	-	100	+.0034	4
Monel metal		20.	42.	5	20	+.0020	5
Nichrome Nickel	Ξ	20.	7.8	5	20	+.0004 +.006	5 5
46	pure	-182.5 -78.2	1.44	28 28	0 25	+.0062 +.0043	24
"	66	0.	4.31 6.93	28	100	+.0043	4
"		94.9	11.1 60.2	28	500	+.0030 +.0037	4
						<u> </u>	

#### RESISTIVITY OF METALS AND SOME ALLOYS.

		Tempera-	Microhm	Refer-	Temp	erature coeff	cient.
Substance	Remarks.	ature, C	cm	ence.	t _s	$a_{s}$	Refer- ence.
Osmium. Palladium.  ""  ""  Platinum.  ""  Rhodium.  ""  Rubidium.  ""  Silicium.  Silver.  ""  ""  Sodium  ""  ""  ""  Therlo Tin. ""  Therlo Tin. ""  Titanium. Tungsten.  ""  ""  Zinc. ""  ""  ""  ""  Zinc. "" ""  ""  ""  ""  ""  ""  ""  ""  ""	very pure  """  wire  """  solid  """  liquid  oo. 98 pure electrolytic  """  solid  """  solid  """  """  solid  """  solid  """  """  solid  """  sol	20. 20. 20. 20. 20. 20. 83. 78. 20. 20. 20. 100. 400. 775. 0. 100. 400. 78.3 0. 100. 100. 100. 20. 18. 18. 18. 18. 20. 18. 20. 18. 20. 18. 20. 18. 20. 18. 20. 18. 20. 18. 20. 20. 20. 20. 20. 20. 20. 21. 20. 20. 21. 20. 20. 20. 21. 20. 20. 21. 20. 20. 21. 20. 20. 21. 20. 20. 20. 21. 21. 22. 20. 20. 20. 20. 20. 21. 21. 22. 20. 20. 20. 20. 20. 20. 20. 20. 20	60. 2 11. 2. 78 7. 17 10. 21 13. 79 10. 2. 44 6. 87 10. 96 14. 85 26. 4. 0 6. 1 8. 4 0. 70 3. 09 4. 69 6. 60 2. 5 11. 6 13. 4 19. 6 58.   1. 629 0. 390 1. 021 1. 468 2. 662 2. 668 3. 77 1. 0 2. 8 11. 8 13. 0 2. 8 11. 8 13. 0 2. 8 17. 60 24. 8 17. 60 24. 8 17. 60 24. 7 47. 47. 47. 47. 48. 8 13. 0 24. 8 13. 0 25. 51 25. 3 41. 4 98. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 18. 9 1	3 5 17 17 17 17 17 17 17 17 13 13 13 13 13 13 13 13 13 13 13 13 13	18 500 1000	# .0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031 0031	

References to Table 397: (1) See page 334; (2) Jäger, Diesselhorst, Wiss. Abh. D. Phys. Tech. Reich. 3, p. 260, 1000; (3) Nicolai, 1007; (4) Somerville, Phys. Rev. 31, p. 261, 1910; 33, p. 77, 1911; (5) Circular 74 of Bureau of Standards, 1918; (6) Eucken, Gelhoff; (7) de la Rive; (8) Matthiessen; (9) Jäger, Diesselhorst; (10) Lees, 1908; (11) Mean; (12) Guntz, Broniewski; (13) Hackspill; (14) Swisher, 1917; (15) Shukow; (16) Reichardt, 1901; (17) Dewar, Fleming, 1683, 1896; (28) Hellinger, 1910; (19) Erhardt, 1881; (20) Broniewski, Hackspill, 1911; (21) Dewar, Fleming, 1893, 1896; (22) Circular 58, Bureau of Standards, 1916; (23) Strouhal, Barus, 1883; (24) Vincentini, Omodei, 1890; (25) Bernini, 1905; (26) Glazebrook, Phil. Mag. 20, p. 343, 1885; (27) Grimaldi, 1888; (28) Fleming, 1900; (29) Langmuir, Gen. Elec. Rev. 19, 1916.

* See note to Table 386.

#### 1 ABLES 398-399.

#### TABLE 398. - Resistance of Metals under Pressure (Bridgman).

The average temperature coefficients are per °C between o° and 100° C. The instantaneous pressure coefficients are the values of the derivative  $(1/r)\{dr/dp\}_t$ , where r is the observed resistance at the pressure p and temperature t. The average coefficient is the total change of resistance between 0 and 12,000 kg/cm² divided by 12,000 and the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1917. For coefficients at intermediate temperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1917. Sn, Cd, Zn, Kahlbaum's "K" grade; Tl, Bi, electrolytic, high purity; Pb, Ag, Au, Cu, Fe, Pt, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

A	Average tem coeffici				Pressure coefficients.				
			I	nstantaneou	ıs coefficient	t.		coefficient	
			At	o° C	At 10	∞° C	o to 12,000 kg/cm²		
	At o kg	At 12,000 kg	o kg   12,000 kg		o kg	12,000 kg	At o°	At 100°	
Sn. Tl. Cd. Pb. Zn. Al. Ag. Au. Cu. Ni. Co. Fe. Pd. Pt. Mo. Ta. W. Mg. Sb.	.00447 .00517 .00424 .00421 .00416 .00434 .004074 .003968 .004293 .004873 .003657 .006206 .003178 .003868 .004336 .004393 .004973	+ .00383 .00441 .00499 .00418 .00412 .00420 .00430 .003064 .004303 .00455 .003076 .00184 .003185 .003873 .00430 .002907 .003216	.040140 .040128 .04055	.040936 .041180 .040837 .040225 .040365 .040321 .040286 .040179 .040142 .040081 .040190 .040181				.040184 .040126 .040149 .040126	

† 0° to 24°. ‡Extrapolated from 50°. § Extrapolated from 75°. * 0° to 20°.

Additional data from P. Nat. Acad. Sc., 6, 505, 1920. Data are 10,000 × mean pressure coefficient, 0 - 12,000 kg, and 10,000 × instantaneous pressure coefficient at 0 kg. l = liquid; s = solid.

Li, s, oo	+.0772	+ .068	Ca, oo	+.106	+.129	Ti, o°	字100. 土	
Li, 1, 240°	+.093	+ .093	Sr, oo	+ .680	+ .502	Zr, o ^o	0040	- ,004
Na, s, o°	345	663	Hg, s, oo	236b		Bi, 1, 275°	2101.	123
Na, 1, 2000	436	922	Hg, 1, 250	210	334	W, o ^o	0135	014
K, s, 25°	604	- 1.86	Ga, s, oo	0247		La, o ^o	0331	039
K, l, 165°	809a	<b>— 1.68</b>	Ga, 1, 30°	0531	064	P, black, oo	18.—	- 2.00
								-12-

a, 0 - 9,000 kg; b, 7,640 - 12,000 kg; c, 0 - 7,000 kg. The Ga, Na, K, Mg, Hg, Bi, W, P, of exceptional purity.

#### TABLE 399. - Resistance of Mercury and Manganin under Pressure.

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gauge. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Bridgman, Pr. Am. Acad. 44, p. 221, 1919.

Pressure, kg/cm²	_	500	1000	1500	2000	2500	3000	4000	5000	6000	6500
R(p, 25°)	0000.1	0.9836	0.9682 0.9716	0.9588	0.9394	0.9258	0.9128	0.8882	0.8652	0.8438 0.8616	0.8335
*	0000.1	0.9854	0.9716	0.9588	0.9462	0.9342	0.9228	0.9010	0.8806	0.8616	0.8527

*This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at o° C mercury freezes at 7500 kg/cm³. Manganin is suitable over a much wider range. Over a temperature range o to 50° C the pressure resistance relation is linear within 1/10 per cent of the change of resistance up to 13,000 kg/cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of  $(\Delta R/\rho Ro) \times 10^5$  from 2295 to 2325. These are + instead of -, as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kllograms per Square Centimeter," Bridgman, Pr. Am. Acad. 47, p. 321, 1911.

## CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS.

TEMPERATURE COEFFICIENTS.

Conductivity in mhos or  $\frac{1}{\text{ohms per cm.}^3} = \gamma_t = \gamma_0 (1 - at + bt^2)$  and resistivity in microhms-cm  $=\rho_t=\rho_0(1+at-bt^2).$ 

Authority.
Aut
III
I
3 3
2
4
2
2
5
4
4
4
4
4
5
6
7
8

¹ Matthiessen. ³ W. Siemens. ⁵ Van der ² Various. ⁴ Feussner and Lindeck. ⁶ Blood. ^{*}, †, ‡, §, b × 10°=924, 93, 7280, 51, respectively.

⁵ Van der Ven. ⁷ Feussner. ⁶ Blood. ⁸ Jaeger-Diesselhorst.

SMITHSONIAN TABLES.

### CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of  $C_o$  were obtained from the original results by assuming silver  $=\frac{ro^6}{1.585}$  mhos. The conductivity is taken as  $C_t = C_o$  (1-at+bt²), and the range of temperature was from o° to roo ° C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the

t is pointed out that, with a few exceptions, the percentage variation between  $o^{\circ}$  and  $ioo^{\circ}$  can be calculated from the formula  $P = P_e \frac{l}{l}$ , where l is the observed and l' the calculated conducting power of the mixture at  $ioo^{\circ}$  C., and  $P_e$  is the calculated mean variation of the metals mixed.

		1	1		1						
Alloys.	Weight % Vo lume	$C_{0}$	a × 106	8×109	Variation	per 100° C.					
Alloys	of first named.	104	2 × 10	0 × 10	Observed.	Calculated.					
	GROUP 1.										
Sn ₆ Pb	77.04 83.96 82.41 83.10 78.06 77.71 64.13 53.41 24.76 26.06 23.05 23.50 7.37 10.57	7.57 9.18 10.56 6.40 16.16 13.67 5.78	3890 4080 3880 3780 3780 3850 3500	8670 11870 8720 8420 8000 9410 7270	30.18 28.89 30.12 29.41 29.86 29.08 27.74	29.67 30.03 30.16 29.10 29.67 30.25 27.60					
		GROUP 2.									
Lead-silver (Pb ₂₀ Ag) . Lead-silver (PbAg) . Lead-silver (PbAg ₂ ) .	95.05 94.64 48.97 46.90 32.44 30.64	5.60 8.03 13.80	3630 1960 1990	7960 3100 2600	28.24 16.53 17.36	19.96 7.73 10.42					
Tin-gold (Sn ₁₂ Au) " " (Sn ₅ Au)	77.94 90.32 59.54 79.54	5.20 3.03	3080 2920	6640 6300	24.20 22.90	14.83 5.95					
Tin-copper	92.24 80.58 83.60 12.49 10.30 9.67 11.61 4.96 6.02 1.15	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070	28.71 26.24 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.99 4.46 5.22 7.83 20.53					
Tin-silver	91.30 96.52 53.85 75.51	7.81 8.65	3820 3770	8190 8550	30.00 29.18	23.31 11.89					
Zinc-copper †	36.70 42.06 25.00 29.45 16.53 23.61 8.89 10.88 4.06 5.03	13.75 13.70 13.44 29.61 38.09	1370 1270 1880 2040 2470	1340 1240 1800 3030 4100	12.40 11.49 12.80 17.41 20.61	11.29 10.08 12.30 17.42 20.62					

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation  $y = \frac{n}{x} - m$ , where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at  $0^{\circ}$  C. and s the corresponding specific resistance, s(x + m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

TABLE 401. - Conducting Power of Alloys.

		Gr	ROUP 3.				
A11	Weight %	Volume %	<u>C</u> 0	. V 8	8 × 109	Variation	per 100° C.
Alloys.	of first	named.	104	a X 10 ⁶		Observed.	Calculated.
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53
Gold-silver †	87.95 87.95 64.80 64.80 31.33 31.33	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31
Gold-copper †	34.83 1.52	19.17 0.71	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86
Platinum-silver †	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21
Copper-silver†	98.08 94.40 76.74 42.75 7.14 1.31	98.35 . 95.17 77.64 46.67 8.25 1.53	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280. 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	27.30 25.41 21.92 24.00 25.57 29.77
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40
Iron-copper †	0.40	0.46	24.51	1550	2090	13.44	14.03
Phosphorus-copper † . " † .	2.50 0.95	-	4.62 14.91	476 1320	145 1640	-	-
Arsenic-copper †	5.40 2.80 trace	1 1 1	3.97 8.12 38.52	516 736 2640	989 446 4830	-	 -

* Annealed.

† Hard-drawn.

### TABLE 402. - Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	14	12	10	8	6	5	4	3	2	1	0	00	0000
Amperes	3	6	12	17	24	33	46	54	65	76	90	107	127	150	210

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity = 84% of cu. Preece gives as formula for fusion of bare wires  $I = ad^{\frac{3}{2}}$ , where d = diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

#### RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

The electrical resistivity ( $\rho$ , ohms per cm. cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lov er  $\rho$  may greatly increase  $\rho$ . Solid solutions of good conductors generally have higher  $\rho$  than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly mixing  $\rho$ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t,  $\rho$ ) plot at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Ounes finds very sudden and great drops in  $\rho$ . e.g. for Mercury,  $\rho_3$ ,6K <4x10 $^{-10}$   $\rho_0$  and for Sn.,  $\rho_3$ ,8K <10 $^{-1}$  $\rho_0$ . The t,  $\rho$  graph for an alloy may be nearly parallel to the taxis, cf. constantan; for poor conductors  $\rho$  may decrease with increasing t. At the melting-points there are three types of behavior of good conductors; those about doubling  $\rho$  and then possessing nearly linear t,  $\rho$  graphs (Al., Cu., Sn., Au., Ag., Pb.); those where  $\rho$  suddenly increases and then the +temp. coefficient is only approximately constant; (Hg., Na., K.); those about doubling  $\rho$  then having a  $\rho$ -slowly changing to a + temp. coef. (Žn., Cd.); those where  $\rho$  suddenly decreases and thereafter steadily increases (Sb., Bi.). The values from different authorities do not necessarily fit because of different samples of metals. The Shimank values (t given to tenths of  $\theta$ ) are for material of theoretical purity and are determined by the  $\alpha$  rule (see his paper, also Nernst, Ann. d Phys. 36, p. 403, 1911 for temperature resistance thermometry). The Shimank and Pirrani values are originally given as ratios to  $\rho_0$ . (Ann. d. Phys. 45, p. 706, 1914, 46, p. 176, 1915.) Resistivities are in ohms per cm. cube unless stated.

	Gold.			Copper.			Silver.			Zinc.	
°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Pt	$\frac{\rho_{\mathbf{t}}}{\rho_{\mathbf{o}}}$	° C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	° C.	Pt	$\frac{\rho_t}{\rho_0}$
-252.8 -200. -192.5 -150. -100. -77.6 -50. 0. 100. 200. 750. 1000. 1003. 1003. 1400. 1500.	0.018 .601 .520 .997 1.400 1.564 1.813 2.247 2.97 3.83 6.62 9.35 12.54 13.50 30.82 32.8 37.0	.0081 .267 .231 .444 .623 .696 1.00 1.32 1.70 2.94 4.16 5.58 6.10 1.32 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70	-258.6 -252.8 -251.1 -206.6 -192.9 -150. -100. 200. 500. 750. 1000. 1000. 1000. 1000. 1000. 1000. 1000. 1000.	0.014 .016 .028 .163 .249 .567 .904 1.578 2.28 2.96 5.08 7.03 9.42 21.30 22.30 23.86 24.62	.0091 .0103 .0178 .1035 .1550 .3559 .573 .786 1.00 1.44 1.88 3.22 4.46 5.97 13.5 14.1 15.1 15.6	-258.6 -252.8 -189.5 -200. -160. -76.8 -50. 0. 100. 200. 400. 750. 960. 1000. 1200. 1400.	0.009 .014 .334 .357 .638 .916 1.040 1.212 1.506 2.15 2.80 6.65 8.46 6.65 17.01 10.36 21.72 23.0	.0057 .0090 .222 .237 .424 .608 .690 .805 1.00 1.43 1.86 5.58 11.0 11.3 11.3 11.3 11.3 11.3 11.3 11.3	-252.9 -200. -191.1 -150. -100. - 77.8 - 50. 0. 100. 300. 415. 427. 450. 500. 600. 700. 850.	.0511 1.39 1.23 2.00 3.97 4.04 5.75 13.25 17.00 37.30 37.00 35.00 35.60 35.74	.0089 .242 .214 .348 .504 .691 .703 1.38 2.30 6.49 6.49 6.49 6.49 6.49 6.49 6.49 6.49 6.49 6.19 6.25 6.19 6.19
	Mercury			Potassiur	n.		Sodium.			Iron.	
°C.	Ρt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C	Pt	$\frac{\rho_{\mathbf{t}}}{\rho_{o}}$	°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°c.	Ρt	
-200. -150. -100. -50. -30. 0. 50. 100. 200. 300.	5.38 10.30 15.42 21.4 91.7 94.1 98.3 103.1 114.0 127.0	.057 .109 .164 .227 .975 1.000 1.045 1.096 1.212	-200. -150. -100. -50. 0. 20. 60. 65. 100.	1.720 2.654 3.724 5.124 7.000 7.116 8.790 13.40 15.31 16.70	.246 .379 .532 .732 1.00 1.016 1.256 1.914 2.187 2.386	-200, -150, -100, -50, 0, 20, 93.5 100, 120, 140,	0.605 1.455 2.380 3.365 4.40 4.873 6.290 9.220 9.724 10.34	.137 .330 .541 .764 1.000 1.107 1.429 2.095 2.209 2.349	-252.7 -200. -192.5 -100. - 75.1 - 50. - 0. 100. 200. 400.	0.011 2.27 .844 5.92 6.43 8.15 10.68 16.61 24.50 43.29	.0010 .212 .079 .554 .602 .763 1.00 1.554 2.293 4.052
	Manganir	1.	G	erman Sil	ver.		Constanta	n.	90 %	Pt. 10	% Rh.
°C.	$ ho_{t}$	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	P _t	$\frac{\rho_{t}}{\rho_{o}}$	°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$
-200. -150. -100. -50. 0. 100. 400.	37.8 38.2 38.5 38.7 38.8 38.9 38.3	.974 .985 .992 .997 1.000 1.003	-200. -150. -100. -50. 0.	27.9 28.7 29.3 29.7 30.0 33.1	.930 .957 .977 .990 1.000	-200. -150. -100. -50. 0. 100. 400.	42.4 43.0 43.5 43.9 44.1 44.6 44.8	.961 .975 .986 .995 1,000 1.012 1.016	-200. -150. -100. 50. 0. 100.	14.49 16.29 18.05 19.66 21.14 24.20	.685 .770 .854 .930 1.000

Au. below o°, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu. below, Niccolai, l. c. above, Northrup, ditto, 177, p. 1, 1914. Ag. below, Niccolai, l. c. above Northrup, ditto, 178, p. 85, 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271, 1893; above, Northrup, 175, p. 153, 1913. Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900; above, Northrup, see Cd. K. below Guntz, Broniewski, C. R. 147, p. 1474, 1908, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911. Na, below, means, above, see K. Fe., Manganin, Constantan. Niccolai, l.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming — Phil. Mag. 36, p. 271, 1893.

#### TABLE 403 (continued).

#### RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

(Ohms per cm. cube unless stated otherwise.)

	Platinun	1.		Lead.				Bismuth.	, , , , , , , , , , , , , , , , , , ,		(	Cadmi	iunı.	
°C.	Pt	$\frac{\rho_{\rm t}}{\rho_{\rm o}}$	°C.	Pt	$\frac{\rho_t}{\rho_0}$		°C.	ρţ	Pt Po		°C.	ρt		Po
-265253233153 73.	0.10 .15 .54 4.18 7.82 11.05 14.1 17.9 25.4 40.3 47.0 52.7 58.0 63.0	.0092 .014 .049 .378 .708 1.00 1.28 1.62 2.30 3.65 4.25 4.77 5.25 5.70	-252.9 -203. -192.8 -103. - 75.8 - 53. 0. 100. 200. 319. 333. 400. 600. 800.	0.59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 50.0 95.0 98.3 107.2 116.2	.0298 .223 .264 .598 .705 .792 1.00 1.403 1.919 2.52 4.80 4.96 5.41 5.86		-200. -150. -100. - 50. 0. 17. 100. 200. 259. 263. 300. 500. 750.	34.8 55.3 75.6 94.3 110.7 120.0 156.5 214.5 267.0 127.5 128.9 139.9 150.8 153.5	•314 •499 •683 •852 1.00 1.083 1.413 1.937 2.411 1.150 1.164 1.263 1.361 1.386	-2 -1 -1 -1 -1 3 3 3 4 5	52.9 90.2 83.1 39.2 90. 90. 90. 90. 90. 90. 90. 90.	0. 1. 2. 3. 4. 7. 16. 33. 33. 35. 35.	66 00 22 60 80 75 50 76 60 70	.0218 .214 .258 .286 .464 .619 1.00 2.13 4.35 4.35 4.35 4.35 4.40 4.62
	Tin.		Car	arbon, Graphite.*				Fused s	silica.		A	lundu	m cei	ment.
°C.	Ρt	$\frac{\rho_t}{\rho_0}$	°C.	C. ρ in ohms, cm. cut			°C.	$\rho = m$	negohms o	m.	0(	c.		ohms cube.
-200. -100. 0. 200. 225. 235. 750.	2.60 7.57 13.05 20.30 22.00 47.60 61.22	.199 .580 1.00 1.55 1 69 3.65 4.69	0. 500. 1000. 1500. 2000. 2500.	Carbon 0.0035 .0027 .0021 .0015 .0011	Graphit		15. 230. 300. 350. 450. 700. 850.	:	200,000 200,000 30,000 800 30 about 20	). ). ).	80	00.	30	0×10 6 0800. 3600. 7600. 6500. 2300.

Pt. low, Nernst, 1. c. high, Pirrani, Ber. Deutsch. Phys. Ges. 12, p. 305, Pb. low, Schimank, Nernst, 1. c. high, Northrup, see Zn. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehlhoff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Sn. low, Dewar, Fleming, high, Northrup, see Zn. Carbon, graphite, Metallurg. Ch. Eng. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 125, 1914.

125, 1914. • Diamond 1030° C, ρ >10⁷; 1380°, 7.5 × 10⁵, v. Wartenberg, 1912.

#### TABLE 404.-Volume and Surface Resistivity of Solid Dielectrics.

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity,  $\rho$ , is the resistance between two opposite faces of a centimeter cube. The surface resistivity,  $\sigma$ , is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. (Curtis, Bul. Bur. Standards, 11, 359, 1915, which see for discussion and data for many additional materials.)

Material.	σ; megohms 50% humidity.	σ; megohms 70% humidity.	σ; megohms 90% humidity.	Megohms-cms.
Amber Beeswax, yellow Celluloid Fiber, red Glass, plate " Kavalier Hard rubber, new Ivory Khotinsky cement Marble, Italian Mica, colorless Paraffin (parowax) Porcelain, unglazed Quartz, fused Rosin Sealing wax Shellac Slate Sulphur Wood, parafined mahogany	6 × 10 ⁸ 6 × 10 ⁸ 6 × 10 ⁸ 5 × 10 ⁴ 2 × 10 ⁴ 5 × 10 ⁶ 3 × 10 ⁹ 5 × 10 ³ 7 × 10 ⁸ 3 × 10 ⁷ 9 × 10 ⁹ 6 × 10 ⁵ 3 × 10 ⁶ 6 × 10 ⁵ 2 × 10 ⁹ 6 × 10 ⁷ 9 × 10 9 × 10 7 × 10 ⁹ 4 × 10 ⁶	2 × 10 ⁸ 6 × 10 ⁸ 2 × 10 ⁴ 3 × 10 ³ 6 × 10 4 × 10 ⁸ 1 × 10 ⁸ 1 × 10 ⁸ 2 × 10 ² 4 × 10 ⁵ 7 × 10 ⁹ 7 × 10 ³ 2 × 10 ⁸ 3 × 10 ⁸ 6 × 10 ⁸ 3 × 10 ⁸ 6 × 10 ⁸ 3 × 10 ⁸ 5 × 10 ⁵	I × 10 ⁵ 5 × 10 ⁸ 2 × 10 ³ 2 × 10 ² 2 × 10 ² 2 × 10 ⁸ 3 × 10 5 × 10 ⁵ 2 × 10 8 × 10 ³ 6 × 10 ⁹ 5 × 10 2 × 10 ² 2 × 10 ² 2 × 10 ⁸ 9 × 10 ⁷ 7 × 10 ³ I × 10 I × 10 ⁸ 7 × 10 ³	5 × 10 ¹⁰ 2 × 10 ⁹ 2 × 10 ⁴ 5 × 10 ⁸ 2 × 10 ⁷ 8 × 10 ¹² 2 × 10 ² 2 × 10 ² 2 × 10 ⁵ 1 × 10 ⁵ 2 × 10 ¹¹ 1 × 10 ¹⁰ 3 × 10 ⁸ 5 × 10 ¹¹ 1 × 10 ¹⁰ 8 × 10 ⁹ 1 × 10 ¹⁰

TABLE 405 .- Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation  $\log R = a + bt + ct^2,$ 

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.		Kind	of glas	S.		Density.		а	ь		c	Range of temp. Centigrade.
ı	Test-tube gl	ass				-	13.	.86	044	.00	00065	o°-250°
2	66 66	" .				2.458	14	.24	055	.00	100	37-131
3	Bohemian g	lass				2.43	16.	.21	043	.00	00394	60-174
4	Lime glass (	Japai	nese n	nanı	ıfacture).	2.55	13.	.14	—.031	00	0021	10-85
5	66 66	"			" .	2.499	14.	.002	025	00	0006	35-95
6	Soda-lime g	lass (	Frenc	h fla	ask) .	2.533	14.	.58	049	.00	0075	45-120
7	Potash-soda	lime	glass			2.58	16.	34	042	.00	00364	66-193
8	Arsenic ena	mel f	int gl	ass		3.07	18.	17	055	.00	0088	105-135
9	Flint glass (	Thon	nson's	ele	ctrometer	3.172	18.	.021	<b>—</b> .036	00	10000	100-200
10	Porcelain (w	hite	evapo	ratii	ng dish) .	-	15.	65	042	.00	005	68-290
		Co	MPOSI	rion	OF SOME OF	THE ABOV	E S	PFCIM	ENS OF	GLASS.		
	Number of sp	ecimer	=		3	4			5	7	8	9
Sil	ica			•	61.3	57.2		70	.05	75.65	54.2	55.18
Po	tash			•	22.9	21.1		1	-44	7.92	10.5	13.28
So	da	•		٠	Lime, etc.	Lime,	etc.	14	.32	6.92	7.0	-
Le	ad oxide .			•	by diff.	by dif	f.	2	.70	-	23.9	31.01
Lin	me				1 5.8	16.7		10	-33	8.48	0.3	0.35
Ma	agnesia .				~	-			-	0.36	0.2	0.06
Ar	senic oxide				-	-			-	-	3.5	-
Alı	umina, iron o	xide,	etc.		-	-		I	·45	0.70	0.4	0.67

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 405a. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

Temperature.	450 ⁰	5000	575 ⁰	6000	7000	7500	8000	9000	10000
Glass Porcelain Quartz	—32. —	—6. _	-1.5 -16.	8 9.8	-0.17 -2.8	-0.1 -1.6 -10.	-0.06 70 -6.40	-0.30 -2.60	-0.12 -1.00

Somerville, Physical Review, 31, p. 261, 1910.

#### TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American wire gage (B. & S.) mils.†	American wire gage (B. & S.) mm.†	Steel wire gage * mils.	Steel wire gage* mm.	Stubs' steel wire gage mils.	(British) standard wire gage mils.	Birming- ham wire gage (Stubs') mils.	Gage No.
7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	(B. & S.) mils.†  460. 410. 365. 325. 289. 204. 182. 162. 144. 128. 114. 102. 91. 81. 72. 64. 57. 51. 45. 40. 36. 32. 225.3 22.6 20.1 17.9 15.9 14.2 11.3 10.0 8.9 8.0 7.1 6.3 5.6 5.0 4.5	(B. & S.) mm.†  11.7 10.4 9.3 8.3 7.3 6.5 5.8 5.2 4.6 4.1 3.7 3.3 2.91 2.59 2.30 2.05 1.83 1.63 1.45 1.29 1.15 1.02 0.91 .81 .72 .62 .57 .51 .45 .40 .36 .32 .29 .25 .227 .202 .180 .160 .143 .127 .113 .101			gage	wire gage mils.  500. 464. 432. 400. 372. 348. 324. 300. 276. 252. 232. 212. 192. 1176. 160. 144. 128. 116. 104. 92. 64. 56. 48. 40. 36. 32. 28. 24. 22. 20. 18. 16.4 11.6 11.6 11.6 11.6 11.6 11.6 11.	(Stubs')	7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49	3.5 3.1	.090 .080	7.5 7.0 6.6 6.2 6.0 5.8 5.5 5.2 5.0 4.8 4.6	.191 .178 .168 .157 .152 .147 .140 .132 .127 .122 .117	99. 97. 95. 92. 88. 85. 81. 79. 77. 75. 72. 69.	5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2		39 40 41 42 43 44 45 46 47 48 49 50

* The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.
† The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 410 to 413. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The

ratio of any diameter to the diameter of the next greater number  $\sqrt[3]{\frac{.4600}{.0050}} = 1.1229322.$ Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

#### TABLES 407-413. WIRE TABLES.

#### TABLE 407. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58. ×10⁻⁵ cgs. units, and a density of 8.89, at 20° C.

In the various units of mass resistivity and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm inch at 20° C 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is  $\alpha_{20} = 0.00393$  or  $\alpha_0 = 0.00427$ . The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 michromcm., and for mass resistivity is 0.000597 ohm (meter, gram).

The density of 8.89 grams per cubic centimeter at 20° C., is equivalent to 0.32117 pounds per

cubic inch.

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity copper:

Copper 99.91%	Sulphur 0.002%
Silver	Iron
Oxygen	Nickel Trace
Arsenic	Lead "
Antimony	Zinc "

The following values are consistent with the data above:

Conductivity at oo C., in c.g.s. electromagnetic units	$62.969 \times 10^{-5}$
Resistivity at o° C., in michroms-cms	1.5881
Density at o° C	8.90
Coefficient of linear expansion per degree C	0.000017
"Constant mass" temperature coefficient of resistance at o° C	0.00427

The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at 20° C	0.0764 436.
" " " (mile, pound) at 20° C	436.
Mass per cent conductivity	200.7%
Volume resistivity, in michrom-cm, at 20° C	2.828
" " in microhm-inch at 20° C	1.113
Volume per cent conductivity	61.0%
Density, in grams per cubic centimeter	2.70
Density, in pounds per cubic inch	0.0975
age chemical content of commercial aluminum wire is	
Aluminum	99.57%
Silicon	0.29
Iron	0.14

SMITHSONIAN TABLES.

The avera

## TABLES 408, 409. COPPER WIRE TABLES.

TABLE 408. - Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

Ohms (meter, gram) at 20° C.	Per cent conductivity.	αο	<b>a</b> 15	a ₂₀	a ₂₅	<b>a</b> 30	a ₅₀
0.161 34 .159 66	95% 96%	0.004 03	0.003 80	0.co3 73 .oo3 77	0.003 67	0.003 60 .003 64	o.co3 36 .oo3 39
.158 o2 .157 53	97 % 97·3 %	.004 13	.003 89	.003 81	.003 74	.003 67 .003 68	.003 42
.156 40 .154 82	98% 99%	.004 17 .004 22	.003 93	.003 85	.003 78	.003 71 .003 74	.003 45
. <b>153 28</b> .151 76	100%	.004 27	.004 01	.003 93 .00 397	.003 85	.003 78	.003 52

NOTE. — The fundamental relation between resistance and temperature is the following:

$$R_t = R_{t_1}(t + \alpha_{t_1}[t - t_1]),$$

where  $a_{t_1}$  is the "temperature coefficient," and  $t_1$  is the "initial temperature" or "temperature of reference."

The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., it per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}.$$

TABLE 409. - Reduction of Observations to Standard Temperature. (Copper.)

	Correcti	ons to reduce	Resistivity t	o 20° C.	Factors to re	educe Resista	nce to 20° C.	
Temper- ature C.	Ohm (meter, gram).	Microhm—	Ohm (mile, pound).	Microhm— inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
0	+0.011 94	+0.1361	+ 68.20	+0.053 58	1.0816	1.0834	1.c853	0
5	+ .008 96	+ .1021	+ 51.15	+ .040 18	1.0600	1.0613	1.o626	5
10	+ .005 97	+ .0681	+ 34.10	+ .026 79	1.0392	1.0401	1.o409	10
11	+ .005 37	+ .0512	+ 30.69	+ .024 11	1.0352	1.0359	1.0367	11
12	+ .004 78	+ .0544	+ 27.28	+ .021 43	1.0311	1.0318	1.0325	12
13	+ .004 18	+ .0476	+ 23.87	+ .018 75	1.0271	1.0277	1.0283	13
14	+ .003 58	+ .0408	+ 20.46	+ .016 C7	1.0232	1.0237	1.0242	14
15	+ .002 99	+ .0340	+ 17.05	+ .013 40	1.0192	1.0196	1.0200	15
16	+ .002 39	+ .0272	+ 13.64	+ .010 72	1.0153	1.0156	1.0160	16
17	+ .001 79	+ .0204	+ 10.23	+ .008 04	1.0114	1.0117	1.0119	17
18	+ .001 19	+ .0136	+ 6.82	+ .005 36	1.0076	1.0078	1.0079	18
19	+ .000 60	+ .0068	+ 3.41	+ .002 68	1.0038	1.0039	1.0039	19
20 21 22	000 60 001 19	0068 0136	- 3.41 - 6.82	002 68 005 36	1.0000 0.9962 .9925	1.0000 c.9962 .9924	1.0000 0.9961 .9922	20 21 22
23	001 79	0204	- 10.23	008 04	.9888	.9886	.9883	23
24	002 39	0272	- 13.64	010 72	.9851	.9848	.9845	24
25	002 99	0340	- 17.05	013 40	.9815	.9811	.9807	25
26	003 58	0408	- 20.46	016 07	.9779	.9774	.9770	26
27	004 18	0476	- 23.87	018 75	.9743	.9737	.9732	27
28	004 78	0544	- 27.28	021 43	.9707	.9701	.9695	28
30 35	005 37 005 97 008 96	0612 0681 1021	- 30.69 - 34.10 - 51.15	024 11 026 79 040 18	.9672 .9636 .9464	.9665 .9629 •9454	.9658 .9622 •9443	30 35
40	011 94	1361	- 68.20	053 58	.9298	.9285	.9271	40
45	014 93	1701	- 85.25	066 98	.9138	.9122	.9105	45
50	017 92	2042	- 102.30	080 37	.8983	.8964	.8945	50
55 60 65	020 90 023 89 026 87 020 86	2382 2722 3062	-119.35 -136.40 -153.45	093 76 107 16 120 56	.8689 .8549	.8665 .8523	.8791 .8642 .8497	55 60 65
70 75	032 85 032 85	3403 3743	-170.50 -187.55	133 95 147 34	.8281	.8252	.8223	70 75

## WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.). English Units.

Gage	Diameter	Cross-Sect	ion at 20° C.		Ohms per	000 Feet.*	
No.	in Mils. at 20° C.	Circular Mils.	Square Inches.	(=32° F)	20° C (=68° F)	(=122° F)	75° C (= 167° F)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
	364.8	133 100.	.1045	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
1	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162.0	26 250.	.020 62	.3640	.3951	.4416	.4805
7	144.3	20 820.	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
10 11	114.4 101.9 90.74	13 090. 10 380. 8234.	.010 28 .008 155 .006 467	.7299 .9203 1.161	.7921 .9989 1.260	.8855 1.117 1.408	.9633 1.215 1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3 ² 57·	.002 558	2.934	3.184	3.560	3.873
16	50.82	2 583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666 .	5.064	5.660	6.158
18	40.30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
21	28.45	810.1	.000 636 3	11.80	12.80	14.31	1 5.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4		29.82	32.37	36.18	39.36
26	15.94	254.1		37.61	40.81	45.63	49.64
27	14.20	201.5	.000 158 3	47·42	51.47	57·53	62.59
28	12.64	159.8		59.80	64.90	72·55	78.93
29	11.26	126.7		75·40	81.83	91.48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8,928	79.70	.000 062 60	119.9	130.1	145.5	158.2
32	7,950	63.21	.000 049 64	151.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260.9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8	659.6	737.4	802.2
39	3.531	12.47	.000 009 793	766.4	831.8	929.8	1012.
40	3.145	9.888		966.5	1049.	1173.	1276.

^{*} Resistance at the stated temperatures of a wire whose length is 1000 feet at 20° C.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

					Feet per	Ohm.*	
Gage No.	Diameter in Mils, at 20° C.	Pounds per 1000 Feet.	Feet per Pound.	°° C (=32° F)	20° C (=68° F)	50° C (=122° F)	(=167° F)
0000	460.0	640.5	1.561	22 140.	20 400.	18 250.	16 780.
	409.6	507.9	1.968	17 560.	16 180.	14 470.	13 300.
	364.8	402.8	2.482	13 930.	12 830.	11 480.	10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	836 <b>7.</b>
I	289.3	253.3	3.947	87 58.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	101.9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40.30	4.917	203.4	170.0	1 56.6	140.1	128.8
19	35.89	3.899	256.5	134.8	1 24.2	111.1	102.1
20	31.96	3.092	3 ² 3.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	0.9699	1031.	33·53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
30	10.03	.3042	3287.	10.52	9.691	8.669	7.968
31	8.928	.2413	4145.	8.341	7.685	6.875	6.319
32	7.950	.1913	5227.	6.614	6.095	5.452	5.011
33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1203	8310.	4.160	3.833	3.429	3.152
35	5.615	.095 42	10 480.	3.299	3. <b>0</b> 40	2.719	<b>2.</b> 499
36	5.000	.07 5 68	13 210.	2.616	2.411	2.156	1.982
37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
39	3.531 3.145	.037 74	26 500. 33 410.	1.305	1.202 0.9534	0.8529	0.9886 .7840

[•] Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	Diameter		Ohms per Pound.		Pounds per Ohm.
Gage No.	in Mils at 20° C.	°° C. (=32° F.)	20° C. (=68° F.)	50° C. (= 122° F.)	20° C. (=65° F.)
0000	460.0	0.000 070 51	0.000 076 52	0.000 085 54	13 070.
	409.6	.000 1121	.000 1217	.000 1360	8219.
	364.8	.000 1783	.000 1935	.000 2163	5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	.001 237	.001 383	808.6
4	204.3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
. 6 7 8	162.0	.004 581	.004 972	.005 558	201.1
	144.3	.007 284	.007 905	.008 838	126.5
	128.5	.011 58	.012 57	.014 05	79.55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	31.47
11	90.74	.046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.2271	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	·4733	.5136	.5742	1.947
17	45.26	·7525	.8167	.9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
2 I	28.46	4.810	5.221	5.836	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53.06	59.32	.018 85
27	14.20	77·74	84.37	94.32	.011 85
28	12.64	123.6	134.2	1 50.0	.007 454
29	11.26	196.6	213.3	238.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539.3	602.9	.001 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128 <b>.</b>	.000 1824
37	4.453	8032.	8717.	9744.	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	

## WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

		0 0 :		Ohms per	Kilometer.*	
Gage No.	Diameter in mm. at 20° C.	Cross Section in mm. ² at 20° C.	₀° C.	20° C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40	85.03	.1868	.2028	.2267	.2466
00	9.266	67.43	.2356	.2557	.2858	.3110
0	8.252	53.48	.2971	.3224	.3604	.3921
I	7.348	42.41	.3746	.4066	•4545	.4944
2	6.544	33.63	.4724	.5127	•5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
10	2.906	6.634	2.395	2.599	2.905	3.161
	2.588	5.261	3.020	3.277	3.663	3.985
	2.305	4.172	3.807	4.1 <b>3</b> 2	4.619	5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7·345	7.99 <b>1</b>
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.650	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.42	25.48
19	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
21	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	·3255	48.80	52.96	59.21	64.41
23	• <b>5</b> 733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	.4547	.1624	97.85	106.2	118.7	129.1
26	.4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625.5	678.8	758.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994.5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.006 318	2514.	2729.	3051.	3319.
40	.079 87		3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

# WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

Gage	Diameter	Kilograms	Meters		Meters	per Ohm.*	
No.	in mm. at 20° C.	per Kilometer.	per Gram.	₀° C.	20° C.	50° C.	75° C.
0000	11.68	953-2	0.001 049	6749.	6219.	5563.	5113.
	10.40	755-9	.001 323	5352.	4932.	4412.	4055.
	9 266	599- <b>5</b>	.001 668	4245.	3911.	3499.	3216.
0	8.252	475.4	.002 103	3366.	3102.	2774.	2550.
I	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547.3	503.1
8	3.264	74.37	.013 45	526.6	485.2	434.0	399.0
9	2.906	58.98	.016 96	417.6	384.8	344.2	316.4
10	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
11	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95.71	85 62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
2 I	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	·3455	20.49	18.88	16.89	15.53
23	·5733	2.295	·4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11 87	10.62	9.764
25	·4547	1.443	.6928	10.22	9.417	8.424	7.743
26	·4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	• <b>5</b> 709	1.752	4 042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.22 58	4.429	1.599	1.473	1.318	1.211
34	.1601	.1791	5.584	1.268	1.168	1.045	0.9606
35	.1426	.1420	7.042	1.006	0.9265	0.8288	.7618
36	.1270	.1126	8.879	0.7974	•7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	•5827	.5212	.4791
38	.1007	.070 83	14.12	.5015	•4621	.4133	.3799
39	.089 69	.056 17	17.80	·3977	.3664	.3278	.3013
40	.079 87	.044 54	22.45	·3154	.2906	.2600	.2390

*Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

		1			
Gage	Diameter in mm.		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	0° C.	20° C.	50° C.	20° C.
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
I	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
11 10	2.906 2.588 2.305	.040 60 .064 56 .1026	.044 06 .070 07 .1114	.049 26 .078 33 .1245	22 690. 14 27 <b>0.</b> 8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	1404.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349·3
19	0.9116	4.194	4.552	5.089	219·7
20	.8118	6.670	7.238	8.092	138·2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	·5733	26.81	29.10	32.53	34.36
24	.5106	42.63	46.27	51.73	21.61
25	.4547	67.79	73.57	82.25	13.59
26	.4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13 <b>510.</b>	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770 <b>.</b>	48590.	54310.	.020 58
40	.079 87	71180.	77260.	86360.	.012 94

#### Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

### American Wire Gage (B. & S.). English Units.

		Cross	Section.	1			
Gage No.	Diameter in Mils.	Circular Mils.	Square Inches.	Ohms per 1000 Feet.	Pounds per 1000 Feet.	Pounds per Ohm.	Feet per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400.
	410.	168 000.	.132	.101	154.	1520.	9860.
	365.	133 000.	.105	.128	122.	957•	7820.
0	325.	106 000.	.0829	.161	97.0	602.	6200.
1	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94. <b>2</b>	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.1	37.2	1540.
7	144.	20 800.	.0164	.817	19.1	23.4	1220.
8	128.	16 500.	.013 <b>0</b>	1.03	15.2	14.7	970.
9	114.	13 100.	.0103	1.30	12.0	9.26	770.
10	102.	10 400.	.008 15	1.64	9.55	5.83	610.
11	91.	8230.	.006 47	2.07	7.57	3.66	484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.911	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51·	2580.	.002 03	6.59	2.37	.360	152.
17	45·	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	•745	.0355	47.6
22	25.3	642.	.000 505	26.5	•591	.0223	37.8
23	22.6	509.	.000 400	33.4	•468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.	.147	.001 38	9.39
29	11.3	127.	.000 099 5	134.	.117	.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8		428.	.0365	.000 085 4	2.34
35	5.6	31.5		540.	.0290	.000 053 7	1.85
36 37 38	5.0 4.5 4.0	25.0 19.8 15.7	.000 019 6	681. 858. 1080.	.0230 .0182 .0145	.000 033 8 .000 021 2 .000 013 4	1.47 1.17 0.924
39 40	3.5 3.1	12.5 9.9	.000 009 79	1360. 1720.	.0115	.000 008 40	·733 ·581

## Hard-Drawn Aluminum Wire at 20° C.

#### American Wire Gage (B. & S.) Metric Units.

Ga N	o.	Diameter in mm.	Cross Section in mm. ²	Ohms per Kilometer.	Kilograms per Kilometer.	Grams per Ohm.	Meters per Ohm.
0	000	11.7 10.4 9.3	107. 85.0 67.4	0.264 - 333 -419	289. 230. 182.	1 100 000. 690 000. 434 000.	3790. 3010. 2380.
	O I 2	8.3 7.3 6.5	53.5 42.4 33.6	•529 .667 .841	144. 114. 90.8	273 000. 172 000. 108 000.	1890. 1500. 1190.
	3 4 5	5.8 5.2 4.6	26.7 21.2 16.8	1.06 1.34 1.69	72.0 57.1 45.3	67 900. 42 700. 26 900.	943. 748. 593.
	6 7 8	4.I 3.7 3.3	13.3 10.5 8.37	2.13 2.68 3.38	35.9 28.5 22.6	16 900. 10 600. β680.	470. 373. 296.
	9	2.91 2.59 2.30	6.63 5.26 4.17	4.26 5.38 6.78	17.9 14.2 11.3	4200. 2640. 1660.	235. 186. 148.
1 7	13	2.05 1.83 1.63	3.31 2.62 2.08	8.55 10.8 13.6	8.93 7.08 5.62	1050. 657. 413.	117. 92.8 73.6
	5 6 7	1.45 1.29 1.15	1.65 1.31 1.04	17.1 21.6 27.3	4.46 3.53 2.80	260. 164. 103.	58.4 46.3 36.7
1	8 9	1.02 0.91 .81	0.823 .653 .518	34·4 43·3 54·6	2.22 1.76 1.40	64.7 40.7 25.6	29.I 23.I 18.3
2	3	.72 .64 ·57	.411 .326 .258	68.9 86.9 110.	1.11 0.879 .697	16.1 10.1 6.36	14.5 11.5 9.13
2	5 6	.51 .45 .40	.205 .162 .129	138. 174. 220.	·553 ·438 ·348	4.00 2.52 1.58	7.24 5.74 4.55
2 2 2		.36 .32 .29	.102 .0810 .0642	277. 349. 440.	.276 .219 .173	0.995 .626 ·394	3.61 2.86 2.27
3 3 3	I	.25 .227 .202	.0509 .0404 .0320	555· 700. 883.	.138 .109 .0865	.248 .156 .0979	1.80 1.43 1.13
3.3.3	5	.180 .160 .143	.0254 .0201 .0160	1110. 1400. 1770.	.0686 .0544 .0431	.0616 .0387 .0244	0.899 .712 .565
3333	6 7 8	.127 .113 .101	.0127 .0100 .0080	2230. 2820. 3550.	.0342 .0271 .0215	.0153 .00963 .00606	.448 •355 .262
39	9	.090	.0063	4480. 5640.	.0171 .0135	.003 81	.223

## TABLE 414. - Ratio of Alternating to Direct Current Resistances for Copper Wires.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

millimeters.	Diameter of wire in		Frequency $f =$									
O.I		60	100	1000	10,000	100,000	1,000,000					
20. 1.044 1.120 2.756 8.10 25. 1.105 1.247 3.38 10.1 40. 1.474 1.842 5.24 17.4	0.1 0.25 0.5 1.0 2.0 3. 4. 5. 7.5 10. 15. 20.	1.001 1.003 1.016 1.044 1.105	*I.001 I.002 I.008 I.038 I.120 I.247	1.001 1.006 1.021 1.047 1.210 1.503 2.136 2.756 3.38	1.008 1.120 1.437 1.842 2.240 3.22 4.19 6.14 8.10	*I.oot I.oo3 I.o47 I.5o3 2.756 4.oo 5.24 6.49 7.5o 12.7 I8.8 25.2 28.3	*I.00I I.008 I.247 2.240 4.19 8.10 I2.0 I7.4 I9.7 29.7 39.I					

Values between 1.000 and 1.001 are indicated by *1.001.

The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.

The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table

by taking it as proportional to  $d\sqrt{J/\rho}$  where d= diameter, J the frequency and  $\rho$  the resistivity. If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 415. — Maximum Diameter of Wires for High-frequency Alternating-to-direct-current Resistance Ratio of 1.01.

Frequency ÷ 106	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave-length, meters	3000	1500	750	500	375	300	250	200	150	100
Material.				D	iameter i	n centim	eters.			
Copper Silver Gold Platinum Mercury Manganin Constantan German silver Graphite. Carbon Iron μ = 1000 μ = 500. μ = 100.	0.0345 0.0420 0.1120 0.264 0.1784 0.1892 0.1942 0.765 1.60 0.00263 0.00373	0.0244 0.0297 0.0793 0.187 0.1261 0.1337 0.541 1.13 0.00186 0.00264	0.0172 0.0210 0.0560 0.132 0.0892 0.0946 0.0970 0.383 0.801	0.0729 0.0772 0.0792 0.312 0.654 0.00108	0.0936 0.0631 0.0664 0.0692 0.271 0.566 0.00094 0.00132	0.0598 0.0614 0.242 0.506 0.00083 0.00118	0.0099 0.0121 0.0323 0.0763 0.0515 0.0546 0.0560 0.221 0.462	0.0089 0.0108 0.0290 0.0683 0.0461 0.0488 0.0500 0.197 0.414 0.00068	0.00084	0.00068

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1918.

#### ELECTROCHEMICAL EQUIVALENTS.

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 66.404 coulombs or 26.804 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of 0.0011800 gram sec⁻¹ amp⁻¹. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.	Element.	Change of valency.	Mg per coulomb.	Coulombs per mg	Grams per amp hour.
Aluminum	3	0.0036	10.682	0.3370	Nickel	I	0.6081	1.6444	2.1892
Chlorine	I	0.3675	2.72I	1.3220	64	2	0.3041	3.289	1.0046
**	3	0.1225	8.164	0.4410	44	3	0.2027	4.933	0.7208
"	5	0.0735	13.606	0.2646	Oxygen	2	0.08201	12.062	0.2085
"	7	0.0525	19.05	0.1800	14	4	0.04145	24.123	0.1492
Copper	X	0.6588	1.518	2.3717	Platinum	2	1.0115	0.9887	3.641
	2	0.3294	3.036	1.1858	44	4	0.5057	1.9773	I.82I
Gold	I	2.044	0.4893	7-357	44	6	0.3372	2.966	1.214
"	3	0.6812	1.468	2.452	Potassium	I	0.4052	2.468	1.459
Hydrogen	r	0.010459		0.037607	Silver	I	1.1180	0.89445	4.0248
Lead	r	2.1473	0.4657	7.7302	Sodium	I	0.2384	4.195	0.858I
	2	1.0736	0.9314	3.8651	Tin	2	0.6151	1.626	2.214
	4	0.5368	1.8628	1.9326		4	0.3075	3.252	1.107
Mercury	1	2.0789	0.4810	7.484	Zinc	2	0.3387	2.952	1.2194
"	2	1.0394	0.9620	3.742					

The electrochemical equivalent for silver is 0.00111800 g sec-1 amp-1. (See p. xxxvii.)

For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/96494
g/sec/amp. or g/coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013150 (1913).
For a unit change of valency for the diatomic gases Br2, Cl2, F2, H2, N2 and O2 there are required

8.619 coulombs/cm³ o° C, 76 cm (0.1160 cm³/coulomb) 2.394 ampere-hours/l, o° C, 76 cm (0.4177 l/ampere-hour).

Note. - The change of valency for O2 is usually 2, etc.

#### CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electro-chemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—
Let  $K_{18} = \text{conductivity}$  of the solution at 18° C. relative to mercury at 0° C.  $K_{18}^{w} = \text{conductivity}$  of the solvent water at 18° C. relative to mercury at 0° C.

Then  $K_{18} = K_{18}^{w} = K_{18} = \text{conductivity}$  of the electrolyte in the solution measured.

 $\frac{k_{18}}{k_{18}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific$ molecular conductivity."

#### TABLE 417. — Value of $k_{18}$ for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCI	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.00001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

#### TABLE 418. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grains per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	772	Temp.	Density.	Salı dissolved.	Grams per liter.	777	Temp. C.	Density.
KCl	74·59 53·55 58·50 42·48 104·0 68·0 165·9 101·17 85·08 169·9 65·28 61·29 98·18	I.0 I.0009 I.0 I.0 I.0 I.012 I.0 I.0 I.0 I.0 I.0 I.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7 - 18.3 18.6	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	K ₂ SO ₄	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014 1.0006	18.9 18.6 18.6 18.6 18.6 18.2 18.3 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

## SPECIFIC MOLECULAR CONDUCTIVITY $\mu$ : MERCURY=108.

Salt dissolved.	m=10	5	3	I	0 5	0.1	.05	.03	•o1
1K ₂ SO ₄	11111	77° 752	827 900 825 572	919 968 907 752	672 958 997 948 839	736 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
½BaCl ₂	1111	- - - 351	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
½ZnSO ₄	- - 60 -	82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 30 - 660 0.5	- 240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600 610 148 423 0.5	1420 1470 160 990 2.4	2010 2070 170 1314 3.3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3 ² 44 3 ² 25 430 1986	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	.001	.0006	.0002	10001	.00006	•00002	100001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1130 1162 1176 1157 1140	1181 1185 1197 1180 1173	1207 1193 1203 1190 1180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031 1068 982 740 1033	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
1ZnSO ₄	744 773 933 939 976	861 881 980 979 998	91 <b>9</b> 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
HCl	3438 3421 858 2141 116	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

#### LIMITING VALUES OF $\mu$ . TEMPERATURE COEFFICIENTS.

#### TABLE 420.- Limiting Values of µ.

This table shows limiting values of  $\mu=rac{k}{m}$  .108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	)AE
½K ₂ SO₄ .	1280	₹BaCl₂ .	1150	₹MgSO4 .	1080	½H ₂ SO ₄ .	3700
KCl	1220	⅓KClO₃ .	1150	₹Na ₂ SO ₄ .	1060	нсі	3500
кі	1220	₹BaN2O6 .	1120	₹ZnCl	1040	HNO ₃	3500
NH ₄ Cl	1210	₹CuSO₄ .	1100	NaCl	1030	1/3 H ₃ PO ₄ .	1100
KNO3	1210	AgNO3 .	1090	NaNO3 .	980	кон	2200
-	-	½ZnSO₄ .	1080	$K_2C_2H_3O_2$	940	₹Na ₂ CO ₃ .	1400

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H₃PO₄ in dilute solution seems to approach a monobasic acid, while H₂SO₄ shows two maxima, and like H₃PO₄ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

## TABLE 421. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.o. gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salı.	Temp. Coeff.
KCI	0.0221	кі	0.0219	½K2SO4 .	0.0223	₹K ₂ CO ₃	0.0249
NH4C1	0.0226	KNO3	0.0216	₹Na ₂ SO ₄ .	0.0240	$\frac{1}{2}$ Na ₂ CO ₃	0.0265
NaCl	0.0238	NaNO3	0.0226	½Li₂SO₄ .	0.0242	кон	
LiCl	0.0232	AgNO3	0.0221	₹MgSO4 .	0.0236	HCl	0.0194
∄BaCl₂	0.0234	₹Ba(NO ₃ ) ₂	0.0224	₹ZnSO3 .	0.0234	$\frac{\text{HNO}_3}{\frac{1}{2}\text{H}_2\text{SO}_4}$	0.0162
½ZnCl ₂	0.0239	KClO ₃	0.0219	½CuSO₄ .	0.0229	177.50	
⅓MgCl ₂ .	0.0241	KC ₂ H ₃ O ₂ .	0.0229	-	-	$\begin{cases} \frac{1}{2} H_2 SO_4 \\ \text{for } m = .001 \end{cases}$	0.01 59

#### THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

# Concentration in gram equivalents

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter

Substance.	Concen- tration.		Equiv	alent co	nductanc	e at the	follow	ing °C	tempera	itures.	
Substance.	Con	180	25°	500	75°	1000	1280	1560	2180	281°	306°
Potassium chloride .	0	130.1		(232.5)	(321.5)	414	(519)	625	825	1005	1120
" " .	2	126.3	146.4	-	-	393	-	588	779	930	1008
" " .	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
" " .	80	113.5	- "	-	_	342	-	498	638	723	720
" " .	100	112.0	129.0	194.5	264.6	336	415	490			
Sodium chloride	0	109.0	-	-	-	362	-	555	760	970	1080
" "	2	105.6	_	-	_	349	-	534	722	895	955 860
" "	10	102.0	_	-	_	336		511	685	820	
" "	80	93 5	-		_	301	_	450	500	674	680
	100	92.0	-	-	-	296	_	442			
Silver nitrate	0	115.8	_	- 1	-	367	-	570	780	965	1065
" "	2	112.2	_	-	-	353	-	539	727	877	935
" " "	10	108.0	_	-	_	337	_	507	673	790	818
" "	20	105.1	-		_	326	-	488	639	68o	680
" "	40 80	96.5	_		_	312	_	462	599		
" "	100	94.6	_			294 289		432	552	614	604
Sodium acetate	100	78.I				285	_	450	660		004
souldin acctate	2	74.5	_			268		450 421	578	_	924 801
" "	10	71.2				253		396	5/0	_	702
46 44	80	63.4	_		_	221	_	340	452		102
Magnesium sulphate	0	I14.1	_		_	426	_	690	1080		
" "	2	94.3	~.	_	_	302		377	260		
" "	10	76.I	_	_	_	234	_	24I	143		
	20	67.5	_	_	_	190	_	195	110		
" "	40	59.3	-	_	_	160		158	88		
" "	Šo.	52.0	_		-	136	_	133	75		
" " .	100	49.8	-	-	_	130	-	126	. , ,		
" " .	200	43.1	_	-	-	110	_	100			
Ammonium chloride	0	131.1	1 52.0	-	- 1	(415)	-	(628)	(841)	-	(1176)
41 14	2	126.5	146.5	-	- 1	399	-	601	801	_	1031
" "	10	122.5	141.7	-	-	382	-	573	758	_	925 828
" "	30	118.1	-	-	-		_	-	-	-	828
Ammonium acetate.	0	(99.8)	-	-	-	(338)	-	(523)			
" "	10	91.7	-	-	-	300	-	456			
" " .	25	88.2	-	-	~	286	-	426			

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

# THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Substance.	Concen- tration.		Equiv	alent co	nductano	e at th	e follow	ring ° C	tempera	itures.	
Substance.	Con	180	250	500	75°	1000	1280	1560	2180	2810	306°
Barium nitrate	0 2 10 40 80	116.9 109.7 101.0 88.7 81.6	- - - -			385 352 322 280 258	11111	600 536 481 412 372	840 715 618 507 449	828 658 503 430	1300 824 615 448
Potassium sulphate	100 0 2 10 40 80	79.1 132.8 124.8 115.7 104.2 97.2	-			249 455 402 365 320 294	-	715 605 537 455 415	1065 806 672 545 482	1460 893 687 519 448	1725 867 637 466 396
Hydrochloric acid . " "	100 0 2 10 80 100	95.0 379.0 373.6 368.1 353.0 350.6	-			286 850 826 807 762 754 826	- - - -	1085 1048 1016 946 929	1265 1217 1168 1044 1006	1380 1332 1226 1046	1424 1337 1162 862
Nitric acid	0 2 10 50	377.0 371.2 365.0 353.7 346.4	421.0 413.7 406.0 393.3 385.0	570 559 548 528 516	706 690 676 649 632	826 806 786 750 728	945 919 893 845 817	1047 1012 978 917 880	(1230) 1166 -	-	(1380) 1156
Sulphuric acid	0 2 10 50	383.0 353.9 309.0 253.5	(429) 390.8 337.0 273.0	(591) 501 406 323	(746) 561 435 356	891 571 446 384	(1041) 551 460 417	536 481 448	563 533 502	-	(2030) 637
Potassium hydrogen sulphate Phosphoric acid	100 2 50 100 0 2 10 50	233·3 455·3 295·5 263·7 338·3 283·1 203·0 122·7	251.2 506.0 318.3 283.1 376 311.9 222.0 132.6	300 661.0 374.4 329.1 510 401 273 157.8	336 754 403 354 631 464 300 168.6	369 784 422 375 730 498 308 168	404 773 446 402 839 508 298 158	435 754 477 435 930 489 274 142	483		474*
Acetic acid	100 0 10 30 80	96.5 (347.0) 14.50 8.50 5.22	104.0	122.7 - - -	129.9	(773) 25.1 14.7 9.05	-	108 (980) 22.2 13.0 8.00	(1165) 14.7 8.65 5.34 4.82	_	(1268)
Sodium hydroxide	100 0 2 20 50	4.67 216.5 212.1 205.8 200.6		-	-	8.10 594 582 559 540	1111	835 814 771 738 847	4.82 1060 930 873	_	1.57
Barium hydroxide . " "	0 2 10 50	222 215 207 191.1 180.1	256 - 235 215.1 204.2	389 359 342 308 291	(520) 4 449 399 373	645 591 548 478 443	(760) 664 549 503	722 593 531			
Ammonium hydrox-	0 10 30	(238) 9.66 5.66 3.10	(271)	(404) - 5·35	(526) - - 6.70	(647) 23.2 13.6 7.47	(764) - -	(908) 22.3 13.0 7.17	(1141 15.6 4.82		(1406)
	100	3.10	3.02	3.33	0.70	7.47		7.27	4.02		1.33

^{*} These values are at the concentration 80.0.

# THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

	Concen-	F	Equivalent	t conduct	ance at t	he follow	ring ° C	temperatu	re.
Substance.	tration.	00	180	250	50°	75°	1000	1280	1560
Potassium nitrate	0 2	80.8 78.6	126.3	145.1	219	299 289.9	384	485	580
	12.5	75.3	117.2	134.9	202.9	276.4	370.3	460.7	551 520.4
ec (1	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
	100	67.2	104.5	120.3	180.2	244.1	308.5	379.5	447-3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
" " , , ,	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
· · · · · · · · · · · · · · · · · · ·	12.5	69.3	111.1	129.2	199.1	275.1	354.1	438.8	524.3
" "	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
	100	59.3 55.8	94.6	109.5	167	227.5	288.9	353.2	409.7
Calcium nitrate	200	70.4	88.4	102.3 130.6	155	210.9 282	265.1 369	321.9 474	372.1
" "	2	66.5	107.1	123.7	191.9	266.7	346.5	438.4	57.5 529.8
" "	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7
" "	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
	200	48.3	76.7	88.8	135.4 288	184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	159.6	185.5	288	403	527		
" " .	0.5	91.6		171.1	0				
	2.	84.8	137	158.9	243.8	335.2	427.6		
" "	12.5	71 58.2	113.4	131.6	200.3 163.3	271 219.5	340 272.4		
66 66	50 100		93.7 84.9	98.4	148.1	198.1	245		
66 66	200	53 48.8	77.8	90.1	135.7	180.6	222.3		
ee 66	400	45.4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	150	176	277		521		
	2	46.9	75 48.8	86.2	127.5	393 166.2	202.3		1
" "	12.5	30.4 88		56.5	83.1	107	129.8		
Calcium ferrocyanide .	0		146	171	271	386	512		
	2	47.1	75.5	86.2	130				
" "	12.5 50	31 2 24.1	49.9 38.5	57·4 44·4	64.6	81.9			
" "	100	21.0	35.1	44.4	58.4		84.3		
	200	20.6	32.9	37.8	55	73.7 · 68.7	77.5		
	400	20.2	32.2	37.1		67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	54 228	320	420		
" "	0.5	-	120.1	139.4			_		
	2	71	115.4	134.5	210.1	293.8	381.2		
" "	5	67.6	109.9	128.2	198.7	276.5	357.2		
	12.5	62.9	101.8 87.8	118.7	183.6	254.2	326		
11 11	50 100	54·4 50.2	80.8	93.9	157.5	215.5 196.5	273 247.5		
	300	43.5	69.8	81	143.7	167	209.5		
Lanthanum nitrate	0		122.7	142.6	223	313	413	534	651
" "	2	7 <b>5</b> ·4 68.9	110.8	128.9	200.5	279.8	363.5		549
"	12.5	61.4	98.5	114.4	176.7	243.4	311.2	457·5 383.4	447.8
" "	50	54	86. ĭ	99.7	152.5	207.6	261.4	31 5.8	357.7
" "	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
"	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2
								1	

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

SMITHSONIAN TABLES.

# CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 424. - The Equivalent Conductance of the Separate Ions.

Ion.	00	180	250	500	75°	1000	1280	156°
K	40.4	64.6	74·5	115	159	206	263	317
Na	26	43.5	50·9	82	116	155	203	249
NH ₄	40.2	64.5	74·5	115	159	207	264	319
Ag	32.9	54.3	63·5	101	143	188	245	299
\$Ba	33	55 ²	65	104	149	200	262	322
\$Ca	30	51 ²	60	98	142	191	252	312
\$La	35	61	7 ²	119	173	235	312	388
$\begin{array}{c} \text{Cl} & \dots & \dots \\ \text{NO}_3 & \dots & \dots \\ \text{C}_2\text{H}_3\text{O}_2 & \dots & \dots \\ \frac{1}{2}\text{SO}_4 & \dots & \dots \\ \frac{1}{3}\text{C}_6\text{H}_5\text{O}_7 & \dots & \dots \\ \frac{1}{4}\text{Fe}(\text{CN})_6 & \dots & \dots \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 303 275	318 263 211 370 336
Н	240	314	350	465	565	644	722	777
	105	172	192	284	360	439	525	592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 425. - Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per liter.	
t	100h	K _W ×1014	C _H ×10 ⁷	
0	-	0.089	0.30	
18	(0.35)	0.46	0.68	
25	-	0.82	0.91	
100	4.8	48.	6.9	
1 56	18.6	223.	14.9	
218	52.7	461.	21.5	
306	91.5	168.	13.0	

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

# TABLES 426, 427.

## DIELECTRIC STRENGTH.

TABLE 426. - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length. cm.	R = o. Points.	R = 0.25 cm.	R = 0.5 cm.	R=1 cm.	R = 2  cm.	R=3 cm.	$R = \infty$ . Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0	3720 4680 5310 5970 6300 6840 8070 8670 9960 10140 11250 12210	5010 8610 11140 14040 15990 17130 18960 20670 22770 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16650 20070 25830 29850	4500 77770 10560 13140 16470 19380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length.	R = i cm.	R=1.92	R = 5	R = 7.5	R = 10	R=15
0.08 .10 .15 .20	3770 4400 5990 7510 9045	4,380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 •35 •40 •45 •50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16070	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9 1.0	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
1.2 1.4 1.6 1.8 2,0	32400 35850 38750 40900 42950	34100 38850 43400	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

#### DIELECTRIC STRENGTH.

TABLE 428. — Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

cm.	Alter- nt.		Steady por	tentials.		cm.	Alter-	Steady potentials.		
Srark length, cm.	ts.	Ball ele	Ball electrodes.		ctrodes.	Spark length,		Ball electrodes.		
rark	Dull poin nating o	R=1 cm.	R=2.5 cm.	Proje	ction.	park	Dull points. nating curi	R=1 cm.	R=2.5 cm.	
S		K-1 cm.	K=1 cm. K=2.5 cm.		1.5 mm.		ă -	K-1 cm.	K=2.5 cm.	
0.3	_	_	_	_	11280	6.0	61000	_	86830	
0.5	-	17610	17620	-	17420	7.0 8.0	-	52000	_	
0.7	-	-	23050	-	22950	8.0	67000	52400	90200	
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930	
1.2	-	33800	36810	_	36700	12.0	82600	-	93300	
1.5	-	37930	44310	_	44510	14.0	92000	-	94400	
2.0	29200	42320	56000	<b>5</b> 6500	56530	15.0	-	-	94700	
2.5	-	45000	65180	_	68720	16.0	101000	-	101000	
3.0	40000	46710	71200	80400	81140	20.0	119000			
3.5	-	17	75300	_	92400	25.0	140600			
4.0	48500	49100	78600	101700	103800	30.0	165700			
4.5	-	-	81540	-	114600	35.0	190900			
5.0	<b>5</b> 6500	50310	83800		126500					
5.5	_	_	_	_	135700					

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.



The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4-5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths 1.

Pressure. cm. Hg.	l=0.04	<i>l</i> =0.06	<i>l</i> =0.08	<i>l</i> =0.10	<i>l</i> =0.20	<i>l</i> =0 30	<i>l</i> =0.40	<i>l</i> =0.50
2 4 6 10	-	483 582 771	567 690 933	- 648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15 25 35 45	1110 1375 1640	1060 1420 1820 2150	1280 1725 2220 2660	1490 2040 2615 3120	2460 3500 4505 5475	3300 4800 6270 7650	4080 6000 7870 9620	4850 7120 9340 11420
55 65 75	1820 2040 2255	2420 2720 3035	3025 3400 3805	3610 4060 4565	6375 7245 8200	8950 10210 11570	11290 12950 14650	13455 15470 17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-

Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

#### DIELECTRIC STRENGTH.

# TABLE 430. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

Substance.	Kilovolts per cm	Substance.		Kilovolts per cm.	Substance.	Kilovolts per cm.
Ebonite	80-300 450 20 200-300 300-1500 90 80-200 20 30-60 100-200 40-90	Castor "Cottonseed . Lard "Linseed, raw	0.2 mm, I.O " 1.0 " 0.2 " I.O "		Paraffined Varnished	75 350 400 230 450 45-75 160-500 90-130

TABLE 431. - Potentials in Volts to Produce a Spark in Kerosene.

Spark length.		Electrodes Balls of Diam. d.					
mm.	0.5 cm.	ı cm.	2 cm.	3 cm.			
1,0	3800	3400	2750	2200			
.2	7500	6450	4800	3500			
-3	10250	9450	7450	4600			
•4	11750	10750	9100	5600			
.5 .6 .8	13050	12400	11000	6900			
.6	14000	13550	12250	8250			
.8	15500	15100	13850	10450			
1.0	16750	16400	15250	12350			

Determinations of the dielectric strength of the same substance by different observers do not agree well For a discussion of the sources of error see Mościcki, Electrotechn Z. 25, 1904. For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

# TABLES 432, 433.

## DIELECTRIC CONSTANTS.

# TABLE 432. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospheric Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

G.	Temp.	Dielectrie referi	c constant red to	Authority.
Gas.	° C.	Vacuum=1	Air=1	Authority.
Air	0 -	1.000590	1.000000	Boltzmann, 1875. Klemenčič, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, 1901.
Carbon bisulphide	0 100	1.00290 1.00239	1.00231 1.00180	Klemenčič. Bädeker.
Carbon dioxide	0	1.000946	1.000356	Boltzmann. Klemenčič.
Carbon nionoxide	0	1.000690	1.000100	Boltzmann. Klemenčič.
Ethylene	0	1.00131	1.00072	Boltzmann. Klemenčič.
Hydrochloric acid	100	1.00258	1.00199	Bädeker.
Hydrogen	0	1.000264	o.999674 o.999678	Boltzmann. Klemenčič.
Methane	0	1.000944	1.000354	Boltzmann. Klemenčič.
Nitrous oxide (N2O)	0	1.00016	1.00057	Boltzmann. Klemenčič.
Sulphur dioxide	0	1.00993	1.00934 1.00846	Bädeker. Klemenčič.
Water vapor, 4 atmospheres	145	1.00705	1.00646	Bädeker.

## TABLE 433. - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.

If  $D_{\theta}$  = the dielectric constant at the temperature  $\theta^{\circ}$  C.,  $D_{t}$  at the temperature  $t^{\circ}$  C., and  $\alpha$  and  $\beta$  are quantities given in the following table, then

$$D_{\theta} = D_{t} \left[ \mathbf{I} - \alpha(t - \theta) + \beta(t - \theta)^{2} \right].$$

The temperature coefficients are due to Bädeker.

Gas.	a	β	Range of temp. C.	
Ammonia	5.45×10 ⁻⁶	2.59 × 10 ⁻⁷	10-110	
Sulphur dioxide	6.19 × 10 ⁻⁵	1.86 × 10 ⁻⁷	0-110	
Water vapor .	1.4×10 ⁻⁴	-	145	

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that D-1 is approximately proportional to the density.

# DIELECTRIC CONSTANTS (continued).

TABLE 434. - Change of the Dielectric Constant of Gases with the Pressure,

Gas.	Temper- ature, ° C.	Pressure atmos.	Dielectric constant.	Authority.
Air	19	20 40 60 80 100 20 40 60 80 100 120 140 160 180 10 20 40 10	1.0108 1.0218 1.0330 1.0439 1.0548 1.0101 1.0196 1.0294 1.0387 1.0482 1.0579 1.0674 1.0760 1.0845 1.008 1.020 1.060	Tangl, 1907.  """  """  Occhialini, 1905.  """  """  """  Linde, 1895.  """  """  """  Linde, 1895.

TABLE 435. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimeters is denoted by ∞.

Substance.	Temp.	Wave- length, cm.	Dielectric constant.	Author-	Substance.	Temp.	Wave- length, cm.	Dielectric constant.	Author- ity.
Alcohol:	frozen	200 73 % " " " 200 75 53 4 0.4 %	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol:  Methyl  " " " Propyl  " " Acetone  " Acetic acid " " Amyl acetate Amylene	-50 0 +20 17 -120 -60 0 +20 15 -80 15 17 18 15 17 19 16	∞ " " 75 ∞ " " 1200 200 73 ∞ " " " " " " " " " " " " " " " " " "	45.3 35.0 31.2 46.2 46.2 12.3 33.7 24.8 22.2 12.3 33.8 26.6 21.85 20.7 10.3 7.07 6.29 4.81 2.20	1 1 1 2 1 1 1 2 5 5 6 6 2 2 9

References on page 358.

# DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimeters is designated by  $\infty$ .

		317		4 1		1			L I
Substance.	Temp.	Wave- length cm.	Diel. const.	Author-	Substance.	Temp.	Wave- length cm.	Diel. const.	Authority.
Aniline Benzol (benzene) "" Bromine "" Carbon bisulphide "" Chloroform "" Decane Decylene Ethyl ether "" "" "" "" "" "" "" "" "" "" "" "" ""	18 19 23 20 17 18 17 19 80 19 18 20 60 100 140 180 Crit. temp. 192 18 +2 (frozen) 15 15 15 17 18	∞  73  84  ∞  73  ∞  73  ∞  "  "  "  "  "  "  "  "  "  "  "  "	7-316 2.288 2.26 3.18 2.6264 5.2 4.95 1.97 4.68 4.30 3.65 3.12 2.66 2.12 1 53 4.35 1 9.0 62.0 58.5 56.2 39.1 25.4 4.26 1.880 84.7	11 " 2 12 13 2 2 11 10 " 55 " " " 11 13 3 " " " " 14 2 2 6 6 2 " 15 4 4 16 17	Nitrobenzol	(frozen) -10 -5 0 +15 30 18 17 17 20 11 20 14 21 13 - 20 11.4 - 20 20 - 48 - 83 +16 19 18 17 17 18	∞ " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "	9.9 42.0 41.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.11 3.03 2.13 1.92 2.85 3.02 3.17 2.23 2.17 9.68 2.51 2.33 2.37 81.07 80.6 81.7 83.6	1 " " " " " " " " " " " " " " " " " " "
1 Abegg-Seitz, 18 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 8 Francke, 1893. 9 Löwe, 1898.	99•	11 T 12 S 13 T 14 C 15 v.	andolt- urner, chlundt angl, to oolidge Lang, ernst, alvert,	1900. 903. , 1896. 1896.	19 A 20 H 21 S; 9. 22 T 23 H 24 M		ibens, 1 on, 1881 1888. vski, 18	892.	

#### Addenda to Table 440, p. 361, Dielectric Constant of Rochelle Salt:

The polarization of the Rochelle salt dielectric in an electric field is somewhat analogous to the behavior of the magnetization of iron in a magnetic field, showing both saturation and hysteresis. The dielectric constant D depends on the initial and final fields and the hysteresis.

Initial field, 765 v/cm.; Final field, 690 v/cm.; Average D (23° C), 40
765 - 153
765 - 765
0 880
880

The last value may be fair value for ordinary purposes. The electrodes were tinfoil attached with shellac. The field was applied perpendicular to the a axis. Like piezoelectric properties, the dielectric constant varies with different crystals. It depends on the temperature as follows: (field o to 880 v/cm)

 $-70^{\circ}$  C, D = 12;  $-40^{\circ}$ , 14;  $-20^{\circ}$ , 48;  $0^{\circ}$ , 174;  $+20^{\circ}$ , 88;  $+30^{\circ}$ , 52.

(Data from Valesek, University of Minnesota, 1921.)

# DIELECTRIC CONSTANTS OF LIQUIDS (continued).

# TABLE 436. — Temperature Coefficients of the Formula:

$$D_{\theta} = D_{t}[1-\alpha(t-\theta)+\beta(t-\theta)^{2}].$$

Substance.	a	β	Temp.	Authority.
		_		
Amyl acetate	0.0024		-	Löwe.
Aniline	0.00351	_	-	Ratz.
Benzene	0.00106	0.0000087	10-40	Hasenöhrl.
Carbon bisulphide .	0.000966	-	-	Ratz.
" " .	0.000922	0.00000060	20-181	Tangl.
Chloroform	0.00410	0.000015	22-181	"
Ethyl ether	0.00459		_	Ratz.
Methyl alcohol	0.0057	_	-	Drude.
Oils: Almond	0.00163	0.000026	-	Hasenöhrl.
Castor	0.01067	_	-	Heinke, 1896.
Olive	0.00364	_	-	
Paraffine	0.000738	0.0000072	_	Hasenöhrl.
Toluene	0.000921	_ ′	0-13	Ratz.
"	0.000977	0.00000046	20-181	Tangl.
Water	0.004474	_ "	5-20	Heerwagen.
"	0.004583	0.0000117	0-76	Drude.
"	0.00436		4-25	Coolidge.
Meta-xylene	0.000817	_	20-181	Tangl.

(See Table 433 for the signification of the letters.)

# TABLE 437 .- Dielectric Constants of Liquefied Gases.

A wave-length greater than 10000 centimeters is designated by  $\infty$ .

Substance.	Temp.	Wave- length cm.	Dial. constant.	Authority.	Substance.	Temp.	Wave- length cm.	Dial. constant.	Authority.
Air	-191 " -34 14 -5 0 +10 +15 -60 -20 0 +14 23 21 10 50 90	∞ 75 75 130	1.432 1.47-1.50 21-23 16.2 1.608 1.588 1.540 1.526 2.150 2.030 1.970 1.940 2.08 1.88 2.52 about 95 5.93 4.92 3.76	1 2 3 4 5 5 " " " " " " 6 6 4 7 7 " 6 6 " " "	Nitrous oxide $N_2O$	-88 -5 +5 +15 -182 " 14.5 20 40 60 80 100 120 140 154.2	∞       	1.938 1.630 1.578 1.520 1.491 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1	8 5 9 8 4 6

2 Bahn-Kiebitz, 1904. 3 Goodwin-Thompson, 1899.

5 Linde, 1895. 6 Eversheim, 1904.

8 Hasenöhrl, 1900.

9 Fleming-Dewar, 1896.

TABLE 438. — Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constants.

Turner.			Dru	de.		Nernst.	
Substance.	Diel. const. at $18^{\circ}$ . $\lambda = \infty$ .	Aceto	one in benzene	at 19 ⁰ . λ =	75 cm.	water a	cohol in t 19.5°. ∞.
Benzene	2.288	Per cent by weight.	Density 160.	Dielectric constant.	Temp. coefficient.	Per cent	Dielectric
Meta-xylene	2.376 4.36 ⁷ 7.29 ⁸ 10.90 27.71 36.45	0 20 40 60 80 100	0.885 0.866 0.847 0.830 0.813 0.797	2.26 5.10 8.43 12.1 16.2 20.5	0.1% 0.3 0.4 0.5 0.5 0.6	100 90 80 70 60	26.0 29.3 33.5 38.0 43.1
		War	ter in acetone a	it 19°. λ=	75 cm.		
		0 20 40 60 80 100	0.797 0.856 0.903 0.940 0.973 0.999	20.5 31.5 43.5 57.0 70.6 80.9	0.6% 0.5 0.5 0.5 0.5 0.4		

TABLE 439. - Dielectric Constants of Solids.

Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.	Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.
Asphalt			2.68	1		Temp.			
Barium sul-		~	2.00	•	Iodine (cryst.) .	23	75	4.00	2
phate		75	10.2	2	Lead chloride .	23	/3	4.00	-
Caoutchouc .		\2	2.22	3	(powder)	_	66	42	2
Diamond		"	16.5	J	" nitrate .	_	"	16	2
"	_	75	5.50	2	" sulphate .	_	"	28	2
Ebonite	_	· %	2.72	4	" molybde-				
- 46	_	44	2.86		nate	_	66	24	2
"	_	1000	2.55	5	Marble				
Glass*	Density.		33		(Carrara)	_	66	8.3	2
Flint (extra					Mica	_	∞	5.66-5.97	5
heavy) .	4.5	∞	9.90	7	44	-	66	5.80-6.62	15
Flint (very					Madras, brown	-	66	2.5-3.4	16
light)	2.87	66	6.61	7	" green	-	66	3.9-5.5	16
Hard crown	2.48	46	6.96	7	" ruby .	-	66	4.4	16
Mirror	_	46	6.44-7.46	5	Bengal, yellow	-	66	2.8	16
"	-	"	5.37-5.90		" white.	_	"	4.2	16
	-	600	5.42-6.20	8	" ruby .	-		4.2-4.7	16
Lead (Pow-					Canadian am-		66		
ell)	3.0-3.5	∞	5.4–8.0	9	ber	-		3.0	16
Jena		44	0 -		South America	-	46	5.9	16
Boron . Barium .	_	46	5.5-8.1	10	Ozokerite (raw)	_		2.21	I
Borosili-	-		7.8–8.5	10	Paper (tele-		46	2.0	- T-
cate .		66	6	I	phone) " (cable) .	-	66	2.0	17
Gutta percha.	_		6.4-7.7	11	D CC (Casis)		66	2.46	18
dutta perena.	Temp.		3.3-4.9	11	Paramne	Melting point.	66	2.32	19
Ice	— 5	1200	2.85	12	"	44-46	44	2.10	20
"	-18	5000	3.16	13	"	54-56	66	2.14	20
"	-190	75	1.76-1.88	14	"	74-76	66	2.16	20
	1 .30	/3	1.7500			' + ' •			

References on p. 361.

^{*} For the effect of temperature, see Gray-Dobbie, Pr. Roy Soc. 63, 1898; 67, 1900.
" " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

# TABLES 439, 440.

# DIELECTRIC CONSTANTS (continued).

TABLE 439. - Dielectric Constants of Solids (continued).

Substance.	Condi- tion.	Wave- length, cm.	Diel. constant,	Author- ity.	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author- ity.
Paraffine	47.°6 56.°2	61 61 75 80 80   75   	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14 3.10 2.95=3.73 3.67 <b>2.86</b>	21 22 22 22 22 22 23 15 15 15 1 2 23 23 4 24 25 18	Sulphur Amorphous  " Cast, fresh " " Cast, old " Liquid .  Strontium sulphate Thallium carbonate " nitrate Wood Red beech . " Oak "	near melting-point    fibres "	∞ 75 % 75 % 75 75 ∞ 75 ∞ ** ** ** ** ** ** ** ** ** ** ** ** *	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42 11.3 17 16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	1 2 1 18 2 18 2 1 2 2 2
v. Pirani, 2 Schmidt, 3 Gordon, 1 4 Winklema 5 Elsas, 189 6 Ferry, 189 7 Hopkinson 8 Arons-Ru 9 Gray-Dob	1903. 879. ann, 1889 1. 17. n, 1891. bens, 189	)1.	12 Thw 13 Abe	marii ing, gg, 18 n-Kie ke, 18 Vilson	ne-data). 1894. 897. bitz, 1904. 897.	19 B 20 Zi 21 H 22 Se 23 V 24 W	allinger, oltzman letkowsk formell, chlundt, onwiller füllner, onle.	n, 187 <b>5.</b> ii, 190 <b>0.</b> 1902. 1904. -Maso <b>n,</b> 19	007.

## TABLE 440. - Dielectric Constants of Crystals.

Da,  $D\beta$ ,  $D\gamma$  are the dielectric constants along the brachy, macro and vertical axes respectively.

				_						
Substance.	Wave- length,	Diel.	const.	hor-	Substance.	Wave-	D	iel. cons	st.	Author- ity.
Substance.	cm.	Axis.	Axis.	Aut	Substance.	cm.	Da	Dβ	Дγ	Aut
UNIAXIAL: Apatite Beryl  " Calcite  " Dolomite Iceland spar Quartz  " Ruby (Siam) Rutile (TiO2) Tourmaline  " Zircon	75 % " 75 % " 75 75 % " 1000 - 75 % 75	9.50 7.85 7.10 6.05 8.49 8.78 7.80 8.50 4.69 4.38 4.27 13.3 89 7.13 6.75 12.8	7.40 7.44 6.05 5.52 7.56 8.29 6.80 8.00 5.06 4.46 4.34 11.3 1.73 6.54 5.65 12.6	4	RHOMBIC: Aragonite	75	9.14 9.80 6.97 7.65 7.70 25.26 6.09 6.70 3.81 3.65 3.62 6.65 6.25	7.68 10.09 12.20 18.5 23.2 6.05 5.08 6.92 3.97 3.85 3.85	7.13 6.55 7.00 7.70 8.30 19 2 8.28 4.48 8.89 4.77 4.66 4.66 6.30 6.44	4 1 4 1 7 7 7 8 7 1 1
I Schmidt, 2 Starke, 1 3 Curie, 18	897.	97. 5 v. Pirani, 1903. 8 Bolztmann, 1875.								

#### WIRELESS TELECRAPHY.

# Wave-Length in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhenries and Microfarads.

The relation between the free wave-length in meters, the frequency in cycles per second, and the capacity-inductance product in microfarads and microhenries are given for circuits between 1000 and 10,000 meters. For values between 100 and 1000 meters, multiply the columns for n by 10 and move the decimal point of the corresponding LC column two places to the left (dividing by 100); for values between 10,000 and 100,000, divide the n column by 10 and multiply the LC column by 100. The relation between wave-length and capacity-inductance may be relied upon throughout the table to within one part in 200.

Example 1: What is the natural wave-length of a circuit containing a capacity of 0.001 microfarad, and an inductance of 454 microhenries? The product of the inductance and capacity is  $454 \times 0.001 = 0.454$ . Find 0.454 under LC; opposite under meters is 1270 meters, the natural

wave-length of the circuit.

Example 2: What capacity must be associated with an inductance of 880 microhenries in order to tune the circuit to 3500 meters? Find opposite 3500 meters the LC value 3.45; divide this by

830, and the quotient, 0.00397, is the desired capacity in microfarads.

Example 3: A condenser has the capacity of 0.004 microfarad. What inductance must be placed in series with this condenser in order that the circuit shall have a wave-length of 600 meters? From the table, the LC value corresponding to 600 meters is 0.101. Divide this by 0.004, the capacity of the condenser, and the desired inductance is 25.2 microhenries.

	n	LC	Meters.	n	LC	Meters.	n	LC
1000	300,000	0.281	1300	230,800	0.476 0.483	1600 1610	187,500 186,300	0.721
1020	294,100 291,300	0.293	1320 1330	227,300 225,600	0.490	1620 1630	185,200 184,100	0.739
1040	288,400	0.305	1340	223,900	0.505	1640	182,900	0.757
1050	285,700 283,600	0.310	1350 1360	222,200	0.513	1650 166 <b>0</b>	181,800	0.766
1070	280,400	0.322	1370	218,900	0.529	1670 1680	179,600	0.785
1080	277,800 275,200	0.328	1380	217,400 215,800	0.536	1690	178,600	0.794 0.804
1100	272,700	0.341	1400	214,300	0.552	1700	176,500	0.813
1110	270,300	0.347	1410	212,800	0.559	1710	175,400	0.823
1120	267,900 265,500	0.353	1420 1430	211,300	0.567 0.576	1720 1730	174,400	0.833
1140	263,100	0.366	1440	208,300	0.584	1740	172,400	0.852
1150	260,900 258,600	0.372 0.379	1450 1460	206,900 205,500	0.592	1750 1760	171,400	0.862
1170	256,400	0.385	1470	204,100	0.608	1770	169,400	0.882
1190	254,200 252,100	0.392	1480 1490	202,700 201,300	0.617	1780 1790	168,500 167,600	0.892
1200	2 50,000	0.405	I 500	200,000	0.633	1800	166,700	0.912
1210	247,900	0.412	1510	198,700	0.642	1810	165.700	0.912
1220	245,900 243,900	0.419 0.426	1 520 1 530	197,400	0.650 0.659	1820 1830	164,800 163,900	0.933
1230	241,900	0.433	1530	194,800	0.668	1840	163,000	0.953
1250	240,000 238,100	0 440 0.447	1550 1560	193,600 192,300	0.676 0.685	1850 1860	162,200	0.963
1270	236,200	0.454	1570	191,100	0.694	1870	160,400	0.985
1280	234,400 232,600	0.461	1580	189,900 188,700	0.703	1880	159,600 158,700	0.995 1.006

Adapted from table prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

# TABLE 441 (concluded).

# WIRELESS TELECRAPHY.

Wave-Length, Frequency and Oscillation Constant.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1900	1 57,900	1.016	2800	107,100	2.21	7000	42,860	13.8
1910	157,100	1.026	2820	106,400	2.24	7100	42,250	14.2
1920	156,300	1.037	2840	105,600	2.27	7200	41,670	14.6
1930	155,400	1.048	2860	104,900	2.30	7300	41,100	15.0
1940	154,600	1.059	2880	104,200	2.33	7400	40,540	15.4
1950	153,800	1.070	2900	103,400	2.37	7500	40,000	15.8
1960	153,100	1.081	2920	102,700	2.40	7600	39,470	16.3
1970	152,300	1.092	2940	102,000	2.43	7700	38,960	16.7
1980	151,500	1.103	2960	101,300	2.47	7800	38,460	17.1
1990	1 50,800	1.114	2980	100,700	2.50	7900	37,980	17.6
1990						7,500		
2000	150,000	1.126	3000	100,000	2.53	8000	37,500	18.0
2020	148,500	1.148	3100	96,770	2.70	8100	37,040	18.5
2040	147,100	1.171	3200	93,750	2.88	8200	36,590	18.9
2060	145,600	1.194	3300	90,910	3.07	8300	36,140	19.4
2080	144,200	1.218	3400	88,240	3.26	8400	35,710	19.9
2100	142,900	1.241	3500	85.910	3.45	8500	35,290	20 3 20.8
2120	141,500	1.265	3600	83,330	3.65	8600	34,880	20.8
2140	140,200	1.289	3700	81,080	3.85	8700	34,480	21.3
2160	138,900	1.313	3800	78,950	4.06	8800	34,090	21.8
2180	137,600	1.338	3900	76,920	4.28	8900	33,710	22.3
2200	126.400	1.362	4000	75,000	4.50	9000	33,330	22.8
2220	136,400	1.387	4100	73,170		9100	32,970	
2240	135,100	1.412	4200	71,430	<b>4.</b> 73 4.96	9200	32,610	23.3 23.8
2260	1 33,900	1.438	4300	69,770	5.20	9300	32,260	24.3
2280	132,700 131,600	1.463	4400	68.180	5.45	9400	31,910	24.9
2300		1.489	4500	66,670	5.70	9500	31,590	25.4
2320	1 30,400	1.515	4600	65,220	5.96	9500	31,250	25.9
2340	129,300	1.541	4700	63,830	6.22	9700	30,930	26.5
		1.541	4800	62,500	6.49	9800	30,610	
2360	127,100	1.568	4900	61,220	6.76	9900		27.0 27.6
2380	126,000	1.594	4900	01,220			30,310	
2400	125,000	1.621	5000	60,000	7.04	10000	30,000	28.1
2420	124,000	1.648	5100	58,820	7.32			}
2440	129,000	1.676	5200	57,690	7.61			1
2460	121,900	1.703	5300	56,600	7.91 8.21			
2480	121,000	1.731	5400	55,560				
2500	120,000	1.759	5500	54,550	8.51			
2 520	119,000	1.787	5600	53,570	8.83			
2540	118,100	1.816	5700	52,630	9.15			
2 5 6 0	117,200	1.845	5600	51,720	9.47			
2580	116,300	1.874	5900	50,850	9.81			
2600	115,400	1.903	6000	50,000	10.1			
2620	114,500	1.932	6100	49,180	10.5			
2640	113,600	1.962	6200	48,550	10.8			
2660	112,800	1.991	6300	47,620	11.1			
2680	111,900	2.02	6400	46,870	11.5			
2700	111,100	2.05	6500	46,150	11.9			
2720	110,300	2.08	6600	45.450	12.3			
2740	109,500	2.11	6700	44,780	12.6			
2760	108,700	2.14	6800	44,120	13.0			
2780	107,900	2.18	6900	43,480	13.4			
2800	107.100	2.27	7000	12.860	128			
2000	107,100	2,21	7000	42,860	13.8			
		1				"		

# TABLE 442.

# WIRELESS TELECRAPHY.

# Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by E= constant  $(h^2/\lambda^2)$   $I^2$ , where h is the length of the oscillator,  $\lambda$ , the wave-length and I the current at its center. For a flat-top antenna E= 1600  $(h^2/\lambda^2)$   $I^2$  watts; 1600  $h^2/\lambda^2$  is called the radiation resistance.

(h = height to center of capacity of conducting system.)

h= Wave- Length λ	40 Ft.	60 Ft.	So Ft.	100 Ft.	120 Ft.	160 Ft.	200 Ft.	300 Ft.	450 Ft.	600 Ft.	1200 Ft.
m	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohni	ohm	ohm
200	6.0	13.4	24.0	37.0	54.0	95.0					
300	2.7	6.0	10.6	16.5	23.8	42.4					
400 600	0.66	3.4	6.0	9.3	13.4 6.0	23.8 10.6	16.4	37.4	84.0	149.0	
800		0.84	2.7	4.I 2.3	3.4	6.0	9.2	21.0	47.0	84.0	
1000	0.37	0.54	0.95	1.5	2.I	3.8	6.0	13.5	30.0	54.0	215.0
1200	0.17	0.37	0.66	1.03	1.5	2.6	4.I	9.3	21.0	37.0	149.0
1500	0.11	0.24	0.42	0.66	0.95	1.7	2.6	6.0	13.4	24.0	95.0
2000		0.13	0.24	0.37	0.54	0.95	1.5	3.4		13.4	54.0
2500		3	0.15	0.24	0.34	0.61	0.95	2.2	7·5 4.8	8.6	34.0
3000			0.11	0.17	0.24	0.42	0.66	1.5	3.4	6.0	24.0
4000			0.06	0.09	0.13	0.24	0.37	0.84	1.9	3.4	13.4 8.6
5000							0.24	0.53	1.20	2.2	
6000							0.16	0.37	0.84	1.5	6.0
7000							0.12	0.27	0.61	1.1	4.4
											i

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

# TABLE 443.

# THE DIELECTRIC PROPERTIES OF NON-CONDUCTORS.

Phillips Thomas, J. Franklin Inst. 176, 283, 1913.

Results of tests at unit area a	and unit thic	kness of die	lectric.	
At 1000 cycles.	Mica.	Paper.	Celluloid.	Ice.
Equiv. resistance ohms/cm ³ ×10 ¹¹	4.00 0.198 0° 57′ 3.91 2.56 2.18	0.71×10 ⁶ 4.90 0.108 2° 10' 9.84 1.02 14.31 0.146		.011×10 ⁶ 86.40 .00040 13° 39' 1400 .00722 70.0 0.127
Max. absorbable energy, watt-sec/cm³. Percent change in capacity per cycle.  On direct current.	4.09 0.203 0.00	5.77 0.126 0.306	18.60 0.90 1.74 71.5×10 ⁻¹⁴	429.0 0.002 1.59

#### MAGNETIC PROPERTIES.

Unit pole is a quantity of magnetism repelling another unit pole with a force of one dyne;  $4\pi$  lines of force radiate from it. M, pole strength;  $4\pi M$  lines of force radiate from pole of strength M.

H, field strength, = no. of lines of force crossing unit area in normal direction; unit = gauss =

one line per unit area.

M, magnetic moment, = Ml, where l is length between poles of magnet.

I, intensity of magnetization or pole strength per unit area, =  $\mathbf{M}/V = M/A$  where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet.  $4\pi M/A = 4\pi I =$ no. lines of force leaving unit area of pole.

J, specific intensity of magnetism, =  $I/\rho$  where  $\rho$  = density, g/cm³.

 $\phi$ , magnetic flux, =  $4\pi M + HA$  for magnet placed in field of strength H (axis parallel to field).

Unit, the maxwell.

B, flux density (magnetic) induction, =  $\phi/A = 4\pi I + H$ ; unit the gauss, maxwell per cm.  $\mu$ , magnetic permeability, = B/H. Strength of field in air-filled solenoid =  $H = (4\pi/10) ni$ in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., no. of lines of force per unit area, B, passing through coil is greater than H;  $\mu = B/H$ .

κ, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength M and intensity of magnetism I, then the ratio  $I/H = (\mu - 1)/4\pi$  is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field.

 $\chi$ , specific susceptibility (per unit mass) =  $\kappa/\rho = J/H$ .

 $\chi_{A}$ , atomic susceptibility, =  $\chi \times$  (atomic weight);  $\chi_{M}$  = molecular susceptibility.

 $J_A$ ,  $J_M$ , similarly atomic and molecular intensity of magnetization.

Hysteresis is work done in taking a cm³ of the magnetic material through a magnetic cycle =  $\int H dI = (1/4\pi) \int H dB$ . Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is  $aB^{1.6}$  where B is the max. induction and a is a constant (see Table 472). The retentivity  $(B_\tau)$  is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force  $(H_c)$ .

Ferromagnetic substances,  $\mu$  very large,  $\kappa$  very large: Fe, Ni, Co, Heusler's alloy (Cu 62.5, Mn 23.5, Al 14. See Stephenson, Phys. Rev. 1910), magnetite and a few alloys of Mn.  $\mu$  for Heusler's alloy, 90 to 100 for B=2200; for Si sheet steel 350 to 5300.

Paramagnetic substances,  $\mu > 1$ , very small but positive,  $\kappa = 10^{-3}$  to  $10^{-6}$ : oxygen, especially at low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 474.)

Diamagnetic substances,  $\mu < 1$ ,  $\kappa$  negative. Most diamagnetic substance known is Bi, -14

× 10-6. Volume susceptibility (see Table 474).

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

For Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc

effect (thermomagnetic difference of temperature), see Tables 487 and 488.

Magneto-strictive phenomena:

Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment  $\Delta l/l = (7 \text{ to } 35) \times 10^{-7}$ , then a decrement, and for H = 1600,  $\Delta l/l$  may amount to  $-(6 \text{ to } 8) \times 10^{-6}$ . Cast cobalt with increasing field first decreases,  $\Delta l/l = -8 \times 10^{-6}$ , H = 150, then increases in length,  $\Delta l/l = +5 \times 10^{-6}$ , H = 2000; annealed cobalt steadily contracts,  $\Delta l/l = -25 \times 10^{-6}$ , H = 2000. Ni rapidly then slowly contracts,  $\Delta l/l = -30 \times 10^{-6}$ , H = 100;  $-35 \times 10^{-6}$ , H = 300;  $-36 \times 10^{-6}$ , H = 2000 (Williams, Phys. Rev. 34, 44, 1912). A transverse field generally gives a reciprocal effect.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances (see Williams, Phys. Rev. 32, 281, 1911). A reciprocal effect is observed in that when a rod of soft

iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value.

# COMPOSITION AND MACNETIC

This table and Table 456 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel. which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by  $4\pi$ . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

No.					Chemic	al analys	is.	
of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos-	Other substances.
I	Wrought iron	Annealed	-	_	-	-	_	-
2	Malleable cast iron			_				_
3	Gray cast iron Bessemer steel	_	0.045	0.200	0.030	None.	0.040	_
4	Whitworth mild steel .	Annealed	0.090	0.153	0.016	66	0.042	-
5 6	66 66	"	0.320	0.438	0.017	0.042	0.035	-
7		Oil-hard-	"	"	"	66	46	-
8	66 66	\ ened \ Annealed	0.890	0.165	0.005	0.081	0.019	_ !
		(Oil-hard-	"	"	"	"	"	
9		ened						
10	Hadfield's manganese \ steel	-	1.005	12.360	0.038	0.204	0.070	-
II 12	Manganese steel	As forged Annealed	0.674	4.730	0.023	0.608	0.078	-
13	" "	∫ Oil-hard-	**	"	"	"	"	-
14		As forged	1.298	8 740	0.024	0.094	0.072	-
15		Annealed Oil-hard-		"	"	"	"	
16		ened	-		"	0		-
17 18	Silicon steel	As forged Annealed	0.685	0.694	"	3.438	0.123	-
19	" "	{ Oil-hard- ened	66	"	"	"	"	-
20	Chrome steel	As forged Annealed	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
21	16 16	∫ Oil-hard-	46	66	"	66	"	66
23	66 66	As forged	0.687	0.028	"	0.134	0.043	1.195 Cr.
24	" "	Annealed	66	"	66	46	"	"
25		{ Oil-hard-	"	"	"	66	"	66
26	Tungsten steel	As forged	1.357	0.036	None.	0.043	0.047	4.649 W.
27		Annealed	"	66	46	66	"	"
.0	66 66	Hardened in cold	66	"	"	66	66	46
28	• •	water						
		Hardened						
29	ee ee	in tepid water	66	46	"	66	- 44	"
30	" " (French) .	Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.
31		Very hard	0.855	0.312	_	0.151	0.089	2.353 W.
32	Gray cast iron	_		0.173	0.042	2.044	0.151	2.064 C.†
33	Mottled cast iron	-	3.455	0.610	0.105	1.476	0.435	1.477 C.†
34	White " "		2.036	0.386	0.467 Trace.	0.764	0.458	
35	Spiegeleisen		4.510	7.970	Trace.	0.502	0.120	
<u> </u>								

^{*} Phil. Trans. Roy. Soc. vol. 176.

† Graphitic carbon.

#### PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:—Energy dissipated = coercive force  $\times$  maximum induction  $\div \pi$ 

		<del></del>						
No.			Specific	1	lagnetic p	ropertie	s.	Energy dis-
of	Description of specimen.	Temper.	electri- calresis-	Maxi-	Residual	Coer-	Demag-	sipated per
Test.	specimen.		tance.	mum in-		cive	netizive	cycle.
				duction.	tion.	force.	force.	
1	Wrought iron	Annealed	.01378	18251	7248	2.30 8.80	_	13356
2	Malleable cast iron	"	.03254		7479	8.80	-	34742
3	Gray cast iron Be-semer steel	_	.10560		3928 7860	3.80	_	1 3037
4	Whitworth mild steel	Annealed	.01050		7080	2.96 1.63	_	17137
5 6	" "	"	.01446	5 '-	9840	6.73	_	40120
	"	∫ Oil-hard-		, ,		11.00		
7	•	ened	.01390		11040		_	65786
8		Annealed	.01559	16120	10740	8.26	-	42366
9	" "	Oil-hard-   ened	.01695	16120	8736	19.38	-	99401
	Hadfield's manganese (	Circu						
10	steel }.	-	.06554	310	_	-		_
11	Manganese steel	As forged	.05368	4623	2202	23.50	37.13	34567
12	-"	Annealed	.03928	10578	5848	33.86	46.10	113963
13	" "	Oil-hard-	.05556	4769	2158	27.64	40.29	41941
14		As forged	.06993	747	-	_	`	_
15	" "	Annealed	.06316	1985	540	24.50	50.39	15474
16	" "	S Oil-hard-	.07066			_		5.7.
		) ened						
17	Silicon steel	As forged Annealed	.06185	15148	11073	9.49 7.80	12.60	45740
		1 Oil-hard-			8149		10.74	36485
19		ened	.06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged	.02016	15778	9318	12.24	13.87	61439
21	" "	Annealed	.01942	14848	7570	8.98	12.24	42425
22	" "	Oil-hard-	.02708	13960	8595	38.15	48.45	169455
23	" "	As forged	.01791	"	7568	18.40	22.03	85944
24	" "	Annealed	.01849	13233	6489	15.40	19.79	64842
25	"	5 Oil-hard-	.03035		7891	40.80	56.70	167050
	T	) ened	0 00				-	'
26	Tungsten steel	As forged Annealed	.02249		10144	15.71	17.75	78568
27		( Hardened	.02250	16498	11008	15.30	16.93	80315
28		in cold	.02274	_	_	_		-
		water	,,,					
	66 66	( Hardened						
29		in tepid	.02249	15610	9482	30.10	34.70	149500
		( water				1		40.4
30	" (French).	ened	.03604	14480	8643	47.07	64.46	216864
31	" "	Very hard	.04427	12133	6818	51.20	70.69	197660
32	Gray cast iron	-	.11400	9148	3161	13.67	17.03	39789
33	Mottled cast iron White " "	-	.06286	10546	5108	12.24	20.40	41072
34	Spiegeleisen		.05661		5554	12.24	20.40	36383
33	oprogenoisen		.10520	305	77	1		
!-	ISONIAN TABLES							

TABLE 446. - Magnetic Properties of Iron and Steel.

	Electro-	Good Cast	Poor Cast	Steel.	Cast	Electrica	Sheets.
	Iron. Steel.		Steel.	Steen.	Iron.	Ordinary.	Silicon Steel.
Chemical composition in per cent Si Mn P S	0.024 0.004 0.008 0.008 0.001	0.044 0.004 0.40 0.044 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.06	0.036 0.330 0.260 0.040 0.068	0.036 3.90 0.090 0.009 0.006
Coercive force {	2.83 [0.36]	1.51 [0.37]	7.1 (44.3)	16.7 (52.4)	11.4 [4.6]	[1.30]	[0.77]
Residual B }	11400 [10800]	10600 [11000]	10500	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	· 700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for H=150 {	19200 [18900]	18800	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
$4\pi I$ for saturation . $\left\{\right.$	21620 [21630]	21420 [21420]	20600 (20200)	19800	16400 [16800]	[20500]	[19260]

E. Gumlich, Zs für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum.

Parentheses indicate hardening by quenching from cherry-red.

TABLE 447. - Cast Iron in Intense Fields.

	Soft Cast	Iron.		Hard Cast Iron,						
н	B	I	μ	Н	В	I	μ			
114	9950	782	87.3 62.8	142	7860	614	55.4			
172	10800	846	62.8	254	9700	752	55·4 38.2			
433	13900	1070	32.1		10850	836 983	30.6			
744	1 57 50	1 200	21.2	339 684	1 3050	983	19.1			
1234	17300	1280	140	915	14050	1044	15.4			
1820	18170	1300	10.0	1570	1 5900	1138	10.1			
12700	31100	1465	2.5	2020	16800	1176	8.3			
13550	32100	1475	2.4	10900	26540	1245	2.4			
13800	32500	1488	2.4	1 3200	28600	1226	2.2			
15100	33650	1472	2.2	14800	30200	1226	2.0			

B. O. Peirce, Proc. Am. Acad. 44, 1909.

# TABLE 448. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial	Ratio of Ave H at Mean		Ratio of Hyster Distribution to A	esis for Uniform ctual Hysteresis.
Width to Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.
1/2	1.0986	1.0718	1.112	1.084
1/3	1.0397	1.0294	1.045	1.033
1/4	1.0216	1.0162	1.024	810.1
1/5	1.0137	1.0102	1.015	1.011
1/6	1.0094	1.0070	1.010	1.008
1/7	1.0069	1.0052	1.008	1.006
1/8	1.0052	1.0040	1.006	1.004
1/10	1.0033	1.0025	1.003	1.002
1/19	1.0009	1.0007	1.001	1.001

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

## MAGNETIC PROPERTIES OF IRONS AND STEELS.

# TABLE 449. - Magnetic Properties of Various Types of Iron and Steel.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of B.		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Annealed Norway iron	Η μ	.81 2470		1.60 3750		3.06 3270	4.45				=
Cast semi-steel	Η μ	2.00				9.82	<b>15 .1</b> 795		<b>50.5</b> 317	<b>135</b> .	<b>325</b> . 62.
Machinery steel	$_{\mu}^{\mathrm{H}}$	<b>5.0</b>			<b>18.6</b>			<b>50 .5</b> 280	76.0 210	142. 127	=

TABLE 450. — Magnetic Properties of a Specimen of Very Pure Iron (.017% C).

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Very pure iron as received	Η μ	<b>3.30</b> 606		<b>6.35</b> 945					<b>47 .0</b> 340		<b>240</b> .
Annealed in vacuo from 900° C	Η μ	<b>.46</b> 4350						<b>3.2</b> 0 4380		<b>72.0</b> 250	<b>194</b> .

As received:  $H_{\text{max}}$  150  $B_{\text{max}}$  18,900  $B_r$  7,650  $H_c$  2.8

After annealing:  $H_{\text{max}}$  150  $B_{\text{max}}$  19,500  $H_c$  0.53

TABLE 451. - Magnetic Properties of Electrical Sheets.

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Dynamo steel	$_{\mu}^{\mathrm{H}}$	1.00	- 1					9.20 1520		<b>114</b> .	_
Ordinary trans- former steel	$_{\mu}^{\mathrm{H}}$	<b>.60</b> 3340	<b>.87</b> 4600		<b>1.48</b> 5400	<b>2.28</b> 4380		<b>10.9</b> 1280	<b>43.0</b> 372	149. 121	_
High silicon trans- former steel	Η μ	.50 4000	. <b>70</b> 5720				-	<b>9.80</b> 1430		<b>165</b> .	=

#### MAGNETIC PROPERTIES OF IRONS AND STEELS.

# TABLE 452. - Magnetic Properties of Two Types of American Magnet Steel.

From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Tungster steel.	Π μ	35.0 57	53 · 3 75	63.3	72.0	83.4	100	200 70	=		=
Chrome steel	$_{\mu}^{H}$	34·5 58	49.0 82	63.5 95	88.4 91	143 70	270 45	_	=	=	=

# TABLE 453. - Magnetic Properties of a Ferro-Cobalt Alloy, Fe₂Co (35% Cobalt).

From tests at the Dureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
As received	$_{\mu}^{H}$	3.10 645	4.28 935	5.50	7.17	9.65	13.4 900	19.1 730	27.3 590	40.0 450	65.0 310
Annealed at }	$\frac{\varPi}{\mu}$	3.00 670	4.11 970	5.05	6.45	8.40 1190	11.3 1060	15.4 910	21.9 730	31.7 570	50.6 400
Quenched from 1000° C	$_{\mu}^{H}$	10.8	13.8	19.1 314	28.7 279	43·4 230	65.8 182	104	163 <b>9</b> 8	262 69	=

As received Annealed at 1000° C Bmax  $\begin{cases} 15,000 \\ 15,000 \end{cases}$  Hmax  $\begin{cases} 22.9 \\ 18.3 \end{cases}$   $B_r \begin{cases} 7750 \\ 7450 \end{cases}$   $H_e \begin{cases} 3.79 \\ 3.95 \\ 7440 \end{cases}$ 

# TABLE 454. — Magnetic Properties of a Ring Sample of Transformer Steel in Very Weak Fields.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of Ho	0.002	0.004	0.006	0.008	0.010	0.012	0.014	0.018	0.020
Values of $\mu$	455 455			492					582

#### TABLE 455. - Magnetic Properties of Iron in Very Weak Fields.

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100H, or  $I = 15H + 100H^2$ . The experiments were made on an annealed ring of round bar 1.013 cms radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1H, or  $I = 6.4H + 5.1H^2$ . The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.

F	irst experiment.		Second experiment.				
H .01580	16.46	2.63	.0130	k 15.50			
.03081 .07083 .13188 .23011 .38422	17.65 23.00 28.90 39.81 58.56	5.47 16.33 38.15 91.56 224.87	.0847 .0946 .1864 .2903	18.38 20.49 25.07 32.40 35.20			

# PERMEABILITY OF SOME OF THE SPECIM NS IN TABLE 445

#### TABLE 456.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 445. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	Specimen	ı (iron).	Specim (annealed	en 8 steel).	Specimen 9 8 tempe		Specin (cast in	
Н	В	μ	В	μ	В	μ	В	μ
I	_	_	_	-	-	_	265	265
2	200	100	-	-	-	_	700	350
3	-	-	-	-	-	-	1625	542
5	10050	2010	1525	300	750	150	3000	600
10	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	57.5	5875	294	6000	300
30	1 5200	507	12650	422	9875	329	6500	217
40	1 5800	395	13300	332	11600	290	7100	177
50	1 6000	320	1 3800	276	1 2000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	234 168	14900	149	14500	145	8500	8 <b>5</b> 63
150	17400	116	1 5700	105	1 5800	105	9500	63
200	17950	90	19100	8ō	19100	80	10190	51

Tables.457-8, 463-5 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 09 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 03.7, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.7, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

# MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C. TABLE 457.

	Soft iron at 0° C.			Soft iron at 100° C.					
Н	S	I	В	μ	Н	S	I	В	μ
100 200 400 700 1000 1200	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6

# MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C. TABLE 458.

		Steel at co	c.			S	teel at 100°	C	
H	S	I	В	μ	Н	S	ſ	В	μ
100	165.0	1283	16240	162.4	100	165.0	1278	16170	161.7
200	181.0	1408	17900	89.5	200	180.0	1395	17730	88.6
400	193.0	1 500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	1552	20210	28.9	700	197.0	1527	1989 <b>0</b>	28.4
1000	203.5	1583	20900	20.9	1000	199.0	1543	20380	20.4
1200	205.0	1 595	21240	17.7	1 500	203.0	1573	21270	14.2
3750f	212.0	1650	24470	6.5	3000	205.5	1 593	23020	7.7
1					5000	208.0	1612	25260	5.1

# "Phil. Mag." 5 series, vol. xxix.

The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 331.)

#### TABLES 459-462.

#### MAGNETISM AND TEMPERATURE.

## TABLE 459. - Magnetism and Temperature, Critical Temperature.

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula  $Mt/M_0 = (x - at)$  the value of a may range from .0003 to .001 (see Tables 457-458). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

Substance.	Critical temperature, Curic point.	Refer- ence.	Substance.	Critical temperature, Curie point.	Refer- ence.
Iron, α form	756° C 920 1280 536 589 555 520	1 1 1 2 3 3	MnBi. MnSb. MnAs. MnP. Heusler alloy Nickel Cobalt	18 " 25 310 340 376	4 4 4 4 5 1 6

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211, 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 268, 1911.

#### TABLE 460. - Temperature Variation for Paramagnetic Substances.

The relation deduced by Curie that  $\chi = C/T$ , where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

Substance.	C × 106	Range ° C	Reference.	Substance.	C × 10 ^f	Range ° C	Refer- ence.
Oxygen	33,700 7,830 1,520 28,000 38,500	20° to 450° C 20 to 1370 850 "1360 850 "1267	I I I I	Gadolinium sulphate. Ferrous sulphate Ferric sulphate Manganese chloride.	21,000 11,000 17,000 30,000	-259° to 17 -259 " 17 -208 " 17 -258 " 17	2 2 3 3

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, 1.c. 2, 389, 1913.

#### TABLE 461. - Temperature Effect on Susceptibility of Diamagnetic Elements.

N				

#### Increase with rise in Temperature:

Be — C Diamond, 200 to 1200° I —170 to 114° Hg —170 to -30°

#### Decrease with rise in Temperature:

C Amorphous Gd -179 to 30° In -170 to 150° Tl C Ceylon graphite Ge -170 to 900° Sb +50 to +631° Pb -170 to 327°
Cu - Zr 500 to 1200° Te Zn +300 to 700° Cd 300 to 700° I +114 to +200°

#### TABLE 462. - Temperature Effects on Susceptibility of Paramagnetic Elements.

## No effect:

Li — K — 170 to 150° Cr — 170 to 500° W — Na — 170 to 100° V — 170 to 500° Nb — Rb —

# Increase with rise in Temperature:

Ti -40 to 1100° Cr 500 to 1100° Ru +550 to 1200° Ba -170 to 18° V 500 to 1100° Rh — Ba -170 to 18°

## Decrease with rise in Temperature:

(O) — Ti —180 to -40° Ni 350 to 800° Pd and Ta
As —170 to 657° Mn 250 to 1015° Co above 1150° Pt and U
Mg — (Fe) — Cb —170 to 400° Rare earth metals

Tables 461 and 462 are due to Honda and Owen; for reference, see preceding table.

## MACNETIC PROPERTIES OF METALS.

TABLE 463. - Cobalt at 100° C.

Н	S	I	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	1 3260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1 500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	207Š0	3.5
9000	149	1192	2398o	2.6
At oo			n gave th	e fol-
	lov	wing resu		
7900	154	1232	23380	3.0

TABLE 464. - Nickel at 100° C.

Н	S	I	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2. I
9000	59.4	524	15585	1.7
1 2000	59.6	526	18606	1.5
At o ^o C		pecimen		e fol-
	lowi	ng resu		
12300	67.5	595	19782	1.6
L				

#### TABLE 465. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	4580	9.16
1000	345	-5340	5.34
2000	350	6400	3.20
I 2000	350	16400	1.37

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 466. — Lowmoor Wrought Iron.

Н	I	В	μ
3080 6450 10450 13600 16390 18760 18980	1680 1740 1730 1720 1630 1680 1730	24130 28300 32250 35200 36810 39900 40730	7.83 4.39 3.09 2.59 2.25 2.13 2.15

TABLE 467. — Vicker's Tool Steel.

Н	I	В	μ
6210	1530	25480	4.10
9970	1570	29650	2.97
12120	1550	31620	2.60
14660	1580	34550	2.36
15530	1610	35820	2.31

TABLE 468. — Hadfield's Manganese Steel.

Н	I	В	μ
1930	55	2620	1.36
2380	84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 469. - Saturation Values for Steels of Different Kinds.

		Н	I	В	μ
1	Bessemer steel containing about 0.4 per cent carbon	17600	1770	398So	2.27
2	Siemens-Marten steel containing about 0.5 per cent carbon Crucible steel for making chisels, containing about 0.6 per	18000	1660	38860	2.16
	cent carbon	19470	1480	38010	1.95 2.08
4	Finer quality of 3 containing about 0.8 per cent carbon.	18330	1580		
6	Crucible steel containing t per cent carbon	19620 18700	1440	37690 38710	1.92 2.07

^{* &}quot; Phil. Mag." 5 series, vol. xxix, 1890.

## TABLES 470-471.

## DEMAGNETIZING FACTORS FOR RODS.

#### TABLE 470.

H= true intensity o. magnetizing field, H'= intensity of applied field, I=in-

H= true intensity of magnetization, H=H'-NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about I/I the value when unsaturated; for values of I (= $H+4\pi I$ ) less than 10000, I is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for I which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically eagree. tically agree.

			Values	of N× 104.							
		Cylinder,									
Ratio		}		I	Ballistic Step	Method.					
Length to Diameter.	Ellipsoid.	Uniform Magneti- zation,	Magneto- metric	Dubois. Shuddemagen for Range of Practical Constancy.							
			Method (Mann).		Diamet	ler,					
				0.158 cm.	0.3175 cm.	1.111 cm.	1.905 cm.				
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16 7.5 4.5	- 630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.70 0.39	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5	2160 1206 775 393 238 162 118 89 69 55 45 20 11	- - 388 234 100 116 88 69 56 46 23 12.5	350 212 145 106 66 41 21	1960 1075 671 343 209 149 106 63 41 21				

## TABLE 471.

Shuddemagen also gives the following, where B is determined by the step method and H=H'-KB.

Values of K×104.				
Diameter 0.3175 cm.	Diameter			
-	85.2 53.3 36.6			
30.9 18.6 12.7	27.3 16.6 11.6			
9.25 5.5 3.66	8.45 5.05 3.26 1.67			
	Diameter 0.3175 cm. - - 30.0 18.6 12.7 9.25 5.5			

C. R. Mann, Physical Review, 3, p. 359; 1896. H. DuBois, Wied. Ann. 7, p. 942; 1902. C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

# DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments * that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula  $e=aB^{1.6}$ , where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the sam range of induction, no matter what the absolute value of the terminal inductions may be. Hi experiments show this to be nearly true when the induction does not exceed  $\pm$  15000 c. g. s units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

#### Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of a.
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Iron	Norway iron Wrought bar Commercial ferrotype plate Annealed " Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Very soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " "tempered in oil " annealed Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " ""containing \(\frac{1}{2}\) \(\frac{1}{2}\) aluminium " """Aquare rod 6 sq. cms. section and 6.5 cms. long, from the Tilly Foster mines, Brewsters, Putnam County, New York, stated to be a very pure sample Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Rod containing about 2 % of iron, also calculated from Ewing's experiments by Steinmetz Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron.  Ist experiment, continuous cyclic variation of m. m. f. 180 cycles per second 2d experiment, I14 cycles per second 3d "79-91 cycles per second	.00227 .00326 .00548 .00458 .00286 .00425 .00349 .00848 .00457 .00318 .02792 .07476 .02670 .01899 (.06130 .02700 .01445 .01300 .0145 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

## ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method. Loss per cycle per  $cc = AB^x + bnB^y$ , where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per (	Cycle.					er Pound: d 10000 G	
Designation.	Thick- ness.	10000 G	ausses.	5000 Gausses.		x	y	а	rent		
	cm.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Current Loss for Gage No. 29. ‡	Hyste- resis.	Total.
Unannealed											
A B	.0326	1599	186	562 384	46	1.51	2.02 1.89	.00358	0.41	4.35	4.76
ll č	.0320	1032	134	356	36 70	1.59	1.79	.00350	0.44	3.I4 2.8I	3.58 3.28
D	.0381	1009	184	353	48	1.52	1.94	.00312	0.44	2.74	3.18
Annealed											
E	.0476	735 666	236	246	58	1.58	2.02	.00227	0.36	2 00	2.36
F G	.0280		100	220	27	1.60	1.88	.00206	0.44	1.81	2.25
H*	.0394	563 412	210 146	193	54 39	1.54 1.58	1.96	.00174	0.47	I.53 I.12	2.00
Ï	.0318	341	202	111.5	55	1.62	1.88	.00105	0.70	0.93	1.63
K*	.0282	394	124	130	32	1.61	1.90	.00122	0.54	1.07	1.61
L B	.0346	185	184	125	50	1.61	1.88	.00118	0.535	1.035	1.57
M M	.0338	354 372	200 178	116 127	57 46	1.61	1.81	21100.	0.61	0.96	1.57
N	.0340	3/2	210	105	56	1.62	1.90	.00099	0.63	0.87	1.50
P	.0437	334	184	107	50	1.64	1.88	.00103	0.34	0.91	1.25
Silicon steels											
Q† R	.0361	303	54	98	15	1.63	_	.00094	0.14	0.825	0.965
Ř	.0315	303 288	42	93	II	1.64	-	.00089	0.15	0.78	0.93
S	.0452	278	72 60	90	18	1.63	-	.00086	0.12	0.755	0.875
Ü	.0338	250 270	42	78 86	10	1.68	_	.00077	0.18	0.68	0.86
V*	.0310	251.5		79	13	1.68	_	.00078	0.17	0.685	0.855
W*	.0305	197	43	62.3	12.4	1.67	-	19000.	0.16	0.535	0.695
X	.0430	200	65	64.2	16.6	1.65	-	.00062	0.12	0.545	0.665
	•										

Note. —For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

[•] German.

† English.

‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

# MAGNETIC SUSCEPTIBILITY.

If  $\mathfrak T$  is the intensity of magnetization produced in a substance by a field strength  $\mathfrak P$ , then the magnetic susceptibility  $H=\mathfrak T/\mathfrak P$ . This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if  $H_0$  is the susceptibility of water, (p/100) H+(1-p/100)  $H_0$ .

		l ó	1	HI .		1 6	
Substance.	H × 108	Temp C.	Remarks	Substance.	H × 10 ⁶	Temp C.	Remarks
Ag	-0.19	180		K ₂ CO ₃	-0.50	20°	Sol'n
AgCl	<u></u> 0.28	}		Li	+0.38		
Air, 1 Atm	+0.024	18		Mb	+0.04	18	
Al ₂ K ₂ (SO ₄ ) ₄ 24H ₂ O	+0.65 -1.0	10	Crys.	$Mg \dots MgSO_4 \dots$	+0.55 0.40	18	
A, I Atm	0.10	0	O. 75.	Mn	+11.	18	
As	-0.3	18		$MnCl_2$	+122.	18	Sol'n
Au	-0.15	18		$MnSO_4$	+100.	18	66
BaCl ₂	-0.71	18		$N_2$ , 1 Atm	0.001	16	
Be	-0.36 +0.79	20	Powd.	NH ₃	-1.1 +0.51	18	
Bi	<del></del> 1.4	15	rowa.	NaCl	-0.50	20	
Br	-0.38	18		Na ₂ CO ₃	-0.19	17	Powd.
C, arc-carbon	-2.0	18		$Na_2CO_3$ . 10 $H_2O$ .	<del>-</del> 0.46	17	66
C, diamond	-0.49	18		Nb	+1.3	18	C -12
$CH_4$ , 1 Atm $CO_2$ , 1 Atm	+0.001 +0.002	16		$NiCl_2$ NiSO ₄	+40. +30.	18 20	Sol'n
$CS_2$	-0.77	18		O2, 1 Atm	+0.120	20	
CaO	-0.27	16	Powd.	Os	+0.04	20	
CaCl ₂	-0.40	19	44	P, white	-0.90	20	
CaCO ₃ , marble Cd	0.7 0.17	18		P, red	-0.50 -0.12	20	
CeBr ₃	+6.3	18		PbCl ₂	-0.12 -0.25	15	Powd.
Cl ₂ , 1 Atm	-0.59	16		Pd	+5.8	18	
CoCl ₂	+90.	18	Sol'n	PrCl ₃	+13.	18	Sol'n
$\begin{array}{ccccc} \operatorname{CoBr}_{2} & \dots & \dots & \dots \\ \operatorname{CoI}_{2} & \dots & \dots & \dots \end{array}$	+47.	18	46	Pt	+1.1	18	Sol'n
CoSO ₄	+33· +57·	19	46	Rh	0.0	18	20111
$Co(NO_3)_2$	+57.	18	64	S	-0.48	18	
Cr	+3.7	18		SO ₂ , 1 Atm	-0.30	16	
CsCl	-0.28 -0.09	17 18	Powd.	Sb	-0.94	18	
Cu	—0.09 +12.	20	Sol'n	Si	-0.32 -0.12	18	Crys.
CuSO ₄	-10.	20	Sol'n	SiO2, Quartz	-0.44	20	0.70.
CuS	+0.16	17	Powd.	-Glass	一0.5土		
FeCl ₃	+90. +90.	18	Sol'n	Sn	+0.03	20	C-11-
FeSO ₄	+82,	20	66	Ta	-0.42 +0.93	20 18	Sol'n
Fe ₂ (NO ₃ ) ₆	+ 50.	18	46	Te	-0.32	20	1
FeCn ₆ K ₄	-0.44		Powd.	Th	+0.18	18	
FeCn ₆ K ₃ He, 1 Atm	+9.1		41	Ti	+3.1	18	
H ₂ , I Atm.	0.002	16		Wo	+1.5 +0.33	20	
H ₂ , 40 Atm. , , .	0.000	16		Zn	O.I5	18	
$H_2O$	-0.79	20		$ZnSO_4$ , ,	0.40		
$HC1.,, H_2SO_4.,$	-0.80 +0.78	20		Zr . , , , CH ₃ OH , , , ,	-0.45	18	
$HNO_3$	-0.70 -0.70	20		$C_{2}H_{5}OH$	-0.73 -0.80		
Hg	-0.19	20		C ₈ H ₇ OH	-0.80		}
I	-0.4	20		C ₂ H ₅ OC ₂ H ₅	-0.60	20	
In	+0.15	18		CHCl ₈	0.58 0.78		
K	+0.15	20		Ebonite	+1.1		
KCI	-0.50	20		Glycerine	-0.64	22	}
KBr	-0.40	20		Sugar , , , .	-0.57		
KOH : : : :	0.38 0.35	20	Sol'n	Paraffin	-0.58 -0.91		
$K_2SO_4$	-0.42	20	50. 11	Toluene ,	-0.77		
KMnO ₄	+2.0			Wood	-0.2-5		
KNO ₃	0.33	20		Xylene	-0.81		

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 1910.

## MAGNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently tound to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and  $\lambda$  the wave-length of the light in air. If H be different, at different parts of the path, IH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write  $\theta = Av$ , where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 476-480. For variation with temperature, the following formula is given by Richet : ture the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used: -

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where  $\mu$  is index of refraction and  $\lambda$  wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation

produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becquerel,‡ Quincke, § Koepsel, || Arons, ¶ Kundt,** Jahn,†† Schönrock,‡‡ Gordon, §§ Rayleigh and Sidgewick, || || Perkin, ¶ ¶ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

- * The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

  † "Ann. de Chim. et de Phys." [3] vol. 52, p. 129, 1858.

  ‡ "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90, p. 1407, 1880, and 100, p. 1374, 1885.

  § "Wied. Ann." vol. 24, p. 606, 1885.

  † "Wied. Ann." vol. 25, p. 456, 1885.

  ** "Wied. Ann." vol. 23, p. 161, 1885.

  ** "Wied. Ann." vol. 23, p. 228, 1884, and 27, p. 191, 1886.

  †† "Wied. Ann." vol. 43, p. 280, 1891.

  ‡ "Zeits, für Phys. Chem." vol. 11, p. 753, 1893.

  §§ "Proc. Rov. Soc." 36, p. 4, 1883.

  ¶ "Jur. Chem. Soc." 176, p. 343, 1885.

  ¶ "Jour. Chem. Soc." 176, p. 343, 1885.

# MAGNETO-OPTIC ROTATION.

Solids.

Substance.	Formula.	Wave- length.	Verdet's Constant, Minutes.	Temp. C.	Authority.
Amber Blende	$Z_{nS}$ $C$ $PbB_2O_4$ $Se$ $Na_2B_4O_7$ $Cu_2O$	μ 0.589 " " 0.687 0.589 0.687	0.0095 0.2234 0.0127 0.0600 0.4625 0.0170 0.5908	18-20° 15 15 15 15 15	Quincke. Becquerel, 
Fluorite	CaFl ₂	0.2534 .3655 .4358 .4916 .589 1.00 2.50 3.00	0.05989 .02526 .01717 .01329 .00897 .00300 .00049	20	Meyer, Ann. der Physik, 30, 1909.
Glass, Jena: Medium ph Heavy crow Light flint, Heavy flint "	O451 . O500 . S163	0.589	0.0161 0.0220 0.0317 0.0608 0.0888	18 " "	DuBois, Wied. Ann. 51, 1894.
Zeiss, Ultraviolet		0.313 0.405 0.436	0.0674 .0369 .0311	16 "	Landau, Phys. ZS. 9, 1908.
Quartz, along axis, i.e., plate cut I to axis	${ m SiO_2}$	0.2194 •2573 •3609 •4800 •5892	0.1587 .1079 .04617 .02574 .01664	20 " " "	Borel, Arch. sc. phys. 16, 1903.
Rock salt	NaCl	.6439 0.2599 .3100 .4046 .4916 .6708 1.00	.01368 0.2708 .1561 .0775 .0483 .0245 .01050	" 20 " " " " " " "	Meyer, as above.
Sugar, cane: along axis IIA axis IIA ^I	C ₁₂ H ₂₂ O ₁₁	4.00 0.451 .540 .626 0.451	.00069 .0122 .0076 .0066 0.0129	20 " " "	Voigt, Phys. ZS. 9, 1908.
Sylvite	KCI	.626 0.4358 .5461 .6708 .90 1.20 2.00 4.00	.0075 0.0534 .0316 .02012 .01051 .00608 .00207 .00054	" 20 " " " " "	Meyer, as above.

# TABLE 477.

# MAGNETO-OPTIC ROTATION.

Liquids : Verdet's Constant for  $\lambda = 0.589\mu$ .

Substance.	Chemical formula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authority.
	CHO				* .
Acetone	C ₈ H ₆ O	0.7947	0.0113	20°	Jahn.
Acids: Acetic "Butyric	$\begin{array}{c c} C_2H_4O_2 \\ C_4H_8O_2 \end{array}$	0.9663	.0105	21	Perkin.
" Formic	$C_{118}O_{2}$ $CH_{2}O_{2}$	1.2273	.0105	15	"
" Hydrochloric	HCi HCi	1.2072	.0224	"	66
" Hydrobromic	HBr	1.7859	.0343	64	66
" Hydroiodic	HI	1.9473	.0515	- 46	"
" Nitric	HNO ₃	1.5190	•0070	13	46
" Sulphuric	$H_2SO_4$	_	.0121	15	Becquerel.
Alcohols: Amyl	C ₅ H ₁₁ OH	0.8107	.0128	20	Jahn.
" Butyl	C ₄ H ₉ OH	0.8021	.0124	"	"
" Ethyl " Methyl	$C_2H_5OH$ $CH_3OH$	0.7900 0.7920	.0112	66	66
" Propyl	C ₃ H ₇ OH	0.7920	.0120	44	66
Benzene	$C_6H_6$	0.8786	.0297	44	"
Bromides: Bromoform	CHBr ₃	2.9021	.0317	15	Perkin.
" Ethyl	C ₂ H ₅ Br	1.4486	.0ĭ83	66	44
" Ethylene	$C_2H_4Br_2$	2.1871	.0268	"	"
" Methyl	CH ₃ Br	1.7331	.0205	0	"
Methylene	CH ₂ Br ₂	2.4971	.0276	15	
Carbon bisulphide	$CS_2$		.0433	0 18	Gordon.
Chlorides: Amyl	СНСІ	0.8740	.0420	20	Rayleigh. Jahn.
" Arsenic	AsCl ₃	0.6740	.0140		Becquerel.
" Carbon	CCl ₄	_	.0321	15	" "
" Chloroform	CHCl ₃	1.4823	.0164	20	Jahn.
" Ethyl	$C_2H_5\tilde{C}$	0.9169	0.0138	6	Perkin.
" Ethylene	$C_2H_4Cl_2$	1.2589	.0166	15	"
" Methyl	CH ₃ Cl		.0170	"	Becquerel.
Methylene	CH ₂ Cl ₂	1.3361	.0162	"	Perkin.
" Sulphur bi- " Tin tetra	$S_2Cl_2$		.0393	"	Becquerel.
" Zinc bi-	SnCl ₄ ZnCl ₂		.0151	"	46
Iodides: Ethy)	C ₂ H ₅ I	1.9417	.0437 .0296	"	Perkin.
" Methyl	CH ₃ I	2.2832	.0336	44	66
" Propyl	C ₃ H ₇ I	1.7658	.0271	"	46
Nitrates: Ethyl	$C_2H_5O.NO_2$	1.1149	.0001	44	66
" Methyl	$CH_3O.NO_2$	1.2157	.0078	66	44
" Propýl	C ₃ H ₇ O.NO ₂	1.0622	.0100	"	66
Paraffins: Heptane	C ₇ H ₁₆	0.6880	.0125	"	66
" Hexane " Pentane	C ₆ H ₁₄	0.6743	.0125	"	64
Phosphorus, melted	C ₅ H ₁₂ P	0.6332	.1316	33	Becquerel.
Sulphur, melted	S	_	.0803	33 114	2ccqueren.
Toluene	$C_7H_8$	0.8581	.0269	28	Schönrock.
Water, $\lambda = 0.2496 \mu$	$H_2O$		.1042		See Meyer,
0.275			.0776		Ann. der
0.3609		- 0	.0384	1	Physik, 30,
0.4046			.0293	1	1909. Meas-
0.500			.0184		ures by Landau,
0.589 0.700			.0031		Siertsema,
1.000			.00110		Ingersoll.
1.300			.00264		
Xylene	C ₈ H ₁₀	0.8746	.0263	27	Schönrock.

# MACNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for  $\lambda = 0.589 \mu$ .

HCl	Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp. C.	*	Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp.	*
HBr	C ₂ H ₆ O	0.0715	0.0129	200	ī	LiCl	1.0619	0.0145	20°	ī
HCI			1 -		P	"			66	""
1.0762			0.0168			MnCl ₂			15	В
1.0792	HCI					"				"
1.4495	" "					HgCl ₂				5
1.4495					l b	NiCla			1	В
HNO3				46					15	D 44
HNO ₈	66			64	44	66			1 1	46
NH ₄ Br	HNO ₃			66		KCl			"	66
NH4Br	NH ₃	0.8918		15		4.6			20	J
BaBr2	NH ₄ Br	1.2805		66	1	NaCl	1.2051	0.0180	15	B
CdBr ₂	D 70		1	1	_					
CdBr2					],	[]				J _"
					1	SrC12		1	1 1	"
CaBr2       1.2491       0.0189       """       """       1.1112       0.0175       """       """       1.2851       0.0196       """       """       1.2851       0.0196       """       """       1.2851       0.0196       """       """       1.1112       0.0175       """       """       1.2851       0.0196       """       """       1.1595       0.0161       """       """       1.3598       0.0098       """       """       1.3598       0.0098       """       """       """       1.7966       0.0126       """       """       """       1.0824       0.0152       """"       """       """       1.0638       0.0136       16       S       """       1.0605       0.0126       """       """       1.0605       0.0136       """       1.0605       0.0136       """       1.0605       0.0136       """       1.0605       0.0136       """       1.0605       0.0396       15       F       F       Wh4I       1.5948       0.0396       15       F       F       Wh4I       1.5948       0.0396       15       F       F       Wh4I       1.5150       0.0358       """       """       """       1.1111       0.0235       """       """				1	64	SnCla				v
	CaBra	1		"	46				1,5	66
KBr	"		1 -	44	66	ZnClo	1.2851		66	66
NaBr	KBr			"	"	44			44	66
"	44		0.0151	1	1	K ₂ CrO ₄	1.3598	0.0098	16	"
"		1.1351	0.0165		1	K ₂ Cr ₂ O ₇	1.0786	0.0126	44	66
1.1416	1				(	$Hg(CN)_2$	1.0638			S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SrBr ₂		1			A717 T				11
Na ₂ CO ₃	V CO								15	P
"						#				66
NH4Cl	1142003			46	"	CdI				T
BaCl ₂ 1.2897         0.0168         20         J         KI         1.6743         0.0338         15         E           "CdCl ₂ 1.3379         0.0185         "         "         1.3398         0.0237         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1709         0.0220         "         1.1709         0.0175         "         "         NH4NO3         1.2803         0.0121         15         F         KNO3         1.06034         0.0130         20         J         NaNO3         1.1112         0.0131         "         "         NaNO3         1.1112         0.0131         "	NHLCI			15	V	1		1 -		ا ،،
CdCl2         1.3339         0.0149         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         1.1705         0.0182         "         "         "         1.1705         0.0182         "         "         "         "         1.1705         0.0237         "         "         NaI         1.1939         0.0200         "         J         "         "         1.1111         0.0175         "         "         NaNO3         1.1112         0.0175         "         "         NANO3         1.0634         0.0130         20         J         T         F         I         NaNO3         1.1112         0.0131         "         "         "         NaNO3         1.1112         0.0131         "         "         "         "         I         NaNO3         1.1112         0.0131         "         "         "         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td></td> <td></td> <td></td> <td></td> <td>J</td> <td>KI</td> <td>1.6743</td> <td></td> <td>15</td> <td>В</td>					J	KI	1.6743		15	В
CdCl2       1.3179       0.0185       "       "       "       NaI       1.1705       0.0182       "       "       "       January       "       NaI       1.1705       0.0182       "       "       January       "       NaI       1.1705       0.0182       "       January       "       January       NaI       1.1705       0.0200       "       January       Janua	"		0.0149			"			ü	&L
"			0.0185		1		1.1705		1	66
"										J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1			1	1 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaC12		( 2	1						J "
FeCl ₂	CuCle			ì						В
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				,,,					- 66	u
"			1	15	1	$(NH_4)_2SO_4$		_	15	P
Fe ₂ Cl ₆	44		0.0099	61		NH ₄ .HSO ₄		0.0085	16	66
"   I.5315   -0.1140   "   "   CdSO ₄   I.1762   0.0139   "   "   "     I.3230   -0.0348   "   "   I.0890   0.0136   "   "     I.0861   -0.0015   "   "   I.1762   0.0137   "   "     I.0864   0.0081   "   "   MnSO ₄   I.2441   0.0138   "   "     K ₂ SO ₄   I.0475   0.0133   "   "   "     I.0475   0.0133   "   "   "     I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.0133   "   "   "   I.0475   0.01		1.1093		1		BaSO ₄				J
	Fe ₂ Cl ₆					Caco			1	"
	4					Caso ₄				66
"   I.0864   0.0081   "   "   MnSO ₄   I.2441   0.0138   "   "   K ₂ SO ₄   I.0475   0.0133   "   "	1 44	1.3230		64		LioSO				66
" 1.0445 0.0113 " " K ₂ SO ₄ 1.0475 0.0133 " '	46			16	"				46	66
	66			66	66				66	66
	66	1.0232	0.0122	66	ш	Nã ₂ SÓ ₄	1.0661	0.0135	- 44	66

^{*} J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 378 for references.

#### TABLE 479. - Magneto-Optic Rotation.

#### Gases.

Substa	nce.			Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide		•	•	 Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary  70° C. Ordinary  "  "  "  20° C.	6.83 × 10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " " Bichat.

## See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam,

#### TABLE 480. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

<b>37</b> (6.3)	Magnetic	Verdet's co	nstant.	Wave-length	Kundi's
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant.
Cobalt Nickel Iron Oxygen: I atmo. Sulphur dioxide Water Nitric acid Alcohol Ether Arsenic chloride Carbon disulphide Faraday's glass		- 0.000179 × 10 ⁻⁵ 0.302 " 0.375 " 0.336 " 0.315 " 1.222 " 1.738 "	Becquerel.  Arons Becquerel. De la Rive.  Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " " "	3.99 3.15 2.63 0.014 4.00 5.4 5.8 5.8 14.9 17.1 17.7

#### TABLE 481. - Values of Kerr's Constant.*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Calmarkillaha	Spectrum	Wave- length	Kerr's constant in minutes per c. g. s. unit of magnetization.					
Color of light.	line.	in cms.	Cobalt.	Nickel.	Iron.	Magnetite.		
Red	Liα	67.7	-0.0208	-0.0173	-0.01 54	+0.0096		
Red	_	62.0	-0.0198	-0.0160	0.0138	+0.0120		
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133		
Green	ь	51.7	-0.0179	-0.0159	-0.0111	+0.0072		
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026		
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-		

^{*} H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 482. - Dispersion of Kerr Effect.

Wave-length.	0.5#	1.0μ	1.5μ	2.04	2.5µ
Steel	—ıı'.	—16·.	-14'.	—11 <b>′</b> .	<i>—</i> 9′.0
Cobalt	<del>-</del> 9.5	-11.5	<del>-</del> 9.5	—II.	-6.5
Nickel	<b>—</b> 5.5	<del>-</del> 4.0	0	+1.75	+3.0

Field Intensity = 10,000 C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 483. - Dispersion of Kerr Effect.

Mirror.	Field (C. G. S.)	.41μ	-44/4	.484.	.524	.56µ	.60µ	.64μ	.66μ
Iron	21,500	25	-,26	28	31	36	42	44	45
Cobalt	20,000	36	35	34	35	<b>-</b> .35	35	35	36
Nickel	19,000	<b>—</b> .16	15	13	13	14	14	14	14
Steel	19,200	27	28	31	35	38	<b>—</b> .40	44	45
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	<b>—</b> .07	02	+.04	+.06	+.08	+.06	+.04	+.03

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

# TABLES 484-486.

# RESISTANCE OF METALS. MAGNETIC EFFECTS.

TABLE 484.—Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

		P	roportiona	l Values o	f Resistar	ice.			
Н	-192°	-135°	-100°	-37°	o°	+18°	+600	+1000	+1830
0 2000 4000 6000 8000 10000 12000 14000 16000 20000 25000 35000	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8 25.5 30.7 35.5	0.60 0.87 1.35 2.06 2.88 3.80 4.76 5.82 6.95 8.15 9.50 13.3 18.2 20.35	0.70 0.86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40 7.30 9.8 12.2	0.88 0.96 1.10 1.29 1.50 1.72 1.94 2.16 2.38 2.60 2.81 3.50 4.20 4.95	1.00 1.08 1.18 1.30 1.43 1.57 1.71 1.87 2.02 2.18 2.33 2.73 3.17 3.62	1.08 1.11 1.21 1.32 1.42 1.54 1.67 1.80 1.93 2.06 2.20 2.52 2.86 3.25	1.25 1.26 1.31 1.39 1.46 1.54 1.62 1.70 1.79 1.88 1.97 2.22 2.46 2.69	1.42 1.43 1.46 1.51 1.57 1.62 1.67 1.73 1.80 1.87 1.95 2.10 2.28 2.45	1.79 1.80 1.82 1.85 1.87 1.89 1.92 1.94 1.96 1.99 2.03 2.09 2.17 2.25

TABLE 485. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at  $0^\circ$  and H=0 .

H	-190°	-75°	00	+180	+1000	+1820
0 1000 2000 3000 4000 6000 8000 12000 14000 16000 18000 25000 35000	+0 +0.20 +0.17 -0.00 -0.17 -0.19 -0.18 -0.18 -0.17 -0.17 -0.17 -0.16 -0.14 -0.12	0 +0.23 +0.16 -0.05 -0.15 -0.20 -0.23 -0.27 -0.30 -0.35 -0.38 -0.41 -0.49 -0.56	0 +0.07 +0.03 -0.34 -0.60 -0.70 -0.82 -0.87 -0.91 -0.94 -0.98 -1.03 -1.12 -1.22	0 +0.07 +0.03 -0.36 -0.72 -0.83 -0.90 -1.09 -1.09 -1.13 -1.17 -1.29 -1.40 -1.50	0 +0.96 +0.72 -0.14 -0.70 -1.02 -1.15 -1.23 -1.30 -1.37 -1.44 -1.51 -1.59 -1.76 -1.95 -2.13	0 +0.04 -0.07 -0.60 -1.15 -1.53 -1.66 -1.76 -1.85 -2.05 -2.15 -2.25 -2.25 -2.73 -2.73

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 486.—Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel  "Cobalt Cadmium Zinc Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Mangarin Tellurium Antimony  Iron    Nickel steel	diverse results, crease in weak f in strong.	-1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.01 +0.004 +0.003 +0.002 +0.0001 +0.0003 +0.0003 +0.001 +0.001 +0.001 +0.01 +0.02 to 0.34 +0.02 to 0.16 mens show very usually an in- ields, a decrease similarly to iron.	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906.  "" "" "" "" "" "" "" "" "" "" "" "" "

#### TABLE 487. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primary

current;  $\frac{dt}{dx}$  = primary temperature gradient; B = breadth, and D = thickness, of specimen M = intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential),  $E = R \frac{HI}{D}$ 

" **Temperature**),  $T = P \frac{HI}{D}$ Ettingshausen effect ( "

Nernst effect (Thermomagnetic

" Potential),  $E = QHB\frac{dt}{dx}$ " Temperature),  $T = SHB\frac{dt}{dx}$ Leduc effect (

Substance,	Values of R.	P×106.	Q×10 ⁶ .	S× 108.
Tellurium	+400 to 800 + 0.9 " 0.22 +.012 " 0.033 +.010 " 0.026	+200 +2 -0.07	+360000 +9000 to 18000 -700 " 1700 +1600 " 7000	+400 +200 +69
Iron	+.007 " 0.011 +.0016 " 0.0046 - +.00055	-0.06 +0.01	-1000 " 1500 +1800 " 2240 -54 " 240	+39 +13 +13
Iridium	+.00040 +.00009 00003	- - -	up to —5.0 —5.0 (?) —4.0 (?)	+5
Platinum	0002 00052 00054 00057 to .00071	_	—90 to 270	—2 —18
Constantine  Manganese  Palladium	—.0009 —.00093 — 0007 to .0012	-	+50 to 130	— <u>3</u>
Silver	0008 " .0015 0023 00094 to .0035 00036 " .0037	-	—46 " 43°	<u>-41</u>
Nickel	0045 " .024 017 up to 16.	+0.04 to 0.19 +5. +3 to 40	+2000 " 9000 +100 + up to 132000	—45 —200

TABLE 488. - Variation of Hall Constant with the Temperature.

		Bisn	nuth.1					Antimony	.3	
Н	i82°	-90°	-23°	+11.50	+1000	Н	-186	0 -790	+21.5°	+58°
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	1750 3960 6160	0.25	2 0.24	0.211	0.203
					Bismuth	,3				
Н	+14.5°	+1040	12	5°	189°	2120	239 ⁰	259 ⁰	269 ⁰	2700
890	5.28	2.57	2.1	12	1.42	1.24	1.11	0.97	0.83	0.77*

¹ Barlow, Ann. der Phys. 12, 1903.

Traubenberg, Ann. der Phys. 17, 1905.

* Melting-point.

Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

#### RÖNTGEN (X-RAYS) RAYS.

# TABLE 489. — Cathode and Canal Rays.

Cathode (negative) rays consist of negatively charged particles (charge  $4.77 \times 10^{-10}$  esu,  $1.591 \times 10^{-20}$  emu, mass,  $9 \times 10^{-28}$  g or 1/1800 H atom, diam.  $4 \times 10^{-13}$  cm) emitted at low pressures in an electric discharge tube perpendicularly to the cathode ( $\cdot$ : can be focused) with velocities ( $10^9$  to  $10^{10}$  cm/sec.) depending on the acting potential difference. When stopped by suitable body they produce heat, ionization (inversely proportional to velocity squared), photographic action, X-rays, phosphorescence, pressure. The bulk of energy is transformed into heat (Pt, Ta, W may be fused). In an ordinary X-ray tube carrying  $10^{-3}$  ampere the energy given up may be of the order of 100 cal/m. Maximum thickness of glass or Al for appreciable transmission of high speed particles is .0015 cm. Maximum velocity  $V_d$  with which a cathode ray of velocity  $V_0$  may pass through a material of thickness d is given by  $V_0^4 - V_d^4 = ad \times 10^{40}$ ; a = 2 for air, 732 for Al and 2540 for Au, cm-sec. units (Whiddington, 1912). Cathode rays have a range of only a few millimeters in air.

Canal (positive) rays move from the anode with velocities about 108 cm/sec. in opposite direction to the cathode rays, carry a positive charge, a mass of the order of magnitude of the H molecule, cause strong ionization, fluorescence (LiCl fluoresces blue under cathode, red under canal ray bombardment), photographic action, strong pulverizing or disintegrating power and

by bombardment of the cathode liberate the cathode rays.

#### TABLE 490. - Speed of Cathode Rays.

The speed of the cathode particles in cm/sec. as dependent upon the drop of potential to which they owe the speed, is given by the formula  $v = 5.95 \sqrt{E} \cdot 10^7$ . The following table gives values of  $5.95 \sqrt{E}$ .

Voltage	10	20	40	50	60	70	80	90	100
Velocity × 10 ⁻⁷	18.8	26.6	37.6	42.I	46.1	49.8	53·3	56.5	59·5
Voltage Velocity × 10 ⁻⁷	100 59·5	200 84.2	400 119.1	500 133.1	600 145.8	700 157.5	800 168.3	900 178.6	1000

For voltages 1000 to 10,000 multiply 2d line by 10, etc.

#### TABLE 491. - Cathodic Sputtering.

The disintegration of the cathode in an electric discharge tube is not a simple phenomenon. The particles taking part in the sputtering must be either large or of high speed or both (2000+gauss field required for their deviation). It depends upon the nature of the residual gas. H, N, CO₂ are not generally favorable; Ar is especially favorable, also He, Ne, Kr and Xe. Raised temperature favors it. The relative sputtering from various metals is shown in the following table (Crookes, Pr. R. S. 1891); the residual gas was air, pressure about .05 mm Hg.

|--|

For further data on cathode, canal and X-rays, see X-rays by G. W. C. Kaye, Longmans, 1917, upon which much of the above and the following data for X-rays is based. See also J. J. Thomson, Positive Rays, Longmans, 1913.

# TABLES 492-493. RÖNTGEN (X-RAYS) RAYS.

TABLE 492. - X-rays, General Properties.

X-rays are produced whenever and wherever a cathode ray hits matter. They are invisible, of the same nature as, and travel with the velocity of light, affect photographic plates, excite phosphorescence, ionize gases and suffer deviation neither by magnetic nor electric fields as do cathode rays. In an ordinary X-ray tube (vacuum order 0.001 to 0.01 mm Hg) the cathode (concave for focusing, generally of aluminum) rays are focused on an anticathode of high atomic weight (W, Pt, high atomic weight, high melting point, low vapor pressure, to avoid sputtering, high thermal conductivity to avoid heating). Depth to which cathode rays penetrate, order of 0.2  $\times$  10⁻⁶ cm in Pb, 90,000 volts (Ham, 1910), 24  $\times$  10⁻⁶ cm in Al, 22,000 volts (Warburg, 1915). Note: High speed H and He molecules (2  $\times$  10⁸ cm/sec.) can penetrate 0.001 to 0.006 mm mica; He  $\alpha$  particles (2 × 10 cm/sec.), 0.04 mm glass.

The X-rays from an ordinary bulb consist of two main classes: Heterogeneous ("general," "independent") radiation, which depends solely on the speed of the parent cathode rays. It is always present and its range of hardness (wave-lengths) depends on the range of speeds of the cathode rays. Its energy is proportional to the 4th power of these

speeds.

Homogeneous ("characteristic," "monochromatic") radiation (K, L, M, etc. radiations, see Table 498 for wave-lengths), characteristic of the metal of the anticathode. Generated only when cathode rays are sufficiently fast. There is a critical velocity for each characteristic radiation from each material, proportional to the atomic weight of the anticathode. The critical velocity for the K radiation is  $V_K = A \times 10^8$ , when A is the atomic weight of the radiator (e.g. anticathode);  $V_L = 1/2(A - 48)10^8$ .

The following relation has been found to hold experimentally between the voltage V through which the cathode particles fall and the maximum frequency v of the X-rays produced: eV =  $h\nu$ , where e is the electronic charge and h, Planck's constant. Blake and Duane (Phys. Rev. 10, 624, 1917) found for h, 6.555 × 10⁻²¹ erg second.

As the speed of the cathode rays is increased, shorter and shorter wave-lengthed "independent"

X-rays are produced until the critical speed is reached for the "characteristic" rays; with faster speeds, the cathode rays become at first increasingly effective for the characteristic radiation,

then less so as the independent radiation again predominates.

When cathode rays hit the anticathode some 75 per cent are reflected, the more the heavier its atomic weight. The chances of the remainder hitting an atom so as to generate an X-ray are slight; only 1/1000 or 1/2000 of the original energy goes into X-rays. If  $E_z$  and  $E_c$  are the energies of the X and the parent cathode rays, A the atomic weight of the anticathode,  $\beta$  the velocity of the cathode rays as fraction of the light value (3 × 10¹⁰ cm/sec.), Beatty showed (Pr. R. S. 1913) that  $E_x = E_c$  (.51 × 10⁴ $A\beta^2$ ); this refers only to the independent radiations; when characteristic radiations are excited their energy must be added and the tube becomes considerably more efficient. No quantitative expression for the latter has been developed.

When an X-ray strikes a substance three types of radiation result: scattered (sometimes called secondary) X-rays, characteristic X-rays and corpuscular rays (negatively charged particles). The proportions of the rays depend on the substance and the quality of the primary rays. When the substance is of low atomic weight, by far the greater portion of the X-rays, if of a penetrating type, are scattered. With elements of the Cr-Zn group most of the resulting radiation is "characteristic." With the Cu group the scattered radiation (1/200) is negligible. Heavier elements, both scattered and characteristic X-rays. Corpuscular radiation greater, mass for mass, for elements of high atomic weight and may mask and swamp the characteristic radiation. Hence an X-ray tube beam, heterogeneous in quality, allowed to fall on different metals, - Cu, Ag, Fe, Pt, etc., — excites characteristic X-rays of wide range of qualities. Exciting ray must be harder than the characteristic radiation wished. The higher the atomic weight of the material struck (radiator), the more penetrating the quality of the resulting radiation as shown by the following table, which gives  $\lambda$ , the reciprocal of the distance in cm in Al, through which the rays must pass in order that their intensity will be reduced to 1/2.7 of their original intensity.

TABLE 493. - Röntgen Secondary Rays.

Radiator.	Radiator. Cr Fe Co		Со	Ni	Cu	Zn	As	Se	Sr	Ag	Sn	
Atomic weight	5 ² .	55.8	59.0	58.7	63.6	65.4	75.0	79.2	87.6	108.	119.	
	367.	239.	193.	160.	129.	106.	61.	51.	35.2	6.75	4·33	

With the radiator at 45° to the primary X-rays at most only about 50 per cent of the energy goes to characteristic rays and only about 1/10 of the latter escape the surface of the radiator. The  $\beta$  radiations of radioactive elements may possibly be regarded (Rutherford) as a characteristic radiation produced by the expulsion of the  $\alpha$  particles. The hardness of some corresponds to the K and L radiations.

For more complete data on X-rays, see X-rays, G. W. C. Kaye, Longmans, 1917, upon which these X-ray tables are greatly based.

## RÖNTGEN (X-RAYS) RAYS.

## TABLE 494. - Corpuscular Rays.

Corpuscular rays are given off in greatest abundance when radiator emits its characteristic radiation. Intensity increases with atomic weight (4th power, Moore, Pr. Phys. Soc.). Greater number emitted at right angles to incident rays. Velocity range (6 to 8.5)10° cm/sec.  $v_0$  = velocity when leaving radiator =  $r0^8(A$  = Atomic weight) = critical velocity necessary to excite characteristic radiation, therefore corpuscular rays have practically the same velocity as the original generating cathode rays. Are of uniform quality when excited by characteristic rays and follow exponential law of absorption in gases. If  $\lambda$  is the absorption coefficient and  $\lambda$  the atomic weight,  $\lambda \lambda^4 = \lambda v_0^4 = constant$  (Whiddington, Beatty).  $\lambda$  is defined by  $I = I_0 e^{-\lambda d}$  where I and  $I_0$  are the intensities after and before absorption and J the thickness of the absorptive layer in cm. The following values for  $\lambda$  in air for characteristic radiations from various substances are due to Sadler. (At  $v_0$  C and  $v_0$  cm Hg.)

Metal emitting			1	Exciting cl	haracterist	ic radiatio	n from			
corpuscles.		Zn	As	Se	Sr	Mo	Rh Ag		Sn	
AlFeCu	38.9	37.0	35.8 36.2	29.6 30.2 30.4	26.4	20.0 21.5 20.8	15.2 15.5 15.2	 10.9 10.8	8.90 8.84 8.81	6.54 6.41 6.67

## TABLE 495. - Intensity of X-Rays. Ionization.

The intensity of the radiation from an X-ray bulb is proportional to the current. Except at low voltages it equals  $Ki(v^2 - v_0^2)$  where i is the current, v the applied voltage,  $v_0$  the break-down voltage and K a constant for the tube (Krönke). The intensity of X-rays is most accurately measured by the ionization they produce. This may be referred to the International Radium Standard (see Table 508). It is proportional to the 4th power of the speed of the parent cathode rays (Thomson), (true only of independent rays, Beatty, 1913). The saturation current due to X-ray ionization is usually of the order of  $10^{-10}$  to  $10^{-10}$  ampere. When X-rays pass through a substance, only once in a while is an atom struck, only perhaps r in a billion, and ionized. The ionization is probably an indirect process through the mediation of corpuscular rays. In the absence of secondary radiations the ionization is proportional to the mass of the gas that is, its pressure at constant temperature). It depends on the nature of the gas, but is little affected by the quality of the rays. The following results are due to Crowther, 1908.

	Ionization relative to air = 1.							
Gas or vapor.	Density, air = r.	Soft X-rays 6 mm spark.	Hard X-rays 27 mm spark.					
Hydrogen H2 Carbon dioxide CO2. Ethyl chloride C2H2Cl. Carbon tetrachloride CCl4. Ethyl bromide C2H3Er. Methyl bridde CH3I Mercury methyl Hg(CH3)2.	0.07 1.53 2.24 5.35 3.78 4.96 7.93	0.01 1.57 18.0 67. 72. 145. 425.	0.18 1.49 17.3 71. 118.					

# RÖNTGEN (X-RAYS) RAYS.

## TABLE 496. — Mass Absorption Coefficients, $\lambda/d$ .

The quality by which X-rays have been generally classified is their "hardness" or penetrating power. It is greater the greater the exhaustion of the tube, but for a given tube depends solely upon the potential difference of the electrodes. With extreme exhaustion the X-rays have an appreciable effect after passing through several millimeters of brass or Al. The penetrability of the characteristic radiation is in general proportional to the 5th power of the atomic weight of the radiator. The absorption of any substance is equal to the sum of the absorptions of the individual atoms and is independent of the chemical combination, its physical state and probably of the temperature. Most of the following table is from the work of Barkla and Sadler, Phil. Mag. 17, 739, 1909. For starred radiators, L radiations used: for others the K.

used; for others the K.

If Io be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then  $I = I_0 e^{-\lambda x}$  gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients  $\lambda$  have been divided by the

density d.

		Absorber.											
Radiator.	С	Mg	Al	Fe	Ni	Cu	Zn	Ag	Sn	Pt	Au		
Cr. Fe. Co. Ni. Cu. Zn. As. Se. Se. Ag. Sh. I. Ba. W* Pt* Pb* Bi* Th* U*	15.3 10.1 3.0 6.6 5.2 4.3 2.5 2.0 .46 .35 .31 .29 .26	126. 80. 64. 52. 41. 35. 10. 2.2	136. 88. 72. 59. 48. 39. 22. 19. 2.5 1.6 1.2 .9 .8 30. 22. 17. 16. 8		129. 84. 67. 56. 63. 265. 141. 23.	143. 95. 75. 62. 53. 56. 176. 24. — — 127. 139. 127. 77.	170. 112. 92. 74. 61. 50. 204. 175. — — —	580. 381. 314. 262. 214. 175. 105. 88. 13. 16. 56. 46. 35. 140. 106. 78. 73. 42.	714. 472. 392. 328. 272. 225. 112. 16.	(517.) 340. 281. 281. 281. 194. 162. 166. 93. 56. 47. — 133. 1138. 1128. 125. 134.	(507.) 367. 306. 253. 210. 178. 106. 100. 61. 52.		

#### TABLE 497. - Absorption Coefficients of Characteristic Radiations in Gases.

The penetrating power of X-rays ranges in normal air from 1 to 10,000 cm or more. The absorptive power of t cm air = 1/820 that of water.  $\lambda$  (see preceding table for definition) for air for soft bulb (1.5 to 5 cm spark gap, 4 to 10 m air), .00020. (Eve and Day, Phil. Mag. 1912.) The absorption coefficient for gases for characteristic or monochromatic radiations varies directly with the pressure. For different characteristic radiations it is proportional to the coefficients in air. It varies with the 5th power of the atomic weight of the radiator. The following table is taken from Raye's X-rays and is based on the work of Barkla and Collier (Phil. Mag. 1912) and Owen. All are for the gas at 0° C and 76 cm Hg.

	A	Air		CO ₂		SO ₂		H ₆ Br	CH₃I		
Fe Co Ni Cu Zn As Se Br St Mo Mo.	λ .0202 .0165 .0136 .0109 .0090 .0053 .0044 .0039 .0023	15.6 12.7 10.5 8.43 6.96 4.10 3.40 3.02 1.78 0.98	λ .0456 .0319 .0227 .0184 .00988 .00782 .00420 .00281	23.1 16.1 11.5 9.31 5.00 3.96 	λ -24 -20 -166 -134 -112 -066 -0546 -050 -0281 -0160	83.3 69.4 57.6 46.5 38.9 22.9 19.1 17.4 9.76 5.56	λ .512 .407 .325 .260 .215 .128 .110 .096 .325 .210	105. 83.2 66.3 53.1 43.9 26.1 22.4 19.6 66.3 42.9	λ 2.16 1.80 1.54 1.27 .743 .619 .552 .338 .197	339. 282. 241. 193. 116. 97. 86.5 53.0	

#### TABLE 498.

#### X-RAY SPECTRA AND ATOMIC NUMBERS.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits Röntgen rays characteristic of that substance. These were analyzed and the wave-lengths determined by Moseley (Phil. Mag. 27, 703, 1014), using a crystal of potassium ferrocyanide as a grating. He noted the K series, showing two lines, and the L series with several. He found that every element from Al to Au was characterized by integer N, which determines its X-ray spectrum; N is identified with the number of positive units associated with its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights, except where the latter disagrees with the order of the chemical properties. Known elements now correspond with all the numbers between 1 and 92 except 6. There are here six possible elements still to be discovered (atomic nos. 43, 61, 72, 75, 85).

The frequency of any line in an X-ray spectrum is approximately proportional to  $A(N-b)^2$ , where A and b are constants. All X-ray spectra of each series are similar in structure, differing only in wave-lengths.  $Q_K = (0/\frac{3}{2}v_0)^2$ ,  $Q_K = (0/\frac{3}{2}v_0)^2$ ,  $Q_K = (0/\frac{3}{2}v_0)^2$ ,  $Q_K = (0/\frac{3}{2}v_0)^2$ ,  $Q_K = (0/\frac{3}{2}v_0)^2$ .

 $Q_L = (v/s_0^{\epsilon}v_0)$  where v is the frequency of the a line and vo the fundamental Rydberg frequency. The atomic number

for the K series =  $Q_K + r$  and for the L series,  $Q_L + 7.4$  approximately.  $r_0 = 3.29 \times r_0^{15}$  Moseley's work has been extended, and the following tables indicate the present (1919) knowledge of the X-ray

(a) K Series (Wave-Lengths,  $\lambda \times 10^8$  cm).

r										
	Element, atomic number.	$\beta_2$	βι	a.	a3a4 (not separable)	a ₃	α1	a1a2 (not separable)		a ₂
	11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 Va	3.074	9.477 7.986 6.759 5.808 5.018 4.394 3.486 2.778 2.509 2.281	9.845 8.300 7.080 6.122 5.314	4.692 	9.856 8.310 7.088 6.129 5.317	3.735 3.355 3.355 3.028 2.742 2.498	11.951 9.915 8.360 7.131 6.168 5.360 4.712		3.738 3.359 3.359 2.746 2.502
	Element, atomic number.	$eta_2$	βι	aı	a ₂	Element, atomic number.	$\beta_2$	$\beta_1$	aı	az
	24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb	2.069 1.892 1.736 1.602 1.488 1.379 1.281 1.121 1.038 	2.079 1.902 1.748 1.613 1.497 1.391 1.294 1.205 1.131 1.052 0.993 	2.284 2.093 1.028 1.781 1.653 1.553 1.433 1.385 1.287 1.170 1.104 1.035 	2.288 2.097 1.032 1.785 1.657 1.543 1.437 1.342 1.251 1.174 1.109 1.040 	43 Ru 44 Rh 45 Pd 47 Agd 48 Ch 50 Sn 51 Sb 52 Te 53 I X 55 Ea 56 Ba 57 Nd 74 W		0.574 -547 -501 -501 -475 -453 -432 -416 -404 -388 -352 -343 -329 -314 -301 -202 -177	0.645 .615 .562 .5362 .538 .510 .487 .468 .456 .437 .398 .388 .372 .358 .372 .358 .372 .358 .372 .358	

# X-RAY SPECTRA AND ATOMIC NUMBERS.

(b) L Series (Wave-lengths,  $\lambda \times 10^8$  cm).

Element,	1 2	a ₂	aı	a ₃	Element	,   ,		aı	
number.					number.				η
30 Zn 33 As 33 Sr Rb 37 Rb 38 Sr 39 Y 40 Zr 41 Mo 44 Ru 45 Rh 46 Pd 47 Acd 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Ba 57 La 58 Ce 59 Pr			12. 346 9. 701 8. 391 7. 335 6. 879 6. 469 6. 683 5. 724 5. 403 4. 845 4. 1365 4.	8.360 7.305 6.440 6.057 5.709 5.381 4.823 4.577 4.352 4.133	60 No 62 Sa 63 Eu 64 Gd 65 Tb 66 Db 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Ra 90 Th	1.802 1.834 1.672 1.840 1.457 1.385 1.348 1.317	2.370 2.210 2.131 2.054 1.983 1.016 1.854 1.794 1.681 1.629 1.528 1.481 1.398 1.360 1.323 1.283 1.283 1.251 1.155 1.186 1.153	2.369 2.200 2.121 2.043 1.973 1.843 1.783 1.670 1.518 1.471 1.388 1.471 1.240 1.210 1.210 1.210 1.200 1.100 0.957 0.911	1.935 1.935 1.725 1.618 1.435 1.242 1.197 1.124 1.091 1.059
Element, atomic number.	β4	$oldsymbol{eta_1}$	$eta_2$	$eta_3$	$oldsymbol{eta_5}$	γ1	$\gamma_2$	$\gamma_3$	γ4
33 As 35 Br 37 Rb 38 Y 40 Zh 41 Mo 42 Mo 44 Rh 46 Ag 48 Ch 50 Sn 51 Cs 56 Ba 57 Ce 53 Ce 59 PNd 62 SE 64 Tb 65 Tb	4.071 3.861 3.676 3.3184 3.044 2.918 2.668 2.558 2.453 2.357 2.167 1.923 1.851	9.449 8.141 7.091 6.639 6.227 5.851 5.493 5.175 3.928 3.733 3.550 3.381 3.550 3.381 2.23 2.684 2.569 2.461 2.359 2.461 2.167 2.075 2.167 2.075	3.004 3.608 3.514 3.354 3.172 3.302 2.881 2.750 2.212 2.881 2.407 2.212 2.112 2.112 2.112 2.114 1.682	4.0300 3.823 3.039 3.300 3.140 3.007 2.873 2.629 2.520 2.414 2.307 2.128 1.688 1.811 1.745		5.386 	2.903 2.78 2.903 2.78 2.23 2.23 1.803 1.559 (1.562)	2.889 32 ———————————————————————————————————	2.831

## X-RAY SPECTRA AND ATOMIC NUMBERS.

		(b)	L SERIES	(WAVE-LEN	gtes, λ ×	( 10 ⁸ CM).			
Element, atomic number.	βι	$eta_1$	$\beta_2$	$\beta_3$	βδ	γ1	γ2	γз	γ4
66 Dy 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 84 Po 90 Th 92 U	1. 721 1. 657 1. 559 1. 490 1. 437 1. 343 1. 296 1. 214 1. 176 1. 142 1. 102 1. 036 1. 036 1. 036	1.700 1.646 1.586 1.474 1.421 1.323 1.278 1.104 1.154 1.120 1.080 1.049 1.012 0.083 0.050 0.020	1.622 1.568 1.514 1.414 1.368 1.280 1.21 1.167 1.133 1.101 1.065 0.983 0.954	1.683 1.620 1.560 1.451 1.303 1.258 1.176 1.138 1.059 1.059 0.098 0.068 0.937	I.422	1.470 1.415 1.367 1.24 1.135 1.105 1.021 0.980 0.958 0.022 0.896 0.864 0.842 0.810 0.654 0.615	1.42 1.36 1.32 1.22 1.18 1.10 0.96 0.93 0.89 0.82 0.79	9 1.365 3 1.316 8 1.223 8 1.183 1 1.097 4 1.058 2 0.956 3 0.929 8 0.894 4 0.840 0 0.816	
		(c)	M Series	(Wave-le	NGTHS, λ	× 108 CM).			
Element, atomic number.	atomic a B		β	γ1	$\gamma_2$	8	51	δ2	E
82 P 83 B 00 T	2 Pb 5.303 5.095 3 Bi 5.117 4.903 0 Th 4.139 3.941		5.256 5.095 4.903 3.941	5.348 4.910 4.726 3.812	5.284 — — 3.678 3.480	4.	146 - 561 - 363	5.102 4.826 4.695 4.532 3.324	4·735 4·456

Reference: Jahrhuch der Radioaktivität und Elektronik, 13, 296, 1916.

#### (d) Tungsten X-ray Spectrum (Wave-lengths, $\lambda \times 10^8$ cm).

The wave-lengths of the tungsten X-ray spectrum have been measured more frequently than those of any other element. The following values are perhaps the most accurate that have hitherto been published. Compton, Physical Review, 7, 646, 1916 (errata, 8, 753, 1916).

Line.	λ	Line.	λ	Line.	λ
a b c' c" d	1.0249 1.0399 1.0582 1.0652 1.0959	e f g h	1.2185 1.2420 1.2601 1.2787 1.2985	j k l	1.3363 1.4735 1.4844

Other references on the X-ray spectrum of tungsten: Gorton, Physical Review, 7, 203, 1916; Hull, Proc. Nat. Acad. Sci. 2, 265, 1916; Dershem, Physical Review, 11, 461, 1918; Overn, Physical Review, 14, 137, 1919.

The following values for tungsten are from Duane and Patterson, Phys. Rev. 16, p. 526, 1920:

Critical Absorption Ka .17806	tion wave-lengths X La ₁ 1,2136	La ₂ 1.0726	$La_3$	1.024	
Emission wave-	length × 108 cm.				
Ka2 .21341	Ka1 .20860	Κβ .18420	Kλ	.17901	
Ll 1.6756	La ₂ 1.4839	La ₁ 1.47306	Lη	1.4176	
Lβ, 1.2985	Lβ ₁ 1.27892	Lβ ₃ 1.2601		1.24193	Lβ ₅ 1.2040
Lv. r.oofo8	Lva 1.0655	Lva r.oso6	Lv.	1.0261	

#### X-RAY ABSORPTION SPECTRA AND ATOMIC NUMBERS.

A marked increase in the absorption of X-rays by a chemical element occurs at frequencies A marked increase in the absorption of X-rays by a chemical element occurs at frequencies close to those of the X-rays characteristic of that element. The absorption coefficient is much greater on the short wave-length side. In the K series the  $\alpha$  lines are much stronger than the corresponding  $\beta$  and  $\gamma$  lines, but the wave-lengths of the  $\alpha$  lines are greater. There is a marked increase in the absorption at wave-lengths considerably shorter than the  $\alpha$  lines and near the  $\beta$  lines. Bragg came to the conclusion that the critical absorption frequency lay at or above the  $\gamma$  of the K series. The  $\gamma$  line has a frequency about 1 per cent higher than the corresponding  $\beta$  line. For the L series there are 3 characteristic marked absorption changes (de Broglie). The critical absorption wave-lengths of the following table are due to Blake and Duane, Phys. Rev. 10, 697, 1917. The equation  $\nu = \nu_0 (N - 3.5)^2$  where  $\nu$  is Rydberg's fundamental frequency (109,675 × the velocity of light) and N the atomic number, represents the data with considerable accuracy. The nuclear charge is obtained by O = 2e(N - 3.5).

considerable accuracy. The nuclear charge is obtained by Q = 2e(N - 3.5).

Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU
Bromine Krypton Rubidium Strontium Yttrium Zirconium Columbium Molybdenum.	35 36 37 38 39 40 41 42	.9179  .8143 .7696 .7255 .6872 .6503 .6180	Ruthenium Rhodium. Palladium. Silver Cadmium. Indium Tin Antimony.	44 45 46 47 48 49 50 51	.5584 .5324 .5075 .4850 .4632 .4434 .4242 .4065	Tellurium Iodine Xenon Caesium Barium Lanthanum Cerium	52 53 54 55 56 57 58	. 3896 . 3727 — . 3444 . 3307 . 3188 . 3073

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or

liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit  $\alpha$ ,  $\beta$ , or  $\gamma$  rays.  $\alpha$  rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The  $\beta$  rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The  $\gamma$  rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air,

Table 506 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra.  $C_2$ ) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an a particle (helium, atomic weight = 4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law.  $I = I_0 e^{-\lambda t}$  where  $I_0 = \text{radioactivity}$  when t = O, I that at the time t, and  $\lambda$  the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards

for governments requiring them.

TABLE 500. — Relative Phosphorescence Excited by Radium.
(Becquerel, C. R. 129, p. 912, 1899.)

	Without screen	Hexagonal zinc blende . Pt. cyanide of barium . Diamond Double sulphate Ur and K	:	:	:	13.36 1.99 1.14 1.00	With screen	:	•	:	:	.04 .05 .01
Į		Calcium fluoride		:	:	.30	" "	:	:	:	:	.02

The screen of black paper absorbed most of the  $\alpha$  rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The  $\gamma$  rays have very little effect.

## TABLE 501.—The Production of α Particles (Helium). (Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 1910.)

Radioactive substance (1 gram.)	a particles per sec.	Helium per year.
Uranium . Uranium in equilibrium with products . Thorium " " " " . Radium . Radium in equilibrium with products .	2.37 × 10 ⁴ 9.7 × 10 ⁴ 2.7 × 10 ⁴ 3.4 × 10 ¹⁰ 13.6 × 10 ¹⁰	2.75 × 10 ⁻⁵ cu. mm. 11.0 × 10 ⁻⁵ " " 3.1 × 10 ⁻⁶ " " 39 " " 39 " " 158 " "

# TABLE 502. — Heating Effect of Radium and its Emanation. (Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

			Heating effect in gram-o	calories per hour per	gram radium.	
			α rays.	β rays.	γ rays.	Total.
Radium Emanation .		•	25.1 28.6	_	-	25.1 28.6
Radium A . Radium B + C			30.5 39.4	4.7	6.4	30.5 50.5
Totals	•		123.6	4.7	6.4	134.7

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc. SMITHSONIAN TABLES.

## TABLE 503. - Stopping Powers of Various Substances for a Rays.

s, the stopping power of a substance for the a rays is approximately proportional to the square root of the atomic weight, w.

Substance s · · · $\sqrt{\mathbf{w} \cdot \cdot \cdot \cdot}$	H ₂ .24 .26	Air 1.0 1.0	O ₂ 1.05 1.05	C ₂ H ₂ 1.11 1.17	C ₂ H ₄ 1.35 1.44	A1 1.45 1.37	N ₂ O 1.46 1.52	CO ₂ 1.47 1.51	CH ₃ Br 2.09 2.03	CS ₂ 2.18 1.95	Fe 2.26 1.97
Substance	Cu	Ni	Ag	Sn	C ₆ H ₆	C ₅ H ₁₂	C ₂ H ₅ I	CC1 ₄	Pt	Au	Pb
s	2.43	2.46	3.17	3·37	3·37	3·59	3.13	4.02	4.16	4.45	4.27
v w	2.10	2.20	2.74	2.88	3·53	3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.

## TABLE 504,—Absorption of $\beta$ Rays by Various Substances.

 $\mu$ , the coefficient of absorption for  $\beta$  rays is approximately proportional to the density, D. See Table 506 for  $\mu$  for Al.

Substance	B 4.65	C 4.4 12	Na 4.95 23	Mg 5.1 24.4	Al 5.26 27	Si 5.5 28	P 6.1 31	S 6.6 3 ²	K 6.53 39	Ca 6.47 40
Substance $\mu/1$ Atomic Wt	Ti	Cr	Fe	Co	Cu	Zn	Ar	Se	Sr	Zr
	6.2	6.25	6.4	6.48	6.8	6.95	8.2	8.65	8.5	8.3
	48	52	56	59	63.3	65.5	75	79	87.5	90.7
Substance	Pd	Ag	Sn	Sb	I	Ba	Pt	Au	Pb	U
	8.0	8.3	9.46	9.8	10.8	8.8	9.4	9.5	10.8	10.1
	106	108	118	120	126	137	195	197	207	240

For the above data the  $\beta$  rays from Uranium were used. Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 505 - Absorption of  $\gamma$  Rays by Various Substances.

	ъ .	Radiu	m rays.	Uraniu	ım rays.	Th, D.	Meso, Th2	Range of
Substance.	Density.	μ (cm)-1	100µ/D	μ(cm)-1	100µ/D	μ(cm) ⁻¹	μ(cm)-1	thickness cm.
Нg Рb	13.59	.642 •495	4.7 ² 4.34	.832 .725	6.12 6.36	.462	.620	.3 to 3.5 .0 " 7.9
Cu Brass . Fe Sn Zn Slate Al	8.81 8.35 7.62 7.24 7.07 2.85 2.77	.351 .325 .304 .281 .228 .118	3.98 3.89 3.99 3.88 3.93 4.14 4.06	.416 .392 .360 .341 .329 .134	4.72 4.70 4.72 4.70 4.65 4.69 4.69	.294 .271 .250 .236 .233 .096	·373 ·355 ·316 ·305 ·300	.o " 7.6 .o " 5.86 .o " 7.6 .o " 5.5 .o " 6.0 .o " 9.4 .o " 11.2
Glass . S Paraffin .	2.52 1.79 .86	.105 .078 .042	4.16 4.38 4.64	.1 22 .092 .043	4.84 5.16 5.02	.089 .066 .031	.113 .083 .050	.0 " 11.3 .0 " 11.6 .0 " 11.4

In determining the above values the rays were first passed through one cm. of lead.

Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

## TABLE 506.

### RADIOACTIVITY.

 $T=\frac{1}{2}$  period = time when body is  $\frac{1}{2}$  transformed.  $\lambda$  = transformation constant =  $\frac{.6939}{P}$ .  $\theta$  = 1/ $\lambda$  is average life of radioactive atoms. Parentheses indicate feeble radiation. V is the velocity of the  $\alpha$  or  $\beta$  rays relative to that of light. To convert to cm/sec multiply by  $3 \times 10^{10}$ .  $a_0$  is the range of  $\alpha$  particles in air 76 cm pres. o°C; at other temperatures and pressures,  $a_1 = \frac{1}{2} a_0 (273 + 1)760 / 273$  p. For  $\alpha$ -rays,  $V = 0.0342a^{\frac{1}{2}}$ .

							-	
Radioactive Element	Symbol	Atomi Weight	No.	Isotope	T ½ period	$\theta = \frac{1}{\lambda}$ average life	λ (sec1)	No.
			1	Uraniu	m Radium Group			
Uranium I Uranium X ₁ Uranium X ₂ Uranium II Ionium Radium Radium A Radium B Radium C Radium C Radium E Radium F Radium F Radium C Radium C' Radium C'' Radium C''	UI UX1 UX2 UII Io Ra Rn RaA RaB RaC RaC' RaD RaE RaF RaG' RaG RaG' RaG'	238 234 234 234 230 226 222 218 214 214 210 210 206	92 90 91 92 90 88 86 84 82 83 84 82 83 84 82 83 84 82	U Th Po U Th Ra Rn Po Pb Bi Po Pb Bi Po Pb	4.67 × 10 ⁹ y  24.6 d  1.15 m  2 × 10 ⁶ y  6.9 × 10 ⁴ y  1.385 d  3.0 m  26.8 m  19.5 m  10-8 s  16.5 y  5.0 d  1.4 m	6.75 × 10 ⁹ y 35.5 d 1.65 m 3 × 10 ⁶ y 10 ⁵ y 2440 y 5.55 d 4.32 m 38.7 m 28.1 m 10-6 s 23.8 y 7.2 d 196 d	4.7 × 10 ⁻¹⁸ 3.26 × 10 ⁻⁷ 0.010 10 ⁻¹⁴ (?) 3.2 × 10 ⁻¹³ 1.30 × 10 ⁻¹¹ 2.08 × 10 ⁻⁸ 3.85 × 10 ⁻⁸ 3.85 × 10 ⁻⁸ 4.30 × 10 ⁻⁴ 5.92 × 10 ⁻⁴ 1.6 (?) 1.33 × 10 ⁻⁸ 1.61 × 10 ⁻⁸ 5.90 × 10 ⁻⁸ (1.8 × 10 ⁻⁷ ) 8.3 × 10 ⁻³	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
	<u> </u>	1	<u> </u>	Ac	tinium Group		1	
Uranium ? Uranium Y Protoactinium Actinium Radioactinium Actinium X Actinon Actinium A Actinium B Actinium C Actinium C" Actinium C"	UY Pa Ac RdAc AcX An AcA AcB AcC AcC" AcΩ"	<b>5000000000000000000000000000000000000</b>	92 90 91 89 90 88 86 84 82 83 81 82	U Th Pa Ac Th Ra Rn Po Pb Bi Tl Pb	1.04 d 1.2 × 10 ⁴ y 20 y 19 5 d 11.4 d 3.9 S 2.0 × 10 ⁻³ s 36.1 m 2.15 m 4.71 m	1.5 d 1.7 × 10 ⁴ y 28.8 y 28.1 d 16.4 d 5.6 s 2.9 × 10 ⁻³ s 52.1 m 3.10 m 6.83 m	7.8 × 10 ⁻⁶ 1.9 × 10 ⁻¹² 1.1 × 10 ⁻⁹ 4.11 × 10 ⁻⁹ 4.11 × 10 ⁻⁷ 7.06 × 10 ⁻⁷ 0.178 3.45 3.2 × 10 ⁻⁴ 5.37 × 10 ⁻⁸ 2.44 × 10 ⁻³	10 20 21 22 23 24 25 26 27 28 29 30
				Tł	norium Group			
Thorium Mesothorium 1 Mesothorium 2 Radiothorium 2 Radiothorium X Thorium A Thorium B Thorium B Thorium C Thorium C' Thorium C' Thorium C'	Th MsTh1 MsTh2 RaTh ThX Tn ThA ThB ThC ThC' ThΩ'	232 228 228 228 224 220 216 212 212 212 208	90 88 89 90 88 86 84 82 83 84 82	Th Ra Ac Th Ra Rn Po Pb Bi Po Pb	1.31 × 10 ¹⁰ y 6.7 y 6.2 h 2.02 y 3.64 d 54 s 0.14 s 10.6 h 6c m 10 ⁻¹¹ s	1.80 × 10 ¹⁰ y 9.67 y 8.9 h 2.91 y 5.25 d 78 s 0.20 s 15.3 h 87 m 10 ⁻¹¹ s	1.68 × 10 ⁻¹⁸ 3.28 × 10 ⁻⁹ 3.12 × 10 ⁻⁵ 1.09 × 10 ⁻⁸ 2.20 × 10 ⁻⁶ 0.0128 5.0 1.82 × 10 ⁻⁵ 1.02 × 10 ⁻⁴ q 10 ¹¹ (?)	31 32 33 34 35 36 37 38 39 40 41
Thorium C / Thorium C' / Thorium Ω"	ThC ThC" ThΩ"	212 208 208	83 81 82	Bi Tl Pb	3.1 m	4.5 m	(6.7 × 10 ⁻⁵ ) 3.70 × 10 ⁻³	42 43 44
Potassium Rubidium	K Rb	39.1 85.5	37	K Rb				45 46

Notes. — (1) I g U emits 2.37  $\times$  104 a-particles per sec. (3) also called Brevium; (7) also called Radium Emanation and Niton; inert gas, dens. 111 H; boils  $-65^{\circ}$  C, condenses low pressure  $-150^{\circ}$  C. (10) has double disintegration; 99.97% emits  $\beta$ -rays and give RaC'; rest, a-rays and give RaC''; (12) radiolead; (14) Polonium; (15) lead; (17) also called radium C2; (18) hypothetical; (21) also called ekatantalum; Uranium Z, isotopic with Pa accompanies Ur in minute quantities; period 6-7 h;  $\beta$ -radiation; (25) also called act. emanation, inert gas, condenses between -120 and  $-150^{\circ}$  C; (29) also called act. D; (36) also called th. emanation, inert gas.

 $\mu_{\beta Al}$  is the absorption coefficient of the  $\beta$ -rays in Al, thickness measured in cm.;  $\mu_{\gamma Al}$  and  $\mu_{\gamma Pb}$  ditto for  $\gamma$ -rays in Al and Pb, unit the cm; the latter is given only for the most penetrating type of  $\gamma$ -rays. If  $I_0$  is the initial intensity and I the intensity after the rays have traversed x cm of the absorbent then,  $I = I_0 e^{-\mu_X}$ ;  $\log_{10} I_0 / I = 0.4343 \,\mu_X$ . If D is the thickness corresponding to the absorption of  $\frac{1}{2}$  the rays then  $D\mu = 0.693$ . (Adapted from report of International Committee on Chemical Elements, 1923; J. Am. Ch. Soc. 45, p. 867, 1923. Col. 4 is from Geiger, Z. fur Physik, 1921.)

No.	Radiation	a ₀	No. of ion pairs	V for $\alpha$ and $\beta$ radiations	^μ βΑΙ	^μ γAl	^μ γPb
				Uranium Radium Group			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	α β β (γ) α α α (β+γ) α α α (β+γ) α α α (β α α α α α α α α α α α α α α α	2.37 2.75 2.85 3.13 3.94 4.50 6.57 3.58	1.33 1.43 1.46 1.52 1.71 1.87 2.37	0.056  0.0479 0.0485 α.0,500; β 0.52; 0.65 0.0540 0.0565 0.36; 0.41; 0.63; 0.70; 0.74; 0.786; 0.862; 0.949; 0.957 0.0641 0.33; 0.39 0.0523	463 14.4 312 13.1; 80 13.2; 53 5500 43.3	24; 0.7; 0.14 354; 16; 0.27 230; 40; 0.51 0.115 45; 0.99 585	0.72.
		1		Actinium Group	<u> </u>		
19 20 21 22 23 24 25 26 27 28 29 30	$\alpha$ $\beta$ $\alpha$ $\alpha$ $\alpha$ $\beta$ $\alpha$	3.314 4.36 4.17 5.40 6.16 5.12	1.60 1.87 1.78 2.11 2.28 2.05	0.0510 α.0559; β.38; .43; .49; .53; .60; .67; .73 0.0550 0.0600 0.0627 0.0589	about 300 about 170  Very large 28.5	120; 31; 0.45 0.198	1.2-1.8
				Thorium Group			
31 32 33 34 35 36 37 38 39 40 41 42	α β and γ α (β) α α β and γ 65% β α 35% α β and γ	2.58 3.67 4.08 4.74 5.40 8.16 4.55 4.69?	1.37 1.69 1.77 1.95 2.09 2.74 1.89	0.0469 0.37; .39; .43; .50; .57; .60; .66; .70 α 0.0527; β 0.47; 0.51 0.0546 0.0574 0.0600 0.63; 0.72 C + C': 0.29; 0.36; 0.93 to 0.95 0.0582 0.0572 See Thorium C	20.2 to 38.5 110 14.4 21.6	26; 0.116 160; 32; 0.36 0.096	0.62
45	ββ				22 to 38 308 to 347		

Notes: (38) ThC has double disintegration; 65% of atoms emit  $\beta$ -rays and produce ThC' baving  $\alpha$ -rays; 35% emit  $\alpha$ -rays and give ThC' having  $\beta$  rays; (41) 469 corresponds to V 0.0572 directly measured; (42) also called ThD. Parentheses indicate relatively feeble radiation.

#### RADIOACTIVITY.

## TABLE 507. — Total Number of Ions produced by the $\alpha$ , $\beta$ , and $\gamma$ Rays.

The total number of ions per second due to the complete absorption in air of the \$\beta\$ rays due to 1 gram of radium is  $9 \times 10^{14}$ , to the  $\gamma$  rays,  $13 \times 10^{14}$ .

The total number of ions due to the α rays from I gram of radium in equilibrium is 2.56×1016. If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.1 parts to the  $\alpha$ , 3.2 to the  $\beta$ , 47 to the y rays. (Rutherford, Moseley, Robinson.)

#### TABLE 508. - Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie (10-8Curie) and the microcurie (10-Curie)]. The rate of production of this emanation is 1.24×10-9 cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm., OOC.) assuming the emana-

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of  $10^{-3}$  unit in a chamber of large dimensions. I curie =  $2.5 \times 10^{9}$ 

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10⁻¹² to 350×10⁻¹².

#### TABLE 509. - Vapor Pressure of the Radium Emanation in cms. of Mercury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°.  $-127^{\circ}$   $-101^{\circ}$   $-65^{\circ}$   $-56^{\circ}$   $-10^{\circ}$   $+17^{\circ}$   $+49^{\circ}$   $+73^{\circ}$   $+100^{\circ}$   $+104^{\circ}$  (crit) 76 100 500 1000 2000 3000 4500 4745 Vapor Pressure. 0.9

# TABLE 510. - References to Spectra of Radioactive Substances.

Radium spectrum:

Demarçay, C. R. 131, p. 258, 1900.

Radium emanation spectrum ·

Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc.

Polonium spectrum:

Roy. Soc. A 83, p. 50, 1909. Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910.

#### TABLE 511. - Molecular Velocities.

The probability of a molecular velocity x is  $(4/\sqrt{\pi})x^2e^{-x^2}$ , the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than c is  $2N(hm/\pi)^{\frac{1}{2}}\left\{\int_{c}^{e^{-h}mc^2}dc + ce^{-hmc^2}\right\}$  (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to 15,800  $\sqrt{T/m}$  cm/sec, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the average arithmetical velocity by  $\Omega$ .

$$G = W \sqrt{3/2} = 1.225W;$$
  $\Omega = W \sqrt{4/\pi} = 1.128W;$   $G = \Omega \sqrt{3\pi/8} = 1.086\Omega.$ 

The number of molecules striking unit area of inclosing wall is  $(1/4)N\Omega$  (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is  $(1/4)\Omega$  where  $\rho$  is the density of the gas. For air at normal pressure and room temperature (2° C) this is about 14 g/cm²/sec. See Langmuir, Phys. Rev. 2, 1913 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1915 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Rev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

Gas.	Molec-		rt. mean				Arithme		verage v			
02.	weight.	273°	293°	373°	223°	273°	293°	373°	1000°	1500°	2000°	6000°
Air. Ammonia. Argon. Carbon monoxide. Carbon dioxide. Helium. Hydrogen. Krypton. Mercury. Molybdenum. Nitrogen. Nitrogen. Oxygen. Tungsten. Water vapor.	17.02 39.88 28.00 41.00 2.01 82.92 200.6 96.0 20.2 28.02 32.00 184.0 18.02	485 633 413 493 393 1311 1838 286 184 - - 584 493 461 - 615 228	502 655 428 511 408 1358 1904 296 191 605 511 478 637 236	567 740 483 576 459 1533 2149 335 215 683 577 539 720 267	404 527 344 410 327 1092 1534 238 154 486 410 384 512 190	447 583 381 454 362 1208 1696 263 170 — 538 454 425 — 566 210	463 604 395 471 376 1252 1755 272 176 — 557 471 440 — 587 218	522 681 445 531 434 1412 1980 308 199 629 531 497 662 246	855 1115 729 870 694 2300 3241 502 325 469 1030 869 813 339 1084	1047 1367 892 1065 850 2840 3970 618 398 575 1260 1064 996 416 1317 493	1209 1577 1030 1230 981 3270 4583 712 458 664 1460 1229 1150 1533 570	2094 2734 1784 2130 1700 5680 7940 1236 796 1150 2520 2128 1992 832 2634 986

Free electron, molecular weight = 1/1835 when H=1;  $G=1.114 \times 10^7$  at 0° C and  $\Omega=1.026 \times 10^7$  at 0° C.

TABLE 512. — Molecular Free Paths, Collision Frequencies and Diameters.

The following table gives the average free path L derived from Boltzmann's formula  $\mu$  (.3502 $\rho\Omega$ ),  $\mu$  being the viscosity,  $\rho$  the density, and from Meyer's formula  $\mu$ (.3007 $\rho\Omega$ ). Experimental values (Verh. d. Phys. Ges. 14, 596, 1912; 15, 373, 1913) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm. The diameters may be determined from L by Sutherland's equation  $\{1.402/\sqrt{2\pi}NL(1+C/T)\}^{\frac{1}{2}}$ , N being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's b.  $\frac{1}{3}b^{l}(2NV\pi)^{\frac{1}{3}}$ ; from the heat conductivity k, the specific heat at constant volume cv,  $\frac{1}{1}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2}$ ,  $\frac{1}{2}$  (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, 1916) and an inferior limit from the dielectric constant D,  $\frac{1}{2}$ , or the index of refraction n,  $\frac{1}{2}$ ,  $\frac{1}{2}$ . The table is derived principally from Dushman, l, c.

		× 106 (cm		Collision	10	og × Mole	cular dian	neters (cm	):
Gas.		mann.	Meyer.	frequency. $\Omega/L$	From L	From	From heat	Lim	iting
	o° C	20° C	20° C	× 10 ⁻⁶ 20° C*	(vis- cosity) $\mu$	van der Waal's b	conduc- tivity k	Max. density ho	Min. D or n
Ammonia Argon Carbon monoxide "dioxide. Helium. Hydrogen Krypton. Mercury. Nitrogen. Oxygen	5.92 8.98 8.46 5.56 25.25 16.00 9.5 8.50 9.05 5.6	6.60 9.88 9.23 6.15 27.45 17.44 (14.70) 9.29 9.93	5.83 8.73 8.16 5.44 33.10 15.40 (13.0) 8.21 8.78	9150 4000 5100 6120 4540 10060 — 5070 4430	2.97 2.88 3.19 3.34 1.90 2.40 — 3.15 2.98	3.08 2.94 3.12 3.23 2.65 2.34 (3.69) 3.01 3.15 2.92 4.02	2.86 3.40 2.30 2.32 3.14 3.53 3.42	2.87 3.27 3.35 1.98 2.40 3.35 3.23 2.99 3.55	2.66 2.74 2.90 1.92 2.17 (2.70) 

^{*} Pressure =  $10^6$  bars =  $10^6$  dynes ÷ cm² = 75 cm Hg.

# TABLE 513. - Cross Sections and Lengths of Some Organic Molecules.

According to Langmuir (J. Am. Ch. Soc. 38, 2221, 1916) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the —COOH, —CO or —OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the —COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the —COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When are in contact it possible. Fure hydrocarbon oils will not spread over water. Betzethe will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-tracted groups are in contact with water. If weight w of oil spreads over water surface A, the area covered by each molecule is AM/wN where M is the molecular weight of the oil (O = 16), N, Avogadro's constant. The vertical length of a molecule  $l = M/a\rho N = W/\rho A$  where  $\rho$  is the oil density and a the horizontal area of the molecule.

Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length) × 108	Substance.	Cross section in cm ² × 10 ¹⁶	l in cm (length) × 108
Palmitic acid C ₁₅ H ₃₁ COOH Stearic acid C ₁₇ H ₃₅ COOH Cerotic acid C ₂₅ H ₃₁ COOH Oleic acid C ₁₇ H ₃₅ COOH Linoleic acid C ₁₇ H ₃₁ COOH Linoleic acid C ₁₇ H ₃₁ COOH Linoleic acid C ₁₇ H ₂₂ COOH Ricinoleic acid C ₁₇ H ₂₂ (OH)COOH	25 48	19.6 21.8 29.0 10.8 10.7 7.6 5.8	Cetyl alcohol C15H33OH	21 29 21 69 137 145 280 143	21.9 35.2 44.0 23.7 11.9 11.2 5.7 11.0

## TABLE 514. - Size of Diffracting Units in Crystals. ¶

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals [100] this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is  $d_{100}$ . This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure,

Crystal.	Elementary diffracting element.	Side of cube.	Molecules or atoms in unit cube.
KCI. NaCI ZnS. CaF2. FeS2.	Face-centered cube * """"""""""""""""""""""""""""""""""""	cm 6.30 × 10 ⁻⁸ 5.56 × 10 ⁻⁸ 5.46 × 10 ⁻⁸ 5.40 × 10 ⁻⁸ 5.26 × 10 ⁻⁸	4 molecules
Fe. Al. Na. Ni.	Body-centered cube Face-centered cube Body-centered cube Face-centered cube	2.86 × 10 ⁻⁸ 4.05 × 10 ⁻⁸ 4.30 × 10 ⁻⁸ 2.76 × 10 ⁻⁸ 3.52 × 10 ⁻⁸	2 atoms 4 " 2 " 2 " 4 "

^{*} Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element is a cube (simple) of \( \frac{1}{2} \) this size. Elementary hody-centered cube, — atom at each corner, one in center; e.g., Fe, Ni (in part), Na, Li? Elementary face-centered cube, — atom at each corner, one in center of each face; e.g., Cu, Ag, Au, Pb, Al, Ni (in part), etc. Simple cubic lattice, — atom in each corner. Double face-centered cubic or diamond lattice — C (diamond); Si, Sb, Bi, As?, Te?.

† Diamond lattice. ‡ Cubic-holohedral. § Cubic-pyritohedral.

Metals taken from Hull, Phys. Rev. 10, p. 661, 1917

¶ See Table 528 for best values of calcite and rock-salt grating spaces.

Note:— (Hull, Science 52, 227, 1920). Ca, face-centered cube, side 5.56 A, each atom 12 neighbors 3.93 A distant. Ti, centered cube, cf. Fe, side 3.14 A, 8 neighbors 2.72 A. Zn, 6 nearest neighbors in own plane. 2.67 A, 3 above, 3 below, 2.92 A. Cd, cf. Zn, 2.08 A, 3.30 A. In, face-centered tetragonal, 4 nearest 3.24 A, 4 above, 4 below, 3.33 A. R, cf. Zn, 2.69 A, 2.64 A. Pd, 13ce-centered cube, side 3.02 A, 12 neighbors 2.74 A, Ta, centered cube, side 3.02 A, 12 neighbors 2.74 A, Ta, centered cube, side 3.08 A, 12 neighbors, 2.69 A (A = 10⁻⁶ cm). Note:— (Bragg, Phil. Mag. 40, 160, 1920). Crystals empirically considered as tangent spheres of diameter in table, atom at center of sphere. When lattice known allows estimation of dimensions of crystal unit. Table foot of next page

(atomic numbers, elements, diameter in Angstroms, 10-8 cm).

## ELECTRONS, PROTONS, ATOMIC STRUCTURE, MAGNETIC FIELD OF ATOMS.

Free negative electron: (corpuscle, J. J. Thomson); mass =  $8.99 \times 10^{-28} g = 1/1848$  H atom, probably all of electrical origin due to inertia of self-induction.

Theory shows that when speed of electron = 1/10 velocity of light its mass should be appreciably dependent upon that speed. If  $m_0$  be mass for small velocity v, m be the transverse mass for v, v/ (velocity of light) =  $\beta$ , then  $m = m_0$  $(1 - \beta^2)^{\frac{1}{2}}$ , Lorentz, Einstein;

for 
$$\beta = 0.01$$
 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  $m/m_0 = 1.00005$  1.005 1.02 1.048 1.091 1.155 1.250 1.400 1.667 2.294

(Confirmed by Bucherer, Ann. d. Phys. 1909, Wolz, Ann. d. Phys. Radium ejects electrons with 3/10 to 98/100 velocity of light.) m, due to charge  $= 2E^2/3a$ , E = charge, a = radius, whence radius of electron  $= 2 \times 10^{-18}$  cm = 1/50,000 atomic radius. Cf. (radius of earth)/(radius of Neptune's orbit) = 1/360,000. Evidence from collisions of a-particles indicate that the diameter of the electron cannot be greater than  $4 \times 10^{-13}$ .

(Chadwick and Bieler, Phil. Mag. 1921.)

Positive Electron or Proton: heavy, extraordinarily small, never found associated with mass less than that of the H atom; mass 1.65 × 10⁻²⁴g. If mass all electrical, radius must be 1/2000 that of the electron. No experimental evidence as with the latter since high enough speeds not available. Penetrability of atom by \$\frac{\text{P}}{\text{-practice}}\$ (may penetrate 10,000 atomic systems before it happens to detach an electron) and \$\alpha\$-particles (8,000 times more massive than \$-\text{electron}\$, pass through 500,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit: not larger than 10⁻¹² cm for Au (beavy atom) and 10⁻¹³ for H (light atom) (Rutherford). Cf. (radius sun) ('radius 'rothiu') = 1/3000, but sun is larger than planets. ('Hg atoms by billions may pass through thinwalled highly-evacuated glass tubes without impairing vacuum, therefore massive parts of atoms must be extremely small congressed to volume of atoms. small compared to volume of atom.)

Rutherford Atom: Atoms of all elements are somewhat similarly built. At the center a + charged nucleus of minute dimensions, responsible for most of the mass of the atom; this is surrounded by a distribution of electrons held in equilibrium by the force from the nucleus. Resultant nuclear charge = atomic or ordinal no., varies from 1 for H to 02 for U. These atomic nos. represent the number of planetary electrons which surround the nucleus. By the action of light, the electric charge, bombardment by a-particles, one or more of the planetary electrons may be driven away from the nucleus; by X-rays or the swift \(\theta\)-rays some of the more strongly bound may be removed. New electrons are generally soon captured to replace these. The nucleus is much more stable and when disrupted (radioactive changes, bombardment with \(\theta\)-particles) shows no tendency to revert to original state.

Moseley (Phil. Mag. 26, 1912; 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of these frequencies forming an arithmetical progression from element to element. Moseley's eries of increasing X-ray frequencies is with one or two exceptions that of increasing atomic weights, and these exceptions are less anomalous for the X-ray series than for the atomic weight series. It seems plausible then that there are 92 elements (from H to U) built up by the addition of some electrical element. Moseley's discovery may be expressed in the form

$$\frac{n_1}{n_2} = \frac{E_1}{E_2} \text{ or } \frac{\lambda_2}{\lambda_1} = \frac{E_1^2}{E_2^2}$$

where E is the nuclear charge and  $\lambda$  the wave-length. Substituting for the highest frequency line of W,  $\lambda_2 = 0.167 \times 10^{-8}$  cm (Hull),  $E_2 = 7.4 = N_w$ , and  $E_2 = 1$ , then  $\lambda_1 = \text{highest possible frequency by element which has one + electron; <math>\lambda_1 = 0.1.4 \text{ m/s.}$ . Now the H ultra-violet series highest frequency line = 0.1.2 m/s. (Lyman); i.e., this ultra-violet line of H is nothing but its K X-ray line. Similarly, it seems equally certain that the ordinary Balmer series of H (head at 365 m/s) is its L X-ray series and Paschen's infra-red series its M X-ray series.

The application of Newton's law to Moseley's law leads to  $E_1/E_2 = a_2/a_1$ , where the a's are the radii of the immost — electronic orbits, i.e., the radii of these orbits are inversely proportional to the central charges or atomic numbers.

There are other negative electrons on the nucleus with corresponding + charges to make the atom neutral electrically. The negative nuclear charges may serve to hold the positive ones together. He, atomic no. = 2, has two free + charges, on nucleus; then 'us has 4+ protons held together by 2 — electrons with 2 — electron outside nucleus. H has one + proton and one — electron.

If the — electron is designated as e (charge — 1, mass negligible) and the + proton as p (charge + 1, mass 1 except in H) then the formula for the nucleus of any element from He to U may be written as  $(p_2e)_m(pe)_n$  where N is the atomic number and n has values from 0 to 54. If n be taken as -1, then H may be included. (Masson, Phil. Mag. 41, 1921.) If brackets are used to designate the nucleus, then the complete element becomes  $[(p_2e)_m(pe)_n]_n = [(p_2e)_n + (p_2e)_n + (p_2e)_n$ 

(This Table supplements Table 514.)

			(1111) 1401	e supplem	iches Lable ?	) 4 4 • /			
3 Li 4 Gl 6 C 7 N 8 O 9 F 10 Ne	3.00	13 Al 14 Si	2.70	25 Mn	2.95	36 Kr	2.35* 4.50	54 Xe	2.70*
4 Gl	2.30	r4 Si	2.35	26 Fe	2.80	37 Rb	4.50	55 Cs	4.75
6 C	1.54	16 S	2.05	27 Co 28 Ni	2.75	38 Sr	3.90	55 Cs 56 Ba 81 Tl	4.75 4.20
7 N	1.30	17 Cl	2.10	28 Ni	2.70	47 Ag	3.55	81 Tl	4.50 3.80
80	1.30	18 A	2.05*	29 Cu	2.75	48 Cd 50 Sn	3.20	82 Pb	3.80
9 F	1.35	19 K	4.15	30 Zn	2.65	50 Sn	2.80	83 Bi	2.96
ro Ne	1.30*	20 Ca 22 Ti	3.40	33 As 34 Se 35 Br	2.52	51 Sb	2.80		
II Na	3·55 2.85	22 Ti	2.80	34 Se	2.35 2.38	52 Te	2.65		
12 Mg	2.85	24 Cr	2.80†	35 Br	2.38	53 I	2.80		

^{*} Outer electron shell. † Cr, "electronegative," 2.35; Mn., ditto, 2.35.

Broughall (Phil. Mag. 41, p. 872, 1921) computes in the same units from Van der Waal's constant "b" the diameters of He, N, A, Kr, and X as 2.3, 2.6, 2.9, 3.1, and 3.4. These inert elements correspond to Langmuir's completely filled successive electron shells. The corporation numbers are 2, 10, 18, 36 and 54. For Langmuir s theory see J. Am. Ch. Soc., p. 868, 1919, Science 54, p. 59, 1921.

#### LANCMUIR ATOM. BOHR ATOM. ATOMIC MAGNETIC FIELD.

From the emission of nuclear a-particles,  $2(p_2e) = p_4e_2$ , it seems probable that the nuclei are compounds of He and H nuclei. By the bombardment of the nuclei of atoms up to atomic number 40 with a-particles Rutherford has obtained H but only where H and He nuclei should both occur in the nucleus (Bo, N, Fl, Na, Al, P). Harkins has developed this idea (J. Franklin. Inst. 194, 213 et seq., 1922) and shown the much greater frequency in nature of the even-atomic numbered elements (97.6 per cent in stony meteorites, 99.2 Fe meteorites, 85.6 lithosphere, 5 unknown elements all odd, even radio-active most stable). Elements below atomic number 30 make up 99.09 per cent of all meteorites, 99.85 lithosphere. The stability of the He nucleus may be judged by the energy set free in the formation of I He from H. According to "relativity" 1 g-mass = 9 × 10²⁰ ergs (E = mc²). The change of mass involved in the formation of 1 g-atom of He (1.000 g) from 4 g-atoms of H₂ (4 × 1.0078 g) = 2.81 × 10¹⁹ ergs = 6.71 × 10¹¹ calories. I lb. H₂ changed to He equals heat from 10.000 tons coal. The nuclei of light even numbered atoms (most abundant isotope) up to Fe (26) almost wholly of He nuclei. To a 1st approximation the a-particle behaves in collision like an elastic oblate spheroid, semi-axes, 8 × 10⁻¹³ and 4 × 10⁻¹³ cm. (Chadwick, Bieler, P. M. 1921). The theory of the arrangement of the extra-nuclear electrons has followed two developments: The physicist, to explain radiation phenomena, desires a planetary type of atom (Bohr atom); the chemist, for stereochemical phenomena, one

The theory of the arrangement of the extra-nuclear electrons has followed two developments: The physicist, to explain radiation phenomena, desires a planetary type of atom (Bohr atom); the chemist, for stereochemical phenomena, one with electrons not in co-planar revolution, rather vibrating in 3-dimensional position (Langmuir atom). Langmuir atom (J. Am., Ch. Soc. 41, 868, 1919) postulates a 3-dimensional more or less symmetrical arrangement of the extra-nuclear electrons in concentric shells containing successively, when complete 2, 8, 8, 18, 18, 32 ( $N = 2(1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 4^2 + 4^2 + 1$ ). No outer layer has electrons until the inner have their quota. The electrons in the outer shell determine the valence and the chemical and electrochemical properties of the element. This device very satisfactorily accounts for many chemical structures and reactions. The following table shows the arrangement of the electrons from shell to shell. N gives the number in the inner completed shells; E, the number (valence electrons in the outer shell).

E =	0	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
I N 2 11b 10 111 13 111b 136 1Va 54	He Ne A Kr Xe	H Li Na K Rb Cs	He Be Mg Ca Sr Ba	La	C Si Ti Zr Ce	N P V Cb Pr 19 Ta Ux ₂	O S Cr Mo Nd 20 W U	F Cl Mn 43 61 21 75	Ne A Fe Ru Sa 22 Os	Co Rh Eu 23 Ir	Ni Pd Gd 24 Pt	Cu Ag Tb 25 Au	Zn Cd Ho ²⁶ Hg	Ga In Dy ²⁷ Tl	Ge Sn Er 28 Pb	As Sb Tm 29 Bi	Se Te Tm ₂ 30 RaF	Br I Yb 31 85	Kr Xe Lu 32 Nt

Bohr Atom: (Phil. Mag. 26, 1, 476, 857, 1913; 29, 332, 1915; 30, 394, 1915). The experimental facts and the law of circular electronic orbits limit the electrons to orbits of particular radii. When an electron is disturbed from its orbit, e.g., struck out by a cathode ray, or returns from space to a particular orbit, energy must be radiated. It is suggestive that the emission of a  $\beta$  ray requires a series of y ray radiations. H does not radiate unless ionized and then gives out a spectrum represented by Balmer's formula  $\nu = N(1/n_1^2 - 1/n^2)$  where  $\nu$  is the frequency, N, a constant, and  $n_1$  for all the lines in the visible spectrum bas the value 2, n, the successive integers, 3, 4, 5, ...; if  $n_1 = 1$  and  $n_2$ , 3, 4, ..., Lyman's ultra-violet series results; if  $n_1 = 3$ ,  $n_1$ , 4, 5, 6, ..., Paschen's infra-red series. These considerations led Bohr to his atom and he assumed: (a) a series of circular non-radiating orbits governed as above; (b) radiation taking place only when an electron jumps from one to another of these orbits, the amount radiated and its frequency being determined by  $h\nu = A_1 - A_2$ , h being Planck's constant and  $A_1$  and  $A_2$  the energies in the two orbits; (c) the various possible circular orbits, for the case of a single electron rotating around a single positive nucleus. to be determined by  $T = (1/2)^2 n^2 n$ , in which T is a whole number, n is the orbital frequency, and T is the kinetic energy of rotation.

The remarkable test of this theory is not its agreement with the H series, which it was constructed to fit, but in the value found for N. From (a), (b), and (c) it follows that  $N = (2\pi^2 e^2 E^2 m)/h^3 = 3.294 \times 10^{16}$ , within T to per cent of the observed value (Science, 45, p, 327).

The radii of the stable orbits  $= \tau^2 h^2 / 4\pi^2 m^2 e^4$ , or the radii bear the ratios 1, 4, 9, 16, 25. If normal H be assumed to be with its electron in the inmost orbit, then  $2a = 1.1 \times 10^{-8}$ ; best determination gives  $2.2 \times 10^{-8}$ . The fact that H e

Bohr's theory leads to the relationship  $\nu_{K\beta} - \nu_{K\alpha} = \nu_{L\alpha}$  (see X-ray tables), Rydberg-Schuster law.

For further development, see Sommerfeld, Ann. d. Phys. 51, 1, 1916, Paschen, Ann. d. Phys., October, 1916; Harkins, Recent work on the structure of the atom, J. Am. Ch. Soc. 37, p. 1396, 1915; 39, p. 856, 1916.

Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron the strength of the atomic magnetic field comes out about 108 gauss, 2000 times the most intense field yet obtained by an electromagnet. A similar result is given by the rotation of a number of electrons, 4108, where A is the atomic weight; for Fe this gives 108 gauss. For other determinations, see Weiss (J. de Phys. 6, p. 661, 1907; 7, p. 249, 1908), Ritz (Ann. d. Phys. 25, p. 662, 1908), Oxley (change of magnetic susceptibility on crystallization, Phil. Tr. Roy. Soc. 215, p. 95, 1915) and Merritt (fluorescence, 1915); Humphreys, "The Magnetic Field of an Atom," Science, 46, p. 276, 1917.

Note: The phenomena of Electron Emission, Photo-electric Effect and Contact (Volta) Potential treated in the subsequent tables are extremely sensitive to surface conditions of the metal. The most consistent observations have been made in high vacua with freshly cut metal surfaces.

## TABLE 516. Electron Emission from Hot Metals.

Among the free electrons within a metal some may have velocities great enough to escape the surface attraction.

The number n reaching the surface with velocities above this critical velocity =  $N(RT/2\pi M)^{\frac{1}{2}}e^{-\frac{T}{RT}}$  where N= number of electrons in each cm³ of metal, R the gas constant (83.15 × 10° erg-dyne), T the absolute temperature, M the atomic weight of electron (.000546, O = 16), w the work done when a "gram-molecule" of electrons (6.06 × 10°3 electrons or 96.500 coulombs) escape. It seems very probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation

$$i = a\sqrt{Te^{-b/T}}$$

assuming N and w constant with the temperature; this is equivalent to the equation for n just given and is known as Richardson's equation. In the following table due to Langmuir (Tr. Am. Electroch. Soc. 29, 125, 1916)  $i_{2000} = \text{saturation current per cm}^2$  for  $T = 2000 \text{ K}^\circ$ ;  $\phi = w/F = Rb/F = \text{work done when electrons escape from metal in terms of equivalent potential difference in volts; <math>F = \text{Faraday constant} = 90.500 \text{ coulombs}$ .

Metal.	amp/cm²	b	i ₂₀₀₀ amp/cm ²	φ (volts).
Tungsten * Thorium Tantalum Molybdenum Carbon (untreated) Titanium Iron Platinum BaO-SrO, PI-6 % Ir core.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52500 39000 50000 50000 48000 28000? 37000? 51060 20000	0.0042 30.0 0.007 .013 048? .0010? .0035 3.25	4.52 3.36 4.31 4.31 4.14 2.4? 3.2? 4.4

^{*} Best determined value of table, pressure less than 10-7 mm Hg. † Schlichter, 1915.

## TABLE 517. Photo-electric Effect.

A negatively charged body loses its charge under the influence of ultra-violet light because of the escape of negative electrons freed by the absorption of the energy of the light. The light must have a wave-length shorter than some limiting value  $\lambda_0$  characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity v of the expelled electron and the frequency v of the light is  $(1/2)mv^2 = hv - P$  (Einstein's equation) where h is Planck's constant  $(6.58 \times 10^{-20} \text{ erg. sec.})$ ; hv sometimes taken as the energy of a "quanta," P, the work which must be done by the electron in overcoming surface forces.  $(1/2)mv^2$  is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the w of electron emission of the preceding table. The minimum frequency v o (corresponding to maximum wave-length  $\lambda_0$ ) at which the photo-electric effect can be observed is determined by hv = P. P applies to a single electron, whereas w applies to one coulomb  $(6.062 \times 10^{20} \text{ electrons})$ ; therefore w = NP = .00399v erg.s.,  $\phi = (12.4 \times 10^{-9})\lambda_0$  volts. See Millikan, Pr. Nat. Acad. z, 78, 1916; Phys. Rev. 7, 355, 1916; 4, 73, 1914; Hennings, Phys. Rev. 4, 228, 1914.

### TABLE 518. Ionizing and Resonance Potentials of the Elements.

(Abridged by permission from "Origin of Spectra," Foote and Mohler, 1922)

When electrons are accelerated through gases or vapors (especially monatomic gases of small electron affinity and metallic vapors), at well-defined velocities a large transfer of energy takes place between the moving electrons and the gas atoms. Below the critical value the collision is elastic. In general two types of inelastic encounters occur: the first, accompanied by the emission of the radiation of a single spectrum line at a potential called the resonance potential,  $V_t$ ; an outer electron of the atom then undergoes an interorbital transition; the relation  $h\nu = eV_t$  holds where  $\nu$  is the frequency of the radiation and h Planck's quantum. The energy absorbed at the resonance is not enough to completely eject an electron but only displaces it to an outer orbit. e.g., in the alkali group the electron is displaced from the 1s to the 2p orbit, the first energy level outside. In returning the energy emitted has the frequency ts=2p; there may be more than one resonance potential due to other displacements. The second type of encounter completely removes an electron and ionizes the gas (ionization potential  $V_t$ ). This potential in general satisfies a relation  $h\nu = eV$  except that now  $\nu$  corresponds to the highest convergence frequency in the arc spectrum of the material (monatomic vapor), to the limit of a series the first line of which corresponds to the resonance potential. In the case of the ionization potential the electron may return by a variety of interorbital transitions, each resulting in an emission of a quantum of wave-number  $\nu$ , subject to the conservation of energy condition:  $\Sigma hc^2\nu_k = eV_{11}c^3$ . With numerous atoms and electrons returning to equilibrium in different manners, there results the composite result of the emission of the complete arc spectrum.

Atomic Number:	Line		Resonar	ice Volts	Line	**	Ioniza	tion Volts
Number; Element 3 Li 11 Na 19 K 29 Cu 37 Rb	15-2p ₁	14,903 16,973 13,043 30,784 12,817	I.840 2.095 1.610 3.800 1.582	Observed	Is "	43,486 41,449 35,006 62,308 33,689	5.368 5.116 4.321 7.692 4.158	Observed
47 Ag 55 Cs 79 Au	66	30,473 11,732 41,174	3.762 1.448 5.1	1.48	46	61,096 31,405 70,000?	7.542 3.877 8 to 9?	3.9

(For conclusion of Table, see page 442).

### CONTACT (VOLTA) POTENTIALS.

There has been considerable controversy over the reality and nature of the contact differences of potential betwee two metals. At present, due to the studies of Langmuir, there is a decided tendency to believe that this Volta diffe ence of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 516 to 518 at that the discrepancies among different observers have been caused by the same disturbing surface conditions. Tl following values of the contact potentials with silver and the relative photo-sensitiveness of a few of the metals a from Henning, Phys. Rev. 4, 228, 1914. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces a more electro-positive and grow more electro-negative with age. That the observed initial velocities of emission electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro-positive a metal the greater the actual velocity of emission of electrons from its surface.

Contact potential with Ag	Ag o 50	Cu .05 60	Fe .19 65	Brass	Sn -27 70	Zn • 59 80	Al .99 500	Mg 1.42 1000

From the equation  $w = RT \log(N_A/N_B)$ , where w is the work necessary per gram-molecule when electrons pa through a surface barrier separating concentrations  $N_A$  and  $N_B$  of electrons, it can be shown (Langmuir, Tr. Al Eletroch. Soc. 29, 142, 1916, et seq.) that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 517 for significance of symbols), since the number of free electrons in different metals per unit volume is nearly the same that  $RT \log \left(N_A/N_B\right)$  may be neglected. The contact potentials may thus be calculated from phot electric phenomena (see Table 517 for references). They are independent of the temperature. The following tal gives a summary of values of  $\phi$  in volts obtained from the various phenomena where an electron is torn from the attration of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of met vapor is only approximately equal to that needed to separate it from a solid metal surface.

## (a) THE ELECTRON AFFINITY OF THE ELEMENTS, IN VOLTS.

Metal.		Thermionic. (Langmuir.)	Photo- electric and contact. (Millikan.)	Photo- electric. (Richardson)	Miscel- laneous.	Single- line spectra.	Adjusted mean.
Tungsten. Platinum. Tantalum. Molybdenum. Carbon. Silver. Copper. Bismuth Tin. Iron. Zinc. Thorium. Aluminum. Magnesium. Titanium. Lithium. Sodium.	4.05 (4.0) 3.78 3.86 3.46 3.06 2.63	4.52 4.31 4.31 4.14 — 3.27 3.36 — 2.47 —		4.3 	4.45	4.04	4.52 4.4? 4.3 4.1 4.1 4.1 4.0 3.7 3.8 3.7 3.4 3.0 2.7 2.4 2.35 1.82

(b) It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the etrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrostics of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line electrode potential  $e_h$  of the corresponding metals (in solutions of their salts containing normal ion concentration) assumption of no contact emf at the junction of the metals. The second line,  $\phi - \epsilon_h - 3.7$  volts, gives an idea of electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	Ag	Cu	Bi	Sn	Fe	Zn	Mg	Li	Na
$ \begin{array}{c c} e_{h} \dots \\ \phi - e_{h} - 3.7 \dots \dots \end{array} $	+0.80	+0.34	+0.20	-0.10	-0.43	-0.76	-1.55	-3.03	-2.7:
	-0.40	+0.04	+0.20	-0.20	-0.43	-0.46	-0.55	-1.65	-0.8

## TABLES 523-521. IONIC MOBILITIES AND DIFFUSIONS.

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a + ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, U, of an ion is its velocity in cm/sec. for an electrical field of one volt per cm. The rates of diffusion, D, are given in cm/sec. U = DP/Ne, where P is the pressure, N, the number of molecules per unit volume of a gas and e the electronic charge.

Nature of the gas and the mobilities: (1) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio U + /U - seems to be greater than unity in all the more electronegative gases. negative gases.

Mobilities of Gaseous Mixtures: Three types: (1) Inert gases have high mobilities; small traces of electronegative gases make values normal. (2) Mixed gases: lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electro-negative gases:

e.g.: normal mobility	U + = r.37	U - r.80	Wellisch, Pr.
6 mm C2H6Br gave	1.37	r.80	Roy. Soc. 82A,
6 mm C2H3I "	1.37	r.80	p. 500, 1909.
to mm C2H6OH "	0.91	1.10	
9 mm C3H6O "	1.15	1.37	

Temperature Coefficient of Mobility: There is no decided change with the temperature.

Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to 1/10 atmosphere Free Electrons: In pure He, Ar, and N, the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at ro cm pressure.

## TABLE 520. - Ionic Mobilities.

Dry gas.	Mobi	lities.	K - 1	Observer.	Dry gas.	Mobi	lities.	К — т	Observer.
Diy gas.	+					+			
H	1.27 1.36 0.81 0.74	7.95 6.31 — 1.80 0.85 0.80 1.78	.000273 .000074 .000100 .000590 .000540 .000960 .000770	Zeleny Franck " Zeleny Wellisch " Mean	Nitrous oxide. Ethyl alcohol. CCle. Ethyl chloride. Ethyl chloride. Methyl bromide Ethyl formate Ethyl iodide.	0.82 0.34 0.30 0.33 0.29 0.29 0.30 0.17	0.90 0.27 0.31 0.31 0.28 0.31 0.16	.00107 .00940 .00426 .01550 .00742 .01460	Wellisch

Franck, Jahr. d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A, p. 500, 1909. The following values are from Yen, Pr. Nat. Acad 4, 10 8.

	H2	N ₂	Air.	SO ₂	C ₅ H ₁₂	C ₂ H ₆ O	C ₂ H ₄ O	C₂H₅Cl	CH₃I	C ₂ H ₆ I
$\begin{array}{c} U + \dots \\ U - \dots \\ U - /U + \dots \end{array}$	8.45	1.30 1.80 1.38	1.37 1.81 1.34	.412 .414 1.00	.385 .451 1.17	.363 .373 r.03	.307 .331 I.07	.304 .317 1.04	.216 .226 1.05	1.8r 1.8r 1.00

#### TABLE 521. - Diffusion Coefficients.

The following table gives the observed and computed  $(D=300UP/Ne=very\ nearly\ 0.0236U)$  values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gaseous Ion," J. Franklin Inst. 184, p. 775, 1917.

Gas, diffusing.	Gas diffused	D	<i>U</i> +	D + fc	or ions.
Gas, diffusing.	into	molecules.		Computed.	Observed.
Ar. H2 Air. O2. CO2. CO2. C2+GOH Air. H2O NH3	He N2 O2 N2 N2 N4O CO CO2 Etbyl acetate Air NH3	0.706 .739 .178 .171 1.5-1.0 1.31 0.0693 .093 .246 .190 ‡	5.09 6.02 1.35 1.27 .82 .81 .30 † 1.35 0.74	1.20 0.143 0.0319 .0299 .0193 .0103 .00805 .0071 .0319	0.123 0.028 .025 .023*

^{*} CO2 into CO2.

#### COLLOIDS.

# TABLE 522. — General Properties of Colloids.

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1916; for general properties, see Outlines of Colloidal Chemistry, J. Franklin Inst. 185, p. 1, 1918 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division (1 × 10⁻⁴ to 10⁻⁷ cm). Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefinite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzosols, glycerosols, respectively. The suspended mass is called the dispersion base, the medium the dispersion medium.

Colloids fall into 3 quite definite classes: 1st, those consisting of extremely finely divided particles (Cu, Au, Ag, etc.) capable of more or less indefinite classes: 1st, those consisting of extremely finely divided particles (Cu, Au, Ag, etc.) capable of more or less indefinite suspension against gravity, in equilibrium of somewhat the same aspect as the medium; and, those resisting precipitation (hæmoglobin, etc.) probably because of charged nuclei and which may be coagulated and precipitated by the neutralization of the charges; 3rd, colloidal as distinguished from the crystalloidal condition, the colloid being very slowly diffusible and incapable unlike crystalloids of penetrating membranes (gelatine, silicic acid, caramel, glue, white of egg, gum, etc.).

Smallest	partic	le of Au	ιo	bserved by Zsigmody (ultramicroscope)	1.7 × 10 ⁻⁷ cm.
66	- "	visible	in	ordinary microscope about	2.5 X 10 ⁻⁵ cm.
66	66	46	66	ultramicroscope, with electric arc	15 × 10 ⁻⁷ cm.
66	66	66	44	" with direct sunlight	I X 10 ⁻⁷ cm.

TABLE 523. - Molecular Weights of Colloids.

Determined from diffusion.		Determined from freezing point	
Gum arabic Taunic acid (322)* Egg albumen Caramel (Due to Graham)	1750 2730 7420 13200	Glycogen (162)* Tungstic acid (250)*. Gum. Albumose Ferric hydrate (107)* Egg albumen Starch (162)*	1625 1750 1800 2400 6000 14000 25000

^{*} Formula weight.

#### TABLE 524. - Brownian Movement.

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft and De Broglie found, respectively, 70, 64, 63 and  $64 \times 10^{22}$  as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

Material.	Diameter × 105 cm	Medium.	Temp.	Velocity × 10 ⁵ cm/sec.	Observer.
Dust particles. Gold. Gold. Gold. Platinum Platinum Rubber emulsion Mastic. Gamboge.		Water " Acetone Water " "	20? " 18 20 17 20? 20 "	none 200. 280. 700. 3900. 3200. 124. 1.55 2.4 3.4	Zsigmody  " Svedberg, 1906-9  Henri, 1908 Perrin, Dabrowski, 1909. Chaudesaignes, 1908.

The movement varies inversely as the size of the particles; in water, particles of diameter greater than  $4\mu$  show no perceptible movement; when smaller than  $.1\mu$ , lively movement begins, while at 10  $m\mu$  the trajectories amount up to 20mµ.

# TABLES 525-527.

COLLOIDS.

## TABLE 525. — Adsorption of Gas by Finely Divided Particles. See also p. 439.

Fine division means great surface per unit weight. All substances tend to adsorb gas at surface, the more the higher the pressure and the lower the temperature. Since different gases vary in this adsorption, fractional separation is possible. Pt black can absorb 100 vols. H₂, 800 vols. O₂, Pd 3000 vols. H₂. In gas analysis Pd, heated to 100°, is used to remove H₂ (higher temperature used for faster adsorption, will take more at lower temperature). Pt can dissolve several vols. of H₂, Pd, nearly 100 at ordinary temperatures; but it seems probable that the bulk of the 100 vols. of H₂ taken by Pt and the 3000 by Pd must be adsorbed. In 1848 Rose found the density 21 to 22 for Pt foil, but 26 for precipitated Pt.

The film of adsorbed air entirely changes the behavior of very small particles. They flow like a liquid (cf. fog). With substances like carbon black as little as 5 per cent of the bulk is C; a liter of C black may contain 2.5 liters of air. Mitscherlich calculated that when CO₂ at atmospheric pressure, 12° C, is adsorbed by boxwood charcoal, it occupies 1/56 original vol. Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order (sometimes greater) as liquids.

Cm³ of Gas	Cm³ of Gas Adsorbed by a Cm³ of Synthetic Charcoal (corrected to o° C, 76 cm?) (Hemperl and Vater).												
°C	$H_2$	Ar	N ₂	$O_2$	CO	c	D ₂ NO	N ₂ O					
+20° -78 -185	7·3 19·5 284·7	12.6 92.6	21.0 107.4 632.2	25.4 122.4 —	26.8 139.4 697.0	83 568	.8 103.6						
	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	NH ₃	H	S Cl ₂	SO ₂					
+20° -78	41.7 174.3	119.1 275.5	139.2 360.7	135.8 488.5	197.0	213	.0 304.5	337.8					
Cm ³	of Gas Adso	rbed by a	Cm³ of Cocoa	nut Charcoal	(corrected	to o° C	, 76 cm) (De	war).					
°C	н	le	H ₂	$N_2$	0.	2	СО	Ar					
-185°	o° 2 85 15		4 135	15 155	23		21 190	12 175					

See Langmuir, J. Am. Ch. Soc. 40, 1361, 1918; Richardson, 39, 1829, 1916.

TABLE 526. - Heats of Adsorption.

Adsorber.	Amylene.	Water.	Acetone.	Methyl alcohol.	Ethyl alcohol.	Aniline.	Amyl alcohol.	Ethyl ether.	Chloro- form.	Benzene.	Carbon disulphide.	Carbon tetra- chloride.	Hexane.
Fuller's earth * Bone charcoal * Kaolin * Fuller's earth †	57.1 78.8	30. 2 18. 5 — .683	27.3 19.3 - .684	21.8 17.6 27.6 .679	17.2 16.5 24.5	13.4	10.9 10.6 20.4	10.5	8.4 14.0 15.7 .611	4.6 11.1 9.6 .610	4.6 8.4 9.9 .621	4.2 13.9 9.4 .625	3.9 8.9 7.2

^{*}Small calories liberated when 1 g of the adsorbent is added to a relatively large quantity of the liquid. † Volume adsorped from saturated vapor by 1 g of fuller's earth. Gurvich, J. Russ. Phys. Ch. Soc. 47, 805, 1915.

TABLE 527. - Molecular Heats of Adsorption and Liquefaction (Favre).

	Gas.	Molecular l	neats of			Molecular heats of		
Adsorber.		adsorption.	lique- faction.	Adsorber.	Gas.	adsorption.	lique- faction.	
Platinum Palladium Charcoal	H ₂ H ₂ NH ₃ CO ₂ N ₂ O	46200 18000 5900-8500 6800-7800 7100-10900	(5000) 6250 4400	Charcoal	SO ₂ HCl HBr HI	10000-10900 9200-10200 15200-15800 21000-23000	5600 (3600) (4000) (4400)	

## TABLES 528-529.

# TABLE 528. - Miscellaneous Constants (Fundamental, Atomic, Molecular, etc.).

С	Velocity of light in vacuo	200860 Km/sec
-	Neutonian gravitational constant	6.658 V 10-8 cm3/m 20-9
γ	electronic charge	.0.050 × 10 ° Cillo/g.sec.2
е	electronic charge	.4.774 × 10-10 esu.
	·	1.591 × 10-20 emu.
		1.591 × 10 ⁻¹⁹ coulombs.
mo	mass isolated electron at rest	.8.9999 × 10−28 g
m _p	mass of proton in heavier elements	. 1.640 × 10 ^{−24} g
mн	mass neutral H atom at rest, r.oo8mp	.1.663 × 10-24 g
h	Planck's quantum of action . small velocities or at rest, Bucherer's constant	6.554 X ro-27 erg. sec.
e/mo	small velocities or at rest. Bucherer's constant	1.760 × 107 emu g-1
С/ Щ	Small relocated of the lose, Ducherer's constant	5.307 × ro ¹⁷ esu g ⁻¹
F	Foreday constant voNe/s	of real coulombs
N	Faraday constant, roNe/c	. 90500 Couloillos
	Avogadro's Constant, no. molecules per g inforcular weight.	.0.001 × 1050
n	Loschmidt's number, no. molecules per cm ³ O°C, 76 cm	.2.705 X 1019
	No. molecules per cm³, O°C, 106 bars	.2.070 X 1019
	Radius of electronabout	2 × 10 ⁻¹³ cm
	Radius of H moleculeabout	10-8 cm
L G	Radius of H molecule about Mean free path H molecule 76 cm O°C about Sq. rt. mean sq. velocity ditto. about	1.6 × 10⁻⁵ cm
G	Sq. rt. mean sq. velocity dittoabout	1.84 × 105 cm/sec.
Ω	Arithmetical average velocity dittoabout	1.70 × 105 cm/sec.
	No ditto striking r cm ² per sec. 25° C. r bar.	10.82 × 1017
	Average distance apart of molecules 76 cm 0°C	2 × 70-6 cm
	No. ditto striking 1 cm² per sec, 25° C, 1 bar  No. ditto striking 1 cm² per sec, 25° C, 1 bar  Average distance apart of molecules 70 cm O°C  Absolute zero, centigrade scale, 0° K  Vol. per mol(c) or g. molecular, weight ideal gas:	-272.70
Vo	Value wells) or a malecular weight ideal again	. 2/3.1
V o	vol. per more) of g. molecular weight ideal gas:	3
	76 cm. O° C (1,013,230 dynes/cm ² )	. 22.412 Cm ³
	to dynes, O° C.  atmosphere, 76 cm Hg, O° C.  Kinetic energy of translation of molecule at O° C, (3/2) (povo/N).  Constant of molecular energy, change of translational energy per °C, E ₀ /T.  Boltzman gas constant, constant of entropy equation, R/N = (2/3)e.	. 22.708 cm³
Po Eo	atmosphere, 76 cm Hg, O° C	. 1,013,230 dynes/cm ²
E.	Kinetic energy of translation of molecule at $O^{\circ}$ C, $(3/2)$ $(p_{\circ}v_{\circ}/N)$	.5.620 × 10 ⁻¹⁴ erg
€	Constant of molecular energy, change of translational energy per ${}^{\circ}C$ , $E_0/T$	$12.058 \times 10^{-16}  \text{erg/}^{\circ} \text{K}$
k	Boltzman gas constant, constant of entropy equation, $R/N = (2/3)\epsilon \dots (2/3)\epsilon$	$1.372 \times 10^{-16}  \mathrm{erg/oK}$ .
R	tras Constant in $PV_m = KI$ :	
	V _m = molecular weight in g; P in g/cm ² , V _m , cm ³	.84.77 g. cm/OK
	atm., l	0.08206 L. atm. /OK
	dynes, cm ³	8 2TE X TO PER OK
	aplacimental main	7 0860 col (7 m)/g mol
	talorimetric units	.1.9009 car (15-7/8. mor.
	calorimetric units.  1 megabar (= Meteorological "bar") = 10° dynes/cm² = 1.013 Kg/cm².  Mecbanical equivalent of heat, g. (20° C) caloric.	.0.90094 atm.
	Mechanical equivalent of heat, g. (20°C) calorie	. 4.160 intern. elec. joules
	g. (20° C)	.4.181 X 10' ergs
	Atomic heat solids (D and P), 3/Nk	.4.185 X 10' ergs
C▼	Atomic heat solids (D and P), 3Nk	. 24.95 Joules per mol. K
Cvo	Molar heat perfect gas, constant volume (3/2)R.  Molar heat perfect gas, constant pressure (5/2)R.	.2.979 cal per mol. K
Cpo	Molar heat perfect gas, constant pressure (5/2)R	.4.965 cal per mol. K
Cv	Atomic heat solids, D and P. 3R	. 5.058 cal per mol. K
Řα	Rydberg fundamental frequency	.3.2775 X 10 ¹⁵ Sec1
1.00	Rydberg's constant, R _{\infty} /c (Bohr)	.1.0030 × 105 cm ⁻¹
_	Stefan-Boltzmann constant, total radiation	5.71 × 10-12 watt-cm ²
σ	Wien's constant of spectrum radiation ch/k	1 4225 λ in cm
C ₂	Planck's constant of radiation, 2 c ² h	2 702 X 10-5 erg/cm ² sec
c ₁	Planck's constant of faultation, 2 C-11	.3.703 X 10 Cig/Ciii Scc.
	Photo-electric quantum ch/e	.4.11/ \ 10 ' esu erg/0V
	Thermo-electric quantum k/e	. 2.074 X 10 ' esu eig/ K
$\lambda_{\mathrm{m}}\mathrm{T}$	Wien's displacement constant c ₂ /4.9651	.0.2005 CHI K
M	Mechanical equivalent of light	.o.oor50 watt/lumen
	Calcite grating space	.3.028 Angstroms
	Standard gravity	. 080.665 cm/sec. ²
	Mean solar second	. 1.00273791 sidereal sec.

## TABLE 529. - Radiation Wave-length Limits.

	1
Hertzian waves, longest	2 000 000.0 cm
" shortest	
Infra-red, longest, reststrablung, focal-isolation	o.o3 cm
Infra-red spectroscopically studied	
Visible, longest	
" shortest	
Ultra-violet, Lyman, shortest*	
X-rays, longest	
" shortest	
γ rays, longest	
" shortest	
SHOILESL	

* 0.000 0020 cm (Millikan-Sawyer, 1920)

TABLE 530. - Periodic System of the Elements.

0	I	II	III	IV	v	VI	VII	
_	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇	RO4 200 Oxides.
_	_	_	_	RH4	RH ₃	RH	RH	— 🔊 Hydrides.
He 4	Li 7	Gl 9	B YI	C 12	N 14	O 16	F 19	=
Ne 20	Na 23	Mg 24	Al 27	Si 28	P 31	S 32	C1 35	=
A 40	K 39	Ca 40	Sc 44	Ti 48	V 51	Cr 52	Mn 55	Fe Ni Co 56 59 59
=	. Cu . 64	Zn 65	Ga 70	Ge 72	As 75	Se 79	Br 80	=
Kr 82	Rb 85	Sr 88	Yt 8g	Zr 91	Съ 94	Мо 96	=	Ru Rh Pd 102 103 107
=	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	=
X 128	Cs 133	Ba 137	La 139	Ce 140	Pr 141	Nd 144	=	=
=	Sa 150	Eu 152	Gd 157	Tb 159	Ds 162	Er 168	=	=
=	Tm 168	Yb 174	Lu 175	Ξ	Ta 181	W 184	= .	Os Ir Pt 191 193 195
=	Au 197	Hg 201	T1 204	Pb 207	Bi 208	Po 210	=	=
Em (222)	=	Ra 226	Ac (227)	Th 232	UrX2 234	U 238	=	=

## TABLE 531. - Atomic Numbers.*

1 Hydrogen	20 Calcium	39 Yttrium	58 Cerium	76 Osmium
2 Helium	21 Scandium	40 Zirconium	50 Praseodymium	77 Iridium
3 Lithium	22 Titanium	41 Niobium ‡	60 Neodymium	78 Platinum
4 Beryllium	23 Vanadium	42 Molybdenum	61	7c Gold
5 Boron	24 Chromium	43	62 Samarium	80 Mercury
6 Carbon	25 Manganese	44 Ruthenium	63 Europium	81 Thalium
7 Nitrogen	26 Iron	45 Rhodium	64 Gadolinium	82 Lead
8 Oxygen	27 Cobalt	46 Palladium	65 Terbium	83 Bismuth
o Fluorine	28 Nickel	47 Silver	66 Dysprosium	84 Polonium
10 Neon	29 Copper	48 Cadmium	67 Holmium	85
11 Sodium	30 Zinc	49 Indium	68 Erbium	86 Emanation
12 Magnesium	31 Gallium	50 Tin	69 Thulium	87
13 Aluminum	32 Germanium	51 Antimony	70 Ytterbium	88 Radium
14 Silicon	33 Arsenic	52 Tellurium	71 Lutecium	80 Actinium
15 Phosphorus	34 Selenium	53 Iodine	72 Celtium	90 Thorium
16 Sulphur	35 Bromine	54 Xenon	73 Tantalum	91 Uranium X2
17 Chlorine	36 Krypton	55 Caesium	74 Tungsten	92 Uranium
18 Argon	37 Rubidium	56 Barium	75	
19 Potassium	38 Strontium	57 Lanthanum		

^{*} Quoted from Millikan's The Electron, 1917. † Glucinium.

[‡] Columbium.

#### PERODIC SYSTEM AND THE RADIOACTIVE ISOTOPES.*

	4	5A	6A	7A	0	ıA 2	A 3A	4	
Vb IVb IIIb IIb	82 Pb 50 Sn 32 Ge 14 Si 6	83 Bi 51 Sb 33 As 15 P	on-meta 84 Po 52 Te 34 Se 16 S 8 O 1	85 	Inert-gases.  86	37 3 Rb S 19 2 K C	6 57 a La	00 Th 58 Ce 40 Zr 22 Ti 14 Si 6 C	VI Va IVa IIIa IIa
III' IV'	22 Ti 40 Zr	23 V 41 Cb	24 Cr 42 Mo	25 Mn 43	Heavy metals.  26 27 28 Fe Co Ni 44 45 46 Ru Rh Pd	29 30 Cu Zi 47 48 Ag C	31 n Ga 3 49 d In	32 Ge 50 Sn	III'
V"	58 59 Ce Pr	60 Nd	61 62 — Sa	63 Eu	64 65 66 Gd <b>Tb</b> Dy	67 68 6 Ho Er <i>I</i>	i9 70 71 Ad Cp Yb	72 Lu	V"
V' VI	72 Lu 90 Th	73 Ta 91 Bv	74 W 92 U	75 —	76 77 78 Os Ir Pt	79 8 Au I	o 81 Ig Tl	82 Pb	V' VI
	4	5B	6B	7B		1B 2	В 3В	4	
(TI) 81	(Pb) 82 {	(Bi) 83 } ← - RaE}	(Po) 84 { _ } RaF}	Ra (_) 85	adioactive isotope (Nt) () 86 87	s. (Ra) (Ac 88 89	(Th) 90	(Bv) 91	(U) 92
{ Thl { AcI { Ra(	{ PbTh PbAc RaD }  C''  ThB AcB RaB }	ThC AcC RaC	ThC' AcC' RaC' ThA AcA RaA	j {	AcEm RaEm ← { A	hX hX ha MsT Ac MsT' ←	RaTh RaAc Io  ←  Th Uy Ux'	Uz Ux"	U ₂

Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.

Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., RaE, ThC, AcC, RaC.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colorless ions. The properties are analogous in the vertical direction (groups). In the lower half are the elements with low electro-potential, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods).

On the left side of the table are the electro-negative elements, those of the upper half forming strong acids, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

The center of the lower half is occupied by the amphoteric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds.

A very striking point, however, is, as already mentioned, that the similarity among the elements in the upper half is in the vertical direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.

**Table adapted from Hackb, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1919.

For Isotopes see conclusion of this Table on page 445

#### ASTRONOMICAL DATA-

# TABLE 533. - Stellar Spectra and Related Characteristics.

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear, the transition between two given types always involving the same intermediate steps. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters, — O B, A, F, G, M, R and N, — and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted Bs, while those differing slightly from Class A in the direction of Class B are called B8 or Bo. In Classes M and O the notation Ma, Mb, Mc, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K. The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the nakedeye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The orrelation in the other two cases, though statistically important, is by no means as close.

Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0.

TABLE 534. - The Harvard Spectral Classification.

Class.	Principal spectral lines (dark unless otherwise stated).	Example.	Number brighter than 6.25, mag.	Per cent in galactic region.	Color index.	Effective surface temperature, K	Mean peculiar velocity, km/sec.
O B	Bright H lines, bright spark lines of He, N,O,C H, He, spark lines of N	γ Velorum	20	100	-0.3	-	_
	and O, a few spark lines of metals	€ Orionis	696	82	-0.30	20,000°	6
A	H series very strong, spark lines of metals	Sirius	1885	66	0.00	11,000°	10
F	H lines fainter. Spark and arc lines of metals	Canopus	720	57	+0.33	7,500°	14
G	Arc lines of metals, spark					5,000°	
K	lines very faint	The sun	609	58	+0.70		15
N N	trum faint in violet	Arcturus	1719	56	+1.12	4,200°	17
M	Bands of TiO2, flame and arc lines of metals	Antares	457	54	+1.∞	3,100°	17
R	Bands of carbon, flame and arc lines of metals	B. D. —10° 5057		63	+1.7	3,000°	15
N	Bands of carbon, bright		Ŭ	93	12.7	3,500	-3
	lines, very little violet	19 Piscium	8	87	+2.5	2,300°	13

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner. Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The color indices are the differences of the visual and photographic magnitudes. Negative values indicate bluish white stars; large positive values, red stars. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should

The "galactic region" here means the zone between galactic latitudes = 30°, and including half the area of the 96% of the stars of known spectra belong to classes A, F, G, K, 99.7% including B and M (Innes, 1919).

TABLE 535. - Apex and Velocity of Solar Motion.

R. A. 1900.	Dec.	Velocity, km/sec.	Method.	No. of stars.	Authority.
18 ^h 02 ^m 17 54 18 00	+34.3 25.1 29.2	19.5 21.4	Proper motions Radial velocities	5413 1193 1405	Boss, Astron. J. 614, 1910 Campbell, Lick Bull. 196, 1911 Strömberg, Astrophys. J. 1918.

## ASTRONOMICAL DATA-

#### TABLE 536. - Motions of the Stars.

The individual stars are moving in all directions, but, for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 535. In round numbers this motion of the sun may be taken as 20 km/sec, towards the point R. A. 18 h. 0 m., Dec +30.0°.

After allowance is made for the solar motion, the motions of the stars in space, relative to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random) but a decideful elongated cluster, whose form can be approximately represented either but the superposition of stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kapteyn's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with spectral type, being practically absent in Class B, very strong in Class A, and somewhat less conspicuous in Classes F to M, on account of the greater mean velocities of these stars in all directions. The positions of the vertices are nearly the same for all.

Numerous investigators from the more distant nakedeue stars, find substantially the same position for the

directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R. A. 6 h, 6 m., Dec. +9°. The nearer stars, of large proper motion, give a mean of 6 h. 12m., +25°. (See Strömberg's discussion, cited above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions, — for example, the Pleiades, the Hyades, and certain large groups in Ursa Major, Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy. Several faint stars are known which have radial velocities between 300 and 350 km/sec. (e.g. A. G. Berlin 1366 R.A. 1300 = 4h 8m 6, Dec. 1300 = +22.7°, mag. 8.9 velocity of recession 339 km/sec.), and it is probable that the actual velocity in space exceeds 500 km/sec. osme of these.

The 9th magnitude star A. G. Berlin 1366 has a radial velocity of 404 km/sec.

The greatest known proper motion is that of Barnard's star of the ninth magnitude in Ophiuchus, 10.3" per year, position angle *35°. The parallax of this star is 0.52°, and its radial velocity about —100 km/sec.

The average radial velocity of the globular clusters is 100 km/sec, and that of the spiral nebulae 400 km. The globular cluster's as a class are approaching the sun. The spiral nebulae, with a few exceptions, are receding. The greatest indiv (dual values are —410 km for the cluster N. G. C. 6934 and + 1800 km for the nebula N. G. C. 884.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913): 1913):

Type	В	Stars:	6.6	km	per	sec.	Type	e G :	Stars:	15.0	km.	per	sec.
- 62	Α	**	10.0	"	- 66	"		K	"	16.8	"	"	**
**	F	Stars:	14.4	"	44	44	"	$\mathbf{M}$	"	17.1	"	**	"

TABLE 537. - Distances of the Stars.

Distances.	Parsecs.*	Light years.
Alpha Centauri (nearest star)	1.32	4.3
Barnard's Star	1.9	4.3 6.3 8.7
Sirius	2.7	
Arcturus	13.0	43.0
The Hyades	40.	130.
Nebula of Orion (Kapteyn)	185.	6∞.
Centauri (nearest)	6,500.	21,000.
N. G. C. 7006 (farthest)	67,000.	220,000.

* Parsec = 206,265 astronomical units = 3.08 × 1013 km = 3.26 light years. 1 astronomical unit = distance sun to earth.

Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than roo parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond rooo parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

Average parallax 6 planetary nebulae, 0.018" (van Maanen, Pr. Nat. Acad. 4, p. 394, 1918).

# TABLES 538-539

# ASTRONOMICAL DATA.

#### TABLE 538. - Brightness of the Stars.

TABLE 538.—Brightness of the Stars.

Stellar magnitudes give the apparent brightness of the stars on a logarithmic scale, — a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400, and a change of five magnitudes to a factor of 100. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is -26.7; of the mean full Moon, -12.5; of Venus at her brightest, -4.3; of Jupiter, at opposition, -2.3; of Sirius, -1.6; of Vega, +0.2; of Polaris, +2.1. (The stellar magnitude of a standard candle 1 m distant is -14.18.) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture A in are approximately of magnitude 9 + 5 log₁₀ A. The faintest photographed with the 60-inch reflector at Mt. Wilson are of about the 21st magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminosity (absolute magnitude) is the stellar magnitude which the star would have if placed at a distance

The actual luminosity (absolute magnitude) is the stellar magnitude which the star would have if placed at a distance The actual minimistry absolute magnitudes is the setual magnitude which the star would have it placed at a distantial of ten parsecs. The faintest star at present known (Innes), a distant companion to α Centauri, has the (visual) absolute magnitude +15.4, and a luminosity α,00006 that of the sun. The brightest so far definitely measured, β Orionis, has Kapteyn) the abs. mag. -5.5 and a luminosity 13,000 times the sun's. Canopus, and some other stars, may be still brighter.

The absolute magnitudes of 6 planetary nebulae average 0.1; average diameter, 4000 astronomical units (Solar system to Neptune = 60 astr. units), van Maanen, Pr. Nat. Acad. 4, p. 394, 1918.

#### Giant and Dwarf Stars.

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. Absolute magnitude giants roughly 0 to +1; dwarfs A, 1 to 2; F, 2 to 4; G, 4 to 6; K, 6 to 9; M, 9 to 11. The two series overlap in Classes A and F, are fairly well separated in Class K, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G. The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

Adams and Stromberg have shown that the mean peculiar velocities of the giant stars are all small, — increasing within each spectral class B to 12 for Class M, — while those of the dwarf stars are much greater, increasing within each spectral class by about 1.5 km per unit of absolute magnitude, and reaching fully 30 km for stars of Class M and abs. mag. 10. Both giant and dwarf stars show the phenomenon of preferential motion.

#### TABLE 539. - Masses and Densities.

Stars differ less in mass than in any other characteristic. The most massive star known is the brighter component of the spectroscopic binary B.D. 6°1309, 86 times the sun's mass, 113 times its luminosity, and spectrum Oe. The smallest known mass is that of the faint component of the visual binary Krueger 60, whose mass is 0.15, and luminosity 0.0004 of the sun's, and spectrum M.

The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, 3, 327, 1917) the mean values of Binary systems are:

Spectrum B2 Ao F5 giant K5 giant F2 dwarf Ratio of mass to Sun 12 6.5 8 10 3.0 G2 dwarf K8 dwarf 1.2 0.0

The densities can be determined only for eclipsing variables. Stars of Classes B and A have densities averaging about one tenth that of the sun and a relatively small range; Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.00002 (W Crucis).

The surface brightness probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the sun in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The redder giant stars must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceeding them.

Arranged in order of increasing density, the stars form a single sequence starting with the giant stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M. Russell and others believe this sequence indicates the order of evolution, — a star at first rising in temperature as it contracts and then cooling off again.

Star	Type	Mag.	Diam.	Parallax	Mass	Density	Brightness	Diameter (km)
	7.5							
Antares	Map	1.2	<b>".</b> 038	″.o13	30.	.00000010	1600.	440,000,000
Betelgeuse	Ma	0.9	.044	.018	30.	.0000012	1450.	378,000,000
a Hercules	Mb	3.5	.015	.007	30.	.0000020	710.	320,000,000
Aldebaran	K5	1.5	.027	.075	10.	.00017	36.	53,000,000
Arcturus	Ko	0.2	.023	.095	10.	.0007	78.	37,000,000
Rigel	B8	0.3	.0019	.007	30.	.0012	13500.	40,000,000
Capella	Go	0.2	.0082	.071	4.6	600،	78.	13,000,000
Vega	Ao	0.1	.0026	.094	5-	.21	86.	4,200,000
Sirius	Ao	<b>– 1.6</b>	.0057	.376	2.5	.62	26.	2,300,000
Procyon	F5	0.5	.0048	.328	2.	.60	5.	2,300,000
Our Sun	G	-26.5	960.	_	I.	1.	1.	1,391,000
Krueger 60	Mb	9.3	.0011	.260	.42	4.0	0.002	580,000
Prox. Cent.	N	11.0	.0017	.76	.055	4.0	.00006	* 333,000
Barnard's	Mb	9.7	.0000	-53	.023	4.0	,0004	249,000

Computed by Plaskett, Pub. Ast. Soc. Pac. 1922; Interferometer measurements, Antares, 0.024", 30,600,000 km; Betelgeuse, 0.047", 386, 000,000 km. (1921)

#### MISCELLANEOUS ASTRONOMICAL DATA.

```
 = \left\{ 365.24219879 - 0.000000614 (t - 1900) \right\} days   = \left\{ 365.25636042 + 0.000000011 (t - 1900) \right\} days 
Tropical (ordinary) year
Sidereal year
Anomalistic year
                                   = \{365.25964134 + 0.000000304 (t - 1900)\} \text{ days}
= \{346.620000 + 0.0000036 (t - 1900)\} \text{ days}
Eclipse year
Synodical (ordinary) month = \{29.530588102 - 0.0000000294 (t - 1900)\} days
Sidereal month
                                   = \{27.321660890 - 0.0000000252 (t - 1900)\} days
Sidereal day (ordinary, two successive transits
of vernal equinox, might be called equinoctial
                                                            = 86164.09054 mean solar seconds
                                                            = 23 h. 56 m. 4.09054 mean solar time
Sidereal day (two successive transits of same
fixed star)
                                                            = 86164.00066 mean solar seconds
1920, Julian Period = 6633
January 1, 1920, Julian-day number = 2422325
Solar parallax = 8.7958'' \pm 0.002'' (Weinberg)
                      8.807 ± 0.0027 (Hincks, Eros)
                      8.700 (Sampson, Jupiter satellites; Harvard observations)
                      8.80 Paris conference
Lunar parallax = 3422.63'' = 57' 2.63'' (Newcomb)
Mean distance earth to sun = 149500000 kilometers = 92900000 miles
Mean distance earth to moon = 60.2678 terrestrial radii
                                     = 384411 kilometers = 238862 miles
Light traverses mean radius of earth's orbit in 498.580 seconds
Velocity of light (mean value) in vacuo, 299860 kilometers/sec. (Michelson-Newcomb)
= 186324 statute miles/sec.
                                     = 20.4874'' \pm 0.005''
Constant of aberration
                                        20.47 Paris conference (work of Doolittle and others
                                          indicates value not less than 20.51)
Light year = 9.5 \times 10^{12} kilometers = 5.9 \times 10^{12} miles

Parsec, distance star whose parallax is 1 sec. = 31 \times 10^{12} km = 19.2 \times 10^{12} m

General precession = 50.2564'' + 0.000222 (t - 1900)'' (Newcomb)

Obliquity of ecliptic = 23^{\circ} 27' \cdot 8.26'' - 0.4684 (t - 1900)'' (Newcomb)

Constant of nutation = 9.21'' (Paris conference)
Gravitation constant
                                     = 666.07 \times 10^{-10} \text{ cm}^3/\text{g sec}^2 \pm 0.16 \times 10^{-10}
Eccentricity earth's orbit
                                     = e = 0.01675104 - 0.0000004180 (t - 1900) -
                                            0.000000000126 (t - 1900)^2
                                     = e_2 = 0.05490056 \text{ (Brown)}
= I = 5^{\circ} 8' 43.5'' \text{ (Brown)}
Eccentricity moon's orbit
Inclination moon's orbit
                                     = 0.04488716 (Brown)
Delaunay's \gamma = \sin \frac{1}{2}I
                                     = L = 6.454''
Lunar inequality of earth
Parallactic inequality moon
                                     = Q = 124.785'' (Brown)
Mean sidereal motion of \
                                     =-19^{\circ} 21' 19.3838'' + 0.001294 (t-1900)''
moon's node in 365.25 days)
                                     = R. A., 12 h. 48 m.; Dec., +27°
Pole of Milky Way
```

# ASTRONOMICAL DATA.

TABLE 541. - The First-magnitude Stars.

No.	Star.	Mag.	Spec- trum.	R.A. 1900.	Dec. 1900.	Annual proper motion,	P.A. of µ	Parallax.	Abs. mag.	Radial velocity km.
1 2 3 4 5 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21	Achernar Aldebaran ‡ Capella † ‡ Rigel *† Betelgeuse † § Canopus Sirius * Procyon * Pollux § Regulus ‡ a Crucis * B Crucis † Spica † Arcturus a Centauri † Arcturus a Centauri * Antares ‡ † Vega § Altair § Deneb § Fomalhaut	0.6 1.1 0.2 0.3 0.6–1.2 1.3 1.1 1.5 1.2 0.9 0.2 0.3 1.1 1.5 1.2 1.3 1.3	B5 K5 G B8 Ma F A F 5 K B8 B1 B2 B1 K G Ma A A5 A A2	1h 34.0m 4 30.2 5 9.3 5 9.7 5 49.8 6 21.7 6 40.7 7 34.1 7 39.2 10 3.0 112 21.0 112 41.9 13 19.9 13 19.9 14 11.1 14 32.8 16 23.3 18 33.6 19 45.9 20 38.0 22 52.1	-57° 45′ +16 18 +45 54 -8 19 +7 23 -52 38 +5 29 +28 16 +12 27 -62 33 +19 42 -60 25 -26 13 +38 41 +8 36 +44 55 -30 9	0.094" 0.203 0.437 0.001 0.020 0.1316 1.316 1.242 0.625 0.055 0.055 0.055 0.041 2.282 3.680 0.346 0.346 0.355	108° 160 168 135 74 264 269 240 229 219 281 192 36 54 180 117	+0.051" +0.062 +0.075 +0.007 +0.007 +0.007 +0.376 +0.339 +0.047 +0.003 -0.012 +0.037 +0.075 +0.759 +0.091 +0.091 +0.091 +0.091 +0.092 +0.092 +0.092 +0.138	-0.9 -0.0 -0.5 -5.5 -2.7 -6.7 +1.2 +3.0 +0.2 -1.1 -0.5 -4.0 -1.3 -0.5 +4.7 -1.5 -7.2 +2.0	+55.1 +30.2 +22.6 +22.3 +20.8 -7.4 -3.5 +3.9 -9.1 +7. +13.6 -7. -3.9 -21.6 -3.1 -13.8 -33. -4. +6.7

*Visual binary. † Spectroscopic binary. ‡ Pair with common proper motion.

§ Wide pair probably optical.

Mass relative to sun of (7) is 3.1; of (8), 1.5; of (16), 2.0. For description of types, see Table 534 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56, p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is \$\sqrt{100}\$ or the number whose logarithm is 0.4000, viz., 2.512. The absolute magnitude of a star is its magnitude reduced to a distance corresponding to 0.1" parallax.

## TABLE 542. - Wolf's Observed Sun-spot Numbers. Annual Means.

Sun-spot number =  $k(10 \times \text{number})$  of groups and single spots observed + total number of spots in groups and single spots). k depends on condition of observation and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun. 100 corresponds to about 1/500 of visible disk covered (umbras and penumbras). Periodicity: mean, 11.13, extremes, 7.3 and 17.1 years. Monthly Weather Review, 30, p. 171, 1902; monthly means, revised, 1749-1901; see A. Wolfer in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values.

Year.	0	1	2	3	4	5	6	7	8	9
1750	83	48	48	31	12	10	IO	32	48	54
1760	63	48 86	61	45	12 36	21	11	32 38	70	54 106
1770	101 85	82	66	35	31	7	20	92	154	126
1780	85	82 68 67	48 61 66 38 60	35 23 47	10	24	83	132	131	118
1790	90	67		47	41 48	21	16	6	4 8	7
1800	14	34	45	43 12	48	42	28	10	8	2
1820	0 16	1 7	5	12	14 8	35	20 83 16 28 46 36	41 50	30 62	67
1830		34 7 48 37 64 77	28	8	T 2	57	T22	T 28	103	24 67 86
1840	71 63 66	37	24	II	13 15 21	40	122 62	138 98	124	96
1850	66	64	54	39	21	7		23		94
1860	96	77	59	44	47	30	16 16	7	37	74
1870	139	III	102	44 66 <b>64</b> <b>85</b> 24	45 64 78	17	II	12	55 37 3 7 27 48	96 94 74 6 <b>6</b>
1880	32	54	60	64	64	52	25	13	7	
1890	7 10	54 36 3 6	73 5	05	78	52 64 <b>63</b>	42 54	26 62	27	12
1900		5		24 7	42 10	46	54	1	78	44 63
1910	19 39	25	4 15	1		40	55	99	70	- 03

NOTE: The sun's apparent magnitude is -26.5, sending the earth 90,000,000,000 times as much light as the star Note: The sun's apparent inagnitude is +4.8.

Aldebaran. Its absolute magnitude is +4.8.

Ratio of total radiation of sun to that of moon about 100.000 to 1 Langley

#### GEODETICAL AND ASTRONOMICAL TABLES.

TABLE 543 .- Length of Degrees on the Earth's Surface,

At	Miles p	er degree	Km. pe	er degree	At	Miles p	er degree	\$ Km. pe	er degree
Lat.	of Long.	of Lat.	of Long.	of Lat.	Lat.	of Long.	of Lat.	of Long.	of Lat.
0° 10 20 30 40 45 50	69.17 68.13 65.03 59.96 53.06 49.00 44.55	68.70 68.72 68.79 63.88 68.99 69.05 69.11	111.32 109.64 104.65 96.49 85.40 78.85 71.70	110.57 110.60 110.70 110.85 111.03 111.13	55° 60 65 70 75 80 90	39-77 34-67 29-32 23-73 17-96 12-05 0.00	69.17 69.23 69.28 69.32 69.36 69.39 69.41	64.00 55.80 47.18 38.19 28.90 19.39 0.00	111.33 111.42 111.50 111.57 111.62 111.67

For more complete table see "Smithsonian Geographical Tables."

### TABLE 544 .- Equation of Time.

The equation of time when + is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75 th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75 th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the  $\pm$  sign gives a rough idea of this variation.

	M. S.		M.	S.		M.	s.		M.	s.
Jan. 1 15 Feb. 1 15 Mar. 1	+ 3 26±14 + 9 25± 9 +13 42± 4 +14 20± 2 +12 34± 4 + 9 9± 6	May I I June I	$-3 \\ -2$	2± 7 8± 5 54± 3 49± 1 28± 3 8± 4	July 1 15 Aug. 1 15 Sept. 1	+5 +6 +4 +0	31±5 42±3 9±3 24±5 2±7 41±9	Oct. 1 15 Nov. 1 15 Dec. 1	-14 -16 -15 -10	12± 8 5± 6 19± 2 22± 4 58± 8 53±10

#### TABLE 545 .- Planetary Data.

Body.	Reciprocals of masses.	Mean distance from the sun. Km.	Sidereal period. Mean days.	Equatorial diameter. Km.	Inclination of orbit.	Mean density. H ₂ O=1	Gravity at surface.
Sun Mercury Venus Earth * Mars Jupiter Saturn Uranus Neptune Moon	1. 6000000. 408000. 329390. 3093500. 1047.35 3501.6 22869. 10700. †81.45	58 x 10 ⁶ 108 " 140 " 228 " 778 " 1426 " 2869 " 4495 " 38 x 10 ⁴	87.97 244.70 365.26 686.98 4332.59 10759.20 30685.93 60187.64 27.32	1391107 4842 12191 12757 6784 142745 120798 49693 52999 3476	7°.003 3.393 1.850 1.308 2.492 0.773 1.778 5.145	1.42 5.61 5.16 5.52 3.95 1.34 .69 1.36 1.30 3.36	28.0 0.4 0.9 1.00 0.4 2.7 1.2 1.0 1.0 0.17

^{*}Earth and moon. †Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 3°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful. Approximate rates of rotation: Sun 25½d; Moon 27½d; Mercury 88d; Venus 225d; Mars 24h 37m; Jupiter 9h 55m; Saturn 10h 14m.

## TABLES 546-548. ASTRONOMICAL DATA.

## TABLE 546. - Numbers and Equivalent Light of the Stars.

The total of starlight is a sensible but very small amount. This table, taken from a paper by Chapman, shows that up to the 20th magnitude the total light emitted is equivalent to 687 rst-magnitude stars, equal to about the hundredth part of full moonlight. If all the remaining stars are included, following the formula, the equivalent addition would be only three more 1st-magnitude stars. The summation leaves off at a point where each additional magnitude is adding more stars than the last. But, according to the formula, between the 23d and 24th magnitudes there is a turning point, after which each new magnitude adds less than before. The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence. Given its existence, the number of stars is probably finite, a conclusion open to very little doubt. All the indications of the earlier terms must be misleading if the margin between 1 and 2 thousand millions is not enough to cover the whole. (Census of the Sky, Sampson, Observatory, 1021) atory, 1915.)

Magnitude,	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,	Magnitude, #1	Number.	Equivalent number of 1st- magnitude stars.	Totals to magnitude,
	a Carinæ a Centauri 8 27 73 189 650 2,200 6,600	11 6 2 14 17 18 19 26 35 42 56 65		9.0-10.0. 10.0-11.0. 11.0-12.0. 12.0-13.0. 13.0-14.0. 14.0-15.0. 15.0-16.0. 16.0-17.0. 17.0-18.0. 18.0-19.0. All stars fainter than 20.0	7,820,000 14,040,000 25,400,000 38,400,000 54,600,000 76,000,000	69 68 60 51 40 31 22 16 10 6	380 448 508 559 630 642 668 673 684 687 690

#### TABLE 547. - Albedos.

The albedo, according to Bond, is defined as follows: "Let a sphere S be exposed to parallel light. Then its Albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it." In the following table, m = the stellar magnitude at mean opposition; g = magnitude it would have at full phase and unit distance from earth and sun;  $\sigma =$  assumed mean semi-diameter at unit distance;  $\rho =$  ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law; g depends on law of variation of light with phase; albedo = pq. Russell, Astrophysical

Journal, 43, p. 173, 1916.

A reduction of Very's observations by Russell gives 0.45 in close agreement with the recent value of Aldrich of 0.43 (see Aldrich, Smithsonian Misc. Collections, 69, 1919).

Object.	m	g	σ	Þ	q	Visual albedo.	Color index.	Photo- graphic albedo.
Moon. Mercury  Venus. Mars Jupiter Saturn Uranus. Neptune	-2.12 -4.77 -1.85 -2.29 +0.89	+0.40 -0.88 -0.06 -1.36 -8.99 -8.67 -6.98 -7.06	2.40" 3.45 3.45 8.55 4.67 95.23 77.95 36.0 34.5	0.105 .164 .077 .492 .139 .375 .420 .42	0.694 0.42 0.72 1.20 1.11 1.5: 1.5: 1.5:	0.073 .069 .055 .59 .154 .56: .63: .63:	+1.18 - +0.78 +1.38 +0.50 +1.12	0.051 — .60 .090 .73: 0.47:

TABLE 548. - Duration of Sunshine.

Declination of sun; approx. date:	-23° 27' Dec. 22.	-15° Feb. 9 Nov. 3.	-10° Feb. 23 Oct. 19.	-5° Mar. 8 Oct. 6.	o° Mar. 21 Sept. 23.	+5° Sept. 10 Apr. 3.	+10° Apr. 16 Aug. 28.	+15° May 1 Aug. 13.	+20° May 20 Jan. 24.	+23° 27' June 21
Latitude. 0° 10° 20° 30° 40° 50° 55° 60° 65° 70° 75° 80°	h m 12 07 11 32 10 55 10 13 9 19 8 04 7 09 5 52 3 34 — —	h m 12 07 11 45 11 22 10 57 10 25 9 43 9 12 8 34 7 39 6 10 2 37	h m 12 07 11 53 11 38 11 21 11 01 10 34 10 15 9 52 9 19 8 31 7 04 3 10	h m 12 07 12 00 11 53 11 43 11 23 11 14 11 04 10 50 10 29 9 55 8 46	h m 12 07 12 07 12 07 12 08 12 09 12 10 12 12 12 13 12 16 12 19 12 26	h m 12 07 12 14 12 22 12 31 12 43 12 58 13 09 13 23 13 43 14 11 15 00 16 44	h m 12 07 12 21 12 37 12 55 13 17 13 48 14 09 14 36 15 15 16 15	h m 12 07 12 29 12 52 13 19 13 53 14 40 15 13 15 57 17 01 18 50	h m 12 07 12 36 13 08 13 46 14 32 15 38 16 26 17 31 19 19	h m 12 07 12 43 13 20 14 05 15 01 16 23 17 23 18 52 22 03

For more extensive table, see Smithsonian Meteorological Tables.

#### TABLE 549. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902—12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from  $\lambda$ max. = 2930 and max. = 0.470 $\mu$ , 6230°; from total radiation, J = 76.8x10⁻¹² × T⁴,

5830°.

# TABLE 550. - Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from  $e_m = e_0 a^m$ , where  $e_m$  is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions (see table 556);  $e_0$  = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

-j	Т	ransmis	sion co	ef-				Intens	ity Sol	ar Enei	gy. A	rbitrary Units.	,		
Wave-length. $\mu$	Wash- ington.	Mount Wilson.	Mount Whitney.	e mile nearer earth.		Mount Whitney.		Mount	Wilson		]	w	ashingt	on.	
	W _a	Mo V	Mo w	One	m = 0	m = 1	m == 1	2	4	6	m = 1	2	3	4	6
0.30 .32 .34 .36 .38 .40 .46 .50 .60 .70 .80	(.38o) .56o .69o .733 .779 .858 .886 .922 .938	(.460) .520 .580 .635 .676 .729 .832 .862 .900 .950 .970* .970*	(.550) .615 .692 .741 .784 .809 .887 .919 .940 .965 .975 .965	.562 .768 .829 .850 .866 .903 .915 .941	54 111 232 302 354 414 618 606 504 364 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	11 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 49 74 117 296 334 331 297 235 154 57* 21*	1 2 9 20 34 62 205 248 268 268 221 147 55* 19*	134 232 426 441 393 312 236 153 59 23	51 130 294 323 306 268 209 141 55 21		7 41 140 174 185 197 164 120 49	3 13 67 94 112 145 145 102 43 14

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

*Possibly too high because of increased humidity towards noon.

TABLE 551. — The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

Wave-length.		Mount Whitney.				Mount Wilson.				Washington.			
μ μ  0.00 to 0.45  0.45 to 0.70  0.70 to ∞  0.00 to ∞	.31 .71 .91 1.93	.25 .67 .87 1.78	.19 .62 .85 1.66	.16 .58 .82 1.56	.13 .54 .80	.23 .65 .69 1.57	.16 .57 .68 1.42	.12 .51 .66 1.28	.09 .45 .63 .1.17	.13 .53 .69 1.35	.06 .40 .62 1.08	.04 .30 .57	.02 .24 .53 .79

# TABLE 552. — Distribution of brightness (Radiation) over the Solar Disk.

(These observations extend over only a small portion of a sun-spot cycle.)

Wave-	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ	μ
length.	D 323	0.386	0 433	0.456	0.481	0.501	0.534	0.604	0.670	0.699	0.866	1.031	1.225	1.655	2.097
Fraction Radius.	128 120 112 99 86 5 76 64	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130	111 108 105.5 103 99 94.5 90.5 86 81	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.5

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

#### TABLES 553-556.

## ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

## TABLE 553. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length,  $\lambda$ ; a the transmission of radiation by dry air above Mount Wilson (altitude == 1730 m. barometer, 620 mm.) for à body in the zenith; finally a correction factor,  $a_w$ , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer I cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering.  $a_w$  is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e.g. for altitudes greater than 1000 meters. If B =

the barometric pressure in mm., w, the amount of precipitable water in cm., then  $a_B = a^{\frac{620}{620}} a_w^W$ . w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann,  $w = 2.3e_w 10^{-22000}$ ,  $e_w$  being the vapor pressure in cm. at the station, h, the altitude in meters. See Table 377 for long-wave transmission.

Fowle, Astrophysical Journal, 38, 1913.

TABLE 554. - Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea level).

Ditto X area of zone	At. Wilson lint Island It Wilson lint Island	:	5	500* 4 115 1 1.0 58	35° 35-50° 00 520 22 128 3.8 91.5 7.9 22.5	50-60 ⁰ 610 150 87-2 21.4	60-70 ⁰ 660 185 104.3 29.2	70-80 ⁰ 700 210 117.6 35·3	80-90 ⁰ 720 460 125.3 80.0		Sun. - - 636 210
Altitude of sun	surface sky >	( 10 ⁸ /s		-	50 533 046 - 423 056 102	.15° .900 .233 403	25° 1.233 .524 .385 .162 .686	35° 1.358 .780 365 .189	47½0 1.413 1.041 346 .205	65° 1.496 1.355 326 .226	82½0 1.521 1.507 310 .240

^{*} Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were  $636 \times 10^{-8}$  and  $210 \times 10^{-8}$ , on a horizontal surface,  $305 \times 10^{-8}$  and  $77 \times 10^{-8}$ ; for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface 0.27 and 0.07. Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 555. —Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.

Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	ь	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mt. Wilson Ratio computed by Rayleigh Ratio observed by Rayleigh	0.422 186 1194 642 -	0.457 232 986 425 -	0.491 227 701 309	0.566 211 395 187 -	0.614 191 231 121 -	0.660 166 174 105 -	102 102 102	143 164 168	246 258 291	316 328 369

#### TABLE 556. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	00	20 ⁰	40 ⁰	60°	70°	75 ⁰	80°	85°	880
Secant Forbes Bouguer Laplace Bemporad	1.00 1.00 1.00 1.00	1.064 1.065 1.064 -	1.305 1.306 1.305	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805 -	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

#### TABLES 557-558.

## RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 557.— Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation,  $A_0$ , at earth's mean distance from the sun.

	Motion of			RELATI	VE MEA	N VERT	ical In	TENSITY	$\left(\frac{J}{A_0}\right)$	•		
Date.	the sun in longi-				1	LATITUD	E NORT	н.				$\frac{A}{A_0}$
	tude.	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Jan. 1 Feb. 1 Mar. 1 Apr. 1 May 1 June 1 July 1 Aug. 1 Sept. 1 Oct. 1 Nov. 1 Dec. 1	0.99 31.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63 330.19	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312	0.265 .282 .303 .319 .318 .315 .312 .318 .308 .286	0.220 .244 .279 .312 .330 .334 .333 .336 .316 .289 .251	0.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211	0.117 .150 .204 .269 .320 .349 .352 .330 .285 .225 .164	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114	0.018 .048 .108 .195 .278 .337 .345 .300 .220 .135 .063	0.006 .056 .148 .253 .344 .356 .282 .180 .084	0.013 .101 .255 .360 .373 .295 .139	0.082 .259 .366 .379 .300 .140	1.0335 1.0288 1.0173 1.0009 0.9841 0.9714 0.9666 0.9709 0.9828 0.9995 1.0164 1.0288
Year		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

### TABLE 558. - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
1 Hebron-Rama (Labr.)	-20.7	<del></del> 20.9	 15.6	— 6.9	+ 0.2	+ 4.5	+ 7.6	+ 8.0	+ 4.5	— o.8	— 6.2	—16.2	— 5.2
3 Montreal	-21,6 -10.9 - 2.8	<b>—</b> 9.1	- 4.3	+ 4.8	+12.6	+18.3	+20.5	+19.3	+14.7	+ 7.8	- 0.2	<b></b> 7.1	+ 5.5
5 Chicago 6 Denver	- 4.8 - 2.1	- 2.9	+ 1.2	+ 7.9	+13.4	+19.7	+22.2	+21.6	+17.9	+11.1	+ 3.6	- 1.5	+ 9.1
8 Pikes Peak	+ 0.7 -16.4 - 0.8	-15.6	-13.4	-10.4	<b>—</b> 5-3	+ 0.4	+ 4.5	+ 3.6	- o.3	÷ 5.8	-11.8	-14.4	7.1
10 San Francisco	+10.1 +12.3	+10.9 +14.9	+12.0 +18.1	+12.6 +21.0	+13.7 +25.1	+14.7 +29.4	+14.6 +33.1	+14.8 +32.6	+15.8 +29.1	$^{+15.2}_{+22.8}$	+13.5 +16.6	+10.8	+13.2 +22.3
	+12.1 +25.6	+26.0	+27.1	+29.0	+31.1	+33.5	+34.8	+34.7	+33.3	十31.7	+29.0	+27.0	+30.3
15 Werchojansk	-51.0	-45.3	-32.5	-13.7	十 2.0	+12.3	+15.5	+10.1	十 2.5	-150	37.8	-47.0	-16.7

Lat., Long., Alt. respectively: (i) + \$8°.5, 63°.0 W, -; (2) + 49.9, 97.1 W, 233m.; (3) + 45.5, 73.6 W, 57m.; (4) + 42.3, 71.1 W, 38m.; (5) + 44.9, 87.6 W, 251m.; (6) + 39.7, 105.0 W, 1613m.; (7) + 38.9, 77.0 W, 34m.; (8) + 38.8, 105.0 W, 4308m.; (9) + 38.6, 90.2 W, 173m.; (10) + 37.8, 122.5 W, 47m.; (11) + 32.7, 114.6 W, 43m.; (12) + 30.0, 90.1 W, 16m.; (13) + 15.6, 37.5 E, 9m.; (14) + 81.7, 64.7 W., -; (15) + 67.6, 133.8 E, 140m.; (16) - 6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

Note: Highest recorded temperature in world = 57° C in Death Valley, California, July 10, 1913. Lowest recorded temperature in world = -68° C at Verkhoyansk, Feb. 1892.

#### THE EARTH'S ATMOSPHERE.

## TABLE 559. - Miscellaneous Data. Variation with Latitude.

Optical ev. lence of atmosphere's extent: twilight 63 km, luminous clouds 83, meteors 200, aurora 44–360. Jeans computes a density at 170 km of  $2\times 10^{19}$  molecules per cm³, nearly all H (5% He); at 810 km,  $3\times 10^{19}$  molecules per cm³ almost all H. When in equilibrium, each gas forms an atmosphere whose density decrease with altitude is independent of the other components (Dalton's law, HaO vapor does not). The lighter the gas, the smaller the decrease rate. A homogeneous atmosphere, 76 cm pressure at sea-level, of sea-level density, would be 7901 m high. Average sea-level barometer is 74 cm; corresponding homogeneous atmosphere (truncated cone) 7790 m, weighs (base, m²) 10,120 kg; this times earth's area is  $52\times 10^{14}$  metric tons or  $10^{-6}$  of earth's mass. The percentage by vol. and the partial pressures of the dry-air components at sea-level are: N2, 78.03, 593.02 mm; O2, 20.99, 159.52; A, 0.94, 7.144; CO2, 0.03, 0.228; H2, 0.01, 0.075; Ne, 0.0012, 0.009; He, 0.0004, 0.003 (Hann). The following table gives the variation of the mean composition of moist air with the latitude (Hann).

Equator. N2 75.99	O ₂ 20.44	A 0.92	H ₂ O 2.63	CO ₂ 0.02
50 N. 77.32	20.80	0.94	0.92	0.02
70 N. 77.87	20.94	0.94	0.22	0.03

## TABLE 560. - Variation of Percentage Composition with Altitude (Humphreys).

Computed on assumptions: sea-level temperature 11°C; temperature uniformly decreasing 6° per km up to 11 km, from there constant with elevation at  $-55^{\circ}$ . J. Franklin Inst. 184, p. 388, 1917.

Height,	Argon.	Nitrogen.	Water vapor.	Oxygen.	Carbon dioxide.	Hydrogen.	Helium.	Total pressure, mm
140	_	0.01	_	_	_	99.15	0.84	0.0040
120	_	0.10		_	_	98.74	1.07	0.0052
100	_	2.95	0.05	0.11	_	95.58	1.31	0.0067
80	_	32.18	0.17	1.85	_	64.70	1.10	0.0123
60	0.03	81.22	0.15	7.69	-	10.68	0.23	0.0935
50	0.12	86.78	0.10	10.17	_	2.76	0.07	0.403
40	0.22	86.42	0.06	12.61	_	0.67	0.02	1.84
30	0.35	84.26	0.03	15.18	0.01	0.16	0.01	8.63
20	0.59	81.24	0.02	18.10	0.01	0.04	-	40.99
15	0.77	79.52	0.01	19.66	0.02	0.02	_	89.66
11	0.94	78.02	0.01	20.99	0.03	0.01		168.00
5	0.94	77.89	0.18	20.95	0.03	0.01	_	405.
0	0.93	77.08	1.20	20.75	0.03	0.01	_	760.

# TABLE 561. - Variation of Temperature, Pressure and Density with Altitude.

Average data from sounding balloon flights (65 for summer, 52 for winter data) made at Trappes (near Paris), Uccle (near Brussels), Strassburg and Munich. Compiled by Humphreys, 16 to 20 m chiefly extrapolated.

		Summer.			Winter.	
Elevation, km	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³	Temp. ° C	Pressure, mm of Hg.	Density, dry air, g/cm³
20.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5	-51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -49.5 -49.5 -45.5 -45.5 -37.8 -22.1 -15.1 -8.9 -3.0 +2.4 +5.0 +7.5 +10.0 +12.0 +14.5 +15.7	44.1 51.5 60.0 70.0 81.7 95.3 111.1 129.6 151.2 176.2 205.1 237.8 274.3 314.9 360.2 410.6 528.9 562.5 598.0 635.4 674.8 776.3	0.000092 .000108 .000126 .000146 .000171 .000199 .000232 .000270 .000366 .000419 .000524 .000524 .000523 .000803 .000802 .000802 .00090 .001100 .001100	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -54.5 -49.5 -43.0 -35.4 -28.2 -15.0 -9.3 -6.7 -4.7 -3.0 -1.3 -0.7	39.5 46.3 54.2 63.5 74.0 87.1 102.1 119.5 140.0 104.0 102.0 104.0 301.6 301.6 301.6 347.5 398.7 455.9 519.7 551.3 590.8 629.6 670.6 714.0	0.000085 .000100 .000117 .000137 .000160 .000186 .000220 .000257 .000301 .000353 .000466 .000526 .000590 .000590 .0006821 .000915 .000915 .000915 .000915 .000915

760 mm = 29.921 in. = 1013.3 millibars. 1 mm = 1.33322387 millibars. 1 bar = 1,000,000 dynes; this value, sanctioned by International Meteorological Conferences, is 1,000,000 times that sometimes used by physicists.

SMITHSONIAN TABLES.

#### TERRESTRIAL TEMPERATURES.

TABLE 562. — Temperature Variation over Earth's Surface (Hann).

Latitude.			Temperatu	res ° C			Mean ocean	Land surface
Latitude.	Jan.	Apr.	July.	Oct.	Year.	Range.	temp.	%
North pole +80° 70 60 50 40 30 20 +10 Equator -10 20 30 40 50 60 70 80 South pole	-41.0 -32.2 -26.3 -16.1 -7.2 +5.5 14.7 21.9 25.8 26.5 26.6 25.3 21.6 3.2 -1.2 (-4.3) (-6.0)	- 28.0 - 22.7 - 14.0 - 2.8 + 5.2 13.1 20.1 25.2 27.2 26.6 25.9 24.0 18.7 12.5 	-1.0 +2.0 7.3 14.1 17.9 24.0 27.3 28.0 27.0 25.7 23.0 19.8 14.5 8.8 3.0 -9.3 (-28.7) (-33.0)	-24.0 -19.1 -9.3 -6.3 6.9 26.4 26.4 26.5 25.7 22.8 18.0 -11.7 4.8	-22.7 -17.1 -10.7 -1.1 +5.8 14.1 20.4 25.3 26.8 26.3 25.5 23.0 18.4 11.9 5.4 -3.2 (-20.6) (-25.0)	40.0 34.2 33.6 30.2 25.1 12.6 6.1 1.4 0.9 3.4 5.5 7.1 6.6 5.4 12.5 (24.4) (27.0)	-1.7 -1.7 +0.7 4.8 7.9 14.1 3 25.4 27.4 27.1 25.8 24.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 1	20 53 61 58 45 43.5 31.5 24 22 20 4 20 4 20 71 100 (100)

# TABLE 563. - Temperature Variation with Depth (Land and Ocean).

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20-30 m (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, 0.03 = °C per m (1° per 35 m) l.c. At Pittsburgh, 1524 m, 49.4°, .0294 per m; Oberschlesien, 2003 m, 70°, .0294 per m; or W. Virginia, 2200 m, 70°, .034° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.0000172 g-cal/cm²/sec. or 54 g-cal/cm²/year (39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N, 4.2° C; 30° S, 5.1°; but 10° N, only 2.2°; so° S, 2.0°. Mean surface tempe. whole ocean (Kritmmel) 17.4°; all depths, 3.0°. Below 1 km nearly isothermal with depth. In tropics, surface 28°; at 183 m, 11°, 80% all water less than 4.4°. Deep-sea (bottom) temps, range —0.5° to +2.6°. Soundings in S. Atlantic: 0 km, 18.9°; .25 km, 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.6°.

Depth,					Tempe	rature, c	entigrade.					
m	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
0 0.5 1.0 1.5 2.0 3.0 4.0 5.0	1 6 9 11 14 15 15	4 6 8 10 12 13 14	10 9 8 9 10 12 12 13	14 13 12 11 11 11 12 13	21 18 15 14 13 13 12 13	29 23 20 18 16 14 13	32 26 24 21 19 16 14 14	32 28 26 23 21 17 16 14	24 24 23 22 21 18 16 15	16 18 18 18 18 18 18 17 16	9 12 14 15 16 17 17 16	4 6 10 12 14 15 16 16

#### GEOCHEMICAL DATA.

Eighty-three chemical elements (86 including Po, Ac and UrX₂) are found on the earth. Besides the eight occurring uncombined as gases, 23 may be found native, Sb, As, Bi, C, Cu, Au, Ir, Fe, Ph?, Hg, Ni, Os, Pd, Pt, Rh, Ru, Se, Ag, S, Ta?, Te, Sn?, Zn?. Combined the elements form about 1000 known mineral species. Rocks are in general aggregates of these species. Some few (e. g., quartzite, limestone, etc.) consist of one specie. We have some knowledge of the earth to a depth of 10 miles. This portion may be divided into three parts: the innermost of crystalline or plutonic rocks, the middle, of sedimentary or fragmentary rocks, the outer of clays, gravels, etc. 93% of it is solid matter, 10 liquid, and the atmosphere amounts by weight to 0.03% of it. Besides the 9 major constituents of igneous rock (see 7th Col. of table) 3 are notable by their almost universal occurrence, TiO₂, P₂O₅, and MnO. Bo, Gl, and Sc are also widely distributed.

The density of the earth as a whole is 5.52 (Burgess); continental surface, 2.67 and outer 10 miles of crust, 2.40 (Harkness). Computed from average chemical composition: outer ten miles as a whole, 2.77; northern continents 2.73; southern, 2.76; Atlantic basin, 2.83; Pacific basin, 2.88.
Data of Geochemistry, Clarke, Bul. 616, U. S. Geological Survey, 1916; Washington, J. Franklin. Inst. 190,

p. 757, 1920.

AVERAGE COMPOSITION OF KNOWN TERRESTRIAL MATTER.

	Aver	age compo	sition.		Ave	erage com	position	of lithosp	bere.	
Atomic number and element.	Litho- sphere, 93%	Hydro- sphere, 7%	Average including atmosphere.	Igneous rocks.	Compound.	Igneous rocks, 95%	Shale, 4%	Sand- stone, 0.75%	Lime- stone, o. 25%	Weighted average.
8 O 14 Si 13 Al 26 Fe 20 Ca 12 Mg 11 Na 19 K 1 H 22 Ti 6 C 17 Cl 35 Br 15 Br 15 Br 16 Sa 25 Mn 38 Sr 7 N 9 Fl etc.	47.33 27.74 7.85 4.50 4.50 4.2.46 2.46 0.22 0.46 .12 .12 .08 .08 .02	85.79	46.43 27.77 8.14 5.12 2.05 2.05 0.127 .055 -130 .052 .027 .055 -018 .096 .018	47. 29 28. 02 7. 96 4. 56 3. 47 2. 29 2. 50 2. 50 1. 13 .063 	SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₄ CaO MgO CaO MayO MayO CaO MayO MayO MayO MayO MayO MayO MayO Ma	59.09 15:35 3.08 3.80 3.49 5.08 3.84 3.13 1.14 1.02 .023 .053 .025 .022 .025 .022 .025 .032	58.10 15.40 4.02 2.43 2.44 3.11 1.30 3.24 5.00 .65 -2.63 .17 .64	78.33 4.77 1.07 1.16 5.50 .45 1.31 1.63 .25 08 09 05	5.19 0.81 .54 7.89 42.57 .05 .33 .77 .06 41.54 .09 .05 .02	59.77 14.89 2.69 3.39 3.74 4.86 3.25 2.98 2.02 -77 .02 -70 .28 .10 .03 .06 .09 .04 .09 .025 .05 .05 .01

AVERAGE COMPOSITION OF METEORITES: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through the air. Note the greater abundance of elements of even atomic number (97.2 per cent).

O (8) 36.53 S (16) 1.80 Na (11) 1.64 C (6) 0.15 H (1) 0.09 Ru (44) tr.	Fe (26) 23.32 Ca (20) 1.72 Cr (24) 0.32 Co (27) 0.12 Cu (29) 0.01 Pd (46) tr.	Si (r ₄ ) 18.03 Al (r ₃ ) 1.53 Mn (25) 0.23 Ti (22) 0.11 Cl (r ₇ ) 0.09 Pt (78) tr.	Mg (12) Ni (28) K (19) P (15) V (23) Ir (77)	13.60 1.52 0.17 0.11 tr.
---------------------------------------------------------------------------------------	-------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------	--------------------------------------

#### TABLE 565.

#### ACCELERATION OF GRAVITY.

#### For Sea Level and Different Altitudes.

Calculated from U. S. Coast and Geodetic Survey formula, p. 134 of Special Publication No. 40 of that Bureau, g=9.78039 ( $t+0.005294\sin^2\phi-0.000007\sin^22\phi$ ) in g=32.08783 ( $t+0.005294\sin^2\phi-0.000007\sin^22\phi$ ) ft.

Latitude	g	log g	g	Latitude	cm/sec ²	log g	ft./sec2
	cm/sec ²	108 8	ft./sec2	φ	cm/sec ²	****	ft./sec2
o°	978.039	2.9903562	32.0878	50°	981.071	2.9017004	32.1873
1 5	.078	.9903735	.0801	51	.159	.0017304	.1002
10	.195	.9904254	.0020	52	.247	.9917784	.1931
12	.262	.9904552	.0051	53	.336	.9018177	.1060
14	.340	.9904898	.0977	54	.422	.0018558	.1088
14	.340	19904090	.09//	34	1422	19910330	11900
15	978.384	2,0005004	32.0001	55	981.507	2.0018034	32.2016
15	.430	.9905298	.1007	55 56	.592	.0010310	.2044
	.480	.9905520	.1023		.675	.9919677	.2071
17 18	.532	.9905750	.1040	57 58	.757	.9920040	.2098
10	.585	.9905985	. 1057	59	.839	.0020403	.2125
19	. 5~5	19903903		39	0 9	. ,,	
20	978 641	2.9906234	32.1076	60	981.918	2.9920752	32.2151
21	.701	. 9906500	.1095	61	.995	.9921073	.2176
22	.763	.9906775	.1116	62	982.070	.9921424	. 2201
23	.825	.9907050	.1136	63	.145	.9921756	. 2225
24	.892	.9907348	.1158	64	.218	.0022070	. 2240
	,	19917041	,				
25	978.960	2.9907649	32.1180	65 66	982.288	2.9922388	32.2272
25 26	979.030	.9907960	.1203		.356	. 9922689	. 2295
	.101	.9908275	.1227	67	.422	.9922981	. 2316
27 28	.175	. 9908603	.1251	68	.487	.9923268	. 2338
20	.251	.9908940	.1276	60	549	.9923542	. 2358
		77 7.					
30	979.329	2.9909286	32.1302	70	982.608	2.9923803	32.2377
31	.407	.9909632	.1327	71	.665	.9924055	. 2396
32	.487	.9909987	.1353	72	.720	.9924298	.2414
33	. 569	.9910350	.1380	73	.772	. 9924528	. 2431
34	.652	.9910718	.1407	74	.822	-9924749	. 2448
							, [
35 36	979 - 737	2.9911095	32.1435	75 76	982.868	2.9924952	32.2463
36	.822	.9911472	.1463		.912	.9925147	-2477
37 38	.908	.9911853	.1491	77 78	∙954	.9925332	. 2491
	.995	.9912238	.1520		.992	.9925500	. 2503
39	980.083	.9912628	. 1549	79	983.027	.9925655	.2515
	.0	4 0074070	20 7 7 7 7 9	80	983.059	2.0025706	32.2525
40	980.171	2.9913018	32.1578	81	.080		
41	. 261	.9913417	.1607 .1636	82		.9925929	.2535
42	.350	.9913812	.1666	83	.115	.9920043	.2544
43	.440	.9914210		83 84	.139	.9920149	.2552
44	.531	.9914613	.1696	04	.100	.9920242	.2550
15	080.621	2.0015011	32.1725	85	983.178	2.0026321	32.2564
45 46	.711	.9915410	.1755	85 86	.101	.9926379	.2560
47	.802	.9915814	.1785		.203	.9926432	.2572
47	.892	.0016212	.1814	87 88	,211	. 9926467	.2575
40	.081	.9916666	.1844	90	083.217	.0026404	.2577
49 .	.901	.9910000	, 1044	,,,	9-5/2-1	. , , , , , , , , , , , , , , , , , , ,	-577

To reduce log g (cm. per sec. per sec.) to log g (ft. per sec. per sec.) add log 0.03280833 = 8.5159842 — 10.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° and sea-level.

#### FREE-AIR CORRECTION FOR ALTITUDE.

 $-0.0003086~cm/sec^2/m$  when altitude is in meters.  $-0.000003086~ft/sec^2/ft$  when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.						
200 m.	-0.0617 cm/sec ²	200 ft.	-0.000617 ft./sec²						
300 400	.1234	400	.001234						
500	.1543	500	.001543						
600	.1852	600	.001852						
700	.2160	700	.002160						
800	. 2469	800	.002469						
900	.2777	900	.002777						

#### GRAVITY.

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 565, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than 0.010 cm/sec², as the observations were made with the half-second invariable pendulum, using modern methods.

using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publication No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostasy," by William Bowie, 1977; also Special Publication No. 10 of same bureau entitled, "Effect of Topography and Isostatic Compensation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.

		Elevation,	Gravity	, cm/sec²	Refer-
Name.	Latitude.	meters.	Observed.	Reduced to sea-level.	ence.
Kodaikanal, India Ootacamund, India Madras, India. Jamestown, St. Helena Cuttack, India Amraoti, India Jubbulpur, India. Gaya, India. Siliguri, India. Siliguri, India. Kuhrja, India. Galveston, Texas. Rajpur, India. Alexandria, La. St. Georges, Bermuda McCormick, S. C. Shamrock, Texas. Cloudland, Tenn. Mount Hamilton, Cal. Kala-i-Chumb, Turkestan. Denver, Col. Hachinohe, Japan. Chicago, Ill. Albany, N. Y. Plorence, Italy. Minneapolis, Minn. Simplon Hospice, Switzerland. Fort Kent, Me. Sandpoint, Idaho. Medicine Hat, Canada. Field, Canada. Magleby, Denmark Copenhagen, Denmark Copenhagen, Denmark St. Paul Island, Alaska Frederickswarn, Norway. Ashe Inlet, Hudson Strait. St. Michael, Alaska Frederickswarn, Norway. Ashe Inlet, Hudson Strait. St. Michael, Alaska	20 29 20 29 20 56 23 9 24 48 26 42 28 14 29 18 30 24 31 19 32 21 33 55 36 6 37 20 38 27 39 41 40 31 41 47 42 39 43 45 44 59 46 15 47 15 50 2 55 2	2336 2254 6 10 28 342 447 110 118 198 3 1012 24 163 708 1890 1282 1345 1638 21 184 256 1998 160 637 664 1239 14 14 10 10 28 15 14	977. 645 977. 735 978. 279 978. 712 978. 659 978. 719 978. 884 979. 882 979. 272 979. 082 979. 429 979. 366 979. 462 979. 577 979. 383 979. 660 979. 660 980. 359 980. 278 980. 384 980. 491 980. 597 980. 680 980. 745 980. 745 981. 502 981. 726 981. 726 981. 927 982. 192	978. 366 978. 427 978. 281 978. 281 978. 714 978. 856 978. 918 978. 918 979. 913 979. 143 979. 313 979. 436 979. 807 979. 674 979. 966 980. 056 980. 354 980. 365 980. 365 980. 381 980. 548 980. 676 980. 817 981. 970 981. 500 981. 127 981. 500 981. 127 981. 500 981. 127 981. 500 981. 127 981. 506 982. 110 982. 110 982. 193 982. 110	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Niantilik, Cumberland Sound Glaesibaer, Iceland. Sorvagen, Norway Umanak, Greenland Danes Island, Spitzbergen Arctic Sea Arctic Sea	64 54 65 46 67 54 70 40 79 46 84 12	7 10 19 10 3	982.273 982.342 982.622 982.590 983.078 983.109	982.275 982.345 982.628 982.593 983.079 983.109	3 1 2 3 1
Arctic Sea	84 52 85 55	0	983.174 983.155	983.174 983.155	1

References: (1) Report 16th General Conference International Geodetic Association, London and Cambridge, 1909, 3d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40; * (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.*

^{*} For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112. For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1901, and pages 25 and 244 of the 3d vol. by Dr. E. Borráss in 1911 of the Report of the 16th General Conference of the Intern. Geodetic Association, London and Cambridge, 1909. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Geodetic Association, the value of the Washington and Cambridge, 1909. ington base station was changed to 980.112.

## ACCELERATION OF GRAVITY (g) IN THE UNITED STATES.

The following table is abridged from one for 219 stations given on pp. 50 to 52, Special Publication No. 40, U. S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 566). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 566).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km. Below this depth any mass element is subject to equal (fluid) pressure from all directions.

Correction							
Station.   Latitude.   Longitude.   tion, meters.   cm/sec²   Elevation, cm/sec²     Topography and compensation, cm/sec²     Station.   Stat						Corre	ection.
New Orleans, La.	Station.	Latitude.	Longitude.	tion,			and com- pensation,
	New Orleans, La. Austin, Tex. university El Paso, Tex	29 57.0 30 17.2 31 46.3 32 47.2 33 30.8 34 43.1 33 36.5 33 45.0 34 43.1 35 13.8 35 13.8 35 57.7 36 6.2 37 47.5 38 56.3 37 20.4 37 32.2 37 47.5 38 56.3 38 50.7 38 56.3 38 50.7 38 56.3 39 17.8 39 28.7 38 59.4 40 40.6 40 21.0 40 21.0 40 40.1 40 48.5 40 27.4 41 47.4 40 46.1 40 48.5 40 27.4 41 30.4 41 47.4 40 46.1 40 48.5 40 27.4 41 30.4 41 47.4 42 10.5 42 22.8 44 30.8 44 22.8 44 41.8 44 41.8 44 41.8 44 41.8 44 41.8 44 41.8 44 41.8 44 41.8 44 41.8 45.7 44 58.7 44 58.7 44 58.7 44 58.7 44 58.7 44 58.7 44 58.7	90 4.2 97 44.2 106 29.0 114 37.0 79 56.0 86 48.8 91 12.2 84 23.3 76 39.8 92 16.4 90 3.3 80 50.8 105 12.1 83 55. 112 6.8 82 7.9 121 38.6 77 26.1 122 25.7 90 12.2 105 2.0 104 49.0 77 4.0 101 35.4 110 9.9 84 25.3 87 23.8 104 56.9 17 36.9 17 43.8 104 56.9 17 43.8 17 36.1 17 43.8 17 36.1 18 30.6 17 43.8 18 30.6 17 36.1 17 43.8 18 30.6 19 30.6 11 53.8 11 53.8 12 50.9 11 53.8 12 50.9 11 53.8 11 53.8 11 53.8 12 50.9 11 53.8 11 54.9 11 55.0 11 55.0	2 180 1146 54 6 179 44 43 24 189 80 228 1960 280 849 1890 1282 30 1114 4293 1301 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4293 154 4295 154 4295 154 4295 157 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 4295 42	979. 324 979. 328 979. 124 979. 529 979. 546 979. 536 979. 600 979. 524 979. 721 979. 740 979. 721 979. 740 979. 712 979. 740 979. 712 979. 463 979. 960 979. 960 980. 979 980. 979 970 970 970 970 970 970 970 97	ooi osi	+0.035 +.013 001 +.001 010 +.016 +.011 +.005 +.014 +.001 +.001 096 +.130 +.130 +.120 +.010 +.045 +.001 +.045 +.001 +.045 +.001 +.045 +.001 +.007 +.012 006 +.013 006 +.013 003 +.013 004 004 004 004 004 005 +.010 004 006 006 006 006 007 006 006 007 006 006 007 006 006 007 006 007 006 007 006 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 007 006 006 007 006 007 006 006 007 006 006 006 007 006 006 006 006 007 006 006 006 006 006 007 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006 006
	Fembina, N. Dak	48 58.I	97 14.9	243	900.917		009

TABLE 568. - Length of Seconds Pendulum at Sea Level and for Different Latitudes.

	Length in cm	Log.	Length in inches.	Log.		Length in cm	Log.	Length in inches.	Log.
5 10 15 20 25 30 35 40 45	99.0961 .1000 .1119 .1310 .1571 99.1894 .2268 .2681 .3121 .3577	1.996056 .996074 .996126 .996210 .996324 1.996465 .996629 .996810 .997002	39.0141 .0157 .0204 .0279 .0382 39.0509 .0656 .0819 .0992 .1171	1.591222 .591239 .591292 .591375 .591490 1.591631 .591794 .591976 .592168	50 55 60 65 70 75 80 85 90	99.4033 .4475 .4891 .5266 .5590 99.5854 .6047 .6168 .6207	1.997401 .997594 .997776 .997939 .998081 1.998196 .998280 .998332 .998350	39.1351 .1525 .1689 .1836 .1964 39.2068 .2144 .2191 .2207	1.592566 .592760 .592941 .593104 .593246 1.593361 .593498 .593515

Calculated from Table 565 by the formula  $l=g/\pi^2$ . For each 100 ft. of elevation subtract 0.000953 cm or 0.000375 in. or 0.0000313 ft. This table could also have been computed by either of the following formulae derived from the gravity formula at the top of Table 565.  $l=0.990961 (1+0.005246\sin^2\!\phi-0.00007\sin^2\!2\!\phi) \text{ meters}$   $l=0.990961 + 0.005246\sin^2\!\phi-0.00007\sin^2\!2\!\phi \text{ meters}$   $l=39.014135(1+0.005294\sin^2\!\phi-0.00007\sin^2\!2\!\phi) \text{ inches.}$   $l=39.014135 + 0.206535\sin^2\!\phi-0.000276\sin^2\!2\!\phi \text{ inches.}$ 

#### TABLE 569. - Miscellaneous Geodetic Data.

6378388 = 18 meters; 3963.339 miles. 6356909 meters; Equatorial radius = a = 6378206 meters; = b = 6356584 meters; Polar semi-diameter Survey. Reciprocal of flattening =  $\frac{a}{a-b}$  = 295.0 3949.992 miles. 5949.992 minos.
207.0 ± 0.5
iero
i. 0.0067237 ± 0.0000120 Square of eccentricity  $= e^2 = \frac{a^2 - b^2}{a^2} = 0.006768658$ 

Difference between geographical and geocentric latitude =  $\phi - \phi' = 688.2242'' \sin 2\phi - 1.1482'' \sin 4\phi + 0.0026'' \sin 6\phi$ .

Mean density of the earth = 5.5247 ± 0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the earth = 2.67
Mean density outer ten miles of earth's crust = 2.40
Harkness. See also page 423.

Constant of gravity, 6.66 × 10⁻⁸ c.g.s. units. Mass = 5.997 × 10²⁷ c.g.s. units.

Rigidity =  $n = 8.6 \times 10^{11}$  c.g.s. units. Viscosity =  $e = 10.9 \times 10^{16}$  c.g.s. units (comparable to steel). A. A. Michelson, Astrophysical Journal, 39, p. 105, 1914.

Moments of inertia of the earth; the principal moments being taken as A, B, and C, and C the greatest:

 $\frac{-A}{a} = 0.00326521 = \frac{-A}{30}$ 

## Velocity of Compressional Earthquake Waves and Elastic Constants of Rocks.

Depth	Velocity*	Velocity†	Poisson's Ratio.†
o km	7.4 km/sec.	7.17 km/sec.	0.258
100 .	7.76	7.59	•273
300 600	8.57	7.59 8.42	•272
600	-	9.62	.274
1000	11.24	11.07	•270
1400	12.06	12.40	<u>-</u>
2500	12.95	12.05	_
	* Adams and Williamson.	† Weichert.	

## TERRESTRIAL MAGNETISM.

### Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1920. Based on tables in "Distribution of the Magnetic Declination in Alaska and Adjacent Regions in 1910" and "Distribution of the Magnetic Declination in the United States for January 1, 1915," published by the United States Coast and Geodetic Survey. For a somewhat different set of stations, see 6th Revised Edition of the Smithsonian Physical Tables.

State   Station   1810   1820   1830   1840   1850   1860   1870   1880   1890   1900   1910   1920														
Ala.    Ashland.   6.0   6.2   6.1   7.3   7.2   6.9   6.6   6.1   8.5   2   4.7   4.1   3.4   3.0   2.9   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0	State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Ala.    Ashland.   6.0   6.2   6.1   7.3   7.2   6.9   6.6   6.1   8.5   2   4.7   4.1   3.4   3.0   2.9   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   2   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0   3.0						۰								i
Alas.  Al	Ala	Ashland										-		
Alas   Sikka								6.6E	6.TE					
Unalaska	Alas.		<u>'</u> —			_								
Ark.   Holbrook.		Kodiak	_	_	-									
Ark. Ark. Ark. Ark. Ark. Ark. Ark. Ark.		St Michael				_	_							
Ark. Augusta. 7.7e	Ariz.						T3.5E	T3 7 E	13 8 E	12 6 E	13 4 E	13 5 E	21.5 E	74 5 E
Cal. Bagdad. — 13.1E 13.5E 13.9E 14.1E 14.3E 14.4E 14.6E 15.3E 15.7E 3.2E 15.7E Modesto. 13.8E 14.2E 14.7E 15.1E 15.5E 13.8E 15.7E Modesto. 15.8E 16.1E 16.6E 17.0E 17.4E 17.8E 18.1E 18.2E 18.3E 18.7E 16.5E 17.3E 17.7E Redding. 15.6E 7.2E 14.7E 15.1E 15.5E 15.8E 16.1E 16.1E 16.1E 16.2E 17.3E 17.7E Redding. 15.6E 7.2E 14.7E 15.7E 15.5E 15.5E 18.1E 16.3E 18.4E		Prescott		_	-	_	13.3E	13.6 E	13.7 E	13.7 E	13.6E	13.7E	14.4E	14.0E
Cal. Mojave. 12.4 E 12.9 E 13.4 E 13.5 E 13.9 E 14.1 E 14.3 E 14.4 E 14.4 E 14.4 E 16.6 E 15.3 E 15.7 E 16.3 E Mojave. 12.4 E 14.2 E 14.4 E 14.6 E 14.9 E 14.4 E 16.5 E 15.3 E 15.3 E 15.5 E Mojave. 12.9 E 13.4 E 13.8 E 14.2 E 14.4 E 14.6 E 14.9 E 14.4 E 16.6 E 15.3 E 15.5 E 15.3 E 15.5 E 15.3 E 15.5 E 15.8 E 15.7 E 15.8 E 15.5 E 15.8 E 15.5 E 15.8 E 15.7 E 15.8 E 15.5 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.7 E 15.8 E 15.8 E 15.8 E 15.7 E 15.8 E 1	Ark.	Augusta				8.0E	7.8E	7.5E	7. I E	6.5E	5.0 E	5.5E	5.6E	5.8E
Mojave	Col	Bagdad		_	9.3 E	9.3 E	9.2 E	9.0E	8.6E	8.1E	7.6 E	7.2 E	7.4 E	7.7E
Modesto	Cai.	Mojave	12.4E	12.0 E	13.1 E	13.5 E	14.2E	14.1 E	14.3 E	14.4E	14.4E	14.0E	15.3E	15.7E
Colo.   Colo	1	Modesto	13.8E	14.2 E	14.7 E	15.1 E	15.5 E	15.8E	16.1E	16. I E	16.2 E	116.6E	17.3 E	17.7E
Ouray	C.1.	Redding	15.6E	16.1 E	16.6 E	17.0 E	17.4E	17.8E	18, 1 E	18.2E	18.3 E	18.7E	10.4E	19.7E
Conn.   Hartford	Colo.	Ouray				=	13.7 E	13.8 E	13.7 E	13.5E	13.0E	12.8E	13.3 E	13.7E
Del. Dover.	Conn.	Hartford		5.5W	6. IW	6.8w	7.5W	8. TW:	8.7W	0.4W	0.8w	10.4W	15.1 E	12.TW
D. C.   Washington.   O. 5 E   O. 3 E   O. 0   O. 5 W   I. 7 W   2.4W   3.0W   3.6W   4.2W   4.9W   5.6W   Miami.   S. 5 E   S. 7 E   S. 3 E   4.9 E   4.6 E   4.2 E   3.9 E   3.3 E   2.7 E   2.2 E   1.7 E   1.5 E   1.5 E   3.5 E   3.0 E   2.5 E   3.0 E   3.0 E   2.4 E   3.0 E   3.0 E   2.5 E   2.4 E   3.0 E   2.5 E   2.4 E   3.0 E   3.0 E   2.5 E   2.4 E   2.4 E   3.0 E   2.5 E   2.4 E   3.0 E   2.5 E   2.4 E   2.4 E   2.4 E   3.0 E   2.5 E   2.4 E   2.4 E   2.4 E	Del.	Dover	i.6w	1.9W	2.3W	2.8W	3.4W	4.0W	4.7W	5.3W	5.9W	6.5W	7.2W	8.ow
Bartow   5.5 E   5.4 E   5.2 E   4.8 E   4.4 E   3.8 E   3.2 E   2.6 E   2.1 E   1.6 E   1.4 E   1.3 E   3.8 E   3.2 E   2.6 E   2.1 E   1.6 E   1.4 E   1.3 E   3.8 E   3.2 E   2.6 E   2.1 E   1.5 E   3.8 E   3.2 E   2.4 E   1.8 E   3.8 E   3.2 E   2.4 E   3.6 E   3.0 E   2.5 E   2.4 E   2.4 E   3.6 E   3.0 E   2.5 E   2.4 E   2.4 E   2.4 E   3.6 E   3.0 E   2.5 E   2.4 E	D. C.										3.6w	4.2W	4.9W	
Ga.    Jacksonville.   5.0 E   5.0 E   4.9 E   4.6 E   4.2 E   3.6 E   3.0 E   2.4 E   1.8 E   1.3 E   1.7 E   0.9 E     Millen.   4.9 E   4.8 E   4.5 E   5.5 E   5.2 E   4.8 E   4.2 E   3.6 E   3.0 E   2.4 E   2.4 E     Millen.   4.9 E   4.8 E   4.6 E   4.3 E   3.9 E   3.4 E   2.7 E   2.1 E   1.5 E   0.9 E   0.7 E   0.5 E     Americus.   5.9 E   6.0 E   5.9 E   5.6 E   5.2 E   4.7 E   4.1 E   3.5 E   2.9 E   2.4 E   2.2 E   2.2 E     Haw.   Honolulu.   — — — — — — — — — — — — — — — — — —	ria.	Bartow				4.9E			3.3 E					
Ga.   Tallahassee.   5.8 E   5.7 E   5.5 E   5.2 E   4.8 E   4.2 E   3.6 E   3.0 E   2.5 E   2.4 E   2.4 E   4.9 E   4.9 E   4.9 E   4.5 E   4.5 E   4.3 E   3.0 E   3.0 E   2.5 E   2.4 E   2.4 E   4.9 E   4.9 E   4.8 E   4.6 E   4.3 E   3.0 E   3.0 E   3.0 E   2.5 E   2.4 E   2.2 E   2.2 E   4.7 E   4.1 E   3.5 E   2.9 E   2.4 E   2.2 E   2.2 E   4.7 E   4.1 E   3.5 E   2.9 E   2.4 E   2.2 E   2.2 E   4.7 E   4.1 E   3.5 E   2.9 E   2.4 E   2.2 E   2.2 E   4.7 E   4.1 E   3.5 E   2.9 E   2.4 E   2.2 E   2		Jacksonville	5.0 E	5.0 E	4.0 E			3.6 E	3.0E					
Americus	_	Tallahassee	5.8E	5.8E	5.7 E	5.5E	5.2E	4.8E	4.2E	3.6 E	3.0E	2.5E	2.4E	2.4E
Haw.   Honolulu.	Ga.	Millen				4.3 E	3.9E	3.4E		2. I E	1.5 E	0.9E	0.7 E	0.5E
Transpars   Tran	Haw.								4.1 E	3.5E	2.9 E	2.4E	2.2E	2.2E
Boise		Pocatello		_	_	- 1	17.7 E	17.0E	18.0E	17.0E	17.8 E	17.QE	18.5 E	18.8E
III.					-	- 1	18.0 E	18.5 E	18.8 E	18.8 E	18.6 E	18.8E	19.5E	19.8E
Rushville	TH			600	6 0 0	20.2E	20.6 E	21.0 E	21.2 E	21.1 E				
Indianapolis	ти.	Rushville	7.7E		8 TE	8 OF								
Kans.   Sac City.   —   10.4 E 10.7 E 10.8 E 10.5 E 10.5 E 10.2 E 9.6 E 8.8 E 8.4 E 8.6 E 8.6 E   Ness City.   —   11.5 E 11.4 E 11.2 E 10.4 E 10.2 E 9.6 E 0.8 E 10.2 E 9.0 E 10.1 E 10.3 E   11.4 E 11.2 E   11.4 E 11.7 E   12.4 E 12.4 E 12.4 E 12.2 E 11.9 E 11.3 E 11.2 E 11.4 E 11.7 E   12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 12.4 E 1		Indianapolis	5.0E	5.1 E	5.0E	4.7E	4.3 E	3.8E	3.3 E	2.7E	2.1 E	1.5E	I.IE	0.9E
Kans. Emporia — — — — — — — — — — — — — — — — — — —	Iowa	Walker		8.9E	9.1E	9.1E	8.9E	8.6E	8.2 E	7.5E	6.8E	6.2E	6.2 E	6.2E
Ness City	Kans					10.8E	10.8E	10.5 E	10.2E	9.6E	8.8E	8.4E		
Ky.         Manchester.         3.5 E         3.6 E         3.4 E         3.1 E         2.8 E         2.2 E         1.6 E         1.6 E         1.5 E         0.3 W         0.6 W         0.8 W           Louisville.         4.8 E         4.9 E         4.8 E         4.6 E         4.3 E         3.4 E         2.2 E         1.6 E         1.5 E         1.3 E         1.2 E           Princeton.         6.8 E         6.9 E         6.9 E         6.8 E         6.5 E         6.0 E         5.5 E         4.8 E         4.2 E         3.9 E         3.7 E         3.8 E           Me.         Eastport.         13.9 W         14.7 W         15.5 W         16.3 W         17.2 W         18.8 W         12.0 W         19.3 W         10.0 W <t< td=""><td>Italis.</td><td>Ness City</td><td>_</td><td>_  </td><td>= 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Italis.	Ness City	_	_	= 1									
Princeton   6.8	Ky.	Manchester	3.5 E	3.6E	3.4E	3.1 E	2.8E	2.2E	1.6E	I.OE	0.3E	0.3W	0.6w	0.8w
La.       Winfield.       8.6 E       8.0 E       9.0 E       9.0 E       9.0 E       8.6 E       8.2 E       7.6 E       7.1 E       6.8 E       7.0 E       7.4 E         Me.       Eastport.       13.9 W       14.7 W       15.5 W       16.3 W       17.2 W       18.8 W       19.0 W       10.3 W       10.0 W       13.8 W       12.4 W       13.2 W       13.2 W       14.7 W       15.4 W       15.0 W       16.4 W       16.7 W       17.1 W       17.8 W       18.8 W         Md.       Baltimore.       0.9 W       1.1 W       11.2 W       11.9 W       12.6 W       13.1 W       13.8 W       4.4 W       5.0 W       5.0 W       6.3 W       7.0 W         Mass.       Boston.       7.3 W       7.8 W       8.4 W       9.1 W       9.8 W       10.5 W       11.5 W       12.0 W       1		Louisville	4.8E	4.9E	4.8 E	4.6E	4.3E	3.8 E	3.2 E	2.5E	1.9E	I.5 E	1.3E	1.2E
Me. Eastport   13.9w   14.7w   15.5w   16.3w   17.2w   18.0w   18.5w   18.5w   19.0w   19.3w   20.0w   21.0w   19.3w   20.0w   21.0w   21	La.		8.6E	8.0E	0.9E	0.8E	0.5E	0.0E	5.5E	4.8E	4.2E	3.9E	3.7E	3.8E
Bangor   11.8\bar{w}   12.4\bar{w}   13.2\bar{w}   13.0\bar{w}   14.7\bar{w}   15.4\bar{w}   15.4\bar{w}   16.7\bar{w}   17.1\bar{w}   17.8\bar{w}   18.8\bar{w}		Eastport	13.9W	14.7W	15.5W	16.3W	17.2W	18.ow	18.5W	18.8w	19.0W	19.3W	20.0W	21.0W
Md.         Baltimore         0.9w         1. tw         1. 4w         1.9w         2.4w         3. tw         3. 8w         4. 4w         5.0w         5.6w         6. 3w         7. 8w           Boston         7. 3w         7. 8w         8. 4w         9. 1w         9. 8w         10. 5w         11. 5w         12. 0w         13. 4w         14. 4w           Mich.         Marquette         —         6. 7e         6. 7e         6. 5e         6. 1e         5. 5e         4. 7e         3. 8e         3. 0e         2. 4e         2. 1e         1. 7e         1. 7e         3. 8e         3. 0e         2. 4e         2. 1e         1. 7e         1. 7e         11. 4e         10. 3e         9. 5e         8. 9e         8. 8e         8. 7e           Minn.         St. Paul         —         11. 7e         11. 6e         11. 8e         11. 9e         11. 7e         11. 4e         10. 3e         9. 5e         8. 9e         8. 8e         8. 7e           Minn.         Hibbing         —         11. 7e         11. 6e         11. 8e         11. 9e         11. 7e         11. 6e         12. 8e         2. 9e         8. 2e         8. 9e         8. 7e           Hibbing         —         13. 0e <td></td> <td>Bangor</td> <td>11.8w</td> <td>12.4W</td> <td>13.2W</td> <td>13.9W</td> <td>14.7W</td> <td>15.4W</td> <td>15.9W</td> <td>16.4W</td> <td>16.7W</td> <td>17.1W</td> <td>17.8w</td> <td>18.8w</td>		Bangor	11.8w	12.4W	13.2W	13.9W	14.7W	15.4W	15.9W	16.4W	16.7W	17.1W	17.8w	18.8w
Mass. Boston	Md	Portland												
Mich. Marquette. — 6.7 to 6.2 to 6.7 to 7.4 to 8.1 to 9.3 to 10.0 to 10.4 to 11.0 to 11.8 to 12.7 to 1														
Mich. Marquette 6.7 E 6.7 E 6.5 E 6.1 E 5.5 E 4.7 E 3.8 E 3.0 E 2.4 E 2.1 E 1.7 E 1.2 E 1.0 E 0.3 E 0.5 W 1.2 W 1.8 W 2.3 W 2.8 W 1.2 W 1.8 W 2.3 W 2.8 W 1.2		Pittsfield		6.2W	6.7W	7.4W	8. IW	8.7W	9.3W	10.ow	10.4W	II.OW	11.8w	12.7W
Minn. St. Paul	Mich.	Marquette			6.7 E	6.5E	6.1E	5.5 E	4.7 E	3.8E	3.0E	2.4E	2. I E	1.7E
Minn. St. Paul — II. 6 E II. 8 E II. 9 E II. 7 E II. 4 E II. 9 E IO. 5 E 0. 5 E 8.9 E 8.8 E 8.7 E Marshall — II. 7 E II. 6 E II. 4 E II. 0 E IO. 5 E 9.8 E 9.3 E 9.4 E 9.4 E Hibbing — IO. 5 E IO. 7 E IO. 8 E IO. 6 E IO. 3 E 9.7 E 9.0 E 8.2 E 7.6 E 7.5 E 7.5 E 13.0 E I3.1 E I3.1 E I3.1 E I3.2 E II. 7 E II. 0 E IO. 4 E IO. 6 E IO. 5 E		Grand Haven				2.IE	1.6E	1.0E	0.3E	0.5W	1.2W	1.8W	2.3W	2.8W
Marshall — II. 7 E III. 6 E III. 4 E III. 0 E IO. 5 E 9.8 E 9.3 E 9.4 E 9.4 E Hibbing — IO. 5 E IO. 7 E IO. 8 E IO. 6 E IO. 3 E IO. 6 E IO. 3 E IO. 6 E IO. 3 E IO. 5 E IO. 6 E IO. 5 E IO. 6 E IO. 5 E	Minn.	St. Paul.												
Hibbing — 10.5 E 10.7 E 10.8 E 10.6 E 10.3 E 9.7 E 9.0 E 8.2 E 7.6 E 7.7 E 7.5 E Bagley — 13.0 E 13.1 E 13.1 E 12.8 E 12.3 E 11.7 E 11.0 E 10.4 E 10.6 E 10.5 E		Marshall		_	1	11.7E	11.6E	11.4E	II.OE	10.5 E	0.8E	Q.3 E	Q.4E	9.4E
			-	10.5 E	10.7E	10.8 E	10.6 E	10.3 E	0.7E	O.OE	8.2 E	7.6 E	7.7E	7.5E
Vickshurg 8.2 E 8.4 E 8.5 E 8.4 E 8.2 E 8.0 E 7.6 E 7.1 E 6.4 E 6.0 E 6.1 E 6.4 E	Miss.		- 4	7.4 E	7.5 E	7.4 F	7.2 F	6.0E	6.5 E	5.0 F	11.0 E	1.8E	4.0E	
				8.4E	8.5 E	8.4 E	8.2 E	8.0 E	7.6 E	7.1 E	6.4E	6.0E	6.1 E	

## Secular Change of Declination (concluded).

								_					
State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Mo.	Hermann Sedalia	=	9.2E	9.3 E 10.0 E	9.2E	9.0E	8.7E	8.3 E 0.3 E	7.7E 8.7E	7.0E 8.0E	6.5 E	6.5 E	6.6E 8.0E
Mont.	Miles City Lewistown	=	_	=	— 19.5 E	17.6E 19.8E	17.8E	17.7E	17.4E	16.9E 19.6E	16.9E 19.6E	17.3 E 20.1 E	17.6E
Nebr.	Ovando	=	12.4E	12.7 E	20.4 E 12.9 E —	12.9E	12.8 E	12.5 E 13.9 E	12.0E	11.4E 12.8E	11.0E 12.6E	11.2E 12.8E	22.0E 11.5E 13.1E
Nev.	Alliance	=	_	=	_	17.3 E	17.6E	17.7 E	17.7 E	17.6E	17.8E	18.4 E	14.8E 18.9E 18.4E
N. H.	Hawthorne Hanover Trenton	7.1W 2.8W	7.5W	8. 2W	8.9W	9.7W	10.5W	II.IW	11.6w	12.0W	12.6W	13.2W	14.2W 9.4W
N. J. N. M.	Santa Rosa Laguna	2.ow	3. IW	3.5W	4. IW	12.7 E	12.8E	12.7 E	12.4 E	12.0E	11.9E	12.5E	12.9E 14.1E
N. Y	Albany Elmira	5.7W 2.2W	5.9W 2.4W	6.4W 2.8W	7.0W 3.3W	7.8w 4.ow	8.5w 4.8w	9.2W 5.4W	10.0W 6.3W	10.3W 7.0W	10.9W 7.5W	11.6W 8.2W	12.5W 9.0W
N. C.	Buffalo Newbern Greensboro	1.0W 1.7E 3.5E	1.1W 1.6E 3.4E	1.4W 1.3E 3.1E	1.9W 0.8E 2.7E	2.4W 0.3E 2.2E	0.3W	r.ow	1.7W	2.3W	2.9W		4.oW
N. D.	Asheville Jamestown Bismarck	4.2 E	4.2 E	4.0E	3.6E	3.1 E 14.2 E	2.6E 14.0E	2.0E	1.3E	0.7 E 12.5 E	0.2E	0.2W 12.4 E	
Ohio	Dickinson Canton	 2.3E		 2.0E	— 1.7E	17.7E	17.7E 0.6E	17.5 E 0.0	17.1 E	16.5E	16.3 E	16.7 E 2.5W	16.9E 3.1W
Okla.	Urbana Okmulgee	4.4 E	4.4E	4.3 E	<u> </u>	10.2 E	3.0 E	9.8E	9.5E	1.1 E 9.1 E	8.7E	8.9E	9.2E
Ore.	Enid Sumpter Detroit				- 6.5	19.3 E	19.7 E	11.0F 20.0E 20.1F	20. 2 E	20.2 E	20.4E	21.1E	10.5E 21.4E
Pa.	Wilkes-Barre Lockhaven	2.3W 1.4W	2.5W 1.5W	2.9W 1.9W	3.4W 2.4W	4.0W 3.0W	4.7W 3.6W	5.3W 4.3W	6.ow 5.ow	6.6w 5.6w	7.2W 6.3W	8.ow 7.ow	8.8w 7.7W
P. R. R. I.	Indiana San Juan	0.6E 	0.5 E	0.3 E	0.1W  8.4W		_	_	_		I.OW	2.oW	
S. C.	Marion	3.4E 4.8E	7.IW 3.3E 4.7E	7.7W 3.0E 4.5E	2.6 E	2. I E	1.6E	0.9E	0.3E	0.4W 1.3 E	I.OW	1.4W	1.8W 0.1E
S. D.	Huron	-	= =	=		13.2 E	13.0E	12.7 E	12.3 E	11.7 E	11.2E 13.4E	11.5E	11.7E
Tenn.	Rapid City Knoxville Shelbyville	3.8E	3.8E			2.9E	2.4 E	1.8E	I.IE	0.5E	0.0	0.3W	
Tex.	Huntingdon Houston	6.4E 7.3E	9.0E	7.4E 9.2E	7.3E 9.4E	7.0E	6.6E	6.1E	8.4E	4.9E 7.9E	4.4 E 7.7 E	4.3E 8.1E	4.4E 8.6E
	San Antonio Pecos	  2.9E	 2.9E			II.IE		9.5E 11.0E 0.8E	10.8 E		10.3E	10.8 E	11.3E
Wash.	Wilson Creek Seattle	_	19.5 E	_		21.2E	21.6 E	21.8 E	21.9 E	22. I E	22.4E	23.0E	23.3 E 23.8 E
W. Va. Wis.	Sutton Shawamo Floydada	1.9E		1.6E	1,2E	0.8E	0.2E 6.5E	0.4W 5.9E	1.1W 5.0E	1.8W 4.3E	2.4W 3.7E	2.9W 3.4E	3.4W
Utah Vt.	Manti Rutland	6.6w	_	l —		16.4 E	16.7 E	16.8 E	16.7 E	16.4 E	16.5 E	17.1E	17.5E 13.8W
Va.	Richmond Lynchburg	0.8E	0.6E	0.3E	0.IW	0.6W	o.iw		1.4W	2.0W	2.6W		3.7W
Wyo.	Stanley Douglas Green River	=	8.9E	9.0E	9.0E	15.8 E	8.4E 16.0E 17.0E	16.0 E	15.8E	6.3E 15.3E 16.5E	15.2E	15.7 E	5.4E 16.0E 17.5E
L				·	·			1	1				

## TABLE 571. - Dip or Inclination.

This table gives for the epoch January 1, 1915, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

λ φ	65	70	° 75	。 80	° 85	00	95	•	0 105	0 110	•	0 120	125
Ψ										-			
19 21	=	_	50.4° 52.7	49.4 51.9	48.5 51.1	47.2 50.1	46.1 48.9	45.I 47.9	44. <b>I</b> 46.9		Ξ.	=	=
23 25 27	=	<u>-</u>	55.1 57.6 59.8	54.2 56.8 59.3	53.7 56.1 58.3	52.8 55.2 57.6	51.7 54.2 56.6	50.4 53.1 55.6	49.7 52.2 54.6	48.7 51.2 53.6	50.1 52.4	=	=
29 31	=	63.6	61.9 63.8 65.6	61.3 63.4 65.3	60.5 62.8 64.7	59.7 62.0 64.0	58.9 61.1 63.1	57.9 60.1 62.4	56.8 59.0 61.2	55.8 58.1 60.2	54.6 57.0 59.1	53.8 55.8 58.0	Ξ
33 35 37		65.4 67.2 69.1	67.3	67.2 69.0	66.6	66.1 68.1	65.3	64.3	63.2	62.2	61.0	60.1 62.1	=
39 41	E	70.6 72.2 73.6	70.8 72.3 74.0	70.6 72.5 74.1	70.6 72.2 74.0	70.0 71.7 73.5	69.2 71.0 72.6	68.3 70.1 71.8	67.3 69.0 70.7	66.2 68.0 69.7	64.9 66.6 68.4	63.9 65.5 67.2	62.5 64.3 65.9
43 45 47	74·3 75.6	74.9 76.3	75.4 76.8	75.5 76.9	75.5	75.2 77.0	74·5 76.1	73.5 75.1	72.4	71.3	70.2 71.7	69.0 70.5	67.8
49	76.5	77.4	78.2	78.5	78.5	78.3	77.7	76.7	75.7	74.5	73.2	72.1	71.2

## TABLE 572. - Secular Change of Dip.

Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1 of the years in the heading. The degrees are given in the third column and the minutes in the succeeding columns.

Latitude.	Long- itude.		1855	1860	1865	1870	1875	-1880	1885	1890	1895	1900	1905	1910	1915
25 25 30 30 30	80 110 83 100 115	55+ 49+ 60+ 57+ 54+	32 14 66 41 47	, 32 26 70 46 56	, 31 36 73 55 63	, 29 45 74 64 65	, 26 52 73 67 64	23 61 67 62 66	, 18 67 57 57 69	, 18 74 51 58 73	, 22 82 53 65 79	, 31 92 63 74 85	, 43 102 78 87 90	73 116 101 103 96	108 132 126 120 102
35 35 35 35 35 40	80 90 105 120 75	66+ 65+ 62+ 59+ 71+	67. 67 - 56 82	68 61 — 59 82	67 53 61 78	64 46 47 61 73	55 39 45 60 65	45 34 39 59 55	36 28 39 61 43	31 27 39 64 33	30 27 43 66 27	32 29 49 66 24	40 38 57 66 24	55 51 65 66 29	72 66 72 66 36
40 40 40 45 45	90 105 120 65 75	70+ 67+ 64+ 74+ 75+	30 — 118 91	31 — — 112 87	34 — 103 83	37 56 51 94 78	36 53 52 82 73	32 51 54 70 61	29 51 57 59 50	26 51 58 48 41	25 52 58 37 31	26 56 54 30 26	30 60 50 26 24	38 63 45 22 24	48 66 42 18 24
45 45 45 49 49	90 105 122.5 92 120	74+ 72+ 68+ 77+ 72+	86 45 80	86 44 79 27	86 47 78 25	84 50 76 24	82 50 74 23	80 30 49 74 22	73 28 47 69 21	68 27 44 66 20	66 26 40 65 20	64 26 37 63 19	65 25 33 60 17	68 25 27 58 12	72 24 21 60 06

#### TABLE 573. - Horizontal Intensity.

This table gives for the epoch January  $\tau$ , 1915, the horizontal intensity, H, expressed in cgs units, corresponding to the longitudes in the heading and the latitudes in the first column.

			_										
λ	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
19 21 23 25	=	111	. 297 . 290 . 283 . 273	.303 .296 .288 .281	.311 .303 .294 .286	.316 .310 .301	.321 .315 .307 .298	.325 .320 .311 .302	.325 .320 .311 .303	.311	.304		
27 29 31 33 35 37		 .237 .225 .213	.264 .253 .242 .230 .217	.271 .258 .247 .236 .223	.276 .265 .254 .242 .232	.281 .272 .260 .248 .235	.277 .266 .255 .241	.292 .283 .272 .259 .249 .234	.295 .286 .276 .264 .251	.296 .287 .279 .270 .256	.297 .283 .280 .271 .260	. 288 . 280 . 272 . 263 . 253	
39 41 43 45 47		.191 .178 .166 .154	.193 .178 .166 .153	.196 .182 .165 .153	.200 .185 .171 .155	.206 .191 .174 .160	.212 .197 .182 .167	.218 .204 .189 .174	.226 .212 .198 .185	.232 .218 .207 .192	.237 .226 .214 .202	.242 .232 .221 .210	.245 .236 .227 .216
49	.135	.130	.126	.123	.123	.129	.136	.144	. 153	. 164	.174	.182	. 189

## TABLE 574. - Secular Change of Horizontal Intensity.

Values of horizontal intensity,  $H_1$  in cgs units for the places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

Lat.	Long.	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
0	0												
25	80	.3086	.3073	.3057	.3042	.3025	.3008	.2990	.2970	. 2949	.2917	.2870	.2810
25	IIO	.3216	.3202	.3187	.3168	.3153	.3141	.3128	.3115	.3102	.3088	.3063	.3030
30	83	.2775	. 2768	. 2760	.2752	.2743	.2732	.2720	. 2705	.2686	. 2658	.2614	.2560
30	100		.2978	. 2959	.2941	.2924	, 2908	. 2894	.2882	. 2867	.2847	.2817	.2780
30	115	. 2996	.2981	.2966	.2949	.2934	.2922	.2910	. 2899	. 2890	.2880	.2863	. 2840
35	80	.2367	.2362	.2357	.2355	.2351	.2347	.2340	.2335	.2325	.2306	.2272	.2230
35	90	_		.2460	.2460	.2459	.2456	.2453	.2445	.2435	.2418	.2387	.2350
35 35	120			.2727	.2714	.2702	.2600	.2679	.2670	.2663	.2657	.2645	.2630
40	75	.1876	.1884	.1895	.1904	.1012	.1918	.1923	.1924	.1021	.1911	.1880	.1860
7-	'	,.		12093	,	,		9-5	,		,	,,,,,	
40	90	. 2080	. 2076	.2073	.2070	.2069	. 2068	.2066	. 2062	. 2054	. 2042	.2019	.1990
40	105	-		. 2269	. 2263	.2258	.2254	.2250	.2245	.2237	.2227	.2210	.2190
40	120	-		. 2439	. 2430	.2422	.2416	. 2409	.2402	.2396	. 2390	.2381	.2370
45	65	.1504	.1515	.1527	.1543	.1557	.1568	.1579	.1590	.1598	.1600	.1596	.1590
45	75	.1487	.1490	.1497	.1508	.1518	.1529	.1540	.1548	.1552	.1552	.1543	.1530
45	00	. 1648	.1646	.1644	.1641	.1639	. 1637	.1636	.1637	. 1636	.1633	.1620	.1600
45	105	. 1040	.1040	.1895	.1894	.1893	.1891	.1888	.1885	.1881	.1875	.1864	.1850
45	122.5	. 2183	.2175	.2166	.2158	.2148	.2140	.2134	.2130	.2128	,2128	.2125	.2120
49	92	.1336	.1334	.1330	.1327	.1325	.1324	.1324	.1327	.1330	.1336	.1330	.1320
49	120	. 1846	.1845	.1844	.1841	.1836	.1831	.1826	.1824	.1825	.1825	.1823	.1820
,													

#### TABLE 575. - Total Intensity.

This table gives for the epoch January r,  $r_{015}$ , the values of the total intensity, F, expressed in cgs units corresponding to the longitudes in the heading and the latitudes in the first column.

λφ	65°	70°	75°	80°	.85°	90°	95°	100°	105°	110°	115°	120°	125°
19 21 23 25	1111	1111	.466 .478 .495	.466 .480 .492	.469 .482 .497	.465 .483 .498	.463 .479 .495	.461 .477 .488	.453 .468 .481	  -471 -484	— — — ·474	1111	1111
27 29 31 33 35		-533 .540 .550	.525 .537 .548 .557	•531 •537 •552 •565 •576	.525 .538 .556 .566	.524 .539 .554 .566	.523 .536 .550 .564 .577	.517 .533 .546 .559	.509 .522 .536 .548 .557	.511 .528 .543 .549	.487 .497 .514 .528	.488 .498 .513	
35 37 39 41 43 45	_ 	.566 .575 .582 .588	.577 .587 .585	.586 .590 .605 .602	.602 .605 .620	.602 .608 .613	.588 .597 .605	.585 .590 .599 .605	.572 .586 .592 .599	.561 .575 .582 .597	.552 .559 .569	.541 .550 .559	 .531 .544 .556
45 47 49	.588 .587 .578	.591 .604 .596	.607 .609	.611 .613	.619 .622 .617	.626 .631 .636	.625 .624 .638	.613 .618	.612 .617 .619	.599 .612	.596 .596 .602	. 586 . 584 . 592	.572 .577

## TABLE 576. - Secular Change of Total Intensity.

Values of total intensity, F, in cgs units for places designated by the latitudes and longitudes in the first two columns for January  $\mathbf{r}$  of the years in the heading.

Lat.	Long.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
25 25 30 30 30 35 35 35 35 40 40 40 45 45	80 110 83 100 115 80 90 105 120 75 90 105 120 65 75	.5476 .4941 .5758 .5219 .6101 .6183	.4946 .5755 .5216 .6090 .6193 .6236	.6075	.5396 .4933 .5735 .5595 .5182 .6048 .5993 .5457 .6204 .6246 .6040 .5739 .6126 .6320	.4914 .5716 .5567 .5149 .6008 .5966 .5720 .5428 .6190	.5946 .5675 .5401 .6160 .6209 .5988 .5709 .6082 .6281	.5625 .5479 .5114 .5910 .5914 .5056 .5383 .6115 .6190 .5978 .5707 .6052 .6247	.5253 .4889 .5584 .5455 .5101 .5873 .5904 .5036 .5369 .6077 .5692 .6022 .6022 .6377	.4884 .5559 .5450 .5094 .5856 .5634 .5356 .6047 .6151 .5958 .5076 .5994 .6189	.5868 .5630 .5342 .6022 .6133 .5955 .5647 .5980 .6171	.4876 .5534 .5441 .5086 .5823 .5861 .5627 .5330 .5991 .6118 .5062 .5962	.5160 .4861 .5510 .5426 .5068 .5796 .5334 .5306 .5948 .6089 .5912 .5581 .5923 .6121	.5131 .4836 .5471 .5399 .5041 .5756 .5800 .5567 .5276 .5892 .5892 .5871 .5345 .5875 .5876 .5876 .5876
45 45 49 49	105 122.5 92 120	.6037 .6616	.6019 .6597 .6121	.6010 .6578 .6107	.6000 .6540 .6098	.5978 .6508 .6083	.6296 •5944 .6498 .6061	.6276 .5913 .6448 .6039	.6261 .5883 .6421 .6017	.6245 .5855 .6427 .6010	.6232 .5837 .6424 .6008	.6206 .5820 .6426 .5997	.6170 .5784 .6380 .5963	.6118 .5745 .6349 .5922

#### TABLE 577. - Agonic Line.

The line of no declination appears to be still moving westward in the United States, but, as the line of no annual change is only a short distance to the west of it, it is probable that the extreme westerly position will soon be reached.

Lat.	Lo	ngitudes	of the ago	nic line fo	or the yea	ırs
N.	1800	1850	1875	1890	1905	1915
25 30	<u>-</u>	-	<u> </u>	75.5 78.6	76.1 79.7	77·4 80.0
35 6 7 8 9	75.2 76.3 76.7 76.9	76.7 77.3 77.7 78.3 78.7	79.0 79.7 80.6 8r.3 81.6	79.9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6	82.7 84.4 84.0 84.1 83.9
40 1 2 3 4	77.0 77.9 79.1 79.4 79.8	79.3 80.4 81.0 81.2	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5	84.3 85.1 85.3 85.4 85.8
45 6 7 8 9	=======================================	=	83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2	86.2 86.3 86.6 87.2 88.0

## TABLE 578. - Mean Magnetic Character of Each Month in the Years 1906 to 1922.*

Means derived from daily magnetic characters based upon the following scale: o, no disturbance; i, moderate disturbance, and i, large disturbance.

Year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year Mean.
1906 1907 1908 1009 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924	0.45 0.64 0.76 0.78 0.42 0.51 0.42 0.53 0.61 0.63 0.63 0.63	0.90 0.83 0.71 0.63 0.71 0.53 0.50 0.56 0.56 0.69 0.78 0.51	0.68 0.58 0.87 0.81 0.79 0.81 0.45 0.45 0.62 0.62 0.53 0.73 0.86 0.73	0.63 0.58 0.68 0.74 0.68 0.75 0.68 0.68 0.63 0.70 0.65 0.67 0.75	0.58 0.72 0.82 0.72 0.72 0.74 0.45 0.37 0.55 0.66 0.68 0.83 0.57	0.56 0.66 0.54 0.53 0.53 0.47 0.52 0.67 0.55 0.56 0.55 0.43 0.55 0.62	0.69 0.67 0.49 0.53 0.55 0.61 0.42 0.61 0.62 0.61 0.69 0.54 0.54	0.63 0.66 0.77 0.65 0.81 0.53 0.49 0.61 0.60 0.75 0.85 0.77	0.79 0.68 0.89 0.70 0.80 0.58 0.53 0.75 0.75 0.88 0.88 0.88 0.88 0.89	0.59 0.71 0.53 0.96 0.57 0.46 0.76 0.74 0.85 0.63 0.68	0.55 0.60 0.49 0.77 0.49 0.42 0.60 0.83 0.53 0.53 0.58 0.62	0.71 0.53 0.47 0.58 0.76 0.43 0.46 0.55 0.55 0.65 0.65 0.65	0.65 0.66 0.68 0.62 0.72 0.63 0.46 0.54 0.54 0.67 0.76 0.76 0.76 0.76

^{*} Compiled from annual reviews of the "Caractère magnétique de chaque jour," prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism.

## RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

					Magnetic	elements		
Place.	Latitude.	Longitude.	Middle of year.	Declination.	Inclination.	Inten	sity (cgs	units).
	. ,	· ,		0 /	• ,	Horl.	Ver'l.	Total.
Pavlovsk Sitka	59 41 N 57 03 N	30 29 E 135 20 W	1907 1916	1 09.9 E 30 24.0 E	70 37.7 N 74 26.0 N	. 1650	.4694 •5592	· 4975 · 5805
Katharinenburg Rude Skov Kasan	56 50 N 55 51 N 55 47 N	60 38 E 12 27 E 49 08 E	1907 1915 1912	8 44.3 W 8 09.1 E	70 52.2 N 68 50.6 N 60 17.3 N	.1762 .1726 .1802	.5081 ·4459 ·4765	.5378 .4781 .5004
Eskdalemuir. Stonyhurst. Wilhelmshaven.	55 19 N 53 51 N	3 I2 W 2 28 W 8 09 E	1913	17 54.9 W 16 38.0 W 11 28.2 W	69 37.3 N 68 41.4 N	.1682 .1734 .1811	.4528	.483I .4772
Potsdam	52 23 N 52 17 N	13 04 E 13 01 E	1916 1911	8 o7.6 W 8 o8.9 W	66 27.1 N 66 24.1 N	.1870	·4375 ·4290 ·4289	.4735 .4680 .4680
Irkutsk De Bilt Valencia	52 10 N 52 06 N 51 56 N	104 16 E 5 11 E 10 13 W	1905 1914 1913	I 58.I E I2 22.6 W 20 I9.6 W	69 17.3 N 69 37.3 N 68 41.4 N 67 30.7 N 66 27.1 N 66 24.1 N 70 25.0 N 66 46.5 N 68 09.2 N	.1851	.5625 .43 <b>1</b> 4 .4463	. 5970 . 4694 . 48 <b>08</b>
Clausthal	51 20 N	10 20 E 7 14 E 0 19 W	1905 1912 1915	10 40.3 W 11 39.4 W 15 18.4 W		. 1846	 -4338	-4714
Kew. Greenwich. Uccle Hermsdorf.	51 28 N 50 48 N	0 00 4 21 E 16 14 E	1916	14 46.9 W 13 13.9 W 6 58.2 W	66 56.6 N 66 52.8 N 66 00.1 N	. 1849	· 4332 · 4273	.4710 .4677
Beuthen	50 2I N	18 55 E 5 05 W	1908	6 12.3 W 17 24.2 W	66 26.6 N	. 1830	.4312	.4704
Prague Cracow. Val Joyeux	50 05 N 50 04 N 48 49 N	14 25 E 19 58 E 2 01 E	1912 1913 1913	7 50.3 W 5 03.3 W 13 59.2 W	64 18.4 N 64 38.9 N 63 06.2 N	.1974	.4167	.4611
Munich Kremsmünster O'Gyalla (Pesth)	48 03 N 47 53 N	11 37 E 14 08 E 18 12 E	1911 1912	9 23.8 W 9 02.4 W 6 17.5 W	=	.2003	.4068	456r
Odessa Pola Agincourt (Toronto)	11 52 1	30 46 E 13 51 E 79 16 W	1915 1915	3 35.9 W 7 39.0 W 6 33.4 W 12 44.8 W	62 26.9 N 60 05.1 N 74 43.5 N	.2171 .2217 .1599	.4161 .3853 .5854	.4693 .4445 .6068
Perpignan Tiflis	42 42 N 41 43 N	2 53 E 44 48 E 14 15 E	1910 1913	12 44.8 W 3 09.1 E		. 2522	.3761	.4528
Capodimonte Ebro (Tortosa). Coimbra Baldwin*	40 I2 N	0 31 E 8 25 W 95 10 W	1914 1915 1909	12 51.6 W 15 57.5 W 8 34.0 E	56 51.1 N 56 11.7 N 57 47.5 N 58 34.7 N 68 50.2 N	.2330	.3698 .3773 .5396	.437I .4422 .600I
Cheltenham San Fernando	38 44 N 36 28 N	76 50 W 6 12 W	1916 1913	6 07.6 W	70 49.9 N 54 26 6 N	.1934	.5662	. 5889
Tokio. Tucson. Lukiapang ≉ Dehra Dun.	35 41 N 32 15 N 31 19 N	139 45 E 110 50 W 121 02 E	1912 1916 1909	5 03.4 W 13 44.4 E 2 59.6 W	48 53.7 N 59 26.1 N 45 34.9 N	.3000 .2706 .3323	.3438 .4582 .3391	. 4563 . 5322 . 4747
Helwan	30 19 N 29 52 N	78 03 E 31 20 E 88 22 E	1914 1913 1914	2 18.8 E 2 17.0 W 0 32.2 E	44 22.9 N 40 47.6 N 30 58.9 N	.3316	.3246 .2592 .2246	.4541 .3967 .4363
Hongkong. Honolulu. Toungoo.	22 18 N	114 10 E 158 04 W 96 27 E	1916 1916 1014	o 13.8 W 9 43.8 E o o2.6 E	30 51.8 N 39 29.2 N 23 06.1 N	.3716 .2896 .3898	.2220	.4328 .3752 .4238
Alibág. Vieques. Antipolo.	13 38 N 18 09 N	72 52 E 65 26 W 121 10 E	1915	0 40.6 E 3 19.4 W 0 40.9 E	48 53.7 N 59 26.1 N 44 22.9 N 44 22.9 N 49 47.6 N 30 55.8 N 30 29.2 N 30 29.2 N 50 56.7 N 16 18.2 N	.3687	.1669	.4047 .4468 .3981
Kodaikánal Batavia-Buitenzorg	10 14 N	77 28 E	1914 1912	1 17.1 W 0 47.3 E	4 II.2 N 3I 19.4 S 35 32.2 S	·3757 ·3668	.0275	.3767
St. Paul de Loanda Samoa (Apia) Tananarive	18 55 5	13 13 E 171 46 W 47 32 E	1916 1907	16 12.3 W 9 59.9 E 9 29.7 W	29 54.5 S 54 95.7 S	.2012	.1437 .2034 .3499	.2473 .4080 .4319
Mauritius Pilar. Santiago	31 40 S 33 27 S	57 33 E 63 53 W 70 42 W	1916 1914 1909	9 47.6 W 8 49.4 E 13 57.9 E 16 44.8 E	25 17 5 5 1	.2320	.3069	.3347
Christchurch New Year's Island Orcadas	43 32 S 54 45 S ‡ 60 45 S	172 37 E 64 03 W 42 32 W	1914 1906 1912	16 44.8 E 15 41.6 E 4 46.5 E	29 57.2 S 67 59.8 S 50 03.6 S 54 26.0 S	.2241	.5546 .3244 .3544	.5982 .4231 .4357
	- 10	,- 0- 11	-			-50-7	0017	1007

^{*} Baldwin Obs'y replaced by Tucson Obs'y, Oct. 1909; mean given for Jan.-Oct. '09.

** Replaced Zi-ka-wei Obs'y, 1908. † Observations discontinued Apr. 26, 1915.

† Provisional values taken for position of Port Cork, p. 298, American Practical Navigator, 1914 edition.

## APPENDIX.

## DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.00111800 of a gram per second."

The ampere = I coulomb per second = I volt through I ohm =  $10^{-1}$  E. M. U. = 3  $\times$  10° E. S. U.*

Amperes = volts/ohms = watts/volts =  $(watts/ohms)^{\frac{1}{2}}$ .

Amperes  $\times$  volts = amperes  $^2 \times$  ohms = watts. ANGSTROM. Unit of wave-length = 10-10 meter.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm Hg. 32° F.

French "=760 mm of Hg. 0° C=29.922 in. = 14.70 lbs. per sq. in. BAR. A pressure of one dyne per cm. Meteorological "bar" = 106 dynes cm².

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1° F. = 252 gram-calories. CALORIE. Small calorie = gram-calorie = therm = quantity of heat required to

raise one gram of water at its maximum density, one degree Centigrade.

Large Calorie = kilogram-calorie = 1000 small calories = one kilogram of water raised

one degree Centigrade at the temperature of maximum density.

For conversion factors see page 197.

CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard

=205.3 milligrams =3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part.

CIRCULAR AREA. The square of the diameter = 1.2733 × true area.

True area = 0.785398 × circular area.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. = 10⁻¹ E. M. U. = 3 × 10° E. S. U.

Coulombs = (volts-seconds)/ohms = amperes  $\times$  seconds.

CUBIT = 18 inches.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day.

Sidereal day = 86164.10 mean solar seconds.

DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon. DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

DYNE. C. G. S. unit of force = that force which acting for one second on one gram produces a velocity of one cm per sec. = Ig ÷ gravity acceleration in cm/sec./sec.

Dynes = wt. in g x acceleration of gravity in cm/sec/sec.

ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

ENERGY. See Erg. ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.

For conversion factors see page 197.

FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity = 10-9 E. M. U. = 9 × 10¹¹ E. S. U.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

^{*} E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high. For conversion factors see page 197.

FOOT-POUNDALS. The English unit of work = foot-peunds/g.

For conversion factors see page 197.

The acceleration produced by gravity.

GAUSS. A unit of intensity of magnetic field = 1 E. M. U. =  $\frac{1}{3} \times 10^{-10}$  E. S. U.

GRAM. See page 6.

GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula G  $\frac{m_1 m_2}{r^2}$  = 665.8 × 10⁻¹⁰ cm.⁸/gr. sec.²

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without self-induction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs × volts) /4.181 in small calories.

The heat in small or gram-calories per second = (amperes² × ohms) /4.181 = volts²/

 $(\text{ohms} \times 4.181) = (\text{volts} \times \text{amperes})/4.181 = \text{watts}/4.181.$ 

HEAT. Absolute zero of heat  $= -273.1^{\circ}$  C.

HEFNER UNIT. Photometric standard; see page 260.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." =  $10^9$  E. M. U. =  $1/9 \times 10^{-11}$  E. S. U.

HORSEPOWER. The English and American horsepower is defined by some authorities as 550 foot-pounds per second and by others as 746 watts. The continental horsepower is defined by some authorities as 75 kilogrammeters per second and by others as 736 watts. See page 197.

IOULE. Unit of work = 10' ergs. For electrical Joule see p. xxxvii.

 $Ioules = (volts^2 \times seconds)/ohms = watts \times seconds = amperes^2 \times ohms \times sec.$ 

For conversion factors see page 197.

JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.185 × 10⁷ ergs. See page 197.

KILODYNE. 1000 dynes. About 1 gram.

KINETIC ENERGY in ergs = grams  $\times$  (cm./sec.)²/2.

LITER. See page 6. LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 1 000 000 bars = 0.987 atmospheres. MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.

METER CANDLE. The intensity of lumination due to standard candle distant one meter.

MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON.  $(\mu)$  = one-millionth of a meter.

MIL. One-thousandth of an inch.
MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI-. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same node again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electric l resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10° E. M. U. =  $1/9 \times 10^{-11}$  E. S. U.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms. Siemens' ohm = 0.94080 international ohms.

PENTANE CANDLE. Photometric standard. See page 260.

 $PI = \pi = \text{ratio}$  of the circumference of a circle to the diameter = 3.14159265359. POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound. RADIAN =  $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ}$  17' 45'' = 206265''.

SECOHM. A unit of self-induction = I second X I ohm.

THERM = small calorie = (obsolete).

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gramcalories.

VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere. The value of the E. M. F. of the Weston Normal cell is taken as 1.0183 international volts at 20° C. = 108 E. M. U. = 1/300 E. S. U. See page 197.

VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 10⁷ units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = volts × amperes = amperer × ohms = volts²/ohms (direct current or alter-

nating current with no phase difference). For conversion factors see page 197.

Watts  $\times$  seconds = Joules.

WEBER. A name formerly given to the coulomb.

WORK in ergs = dynes  $\times$  cm. Kinetic energy in ergs = grams  $\times$  (cm./sec.)  $^{2}/_{2}$ .

YEAR. See page 414.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. " 6 " 5 Sidereal = 3659 9.314 " = 36548 46+ Ordinary

" same as the ordinary year. Tropical

#### **TABLE 580.**

#### TEMPERATURE MEASUREMENTS.

The ideal standard temperature scale (Kelvin's thermodynamic scale, see introduction, p. xxxiv) is independent of the properties of any substance, and would be indicated by a gas thermometer using a perfect gas. The scale indicated by any actual gas can be corrected if the departure of that gas from a perfect gas be known (see Table 206, p. 195, — also Buckingham, Bull. Bur. Standards, 3, 237). The thermodynamic correction of the constant-pressure scale at any temperature is very nearly proportional to the constant pressure at which the gas is kept and that for the constant-volume scale is approximately proportional to the initial pressure at the ice-point. The gas thermometer has been carried up to the melting point of palladium, 1822° K (1549° C) (Day and Sosman, Am. J. Sc., 29, p. 93, 1910).

A proposed international agreement divides the temperature scale into three intervals. The first interval,  $-40^{\circ}$  to  $450^{\circ}$  C, uses the platinum resistance thermometer calibrated at the melting point of ice,  $0^{\circ}$  C, at saturated steam,  $100^{\circ}$  C, and sulphur vapor,  $444.6^{\circ}$  C, all under standard atmospheric pressure. Points on the temperature scale are interpolated by the Callendar formulæ:

$$Pt = \frac{R_t - R_0}{R_{100} - R_0} \text{ ioo} \quad \text{or} \quad t - Pt = \delta \left\{ \frac{t}{\text{ioo}} - I \right\} \frac{t}{\text{ioo}}$$

where t is the temperature, R, the resistance, Pt, the platinum temperature, and  $\delta$ , a constant.

Temperatures in the second interval are measured by a standard platinum-platinum-rhodium couple calibrated say at the freezing points of zinc,  $419.4^{\circ}$  C, cadmium,  $320.9^{\circ}$  C, antimony,  $630^{\circ}$  C, and copper free from oxide,  $1083^{\circ}$  C. These points furnish constants for the formula,  $e = a + bt + ct^2$  (see Sosman, Am. J. Sc., 30, p. 1, 1910).

For the region above 1100° C most experimenters base their results upon certain radiation laws. These laws all apply to a black body and the temperature of a non-black body cannot be determined directly without correction for its emissive power. For standard points the melting points of gold, 1336° K and palladium 1822° K, are convenient.

Above 1336° K the optical pyrometer is generally used with a calibration based upon Wien's equation

$$J_{\lambda} = c_1 \lambda^{-5} e^{-\frac{\mathbf{c}_2}{\lambda \mathbf{T}}}$$

By comparing the brightness of a black body at two temperatures and applying this equation, the following formula results:

$$\log R = \frac{c_2 \log e}{\lambda} \left\{ \frac{I}{T_2} - \frac{I}{T_1} \right\}$$

where R is the ratio of the brightnesses,  $\lambda$ , the wave-length used,  $T_1$  and  $T_2$ , the two temperatures, and  $c_2 = 14.250 \ \mu$  deg. Thus if R is measured and one temperature known, the other can be calculated.

A table of the standard fixed points is given in Table 207, p. 195. With these determined there comes the difficulty of maintaining this temperature scale both from the standpoint of the standardizing laboratory and the man using the temperature scale in the practical field. In the region of the platinum-resistance thermometer and the thermocouple, standards of either can be obtained from the standardizing laboratories and used in checking up the secondary instruments. It is not very difficult to actually check up a resistance thermometer at any one of the standard points in the region  $-40^{\circ}$  C to  $+450^{\circ}$  C. It is a little more difficult to check the thermocouple in the region  $450^{\circ}$  C to  $1100^{\circ}$  C. Most of the standard fixed points in this region are given by melting points of metals that must be melted so as to avoid oxidation. This requires a neutral atmosphere, or that the sample be covered with some flux that will protect it.

Both the gold and the palladium, used to calibrate the scale above 1300° K, can be successfully melted in a platinum wound black-body furnace. The whole operation can be carried out in the open air, requiring neither a vacuum nor neutral atmosphere within the furnace. But because of the trouble necessitated by a black-body comparison, much time can be saved if a tungsten lamp with filament of suitable size is standardized so as to have the same brightness for a particular part of the filament, when observed with the optical pyrometer, as the standard black-body furnace for one or more definite temperatures. With such lamps properly calibrated, any one may maintain his own temperature scale for years, if the calibration does not extend higher than that of the palladium point and the standard lamp is not accidentally heated to a higher temperature.

(See 1919 Report of Standards Committee on Pyrometry, Forsythe, J. Opt. Soc. of America, 4, p. 205, 1920; The Measurement of High Temperatures, Burgess, Le Chatelier, 1912, The Disappearing Filament Type of Optical Pyrometer, Forsythe, Tr. Faraday Soc., 1919.)

The following additional adsorption tables (see page 407, Table 525) may be of use in the "cleaning-up of vacua." See Dushman, General Electric Review, 24, 58, 1921, Methods for the Production and Measurement of High Vacua.

#### TABLE 581. - Adsorption of H and He by Cocoanut Charcoal at the temperature of liquid air.

For the preparation of activated charcoal see Dushman, l. c. 5 g of charcoal at the temperature of liquid air will clean up the residual gases in a volume of 3000 cm⁸ from an initial pressure of 1 bar (bar = 1 dyne/cm²) to less than 0.0005 bars at the temperature of liquid air. 5 grams cleaned up 3000 cm⁸ of H from an initial pressure at room temperature of 0.01 bar to a final pressure at liquid air temperature of less than 0.0004 bar. The clean-up is rapid at first but then slower taking about an hour to reach equilibrium. The figures of the following table are from Firth, Z. Phys. Ch. 74, 129, 1910; 86, 294, 1913. p is in mm of Hg; v = volume adsorbed per g of charcoal reduced to 0° C and 76 cm Hg.

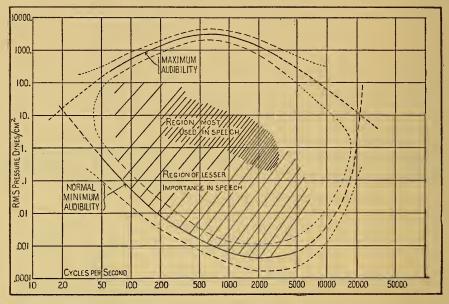
	Hyd	rogen		Не	lium
р		р	v	р	v
9 17 30 51 59	21.5 32.1 46.5 53.3 56.0	90 126 186 245	59.3 63.1 69.2 76.0	120 171 235 428 705	0.337 .465 .81 1.17 1.84

TABLE 582. — Adsorption by Ch recoal at Low Pressures and temperatures.

Extrapolated by Dushman from Claude, see l. c., and C.R. 158, 861, 1914. Amounts occluded in terms of volume measured at 1 bar, 0° C. e.g. at a pressure of 0.01 bar, 1 g charcoal would clean up 130 cm³ hydrogen or 18,000 cm³ nitrogen from a pressure of 1 bar down to 0.01 bar.

н, т	= 77.6° K	N, 1	`= 90.6° K
p == 8.	v = 106,000.	p = 5.3	v = 9,500,000.
i.	13,250	i.	1,800,000
o.i	1,325	o.o	180,000
o.oi	133	o.oi	18,000
o.ooi	13	o.ooi	1,800

#### TABLE 583. — Adsorption of Hydrogen by Palladium Black.


Palladium, heated, allows hydrogen to pass through it freely; the gas is first adsorbed and then diffuses through. For the preparation of palladium black, see reference at top of page for Dushman. The following data are from Valentiner, Verh. Deutsch. Phys. Ges., 3, 1003, 1911. Different samples vary greatly. P gives the pressure in mm of Hg, and V the volume at standard pressure and temperature per g of palladium black.

-190° C : P =	.0005	.001	.002	.005	.012	.025
V =		3.06	33.0	40.0	47.2	63.0
+20° C: P = V =	.001	.005 0.26	.037 0.40	.110 0.52	.315 0.70	.76 0.92

# TABLE 584. MISCELLANEOUS SOUND DATA.

#### TABLE 584. - Audibility as dependent on Sound Pressure and Frequency.

The auditory sense detects sounds varying over a range of pressure from about 0.001 to 1000 dynes/cm²; over much of this range it differentiates with accuracy between complex sounds so nearly alike that no existing physical device can distinguish them. Plot shows minimum audibility pressures from 72 normal ears from 60 to 4000 cycles (both scales logarithmic); standard deviation indicated by dotted curves. The maximum audibility curve was obtained from 48 normal ears. A louder sound becomes painful. The intensity of pressure necessary for the latter is about equal to that required to excite the tactile nerves in the finger tips. (Wegel, Pr. Nat. Acad. Sc., 8, p. 155, 1022.)



#### TABLE 322 (concluded from page 275).

### SPECTRUM SERIES.

The following table gives the series types due to the neutral (arc) and ionized (spark) elements of the various groups. The question marks indicate merely that the series relations have not been disentangled from the maze of spectrum lines.

Series	VIII, O	I	11	III	IV	V	VI	VII
Arc	complex and triplet	doub- let	trip- let	doub- let	trip- let?	doub- let?	trip- let?	?
Spark	5	complex and triplet?	doub- let	trip- let	doub- let?	trip- let?	doub- let?	trip- let?

To a first approximation the equations leading to the numerical values of the various lines of a

To a list approximation the following form:  $\nu = N/(i+S)^2 - N/(m+P)^2$ , for instance, for the principal series. In abbreviated notation these series take the following forms (Fowler). In generally takes for its lowest value, the first value which makes the expression positive. The abbreviated notation expresses the laws above stated.

Principal series = (1,S) - (m,P)1st subordinate (diffuse) = (1,P)-(m,D)2nd " (sharp) = (1,P)-(m,S)(Singlet, doublet and triplet series are distinguished by capital, Greek and small letters.) Fundamental (Bergmann) = (1,D)-(m,F)

Paschen notation is frequently used especially by writers on ionization and radiating potentials: the following table indicates in part the differences for corresponding formulae:

Series	Revised F	Paschen	Fov	vler
Principal series of doublets of alkalis 1st subordinate (diffuse) series of doublets of alkalis	1s—mp, 2p—md,	m=2, 3 3, 4	$     \begin{bmatrix}       i & \sigma - m & \pi, \\       i & \pi - m & \delta,     \end{bmatrix} $	m=1, 2 2, 3
2nd subordinate (sharp) series of doublets of alkalis	2p-ms,	2, 3	$I \pi-m \sigma$ ,	2, 3
Bergmann (fundamental) series of doub- lets of alkalis	3d-mb,	4, 5	2 δ-m φ,	3, 4
Principal series of triplets of alkali earths 1st subordinate series of triplets of alkali earths	1s-mp, 2p-md,	3, 4 3, 4	is -mp, ip -md,	2, 3 2, 3
2nd subordinate series of triplets of alkali	2p-ms,	I, 2	ıp —ms,	I, 2
Principal series of singlets of alkali earths Combination series of singlets of alkali earths	$1S-mP$ , $1S-mp_2$ ,		$1S - mP$ , $1S - mp_2$ ,	I, 2 I, 2
Principal series of doublets of ionized al-	1S−m <b>P</b> ,	2, 3	I σ−m π,	1, 2
ist subordinate series of doublets of ion-	2 <b>P</b> −m <b>D</b> ,	3, 4	ı π−m δ,	2, 3
2nd subordinate series of doublets of ion- ized alkali earths	2 <b>\$</b> −m <b>S</b> ,	2, 3	1 π-m σ,	2, 3

Other minor differences exist; Paschen values fit the Ritz formula whereas Fowler uses the Hicks formula. The variable terms of the two series may take the following forms respectively:  $N/\{m+a+\alpha cN/m^2\}^2$  and  $N/\{m+a'\alpha'/m\}^2$ .

For further information see Foote and Mohler's Origin of Spectra, 1922 (From which considerable of the above is taken) and Fowler's Report of Series in Line Spectra, 1922.

TABLE 518 (concluded from p. 403).

## IONIZING AND RESONANCE POTENTIALS OF THE ELEMENTS.

Atomic			Resonance volts.		Resonance volts.				Ionizat	ion volts.
Number Element.	Line.	ν	Comp.	Obs.	Line.	ν 	Comp.	Obs.		
34 Be 12 Mg 20 Ca 30 Zn 38 Sr 48 Cd 56 Ba 80 Hg	IS-2p ₂ IS-2P IS-2P ₂ IS-2P ₂	21,871 35,051 15,210 23,652 32,502 46,745 14,504 21,698 30.656 43,692 12,637 18,060 39,413 54,066	2.700 4.327 1.878 2.920 4.012 5.771 1.791 2.679 3.784 5.394 1.560 2.230 4.866 6.674	2.65 4.42 1.90 2.85 4.18 5.65 3.95 5.35	IS IS IS IS IS IS IS IS IS	61,672 49,305 75,767 45,926 72,539 42,029 84,178	7.613 6.087 9.353 5.670 8.955 5.188	7.75 6.01 9.3 8.92		
88 Ra	1S-2P ₂ 1S-2P	12,500?	1.5?		ıS	4-50000?	5-5.5?			

Atomic Number Element.	Resonance volts.		Ionization volts.
7 N 15 P 33 As 51 Sb	8.18 5.80 4·7	16.9 13.3 11.5	Ionization at 17.75, 25.4, 30.7, Brandt
83 Bi 8 O 16 S 34 Se 52 Te 2 He	7.91 4.78 3.0-3.5 2.3-2.9 20.4-21.2	15.5 12.2 12-13 ? 25.6	See Hughes for other data  12.7 observed by Udden  25.4, Franck and Knipping, later 25.3; 25.5, Compton
18 A 1 H	11.8-17.8 11.5 10.5-13.9 10.4-12.0	15.1	Horton and Davies Mohler and Foote, revised

For further information and data see The Origin of Spectra, Foote and Mohler, 1922; Hughes, Bull. Nat. Research Council, 2, 127–169, 1921; Report on Series in Line Spectra, Fowler, 1922.

#### TABLE 585.

## LIST OF STARS KNOWN TO BE WITHIN FIVE PARSECS.

The number of stars (doubles counted as singles) per cubic parsec in the neighborhood of the Sun has been estimated as .0451 (Kapteyn and Van Rhijn, Astr. J., 52, 32, 1920). This gives an expectation of 24 within 5 parsecs and 12 nearer than 4. The numbers actually known are 20 and 16. The agreement is good but it seems improbable that we should already know practically all within 4 or 5 parsecs. (Hertzsprung, Com. Observatory at Leiden, no. 5, 1922.)

Star Right Ascension (1900)   Parallax   Right Ascension (1900)   Right May   Parallax   Right May   Parallax   Right May   Right May   Parallax   Right May   Right May									
a Aquilae-       a Canis minoris       A       7 34.1       + 5 29       0.48       .312       −2.05       F3       1.24         Our Sun       a Centauri       A       14 32.8       −60 25       0.33       .759       −0.27       G6       3.66         a Centauri       B       14 32.8       −60 25       1.70       .759       +1.10       K4       3.66         τ Ceti       1 39.4       −16 28       3.65       .318       1.16       G7       1.92         ε Eridani       3 28.2       −9 48       3.81       .311       1.27       K1       .97         61 Cygni       A       21 2.4       +38 15       5.57       .306       3.00       K7       5.21         Lac 8760       21 11.4       −39 15       6.65       .251       3.65       Ma       3.53         61 Cygni       B       21 2.4       +38 15       5.57       .306       3.71       K8       5.21         Lac 9352       22 59.4       −36 26       7.44       .292       4.77       Ma       7.02         Gou 32416       23 59.5       −37 51       8.5       .203       5.04       K5       6.11         Groombr 34 · A	Star		Ascension		magn.	Parallax			motion
Krüger 60     B     22     24.5     +57     12     11.34     .262     8.43     (M)     .94       (van Maanen)     0     43.9     +4     55     12.34     .246     9.29     Fo     3.01       (Innes)     11     12.0     -57     2     (12.)     .339     (9.65)     —     2.69       a Centauri     C     14     22.9     -62     2     (10.5)     (.759)     (9.90)     (M)     (3.66)       a Canis minoris     B     7     34.1     +5     29     (12.5)     .312     (9.97     —     1.24	a Aquilae a Canis minoris Our Sun a Centauri τ Ceti ε Eridani ε Indi 61 Cygni Lac 8760 61 Cygni Lac 9352 Gou 32416 Groombr 34 Lal 21185 Zc 5 ^h 243 Oe Arg 17415-6 a Canis majoris Σ 2398 Krüger 60 Σ 2398 Krüger 60 Σ 17415-60 (van Maanen) (Innes) a Centauri	A A B A B A C	19 45.9 7 34.1  14 32.8 14 32.8 1 39.4 3 28.2 21 55.7 21 2.4 21 11.4 22 59.4 23 59.5 0 12.5 10 57.9 5 7.7 17 37.0 6 40.7 18 41.8 22 24.5 18 41.8 0 12.5 17 52.9 22 24.5 0 43.9 11 12.0 14 22.9	+ 8 36 + 5 29 -60 25 -16 28 - 9 48 -57 12 +38 15 -39 15 +38 15 -37 51 +43 27 +36 38 -44 59 +68 26 -16 34 +59 29 +57 12 +59 29 +43 27 +4 28 +57 12 +57 12 +57 12 -57 2 -62 2	+ 0.89 0.48 -26.9 0.33 1.70 3.65 3.81 4.74 5.57 6.65 6.28 7.44 8.5 7.98 7.60 8.3 9.2 8.44 9.33 9.64 10.01 11.05 9.67 11.34 12.34 (10.5)	.200 .312 .759 .759 .759 .318 .311 .284 .306 .251 .306 .292 .203 .281 .403 .319 .247 .376 .287 .262 .287 .262 .281 .533 .262 .246 .339 (.759)	-2.60 -2.05 -0.33 -0.27 +1.10 1.16 1.27 2.01 3.00 3.65 3.71 4.77 5.04 5.22 5.63 5.82 6.16 6.32 6.62 6.73 7.30 8.29 8.30 8.43 9.29 (9.65) (9.90)	A5 F3 G6 K4 G7 K1 K8 Ma K8 Ma K5 Ma Mb (A) Mb (M) (M)	.65 1.24 3.66 3.66 1.92 .97 4.67 5.21 3.53 5.21 7.02 6.11 2.85 4.77 8.70 1.31 1.32 2.28 .94 2.28 5.25 10.30

## 444 Supplementary to Table 110, page 126.

Degrees Brix, Specific Gravity, and Degrees Baumé of Sugar Solutions. Degrees Brix = Per cent Sucrose by Weight.

Specific Gravities and Degrees Baumé corresponding to the Degrees Brix are for  $\frac{2c^{\circ}}{20^{\circ}}$  C.

The relation between the specific gravity and Degrees Baumé is given by Degrees Baumé =  $r_{45} - \frac{r_{45}}{\text{specific gravity}}$ 

Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)	Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)	Degrees Brix or per cent sucrose by weight	Specific gravity at 20°/20°C	Degrees Baumé (modu- lus 145)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	1.00000 1.00389 1.00779 1.01172 1.01567 1.01965 1.02366 1.02770 1.03176	0.00 0.56 1.12 1.68 2.24 2.79 3.35 3.91 4.46 5.02	40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0	1.17853 1.18368 1.18887 1.19410 1.19936 1.20467 1.21001 1.21538 1.22080 1.22625	21.97 22.50 23.04 23.57 24.10 24.63 25.17 25.70 26.23	80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0	1.41421 1.42088 1.42759 1.43434 1.44112 1.44794 1.45480 1.46170 1.46862	42.47 42.95 43.43 43.91 44.38 44.86 45.33 45.80 46.27
10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	1.03998 1.04413 1.04831 1.05252 1.05677 1.06104 1.06534 1.06968	5.57 6.13 6.68 7.24 7.79 8.34 8.89 9.45	50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0	1.23174 1.23727 1.24284 1.24844 1.25408 1.25976 1.26548 1.27123 1.27703	26.75 27.28 27.81 28.33 28.86 29.38 29.90 30.42 30.94 31.46	90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0	1.47559 1.48259 1.48063 1.49071 1.50381 1.51096 1.51814 1.52535 1.53260 1.53288	46.73 47.20 47.66 48.12 48.58 49.03 49.49 49.94 50.39 50.84
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	1.07844 1.08287 1.08733 1.09183 1.09636 1.10092 1.10551 1.11014 1.11480 1.11949	10.55 11.10 11.65 12.20 12.74 13.29 13.84 14.39 14.93 15.48	59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0	1.28286 1.28873 1.29464 1.30059 1.30657 1.31260 1.31866 1.32476 1.33990 1.33708	31.97 32.49 33.00 33.51 34.02 34.53 35.04 35.55 36.55	99.0	1.54719	51.28
29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0	1.12422 1.12898 1.13378 1.13861 1.14347 1.14837 1.15331 1.15828 1.10329 1.10833 1.17341	16.02 16.57 17.11 17.65 18.19 18.73 19.28 19.81 20.35 20.89 21.43	70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0	1.34330 1.34956 1.35585 1.36218 1.36856 1.37496 1.38141 1.38790 1.39442 1.40098 1.400758	37.06 37.56 38.06 38.55 39.05 39.54 40.03 40.53 41.01 41.50 41.99			

The above table is abridged from Bureau of Standards Technologic Paper No. 115. The original table is given in steps of o. 1 Degrees Brix.

## SUPPLEMENTARY TO TABLE 380, PAGE 310.

The values on page 310 given for the rotation of sucrose are from antiquated data and are incorrect by several whole degrees. Values obtained at the Bureau of Standards, but as yet published only in part, are given below.

Light Source	Rot. $\lambda$ Rot. $\lambda = 5461$	$[a]^{20}_{\lambda}$	Light Source	Rot. $\lambda$ Rot. $\lambda = 5461$	$[a]_{\lambda}^{20}$
Li 6708 Cd 6438 Na 5892.5 Hg 5780 Hg 5461 Ag 5200 Cd 5086 Cd 4800	.644 .711 .84922 .8854 1.0000 1.108 1.167	50.45 55.70 66.529 60.36 78.342 86.80 91.43	Cd 4678 Hg 4358 Ag 4208 Hg 4047	1.403 1.644 1.786 1.95	109.9 128.8 139.9 152.8

The above values are for a near normal solution, i.e. approximately 26 g of sucrose per 100 cc. SMITHSONIAN TABLES.

# Supplementary to Table 532, page 410. ISOTOPES.

(See J. Am. Ch. Soc. 45, p. 869, 1923.)

Element	Atomic number	Atomic weight	Minimum number of Isotopes	Masses of Isotopes	% Accuracy	Observer
н	1	1.008	1	1.008	0.2	Α.
He	2	4.00	I	4 _	ı	A.
Li	3,	6.94	2	7; 6	:	A., T., D.
Gl	4	9. <b>I</b>	I	9	٠	T.
B C N O	5 6	10.9	2	11; 10	0.1	A. A.
N		12.005	I	I 2		A.
\ \frac{1}{1}	7 8	14.008	I	14 16	0.2	A.
F	9	10.000	I	10	0.1	A.
Ne	10	20.2	2	20; 22	0.1	A.
Na	11	23.00	1	23	0.1	A.
Mg	12	24.32	3	24; 25; 26		D.
Al	13	27.0	ī	27		Ā.
Si	14	28.1	2	28; 29; (30)	0.1	A.
Si P S Cl	15	31.04	I	31	0.2	A.
S	16	32.06	1	32	0.2	A.
	17	35.46	2 '	35; 37	0.1	A.
A K	18	39.9	2	40; 36	0.1	Α.
	19	39.10	2	39; 41	i	A.
Ca	20	40.07	(2)	40; (44)	į.	D.
Fe	26	55.84	(1)	56; (54) ?		A. A.
Ni Zn	28	58.68	2	58; 60	0.1	D.
As	30	65.37	4	64; 66; 68; 70	o 7	A.
Se	33 34	74.96 79.2	6	75 80; 78; 76; 82; 77; 74	0. I 0. I	A.
Br	35	79.2	2	79; 81	0.1	A.
Kr	36	82.92	6	84; 86; 82; 83; 80; 78	0.1	A.
Rb	37	85.45	2	85; 87	0.1	A.
Sn	50	118.7	7 (8)	120; 118; 116; 124		
				110; 117; 122; (121)		. A.
I	53	126.92	I	127	0.2	A.
Xe	54	130.2	7 (9)	129; 132; 131; 134; 136;		
				128; 130; (126); (124)	0.1	Α.
Cs	55	132.81	I	133	1	A.
Hg	80	200.6	(6)	(197-200); 202; 204	0.1	A.

Observers: A = Aston, D = Dempster, T = Thompson (G. P.)

The masses are given in the order of the intensity of the mass spectrum bands. Table published by the International Committee on Chemical elements. The Phil. Mag. 45, 1923, gives also Sb, 2 isotopes, 121, 123.



(The new matter in the Appendix is not indexed.)

PAGE	PA	G.
particles: energy of	Atomic heats, elements at 50° K 2 magnetic field	2
helium	magnetic field 4	0
ions, produced	magnitudes 401, 4	0
production of 394	numbers 4	01
range 396	volumes, elements	?
stopping powers of substances 395	weights, international	7
velocities, initial 396	R rays absorption coefficients	a
Abbreviations	absorption of	o.
Aberration constant 414	ious produced by	o.
Absolute units xxxvi, 311	velocity	a
Absolute zero of temperature 195, 408	Balmer series spectrum formula	7
Absorption coefficients: see transmission coef.	Bar, definition	3
β-rays 395	Barometer, altitude, variation with 4	2
γ-rays 395	heights, determination of by	4
X-rays 389	reduction for capillarity	4
Acceleration of gravity 424-426	β-rays, absorption coefficients absorption of ious produced by velocity Balmer series spectrum formula Bar, definition Barometer, altitude, variation with heights, determination of by reduction for capillarity to std. gravity 138-1 to std. temperature Batteries, composition, voltages Baumé scale, conversion to densities Bessel functions, 1st, 2d orders, roots Bhaxial crystals, formulae, +-refractive indices Plack absorbers, long-λ transparencies Black-body: brightness (photometric) of 22 Black-body: brightness (photometric) of 24 luminosity of 25 Lingh absorbers, constant 26 Lingh absorbers, constant 27 Lingh absorbers, constant 28 Lingh absorbers, constant 29 Lingh absorbers, constant 20 Lingh absorbers, constant 20 Lingh absorbers, constant 21 Lingh absorbers, constant 22 Lingh absorbers, constant 23 Lingh absorbers, constant 24 Lingh absorbers, constant 25 Lingh absorbers, constant 26 Lingh absorbers, constant 27 Lingh absorbers, constant 28 Lingh absorbers, constant 29 Lingh absorbers, constant 20 Lingh absorbers, constant 20 Lingh absorbers, constant 20 Lingh absorbers, constant 21 Lingh absorbers, constant 22 Lingh absorbers, constant 23 Lingh absorbers, constant 24 Lingh absorbers, constant 25 Lingh absorbers, constant 26 Lingh absorbers, constant 27 Lingh absorbers, constant 28 Lingh absorbers, constant 29 Lingh absorbers, constant 20 Lingh absorbers, constant 20 Lingh absorbers, constant 20 Lingh absorbers, constant 21 Lingh absorbers, constant 22 Lingh absorbers, constant 23 Lingh absorbers, constant 24 Lingh absorbers, constant 25 Lingh absorbers, constant 26 Lingh absorbers, constant 27 Lingh absorbers, constant 28 Lingh absorbers, constant 29 Lingh absorbers, constant 20 Lingh absorbe	4.
Accumulators, voltage 313	to std. temperature :	3
Actinium group of radioactive substances 395	Batteries, composition, voltages 312-3	I,
Activity, definition 435	Baumé scale, conversion to densities	0
Adaptation, rate of eye 257	Bessel functions, 1st, 2d orders, roots 66-6	68
Adsorption, by charcoal 407	Biaxial crystals, formulae, + refractive indices 28	8
by fine particles 407	- refractive indices 28	8;
heat of 407	Plack absorbers, long-λ transparencies 30	0
Aerodynamical tables 150-153	Black-body: brightness (photometric) of 20	6
Agonic line 433	luminosity of	6:
Air: composition of; variation with alt. and lat 421	luminous efficiency of 26	6
density of moist	Planck's constant	4;
densities in air, reduction to vacuo 73	radiation, total, for various temp 24	4;
dielectric strength 353	by wave-lenths, var. temp 24	48
humidity relative, via v. p. and dry 187	Steran-Boltzmann constant 2	47
via wet and dry 189	-temperature for C, Pt and W 25	50
index of refraction 292	Bonr atom	<b>S</b> :
masses 419	Boiling points; elements	99
moist, transparency, short A 419	pressure effect 20	)(
long A 308	morganic compounds 20	Э.
transmission coemcients 308, 418, 419	rice of celts in IT O	٥,
Absolute zero of temperature	trator processes resistion	1 (
sparking potentials for	Roltzman gac-constant (entropy)	74
thermometer comparison with roll!	Bougie decimale	50
Fanor pressure of water in	Break-down voltage dielectrics 204 25	- :
viseosity	Brightness of sky	) : T (
wave-lengths in air reduction to vacuo	of stars	T 1
293	of sun	1
Altitudes by barometer	temperature of C. Pt and W 25	50
hy hoiling points of water	of various illuminations	56
Alternating current resistances	of various light sources 260-26	52
Aluminum: mechanical properties 70-80	Brinell hardness	74
resistivity constants	British thermal unit	35
wire-tables. English units 242	British weights and measures 8-1	[ ]
Metric units	Brownian movement 40	)(
Ammonia latent and specific beats	Buoyancy correction: of densities	7:
Ampere equivalents	weighings	73
Ammona, latent and specime heats 220, 232  Ampere equivalents 311  Ampere turns Xivi  Angstrom, wave-length unit 266  Artillogarithms, std. 4-place, p. 28; 9 to 1.0 30  Apothecaries weights 7, 8  Are tron lines 266-267	$\gamma$ -runction	52
Angstrom wave-length unit	γ-rays: absorption coefficients	)5
Intennae, resistances 264	absorption of	17
Antilogarithms std 4-place p 28: 0 to 10	lons produced by	10
Anotheraries woights	Cadmium line, red, A of intern. prim. std 26	6
lus draw Mars	Calcite grating space 40	,8
arc, iron, lines	Cambration points for temperatures 19	,5
Astronomical data	Colorio definition	10
Arc, fron, lines	Canal rave	5
density, altitude variation 421	Candle energy from	0
neight of 421	international standard	0
density, altitude variation 421 height of 421 homogeneous, height of 421 pressure, altitude variation 421	Planck's constant radiation, total, for various temp. 22	0
pressure, altitude variation 421	Capacity of wires for electrical appropri	9
Atmosphere ": value of pressure unit 421, 435	Capacity, specific inductive emetals	9
Atmospheric water vapor 185-186	gases fit n	1
Atom: Bohr	liquide 25	-
Atom, hydrogen: mass, mean free path 408	lia asses	0
pressure, altitude variation	solids	0
Rutherford 401	standard solutions 26	C
		•

	PAGE		LAGE
Capillarity	173-174	Crystals: diffracting units, X-rays	400
capitality	1/3 1/4	refraction indices: alums, quartz	-103
correction to barometer		refraction indices; alums quartz	281
Carcel unit	200	fluorite spor	280
Cathode rays:  energy of penetration depths	380	modific, spains	250
energy of	386	fock-sait, silving	2/9
penetration depths	387	retr. indices: inmerals, isotropic	202
X-rays, generative efficiency for	387	uniaxial	
Cathodic sputtering	387	(+-) . 284	, 285
Calles standard voltages	212	biaxial	
Cens. standard, voltages	3.3	(+-) , 286.	287
weston normal	· · AII	miscel. uniaxial biaxial	285
Weston portable	xiiii	histol	280
voltaic, composition, voltages	312-313	Diaxiai	209
Centinoise	155	Cubes of numbers	15
Characteristic Y-rays	387-302	Cubical expansion coefficients: gases	222
Changed adjoint by	407	liquids	22I
Charcoal, ausorption by	407	solids 222	227
Charge, elementary electrical	400	Cubical expansion coefficients: gases liquids solids 222 Current measures: absolute units	vli
Chemical energy data	.241-240	Current measures: absolute units	277
Coals, heats of combustion	242	equivalents	311
Collision frequencies molecules	300	Curie, radium standard	390
Colloide	106-107	point and constant, magnetic	372
Colone are sensitiveness to	256-258	Cutting-tool lubricants	154
Color: eye sensitiveness to	.250-250	Cylindrical barmonics (Bessel) 1st and 2nd deg	66
indices of various stars	411	general formula	68
lights, of various	261	general formation.	68
screens	.306-307	10015	. 00
complimentary colors	307	Day langth of gidarasi	414
tomporetime of C Pt and W	250	Day, length of sidereal Declination, magnetic: secular change Degree on earth's surface, length of	414
Combination backs of	245-246	Decimation, magnetic: secular change	420
Combination, neats of	.245-240	Degree on earth's surface, length of	416
chergy of penetration depths X-rays, generative efficiency for Cathodic sputtering Cells: standard, voltages Weston normal Weston portable voltaic, composition, voltages Centipoise Characteristic X-rays Charcoal, adsorption by Charge, elementary electrical Chemical energy data Coals, heats of combustion Collision frequencies, molecules Colloids Color: eye sensitiveness to indices of various stars lights, of various stars lights, of various screens complimentary colors temperature of C, Pt and W Combination, heats of carbon and misc. cpds explosives	241	Demagnetizing factors for rods	374
Compressibility: gases	243-244	Densities in air, reduction to vacuo	73
fuels	242	Transitions air majet values of h/760 122	-135
Compressibility: gases 104.	128-132	pensities, ait moist, varies of 17/00 + + + +133	704
Compressionity, gases	107	alcohol ethyl aqueous	124
ilquids	10/	methyl aqueous	120
solids 7	4 seq, 108	alloys	114
Conductivity, electrical: see resistivity	.322-332	methyl aqueous alloys aqueous solutions Baumé equivalents  source acquire acquire	-163
alloys electrolytic:	.327-328	Raumé equivalents	100
alactrolytic:	346-352	gane chart samonic	126
ominglent	340	cane sugar, aqueous	120
equivalent	349	Castor on	150
ionic	352	eartn	427
sp. molecular	• • 347	elements chemical	IIO
limiting values .	348	gases	127
limiting values temp. coefs Conductivity, thermal: alloys, metals	348	glycerol, aqueous	156
Conductivity thermal allows metals	213	inorganie compounds	20.1
building meterials	215	inculators thormal	216
building materials	215	limitations, thermal 215	, 210
earth	422	castor off earth elements chemical gases glycerol, aqueous inorganic compounds insulators, thermal 215 liquids mercury,—10° to +360° C. minerals organic compounds planets	117
gases	217	mercury, — 10° to +360° C	121
high temp	254	minerals	115
inculators	.214-216	organic compounds	203
high temp	214	nlanets	416
mgn temp	214	planets	410
liquids	217	SUITUS VALIOUS	113
metals, high temp	213	stars	413
salt solutions	216	sucrose, aqueous	156
water	210	stars sucrose, aqueous sulphuric acid, aqueous tin, liquid; tin-lead eutectic	126
Comes number and distance arest in ave	258	tin, liquid tin-lead entectic	115
Cones, number and distance apart in eye Constants: mathematical miscellaneous, atomic, etc. radiation, $\sigma$ , $C_1$ , $C_2$	230	water, o° to 41° C, -10° to 250° C.118	120
Constants: mathematical	14	macci, 0 to 41 c, 10 to 250 c, 110	, 120
miscellaneous, atomic, etc	400	woods	, 112
radiation, $\sigma$ , $C_1$ , $C_2$	247	Developers and resolving power of photo, plate	203
		woods Developers and resolving power of photo. plate Diamagnetic properties Diamagnetic susceptibility, temperature effect	365
Contract one consistingness to	257	Diamagnetic susceptibility, temperature effect	372
Contrast, eye sensitiveness to	25/	Diameter molecules some organic molecules Dielectric constant: (sp. inductive capacity) . 356 crystals gases f(t, p)	300
Convection, cooling by	251-255	some organic molecules	400
pressure effect	.251-252	Dialogtria constant: (an industria conscitat)	-260
Conversion factors: general formulae, see introdu	etion.	Dielectric constant: (sp. inductive capacity) . 350	300
Baumé to densities		erystals	361
		gases f(t, p)	-357
horse-power		l'ouids	357
work-units	197	liquefied gases	350
Cooling of bodies	.251-254	l'quids l'quids l'quids l'quids l'quids l'quids l'quids l'quids l'quids l'quid	359
Conner: mechanical properties	82-82	SUITUS	300
wire alternating ammont maistance	211	standard solutions	300
whe, alternating current resistance	• • 344	Dielectric strength (see sparking potentials) . 353	-355
wire tables, English units	336		
metric units	· · 339	Differentials, formulae	12
metric units	401	Differentials, formulae Diffusion: aqueous solutions into water	166
Corpuscular radiation (X-rays)	287-288	gases	760
		24365 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, 100
Cosines, circular, natural, (°')	. 32-36	integral	60
(radians)	. 37-40	ionic	405
logarithmic (°')	32-36	metals	168
(madiana)	. 32 30	vapors	. 168
(radians) hyperbolic, natural logarithmic	. 37-40	Diffusivities thermal	217
nyperbolic, natural logarithmic	. 41-47	Digit	427
Cotangents, circular, natural, (°')	. 32-36	Integral fonic metals vapors 167 Diffusivities thermal Digit Dilution, heat of (H ₂ SO ₄ ) Dimensional formulae	435
(radiana)	37-40	Direction, near of (H ₂ SU ₄ )	246
logarithmic, (°') (radians)	. 37 40	Dimensional formulae	XXV, 3
logarithmie, ( )	. 32-30		
(radians) .	37-40	Diorter	435
Dynerbolic, natural, logarithmic	41-47	Diopter Dip, magnetic, 1915 value, secular variation Disk, distribution of brightness over sun's	430
Coulomb, electrical equivalents	211	Disk distribution of brightness over sun's	430
Critical data for gases	212	Dictance earth to many	410
Crova wave-length	261	Distance earth to moon	414
mare length	201	sun	414

449

PAGE	Elements: evaporation rate, Mo, W, Pt. 175
Distance of the stars, nebulae and clusters 412 Dyes, transparency of 301 Dynamical equivalent of thermal unit 197	Elements: evaporation rate, Mo, W, Pt 175
Dyes, transparency of 301	expansion, cubical (gaseous) 222
Dynamical equivalent of thermal unit 197	hardness 72 to 1
	isotopes
e (base of natural logarithms) 14	latent heat of evaporation
e (elementary electrical charge) 408	melting points 198
e (base of natural logarithms)	meteorites, occurrence in 423
x fractional 56	Peltier effect 317, 320-322
$e^{x^2} e^{-x^2}$ $x=0.1 \text{ to } 5.0 \dots 54$	resistance electrical
$\pi$ $\pi$	specific heats
$\frac{-x}{4}x$ , $-\frac{x}{4}x$	spectra
e- e - x=1 to 20 55	thermal conductivities 213
$e^{\sqrt{\pi}}x = e^{-\sqrt{\pi}}x$	expansion
$a = 1  b = 20  \cdots  55$	Thomson effect
and their logarithms 41	valencies
Earth: atmospheric data 421	vapor pressures
conductivity, thermal 422	Elementary electric charge 408
degrees on, length of 416	Elements, magnetic, at various observatories 434
elements, percentage composition 423	Emplic integrals
geochemical data	Emissivities radiation
moments of inertia 427	Energy kinetic, definition
moon, distance of 414	of molecule 408
rigidity 427	Energy, minimum visible to eye
size of, shape of 427	solar, data relating to 418-420
2	of sound waves
temperatures	Entropy constant (Rolltzmann)
viscosity 427	Entropy of steam
Efficiency of various lights	Equation of time 416
Elastic limit (see mechanical properties) 74	Equilibrium radioactive
Elastic modulus of rigidity, — temp. variation 100	Equivalent, electrochemical 345–346
Elasticity (see inechanical data)	Ero
Elasticity (see mechanical data)	Erichson values
Electrical charge, elementary	Errors, probable 57-59
E'ectrical equivalents 311	Ettingshausen effect
Electrical units: international	Entectic mixtures, melting points 206, 207
Standards AXXVIII	Evaporation rate of, Mo, Pt, W
practical	liquide 221
Electric, tribo-, series (frictional) 322	solids
Electrochemical equivalents 345, 346	linear: elements 218
silver 345	miscellaneous 219
Electrolytic conduction: ammonium acetate 352	Explosives: decomposition, ignition temp 244
hydrolysis	Exponential functions: see index under e
ionic	diffusion integral 60
ionization water 352	gudermanians 41
equivalent conductance 345-346 hydrolysis 352 ionic 352 ionization water	hyperbolic functions (nat) . 41
Spec. molecular 347	hyperbolic functions (logs) . 41
	Eve: adaptation rate
temp. coef 348 Electro-motive force: accumulators 313	color sensitiveness
contact 314, 316, 404	contrast sensibility
Peltier 321	Fechner's law
thermo-electric 317	heterochromatic sensibility
pres. effect . 320	minimum energy visible
Electro-motive force: accumulators	Miscellaneous   243-244
Weston normal xli	persistence of vision
Weston portable xiiii	pupil size for various intensities 258
Electromagnetic/electrostatic units	sensitiveness to light
Electrons: + 401	small dif. of color, sensitiveness to
affinity of elements 404	threshold sensitiveness
e/m 404	visibility of radiation, relative
enementary charge 404	Factorials: $\gamma$ function, $n=1$ to 2 62
ionization potentials 403	
mass 408	n!, n=1 to 20
mass 408 photo-electric effect 403	Falling bodies (Stokes' law) 150
radius 408 resonance potentials 403	Farad
work required to remove 403	Faraday constant
Elements: atomic heats at 50° K	Fechner's law
atomic numbers 409	Ferromagnetism
atomic volumes	Field, magnetic: earth's, components 428-434
atomic weights (international) 71	metals, behavior of in 365-377
compressibility	resistance of metals in 384
conductivity electrical	Falling bodies (Stokes' law)   150
Elements; atomic heats at 50° K	Filaments, heat losses from
densitles	Flame temperatures
earth's crust, occurrence in 423	Fluidity

PAGE	PAGE
Foot pound 436 Fork, tuning, temperature coefficient 149 Formation, heat of, for elements 245, 246	Hardness: (see mechanical properties)
Fork, tuning, temperature coefficient 149	Brinell test 74
Formation, heat of, for elements 245, 246	scleroscope test
Formulae: conversion 3 dimensional, see introduction xxv least squares 59 Fraunhofer lines, solar, wave-lengths 265 Fraunhof melegyles 265	Harmonics: cylindrical (Bessel) 66-68
least squares 59	roots, formulæ 68
Fraunhofer lines, solar, wave-lengths 265	zonal
Free path of molecules	atomic heats of elements
	combination
point of water, pressure effect 200	combustion: explosives 243-244
Frequencies, corresponding to wave-lengths 293	fuels
in air, reduction to vacuo 293	gases 242
internal of metals, temp, variation 101	conductivity: metals (also high temp.) 213
point, lowering of for salt solutions   208	gases 242 conductivity: metals (also high temp.) 213 gases 217, 254 liquids 217
Frictional electricity series 322	liquids 217
Functions: Bessel functions (roots, 68) 66-68	dilution best of W-SO.
ellintie	formation
exponential	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
gamma 62	vaporization, elements 233
hyperbolic . 41 probability . 56-58 trigonometric, circular (°') . 32 trigonometric, circular (radians) . 37 zonal harmonics . 64 Eundamental frequency (Ruthery) . 408	NH ₃ 232
trigonometria circular (°')	steam 234 various 232–233
trigonometric, circular (radians)	pressure variation, NH ₃ liq 232
zonal harmonics 64	losses from incandescent wires 255
Fundamental frequency (Rydberg) 408	mechanical equivalent of
Fundamental standards xxxiii	solution 246
Fundamental frequency (Rydberg) 408 Fundamental standards xxxiii units xiii Fusion current for wires 329	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fusion, latent heat of	ammonia, liq
	electricity 317
Cores wire	elements
Galvano-magnetic effects	liquids
Gages, wire	mercury
Gas constant 408	minerals, rocks 229
Gas thermometry	sincates
absorption of by water	silicates
absorption coef: long-wave radiation 309	
Gas constant         408           Gas thermometry         192-194           Gases: absorption of by liquids         172           absorption coef: long-wave radiation         309           X-rays         389           compressibility         104           conductivity, thermal         217           critical data         212           densities         127           dielectric constants         356-361           strength         353-355           diffusion         168           ionic         405           expansion coefficients         222           expansion of         128-132           flow in tubes         150           ignition temperatures of mixtures         244           magnetic susceptibility         377	Various   Vari
compressibility	total [elements, I(t)]
conductivity, thermal	Heating effect, radium and emanation
densities 127	Hefner unit
dielectric constants	Heights, barometric determination of 145
strength	boiling point of water determination of 144
diffusion	Henry vyvii vliv 211
ionic 405	Heterochromatic sensibility of eye 257
expansion of 128-132	Hertzen wave-lengths 408
flow in tubes	High-frequency electric resistance of wires 344
ignition temperatures of mixtures 244	norizontal intensity earth's field, 1915 431
magnetic susceptibility	Horse power
refractive indices	Humidity, relative: vapor-pressure and dry 187
resistance (aerodynamical) 150-153	wet and dry 189
solubility in water 170-171	Hydrogen: atomic data, mass, radius, etc 408
sound, velocity of, in	thermometer
specific neats (also $c_p/c_v$ )	Hydrolysis of ammonium acetate 352
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	boiling point of water determination of 144 Helium, production, relation to radium 394 Henry xxxvii, xliv, 311 Heterochromatic sensibility of eye 257 Hertzen wave-lengths 408 High-frequency electric resistance of wires 344 Horizontal intensity earth's field, 1915 secular var. 431 Horse power 197 Humidity, relative: vapor-pressure and dry 187 Humidity, relative: vapor-pressure and dry 189 Hydrogen: atomic data, mass, radius, etc. 408 series spectra 275, 401 thermometer 192-194 Hydrolysis of ammonium acetate 192-194 Hydrostatic pressures of Hg and H ₂ O columns 136 Hyperbolic functions, natural and logarithmic 41 Hysteresis 365 et seq, 375-376
f(t), 1+0.00367, logs 128-132	Hysteresis
Gauss	
Geochemical data	Ice, allotropic modifications 200
Geodetic data	ferezing point, pressure effects 200 lee-point, thermodynamic scale 195 lgnition temperatures gaseous mixtures 244 lncandescent filaments, heat losses 255 Inclination (dip) of magnetic needle, 1915 430
Gilbert	Ignition temperatures gaseous mixtures 244
Gilbert 311 Glare sensibility of eye 257 Glasses: refraction indices, American 277	Incandescent filaments, heat losses
Glasses: refraction indices, American 277	Inclination (dip) of magnetic needle, 1915 430
German, temp. var	Index of refraction: air
transparency of 302–304, 306–307	alums
Glass vessels, volume of	crystals, see minerals, etc. 282-289
Gram-molecule, definition 436	fats
Grating space of calcite 408	gases and vapors 292
Gravitation constant	glass American 277
latitude variation 424	glass American
observed values 425-426	Iceland spar 280
Gravity specific, see densities.	liquefled gases 289 liquids 290
Gudermanians 41 Gyration, radii of	metals 296
dyration, radii or	minerals, isotropic 282
Hall effect, temperature variation	uniaxial 284 biaxial 286
and on one competable tartacion 305	biaxial 286

	PAGE		PAGI
Index of refraction: miscellaneous, isotropic		Length, standards of Light: eye, sensitiveness of to flux, definition intensities on various days lambert, definition least visible to eye mechanical equivalent photometric standards units polarized, reflection rotation of plane by substances rotation of plane, magnetic	www.iv
uniaxial .	285	L'aht eve concitiveness of to	. XXXIV,
hiovial .	280	flux definition	250-250
biaxial biaxial nitroso-dimthyl-aniline .	209	intermities on mariana dama	25
quartz. rock-salt, f(t) salt solutions silvine solids, biaxial isotropie uniaxial standard media for micross	200	lambort definition	25
rook galt f(t)	200	lambert, definition	250
colt colutions	279	reast visible to eye	20
Sait Solutions	291	mechanical equivalent	26
sitvine	279	photometric standards	26
solids, biaxial	286, 289	units	259
isotropic	282, 283	polarized, reflection	295-29
uniaxial	284, 285	rotation of plane by substances	310
standard media for microso	cope. 294	rotation of plane, magnetic .	378-38
vapors vapors	292	reflection of: formulæ function of "n" reflecting power: metals	20
waxes	280	function of "n"	20
Induction, self	376	reflecting power; metals	205-20
Inductive capacity, specific: crystals	361	nigments	293 290
gases, f(t, n)	356-357	nowders	29
liquids liquids liq. gases solids standard solutions	350 357	rough curfosos	300
lin gases	337	costtored light	29
golida	359	tomposetime serieties	300
standard golutions	300	consitiuoness of our to	300
Thertis moments of	300	transparences to event-I-	250-25
Inorganic compounds: boiling points	70	transparency to: erystais	30
Inertia, moments of .  Inorganic compounds: boiling points densities melting points solubilities.  Insulators: break-down potentials dielectric properties resistance, thermal electrical  Integral: diffusion elliptic formulæ gamma function probability  Intensity, horizontal, earth field, 1915 secular var.  Intensity, total, earth field, 1915 secular var.	201	reflecting power: metals pigments powders rough surfaces scattered light temperature variation sensitiveness of eye to transparency to: crystals dyes glasses, American Jena	30
molting point	201	glasses, American	303-30
merting points	201	Jena	30:
Inquistones break dame	169	water	30
insulators: break-down potentials	364	velocity of	408, 41
dielectric properties	364	wave-lengths: cadmium std. line	260
resistance, thermal	214-216	elements	260-27
electrical	331	Fraunhofer lines	26
Integral: diffusion	. 60	solar, Rowland	27
elliptic	60	Std iron lines	266 26
formulæ	09	Lights brightness of various	200-20
gamma function	62	color of various	200
probability	6-17 60	officionar of vorious electric	20
Intensity, horizontal, earth field rors	50-57,00	photographic efficiency of	20:
contilor vor	• • 431	rigibility of white lights	26
Intensity total earth field rors	• • 431	Tight was	260
consider, contain near, 1915	• • 432	Light-year	414
International candle standard	• • 432	Limits of spectrum series	270
olectric units	200	Linear expansion coemcients	218-219
electric units	XXXVI	Liquids: absorption of gases by	17:
standards	. xxxviii	Baumé density scale	100
standard radium	394, 398	capillarity of	173-174
standard wave-lengths	266-267	combustion heat, fuels	242
intrinsic originaless of various lights	260	compressibilities	10
Ionic charge	401,408	conductivity, thermal	21
diffusion	405	contact cmf	314-316
mobilities	405	densities	775-77
lonization potentials	403	mercury, f(t)	12
Ions produced by $\alpha, \beta, \gamma$ rays	398	water, f(t)	TT8-120
work required to detach	403-404	dielectric constant	257-260
Ions, conductance of	352	strength	35/-300
heat of formation	246	diffusion, aqueous solutions	35.
Iron, magnetic properties (steels)	265-276	evnancion coefficiente	100
standard wave-lengths international	266-267	Ornarcion enofficienta	22
Isostacy	406	fuels combustion bests	22
Intensity, ionizontal, earth neid, 1915.  Secular var.  Intensity, total, earth field, 1915.  Secular var.  Secular var.  Secular var.  Secular var.  Standards and vare lengths  Intrinsic brightness of various lights  Ionic charge  diffusion  mobilities  Ionization potentials  Ions produced by $\alpha$ , $\beta$ , $\gamma$ rays  work required to detach  Ions, conductance of  heat of formation  Iron, magnetic properties (steels)  standard wave-lengths, international  Isostacy  Isostopes	420	magnetic optic retation	24:
	• • 410	magnetic optic rotation	380
Joule	107	neglicute susceptibility	377
Joule magnetic effect	265	potential dif. with substances	314-316
77 37		retractive indices	289-29
K X-ray spectrum series	390	sound velocity in	142
K X-ray spectrum series Kerr's constant, magneto-optic Kinetic energy molecular Kundt's constant, magneto-optic	383	specinc neats	228
Kinetic energy	436	surface tensions	173-174
molecular	408	thermal conductivity	213
Kundt's constant, magneto-optic	383	expansion, cubical	22
V now coming		vapor pressures	175-185
L A-ray series	391	viscosity, absolute	157-150
L X-ray series Lambert, definition Latent heat of fusion Latent heat of pressure variation liq. ammonia Latent heat of vaportzation; ammonia	250, 259	specific, solutions	76
Latent heat of fusion	240	Logarithms: standard 4-place	26
Latent heat of pressure variation liq. ammonia .	232	1000 to 2000	. 20
Latent near of vaporization; ammonia	232	anti-, standard 4-place	22
formulæ	232	0000 to 1 0000	20
Latent heat of vaporization: ammonia formulæ steam tables	234	transparency to: crystals dyes glasses, American Jena  Velocity of water  velocity of wave-lengths: cadmium std. line elements Fraunhofer lines solar, Rowland Std. iron lines  Lights, brightness of various efficiency of various electric photographic efficiency of visibility of white lights  Light-year Limits of spectrum series Linear expansion coefficients Liquids: absorption of gases by Baumé density scale capillarity of combustion heat, fuels compusition heat, fuels compressibilities conductivity, thermal contact cmf densities  mercury, f(t) water, f(t) dielectric constant strength diffusion, aqueous solutions expansion coefficients expansion coefficients fuels, combustion heats magnetic optic rotation magnetic susceptibility potential dif. with substances refractive indices sound velocity in specific heats surface tensions thermal conductivity expansion, cubical vapor pressures viscosity, absolute specific, solutions  Logarithms: standard 4-place 1000 to 2000 anti-, standard 4-place 9000 to 1.0000  Logarithmic functions  Long-wave transmissions	• • 30
various Latitude correction to barometer	231	Langitudes of a few stations	40
Latitude correction to barometer	139-142	Long-wave transmissions	420, 434
of a few stations	420, 434	Logobridt's number	309
Least squares: formulæ	59	Losenmidt's number	408
Least squares: formulæ probability integral, arg, hx	56	Lowering of freezing points by salts	208
x/r .	57	Lubricants for cutting tools	154
inverse	· · 57	Lumen	250
0.6745/1/(m-1)		Luminosity of black-body, f(t)	261
$0.6745\sqrt{1/(n-1)}$ $0.6745\sqrt{1/n(n-1)}$	• • 57	Lunar parallax	414
0.0745VI/n(n-1)	58	Lux	250
0.8453 $\sqrt{1/n(n-1)}$ 0.8453 $\left[\frac{1}{n\sqrt{n-1}}\right]$ 0.8453 $\left[\frac{1}{n\sqrt{n-1}}\right]$ Leduc thermomagnetic effect Legal electrical units	58	Long-wave transmissions Loschmidt's number Lowering of freezing points by salts Lubricants for cutting tools Lumen Luminosity of black-body, f(t) Lunar parallax Lux	~39
$0.8453[1/n\sqrt{n-1}]$	58	M X-ray spectrum	303
Leduc thermomagnetic effect	385	M X-ray spectrum  Mache radioactivity unit  Machagen a theorem	208
Legal electrical units	. xxxvii	Maclauren's theorem	390

PAGE	PAG
Micron, $\mu$ .       7,436         Milky way, pole of       414         Minerals: densities       115         refractive indices: biaxial       286         isotropic       282         uniaxial       284         specific heats       230	Pendulum, second: formula; latitude variation         42           Penetration cathode rays         38           high speed molecules         38           Pentane candle         26           thermometer         19           Periodic system: Hackh         41           Mendelejeff         40           Permeability, magnetic         365 et sec           Persistence of vision         25           Pertol-ether thermometer         19           Phosphorescence (radio-active excitation)         39           Plot         25           Photoelectricity         40           Photographic data: intensification         26           plate characteristics         26           plate characteristics         26           resolving power         26           speeds various materials         26           Physiological constants of the eye         25           Pl (π)         14, 43           Pigments, reflecting powers f(λ)         29           Plose, organ: pitch         14           Pitch:         14
Milky way, pole of 414	Penetration cathode rays
Minerals: densities	Pentana candla
refractive indices; plaxial 200	thermometer
uniaxial 284	Periodic system: Hackh 41
specific heats	Mendelejeff 40
specific heats	Permeability, magnetic 305 et sec
Mixtures freezing	Petrol-ether thermometer
Moduli — see mechanical properties 74-103	Phosphorescence (radio-active excitation) 39
Modull,see mechanical properties   74-103     Mogendorf series formula   275     Moist air, density of   133-135     maintenance of   136     transparency to radiation,   36   to   1.7\mu   411     to   20\mu   308     Molecular collision frequencies   399     conductivities: equivalent   349-352     specific   346-348     crystal units   400     diameters   399, 400     free paths   399     beats of adsorption   407     liquefaction   407     kinetic energy   408     magnitudes   399-400, 408     number in cm², 76 cm, 0° C   408     gram-molecule   408     velocities   399	Phot
Moist air, density of	Photoelectricity 40
maintenance of 135	Photographic data: intensification
transparency to radiation, .36 to 1.7\mu. 411	nlate characteristics
10 20μ 308	resolving power
Molecular comision frequencies	speeds various materials 26
specific 346–348	Photometric definitions, units
erystal units 400	Standards
diameters 399, 400	Pi $(\pi)$
free paths 399	Pigments, reflecting powers f(λ)
heats of adsorption 407	Pipes, organ: pitch
kinetic energy 408	Pitch: 14  organ pipes 14  voice, limits 14  Planck's "h" 40
magnitudes	organ pipes
number in cm ³ , 76 cm, 0° C 408	Planck's "h"
gram-molecule 408	radiation formulæ C ₁ C ₂
velocities 399	Plane, air resistance to
Weights of colloids	Planetary data 41
formulæ	Platinum resistance thermometer
Month 414, 436	thermoelectric thermometer 19
Mcon: albedo 417	Poisson'd ratio
distance from earth, parallax 414	Polonium radioactive series
radiation compared with sun's 415	Polarized light: reflection by 295-296, 29
gram-molecule 408 velocities 399 weights of colloids 406 Moments of inertia: earth 427 Month 507 Month 414, 436 Meon: albedo 417 distance from earth, parallax 417 radiation compared with sun's 415 Musical scale 148 tone quality 149 Mutual induction 376	rotation of plane 31
Mutual induction	magnetic 378-38
	Positive rays
Nernst thermomagnetic potential difference 385	Potential (emf): accumulators
Neutral points, thermoelectric 317	cells voltaic 312-31
Neutralization, heat of	contact 314, 316, 40
Mickel, Reft's constants for	ionizing 40
resistance in magnetic field 284	rellier
Nitrogen thermometer	Various
Nitroso-dimethyl-aniline, refractive index 280	resonance 40.
Nuclear charge, atomic 393, 401	standard cells 31
Nuclear charge, atomic       393, 401         Number of stars       417         Numbers atomic       409         X-ray spectra and       390-393	thermo-electric 317-32
Numbers atomic 409	Wasten normal
X-ray spectra and 390-393	portable xlii
Numbers: magnetic character 433	Poundal
sun-spot	Precession 41.
144	Pressure: air, on moving surfaces 150-15:
Observatories, magnetic elements at 434	parometric, reductions, capitarity 14.
Observatories, magnetic elements at	temperature 13
clectrical equivalents 311	boiling water 14
Oersted	Pitch:
Ulls, Viscosity of	mercury columns
Olls, viscosity of	water columns
	Pressure effect on boiling points
Drgan pipes, pitch	melting points 200
Organic compounds: boiling points 203	resistance electrical 320
densities 203	Drogging upper clockel methyl and othyl
melting points 203	aqueous (steam tables 224) 182-186
Organic Saits, Solublitties	elements
times of wires, temperature variation 101	elements
Overtones	salt solutions
$\pi$ pi	
P-limit (proportional limit) 74 et seq.	Probability integral
Parallar calar lunar	inverse
stellar	Proportional limit (P-limit)
Parsec	Probable errors
Partials (sound)	
Particle, smallest visible 406	Quality, tone
Peltier effect: 317, 321	Quality, tone
pressure enect 320	transmission of radiation by 305

PAGE	PAGE
R, gas constant 408	Refraction index: air, $f(\lambda)$
p, Poisson's ratio	alum
eircular functions in terms of	1815 200
Radiation: black-body, formulæ 247	fluorite, f(t) 280
$f(\lambda,T)$	fluorite, f(t)
total, $f(t)$	grasses, American, $f(\lambda)$
candle	Jena, f(\(\hat{t}\)
cooling by, across airspaces 253	liquids
	liquefied gases 289 microscopic determination media . 294
ordinary temperatures 253 pressure effect 251-252	minerals, biaxial, positive 286
emissivities 249, 250	negative 287
emissivities	isotropic 282
moon's compared to sun's $\dots \dots \dots$	uniaxial, positive 284
Planck's formula	miscellaneous, biaxial 289
σ, Stefan's formula 247 solar constant of 418	isotropic 283 uniaxial 285
variation with latitude	nitroso-dimethyl anillne 285
month 420	l nile 280
Stefan's formula 247	quartz
sun's to earth	rock-salt, f(t) 279
temperature as function of	silvine
transmissibility of by air, moist . 308, 419	vapors
alum 305	waxes
crystals, $f(\lambda)$ 305	Relative humidity, vapor pressure and dry 187 wet and dry 189
transmissibility of by alr, moist . 308, 449 alum 305 atmosphere . 308, 449 erystals, $f(\lambda)$ 305 dyes, $f(\lambda)$ 301 fluorite, $f(\lambda)$ 305	Resistance, air (aerodynamical) 151-153
fluorite, $f(\lambda)$ 305	planes 151
glass, f(\hat{h}) .302-304 ice-land spar 305	Resistance, air (aerodynamical)
	shape factor
long-wave, f(λ) . 309	shape factor
quartz, $f(\lambda)$ 305 rock-salt, $f(\lambda)$ . 305	SKIN ITICLION
water, $f(\lambda)$ 307	skin friction
visibility of by eye 256, 258	alloys, f(t) 323, 327-328
Radio-activity	wire tables
α rays: helium 394	alloys, f(t)
kinetic energy	antennæ (wireless) 364 copper, f(t)
number produced 396	reduction to standard temperature 335
Radii of gyration   70   Radio-activity   394-398   α rays: helium   394   398     398     398     398     398     398       396       396       396       396       396       396       396       396       396       396       396       396       396       396       396       396       396       396       396           396         396	wire-tables, English units 336
stopping powers for 395	metric units 339 dielectrics, volume, surface 331
velocity, initial 396 actinium group 396	electrolytic, see conductivity 345-352
$\beta$ rays: absorption coefficients . 395, 397	equivalents 311
ions produced 398 velocities 397	glass, $f(t)$
γ rays: absorption coefficients . 395, 397	high temperature values 330
ions produced 398	low temperature values 330 magnetic field, effect of 384
constants, various 396-397	mercury resistance standards xxxviii
Curie unit	metals, $f(t)$ 323
general characteristics 394	porcelain, $f(t)$
heating effects	pressure effect
ions produced by $\alpha$ , $\beta$ and $\gamma$ rays . 398	standards, mercury
isotopes 410	thermometer, platinum resistance 195
ions produced by $\alpha$ , $\beta$ and $\gamma$ rays 398 isotopes	volume, of dielectrics
	wire, auxiliary table for computing 322 wire tables, aluminum, common units . 342
radium group	metric
standard, international 394 thorium group 396 transformation 396, 410 transformation constants	copper, common units 336
transformations 396, 410	
transformation constants 396 vapor pressure of emanation 398	Resonance potentials (spectra)
Radium emanation, vapor-pressure	Resolving power photographic plate
group	sensitiveness to light and colors 256-258
Radius hydrogen atom	Rigidity of earth
Reciprocals	Rigidity modul, f(t) 100 Ritz spectrum series formula 275 Rocks, specific heats of 229 Rock-salt, index of refraction 279 Rods in retina of eye 258
Reflection of light: formulæ 297	Rocks, specific heats of
long-wave 309	Rock-sait, index of refraction
	Röntgen rays:
f(n,i) 297	Röntgen rays:
miscellaneous 298 $f(n,i)$ 297 pigments dry, $f(\lambda)$ 299 polarization by 297	atomic numbers and spectra 390-393
rough surfaces 200	corpuscular radiation
stellite	atoline influencies a 390-393 cathode efficiencies . 387 corpuscular radiation . 387-388 characteristic radiations . 387 energy relations . 387 general radiations . 387
variation with angle 300 temperature 300	energy relations
	3

PAGE	PAGE
Röntgen rays: heterogeneous radiations 387	Solutions: refractive indices   291
homogeneous radiations 387	specific heats
independent radiations 387	surface tensions
intensity	vapor pressures
V gering of redictions	viceocities specific 750 162
homogeneous radiations   387     independent radiations   387     intensity   388     ionization   388     K series of radiations   390     L series of radiations   391     M series of radiations   392     monochromatic radiations   387     secondary radiations   387     secondary radiations   387     spectra: absorption   393     K series   390     L series   391     M series   392     tungsten   392     ware-length and cathode fall   387     Roots of Bessel functions, 1st and 2nd orders   68	Sound, velocity of: gases
M series of radiations	liquids
monochromatic radiations 387	solids
secondary radiations 387	waves, energy of
spectra: absorption : 393	Sparking potentials: air, alternating potentials 353
K series 390	rtendy potentials 354
M ceries	dielectrics
timesten	kerosene
wave-length and cathode fall 387	Specific heat of electricity 317
Roots of Bessel functions, 1st and 2nd orders 68	Specific heats: ammonia, sat. liq
Roots square	elements
Rope, manilla, mechanical properties 95	gases, also c _p /c _v
steel wire, mechanical properties	mercury 227
magnetic	minerals and rocks
Rough surfaces, reflecting power	rocks
Rowland solar wave-lengths	silicates
Multipletic, moduli of a a a a a a a a a a a a a a a a a a	solids
Rutherford atom         401           Rydberg constant         408           Rydberg series formula (spectrum)         275	vapors
Rydberg constant	Water
Rydberg series formula (spectrum) 275	specific gravities (see densities) 109–135
σ. Stefan-Boltzmann	Specific inductive capacities: crystals
Salt solutions: boiling point raising 210	gases, f(t,p) 356-357
conductivity thermal 216	liquids, f(t) . 357-359
freezing point lowering 208	solids 360
vapor pressure	std. solutions 360
Scales, musical	Specific molecular conductivity 347–348
Sergens color 206-207	Specific resistance, see resistivity 323-320
Second pendulum, formula	Spectrum: black-body intensities
sea-level values, $f(\phi)$ 419	elements, international units 267, 270
Secohm xliv	eye sensitiveness, $f(\lambda)$
Secondary batteries	iron standards, international units . 266, 267
σ, Stefan-Boltzmann	minercury   227   minerals and rocks   229   rocks   229   solids   227   solids   227   solids   227   vapors   230   vater   227   Specific gravities (see densities)   109-135   conversion of Baumé   109-135   conversion of Baumé   109-135   solids   360   std. solutions   360   solids   360   std. solutions   360
Sensation Minimum energy of light for	
Sensitiveness of eye to light and radiation	solar: intensities of energy 418 Rowland wave-lengths 272 cor. to intern. scale 272
Series, mathematical	cor. to intern. scale 272
Series spectra: Balmer formula 401, 275	standard wave-lengths, intern. units, 266-267
first terms	stellar
limits of	wave-lengths standards 266, 267
Pitz formula	
Rydhero formula	X-ray: absorption
vibration differences	K series 390
Sheet metal, weight of	L series 391
Silver, electrochemical equivalent 345	M series
Silver voltameter	tungsten
Sines natural and logarithmic circular	Spherical harmonies 64
hvnerholic	A-ray: absorption   393   393   394   396   396   396   397   397   398   K series   390   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498
Sky brightness	Squares of numbers
Skin friction, air resistance	Square roots of numbers
Soap films	Squares, least, — formulæ and tables 56-59
Solids: compressibility	Standard cells, emf of
densities 314, 316, 404	radium, international
dielectric constants	resistance mercury
expansion coefficients, cubical	temperature calibration points
linear 218-220	wave-lengths: primary (international) . 266
hardness	secondary (international) . 266
magneto-optic rotation	tertiary (international) 267 reduction to std. pressure 268
retractive indices	reduction to std. pressure . 200
velocity of sound	Standards: electrical, international xxxviii
Sensation, Minimum energy of light for         261           Sensitiveness of eye to light and radiation         256-258           Series, mathematical         401, 275           first terms         276           limits of         276           Morgendorff formula         275           Ritte formula         275           Rydberg formula         275           Negendorff formula         275           Rydberg formula         275           Sheet metal, weight of         116           Silver, electrochemical equivalent         345           Silvier, electrochemical equivalent         345           Silvier, refractive index         279           Sines, natural and logarithmic, circular         32           Skiv brightness         419           Skin friction, air resistance         152           Soap films         174           Solids: compressibility         108           contact potentials         314, 316, 404           densities         113           dielectric constants         360           expansion coefficients, cubical         227           linear         218-220           hardness         74 et seq, 101           magneto-optic	photometric
Solubility: gases in water	Stars: brightness
pressure effect 171	densities 413
Velocity of sound	fundamental   xxxiii   fundamental   xxxiii   fundamental   xxxiii   fundamental   xxxiii   fundamental   xxxiii   fundamental   260   xxxiii   fundamental   413   densities   413   distances   412   equivalent 1st magnitude   417   first magnitude   data (positions, etc.)   415   Harrard elassification   415   Harrard elassification   415   fundamental   415
organic, f(t) 170	equivalent 1st magnitude 417
conductivity electrolytic	Harvard elegification (positions, etc.) 415
thermal 340-352	light total
densities of aqueous	Harvard classification
thermal	masses 413 motions 412 number of 417 parallax 415
dielectric constant, calibration stds 360	motions 412
receing points lowering by salts in 208	number of 417
magneto-optic rotation by 381	parallax 415

PAGE	PAGE
Stars; size	Thermal conductivity: insulators 214-216 high tempp. 214 liquids 217 metals, high temper-
spectra	high temp. 214
temperatures, surface 411	liquids 217
velocities 412, 415	metals, high temper-
Steam tables	ature 213
Steel: magnetic properties 307–370	salt solutions 216 water 216
Ctofon Poltamoun constant and formula 247	water   216
Steinmetz magnetic constant	Thermal expansion: cubical: gases
Stellite reflecting powers	liquids 221
Stem correction for thermometers 190-191	solids 220
Stokes law for falling bodies 150	linear: elements 218
Stone, mechanical properties 92	míscellaneous 219
Storage batteries	Thermal unit: British 435
Strengths—see mechanical properties 74-99	calorie
Sucrose, viscosities of solutions, I(t)	Thermo-chemistry heat of combustion carbon and 247
Sulphuric acid densities aqueous solutions	coals 242
Sun: anex of solar motion	cokes 242
Sun: apex of solar motion	
disk brightness distribution 418	gases 242 liquid fuels
distance to earth 414	miscellaneous .241
Fraunhofer lines	peats 242
magnitude, stellar 413	heat of dilution, $H_2 S O_4$ 246
motion 411	formation 245
numbers, won 8 sun-spot 415	ions 246 neutralization 246
disk originates distribution	Thermodynamical scale of temperature, ice-point . 195 Thermoelectrical properties: (emf) alloys 318
constant (solar constant) 418	Thermoelectrical properties: (emf) alloys 318
variation with month and latitude 420	platinum 319
spectrum: energy intensities 418 Fraunhofer lines 265	elements 317 Peltier 317, 321
Fraunhofer lines 265	Peltier 317, 321
Rowland's wave-lengths 272 spot numbers, Wolf's 415	pressure effects . 320
spot numbers, Wolf's 415	Thomson . 317, 320
relegity 47.7	Thermoelements, calibration of
wave-lengths Fraunhafer lines	Thermomagnetic effects
Rowland's	Thermometry: absolute zero
17	air - 16111 o° to 300° C 193
Surface resistivities, solid dielectrics 331	59III, 100° to 200° C 193
Surface tensions 173, 174	59III, high temperature 194
Surface tensions	Thermogalvanometric effect
elements, etc 377	gas-mercury, formulæ, comparisons 192-194 hydrogen—16III, 0° to 100° C 192 16III, 59 — 5° to —35° C 192 various 194
Tangents circular, nat. and log., $f(^{\circ}, ')$ 32	192 refill 50 to 100° C 192
f(radians)	-35° C
hyperbolic, nat. and log	various 194
Taylor's series	various
Telegraphy, wireless:	Kelvin scale 193
Temperature, black-body scale for W 250	mercury of with gas 190-194
brightness black body as function of. 261	platinum resistance 195
brightness scale for C 250	stem corrections
color scale for W	thermodynamic scale ice-noint
earth f(altitude)	thermo-electric, Cu-Constantan 196
earth: f(altitude) 421 f(latitude) 422	Pt-PtRh 196 Thomson thermo-electric effect 317, 320
monthly and yearly means 420	Thomson thermo-electric effect 317, 320
variation below surface 422	Thorium radio-active group, constants of 306
flame temperatures 244	Threshold sensitiveness of eye
ignition gaseous mixtures 244	Timber, strength of 96-99
standards xxxiv	Timbre (sound)
standards	Time, equation of       416         Time, solar, sidereal       414         Time standards       xxxiv
sun's 418	Time, solar, sidereal 414
thermodynamic 195	Transformation constants of radio-active substances. 396
zero absolute	Transformation points of minerals 207
Tensile strengths, see mechanical properties 74-99 Tension, surface	Transmissibility to radiation: air. moist 308.410
Tensions vapor see vapor pressures	atmospheric 418
Terrestrial magnetism: agonic line 425	crystals, various 306
Tensions, vapor, see vapor pressures	dyes 301
up 422	glass, American . 303, 304
inclination 422	Jena 302
intensity, horizontal 431	water 307
total 424	water-vapor 308, 419 Trigonometric functions: circular, (°') nat., log 32
magnetic character, yearly 425	(radians), log 37
observatories, elements at . 426 Thermal unit, British 435	hyperbolic not log 41
Thermal unit, British 435 standard calorie 435	hyperbolic, nat., log 41 Tribo-electric series
Thermal conductivity: alloys, metals 213	Tubes, flow of gas through
building materials . 215	Tuning forks, temperature coefficients 149
earth 422	
gases 217	Ultimate strengths of materials, see Mechanical.
high temperature 254	properties 74-99

PAGE	PAGE
Units of measurements, see Introduction xxiii electrical, absolute xxxvi internationalxxxvi	Voltaic cells; comp., emf: double fluid 312
electrical, absolute xxxvi	secondary
Internationalxxxvi	single fluid 313
legal xxxvii practical xxxvi	standard
fundamental xxiii photometric	Single fluid   313   standard   313   standard   313   Standard   313   Storage   313   Volts, electrical equivalents   311   Volts, legal, international   Xil, 311   Volume atomic, 50° K   226   critical for gases   212   glass vessels, determination of   72   gases, f(p)   104-106   f(t)   128-132   mercury, -10° to +360° C   121   resistance of dielectrics   331   specific of elements   225   water, 0° to 40° C   119   -10° to 250° C   120   Vowels, tone characteristics   149
photometric 260	Volts, electrical equivalents
radioactive 394	Volts, legal, international xli, 311
work, transformation factors 197	Velume atomic, 50° K
Uranium group of radio-active substances 390	critical for gases
v, ratio electro-magnetic to -static units xxx, xxxvi	gases f(n)
Vicero reduction of densities to 73	f(t)
weighings to	mercury, -10° to +360° C 121
Valencies of the elements	resistance of dielectrics
Vanorization latent heat of:	specific of elements
ammonia 232	- 10° to 250° C
Valencies of the elements	Vowels, tone characteristics
formulæ 232	
Vapor processor alaskal athyl	Wasi's (van der) constants
methyl	Water: boiling point, f(p)
aqueous (see water below) 183, 234	solutions, ethyl alcohol 124
carbon disulphide 179	diversol x=6
elements	methyl alcohol 126
radium emenation 208	sucrose 156
salt solutions	150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150
various 179–180	reezing point, f (pressure)
water: atmospheric via wet and dry	freezing point, f(pressure) 200
elements, theoretical   233   formulæ   232   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234   234	ionization of
saturated 182	melting point, f(p) 200
steam tables 234	pressure (nyurostatic) of columns of 136
Vapor, water; weight per m ³ and ft ³ 185	densities, see water, density solu-
Vapors: densities	tions 118-126, 156, 159-163
heats of reportsetion 221-220	diffusion 166
heats specific	electrolytic conduction 346-352
pressures, see vapor pressures 175-186	densities, see water, density solutions   118-126, 156, 159-163     diffusion   18-126, 156, 159-163     diffusion   166-352     electrolytic conduction   346-352     freezing points   208     viscositles   156, 159-163     specific heat   227     thermal conductivity   216     transparency to radiation   307     vapor pressure   234-239, 183-184     vapor pressure of in atmosphere   185-189     viscosity, f(t)   155     volume o° to 40° C, -10° to 250° C. 119, 120     Water-vapor, determination in atmosphere, via wet and dry sea-level   186
refractive indices 292	specific heat
specific heats	thermal conductivity
water transparency to radiation 208 410	transparency to radiation 307
Velocity of light 408, 414	vapor pressure 234–239, 183–184
molecules 399	vapor pressure of in atmosphere 185-189
sound, in gases 147	volume, 0° to 40° C. — 10° to 250° C. 110, 120
nquius	Water-vapor, determination in atmosphere, via wet
stars	and dry sea-level 186
Sea-level	and dry sea-level 186 various altitudes 185 relative humidity via wet and dry 189
Verdet's constant (magneto-optic) 378-382	dry and vn tx7
liquide 280	in atmosphere, f(altitude) 421
solids	transparency 308, 419
solutions, aqueous 381	in atmosphere, f(altitude) 421 transparency 308, 419 weight saturated per m ³ and ft ³ 185 Watt
Vessels, volume of glass, via Hg	Wave-lengths: Angstrom definition 266
Villari magnetic effect	cadmium red line
alcohol ethyl. f(t. dilution)	cadmium red line
Viscosity: air	
centipoise, definition	elements, international scale
definition	neon international scale 266
gases, temperature and pressure var. 164-165	pipes (sound)
glycerol, dilution variation 156	limits, Hertz, X, visible, etc 408
gases, temperature and pressure var. 164-165 glycerol, dilution variation 156 liquids, f(t) 157-158 specific: solutions, f(dens., t) 159 atom. conc. 25° C 163 sucrose solutions, f(t, dilution) 156 vapors f(n, t)	Röntgen 390–393
specific: solutions, f (dens., t) 159	corrections to Intern $\lambda$ 272
guerose solutions f(t dilution)	solar, Fraunhofer lines 265
vapors. f(p, t)	Rowland
water, f(t)	Rowland
vapors, f(p, t)	standards: international primary 266
relative of various colors	secondary 266–267 tertiary 267
Vision, distinct	vacuo, reduction to
persistence of	vacuo, reduction to
white lights 260 Vision, distinct 258 persistence of 258 Voice, pitch limits of 149 Voltages: accumulators 313 contact 314, 316, 404 Petiter 321 standard cells 313 thermoelectric 317–320 pressure effect 320 voltaic cells 312–313	X-ray 390-393
voltages: accumulators	Waves, energy of sound
Peltier 314, 316, 404	Weight sheet metal
standard cells	Weight sheet metal
thermoelectric	Weights and Measures: customary to metric
pressure effect 320	metric to customary 6 metric to imperial 8
pressure effect	metric to imperial 8
Weston portable	imperial to metric 10 miscellaneous
Tresport becomes a a a a a a a a vital	aniscentaneous 7.

PAGE		PAG
Weston normal cell xli	X-rays:	383-39
Weston portable cell xliii	absorption coefficients (mass)	38
Wiedemann magnetic effect	atomic numbers and spectra .	390-39
	calcite grating space	40
Wind pressures 150-153	cathode efficiencies	
Wire gages, comparison	characteristic radiations	
Wire, mechanical properties: copper 82-83	corpuscular radiation	387-38
steel 78	crystals, diffraction with	40
steel rope and cable . 79.	energy relations	
Wire resistance, auxiliary table for computing 322	general radiations	
Wire tables: aluminum, English measures 342	heterogeneous radiations	
metric measures 343	homogeneous radiations	
see also 334	independent radiations	
copper, English measures 336	intensity	
metric measures	ionization	
see also 334	K series of radiations	
temperature coefficients .334, 335	L series of radiations	
reduc. to std 335	M series of radiations monochromatic radiations	
Vires, alternating-current resistance 344	secondary radiations	
carrying capacity of	spectra: absorption	30
high-frequency resistance	K series	
Wires, heat losses from incandescent, bright Pt 255	L series	30
	M series	20
Pt sponge . 255	tungsten	
Wireless telegraphy: antennæ resistances 364		390-39
wave-lengths, frequencies, oscil-	wave-lengths and cathode fali	
lation constants 362		
Wolf sun-spot numbers, 1750 to 1917 415	Years	
Woods: densities 96-99, 112	Yearly temperature means	
mechanical properties: conifers, Eng. units. 99	Young's modulus, definition	7
metric units 97	values	74-10
hard wds, Eng. units 98	Yield point (mechanical property) .	• • • • 74-10;
metric units 96	Zero, absolute, thermodynamic scale .	
Work, conversion factors	Zonal harmonics	6