DIMENSIONAL RELATIONSHIPS FOR FLYING ANIMALS

By
CRAWFORD H. GREENEWALT
President, E. I. du Pont de Nemours \& Co.

(Publication 4477)

CITY OF WASHINGTON

FOREWORD

Many of the data on the dimensions of flying animals are found in journals which are not readily accessible. Aside from Sotavalta's papers on insects, published within the past 15 years, the significant references are also many years old, harking back to an era when such studies were undertaken primarily to provide inspiration for the development of aircraft.

The literature is quite extensive for insects, for birds, and even for bats. Furthermore the results of the several investigations appear consistent among themselves, leading to the presumption that a reasonable degree of precision obtains for all the great mass of available data.

It seemed worthwhile first to bring these scattered sources together in one publication, and second to plot the various dimensions against each other to determine how well the principles of dimensional similarity hold for so diverse a collection of flying animals. The figures speak for themselves. The text has been added by way of summary and to point out certain anomalies which appear to provide exceptions to nature's usual sense of orderliness. The scientific names in the tables are given as they appeared in the original publications, in the belief that few identification difficulties will arise.

There is no claim to originality in what follows. I shall be quite content if it is useful, perhaps even stimulating, to entomologists and ornithologists.

Crawford H. Greenewalt
Greenville, Delaware
November 1960

DIMENSIONAL RELATIONSHIPS FOR FLYING ANIMALS

By CRAWFORD H. GREENEWALT
President, E. I. du Pont de Nemours \& Co.

For a dimensionally similar series of objects, animate or inanimate, a volume or a mass will be proportional to the cube, a surface to the square, of a linear dimension. If Alice, then, after sipping from the bottle labeled "Drink me," were reduced to one-third of her normal height, her surface would be one-ninth, her weight one twenty-seventh, of its original value. Or if we should plot Alice's weight and that of many other little girls, large and small, against let us say the length of their arms, we should find in logarithmic coordinates a straight line whose slope is 3 , or in mathematical terms

$$
W=c l^{3}
$$

where W is weight, l is length of arm, and c a constant of proportionality.

For cats or for mice the result should be the same with, however, a different value for c, meaning simply that cats or mice are dimensionally similar within their families but not with each other, or for that matter with little girls.

BODY WEIGHT AND WING LENGTH

We turn now to figure 1 (all figures follow page 7), on which is plotted total weight against wing length for the entire array of flying animals. We see that for body weights ranging from less than 1 to more than 10 million milligrams, weight is roughly proportional to the cube of the wing length.

Insects show a much greater "scatter" than birds, evidence I suppose of nature's versatility in designing many models of animate aircraft at the lower end of the scale. The highest values of wing length per unit weight are found for the dragonflies and damselflies, for certain butterflies, and for such insect specialties as the craneflies and mosquitoes. Except for the dragonflies, these are rather poor fliers with low wing-beat rates. Lowest relative wing lengths are for the

[^0]bumble bees whose bulky, heavy bodies make one wonder how they can manage ever to become airborne. What might be called the "main sequence" of insects falls on a straight line well below that for the birds. One might expect this to mean a generally poorer flight performance, but this does not necessarily follow, since in appraising aerial ability one must also take wing-beat rate and muscle weight into account.

For birds, excluding for the moment the hummingbirds, the scatter is much less, particularly at the small end of the scale. In general the soaring birds have long wings, the gallinaceous birds short wings per unit of total weight. When one considers the aerodynamics of soaring this result might well have been expected.

Hummingbirds fall into a very special group, for here nature appears to have devised an unusual model, one in which weight is proportional to the 1.5 power of the wing length. This result is so unexpected that one might well question its validity. In figure 2 the hummingbird region is expanded, and I have plotted separately the two sets of available data. Their self-consistency leaves little room for doubt of the basic relationship. Hummingbirds cover only a small part of the roster of flying animals, and it should be noted that extrapolation of the hummingbird line either to larger or smaller body weights would lead to aerodynamic monstrosities. I can offer no rationale for the anomaly. Hummingbirds are excellent fliers, and it may be that their peculiar dimensional relationships contribute to this end.

One also sees that the hummingbirds are placed almost exactly in the center of the figure ; hence they may represent a zone of transition between insects and other birds.

BODY WEIGHT AND WING AREA

Figure 3 shows the relationship between body weight and wing area. The results do not differ significantly from those in figures 1 and 2. Note again the much greater scatter for insects, the increasing scatter for birds as size increases, and the anomalous proportions for the hummingbirds. In figure 1, however, wing length for birds is in general greater per unit weight than for insects. Wing area, however, for the long-winged insects is considerably greater per unit weight than for the long-winged birds.

Figure 4 is an expansion of figure 3 for birds (excepting hummingbirds) with a differentiation in charting for selected bird families. We see that in general the birds of prey have the highest, ducks and gallinaceous birds the lowest, relative wing area. Aerial performance does not necessarily track relative wing area. Ducks, for example, are strong and competent fliers, making up for their small wing area by an unusually high wing-beat rate.

Note also that soaring birds, the albatross particularly, are not extraordinary in relative wing area, falling generally in line with the small passerines.

WING LENGTH AND WING AREA

Figure 5 shows the relationship for birds, figure 6 for insects. The birds fall into a very consistent pattern, but here the differences for soaring birds become more apparent. The albatross, for example, has a very long wing per unit area, as does the frigatebird and booby. This means simply that for soaring birds the wings are long and narrow, a condition essential for good aerodynamic stability, which does not require per se a large wing area.

In figure 6, the insects show their unusually large "scatter." We have models ranging from the long, narrow wing of the fruitflies and craneflies to the broad stubby wings of the butterflies. The proportionality constant in the equation relating wing area with the square of the wing length varies through a factor of 5 . For birds the variation is scarcely a factor of 2 .

Figure 7 shows data for bats. One sees that these data are very selfconsistent and that the constant of proportionality is quite close to that for birds. The flying model is similar, much more so than the appearance of the two classes of animals would lead one to expect.

WING SPREAD AND WING LENGTH

In virtually all ornithological handbooks the wing length as given is not the length of the whole wing, but that of what is called the "hand," viz, the distance from the wing tip to the first articulated joint. This practice arises out of the great difficulty in measuring total wing length or wing spread from bird skins, as compared with the relative ease of measuring the length of the "hand." Figure 8 shows Magnan's data on wing spread plotted against the measurements of the length of the "hand." It is essential here to use data from a single investigation since precise measurement of wing spread is greatly influenced by the technique of the particular observer. We see that the two hands average 62 percent of the wing spread. The "scatter" is not great, a tribute to Magnan's self-consistency.

WING AREA AND WING WEIGHT

In dimensional theory, the weight of the wing should be proportional to the cube of its length, or to the 1.5 power of its area. Figure 9 shows the relationship for insects and birds. We see that wing weight is proportional not to the 1.5 power, but to the 1.67 power of the wing area. Since we have previously shown wing area proportional to the square
of the wing length, we must conclude that wing thickness increases with the 1.34 power of the wing length and that the wings include a steadily increasing percentage of total weight as the size of the animal increases.

While we know little about the structural properties of bird and insect wings, it is reasonable to assume that if the thickness increased as the first power of the length, the angular deflection at the wing tip during, let us say, the downbeat would be constant. Since wing thickness actually increases as the 1.34 power of wing length, the angular deflection at the tip must decrease with increasing size (or weight) of the animal. This may be related to maintenance of aerodynamic efficiency with increasing size, but the argument is certainly not an obvious one.

It is even more extraordinary to note that the data for insects and birds fall on a continuous straight line. The materials of which the wings are constructed are totally different for the two classes; a ribbed chitinous membrane for the former and a complex structure of bone, muscle, and feather for the latter. It must, however, follow that the mean density of wings remains the same quite regardless of the material of construction.

It follows from the wing area-wing weight relationship that the weight of the wings will comprise a steadily increasing percentage of total body weight as the size of the flying animal increases. For the mosquito Aedes aegypti, weighing 1 milligram, Sotavalta's data show 0.2 percent of the total weight contained in the wings, whereas for the falcon Gyps fulvus, weighing over 7 kilograms, the wings, according to Magnan, are 22 percent of total weight.

WING-BEAT RATE AND WING LENGTH

There is good evidence ${ }^{1}$ that the beating of the wings of flying animals can be described using the well-known theory for mechanical oscillators. This theory presumes a resonance frequency for beating wings which will be maintained regardless of changes in either external or internal wing loading. It follows then that wing-beat rate will be constant for a particular animal. The equation is as follows:

$$
f^{2}=\frac{K b r^{2}}{I}
$$

where f is the wing-beat rate, $b r^{2}$ is proportional to the weight of the wing muscles, and I is the moment of inertia of the oscillating system, viz, the sum of the moment of inertia of the wings and the internal mo-

[^1]ment of inertia of the wing muscles and whatever part of the skeleton vibrates with them. If we assume $b r^{2}$ proportional to l^{3} (or the weight of the animal) and I to l^{5} (the product of wing weight and the square of a distance proportional to wing length) we see that the product $f l$ should be constant for a dimensionally similar series of animals. We have seen, however, from figure 9 that for the whole roster of flying animals the weight of the wing varies with the 3.3 power of the wing length. Hence it should follow that the constant will be proportional to $f l^{1.15}$ not to $f l$.

In figure 10 we have plotted all available data for wing-beat rate against the corresponding wing length. We see that there is a limiting boundary line which does indeed have the slope 1.15 . Unfortunately the data for birds are quite limited. I have obtained measurements for hummingbirds and for a few small passerines using high-speed cinematography, and Meinertzhagen gives data for a number of large birds whose wing frequencies are sufficiently low to permit visual counting. Even for insects there are insufficient data to show conclusively whether the slope 1.15 is characteristic also for particular families or genera of insects, or whether in these limited ranges a slope of 1.0 obtains. Figure 12 would appear to give some support to the latter hypothesis. Here we have placed the insects in four arbitrarily selected groups with decreasing values for $f l$ assumed to be constant. It is seen that in quite general terms the various genera appear to fall on lines for which the slope is unity.

Whatever the proper exponent for l (and for a particular genus it makes little difference) the product $f l$ appears to define the flying ability of the animal. This would place the fruitflies at the bottom of the list, with butterflies not much better. The best fliers would appear to include many of the Hymenoptera, certain Diptera genera, and a few Coleoptera. The birds in general seem to be more proficient fliers than the insects, with the hummingbirds at least equal to the best in both groups.

The hummingbirds again appear to be anomalous, but the data are not good enough to establish quantitative relationships with sufficient precision. Figure 11 is an expansion of the hummingbird region. The best fit for the data appears to be a line whose slope is 1.25 and this slope correlates well with what one would expect from the other dimensional relationships for the family.

It is to be hoped that many more data for birds will become available in order that these relationships can be more precisely established. Ideally, of course, one should have data on wing length, wing weight, muscle weight, and wing-beat rate for each specific individual. Here
we have had to assume muscle weight proportional to body weight, which is true only in the most general terms.

MUSCLE WEIGHT

In figure 13 we show the weight of the large pectoral muscle plotted against total weight for birds. The large pectoral muscle powers the downbeat of the wings, and so is the prime source of energy for flight. We see that for the entire procession of birds, from a tiny kinglet to a mute swan, the large pectoral averages 15.5 percent of the body weight with very little "scatter" on either side of the mean.

In figure 14 the weight of the large pectoral muscle is plotted against the weight of the wing. Here the scatter is considerably greater and the wing weight increases with the 1.1 power of the muscle weight. Body weight, on the other hand, increases with the first power of muscle weight. The rationale here is based on the data presented in figure 9. We recall that wing weight increases more rapidly than body weight, and since muscle weight is directly proportional to body weight it must also increase more rapidly than the weight of the muscle.

Figure 15 shows the weight of the small pectoral muscle (which powers the upbeat) plotted against body weight. Here we find the same proportional relationship that existed for the large pectoral muscle, but a far greater scatter from the mean. In general the gallinaceous birds have relatively large small pectorals; for soaring birds and birds of prey the small pectoral is a much lower percentage of body weight. The explanation is not readily apparent. Gallinaceous birds are relatively poor fliers, but it is hard to say why this should be associated with a relatively large small pectoral.

In figure 16 the weights of the two pectoral muscles are plotted against each other. We see that on the average the large pectoral has 10 times the weight of the small pectoral. The scatter from the mean is considerable, owing of course to the variability in relative weight of the small pectoral muscle.

The relative muscle weights provide the best available evidence for the presumption that for ordinary birds power for flight is provided wholly by the downbeat of the wings. If we make the reasonable assumption that power output is proportional to the weight of the muscle we see that the small pectoral can provide no more than 10 percent of the power required for flight. Since power must be expended merely to lift the wings, the contribution of the small pectoral muscle to flight may well be considerably less than this percentage.

For hummingbirds the situation is quite different. Large and small pectorals account for 25 to 30 percent of total weight as compared with
an average of 17 percent for ordinary birds. Hence one would expect hummingbirds to be relatively more powerful fliers. The ratio of the weights of the two muscles for hummingbirds is roughly 2 as compared with 10 for ordinary birds. One can then safely assume that both upbeat and downbeat contribute power for flight. This is also what one would expect from the pattern of the wing beat seen in high-speed moving pictures.

In figure 17, total muscle weight is plotted against body weight for insects. We see the usual scatter typical of dimensional data for insects. However, for many insects, notably the Neuroptera, Diptera, and Hymenoptera, total muscle weight is roughly the same percentage of body weight as is found for birds. For the butterflies, however, the musculature is very light, correlating with their poor flight performance.

Admittedly these same data could have been presented in many different ways. No attempt has been made, aside from figure 4, to subdivide the insects and birds into families and genera. Such an effort might well be fruitful, but the data collected here are probably not sufficiently precise to permit more than the broadest generalization. It is possible that relationships such as these will be of significance in taxonomic investigations both for insects and birds. It is to be hoped that someone will find the rather tedious investigations worth the effort.

For insects and Hummingbirds wing length is from wing tip to shoulder joint, for Other Bi length is one - holf the wing spread.

WING LENGTH and BODY WEIGHT
For insects ond other birds
the slape of the lines is 3 ,
the slape of the lines is 3 ,
for hummingbrds if is 1.5

0.000

- Tipuia

Lepidioptero
Odonota

For insects and Hummingbirds wing lengith is measured from wing tip to shoulder joint, for other Birds wing trom wing tip to shoulder joint, for
length is one
half the wing spread

Fig. 2

Frg. 3

| | Black | Green |
| :--- | :--- | :--- |l| Red |
| :--- |
| - Corvidae |\quad Anotidae \quad Ciconiiformes

Total Weight - grams

Fig. 4
Sula bossa.

WING AREA and TOTAL WE/GHT - BIRDS the twa-threds power of the total weight would be consian The plot shows this to be roughty the cose fomilios can, arders ond lomilus Variations formeanmila, foll in a ragion however, of very greot auchs, ior abul 75, for foicons ond allisd goners, "unit wing area "averages obout 20 Alltough precise doto are not avaliodn, it is probabls tho
aveks compensors for their relatively hower wing
with a carraspandingly higher wing beat rote
unit wing oreo as the constiont in the correspond to the A $=C M^{2 / 3}$ The
giren vatues for
C

| | Black | Green |
| :--- | :--- | :--- |l| Red |
| :--- |
| - Corvidae | Anatidae \quad Ciconuformes

Fig. 4

General equation for all lines
(length) ${ }^{2}=c$ (area)
Line c
13.39
$2 \quad 2.72$
31.88
$4 \quad 1.15$
50.66

Norrow wings produce a high value for c
wide wings a low value

Fig. 7

Fig. 8

WING AREA and WING WEIGHT
The equation of the line is
$2570 M=A^{1.67}$
these ore butterflices
nase ore butiorfllos
a low wing beat rote

- a lona nummingbira

The lorgest birds above the line Vulfures, Albotross, etc., are soaring birds and flop their wings very little. Hence the wing is light for a given areo

Fig. 10

Fig. 11

Fig. 12 -Wing-beat rate and wing length for insects

GROUP 1

HYMENOPTERA
ACULEATA
Vespa
MTegachile
Anthidium
Psithyrus
Bombus
Apis

COLEOPTERA DIPTERA
Cetonia
NEMATOCERA
Potosia

Chironomus
BRACHYCERA
Tabanus
Neoitamus
Neoztamus
Volucella
Eristalis
Helophilus

GROUP 2

LEPIDOPTERA HYMENOPTERA HEMIPTERA COLEOPTERA DIPTERA

SYMPHYTA ODONATA Trichiosoma Sirex
ACULEATA
Camponotus
Andrena
Eucera
Ammophila
Aeschna
2

Hemaris
Chacrocampa Deiliphila Sphinx
Aegcria Cossus

NEMATOCERA
Creothilus Amphimallon Melolontha Trichius Saperda Cerambycidae Macroglossum Geotrupes

GROUP 3
LEPIDOPTERA HYMENOPTERA HEMIPTERA COLEOPTERA DIPTERA

SYMPHYTA
Diprion
ACULEATA
Colletes
TEREBRANTIA Amblyjoppa Colichncumon Opheltes Paniscus Eniscospilus Ophion Agrypon

ODONATA
HETEROPTERA
Mesocerus
Carpocoris
Dolycoris
BLATTARIA
Periplaneta
Aphodius Dermestes Pachyta

NEMATOCERA Tipula Pachyrrhina Limnobia Simulium
BRACHYCERA
Musca Chrysops

Fig. 13

Fig. 14

Fig. 15

Large and Small Pectoral Muscles for Birds
The average ratio large to small muscle is 10
$\frac{1}{10} \frac{1}{100}$

Fig. 17

Fig. 16

METHODS EMPLOYED IN OBTAINING DATA FOR TABLES 1-3, FROM O. SOTAVALTA

Wing frequency:

All papers-"Flight tone": Sotavalta has the gift of perfect pitch and made nearly all his measurements by the "acoustic" method. He reports a possible error in his determinations of -5 to +1 percent. Data are given which show his "acoustic" method to be in close agreement with direct stroboscopic measurements.

Total weight:
1947-Weights determined using "in most cases" a balance with a sensitivity of $\pm 1 \mathrm{mg}$. after exposure of the insect to HCN vapor for 10 to $15 \mathrm{sec}-$ onds.
1952
1954 \}As above, but with a more accurate balance.

Wing length:

All papers-Measured using a common millimeter rule with an accuracy of $\pm 1 / 2$ to 1 mm . Distance is the "direct distance from the wing tip to the articular point."

Wing area or total sustaining surface:
1947-Measured by tracing the contour of the entire insect with spread wings on millimeter cross-section paper, "the wings then being fresh in their assumed striking position straight aside." This gives the "total sustaining surface."
1952-Measured as above but here the area of all wings alone was measured. This gives true "wing area" of all wings.

Wing weight:

1952-Weighings made on a microchemical balance with an accuracy of 1 microgram. For very small wings, several were weighed together and the average weight computed.
1954-As above but with a torsion microbalance of 5 micrograms sensitivity.
Moment of inertia of wings:
1952 Determined by summation of the weights of small wing slices multiplied
1954 by the square of the distance of the slice from the articular point.

Table 1.-data from o. sotavalta, acta entomologica fennica, PT. 4 (1947)

	Wing. beat rate sec-1	$\begin{gathered} \text { Body } \\ \text { weight } \\ \text { mo. } \\ \hline \end{gathered}$	Wing length m.	Total sustaining surface mm."
Lepidoptera :				
Papilio muchuon	5.5	369	43	2,064
" " (on a flower)	5	610	49	2,810
(fixed)	9	610	49	2,810
Pieris napi ..	6	47	22	686
Goncpteryx rhamni	6.7	168	28	1,128
Vancssa antiopa	10	495	38	2,030
Hembaris fuciformis	85	241	22	440
Chacrocampa elpenor	58	642	30	750
." -."	57	450	31	770
porcellus $\hat{0}$	71	308	21	426
\cdots	71	353	22	477
9	65	496	25	589
9	67	272	20.5	462
¢	69	334	22	520
Deilephila galii .	52	765	32	934
Sphinre ligustri ô	30	1,645	51	2,057
.. -."	28	2,288	53	2,360
\cdots pinustrio	42	+77	34	934
$\cdots{ }^{-}$-	37	520	38	1,041
- ". ô	35	530	39	1,287
Acronjeta atricoma 9	53	217?	15	278
Agrotis occulta	30	252	27	830
Sora ribricosa	4	125	16	
" "	55	165	17	
Characas graminis ô	71	65	12	246
Hadena lateritia	45	332	22	
" monoglypha	53	230	22	572
Hydroccia fucosa..	61	100	16	307
X l lina ingrica...	49	210	20	
Catocala frarini ...-.............................	12.5	1,235	47	2,710
Geometra papilionaria	10	80	24	716
Acgeria ariformis ot	87	310	16	...
-. ${ }^{\text {- }}$ ¢	75	485	20	. . .
	4	997	27	
	37	2.645	38	1,694
" " ¢	+1	1,730	35	1,326
Hyamentera:				
Symphyta				
Difrions sp.	123	68	8	. .
Tricliosoma lucormm	73	265	20	.
Sirer gigas \&	69	440	26	. .
Aculeata				
Camponotus herculeanus $¢$.............	73	120	15	
	143	86	11.5	
	165	224	14	166
" " ¢	175	70	10	S0
Colleters cunicularius	117	107	10	
- Andrena roga ô........	132	154	13	137
Encera longicornis ¢ .	170	150	11.5	
Megachile lagapoda ò	214	153	11	
"6 "	205	214	12	
" ¢	175	136	12	

TMaber 1.-conlinued

Aculcata, Continued 115				
Megachile lignisca ${ }^{\text {P }}$..................	233	115	10	
" rolundata ㅇ…..............	277	38	16.5	
Anthidium manicatum oे -..............	233	171	11	
" ${ }_{\text {a }}$ ¢	233	90	8.5	
" \quad ¢	196	104	9.5	
I'sithyrus rupestris \%	123	541	18	361
"sil bohemicus ${ }^{\text {a }}$-.......................	123	715	19	
Bombus hortorum of	139	195	14	217
	1.31	533	16	262
، " ${ }_{\text {¢ }}$	127	450	17	368
" ، 8	147	337	15	...
" cquestris प	262	58	8	\cdots
" hypnorum ?	150	485	16	
" ${ }^{\text {a }}$ " ¢	139	380	16	308
" agrorum ?	170	225	13	192
" lupidarius?	165	537	16	284
" lopid ¢ ¢	161	534	16	270
" " ${ }_{\text {¢ }}$-............................	161	487	16	
" ruderarius $\stackrel{\circ}{\circ}$..........................	185	302	13	210
" pratorum प7	233	101	9	90
" lucorum of	147	520	16	\ldots
	161	487	16.5	
Apis mellifica प्र	233	85	9	86
"، "	225	99	10	\cdots
" प	225	97	9.5	\ldots
، " प ¢	230	100	9.5	\ldots
" " ¢ ¢	230	99	10	\ldots
" प प	240	98	10	...
" प +	247	94	9.5	\ldots
" " प	247	101	10	\ldots
" " T	214	65	9	
" प	230	91	10	89
Terebrantia 165				
Amblyjoppa proteus	$\begin{array}{r} 82 \\ 123 \end{array}$	165 32	10.5	
Coclichnoumon comitator	123 52	95	20	
Opheltes glaucopterus	55	120	20.5	
	78	20	10.5	
Paniscus opacu	78	22	10.5	
" "	71	45	13.5	\ldots
Enicospilus ramidulus ㅇ	73	25	11.5	
"niu " merdarius ..	82	25	11	141
Ophion luteus	64 55	45	14 15	141
"، "،	55	48	15.5	
"	55	35	16	
Agrypon anxium	78	11	9	49

Hemiptera:
$\begin{array}{lll}\text { Hetcroptera } \\ \text { Mesocerus marginatus } & 120 \\ \text { Carpocoris purpureipennis.............. } & 117 \\ \text { Dolycoris baccarum o ㅇ.............. } & 116\end{array}$

85	10	\ldots
74	10	$\dddot{84}$
48	8	

Table 1.-continued

Diptera:

131	12	\ldots
81	13	\ldots
88	13	\ldots
78	12.5	\ldots
42	10	\ldots
60	12	100
79	12	100
36	10	65
75	12	\ldots
200	15	\ldots
125	14	\ldots
101	11	\ldots
83	11	\ldots
116	11.5	\ldots
104	12	\ldots
174	13	100
165	13	160
150	13	160
130	13	160

Table 1.-concluded

	Wingbeat rate sec-1	Body weight $m g$.	Wing length nm .	Total sustaining surface $m m$. ${ }^{2}$
Diptera, Continued				
Brachycera, Continued				
Helophilus trivittatus	222	89	11	
Drosophila funebris	170	6	4	
Nematocera				
Tipula excisa ${ }^{\text {os }}$	49	32	17	145
" lateralis ô .-..........................	67	32	13	75
	52	59	18	
" selene ㅇ	49	90	23	
Pachyrrhina analis	62 ?	14 ?	18.5	
" lincata	87	10	10	...
Limnobia quadrimaculata	55	29	15.5	
Culicidae sp. 大	523	2.5	4	10
، " $¢$...............................	277	5	6	...
" " $¢$	277	2.5	5	...
" " 9	262	5	6.5	
" " ¢	270	5	6	
Anopheles maculipennis ㅇ․	240	4	6	16
Theobaldia alaskaënsis ㅇ.	233	10	7.5	
	311	13	7	24
" " ${ }^{\text {a }}$................	330	8	7	29
" " \hat{o} (s. sp.) .-	494	8	7	29

Table 2.-Data from o. sotavalta, ann. zool. soc. "vanamo," vol. 15 , no. 2 (1952)

Table 2.-concluded

	Wingbeat rate sec-1	Body weight mg.	Wing length $m m$	$\begin{aligned} & \text { Wing } \\ & \text { area } \\ & \text { mm. } 2 \end{aligned}$	$\begin{gathered} \text { Wing } \\ \text { weight } \\ m g . \\ \hline \end{gathered}$	Moment of inertia of wings \qquad
IIptera, Continued						
Brachycera, Continued Drosophila inclanogaster	185	0.740	2.0		(0.0027)	(0.0017)
Nematocera						
Tipula sp.	63	21	15.5	75.5	0.460	29.0
" "	42	35	20.3	138	0.865	100
" "	63	30	15.5	87.9	0.655	44.1
" " ...	49	34	18.5	125	0.890	86.2
" " ..	49	30	18.5	130	0.930	83.2
" ، ...	49	21	16.1	90.7	0.720	55.7
			16.9			
" "	63	20	12.7	61.4	0.465	13.9
"	49	75	20.0	152	1.385	132
" " ...	48	23	18.5	131	0.930	71.4
" ، ...	48	22	17.9	120	0.875	74.6
" " ..	48	22	17.0	106	0.785	51.5
" " ..			19.7	123	0.940	104
" ، ...-	49	25	16.5	101	0.785	54.3
Trichocera sp. .---.-.-...............	67	1.565	7.2	21.3	0.050	0.674
" "	80	0.830	6.5	18.0	0.025	(0.30)
Theobaldia annulata	262	9.900	6.2	16.9	0.065	60
	600	1.025	2.8	16.3 2.4	0.060 (0.0022)	0.62 (0.003) (0.020)
" ${ }^{\text {a }}$	360	1.890	3.5	5.0	(0.0080)	(0.020)
Culicidae sp. ¢	277	5.800	5.9	15.0	0.040	(0.30)

Table 3.-data from o. sotavalta, ann. entomologica fennica, vol. 20, no. 3 (1954)

Table 4.-data from b. hocking, trans. roy. entomological soc., vol. 104, PT. 8 (1953)

	Wingbeat rate sec-1	Wing area $m m .^{2}$	Wing length mm .
Hymenoptera:			
Aculeata			
	198	28.3	9.2
Diptera:			
Brachycera			
Tabanus affinis	119	57.4	14.3
" septentrionalis	98	29.3	10.2
Chrysops furcata	110	21.9	8.6
" nigripes	109	18.9	8.1
Drosophila .-..--	208	1.5	2.14
Nematoccra			
Aёdes campestris ...-..........................	322	6.4	5.3
" commttiis	216	3.9	4.4
" nearcticus	318	3.6	3.8
" punctor .-..................................	290	6.4	5.3
Simulium venustum	258	3.8	3.2
" こittatum-.................-	209	4.6	3.3

Hocking's paper is not clear as to whether the wing areas in the table above are for both wings or only one. In a recent letter he states that the measurements are for one wing and in the case of Apis for a pair of wings on one side.

Table 5.-Data from reed, williams, and chadwick, genetics, vol. 27, no. 3 (1942)

			Wing- rate sec- 1	$\begin{gathered} \text { Wing } \\ \text { areat } \\ \text { mm. } \end{gathered}$	$\underset{\substack{\text { Wing } \\ \text { length } \\ \text { mim }}}{ }$
Drosophila	immigrans		166	3.19	3.40
" ${ }^{\text {" }}$	virilis \qquad pseudoobscura	156	3.39	3.23
"		191	2.31	2.83
"		--............-	191	2.23	2.73
"		--...-........-	175	2.48	2.84
"	"	180	2.53	2.88
"	"	173	2.63	2.88
"		169	2.74	3.00
"	"	-	166	2.82	3.00
"	"-	174	2.75	2.96
"	"	-..................	179	2.60	2.98
"	"	.-...................	178	2.55	2.96
"	miranda	182	2.56	2.96
"	".	173	2.93	3.09
"		159	3.39	3.31
"	"	166	3.23	3.29
"	athabasca-.................	154	2.72	2.96
"	azteca-.................	188	2.43	2.86
"	repleta	185	2.18	2.77
"		177	3.42	3.34
"			160	3.63	3.46
"			178	2.13	2.61
			169	2.33	2.82

* Both wings.

Table 6.-data from a. magnan, le vol des insectes, paris, 1934

	$\begin{aligned} & \text { Weight } \\ & m g . \end{aligned}$	$\begin{gathered} \text { Wing } \\ \text { spread } \\ m \end{gathered}$	$\underset{\text { length }}{\text { Wing }}$	$\begin{aligned} & \text { Wing } \\ & \text { surface } \\ & \mathrm{mm.}^{2} \end{aligned}$	$\underset{\text { wing }}{\text { wight }}$ $m g$.	Wing- beat rate sec- -1
Jiptera :						
Culex pipiens	2.25	10	4.8	21		-
Tipula gigantea	69	51	23.6	226	2.0	48
Trichocere fuscata	2.25	15.5	7.0	-	-	100
Tabanus bovinus-	276	41	15.5	184	3.0	96
Dasyramphis atra	233	37	15.7	150	2.4	100
Bombylius major............................	45	22	9.0	44	0.4	
Chrysotoxum bicinctum	75	28.5	12.8	68	1.0	120
" vernale	64	23.5	10.5	60	0.5	150
arcuatum ...	73	28	12	74	0.6	144
Volucella pellucens	73	27.5	12	78	0.5	120
" bombylans	96	33	14	96	1.0	
" plumata	124	32.5	13.0	92	1.2	120
zonaria .-.-.-......................	215	40	17	124	3.0	
inanis ...-..........................	115	32	13	108	2.0	
Eristalis tenax	73	28	11.5	74	0.6	210
Echinomya grossa ---.......................	197	34.5	14	124	2.0	
Catabomba pirastri	34	27.5	12	40	0.4	190
Sarcophaga carnaria	45	19	7.5	36	0.45	160
Calliphora vomitoria	90	22	10	50	0.9	
" erythrocephala	23	18	7.5	24	0.2	160
Musca domestica	12	13.5	5.5	20	0.2	190
Fannia scalaris	10	14	6	19.6	-	210
Hymenoptera :						
Xylocopa violacea	614	44	18	172	3.0	130
Bombus lapidarius	495	40	16.5	165	3.1	90
" terrestris-.-.-...................	388	39	16	142	2.5	130
" hortorum .-..-.....................	159	31	13	90	1.2	135
" muscorum ...-.......................	226	30.5	12.5	90	1.0	128
Vespa crabo 우-	567	52.5	22.5	260	6.0	100
" " ¢ ¢-	373	40	18	180	2.4	110
" germanica	187	31	14.	98	0.9	110
Polistes gallicus--	115	26.5	11.5	46	0.6	220
Apis mellifica	78	20	8.5	42	0.5	250
Ammophila sabulosa-	45	20	${ }^{9} 11$.	42	0.5	120
Allantus temulus	52	-	11.4	-	-	70
EPIDOPTERA:						
I. Rhopalocera						
Papilio podalirius ...-........................	300	80	37	3,600	80	10
"" machaon	370	82	38	2,200	45	
Pieris brassicae	127	67	31	1,840	21	12
" rapae ...-..............................	87	52	25	1,000	8	-
" napi	55	49	22	760		
Anthocaris cardamines	45	48	22	780	4.2	
Rhodocera rhamni	107	61	27	1,200	12	21
Vanessa urticae	112	52	24	1,000	8	
" io	195	62	28.5	1,400	17	18
" levana	131	45	20	820	8	
" atalanta	134	57	27	1,080	15	10
" cardui	173	58	26.5	1,040	12	20
Argynnis paphia--	160	66	30	1,760	18	
" pandora	278	70	32 24.5	1,800 1,160	28	10
Pararga moera	67	53 44	${ }_{20} 24.5$	1,160	7.2	
Coenonympha pamphilus	46	37.5	16	480	3.5	22

Table 6.-continued
$\left.\begin{array}{ccccccc}\hline & & & \text { Wing } \\ \text { Weight }\end{array}\right)$

[^2]Table 6.-concluded

	Weight	$\begin{gathered} \text { Wing } \\ \text { spread } \\ \text { min. } \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { lensth } \\ n m m . \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { surface } \\ m m .^{2} \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { weight } \\ m g \text {. } \end{gathered}$	Wingbeat sec- sete
europtera, Continued						
Libellules, Continued						
Leptctrum 4 maculatum	307	72	34.5	1,060	12.0	21
Cordulia aenea	201	71	33.5	-	9.6	33
Gomphus vulgatissimus ...-...-...........	638	70	33.5	940	11.1	
Brachytron pratense	557	77	36.5	1,200	14.4	33
Ophiogomphus serpentinus .--.-........	312	71	34	940	12.8	42
Anax formosus	1,200	109	50	2,280	45.4	22
" parthenope	703	94	45	1,950	27	
Aeschna rufescens	611	90	43	1,780	31.2	20
" mixta	530	80	39.5	1,380	21.5	38
Calopteryx splendens	120	64	30	-	11.8	16
" virgo	91	70	34	880	5.2	
Pyrrhosoma minimum .-..................	38	49	25		2.0	27
Ischnura elegans .-..........................	20	30.5	15.5	130	1.0	
Panorpa communis	30	32	14.5	175	1.0	28
Myrmeleon formicarius	90	68.5	33	700	5	-

Table 7.-data from magnan and perrilliat-botonet, c.r. acad. SCI., vol. 195, Pp. 559-561 (1932)
Weight of pectoral muscles and weight of body for insects

	$\begin{aligned} & \text { Body } \\ & \text { weight } \end{aligned}$ $\begin{gathered} m g \\ \hline \end{gathered}$	Weight muscle ma.	$\begin{gathered} \% \\ \begin{array}{c} \% \text { Muscle } \\ \text { weicht } \end{array} \\ \hline \end{gathered}$
Diptera:			
Musca domestica	14.	1.50	10.7
	${ }_{140}^{14.5}$	21.0	8.27 15.0
Tabanus bovinus ...-.......................................-	276.8	47.1	17.0
" "	393.4	70.9	18.0
Echinonyya grossa	197	23.3	11.8
Gastrophilus equi-	115	17.3	15.0
Eristalis tenax	126.5	18.2	14.4
Tabanus bovinus-	186	33.5	18.0
" "	183	33.5	18.3
Hymenoptera:			
Bombus lapidarius	149.5	22.4	15.0
" "	95	11.9	12.5
" hortorum	159.5	17.9	11.2
Vespa crabo ..	373.4	40.0	10.7
" "	381	40.4	10.6
"	389	31.5	8.1
Bombus terrestris ..	215.5	32.7	15.2
" "-	205.5	30.0	14.6
muscorum	115	18.6	16.2
Vespa crabo ...-	339	44.7	13.2
Apis mellifica	115	14.9	13.0
Ammophila sabulosa-	45.2	3.17	7.0

Table 7.-concluded

I epidoptera:			
Pieris brassicae	127.3	8.82	7.0
" rapae ..	87.7	3.51	4.0
" napi ...	55.2	2.76	5.0
	59.5	2.38	4.0
	54.2	3.79	7.0
Vanessa atalanta ...	134	28.0	20.9
" "	249	54.8	22.0
Macroglossa stellatarum	345.5	48.4	14.0
Callimorpha hera	196.4	17.6	9.0
" "	157.5	16.5	10.5
...-.-......................	214.5	19.3	9.0
	195	33.6	17.2
Rhodocera rhamni ...-...........................	150.5	7.5	5.0
Argynnis pandora ...	250.5	31.6	12.6
" ${ }^{\text {a }}$...................................	148.6	13.4	9.0
............................-	206	25.4	12.3
" "-....................	160	17.6	11.0
.-.-............................	278.5	24.2	8.7
Plusia gamma .-...	72.5	5.80	8.0
Spilosoma fuliginosa	106.5	13.85	13.0
Zeuzera aesculi	340.7	76.0	22.3
Bombyx quercus	189.5	21.2	11.2
Orthoptera:			
Ocdipoda caerulycens	614	49.1	8.0
Cetonia aurata	297.5	33.4	11.2
Paracinema tricolor	1,403.5	70.0	5.0
Neuroptera:			
Diplax sanguinea	101	18.2	18.0
	156.5	33.0	20.0
.	117.5	25.5	21.7
" "	161.5	35.5	22.0
" fonsconlombei .-...	157	36.1	23.0
Myrmeleon formiucaris .-.-............................-	90.5	4.52	5.0
Diplax meridionalis ..	281.6	61.9	22.0
Ischnura elegans	20	3.20	16.0
Orthetrum caerulescens	248.2	42.7	17.2
	445	106.7	24.0
" mixta	530.5	136	25.6

Table 8.-DATA From Karl müllen hoff, pflueger's arch. GESAMTE PHYSIOLOGIE, VOL. 35, PP. 407-453 (1885)

Data for birds, bats, and insects
P -Total weight in grams.
Weighings made to three significant figures on freshly killed animals.
p —Weight of fight muscles in grams.
F-Total sustaining surface in square centineters (values not given in the tables which follow). Birds were placed on their back with wings and tail feathers extended as in flight and the entire contour traced on white paper. Parallel lines 1 centimeter apart were drawn on the figure and the area measured, taking the mean length between lines and summing the areas.
Insects were mounted on needles, the wings arranged as in flight. After drying the specimens, the contours were traced on millimeter cross-section paper and the individual square millimeters counted.
f -Area of both wings in square centimeters.
Determination as for sustaining surface.
The area for a given contour could be measured with an accuracy 1 to 1,000 , but repeated measurements on a given bird, because of variable stretching of the wings, would deviate by as much as 1 in 100 .
$\mathrm{K}-$ Wing spread in centimeters.
1 -Length of both zeings in centimeters.
These were taken directly from the contour drawings made for the determination of F and f . They are accurate to 1 part in 100 .
The values given by other observers were selected by Müllenhoff on the basis of their accuracy and self-consistency. The different observers are identified in the second column as follows :

1, Müllenhoff	4, V. Ledenfeld	7, De Lucy
2, Harting	5, Marey	8, Pettigrew
3, Mouillard	6, Legal and Reichel	9, Krarup Hansen

		$\begin{gathered} \text { Ob- } \\ \text { server } \end{gathered}$	$\underset{\substack{\text { Weight } \\ \text { gms. }}}{\text { Weis }}$	$\begin{gathered} \text { Flight } \\ \text { muscles } \\ \text { Wt.-gms. } \\ n \end{gathered}$	Wing area for both cm^{2} f.	$\begin{aligned} & \text { Wing } \\ & \text { spread } \\ & \text { cm. } \\ & \text { K } \end{aligned}$	Length of both wings 1.
Bats:							
1	Pteropus edulis	2	1,380	117.6	1,630	120	104.4
2	" geoffroyi	3	53	-		48.4	
3	Macroglossus minimus	2	21.4	-	94	24.5	22.4
4	Phyllostoma perspicillatum	2	47.7	-	190	36.8	33.2
5	" spectrum	2	164	-	626	59.9	52.8
6	Megaderma trifolium	2	52.1	-	164	44.8	39.0
7	Glossophaga soricinus	2	14.6	-	94	24.0	22.8
8	Vespertilio pipistrellus	2	5.6	0.35	50	23.5	21.0
9	"، murinus ô	4	20.9	-	180		
10	" ${ }^{\text {a }}$ -	2	34.9	-	140	42.0	36.0
11	pipistrellus	1	3.703	-	49.59	19.75	17.45
12	Plecotus auritus	2	10.4	0.76	70	26.0	25.0
13	Taphozous saccolacmus ...-	2	18.7	-	158	29.5	26.4
14	Mormops sp.	2	20.8	-	94	28.7	23.4

Table 8.-continued

		$\begin{gathered} \text { Ob- } \\ \text { server } \end{gathered}$	$\begin{gathered} \text { Weight } \\ g m s . \\ \hline \mathrm{P} . \\ \hline \end{gathered}$	$\begin{gathered} \text { Flight } \\ \text { muscles } \\ \text { Wt.-gms. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Wing area } \\ \text { for both } \\ \text { wings } \\ \text { cm. } \\ \text { cm. } \\ \text { f. } \\ \hline \end{gathered}$	Wing $\stackrel{c m}{\mathrm{~K}}$. \qquad	$\begin{gathered} \text { Length } \\ \text { of both } \\ \text { wings } \\ \text { cm. } \\ \text { cm. } \\ \hline \end{gathered}$
Bats, Continued							
15	Nyctinomus aegyptiacus .-	3	${ }_{3}^{6}$	-	104	24.3	
16	Molossus longicaudatus	2	33.5	-	104	35.2	31.0
17	Noctilio unicolor	2	44.5	-	254	46.2	44.0
Flying Fish:							
308	Dactylopterus volitans	2	572	-	440	41	43
309	Exocoetus evolans	2	107	-	124	24	21
Birds:							
	Lanius excubitor 9	4	31	-	144	-	-
19	Turdus merula	5	94.0	,	230	-	
20	" " ${ }^{\text {a }}$................	2	88.8	19.05	212	-	32.0
21	" "	1	74	19.6	168	39	33
22	" pilaris-	1	100	23.3	186	39	34.4
23	Saxicola oenanthe	5	56.1	23.3	125	-	
24	Saxicola oenanthe- Parus coeruleus	2	9.1	-	28	-	18.0
25	Parus coeruteus	2	14.5	2.10	62	-	21.0
27	Alauda cristata	5	36.8	-	202	-	-
28	" ${ }^{\text {" }}$	3	34	-	-	30.5	-
29	" " $\hat{\text { o }}$..-..........-	3	37	-	-	33.1	
30	" arvensis	2	32.2	5.10	150	-	31.6
31	Emberiza gubernatrix	2	25.5	2.03	100	-	21.0
32	Fringilla spimus .-..............-	2	10.1	5.18	50	-	19.0
33	" cannabina-.....	6	19	5.18	55	-	-
34	Petrocincla cyanea	3	53	-	-		-
35	Budytes flava	3	20	-		27	-
36	Passer domesticus ㅇ․ .-....--		28.33	-	76		
37	"، "، ${ }^{\text {¢ }}$........	3	27	-	-	23	
38 39	"، " ¢ ¢	3	25	8.74		22.6	
39	Bombycilla garrula	6	34	11.0	88	-	32
40	Bombycilla garrula	2	78.	11.0	202	-	
42	"، \%	6	82.5	20.48	192	36.5	
43	" " ô ..--...........	2	86.4	16.45	170		33.4
44	" "	3	71			38.4	
45	Gracula religiosa		161	17.2	376		52.0
46	Corzus acgyptiacus	3	395	-		84	
47	" corax	3	615	\square		107.5	-
48	" cornix	6	615	141	1,343		
49	"	6	615	151	1,280	-	
50	\ldots	6	598	140	1,144	-	
51	6	595	131	1,286		
52	" "	6	565	140	1,310		
53	" "	6	557	115	1,260	78	
54	" "	6	557	120	1,324	-	
55	" "	6	547	129.7	1,324		
56	" "	6	519	121	1,280	-	-
57	" "	6	498	103.9	1,003		
58	" "	5	375	-	1,156	-	
59	" "-	6	493	108.4			
60	frugilcgus	6	575	1,219	1,285	92	
61	" ${ }^{\text {a }}$...............	6	419	89	1,144	-	
62	corone	6	507	109.6	1,144	-	-
63	6	484	100.6	988	-	-

Table 8.-continued

		$\begin{aligned} & \text { Ob- } \\ & \text { server } \end{aligned}$	$\underset{\substack{\text { Weight } \\ \text { gms. } \\ \mathrm{P}}}{ }$	$\begin{gathered} \text { Flight } \\ \text { Huscles } \\ \text { Wt.-gms. } \\ \hline \end{gathered}$	$\underset{\substack{\text { Wing area } \\ \text { for botl } \\ \text { wings. } \\ \text { cm. } \\ \text { f. }}}{\text { f. }}$	$\begin{gathered} \text { Wing } \\ \text { spread } \\ \text { cm. } \\ \mathrm{K} \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of both } \\ \text { wings } \\ \text { cin. } \\ \text { c. } \\ \hline \end{gathered}$
Irds, Continued							
64	Corvus corone	6	498	115.1	1,284	-	
65	" "	6	477	93.6	1,190	-	-
66	" monedula	6	230	54.06	700		-
67	" "	6	225	55.0	601.4	60.0	
68	" "	6	204	53.3	610	64	
69	" pica	6	202	48.96	560	55.5	
70	"	6	190	35.3	522		
71	5	179	42.02	482	51	
72	.-...-	5	275	-	690	-	
73	6	212	-	540		
74	Nucifraga caryocatactes	6	176	43.3	460	-	
75		6	174	39.6	466	-	
76	Garrulus glandarius	6	125	36.4	443	-	
78	\cdots	1	180	-	508	56	$\overline{47} 3$
79	" "	6	156	40.1	546	-	-
80	\ldots	6	165	39.9	490	-	-
81	-....-	6	188	45.0	551	-	
82	Upupa epops	5	49.1	-	329		
83		3	62			43.0	
84 85	Cypselus apus ¢ ¢	4	33.5	-	144		-
86	Hirundo rustica	4	15.7	-	135	37.6	
87		4	19.4	-	114	-	
88	" "	4	18	-	110	-	
89	" " .-...............	4	19.9	-	134	-	-
90	" " 9 adult	4	19.9	-	134	-	
91	" ". ¢ ¢ juv.-	4	19.4	-	114	-	
92	" urbica	5	18.0	-	120		
93	Cotyle rupestris	3	16	-	-	31	
94	Caprimulgus	3	62	-	-	50.9	-
95	Ceryle maxima	5	86.0	-	2.88	-	-
96		5	82.9		270		
97 98	Psittacus crithacus	2	300	37.9	584	$\overline{71}$	59.6
98		1	200	-	710	71	60
100	Chrysotis amazonica	1	300		895	73	63
100 100 a	Plyctolophus sulfureus	2	250	23.9	544	-	60.6
100 a	Picus viridis	6	101	28.08	408		
101 102	Alcedo ispida ¢	3	27	-	-	23.2	
102	" " ô	3	31	-	-	25	
103	" " o	3	34	-	-	26.2	
104	Coracias garrula	3	133	-		62.5	
105 106	Merops apiaster	5	18.30	-	117		
106	Vultur cinereus	5	1,535	-	3,233	-	
107	" sp. .-...-..................	5	1,664	-	3,131	-	
108	Otogyps auricularis-	3	8,152	-	-	266	
109	Gyps fulvus	3	7,501	-	-	251	
110	Neophron percnopterus ...-	3	1,705	-	$7{ }^{-}$	161.5	
111	Haliactus albicilla	1	5,000	-	7,973	226	190
112 113	"" "	1	4,500	-	7,000	217	182
113	". ." .-..........	1	4,900		6,200	209	185
114	Pandion haliaetos	6	3,055	744	5,852		
115 116	"، "،	3	1,270	-		155	
116	" . ${ }^{\text {a }}$	6	1,950	518	3,142		
117	Falco migrans	5	620	-	1,904	-	-

Table 8.-contimued

		$\underset{\text { server }}{\mathrm{Ob}-}$	$\begin{gathered} \text { Weight } \\ g m s . \\ \mathrm{P} . \\ \hline \end{gathered}$	Flight muscles Wt.gms. p	Wing area for both wings cm. \square	Wing $\stackrel{c}{\mathrm{~cm}} \mathrm{~K}$. \qquad	Length of both cm. \qquad
Birds, Continued							
118	Falco tinnunculus	5	129	二	642		
119		3	181	$\overline{51.7}$	$\overline{680}$	74.0 65	
120	" "	6	260 147	51.7	680 546	65	-
122	" kobeck (?)	5	282	-	970	-	
123	" subbuteo	5	510	-	1,684		
124	" peregrinus-.-.......-	3	580	-	-	104	
125	Milvus aegyptius	3	640			133	
126	Astur palumbarius	1	800	-	1,520	103	92
127	" "	3	290	-		71.8	
128	Accipiter nisus 오 ...-............	1	260		800	75	67
129	" " juv.	6	275	85.1	690	68	
130	"	6	766	250		88.5	
131	-.........	3	152			61.8	
132	1	150	-	496	55.5	49.5
133	" ¢	1	250	-	710	69	60
134	" ô	4	266	-	866		
135	Circus acruginosus	5	209		1,188		
136	Buteo vulgaris ..-................	1	900	-	2,610	130	113
137	" "	1	900	-	2,590	126	109
138	...	1	800	-	2,210	125	105
139	" " ..-.................	1	600	-	2,170	117	100
140	" -.-.................	5	785		1,651		
141	"	6	785	154.6			
142	" "	6	1,217	242	2,350	123	30.1
143	Archibuteo lagopus	6	862	176.9	2,280	120	
144	1	1,000		2,359	140	117
145	" " ..-.........	1	890	-	2,020	129	108
146	" "	1	1,000	-	2,445	135	114
147	" "	1	1,000	-	2,510	144	123.5
148	" "	1	900		2,220	132	115.5
149	...	1	1,125	-	2,880	143	123
150	--..	1	750	-	2,420	137	116
151	Strix flammea	1	400	-	1,190	97	84
152	" "	1	250	-	1,440	97	84.5
153	" "	3	305	-		94	
154	Asio otus	1	275		1,010	92	88.5
155	" " ..-.........................	6	232	47.9	1,102	92	-
156	-	6	237	50.84	1,154		
157	Asyo brachyotus ...-...........	1	370		1,230	103	88
158	Syrnium aluco	6	1,777	376	3,020	94.5	
159	Athene passerina-	5	129		442	-	
160	"" "	5	123	-	394		
161	Ephialtes scops	7	150	-		52.6	-
162	Columba livia .-..................	7	290	-	750	-	
164	of …-................	1	205	-	598	70	59
165	"	1	202		541	64	54
166	domestica .-........	6	206	93.8			
167	"	6	335	113	650	64	
168	aegyptiaca $\hat{\text { of }}$....	3	257			56	
169	vinacea-	5	112		292		
170	" aegyptiaca	3	223	-	-	59.4	-
171 172	Tetrao urogallus of	3 1	2,700	二	1,785	116	96

Table 8．－continued

		$\underset{\text { server }}{\text { Ob- }}$	Weight $\underset{\mathrm{P}}{\mathrm{g}}$ ．	$\begin{gathered} \text { Flight } \\ \text { muscles } \\ \text { Wt.-gms. } \\ \text { p } \end{gathered}$	Wing area for both wings f	$\begin{gathered} \text { Wing } \\ \text { spread } \\ \text { cm. } \\ \mathrm{K} \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of both } \\ \text { wings } \\ \text { cm. } \\ \text { l } \end{gathered}$
Brrds，Continued							
173	Tetrao urogallus ô ．．．．．．．．．．	1	2，600	－	1，800	113	96
174	＂＂¢ ．．．．．．．．．．	1	1，450	－	1，380	102	85
175	＂tetrix ô ．．．．．．．．．．．．．．．．	1	1，350	－	995	82	79.5
176	＂＂$\hat{\text { o }}$ ．．．．．．．．．．．．．．．	1	1，030	－	850	80	68
177	＂＂${ }^{\text {c }}$ ．．．－．－．－．．．．．．．．．	1	1，200	－	880	87	71
178	＂＂\quad ¢ ．．．．．．．．．．．．．．．	1	730	－	530	62.5	51
179	＂＂${ }^{\text {c }}$ ．．．．．．．．．．．．．．．	1	1，000	－	775	75	61.5
180	＂bonasia ．．．．．．．．．．．．．．．．．．．	1	370	－	340	52	40
181	＂＂${ }^{\text {a }}$－	1	375	－	375	51	40
182	Lagopus alpinus ．．．．．．．．．．．．．．．．．	1	530	－	640	66	56
183	＂＂．－．－．．．．．．．．．．．．．．．．．	，	650	－	452	60	50
184	Perdix rufa ．．．．．．．．．．．．．．．．．．．．．．．．．	1	380	－	400	51	41
185		1	340	－	340	49	38
186	＂cinerea ô ．．．．．．．．．．．．．	1	450	－	365	53	41
187	＂＂．．．．．．．．．．．．．．．．．．．	6	320	105	336		－
188	＂．．．．．．．．．．．．．．．．．．	6	372	123	382		
189	．．．．．．．．．．．．．	6	375	126	366		
190	位	5	280	－	320	－	
191	Coturnix communis ．．．．．．．．．．．．	3	100				
192	＂．${ }^{\text {c }}$－．．．．．	4	92.1	－	142		
193	Pavo crist ô－－．．．．．．．．．．．．．．．．．	1	3，300	－	3，480	128	104
194	Phasianus colchicus ${ }_{\text {¢ }}$＂．．．．．．	1	950	－	755	64	52
195	＂＂${ }^{\text {a }}$ ．．．．．．．	1	1,100 1,000	－	855 880	72 76	57
197	＂＂$\hat{\text { a }}$ ．．．．．．．．	1	1，570	二	895	72	55
198	＂＂$\hat{\text { 人 }}$ ．．．．．．	1	1，250	－	896	72	56
199	＂＂${ }^{\text {c }}$ ．．．．．．	1	1，125	－	900	73	59
200	Meleagris gallopavo ．．．．．．．．．．	3	3，000	－		110	
201	Otis tarda ¢ ．．．．．．．．．．．．．．．．．．．．．	1	8，900		5，729	207	184
202	＂＂$\hat{\text { 人 }}$ ．．．．．．．．．．．．．．．．．．．．．	7	9，600	2，300	5，937	208	181
203	Grus ．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．	7	9，500		8，543		
205	Rallus pectoralus ．．．．．．．．．．．．．．	2	170.5	19.05	328 202	二	42.0 33.0
206	＂＂		192			－	
207	Fulica atra ．．．．．．．．．．．．．．．．．．．．．．．	2	495	51.8	524		53
208	Gallinula chloropus ．．．．．．．．．．．	3	595	－	－	69.6	
209	Oedicnemus crepitans ${ }_{\text {¢ }}$ ．－	3	455	－	－	80	－
210	＂＂${ }^{\text {c }}$ ．．	5	470			77.3	
211	Hoplopterus spinosus ．．．．．．．．	5 3	160 170	－	636	60.0	
213	Charadrias pluvialis ．．．．．．．．．．．	3	160			58.2	
214	＂＂．．．．．．．．．．	6	190	55.8	366		
215	＂＂．．．．．．．．．．	6	170	49.3	334	－	
216	minor		59.5	17.6	183		
217	Haematopus ostralegus ．．．．	6	555	137	722	81	
218	＂＂．．．．	6	488	79.5		75	
219	＂＂．．．．	6	521	128.1	740		
220	＂＂．．．．	6	445	106	642	－	
221	＂＂．．．．	6	437	99.4	697	－	
222	＂＂．．．．	6	389	93.9	670		
223	＂＂．．．．	6	358	42.1	562	－	
224	＂＂．．．．	6	341	84.8	708		
225	Glareola torquata ．．．．．．．．．．．．．．	3	67	－	－	52.5	
226	＂	5	95.2		343		
227	Vanellus cristatus ．．．．．．．．．．．．．	6	190	53.5	614		

Table 8.-continued

| | | | | |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Table 8.-continued

		$\mathrm{Ob}-$ server	$\underset{\substack{\text { Weight } \\ \text { gms. }}}{\substack{\text { Pist }}}$	$\begin{gathered} \text { Flight } \\ \text { muscles } \\ \text { Wt.-gms. } \end{gathered}$	Wing area for both $\mathrm{cm} .^{2}$ f	$\begin{gathered} \text { Wing } \\ \text { spread } \\ \text { spm. } \\ \mathrm{K} \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of both } \\ \text { wings } \\ \text { cm. } \\ 1 \end{gathered}$
Birds, Continued							
282	Anas clypeata ô	3	925	-	-	72	-
283	" ${ }^{\text {" }}$ (3	727			70	
284	Fuligula cristata ...-...-........	6	1,116	343	1,440	104	
285	" clangula ..-...........	1	827	-	480	69	58
286	" glacialis .-............	1	922		550	74	63
287	" nyroca	2	508	76.6	642		70
288	Pelecamus onocrotalus	3	6,625	-	-	280	-
289	Procellaria gigantea	3	2,880	-	-	175	-
290	Pufinus kuhlii	3	700	-	-	125	
291		3	500	-	-	117	
292	Diomedea exulans .-..............	8	12,700	-	-	400	
293	Larus melanocephalus	3	232	-	-	94.6	-
294	" "	3	280			96.5	
295	argentatus ..-.........	2	565	93.0	1,082	-	96
296	"	6	842	143	1,550	-	
297	6	1,035	161.2	2,380	-	
298	" "	6	1,225	198	1,880	-	-
299	.-..........	6	1,080	185	1,936		
300	" ridibundus	2	197	26.13	662		83.0
301	" camus	6	355	68.3	1,118	108	--
302	"	6	642	$\overline{3}$	1,748	-	-
303	" .-....................	6	720	130	1,742	-	
304		6	785	130	1,920		
305	Sterna cantiaca	6	174	34.9	660	93.6	-
306	" hirundo	6	116	25.3	427	79	-
307	minuta	6	53.0	11.9	185.4	50	-
Insects :							
311	Ephemera vulgata	1	30.8	-	126	37	34.5
312	Calopteryx virgo ㅇ	4	200	-	1,394	75	74
313	." "t ô ..-........	4	100	-	1,112	68	66
314	Agrion puella î	4	26	-	220	45	44
315	Libellula cyanea ồ		920	-	2,290	108	106
316	" depressa	9	200	-		80	
317	" " $\hat{0}$........	4	600	-	1,332	82	78
318	" vulgata ô	4	150	-	728	57	57
319	" cancellata 9	1	620	-	1,456	85	82
320	Cordulia aenea ${ }^{\text {at }}$.-...........	4	240	-	1,048	71	70
321	Libellula cancellata ô	4	440	-	1,408	86	84
322	" quadrimaculata $\hat{\text { or }}$	4	290	-	1,108	76	74
323	Setodes pilosus	1	13		141	30	28
325	Calosoma sycophanta	1	641.4	-	390	54	43
327	Hydrophilus piceus ô*........	1	5,212.4		779	88	74
328	" " 우	1	4,950	-	770	85	72
329	¢ ..-...	1	3,327.6	-	674	79	66
330	" ." ¢ ¢	1	3,175	-	600	72	59
331	Dyticus marginalis 운 furrowed	1	1,777.2	-	479	60	50
332	Dyticus marginalis ㅇ smooth	1	2,323	-	658	73	62
333	Dyticus marginalis 안						
	furrowed	1	1,962	二	$\begin{aligned} & 510 \\ & 600 \end{aligned}$	$\begin{aligned} & 66 \\ & 70 \end{aligned}$	57
334 335	Dyticus marginalis ô	1	1,277 314	-	$\stackrel{601}{ }$	40	60 34

Table 8.-continued

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 8.-concluded

			$\underset{\text { server }}{\text { Ob- }}$	$\underset{\substack{\text { Weight } \\ \text { gms. }}}{\text { Ueit }}$	$\begin{gathered} \text { Flight } \\ \text { muscles } \\ \text { Wt.-gms. } \\ p \end{gathered}$	Wing area for both $\underset{c m)^{3}}{ }$ f	$\begin{gathered} \text { Wing } \\ \text { spread } \\ \text { cm. } \\ \mathrm{K} \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of both } \\ \text { wings } \\ \text { cm. } \\ \text { in } \end{gathered}$
Insects, Continued								
388	Bombus pratorum	1	271.2	-	52	26	19
389	" "		1	257	-	90	26	22
390	Systropha spiralis	1	24.4	-	34	17	14
391		.-......	1	14.5	-	45	17	14
392	" "	1	15.2	-	32	16	14
393	,	1	21.0	-	27	21	18
394	Osmia bicornis ...		1	52.9	-	47	21	16
395	"" adunca ...	--.........	1	34.5		38	20	18
396	Dichroa gibba-...........	1	19.2	-	28	16	14

Table 9.-data from augusto ruschi and CRAWFORD H. GREENEWALT, UNPUBLISHED

Wing-beat rate, body weight, and wing length for certain hummingbirds. The nomenclature is from Ruschi, derived, I believe, from Simon.
The wing-beat rates were measured, some by Ruschi, some by Greenewalt, using a portable stroboscope. In principle a slotted disk was fitted to a monocular so that the slotted portion of the disk passed through the optical axis. The disk was driven by a battery-operated variable-speed motor. A small generator, mounted on the shaft which carried the disk and driving motor, was connected to an ammeter calibrated in revolutions per second. The technique comprised sighting on a hovering bird and adjusting the motor speed until the wings appeared stationary. The wing-beat rate was read off from the ammeter connected to the generator.

The individual readings differ widely in probable error. In two cases-Calliphlox amethystina ô and Melanotrochilus fuscus-many readings were made and the observed rates are believed reliable to a few percent. For most of the others only one or two readings were possible, and the birds moved so rapidly that only a few seconds were available to bring the instrument to equilibrium. Individual readings could easily be in error by as much as plus or minus 10 percent.

Weights and wing lengths were obtained by Ruschi on the same individuals. These are not necessarily the same individuals for which wing-beat rates were determined.

For comparison, wing lengths, supplied by Lanyon, American Museum of Natural History, from the literature (principally Hartert), are also given.

The wing areas are calculated values. Length and area measurements are available for three species (Archilochus colubris and A. alexandri (Poole, 1938) and Eupherusa eximia (Magnan, 1922)). The averages for these three species result in the equation $A=0.71 l^{2}$ where l is the length in centimeters and A the area of both wings in square centimeters. The areas given in the table are calculated from Ruschi's wing-length measurements using this equation.

Table 9.-concluded

	$\begin{aligned} & \text { Wing- } \\ & \text { beat } \\ & \text { rate } \\ & \text { sec- } 1 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { ofrd } \\ \text { gm. } \end{gathered}$	Wing area both wings $\underset{c}{\mathrm{~cm}^{2}{ }^{2}}$ calculated	Wing lengthnmm.	
				Ruschi	Lanyon
Melanotrochilus fuscus	25	6.8	45.6	80	84.4
Aphantochroa cirrochloris	27	6.9	31.9	67	69.7
Clytolaema rubricauda is .-................................	28	6.8	38.9	74	74.7
" ${ }^{\text {a }}$ ¢	22	6.5	30.0	65	66.7
Lophornis magnificus ti ...	58	2.3	11.35	40	41
	52	2.1	11.35	40	41
Anthracothorax nigricollis ô	28	6.8	34.8	70	69
Eupetomena macroura macroura	19	7.5	39.9	75	74.7
Amazilia brcvirostris ô ..-..................................	38	4.0	17.8	50	50.7
Colibri serrirostris ...	28	6.0	34.8	70	74.7
" delphinae ..	24	7.1	35.8	71	74.3
" coruscans .-..	24	8.9	49.0	83	80.3
Boissonneaua jardini ...	20	8.1	42.1	77	78
Phaiolacma rubinoides aequatorialis	20	6.7	30.0	65	72.7
Hylocharis chrysura ...	28	4.6	22.2	56	51.3
Heliangclus wilsoni io	18	7.1	32.8	68	72.7
	30	3.4	18.5	51	49.3
" " $\hat{\text { a }}$.......................................	32	3.7	19.2	52	
sapphirina ô	31	4.2	19.2	52	51.7
Lophornis verrcauxi i	41	3.0	11.35	40	44.7
Calliphlox amethystina ô	78	2.8	7.74	33	36
" " ${ }^{\text {a }}$.-...............................	62	2.8	7.74	33	37
Popelairea langsdorff melanosternum ¢	51	3.0	7.74	33	37.3
Ensifera ensifera ô .-...	22	12.5	42.1	77	80
Florisuga mellivora ô	27	6.2	31.9	67	69.7
Popelairea langsdorff melanosternum ô .-..........	58	3.0	7.74	33	-
Florisuga mellivora 오	22	6.7	31.9	67	
Chrysolampis mosquitus io	30	4.1	23.1	57	56.3
	30	3.5	17.0	49	50
	25	4.2	20.7	54	52
	20	4.1	19.2	52	
	27	7.0	36.8	72	73
Phaethornis h. hispidus ô ...	26	7.0	25.6	60	60.7
Leucochloris albicollis ô ...	32	6.0	25.6	60	60
Aglaeactis cupripennis $\%$.....................................	15	7.3	52.6	86	87.7
	30	5.2	33.9	58	59
Glaucis hirsuta	21	7.0	23.1	57	57.7
Prasites daphne ô ..	31	3.1	13.7	44	48
Coeligena torquata ${ }^{\text {a }}$	22	7.8	39.9	75	78.7
Heliomaster furcifer ô	29	5.3	22.3	56	56
Patagona gigas ô ..		20.0	120	130	132.7
Heliothrix aurita auriculata ô	19	5.9	30.0	65	65.3
Stephanoxis loddigesi î	25	4.0	19.2	52	51.3
Discosura longicauda ô	40	3.7	14.4	45	-
Augastcs superbus î ..	28	3.8	20.7	54	-
Schistcs albogularis ô	30	3.5	18.5	51	
Campylopterus obscurus aequatorialis $¢$		7.6	36.8	72	
Chlorestes n. notatus î	28	3.8	17.0	49	
Thalurania f. baeri of .-.....................................	30	4.4	20.7	54	-
Anazilia fimbriata nigricauda	25	3.8	20.7	54	-
Thalurania watertoni is	32	4.8	20.7	54	
Anisoterus pretrei ${ }_{\text {of }}$	22	5.6	27.3	62	
	30	3.1	13.1	43	-
" ruber ruber O	48	2.3	7.74	33	
" idaliae 아 --.....................................	38	2.4	8.70	35	
Popclairea langsdorffi langsdorff $\hat{\text { or }}$...................	60	3.2	9.22	36	
Thalurania f. furcata ${ }^{\text {o }}$.....................................	30	4.2	21.5	55	
Eupetomena m. simoni -...	20	7.0	36.8	72	
Amazilia millcri of ..	32	4.1	17.8	50	-

Table 10.-data on hummingbirds and other birds FROM VARIOUS AUTHORS

The wing-beat rates given here for hummingbirds are believed to have higher precision than those determined by Ruschi and Greenewalt using the portable monocular stroboscope. They were determined either from high-speed moving pictures or with stroboscopic methods of higher precision.

	Wingbeat rate sec-	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { bird } \\ \text { gm. } \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { length } \\ \text { mm. } \\ \hline \end{gathered}$	Method
$\mathrm{M}=\text { High-speed moving pictures }$				
Hummingbirds: (from Crawford H . Greenewalt, unpublished)				
Calliphlox amethystina ot	78	-	33^{1}	S
Archilochus colubris ô .-..................-	70	-	38.5	M
" " ¢	52		44.5	M
Melanotrochilus fuscus	25		80	S
Amazilia cyanura	41.5	-	53	M
Campylopterus hemileucurus	27	-	74	M
Microchera albocoronata ô -..............	52	-	40.5	M
........-	48	-	40.5	M
Hummingbirds: (from E. Stresemann and K. Zimmer, Ornithologische Monatsberichte, vol. 5 (1932))				
Eupetomena macroura	22	6.0	78^{3}	S
Chlorestes caeruleus-	31.5	3.2	50	S
Chrysolampis elatus	32.5	3.5	57	S
Phaëtornis rufus-......................	50.5	2.0	36	S
Hummingbirds: (from M. Stolpe and K. Zimmer, Journ. Ornithologie, vol. 87, pp. 136-155 (1939))				
Chlorostilbon aureoventris	37.5	-	50^{3}	M
Melanotrochilus fuscus	28.5	-	80	M
Other Birds: (from Crawford H. Greenewalt, unpublished)				
Parus carolinensis	27	-	65^{4}	M
Sitta carolinensis-	21	-	92	M
Parus bicolor-	24	-	82	M
Dendrocopus pubescens-	18	-	97	M
Mimus polyglottos	14	-	112	M
Carpodacus p. purpureus	20	-	83	M
Common crow	3	-	320	Visual
Other Birds : (from H. Oehme, Journ. Ornithologie, vol. 100, pp. 363-396 (1959))				
Hirundo rustica	6	-	150^{5}	M
Passer domesticus .-..........................	13	-	110	M
Phoenicurus phoenicurus ...-...............	15	-	120	M
Apus apus	10	-	170	M
"Haustaube"	6	-	310	?
"Nebel krähe"	4	-	410	?
Wing length from wing tip to first articulated joint: ${ }^{1}$ Ridgway. ${ }^{2}$ Authors. ${ }^{3}$ Ruschi. ${ }^{4}$ The American Museum of Natural History (Lanyon). ${ }^{5}$ Author.				
	Wing sI		$\begin{gathered} \text { Wing ar } \\ c_{m}{ }^{2} \\ \hline \end{gathered}$	
Apus apus ...-..................................	38.8		111.2	
Hirundo rustica	32.9		123.6	
Phoenicurus ochruros-	25.3		106.4	
Parus major -..-....-.-.-.---...................	24.0		99.4	
Passer domesticus	24.8		103.0	
montanus ...-...........................	22.1		81.6	

Table 11.-DATA From frank a. hartman, auk, vol. 71, no. 4, Pp. 467-469 (1954)
Cardiac and pectoral muscles of trochilids

	Body weight weign $g m$	Weight of heart $\%$ of b	Weight of pectoral musculature dy weight	$\begin{gathered} \text { Wing } \\ \text { length* } \\ m m . \\ \hline \end{gathered}$
Glaucis hirsuta affinis 안	6.13	2.27	27.6	56.5
" " " ${ }^{\text {o }}$	6.95			58.6
Phaëthornis guy coruscus ô..-................................	5.78	2.40	28.6	61.5
". superciliosus cassinii ${ }^{\text {¢ }}$......	6.15	2.19		
longuemareus saturatus 9	2.64	2.42	-	37.9
Phaeachroa cuvierii ${ }_{\text {¢ }}^{\text {¢ }}$ "............................	7.95 9.30	1.74	-	68.6 72.2
Campylopterus hemileucurus ô...................	11.92	1.95	33.7	73.9
	6.96	1.83		65.2
Colibri thalassimus cabanidis ${ }_{\text {" }}$..............	4.8			61.0
" " . " ${ }^{\text {o }}$.............	5.28	1.95		66.9
Anthracothorax nigricollis nigricollis ${ }_{4}$	7.33	2.27	-	65.2
" ${ }^{\text {c }}$ " ${ }^{\text {a }}$	6.86 3.13	1.88	26.5	66.9 44.1
Chlorostilbon canivetii assimilis ${ }_{\text {人 }}^{\text {¢ }}$............	3.13 3.03	1.88	26.5	45.6
Damophila julie panamensis ㅇ	3.03	2.02	-	42.6
	3.35		-	43.4
Amazilia amabilis costaricensis ¢	3.85	2.23	-	-
	4.78	-	-	
edward niveoventer $\stackrel{+}{\text { ¢ }}$......	4.43	2.28	28.5	51.0
edward niveoventer ${ }_{\text {" }}^{\text {人 }}$....	4.97	2.28	28.5	53.8
" edward 오	4.15	-		52.2
tzacatl tzacatl 우	4.72	2.12	26.6	54.9
	5.40	-	, 6	58.3
Eupherusa exima egregia ô	4.35	2.34	-	60.1
Elvira chionura ㅇ․….............................	2.83	2.25		46.8
" " ${ }^{\text {a }}$...............................	2.93	-	-	50.3
Chalybura buffonii micans 9.	5.6	-		62.0
Lampornis castancaventris ㅇ.................	5.26	2.16	22.5	64.3
Heliodoxa jacula henryi 우	7.39	1.98	27.9	66.2
Eugenes fulgens spectabilis ô	5.7	2.16	-	73.5
Heliothrix barroti ㅇ.........................	5.7			66.6
Archilochus colubris 9	3.36	2.31	-	44.5
" " o	3.2	-		38.5
Selasphorus scintilla ${ }_{\text {"/ }}^{\text {¢ }}$......................-	2.23	2.40	24.7	35.7
" $\hat{\text { o }}$......................	2.33	-	-	32.7

[^3]Unpublished data from Frank A. Hartman (Letter to C. H. Greenewalt, March 17, 1960)

	Pectoral muscle as \% of body weight		$\begin{gathered} \text { Katio } \\ \text { Large/Small } \\ \hline \end{gathered}$
	Large	Small	
Anthracothorax nigricallis	21.5	8.6	2.50
Damophila julie	16.0	10.5	1.52
Selasphorus scintilla ...	18.2	9.9	1.84
Florisuga mellivora	20	10	2.00

Table 12.—data from d. b. o. Saville, auk, vol. 67, p. 502 (1950)

	Pectoral muscle as \% of body weight		$\begin{gathered} \text { Ratio } \\ \text { Large/Small } \end{gathered}$
	Large	Small	
Archilochus colubris	20.5	9.2	2.22

Table 13.-data from r. meinertzhagen, ibis, vol. 97, no. 1, pp. 111-114 (1955)

Wing-beat rates-large birds
Wing lengths supplied by Charles Vaurie, The American Museum of Natural History

	$\begin{gathered} \text { Wing-beat } \\ \text { rate } \\ \text { sec-1 } \end{gathered}$	Wing length mm .
Raven ...	3.5	455
Carrion crow	3.6	325
Fantailed raven	3.5	371
Rook ..	2.3	315
Jackdaw ..	3.9	237
	3.3	377
Magpie ..	3.0	204
Starling .-...	5.1	128
Blackbird ..	5.6	125
Cuckoo ..	4.8	222
Short-eared owl	2.6	312
Peregrine falcon	4.3	309
Barbary falcon	4.9	283
Merlin ..	4.9	199
Kestrel .-...	3.5	245
	3.2	342
Montagu's harrier	3.1	360
Black kite ..	2.8	490
Osprey ...	2.4	472
Egyptian vulture ..-..............................	2.7	495
Heron ..-..	2.5	450
	2.1	437
	2.4	400
Mute swan ..	2.7	591
Shell duck .-...	3.0	375
	5.0	274
	5.0	271
Wigeon---................................	5.1	262
Shoveler ..	5.0	242
Common scoter .-.-.-.............................	5.0	235
	4.3	281
Eider duck ..	4.8	289
	4.6	289
Gannet-.....................	3.0	493
Cormorant ..-	3.9	350
Shag ..	4.8	270

Table 13.-concluded

	Wing-beat rate sec- 1	Wing length mm .
Great crested grebe	6.3	187
Great northern diver	4.2	360
Fulmar ...	3.6	321
Manx shearwater	5.1	234
Wood pigeon	4.0	245
Rock pigeon ..	4.3	222
Ringed plover ...-..................................	5.3	134
Golden plover	4.0	190
Lapwing .-...	2.3	226
Turnstone ...	4.0	152
Red shank ...	4.2	155
Ruff ...	4.1	192
Oystercatcher	4.1	257
Curlew .-..	4.0	292
	5.8	133
Greater black-backed gull	2.7	497
Lesser black-backed gull	2.8	422
Herring gull	2.8	438
	3.0	355
Black-headed gull	2.8	307
Kittiwake ...	3.3	312
Sandwich tern	2.4	308
Puffin ..	5.7	160
Guillemot ..	4.5	200
Black guillemot	8.0	163
Coot ..	5.8	212
	9.0	247
Capercailzie ...-......................................	4.6	393

> TAble $14 .-$ DATA FROM EARL L. POole, AUK, vol. 55, pp. $511-517(1938)$

Weights and wing area of 143 species of North American birds
Poole's table is arranged in order of ascending weights and I have retained this format, although it might have been better to group the birds in accordance with families and genera.

The wing areas are for both wings.
Poole did not give wing-length measurements. These have been taken principally from Ridgway's "Birds of North and Middle America" and Forbush's "Birds of Massachusetts and other New England States." The measurements for Sthenelides olor and Columba l. livia were taken from Witherby's "Handbook of British Birds."

Ridgway's measurements were made with dividers, one point resting against the anterior side of the bend of the wing, the other point touching the extremity of the longest primary. The value given in the table is the average either as reported by Ridgway or obtained by averaging the values given for the extremes.

Table 14.-continued

Forbush's measurements were made of the folded wing. Here again the value given in the table is the average of the two extremes. It is evident from the good correlation in the charts that Ridgway and Forbush were both measuring the same dimension within a very small error.

In the table that follows, wing-length measurements from Forbush are marked *; the two from Witherby, ** ; all others are from Ridgway.

	$\begin{gathered} \text { Weight } \\ g m . \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { area } \\ \mathrm{arm.}^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { length } \\ \mathrm{cm} . \end{gathered}$
Regulus s. sat	5.75	51	5.84
Corthylio c. calendula ô	6.73	58.25	5.89
Setophaga ruticilla ô	8	62.5	6.35
Certhia familiaris americana ô	8	66.5	6.55
Dendroica magnolia ô	9.20	69	6.01
" v. vierns ô	9.20	58.5	6.38
" c. caerulescens ô	9.25	67	6.52
Nannus h. hiemalis ô	9.4	41	4.76
Geothlypis trichas brachidactyla ô	9.5	58.53	5.51
Mniotilta varia ô ...	10.5	71	6.86
Troglodytes a. aëdon ô	11	48.40	5.07
Dendroica pensylvanica ô	11.1	60.5	6.33
Compsothlypis americana pusilla ô	11.85	56	6.06
Spizella p. pusilla ô	12.1	62	6.45
Penthestes a. atricapillus ô ...	12.5	76	6.6
Passerina cyanea ô -....................................	13	82	6.78
Spizclla p. passerina ô	13.5	91	6.91
Spinus t. tristis ô ..	14	83	7.26
Seiurus n. noveboracensis ô	14.5	86	7.67
Dendroica coronata ô	15.5	91	7.41
Stelgidopteryx ruficollis serripennis ô	15.75	107	11.1
Vireo a solitarius ô ..-...................................	16.75	88	7.46
Hirundo erythrogaster ô	17	118.5	11.8
Melospiza georgiana ô	17	73	6.25
Chaetura pelagica ô.	17.3	104	12.9
Melospiza l. lincolni ô ..--.............................	17.8	72.5	6.30
Spizella a. arborca ô	18	90	7.60
Ammedramus savannarum australia ô-	18.5	89	6.10
Anthus spinoletta rubescens $¢$	19	109	8.19
Sayornis phoebe 아-	20	134.5	8.33
Iridopracne bicolor ô	20.1	125	11.74
Junco h. hyemalis to	21.5	99	7.93
Melospiza m. melodia ô	22	86.5	6.73
Baeolophus bicolor ô ...-...-..............................	22.5	117.8	7.98
Icterus spurius ô ...	23	100.5	7.82
Passer d. domesticus of	24.5	92.5	7.60
Carpodacus p. purpureus .̂̀	24.5	104	8.33
Dryobates pubescens mediamus ô	24.8	136	9.41
Bombycilla cedrorum to	25	130	9.38
	26.5	251	15.9*
Zonotrichia albicollis of -.................................	26.5	108	7.47
Pooecetes g. gramineus ô..............................	27	108	8.10
Hylocichla guttata faxoni î	29.5	116	9.44
" f. fuscescens ô	32.3	147	10.23
	32.7	148	10.01
Hylocichla minima aliciae ô	34	150	10.40

Table 14.-continued

	Weight $g m$.	Wing area cm.	Wing length cm.
Piranga flava hepatica ô	35.8	153	10.26
Dumetella carolinensis $\hat{\text { o }}$...............................	39	150	9.12
Hedymeles ludovicianus î	40	166.5	10.14
Passerella i. iliaca ô ...	40.5	116	8.92
Pipilo e. erythrophthalmus ô ..-.......................	41.7	145	8.92
Prognc s. subis ô ...	43	185.5	14.63
Hodymeles m. melanocephalus ô	44.7	200	9.98
Tringa s. solitaria ô .---.-----............................-	47	192	12.65
Actitis macularia ô	47.5	146	10.05
Pinicola enucleator leucura ô	50	189	11.41
Molothrus a. ater ઠิ	50.5	179	11.05
Coccyzus a americants ô	61	266	14.36
Rallus l. limicola ¢ิ	65	221	10.59
Agelaius p. phoeniceus î	70	245	12.09
Balanosphyra f. formicivora î	74.5	306	14.11
Porzana carolina ô	75	176	10.70
Chordeiles m. minor ${ }^{\text {a }}$	75.25	349.5	19.80
Turdus m. migratorius ô	82	244	13.43
Sturnus v. vulgaris ô	84	190.3	12.90
Oxyechus v. vociferus ô	85	275	16.02
Centurus carolinus ô	87	262	13.10
Cyanocitta c. cristata ${ }_{\text {o }}$	89	236	13.15
Alle alle ô	96	146	11.58
Accipiter v. velox î	97.5	439	17.11
Colaptes auratus luterus ô	100	324	15.63
Pisobia melanotos $\hat{\text { o }}$	101	199	13.98
Cyanocephalus cyanocephalus ô	108	390	15.40
Cryptoglaux a. acadica ¢	108	420	13.63
Capella delicata ¢ ..	112	250	12.71
Quiscalus q. quiscula ô	122.3	324	14.38
Zenaidura macroura carolinensis ô	130	357.5	14.72
Valco s. sparverius 아	137	372	19.5
Sturnclla m. magna ô	145	265	12.24
Megaceryle a. alcyon of	155	376	15.63
Totanus melanolcucus ô	170	412	18.78
Accipiter v. velox ㅇ.7 ...	171	607	20.03
Falco c. columbarius ì ..	173	410	18.89
Otus asio nacvios î ...	178	523	16.02
	198.5	354.66	12.35
	198.64	216.8	11.15
	227	536	16.34
Butorides v. vircscens ..	230	660	18.1*
Asio zvilsonianus $\hat{\text { o }}$...	230	1,182	29.20
Otus asio naevius 아	254	476	16.60
Corvus ossifragus 오 .-...-.---.............................--	273.5	912.5	27.15
Asio zeilsonianus 앙	288	1,198	29.39
Corvus ossifragus ${ }^{\text {of }}$	309	1,072	27.80
Columba l. livia	314	567	21.93**
Nettion carolinense .-...	321	374	17.5*
	332	370	18.4*
Gallinula chloropus cachinnans ô	332	479.5	17.45
Podilvmbus p. podiceps ...	343.5	291	12.4*
Colymbus auritus	369.5	350	14.5*
Buteo p. platypterus ô	376	1,012	26.28
Charitonelta albeola ..	377	+412	16.4*
Circus hudsonius $\hat{\text { or }}$	414	1,382	33.96
	428.5	898	23.10

Table 14.-concluded

	Weight	$\begin{aligned} & \text { Wing } \\ & \text { area } \\ & \mathrm{cm} \mathrm{c}_{2} \end{aligned}$	$\underset{\text { length }}{\text { Wing }}$
Fulica a. americana ô	435	596	19.03
Florida c. caerulea .	449	1,246.5	26.0*
Tyto alba partincola ô	505	1,683	32.86
Strix v. varia ô ..	510	1,830	33.28
Bonasa u. umbellus ô-	516.5	527	18.36
Corvus b. brachyrhynchos ô-	552.5	1,344	32.10
Spatula clypeata ..	570	570	24.1*
Aix sponsa ô \& ¢ ..-.....................................	589	660	22.7*
Circus hudsonius of	615	1,696	36.75
Botaurus lentiginosus	625	1,258	29.2*
Erismatura jamaicensis rubida .-......................	635	394	14.7*
Falco peregrinus anatum of	712	1,146	31.42
Chaulelasmus streperus-	723	718	26.2*
Nyroca collaris	757.31	460	19.7*
	763	472	20.0*
Nycticorax nycticorax hoactli	804	1,773	30.4*
Buteo l. lineatus î	804	1,656	32.08
Astur a. atricapillus . ${ }^{\text {or }}$	848.6	1,480	32.52
Larus argentatus smithsonianus ô	850	2,006	41.0
Buteo b. borcalis ô	875	1,878	36.96
Casmerodius albus egretta	899	2,528	38.1*
Dafila acuta tzitzihos	970	761	26.2*
Branta bernicla hrota-	1,024	1,264	33.6*
Clangula hyemalis of	1,038	550.48	22.1*
Buteo lagopus s. johannis ô-............-	1,110	2,592	40.74
Anas rubripes tristis	1,142	1,007	26.2*
Falco peregrinus anatun 9-	1,222.5	1,342	35.63
Anas p. platyrhynchos ㅇ	1,233.5	952	27.9*
Phasianus colchicus torquatus ô	1,304	917	23.41
Buteo b. borcalis ¢	1,307	2,294	38.88
Astur a. atricapillus ¢	1,370	2,004	33.36
Nyctea nyctea ô......	1,404	2,576	40.81
Anas p. platyrhynchos ô ...-...........................	1,408	1,029	27.9*
Bubo v. virginiamus ?	1,446.5	2,534	36.63
" virginianus pacificus ô. .-.......................	1,480	2,426	33.65
Pandion haliaetus carolinensis ô	1,797.5	3,211	47.74
Ardea h. herodias	1,905	4,436	48.1*
Cathartes aura septentrionalis ô	2,409	4,356	53.59
Gavia i. immer 9 \& ${ }^{\text {a }}$	2,425	1,358	36.0*
Meleagris gallopavo silvestris of	3,897	3,752	41.43
Aquila chrsaetos canadensis $\%$......................	4,664	6,520	63.32
Branta c. canadenis ..	5,662	2,820	46.4*
Cygnus columbianus ..-.-...................................	5,943	4,156	55.0*
Sthenelides olor f-....................................	11,602	6,808	55.25**
Hummingbirds:			
Archilochus alexandri ô	2.55	12.75	4.27
" colubris ô-.................................	2.98	12.40	3.85

Table 15.-DATA FROM A. MAGNAN, ANN. SCI. NATURELLE, SER. 10, VOL. 5, PP. 125-334 (1922)

Les caractéristiques des oiseaux
Magnan has divided his birds into groups in accordance with their mode of flight. His short titles are difficult to translate, and I have left them in the original French. The basis for his classification is given on pages 165-171 of the original paper, together with the French common names of the species.
In addition to the data presented in the following tables, Magnan has measured many other characteristics, such as, for example, the length of body, length of tail, weight of wing skeleton, weight of heart, etc. I have given here those measurements which seemed particularly pertinent to flight.
The one measurement which presents difficulties is that of wing spread. Magnan says "The measurement is a matter of individual judgment; it is essential that all species be measured by the same hand, the wings must be stretched in precisely the same manner. The point is important, not if the wing spreads differ by a factor of 2 , but if the differences are small."
All measurements appear to have been made with the greatest care. Captive birds were used, and those which appeared to be in bad health were discarded. Nowhere else in the literature is there such an abundance of data. For anyone interested in dimensional relationships the entire paper is well worth careful study.

		Total weight gm.	Wing area cm.	Wing weight gm.	Wing spread cm.	Wing length. cm.	Pectoral muscles weight, gm. Large
Small							

Table 15.-continued

	$\begin{gathered} \text { Total } \\ \text { weight } \\ \mathrm{gm.} \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { area } \\ \mathrm{cm} .{ }^{2} \end{gathered}$	$\underset{\text { weight }}{\text { wing }}$ $\mathrm{gm} .$	$\begin{aligned} & \text { Wing } \\ & \text { spread } \\ & \text { cm. } \end{aligned}$	Wing length cm .	$\begin{gathered} \text { Pectoral m } \\ \text { weight, } \end{gathered}$ Large	muscles Small
Echassiers ramo-planeurs							
Ardea cinerea	1,408	3,590	329	172.6	43.7	217	16.2
Egretta alba	1,178	2,827	225	144.7	43.3	161	14.1
Botaurus stellaris	1,198	2,696	171	132.9	35.1	167	17.2
Nycticorax nycticorax	512	1,577	78.0	104.8	27.2	69.1	7.5
Platalea leucorodia	1,565	2,488	282	137.0	37.2	266	24.4
Ciconia ciconia	3,438	4,951	670	197.8	55.9	537	48.2
Megalornis grus	4,175	5,553	810	211.0	56.4	550	65.6
Leptopilus crumeniferis	7,030	8,225	1,516	281.7	78.6	1,202	103.6
Vanellus vanellus	211	668	38.6	75.0	22.6	44.0	4.1
Rapaces nocturnes ramo-planeurs							
Bubo bubo ..	1,720	3,715	366	164.1	43.1	246	13.1
Asio otus	247	1,082	49.9	94.1	31.5	27.3	1.73
" flammeus	390	1,396	75.0	107.5	32.9	46.4	2.57
Otus scops-	49.75	405	11.3	52.3	15.1	4.70	0.27
Tyto albo ...	279	1,163	54.5	97.3	28.1	33.2	2.15
Strix alvco	418	1,304	76.1	95.0	22.4	39.5	2.30
Athene noctua	161.5	459	25.3	58.9	19.6	18.0	1.19
Rapaces diurnes ramo-planeurs							
Accipiter gentilis	708	1,317	113	100.7	30.3	105.5	3.75
" nisus ¢ ...----...................	221	822	46.9	75.0	23.6	45.1	2.34
" " ¢	136	530	28.2	62.2	19.0	22.8	1.24
Polyborus tharus-	1,209	2,321	224	135.4	41.6	148.5	9.55
Falco tinnuисиlus ¢ ...-.................	245	708	42.4	73.8	23.2	28.3	1.64
" " ô	172	703	30.5	75.1	25.6	21.2	1.55
peregrinus	813	1,285	153	106.4	34.5	148.6	6.58
subbuteo	165	558	32.1	75.7	25.2	30.0	1.44
" columbarius regulus	145	438	23.8	60.4	24.7	27.9	1.35
Corvidés ramo-planeurs							
Corvus corone	470	1,058	74.7	89.4	29.5	60.9	4.89
" cornix .-....-.-......................	633	1,317	96.0	97.9	31.8	86.0	6.14
Trypanocorax frugilegus ..-............	470	1,387	80.0	97.2	31.9	69.2	5.08
Coloeus monedula spermologus	253	665	37.0	70.8	23.4	33.5	2.73
Pyrrhocorax pyrrhocorax	390	948	58.5	67.2	26.3	52.7	3.90
Graculus graculus	223	997	36.5	78.2	27.9	27.8	2.14
Nucifraga caryocatactes---	161	515	21.8	59.8	18.5	22.5	2.05
Coracias garrulus	128	483	18.9	61.5	19.7	16.0	1.60
Pica pica	214	640	31.4	59.2	19.1	26.8	2.18
Garrulus glandarius	160	554	20.9	54.3	19.0	18.9	1.93
Upupa epops	91	366	12.3	47.7	15.7	14.3	1.09
Xanthoura yncas-..................	71.3	316	9.27	37.3	14.1	7.80	0.87
Passereaux ramo-planeurs							
Cuculus canorus	104	419	20.3	58.3	19.8	19.5	1.64
Caprimulgus europaeus	92	398	16.1	56.9	19.4	16.6	1.85
Apus apus ...-....................................	36.2	165	4.99	42.0	17.5	6.75	0.90
Chelidon rustica	18.35	135	2.71	33.0	11.9	3.40	0.33
Hirundo urbica	14.35	92.0	1.80	29.2	10.0	1.90	0.17
Riparia rupestris	15.50	119	2.25	31.4	11.2	2.52	0.165
Palmipèdes ramo-planeurs							
Phalacro corax carbo	2,115	1,967	265	171	42.4	262	26.5
Puffinus puffinus	342	575	45.5	81.1	23.8	42.6	4.10
Larus argentatus	1,189	2,105	226	143	46.6	141	12.1
" canиs	367	1,149	71.0	108	34.4	47.0	3.60

Table 15.-continued

	Total weight gm.	$\begin{gathered} \text { Wing } \\ \text { area } \\ c m .2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { weight } \\ g m . \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { spread } \\ c m . \end{gathered}$	$\begin{gathered} \text { Wing } \\ \text { length } \\ \mathrm{cm} . \end{gathered}$	$\begin{gathered} \text { Pectoral r } \\ \text { weight, } \\ \text { Large } \\ \hline \end{gathered}$	nuscles $g m$. Small
Palmipèdes ramo-planeurs, continued							
Rissa tridactyla	488	967	71.7	105	32.3	65.0	6.30
Larus ridibundus ...	261	853	42.5	97.1	30.7	33.3	3.00
Sterna hirundo	118	563	22.0	82.9	28.4	19.0	1.90
Passereaux rameurs a vol soutenu							
Muscicapa striata	14.35	119	1.80	26.7	8.99	2.10	0.20
Ficedula hypoleuca	12.50	91.0	1.38	24.4	7.89	1.95	0.20
Alauda arvensis	28.30	163	3.65	31.7	9.45	6.05	0.55
Anthus pratensis	18	${ }_{125} 96$	2.11	25.9	7.86 9.06	3.91 3.97	0.35 0.38
Motacilla alba	22	132	3.05	28.3	8.97	4.55	0.38
	16.50	101	2.00	25.0	7.64	3.40	0.26
cinerea	16	92.0	1.94	25.2	8.06	3.70	0.29
Lanius excubitur	50.50	210	5.80	35.5	11.1	7.22	0.77
" senator	26.10	144	3.05	31.4	11.0	3.80	0.39
" collurio	30.95	182	2.82	28.6	8.79	3.20	0.30
Luscinia megarnyncha	17.15	100	1.70	25.5	8.24	2.35	0.29
Erythacus rubecula.....	17.75	88.0	1.65	22.7	6.78	2.14	0.25
Phocnicurus phoenicurus ochrurus	13	91.0	1.45	25.6	7.99	2.26	0.22
" gibraltaricnsis	16.95	122.4	2.10	27.0	8.73	2.50	0.25
Pratincola rubetra	13.05	98.8	1.55	23.5	7.77	2.04	0.20
" cubicola	11.45	76.8	1.20	21.6	6.54	1.68	0.17
Phylloscopus bonellii	7.65	63.0	0.80	19.1	5.71	1.20	0.14
Or " rufus	5.25	48.2	0.60	17.4	5.39	0.65	0.10
Oriolus oriolus	72	274	9.91	47.0	15.39	14.7	1.22
Monticola solitarius	62.8	236	6.59	38.6	12.32	8.40	0.82
" saxatilis	47.5	160	4.38	35.5	11.23	7.25	0.70
Turdus merula	91.5	260	8.99	40.6	12.62	14.6	1.70
"، паumanni	76.2	225	7.15	37.7	11.87	11.3	1.35
viscivorus-	106	307	11.25	44.0	14.20	22.5	1.80
pilaris	98	225	9.90	42.9	13.83	22.8	1.84
musicus	70.3	191	6.64	36.7	11.14	14.0	1.40
"" iliacus	56	180	5.70	37.1	11.48	10.9	1.00
" torquatus	96.5	222	8.85	42.7	13.30	15.7	1.59
Sturnus vulgaris	79.5	192	7.96	39.1	12.47	15.0	1.54
Loxia curvirastra	47.6	167	5.82	31.9	10.16	10.3	1.02
Coccothraustes coccothraustes	42	148	4.65	32.0	9.73	8.18	0.87
Pyrrhula p. eurapaea ..--...................	21.4	94.8	2.35	25.5	8.05	3.20	0.40
Scrinus canarius serinus	8.35	73.1	1.17	22.1	7.10	1.83	0.17
Choris chloris -.................................	23.70	100	2.75	27.0	8.62	5.75	0.47
Fringilla caelebs .-........................	21.15	102	2.75	28.5	8.85	4.95	0.40
" montifrigilla	25.1	123	2.90	28.1	9.08	4.10	0.40
Passer domestica .-.-........................	30	101	2.90	25.2	7.46	4.85	0.49
" montana.	15.2	76.0	1.58	21.8	7.18	2.55	0.33
Petronia petronia	25	100	2.30	28.4	9.06	4.90	0.49
Carduelis carduelis..	16.65	92.1	2.10	24.8	7.91	3.42	0.35
Spinus spinus.	11.80	68.0	1.24	21.4	6.83	2.42	0.17
Acanthus cannabina-	15.80	96.1	1.85	24.8	8.03	3.60	0.36
Spinus citrinella .-..........................	11.95	73.9	1.45	24.5	7.31	2.40	0.25
Emberiza citrinella-	25	130	3.36	28.1	9.06	5.00	0.55
" cirlus ...	23.1	104	2.60	24.8	7.40	4.70	0.40
" hortulana	33	122	2.45	27.3	8.66	4.20	0.48
". cia	21.40	108	1.78	25.8	7.77	3.95	0.32
Regulus regulus	20	114	1.65	25.5	7.60	4.00	0.30
Regulus regulus	3.80	32.2	0.40	14.3	5.00	0.45	0.05

Table 15.-continued

	Total weight gm.	Wing area cm.	$\underset{\text { weing }}{\text { Wing }}$ $g m$.	$\begin{aligned} & \text { Wing } \\ & \text { spread } \end{aligned}$ $\mathrm{cm} .$	Wing lengt cm.	$\begin{gathered} \text { Pectoral muscles } \\ \text { weight, gmall } \\ \text { Large Small } \\ \hline \end{gathered}$	
Passereaux rameurs a vol peu soutenu							
Cyanecula suesica cyanecula.	14.30	78.9	1.64	21.4	6.31	1.75	0.26
Sylvia atricapilla	16.25	88.9	1.75	23.8	7.60	1.75	0.23
" jimplex	15.8	74.9	1.52	23.6	7.53	1.58	0.22
" communis	18.65	87.1	1.69	22.5	7.16	2.20	0.25
Prunella modularis ..	18	80.1	1.55	22.0	6.55	2.40	0.24
Hypolais icterina-.-.-...................	10.65	80.0	0.88	20.5	6.60	1.18	0.14
Acrocephalus cirpaceus	12.80	67.2	1.00	20.3	6.78	1.52	0.18
" . schoenobaenus	10.40	52.9	0.98	19.2	6.11	1.22	0.14
Parus major	21.45	102	1.60	23.3	7.50	2.75	0.25
caeruleus	11	66.0	0.98	21.4	6.67	1.77	0.18
cristatus mitratus	10.20	72.9	1.26	20.2	6.29	1.42	0.15
" palustris longirostris ...-........	10.90	64.1	1.14	20.0	6.21	1.75	0.17
" " commmunis	11.75	71.9	1.20	20.9	6.82	1.70	0.17
Aegithalus caudatus	8	58.0	0.73	18.6	6.00	1.25	0.12
Gecinus viridis-	156	457	20.5	51.7	16.15	25.4	1.95
Dryobates major pinetorum	73	238	9.75	42.2	12.95	13.0	1.14
" minor hortorum	15.50	103	1.90	26.9	8.48	2.50	0.25
Jynx torquilla	37.30	116	3.58	29.4	8.69	6.95	0.48
Certhia brachydactila	8.50	66.0	0.92	20.0	6.12	1.25	0.13
Sitta europaea coesia	21.10	132.7	2.55	27.4	8.57	3.20	0.30
Trichodroma muraria	15	174	2.25	30.1	9.86	2.30	0.17
Troglodytes troglodytes	10.1	41.4	0.75	16.9	4.76	1.15	0.15
Passereaux vibrateurs							
Eupherusa eximia	2.85	15.4	0.18	13.0	5.10	0.86	0.12

Echassiers rameurs terrestres

Otis tarda	8,950	5,728	1,298	208	51.9	1,790	224
tetrax	830	1,038	120	86.5	22.6	182	22.5
Burhinus oedicnemus	522	757	71.0	83.7	23.4	81.3	9.20
Charadrius apricarius	178	356	20.3	58.5	17.4	41.2	6.0
" morinellus	90	247	9.9	46.6	14.8	20.1	2.75
Crex crex	155	318	16.1	47.8	14.0	24.3	3.35
Scolopax rusticola	322	596	37.5	66.5	20.6	82.0	17.8

Echassiers rameurs riverains

Numenius arquatus	768	1,175	108	104.4	30.2	145	18.0
Haematopus ostralegus	438	622	64.0	80.5	25.8	65.6	8.68
Charadrius hiaticula	62.2	188	5.90	40.8	13.1	10.7	1.30
Squatarola squatarola	216	413	23.8	65.4	20.4	40.7	5.20
Gallinago gallinago ...-......	95.5	244	9.29	44.8	12.8	25.3	5.20
Lymnocryptes gallinula	57	178	6.40	39.3	10.8	11.3	2.24
Canutus canutus	88	269	11.2	50.3	15.6	18.7	2.46
Eriolia alpina	44	126	3.65	36.0	10.9	8.45	1.10
Arenaria interpres	107.8	213	9.80	47.6	14.8	22.4	3.04
Calidris leucophaea	41.9	160	4.20	35.4	11.5	8.60	1.52
Machetes pugnax	180	457	22.5	63.2	19.2	41.3	5.18
Tringa nebularius	156	406	18.5	60.8	18.8	33.8	4.64
" erythropus	133	326	15.5	54.1	16.3	28.6	4.39
totanus	133	366	14.2	51.6	14.8	26.2	3.79
ocrophus	72.7	248	8.35	47.2	14.6	18.2	3.00
" hypoleucus	48.5	148	4.25	35.7	11.3	8.10	1.52
Limosa laponica	197	520	27.6	73.3	22.1	40.4	7.80
" limosa.	228	527	30.3	69.0	20.8	51.7	7.00
Recurvirostra avocetta	295	684	41.6	77.2	22.0	49.4	3.98

Table 15.-continued

		Total weight gm.	Wing area cm.	Wing weight gm.	Wing spread cm.	Wing length cm.	Pectoral muscles weight, gm. Large
Small							

Palmipèdes nageurs rameurs

Cygnus cygnus	5,925	3,377	978	230	56.1	884	70.1
Anser fabalis.	3,110	2,675	425	162	46.7	555	59.7
" anser	3,065	2,697	491	163	46.5	570	59.8
" albifrons	1,715	1,835	294	141	40.7	309	39.3
Branta bernicla	1,273	1,388	165	119	33.6	209	22.9
" lcucopsis	1,150	1,150	150	108	35.6	192	20.8
Anas platyrhynchus	1,105	928	117	90.0	25.9	215	32.7
Spatula clypeata	633	614	66.0	79.8	23.2	116	15.2
Dafila acuta	955	840	98.0	91.6	25.6	186	20.0
Marcca penelope-	830	664	83.6	85.5	25.4	146	17.7
Querquedula crecca .-...	293	349	31.0	57.8	17.9	57.7	7.3
" querquedula	327	399	36.2	65.4	19.3	63.4	8.90
Clangula clangula	622	516	57.0	70.0	19.6	106	14.5
Nyroca nyroca	512	512	50.0	68.0	18.4	86.8	10.25
" fuligula	741	474	55.9	70.6	20.8	123	13.55
ferina	842	615	80.0	77.4	21.7	166	16.4
" marila	675	621	98.6	81.6	21.9	176	16.3
Oidemia nigra-	870	679	88.0	85.0	22.9	102	12.2
fusca	1,578	1,010	160	96.7	25.6	218	26.8

Palmipèdes plongeurs rameurs

Mergus serrator	818	589	77.7	88.6	24.4	142	14.7
" merganser	1,470	853	167	95.5	26.2	213	22.0
albellus	495	431	41.0	62.5	17.4	86.5	9.37
Colymbus cristatus.	790	561	72.0	78.6	17.6	92.0	8.90
griseigena	480	542	43.2	72.0	16.4	57.2	5.2
ruficollis	180	236	10.9	44.0	10.2	14.65	1.9
Gavia septentrionalis	957	890	102	104	26.6	58.0	5.5
" arctica	1,495	1,196	168	120	30.9	147	10.4
Alca torda	780	382	48.0	68.1	19.3	97.0	28.9
Uria troille	1,010	424	61.9	70.2	20.1	148	48.0
Fratercula arctica	272	345	23.7	56.4	16.2	30.4	9.50
Alle alle	91.2	167	7.75	38.7	12.6	12.8	3.6

Table 15.-concluded

	$\underset{\text { weight }}{\text { Total }}$ $\mathrm{gm} .$	Wing cm. ${ }^{2}$	Wing $\mathrm{gm} .$	Wing spread cm.	$\underset{\text { length }}{\text { Wing }}$ cm.	Pectoral weigh Large	muscles $g m$.
Echassiers plongeurs rameurs							
Fulica atra	578	618	40.5	72.5	20.0	57.3	7.30
Gallinula chloropus	265	368	21.0	55.9	12.8	33.0	4.70
Porzana porzana	69	228	6.44	39.4	11.5	9.15	1.45
Rallus aquaticus	128	261	9.50	41.3	11.6	11.4	2.14
Passereaux plongeurs rameurs							
Alcedo ispida ..-...............................	36.4	108	3.75	28.8	8.29	6.02	0.76

LITERATURE CITED

Greenewalt, Crawford H.
1960. The wings of insects and birds as mechanical oscillators. Proc. Amer. Philos. Soc., vol. 104, No. 6, pp. 605-611, 4 figs.
Hartman, Frank A.
1954. Cardiac and pectoral muscles of trochilids. Auk, vol. 71, No. 4, pp. 467-469.
Hocking, B.
1953. The intrinsic range and speed of flight of insects. Trans. Roy. Ent. Soc. London, vol. 104, pt. 8, pp. 223-345, 6 pls., 29 figs.
Magnan, A.
1922. Les caractéristiques des oiseaux suivant le mode de vol. Ann. Sci. Nat., ser. 10, vol. 5, pp. 125-334, 37 figs., 14 pls.
1934. Le vol des insectes. Hermann et Cie , Paris.

Magnan, A., and Perrilliat-Botonet, Ch.
1932. Sur le poids relatif des muscles moteurs des ailes chez les insectes. Compt. Rend. Acad. Sci., vol. 195, pp. 559-561.
Meinertzhagen, R.
1955. The speed and altitude of bird flight (with notes on other animals). Ibis, vol. 97, No. 1, pp. 81-117.
Müllenhoff, Karl.
1885. Die Grösse der Flugflächen. Pflueger's Arch. Ges. Physiol., vol. 35, pp. 407-453, 4 figs.
Oehme, Hans.
1959. Untersuchungen über Flug und Flügelbau von Kleinvögeln. Journ. Orn., vol. 100, No. 4, pp. 363-396, 30 figs.
Poole, Earl L.
1938. Weights and wing area of 143 species of North American birds. Auk, vol. 55, pp. 511-517.

Reed, S. C.; Williams, C. M.; and Chadwick, L. E.
1942. Frequency of wing-beat as a character for separating species races of geographic varieties of Drosophila. Genetics, vol. 27, No. 3, pp. 349-361.
Savile, D. B. O.
1950. The flight mechanism of swifts and hummingbirds. Auk, vol. 67, pp. 499-504.
Sotavalta, Olavi.
1947. The flight-tone (wing-stroke frequency) of insects. Acta Entomologica Fennica, pt. 4, 117 pp., 18 illus.
1952. The essential factor regulating the wing-stroke of insects in wing mutilation and loading experiments and in experiments at subatmospheric pressure. Ann. Zool. Soc. "Vanamo," vol. 15, No. 2, 66 pp., 12 figs.
1954. The effect of wing inertia on the wing-stroke frequency of moths, dragonflies and cockroach. Ann. Ent. Fennica, vol. 20, No. 3, pp. 93101.

Stresemann, E., and Zimmer, K.
1932. Ueber die Frequenz des Flügelschlages beim Schwirrflug der Kolibris. Orn. Monatsb., Jahrg. 40, No. 5, pp. 129-133.

Note: After completion of the present manuscript I have noted Frank A. Hartman's "Locomotor Mechanisms of Birds"" (Smithsonian Misc. Coll., vol. 143, No. 1). This paper contains many data on dimensional relationships for birds. A cursory inspection of the tables indicates general agreement with the relationships presented here. It is unfortunate that I was unable to include Hartman's excellent and abundant data in the present compilation.-C. H. G.

[^0]: SMITHSONIAN MISCELLANEOUS COLLECTIONS, VOL. 144, NO. 2

[^1]: ${ }^{1}$ Greenewalt, Crawford H., "The Wings of Insects and Birds as Mechanical Oscillators," Proc. Amer. Philos. Soc., vol. 104, No. 6, 1960.

[^2]: * For membranous wings only.

[^3]: * The wing-length measurements are averages taken from Ridgway, "Birds of North and Middle America.'

