SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NUMBER 1

LOCOMOTOR MECHANISMS OF BIRDS

By

FRANK A. HARTMAN

Department of Physiology The Ohio State University Columbus, Ohio

(PUBLICATION 4460)

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JUNE 30, 1961

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 143, NUMBER 1

LOCOMOTOR MECHANISMS OF BIRDS

Вy

FRANK A. HARTMAN

Department of Physiology The Ohio State University Columbus, Ohio

(PUBLICATION 4460)

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JUNE 30, 1961 PORT CITY PRESS, INC. BALTIMORE, MD., U. S. A.

LOCOMOTOR MECHANISMS OF BIRDS

By FRANK A. HARTMAN Department of Physiology The Ohio State University, Columbus, Ohio

INTRODUCTION

Ornithological literature abounds in descriptions of the habits and activities of birds, while anatomical studies are less common and are related mostly to taxonomy. Attempts to correlate structure with function in birds are few, yet this is a very intriguing subject for study since birds are among the most active members of the animal kingdom. This is reflected in their high rate of metabolism and elevated temperature. Their versatility is great; they can fly, run, or swim, some performing all these activities, while others are limited to one or two. However, certain species excel in locomotion in the air, on the land, or in the water.

We note the explosive flight of the grouse, the graceful glide of the swallow, the soaring of the vulture, the poise of the hummingbird, the racing of the roadrunner, and the diving of the loon. Their skill can be seen, their speed can be measured, but the relative power involved escapes us.

Actual measurement of these activities is necessarily limited, since the confinement required would defeat its goal, but the muscles can be weighed as an indication of their potential capacity. The flight muscles can serve as a measure of power in the air. Likewise muscles of the lower extremities represent the power for terrestrial or aquatic locomotion, while heart weights bear a direct relation to the ability to sustain activity. The areas of the wings, tail, and total gliding surface are measures of the airlift, and the relation of length to breadth of the wing shows the adaptation for lift or glide. The superficial and deep layers of the pectoralis, which constitute 48 to 68 percent of all flight muscles, are most essential in depressing the wing or lifting the body, while the supracoracoideus raises the wing. The remainder of the flight muscles (grouped in the master list, table I (pp. 38-87), under the heading "Rest") play their part in controlling wing movement.

Little accurate information about the relative size of muscles has been available. General statements have been made such as that by Aymar (1935, p. 57): "a pigeon's pectoral muscles which raise and lower the wing are as much as 50 percent of the entire bird." However, Fisher (1946) made careful comparisons of the volumes of the individual locomotor muscles of vultures preserved in alcohol. For the present study I selected certain groups of muscles used in locomotion and weighed them in the fresh condition. In addition, the areas used in lift or glide have been determined.

METHODS

All specimens were kept in waterproof plastic bags to prevent drying until weighed at the field station. Small birds were weighed on a torsion balance of 120 grams' capacity. Larger ones were weighed on Chatillon spring balances, the most sensitive one for the weight involved being used: 6,000 grams' capacity with 24 grams' sensitivity; 500 grams' capacity with 10 grams' sensitivity; and 250 grams' capacity with 5 grams' sensitivity.

The bird was spread out on a sheet of paper tacked to a drawing board. A careful outline of the spread wings, tail, and body was traced. The length and median width of the wing were also determined for the calculation of the aspect ratio $\left(\frac{L}{W}\right)$. Areas were obtained later by a compensating polar planimeter. The buoyancy index was calculated by the formula, $\frac{\sqrt[2]{Wing area}}{\sqrt[3]{body weight}}$, since area is two-

dimensional and weight is three-dimensional (George and Nair, 1952). After skinning the areas involved, the pectoralis superficialis, supracoracoideus, the rest of the flight muscles (called "rest") except those along the carpus, metacarpus, and phalanges, and finally all the muscles of the lower extremities were removed by means of scalpel and scissors and then weighed. (If there was any delay before weighing, the dissected muscles were kept in a moist chamber.) These muscles were weighed on both sides from at least 200 birds, but thereafter the muscles on one side only were weighed, since the two sides proved to be identical within the limits of error of dissection. The weights of smaller muscle groups have been determined in a few species. Thus the shoulder, upper and lower arm, and upper and lower leg muscles have been separated. Doubling these values gave the totals used in calculations.

Heart vessels were trimmed close to the organ and both sides cut open, any remaining blood being removed by contact with blotting paper. Weighing was carried out on the torsion balance or on a Roller-Smith balance with a capacity of 1,500 milligrams and a sensitivity of 0.02 milligram. Only healthy adult birds were used, except for a few immature specimens which are mentioned in the text. Nomenclature is based largely on Peters' check list (1931-1951) and on the check list of the American Ornithologists' Union (1957) for North American passerine species. The values obtained were listed in tables. In our earlier work some of the muscles were not weighed, which accounts for the lack of complete data in some species. The text figures make comparison of typical values in each family, those preceded by an asterisk in the table being represented.

Material for this work was collected in Florida, Maine, Ohio, and Panamá. Panamanian birds were collected during the period January through March at the following stations: Juan Mina, Canal Zone, on the Río Chagres; Río La Jagua in the Pacora marshes, in the Province of Panamá east of Panama City; Cerro Copete (elevation 7,000 ft.) above Boquete, and the finca "Palo Santo" near the village of El Volcán (4,250 ft. above sea level), in the Province of Chiriqui. Florida birds were collected at different seasons on Lake Okeechobee, around the islands of the Gulf Coast, and on the prairies and hammocks of the peninsula. Ohio birds were obtained from the central part of the State, and Maine birds were collected at or near Lake Kezar in the southwestern part of the State. Most specimens were obtained in the morning before 11 o'clock.

ACKNOWLEDGMENTS

I am very much indebted to Richard Archbold, of the Archbold Biological Station, Florida, for his personal assistance in the collection of material, and for the use of the facilities of the Station. In Panamá the studies in the Canal Zone were based at the Juan Mina Field Station of the Gorgas Memorial Institute through the good offices of Dr. Carl Johnson, the director. The La Jagua Hunt Club permitted the use of their facilities for work in the open country near the Rio La Jagua. Pablo Brackney kindly granted our party the use of a cottage at "Palo Santo," and the late Tollef Mönniche aided us on our expeditions on Cerro Copete above Boquete. Alois Hartmann also permitted us to stay at his place in western Chiriquí. The late Dr. James Zetek, then Resident Manager of the Canal Zone Biological Area on Barro Colorado Island, was very helpful at all times with advice. I wish to thank Dr. Alexander Wetmore for the identification of some of the Panamanian birds and for a critical reading of the manuscript. Many of the measurements and calculations were carried

out by Carl Albrecht, Kent Bruno, Barbara Caldwell, David Gillespie, Elmer E. Hartman, Donald Neal, and Kenneth Teague. This study was aided by grants from the Comly-Coleman Fund and the Graduate School of the Ohio State University.

RESULTS

Data on more than 360 species in 70 families are included in this report. The muscle weights are calculated as percent of body weight. The wing and other areas are given as cm.² per gram of body weight. Glide area is the area included in wings, tail, and body.

In the master list (table 1, pp. 38-87) the number of individuals in a species is shown in parentheses, with the mean values and standard error of the means, or the individual values are given if less than three. Sexes are separated for body weights and for other determinations where the differences between sexes are significant; otherwise the data of the two sexes are combined. Although the data from a single individual may not be representative of a species, they have been included if the species is sufficiently interesting.

Before embarking on a consideration of the muscles I wish to call attention to certain species in which there is a significant difference in body weight between the sexes. Those in which males are larger are: Podiceps dominicus, Casmerodius albus, Gallus gallus, Aramus guarauna, Porphyrula martinica, Columba speciosa, Brotogeris jugularis, Crotophaga major, Crotophaga ani, Crotophaga sulcirostris, Nyctidromus albicollis, many trochilids, Centurus rubricapillus, Centurus chrysauchen, Dendrocincla homochroa, Sittasomus griseicapillus, Xiphorhynchus guttatus, Anabacerthia striaticollis, Manacus vitellinus, Fluvicola pica, Cyanocitta cristata, Parus carolinensis, Parus bicolor, Parula pitiayumi, many icterids, and Arremonops conirostris. In the following species the females are larger: Jacana spinosa, Tyto alba, Speotyto cunicularia, Cotinga ridgwayi, Corapipo leucorrhoa, Thryothorus modestus, and Selasphorus scintilla.

Let us now consider the distinctive values in each family and their possible relation to habits (table 1).

Tinamidae.—The tinamous are most unusual birds, possessing extremely large flight muscles (37 to 40 percent of the body weight, of which the pectoralis is 63 percent) and large leg muscles (13 to 17 percent) but the smallest heart (0.19 to 0.25 percent) of all birds. The pectorals are so large that they extend beyond the keel of the sternum. In *Crypturellus* the sternum is submerged 7 to 8 mm. below the bulging pectorals. The same condition is present in *Nothocercus* and in *Tinamus*, where the submergence may reach 9 to 10 mm. The wings are small (buoyancy index, 2.86 to 3.14) and broad (aspect ratio, 1.49 to 1.62). The wing area per gram of flight muscles is 19 cm.² in *Tinamus* and 36 cm.² in *Crypturellus*. Nothocercus possesses smaller pectoralis muscles (P < 0.01) but larger lower-extremity muscles than *Tinamus* and *Crypturellus*. The muscles are in keeping with the habits—these birds run along the ground or fly explosively for short distances, the small heart preventing more prolonged effort.

Podicipedidae.—Grebes are most proficient in swimming and diving, using their feet in the process (Van Tyne and Berger, 1959). Their flight muscles are very small, being only 14 percent of the body in *Podiceps dominicus*. This species, which weighs only a little more than one-third as much as *Podilymbus podiceps*, possesses almost double the wing area of the latter. *Podiceps dominicus* also has a lower aspect ratio (2.51 compared to 2.91). The tails are insignificant in both species. The leg muscles are large, being 16 percent in *Podiceps* and 18 percent in *Podilymbus*. The leg position is ideal for swimming but causes an awkward waddling gait in walking. The heart is moderate in size in both species (1.00 to 1.05 percent).

Pelecanidae.—The clownish brown pelican starts rather awkwardly with slow, sweeping wing strokes, continuing with frequent soaring and sailing or, on a gentle breeze, gliding gracefully just above the water. The male has relatively larger flight and leg muscles than does the female, but compared to the cormorant, the flight muscles are but a little larger while the legs are less than half the size. His wings are moderately large (1.34 cm.² per g. of body; buoyancy index, 4.38) but very long (aspect ratio, 3.75), enabling him to skim over the water with ease.

Phalacrocoracidae.—The cormorant prefers to dive and swim, since that is his method of obtaining food. He is a rapid swimmer, using only his feet according to Selous (see Bent, 1922), holding his wings motionless. In the air he is a heavy flier (flight muscles, 17 percent; buoyancy index, 3.27), slowly flapping his wings after the manner of a heron. His legs are large (muscles are 11 percent of the body), but because of their position, on land he is awkward, though less helpless than the grebe.

Anhingidae.—The anhinga, like the cormorant, obtains his food by diving and swimming, using his feet only, with wings slightly folded or slightly expanded and steering with his tail, which can be spread as a rudder (Bent, 1922). However, unlike the cormorant he is a graceful, rather powerful flier, having somewhat larger flight muscles (19 percent) and wings (buoyancy index, 3.7) but smaller legs (8.6 percent).

Fregatidae.—The man-o'-war, one of the most graceful birds in the air, soars much of the time, steering by his scissors tail, but he can also fly rapidly to overtake another bird. His wings are very large (buoyancy index, 5.55) and extremely long (aspect ratio, 3.5 to 4.4), but his pectoralis plus supracoracoideus muscles are moderate (13 to 17 percent).

Ardeidae.—The large leg muscles of the herons are useful for wading and stalking prey. The members of this family show a considerable range in equipment, but the wings of all are rather long (aspect ratio, 2.00 to 2.66) and large (buoyancy index, 3.68 to 5.28), and all have large flight muscles (20 to 25 percent) except *Ixobrychus* (13.89 percent).

They vary as much in flight as in muscular equipment. Some, like the great blue heron, make an awkward start on the takeoff by vigorous wing strokes, but once underway the long, slow strokes carry them majestically through the air. The black-crowned night heron differs from other herons in having a flight more gull-like, being stronger and swifter with quicker wing strokes. This is not due to the size of the wing muscles, since they are no larger. The least bittern has an awkward fluttering flight for a short distance, preferring to escape by walking or climbing. However, on long flights he appears strong and rather swift despite small flight muscles. The hearts of all herons are rather small (0.57 to 0.83 percent).

The hearts of the Florida subspecies of *Butorides virescens* are heavier (P<0.05) than those of the same species collected in Panamá. This is also true for individuals of *Florida caerulea* and *Ixobrychus exilis* from the two localities. The hearts (P<0.01) and pectoral and supracoracoideus muscles (P<0.05) of *Tigrisoma lineatum* are larger than the same features in *Heterocnus mexicanus*.

Cochleariidae.—The boat-billed heron is similar to the true herons in the size of its flight equipment. It is interesting to note that in an immature *Cochlearis*, at a time when the body had almost attained adult weight, the flight muscles were less than half the weight of those in the adult, while the leg muscles were nearly the weight of the adult's. The heart of the immature was also very much smaller than that of the adult. The early development of the leg muscles was also shown in a young *Heterocnus mexicanus* (250 g.). In this bird the legs were half-grown (muscles 5.88 percent of the body) while the flight muscles were little more than one-tenth the value of those of the adult (2.28 percent). Likewise, an immature male *Podilymbus podiceps* that had attained the weight of the adult (450 g.) possessed flight muscles (7.58 percent) somewhat less than those of the adult, while the legs were the size of those of the adult (18.9 percent). The wing feathers were just emerging.

Ciconiidae.—The wood ibis springs powerfully into the air and flies higher and higher until almost out of sight, when he sails gracefully on motionless wings in wide circles. His flight muscles are somewhat larger (27 percent of body) and his wings narrower (aspect ratio, 2.85) than in most herons, but his legs are about the same size (10.9 percent).

Threskiornithidae.—The white ibis walks and climbs nimbly and swims well. He flies with strong, rapid strokes, varied with occasional periods of sailing. There is nothing unusual about his measurements.

Anatidae.—Both the pintail (Anas acuta) and blue-winged teal (Anas discors) are fast fliers with fairly large hearts (1.23 and 1.15 percent respectively) and large flight muscles (31.36 and 29.2 percent). They spring upward from the water and get underway at once. The whistling of the teal's wings is probably due to the rapid wing beats, since the wings are small for the weight (buoyancy index, 2.84). The lesser scaup (Aythya affinis), a rather laborious but steady flier, has a buoyancy index of 2.62. Its heart is smaller than that of Oxyura dominica (P<0.05) and Anas acuta (P<0.01). The heart of Cairina, in the domesticated form, is smallest of all. The flight muscles of the male Cairina are smaller (P<0.01) than those of the female, while the reverse is true for the legs. The supracoracoideus in ducks is about one-third that of the "rest" group. Cairina possesses the largest legs of all ducks studied.

Cathartidae.—The flight of *Coragyps* is inferior to that of *Cathartes*. He has smaller wings (P<0.01) and flight muscles (P<0.05) a larger heart and legs (P<0.01,), and broader wings. Differences are also shown between Panamá and Florida vultures. The hearts of Florida *Coragyps* (P<0.05) and *Cathartes* (P<0.01) are larger than those of the Panamá species.

Accipitridae.—Among the hawks, *Elanoïdes* is unsurpassed in beautiful maneuverings. With his long wings (aspect ratio, 3.40) and forked tail he soars aloft to sport among the clouds. The speedy accipiters fly by a series of quick flappings followed by short periods of rapid sailing. In contrast the *Buteo* flight is heavy but powerful and graceful. *Buteogallus anthracinus* is similar in flight.

The hearts of the Accipitridae are relatively small, ranging from 0.40 to 0.81 percent. The flight muscles of most of them are of moderate size, *Chondrohierax* and *Spizaëtus* being exceptions. The most striking finding is the relatively small size of the supracoracoideus (only 0.39 to 0.56 percent of the body). The legs, except in *Elanoïdes*, are fairly large, and the wings are fairly long. These characteristics indicate good fliers but little ability to sustain activity for long periods, unless by soaring. The muscles of the lower extremities of many hawks are relatively large, and those of the upper extremities are not small. Several hawks are strong fliers, although they frequently soar.

Pandionidae.—The muscles of the osprey resemble those of the Accipitridae, but the legs are smaller and the heart is larger than in most of the latter.

Falconidae.—The hearts of falcons are a little larger than those of hawks, ranging from 0.53 percent (*Micrastur*) to 1.11 percent (*Polyborus*). The supracoracoideus is also somewhat larger than in hawks. The wings are narrower in species that are fast fliers. The flight and leg muscles of *Micrastur semitorquatus* are larger than those of *Micrastur ruficollis*, while the wings are much smaller; yet the buoyancy index is about the same.

Cracidae.—In the Cracidae, represented in our study by the chestnut-winged chacalaca (*Ortalis garrula*) and the black guan (*Chaemepetes unicolor*), the flight muscles are moderately large (23 to 26 percent), with the supracoracoideus of fair size (2 to 3 percent). These birds are heavy fliers with wings rather moderate in size (buoyancy index, 3.66) and broad (aspect ratio, 1.38 to 1.51); the leg muscles are large (15.7 to 20 percent), while the heart is small (0.48 to 0.62 percent).

Phasianidae.—The phasianids are very interesting. Three species of quail, natives of widely different parts of the world, possess very large flight muscles (*Coturnix*, 25.6 percent; *Odontophorus*, 29.4 percent; *Colinus*, 34.3 percent) and large supracoracoideus (5.66 percent; 5.89 percent; 7.16 percent), with a "rest" nearly the size of the latter (4.46 percent; 6.17 percent; 5.53 percent). But the heart of *Coturnix* is about three times the size of that of the other two species (1.00 percent compared to 0.34 percent and 0.38 percent). The lower extremities are large (muscles 12.16 percent, 16.38 percent, and 14.6 percent), but the wings are small (buoyancy indices, 2.38, 3.10, 2.62). It should be noted that the aspect ratio of *Coturnix* is higher than that of other phasianids (2.15 as compared with 1.56 and 1.74). The powerful musculature for flight indicates great bursts of speed although the

species with small hearts would have limited endurance. Coturnix, with a larger heart, can sustain the flight required in its long migrations. In the domesticated Gallus gallus (white leghorn) the flight muscles and wings are much smaller than in the quail; otherwise the values are similar. However, the males are much larger than the females and have larger legs (P < 0.01) and hearts (P < 0.01). Our specimens of Coturnix were raised in captivity, but they have not been subjected to selective breeding as has Gallus.

Numididae.—*Numida meleagris*, although domesticated, has values similar to those for some of the quails except that the heart is about twice the size and the wings are somewhat smaller.

Aramidae.—The limpkin (*Aramus guarauna*), a slow and infrequent flier, alternating wing beats with sailing, has fairly large flight muscles (21 to 24 percent), wings with a buoyancy index of 3.59, and large leg muscles (16 percent). Like the rail, he can travel rapidly on the ground. His wings are fairly long (aspect ratio, 2.2 to 2.9).

Rallidae.—Many rails dive and swim readily but fly feebly, and after a short flight, drop to the ground and run swiftly. Thus their flight muscles are small (12 to 17 percent), and their hearts are moderate in size, ranging from 0.58 to 0.65 percent. In most species the legs are large, especially so in *Aramides cajanea* (24.8 percent). An immature *Laterallus albigularis* weighing 20.75 grams possessed a heart 0.70 percent of body, a pectoralis of only 0.61 percent (adult 7.0 percent), and lower extremity muscles of 2.51 percent (adult 17.4 percent). The flight of the purple gallinule (*Porphyrula martinica*) ordinarily seems weak and labored, but on long flights it is fairly swift. Both gallinules run with great speed. The coot (*Fulica americana*) is a more vigorous flier than the gallinules.

Heliornithidae.—The finfoot (*Heliornis fulica*) resembles the rail in all his proportions. He swims much and dives to escape, although he is a fairly strong flier for short distances. A young female weighing 76.05 grams possessed a heart 0.68 percent of the body, flight muscles only 8.07 percent compared to 17.64 percent for the adult, and lower extremities 9.31 percent of body (adult, 15 percent).

Jacanidae.—The jaçana, which spends much time running over lily pads, swimming if need be, has leg muscles somewhat smaller than those in rails (10 to 12 percent). He hovers much in flying, using his rather large wings (buoyancy index, 3.64).

Charadriidae.—The plovers are swift runners and strong fliers. Such activity is supported by a large heart (1.36 percent), large flight muscles (29 percent), and lower extremities of moderate size (7.88 percent). Scolopacidae.—Likewise, the sandpipers, as they run up and down the beach or fly swiftly to new hunting grounds, use a fairly large flight apparatus (flight muscles, 23 to 32 percent and hearts, I to I.54 percent) and small to moderate lower extremities (4.5 to 9 percent).

Recurvirostridae.—The birds in this group are similar to the other shore birds, being equipped for strong flight.

Laridae.—The flight apparatus of gulls and terns differs in conformity with their respective habits. The slow-flying gulls, which soar much, possess rather small hearts (0.85 percent), moderate flight muscles, and moderate lower extremities (5 to 6 percent), while the more active terns, which dash about and dive for fish, have larger hearts (0.84 to 1.08 percent), flight muscles about the same, and lower extremities only half the size of those in gulls.

Rynchopidae.—Skimmers are almost identical with terns with respect to their equipment; they are swift and dextrous as they plow the surface of the water for food.

Columbidae.-Doves and pigeons can be divided into two groups according to heart size. In one group hearts range from 0.28 to 0.56 percent of the body; in the other, from 0.93 to 1.29 percent. Those of the first group are Leptotila cassini, Leptotila rufinucha, Geotrygon costaricensis and Geotrygon chiriquensis, while all other species including Leptotila verreauxi, are in the second group. We are unable to explain the differences between the two species of the genus Leptotila. The contrast in muscle values between Leptotila cassini and Leptotila verreauxi, both collected at sea level, is striking. The heart of *verreauxi* is larger (P < 0.01), while the pectoral muscles of cassini are larger (P<0.01). The heart of Columbigallina passerini of Florida is larger than that of *Columbigallina talpacoti* (P < 0.05) of Panamá; the heart of *Claravis pretiosa* is larger (P < 0.01) than that of Claravis mondetoura. The flight muscles of all pigeons are almost as large in proportion (31 to 44 percent) as those in tinamous, and the supracoracoideus is as large or nearly as large as the "rest" group. The wings are quite large (buoyancy ratio, 3.0 to 3.65), the legs small to moderate (4.5 to 7.8 percent). Both the wild and domesticated species of Columba are powerful long-range fliers, while Columbigallina flies but short distances.

Psittacidae.—Parrots are usually strong fliers and make good use of their legs. The female *Brotogeris* is larger than the male. All have fairly large hearts (1.03 to 1.52 percent) and large flight muscles (25 to 28 percent). The supracoracoideus is one-third to one-half of the "rest" group. Wings of fair size give them a buoyancy index of 3.2 to 3.7, and the lower extremities are of medium size (5.5 to 7.8 percent). The proportions of domesticated *Melopsitticus* are similar to those of the wild forms except that the buoyancy index is lower (2.84).

Cuculidae.—Some cuckoos fly very little, and we have studied only those that do more flying. In these, the power of flight varies considerably. The hearts (0.50 to 0.94 percent) indicate little staying power. The flight muscles are very moderate (14 to 20 percent), supporting wings of a high buoyancy index (3.7 to 4.4) and a low aspect ratio (1.3 to 1.8), enabling them to fly only slowly. The tails are large, and the lower extremities are of considerable size (muscles, 7 to 15 percent). Anis fly with a series of steady wing beats alternating with short sails. The flight resembles somewhat that of the Florida jay, being slow and gliding and rather labored. The hearts and flight muscles are smaller in *Piaya cayana* (P<.01) and *Crotophaga ani* (P<0.01) in specimens collected at sea level than in the same species collected at 4,300 feet elevation.

Tytonidae.—The barn owl (*Tyto alba*) may be grouped with the typical owls with respect to muscle values, although he has a larger wing than most of the others.

Strigidae.—Owls are able to fly quietly, as their wings are soft, very large (buoyancy index, 4.24 to 5.11), and broad (aspect ratio, 1.8 to 2.7). The flight muscles are moderately powerful (19 to 27 percent), and the hearts are small to medium (0.31 to 0.89 percent), the largest being found in the burrowing owl (*Speotyto cunicularis*).

Nyctibiidae.—The wings of the Nyctibiidae and Caprimulgidae are as large as, or larger than (buoyancy index, 4.36 to 5.19), those of owls but with a very high aspect ratio (2.20 to 3.4). The smaller heart (0.58 percent) of the potoo (*Nyctibius griseus*) is in keeping with his more limited activity, since he makes but short flights in his forays for insects, in contrast with the caprimulgids (0.78 to 1.12 percent), which sweep the air in sustained flight.

Caprimulgidae.—The pauraque (*Nyctidromus albicollis*), with a longer tarsus and larger leg muscles (8.28 percent) than some other caprimulgids, is more active on its feet and can run swiftly.

Trochilidae.—The hummingbird is the acrobat among birds—none equals him in speedy maneuverability. He hovers and flies forward or backward at will. Of his large flight muscles, the pectoralis plus the supracoracoideus constitute a large proportion. Many species show sex differences, and in these species the muscles of the male are always larger than those of the female. Never has the reverse been found in the 25 species that I have examined. This sex difference applies to the heart in several species, and in *Amazilia edward*, *Amazilia tzacatl*, *Lampornis castaneoventris*, and *Selasphorus scintilla* it applies to the heart and pectoralis-supracoracoideus. Hearts range from 1.65 to 3.25 percent of the body, pectoralis-supracoracoideus from 21.7 to 33.1 percent. The supracoracoideus, ranging from 6.6 to 12.2 percent, is the largest of all birds studied. The "rest" is small, ranging from 1.75 to 4.79 percent, and leg muscles are very small, being only a little more than 1 percent. Wings range from 3.11 to 5.70 cm.² per gram; tail from 1.57 to 2.95 cm.² per gram; and buoyancy index from 1.31 to 3.09.

Trogonidae.—Trogons make short, rapid flights among the trees to catch insects. Their flight muscles (29 to 32 percent) are slightly larger than those of nightjars. Their hearts are also larger (1.05 to 1.29 percent), but the wings are smaller (buoyancy index, 3.68 to 3.91) and much wider (aspect ratio, 1.9 to 2.1) for flight among foliage. Like the nightjars, their legs are small (2.4 to 3.1 percent). The wings and glide areas of *Pharomachrus, Trogon massena*, and *Trogon melanurus* are smaller than those of the other three species of trogons measured.

Alcedinidae.—The fairly large wings (buoyancy index, 3.09 to 3.68) enables the kingfisher to fly swiftly in short flights. The hearts of these birds are large, especially in the smaller species (1.02 to 1.35 percent). The flight muscles (24.5 to 26 percent) are about the size of those in the nightjars, and the legs are small (2.48 to 3 percent).

Momotidae.—Motmots perch for long periods in one place (lower extremities 6 percent). Their flight is undulating, their wings are large (buoyancy index, 3.85) and broad (aspect ratio, 1.70), and they have long, ornamental tails. The small hearts are indicative of limited activity (0.39 to 0.49 percent).

Bucconidae.—Although most species of puffbirds are sedentary, they sally forth occasionally to capture insects (flight muscles, 24 to 28 percent; buoyancy index, 3.4 to 3.56). Their lower extremities are of moderate size (4 percent), and their hearts are small 0.45 to 0.58 percent).

Capitonidae.—Barbets are weak fliers (flight muscles, 18.7 percent) but have large lower extremities (9.4 percent) and larger hearts (0.74 percent) than do the puffbirds, although they also remain in one spot for a long time.

Ramphastidae.—The restlessly active toucans are weak fliers (flight muscles, 20 to 23 percent; hearts, 0.62 to 0.81 percent), but

they have large lower extremities (9 to 12 percent). Specimens of *Pteroglossus torquatus* found at sea level are smaller (P<0.05 for males, and P<0.01 for females) and have a smaller heart (P<0.01) than those of *Pteroglossus frantzii* obtained at 4,300 feet above sea level. Pectoralis plus supracoracoideus muscles show corresponding proportions in the two species.

Picidae.—The woodpecker, aptly called "carpintero" by Spanishspeaking natives, devotes much of his time to chiseling holes in tree trunks for food or nest. His legs (6 to 11 percent) and his heart (0.81 to 1.41 percent) are fairly large. Sizable flight muscles (22 to 29 percent) and large and broad wings (buoyancy index, 3.39 to 4.25; aspect ratio, 1.62 to 2.07) give him the power for his characteristic undulating flight marked by a series of graceful dips. The largest woodpeckers studied, of the genus *Phloeoceastes*, possessed the smallest wing and glide areas but the largest legs. The downy woodpecker flies rapidly, the pileated woodpecker, slowly but vigorously, at times, like a crow, otherwise in short swings and dips like other woodpeckers.

Dendrocolaptidae.—Woodhewers, like the woodpeckers, climb trees in search of food, frequently making short, strong flights to a new tree, where the quest is repeated. The hearts are large (1.10 to 1.48 percent) in the smaller species and of medium size (0.65 to 0.93 percent) in the others. The pectoralis plus supracoracoideus muscles are larger in the male than in the female in *Xiphorhynchus* guttatus and Lepidocolaptes affinis (P<0.01). The legs are similar in size to those of the woodpeckers. The buoyancy index is large (3.65 to 4.20).

Furnariidae.—In the ovenbirds there is a wide variety of habits, ranging from those of terrestrial species to those of species that climb trees, bracing with the tail. Flight is weak to strong (flight muscles, 16 to 30 percent), and the wings are large (buoyancy index, 3.0 to 4.0). As might be expected, the muscles of the lower extremities are large (8 to 13 percent). The heart muscles are moderate (mostly 1.0 to 1.16 percent) except in *Anabacerthia* (1.49 percent) and *Automolus* (1.48 percent).

Formicariidae.—Like the ovenbirds, antbirds may be arboreal or terrestrial. All have large muscles in the lower extremities (8 to 14 percent) but small to medium flight muscles (16 to 23 percent) except for *Formicarius* (30.5 percent). As in other birds that fly among close vegetation, their wings are large (buoyancy index, 3.15 to 3.75) and broad (aspect ratio, 1.45 to 1.59). Hearts range from 0.58 to 1.26 percent. **Pipridae.**—Among the manakins, *Corapipo* and *Schiffornis* have a high heart value of 1.50 percent, compared to 1.06 percent for *Manacus* and 1.11 percent for *Pipra*. In view of the practice of dancing on the part of the male, larger leg muscles than in the female might be expected. In *Corapipo* we found no great difference, but in *Manacus* the leg muscles of the male were larger than those of the female (11.91 percent compared to 8.42 percent). Moreover, the leg muscles of *Manacus* were larger than those of other manakins. Lowe (1942) mentions that the pectoralis and thigh muscles of the male are very well developed.

Cotingidae.—The cotingas, birds of the forest, are peculiar to the warmer parts of the Americas. Arboreal in habit, they possess strong flight equipment for movement among the tree tops (22 to 33 percent flight muscles; buoyancy index, 3.28 to 4.83; aspect ratio, 1.65 to 2.00). The hearts are large (1.11 to 1.45 percent) and the legs moderately so (5.15 to 8.18 percent).

Tyrannidae.—The tyrant flycatchers constitute one of the largest families of American birds (365 species, according to Van Tyne and Berger). Those found south to Panamá are mostly arboreal, darting from a strategic perch to capture insects. There is great variation in their musculature, heart size ranging from 0.71 to 1.88 percent and flight muscles from 16 to 33 percent. Large and broad wings (buoyancy index, 3.39 to 4.71; aspect ratio, 1.46 to 2.05) give great maneuverability. The muscles of the lower extremities show considerable range (3 to 7.35 percent). Their adaptations for catching prey or for bold attacks in defense of territory are quite varied. The genus *Todirostrum* in proportion to its size has much larger muscles of the lower extremities and smaller flight muscles than do other members of the family.

Hirundinidae.—As swallows spend much time in the air, their legs are very small, being used only for perching (lower extremity muscles, 1.80 to 2.84 percent), yet their flight muscles are not unusually large (19.7 to 25 percent). All except *Progne* have very large, narrow wings (buoyancy index, 4+; aspect ratio, 2.3 to 2.6) and fairly large tails.

Corvidae.—The jay family contains the largest passerine birds and some of the most aggressive ones. Although fairly strong fliers (flight muscles, 20 to 25 percent; buoyancy index, 3.4 to 4.7), they use their feet extensively in walking and manipulating food (lower extremity muscles, 10 to 15 percent). Their hearts are of moderate size (0.85 to 1.0 percent). **Paridae.**—Titmice display restless, acrobatic activity; they use their feet to hold prey. Their hearts are large (1.35 to 1.49 percent), the flight muscles (23 to 27 percent) and leg muscles (7 percent) fairly so. They are weak fliers, and the wings are typical of perchers.

Sittidae.—The nuthatches are similar to the titmice in muscular proportions but somewhat different in habits. They not only hop over the bark looking for food, but the red-breasted nuthatch also catches insects in the air like a flycatcher.

Certhiidae.—The creepers are good fliers, possessing large hearts (1.48 percent) and large wings (buoyancy index, 4.22) and tails (2.35 cm.² per g.)

Troglodytidae.—The members of the fairly large family of wrens are weak fliers and do much running around in exploring for food and in other activities; as might be expected, their leg muscles are large (10 to 13 percent). Hearts (0.86 to 1.19 percent), flight muscles (16 to 20 percent), and wings (buoyancy index, 3 to 3.39) are moderate in size.

Mimidae.—Mockingbirds and thrashers show values much like those of wrens but have smaller leg muscles (8.0 to 9.7 percent). Although partly arboreal, they also do much feeding on the ground.

Turdidae.—The above remarks concerning the Mimidae apply also to the thrushes, except that the latter possess large flight muscles (20 to 36 percent).

Sylviidae.—The smaller gnatcatchers may also be described in much the same way as the wrens, above.

Motacillidae.—Although the pipits are terrestrial in their habits, running about rapidly, their leg muscles are of only moderate size (6 percent). They are powerful and swift fliers, having fairly large flight muscles (28 percent), large, broad wings (buoyancy index, 3.66; aspect ratio, 1.77), and large hearts (1.57 percent).

Bombycillidae.—Waxwings have flight power similar to that of the pipits, but their wings are somewhat smaller (buoyancy index, 3.29) and narrower (aspect ratio, 2.13). Their hearts are large (1.54 percent).

Ptilogonatidae.—The silky flycatcher (*Ptilogonys caudatus*) has a large heart (1.33 percent) and a high buoyancy index (3.80).

Laniidae.—The loggerhead shrike (*Lanius ludovicianus*) makes brief, swift flights through the air to seize a victim, but his muscles are moderate in size.

Sturnidae.—The common starling (*Sturnus vulgaris*) is a very active bird with rather small, narrow wings (buoyancy index, 3.17;

aspect ratio, 2.19) and fairly large legs (7.76 percent). In short flights he appears slow and feeble, but on long journeys he flies strongly and swiftly.

Cyclarhidae.—Concerning peppershrikes it need only be noted that they have large leg muscles (9.46 percent) and that their flight is deliberate and weak.

Vireonidae.—Vireos, feeding mostly among the leaves, are moderately endowed with muscles: heart, 1.06 to 1.43 percent; flight muscles, 21 to 25 percent; leg muscles, 5.89 to 7.63 percent. They do, however, have large wings (buoyancy index, 3.44 to 3.88).

Coerebidae.—Honeycreepers, being quick in the air, have flight muscles ranging from 23 to 34 percent and large hearts (1.25 to 1.44 percent). Their wings are large (buoyancy index, 3.37), but their legs are only moderate in size (muscles, 5 to 8 percent).

Parulidae.—Although the wood warblers range from the treetops (black-throated green warbler) through lower levels of the forest (magnolia warbler) to the ground (Kentucky warbler), their flight muscles do not differ greatly, as their activities in the air are similar. These muscles are not large, ranging mostly from 20 to 25 percent of the body, with many around 22 percent. The wings (buoyancy index, 3.27 to 4.16) and tails are large, making the glide area as high as 10 cm.² per gram in some species. The muscles of the lower extremities are largest in *Basileuterus* (9 to 10 percent) and as low as 5 percent in others. The hearts range from 0.95 to 1.39 percent.

Ploceidae.—The house sparrow (*Passer domesticus*) is typical of many small perchers; large heart (1.39 percent) and flight muscles (25.4 percent); wings designed for quick takeoff (buoyancy index, 3.05; aspect ratio, 1.88); and moderate lower extremities (muscles, 6.47 percent).

Icteridae.—Icterids show characteristics similar to those given above: hearts, 0.85 percent in *Sturnella magna* to 1.2 percent in *Icterus galbula;* flight muscles, 19 percent in *Amblycercus* to 28 percent in *Leistes;* buoyancy index, 3.13 for *Sturnella* to 4.4 for *Cacicus;* aspect ratio, 1.31 for *Amblycercus* to 2.03 for *Psarocolius;* lower extremities, 7.46 percent for *Icterus spurius* to 15.2 percent for *Amblycercus*.

Thraupidae.—Thraupids show a greater range in heart size than the fringillids, *Rhodinocichla* possessing the smallest (0.63 percent), the male *Habia rubica* the largest (1.46 percent). Flight muscles also show a somewhat greater range: I percent in *Chlorospingus* and 29 percent in *Thraupis*. Buoyancy index likewise runs from 2.82 in Tanagra to 3.98 in Habia, while the aspect ratio is only 1.47 in *Rhodinocichla* but reaches 1.89 in *Piranga rubra*. The muscles of the lower extremities are from 5.19 percent in *Tanagra luteicapilla* to 11.36 percent in *Rhodinocichla*.

Fringillidae.—This almost worldwide group of birds, feeding everywhere that seeds are to be found from the ground to the treetops, shows a great range of locomotor equipment. Their hearts vary from 0.60 percent in *Pezopetes* to 1.57 percent in the male *Saltator maximus*, and flight muscles show as great a range (19.5 to 29 percent). The buoyancy index of the wings ranges between 3.09 and 3.72, the aspect ratio between 1.42 to 1.88. The highest values for muscles of the lower extremities are more than twice as high (13.2 percent) as the lowest (5.43 percent).

After this survey of the variations in the families, let us compare the locomotor organs individually.

HEARTS

Since the heart limits the activities of a bird, it is proper to consider it first. Whatever the size of a musculature, it cannot act for long without an adequate circulation. Thus the tinamou, with its tremendous breast muscles but very small heart, can make only short flights. On the other hand, birds with only a moderate equipment of muscles can fly for long periods if they possess large hearts. It is this relationship between the heart and the locomotor muscles that we wish to deal with primarily, but there are other factors which also must be considered, namely, sex, season, latitude, and altitude.

Sex.—Whenever there is evidence of sex difference in the relative weight of the heart, the sexes are separated for consideration. In the following species the hearts are heavier in the male than in the female: Gallus gallus, Phaethornis guy, Anthracothorax nigricollis, Chlorostilbon canivetii, Damophila julie, Amazilia edward, Amazilia tzacatl, Elvira chionura, Lampornis castaneoventris, Selasphorus scintilla, Sittasomus griseicapillus, Cranioleuca erythrops, Anabacerthia striaticollis, Mitrephanes phaeocercus, Thryothorus modestus, Habia rubica, Habia fuscicauda, Saltator maximus, and Pipilo erythrophthalmus. Heavier hearts in males may also hold for other species, but the number of individuals available is not always sufficient to settle the question.

Seasonal variation.- A difference in relative heart size is noted in

certain Florida birds collected in June as compared with those obtained in the winter months, as shown in table 2 (p. 88).

Latitude.—A difference in heart size is noted in a few species collected in Florida compared with the same or closely related species obtained in Panamá, the hearts of Florida birds being larger. These species are Butorides virescens, Coragyps atratus, Cathartes aura, and Sturnella magna.

Altitude.—Larger hearts are present in some species at higher altitudes when compared with other species of the same family at lower altitudes. Specimens of *Crotophaga ani* and *Piaya cayana* obtained at 4,500 feet have larger hearts than those of the same species obtained at sea level (P < 0.01).

In general the smaller birds have relatively larger hearts than large birds. The lowest values appear for the tinamids, followed by the strigids, nyctibiids, momotids, and bucconids, with others of lesser deviations from the mean. The highest values emerge for the trochilids, hirundinids, motacillids, and bombycillids. Comparison of the heart weight with the habits of the bird leads one to the conclusion that heart weight is directly related to the ability to sustain power flight.

The muscles of locomotion show even greater variation. I shall consider first the muscles used in flight. As already indicated, we weighed all the muscles involved except the small muscles along the carpals, metacarpals, and phalanges.

FLIGHT MUSCLES

Sex, latitude, and altitude appear to have some influence in muscle size in a few species.

Sex.—In Cairina moschata (domestic) the female possesses flight muscles that are larger than those of the male, while in Micrastur ruficollis, Phaethornis guy, Amazilia amabilis, and Manacus vitellinus flight muscles are larger in the male. In other species our data are insufficient to determine the sex differences in the more inclusive flight muscles, but in the more limited combination of pectoralis plus supracoracoideus, where we have more data, these muscles are larger in the male than in the female of Pelecanus occidentalis, Micrastur ruficollis, Amazilia amabilis, Amazilia edward, Amazilia tzacatl, Lampornis castaneoventris, Selasphorus scintilla, Pharomachrus mocinno, Sittasomus griseicapillus, Xiphorhynchus guttatus, Lepidocolaptes affinis, Anabacerthia striaticollis, Myiarchus tuberculifer, Empidonax flavescens, Mitrephanes phaeocercus, Thryothorus modestus, Tangara icterocephala, Thraupis espicopus, Piranga leucoptera, Habia fuscicauda, and Saltator maximus. In only two species, Jacana spinosa and Vireo philadelphicus, were the pectoralis plus supracoracoideus larger in the female than in the male.

Latitude.—The pectoralis plus supracoracoideus muscles were relatively heavier in Panamá specimens of *Florida caerulea* and *Cathartes aura* than in birds of the same species collected in Florida.

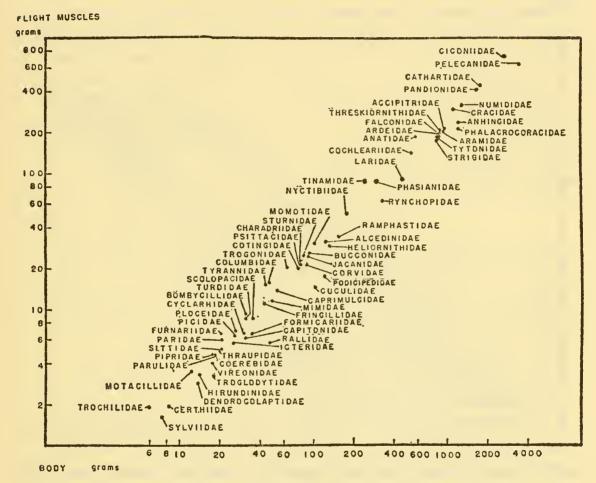


FIG. 1.—Selected plottings (see asterisks in table 1) of upper extremity muscle weights against body weights (log scales).

Altitude.—In Piaya cayana and Crotophaga ani both flight muscles and pectoralis plus supracoracoideus were relatively heavier in highaltitude birds (4,300 ft.) than in these species collected on the Río Chagres. Likewise the pectoralis plus the supracoracoideus were heavier in Pteroglossus frantzii (collected at 4,300 ft.) than in Pteroglossus torquatus obtained on the Río Chagres.

For an overall comparison of the flight muscles, selected species from each family have been plotted on a logarithmic scale (fig. 1). If one draws a line through the values for the heavier birds, it will be seen that many of the birds less than 200 grams in weight are decidedly above this line, only the Rallidae, Cuculidae, and Podicipedidae falling below.

Since the pectoralis (pectoralis superficialis or p. major) is the most important muscle in depressing the wing, it was also treated separately (fig. 2). It will be seen that the divergences from a straight line are

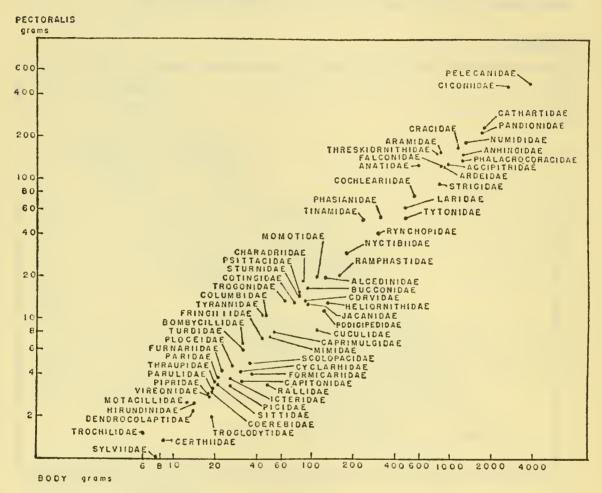


FIG. 2.—Selected plottings of pectoralis superficialis muscle weights against body weights (log scales).

not only different, but sometimes greater than those observed for the flight muscles as a whole. Those with a large pectoralis also have large flight muscles, and vice versa. Examples of those with a relatively large pectoralis are found in the tinamids, threskiornithids, anatids, phasianids, charadriids, columbids, psittacids, trochilids, trogonids, cotingids, motacillids, coerebids, and thraupids. Those with a relatively small pectoralis are the podicipedids, phalacrocoracids, some ardeids, some accipitrids, rallids, heliornithids, cuculids, formicariids, and troglodytids.

Although there is a tendency toward similarity among different

species in the same family, it will be recalled that there are some exceptions. In the herons the range of the pectoralis is from 10 to 17 percent of the body weight; in the flycatchers, from 12 to 22 percent; in the swallows, from 14 to 21 percent.

Supracoracoideus.—The supracoracoideus, one of the principal levators of the wing, appears to be of little importance in many birds, judging from its size. In our studies it ranged from about 0.40 percent of the body in species of the genus *Buteo* to 11.5 percent of the body in the trochilids, or 1.8 to 30 percent respectively of the flight muscles. High values (table 1) are found in *Crypturellus, Chamaepetes, Odontophorus, Numida, Capella,* trochilids, doves, *Pyrrhura,* and *Manacus.* Low values appear in *Phalacrocorax, Buteo, Pandion, Caracara, Piaya, Tyto,* and *Pulsatrix.* The supracoracoideus of *Nyctibius* (3.18 percent of the flight muscles) is much smaller than that of *Nyctidromus* (6.9 percent of the flight muscles). There is a great difference in this muscle in *Manacus* (14.2 percent of flight muscles) as compared to that in *Chiroxiphia* (6.0 percent of flight muscles). Likewise, this muscle is larger in *Cotinga ridgwayi* (7.76 percent of flight muscles) than in *Querula* (4.56 percent of flight muscles).

The range of supracoracoideus among different families is shown in figure 3. It will be noted that the greatest differences are to be found in the larger birds, the muscle being largest in those birds that make a quick takeoff. It is especially small in cuculids, tytonids, and strigids.

"Rest."—The combined muscles of the shoulder, brachium, and forearm (except those noted above), which appear in the table under the heading "Rest," are shown in figure 4. With fewer exceptions than in the other muscle groups, they tend to follow a straight line. Among the lowest are the grebes, rallids, certhiids, and sylviids.

Division of this group of muscles into shoulder, brachium, and forearm shows variations among the different families and among some species of the same family. This has been done for 67 species distributed among 32 families. Typical examples have been chosen in table 3 (p. 89). The shoulder group shows low values in Anhinga (I.04 percent), Ardea (I.47 percent), Polyborus (I.60 percent), Ereunetes mauri (I.13 percent), Thalasseus (I.37 percent), Columba livia (I.26 percent), and Crotophaga (I.60 percent). It was high in Tinamus (3.44 percent), Heterocnus (3.07 percent), Chondrohierax (3.30 percent), Ortalis (3.34 percent), Colinus (3.42 percent), Columba speciosa (3.15 percent), Megaceryle (3.25 percent), and Mniotilta (4.46 percent). These muscles were larger in Colinus (3.42 percent) than in Odontophorus (2.05 percent) and Gallus (I.61 percent). The muscles of the brachium are usually heavier than those of the forearm, especially in the anatids, *Coragyps, Megaceryle*, picids, *Synallaxis, Muscivora, Iridoprocne*, corvids, parulids, icterids, and fringillids.

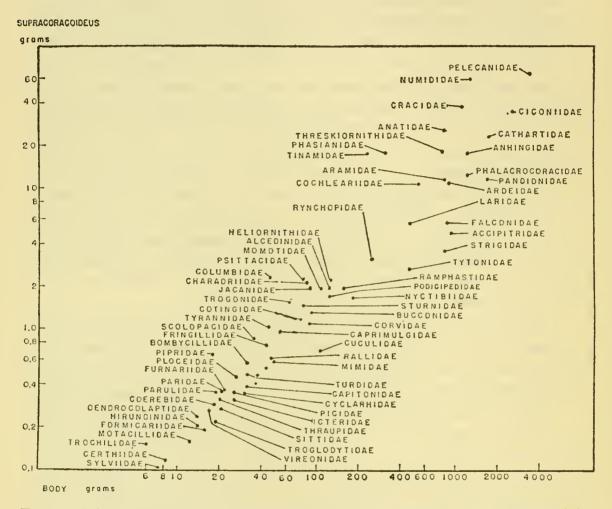


FIG. 3.—Selected plottings of supracoracoideus muscle weights against body weights (log scales).

LOWER-EXTREMITY MUSCLES

Muscles of the lower extremities vary much in size because of the great difference in degree of activity. In some birds they are used little, even for perching, while in others they may be the essential means of locomotion or may serve as important tools in obtaining food. Examples of typical species in the various families are shown in figure 5. The smallest muscles (1.2 to 3 percent) are found in trochilids, nyctibilds, alcedinids, and hirundinids; the largest are found in the tinamids, podicipedids, cathartids, cracids, phasianids, and rallids (14 to 23 percent). They are larger in the male than in the female in *Cairina* and *Gallus* (table 1).

Separation of the lower extremity into thigh and leg was done in the same specimens in which the muscles of the upper extremity were separated. The variation of the proportion of thigh to leg muscles is usually not great (table 4, p. 90). In many birds the thigh muscles are

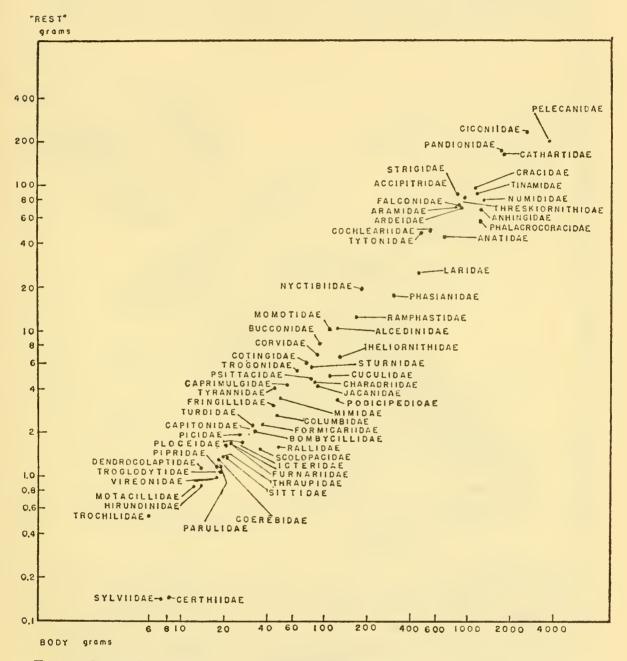


FIG. 4.-Selected plottings of "rest" muscle weights against body weights (log scales).

nearly equal to those in the lower leg; when they are unequal, it is usually the thigh that is larger. Exceptions are *Phalacrocorax*, some ardeids, and *Buteo lineatus*, in which the thigh muscles are smaller. Comparison of a domesticated phasianid, *Gallus*, with a wild species, *Odontophorus*, is interesting. The lower extremity muscles that are still used by the domestic form are the same size as in the wild form, but the pectoralis and supracoracoideus muscles are less than half the size of those of the wild form, as is also the wing area.

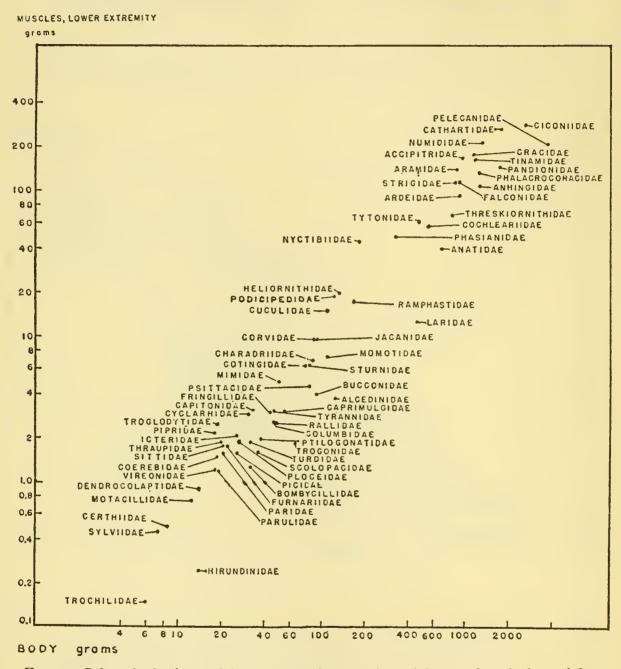


FIG. 5.—Selected plottings of lower-extremity muscle weights against body weights (log scales).

BODY AREAS INVOLVED IN FLIGHT

The surface areas involved in flight are the wings used in propulsion, the tail and wings for steering, and the tail and body for gliding or soaring. The wing and glide areas for typical examples of each family are shown in figure 6.

WINGS

In general, the smaller birds show less divergence and have larger wings than the heavier birds. Exceptionally small wing areas are present in rallids, podicipedids, tinamids, anatids, cracids, scolopacids, and phalacrocoracids. Large wing areas are found in several small

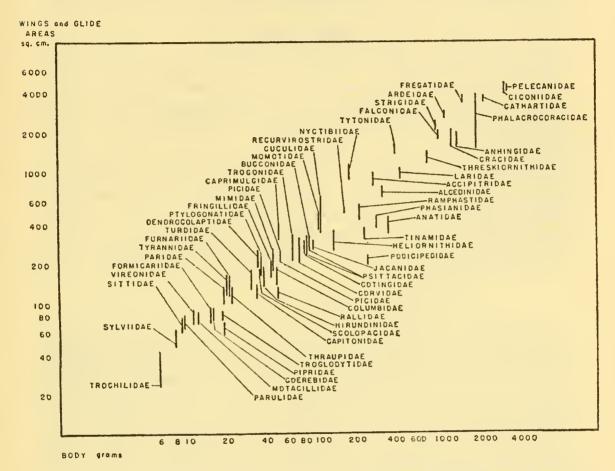


FIG. 6.—Selected plottings of areas for wings (low end of vertical lines) and glide (high end of vertical lines) against body weights (log scales).

tyrannids, especially *Mitrephanes*; in other families in *Sittasomus*, *Xenops*, and *Myrmotherula*, hirundinids, *Sitta*, and several parulids.

Sex.—The wings of the males in the following species are significantly larger than those of the females: Buteo lineatus (P<0.05), Tanagra icterocephala (P<0.01), Tanagra guttata (P<0.01), Tanagra gyrola (P<0.05), Saltator maximus (P<0.01), and Pipilo erythrophthalmus alleni (P<0.01). In Cassidix mexicanus the wings are larger in the female than in the male (P<0.05).

Altitude.—Momotus momota collected at sea level has larger wings than the same species collected at 4,500 feet above sea level (P < 0.01). Among the piprids, Corapipo collected at 4,500 feet elevation has wing

and glide areas nearly twice those of *Manacus* collected at sea level, but this may not be an altitude effect.

Ratio of buoyancy index.—Values for the buoyancy index are shown in table 1. Cathartes tops the list with 5.86. Nyctibius and Casmerodius tie for second place, and Pandion is third, Tyto fourth, Coragyps fifth, and Cochlearius sixth. The lowest is Manacus (2.79).

ASPECT RATIO

The ratio of the length to the width of the wing, or aspect ratio, indicates the adaptation for soaring or quick takeoff—the long, narrow wing (high ratio) for soaring, and short, broad wing (low ratio) for prompt takeoff. Most small birds possess a low ratio, the cuckoo being the lowest. Exceptions are goatsuckers, trogons, potoo, shore birds, swallows, and hummingbirds, which are high, the last three being the highest. Of the heavier birds. *Chaemepetes* is the lowest, while the gull, frigate-bird, and pelican are the highest of all birds studied. The barn owl has a longer wing than the other owls that we have studied. *Corvus* has a much larger aspect ratio than the other corvids observed.

TAIL AREAS

The relative size of the tails is shown in figure 7. The tails in grebes were so small that they were not measured. They are small in shrikes, rails, jaçanas, and tinamous, and large in *Fregata*, *Anhinga*, falconids, cracids, cuculids, some strigids, the nyctibiids, caprimulgids, trogons, dendrocolaptids, furnariids, tyrannids, corvids, parids, mimids, turdids, sylviids, *Ptilogonys*, and fringillids. Hummingbird tails are relatively the largest of all. The tail of the turkey vulture is larger than that of the black vulture.

The size of a tail does not necessarily indicate its effectiveness, since it may be an ornament as in the male quetzal. However, in most instances it can be a factor in steering, gliding, or soaring.

GLIDE AREAS

The combined areas of wings, tail, and body make what we have called the glide area. An examination of table I will show that these areas tend to parallel the wing areas (see fig. 6). This is to be expected, since the wings constitute a large proportion of the total, the tail being relatively small in most instances. In those birds in which glide areas are much larger than the wing areas, the large tails usually account for the increase, as in trogons and cuckoos. In a few birds

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

the wings are largely responsible for the glide area. This is true for wrens, tinamids, the stilt, grebes, herons, and some others.

DISCUSSION

All values in this study are based on body weights, which, of course, vary with the state of nutrition, hydration, and food content. By using only healthy, well-nourished birds and collecting them during the

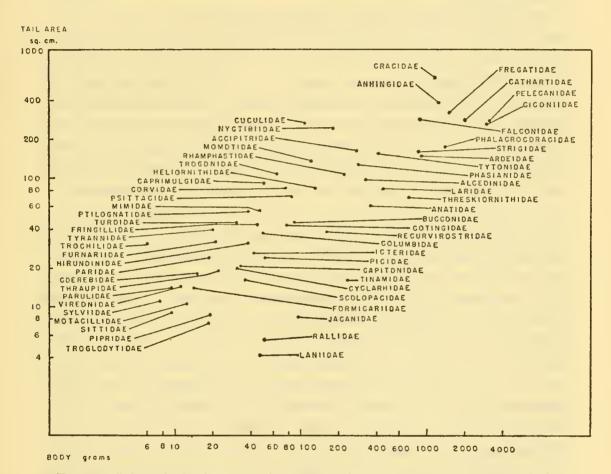


FIG. 7.—Selected plottings of tail areas against body weights (log scales).

morning hours, the conditions are standardized as well as could be expected. In a few species that have large capacity and gorge themselves periodically, food contents should be considered. By having a sufficient number of individuals in a species, these variables are reduced. When values are far from the mean, as occurs occasionally, they have not been included.

Our observations show that muscle weights are related to activity. Muscles represent potential power but do not indicate the extent of their use. A large muscle may produce powerful contractions, either brief or sustained depending upon the heart that supports it. A small muscle, while not powerful, can continue contraction for a considerable period if supplied with oxygen and fuel. The flight muscles tend to parallel the performance in the air, while the muscles of the lower extremities are related to their use for locomotion or for acquiring food. Most important of the muscles is the heart, since it is the driving force that circulates oxygen and nutrients and removes waste products. A small heart limits activity, while a large one can maintain it much longer.

We had previously found no difference between the sexes in the relative heart weight (Hartman, 1955), but in the present survey we observed that in 19 species the heart in the male was relatively heavier than in the female; if more data were available the list might be increased. This difference occurred in small or relatively small birds, with the single exception of *Gallus*. In some species the males are more active than the females, but we cannot say whether this was so in the 19 species in which a difference was observed. Groebbels (1932) noted a difference in heart size between the sexes in some species.

In my earlier paper (Hartman, 1955) evidence suggesting a seasonal difference in heart weight was presented, but the number of individuals was too small to make the findings significant. This shortcoming was obviated in the present work in the case of a few species by the inclusion of a sufficient number of individuals. Birds collected in January and February possessed hearts larger than those obtained during June, a finding contrary to the suggestive evidence in the former paper. Such a difference could be explained by the higher rate of metabolism in the cooler weather. In keeping with this interpretation we find that certain species living in Florida possess larger hearts than the same species from Panamá. Since many Cathartes aura migrate to the south in winter, the season when our Panamá birds were collected, the question has been raised as to the identity of some of these birds. Whether they were migrants or not, there were very significant differences in the hearts and pectoralis plus supracoracoideus muscles between the two groups.

If altitude is a factor in increasing the heart size, why do not more species show the effect? Some of those that have larger hearts at the higher altitude are not very active (e.g., cuckoos). Perhaps additional data would extend the difference to more species. Stieve (1934) compared heart size in *Lagopus mutus mutus* and *L. lagopus lagopus*, both from the same altitude (400 to 700 m.). The alpine grouse (*L. m. mutus*) at this low level has a distinctly larger heart than the moor grouse. Therefore in these instances it is a species difference rather than an altitude effect. Stieve also compared hearts of *Lyrurus lyrurus tetrix* from different altitudes. Birds from higher levels (1,800 to 2,000 m.) possessed definitely smaller hearts than those living at 50 meters. The same could be shown in other species. Several authors (e.g., Parrot, 1893, and Rensch, 1948) have concluded that birds flying great distances or living in northern latitudes or high altitudes possess larger hearts than those less active or living in warmer climates.

A thorough study of the muscles used in locomotion should include the weight of each individual muscle because of the variation from species to species. Since this is impossible in an extensive survey, only the larger muscle groups have been weighed. The pectoralis superficialis is the most important in flight, as it depresses the wing, while the supracoracoideus is the principal levator of the wing. The remainder of the flight muscles (called "rest" in our study) also play an important role in the flight, whether it be in maneuvering or "setting" the wing for the action of the "power" muscles.

The flight muscles constitute a considerable proportion of many birds, varying from 14 to 40 percent. The percentage is lowest in those birds that use them least, but on the other hand, large size does not always indicate extensive use. The tinamou has very large flight muscles but makes only short flights. The flight muscles of the hummingbird, which spends much time in the air, are also relatively large, but not to be compared with those of the tinamou. The muscles of *Colinus, Chaemepetes*, and some trogons are relatively just as large as those of the hummingbird but are used much less.

The pectoralis superficialis, much the largest of the flight muscles, has received the most attention, but some authors have exaggerated its size. Stillson (1954) says, "In good fliers the pectoral muscles account for a large part of the total bird." Although Shufeldt (1890) said that in all the birds possessed of the power of flight, the pectoral muscles are second to none in importance, this is not true for grebes and some of the rails. In the former the leg muscles range from 15 to 18 percent, whereas the whole flight musculature is 14 percent or less. In *Aramides* the leg muscles are 24 percent, while the flight muscles are less than 17 percent.

Calculated from Fisher's (1946) data, the combined volume of all muscles that may aid in depressing the wing constitute 62.7 percent of the wing musculature in *Cathartes* and 56.2 percent in *Coragyps*.

Of these the pectoralis superficialis is 60.5 percent of the total in *Cathartes* and 54.1 percent in *Coragyps*. The volume of all muscles

that may aid in raising the humerus is 15.9 percent of wing musculature in *Coragyps* and 12.3 percent in *Cathartes*, while the supracoracoideus is only 6.50 percent of all wing muscles in *Coragyps* and 4.40 percent in *Cathartes*. In our studies we did not determine the weight of all muscles used in raising the humerus, singling out the supracoracoideus because it was the most important and was easily dissected.

It has been reported by Owen (see Shufeldt, 1890, p. 73) that the supracoracoideus is almost the largest of the breast muscles in penguins, guillemots, and gulls. It was pointed out that more effort was required to raise the wings in the water than in the air. Divers such as the grebe (*Podiceps dominicus*) that use their feet for propulsion under water possess a small supracoracoideus. According to experiments of Convreur and Chapeaux (1926), all birds that fly require the muscles that raise the wings. After these muscles were severed in pigeons, it was not possible for the birds to launch themselves into the air or, when released from a height, to attain any semblance of sustained flight.

As was to be expected, the largest pectoralis was found in powerful fliers, either those accustomed to long sustained flight or those that fly for short distances at high speed. The pectoralis does its heaviest work when taking off.

Many more examples have been observed of heart differences in relation to altitude than of flight muscle differences. The heart must work almost continuously, being inactive only during diastolic pause, while the flight muscles work intermittently. Why the altitude difference occurs in cuckoos and not in more active fliers is difficult to understand.

While the supracoracoideus appears to be of little importance in many birds, it is largest in those birds that make quick takeoffs and fly rapidly, such as tinamous, quail, hummingbirds, and doves.

The remainder of the flight muscles, those of the shoulder, brachium, and forearm, constitute only a small part of the total, and therefore variation in these muscles, which is not great, may not be very significant as a factor in flight. The muscles of the brachium are usually heavier than those of the forearm, which would seem to indicate that they do more work.

Although the size of the muscle may determine the work that can be accomplished, the continuance of the performance depends upon the contained fat or other fuel, together with that which may be brought to it by the blood. The amount of fat in the pectoralis super-

ficialis is lower in nonflying or poor-flying birds than in long-distance fliers such as the parakeet, pigeon, and crow, while the percentage of carbohydrate is higher in short-distance fliers such as the sparrow (Nair, 1952). The distribution of this fat has been shown by George and Ivoti (1955), who observed that in birds such as the pigeon, Columba livia, the pectoralis superficialis contained two types of fibers, a narrow type in which the sarcoplasm was interspersed with fat globules as well as opaque granules appearing to be liproprotein, and another broader, clearer type in which these inclusions were fewer. When the pigeons became exhausted from flying, the narrow fibers lost their fat globules. In the kite (Milvus migrans) the pectoralis superficialis contained fewer narrow fibers and less fat. The leg muscles of both species consisted only of the broad fibers with less fat. The leg of the fowl, however, contained a high percentage of fat. Continuous excitation of pectorals or leg muscles reduced their content of free lipid (George and Jyoti, 1957). These authors concluded that the muscle lipid supported prolonged activity.

The muscles supply the power for flight, while the wing and other areas are the foils with which the muscles operate. These surfaces are difficult to measure accurately because their artificial expansion may not duplicate exactly their natural expansion. Our values represent an approximation of the maximal expansion and, to that degree, the possible area available, but this does not tell us how these areas are used or how the areas are distributed in actual performance. In action there is frequent change in areas as well as in shape. Aspect ratio tells us a little but fails to give the shape, camber, or potential slots of the wing. The shape, stiffness, and character of the tail are also needed to complete the picture. These are all factors in flight and maneuverability. The combined action of the flight muscles and feather "blades" and "planes" determine the performance.

This combined mechanism is used either in flapless flight in which gravity is the factor, as in gliding, or in flapping flight in which muscular contraction overcomes the pull of gravity. In gliding, the bird may take advantage of winds or thermal currents, or it may dive.

The size of glide areas is not always an indication of the amount of gliding or soaring done by particular species. For example, *Mycteria* with a glide area of 1.76 cm.^2 per gram is a good soarer, while *Phaethornis* with a glide area of 7.14 cm.^2 per gram does not glide. Compare also the glide area of *Parus* (9.42 cm.² per g.) with that of *Stelgidopteryx* (9.55 cm.² per g.), two birds whose activities are very different.

Flapping flight may be in the form of "sculling" as in the gull, hovering as in the hummingbird, or rocketing as in the pheasant (Jack, 1953).

Although we have employed the ratio, wing area per gram of body weight, for comparisons, the wing loading $\left(\frac{\text{body weight}}{\text{wing area}}\right)$ could be used, as was done by Jack (1953). Perhaps buoyancy index is to be preferred.

It is interesting that when a sex difference is shown in wing areas, as in the case of sex differences in heart and flight muscles, it is the male that shows the larger values, except in *Cassidix mexicanus*, in which the reverse is true.

In some manakins, as well as in the motmot, larger wing areas occur in specimens collected at high altitudes than in those collected at sea level. Traylor (1950) reported that some species from a high altitude possessed longer wings than those from lower elevations.

We have reported 39 of the species discussed by Poole (1938), many of whose values are from single specimens. Seven of his species possessed a smaller wing area per gram of body weight than ours. In the following comparisons, his values are given first and ours second: Dendroica pensylvanica, 5.45-7.0 cm.2 per gram; Centurus carolinus, 3.00-3.79; Cyanocitta cristata, 2.65-3.39; Falco sparverius, 2.74-3.50; Sturnella magna, 1.83-2.16; Buteo lineatus, 2.11-2.90; and Cathartes aura, 1.81-2.98. In all these species his specimens had larger body values than ours. In addition, three species with about the same body values had smaller wing values. They are Dendroica virens, 6.35-7.30; Mniotilta varia, 6.13-6.85; and Stelgidopteryx ruficollis, 6.79-7.54. Finally, his specimens of three species with smaller body values than ours possessed larger wing areas. They are: Fulica americana, 1.37-1.00; Strix varia, 3.59-2.49; and Ardea herodias, 2.33-2.06. These differences might be due to individual variation or to seasonal changes.

The tail is so variable in size, shape, and character that it may or may not be generally a factor in aerial locomotion. In many instances it has been observed to be useful in maneuvering. However, if the tail is small, the wings take over its function, as in the swift or duck. In the latter, on the other hand, because of the small wings together with the speed, the course of flight cannot be changed quickly.

The speed at which a bird flies is determined by the shape, size, and rate of beat of the wing and the angle of attack. Of course, the speed at which a bird can fly when pressed is not necessarily the speed that

32

is customary. The greater the wing loading, the faster the bird must fly to prevent stalling. A long, narrow, pointed, flat wing is faster than a broad, curved one of the same area. Camber is greatest in slow fliers. Short wings are for bursts of speed. Wing areas are larger than absolutely necessary, especially in small birds, as can be shown in partial molts of wing feathers.

For sustained fast flying a low buoyancy index is best, while for soaring and gliding a higher index is an advantage (George and Nair 1952). *Coturnix* migrates considerable distances. Its aspect ratio is 2.15, its buoyancy index, 2.38, compared with a nonmigratory phasianid, *Colinus*, whose aspect ratio is 1.74 and buoyancy index 2.6.

Some birds are so equipped and so skilled that they have great control. The sparrow hawk, the kingfisher, and the hummingbird can hover, and the last mentioned can fly in any direction. The outer wing serves as propeller, while the inner wing, like that of a plane, gives "lift." In the hummingbird the wing is mostly propeller, giving great maneuverability but less efficiency. While this is satisfactory for a small bird, in a larger one greater efficiency is needed because weight increases by three dimensions while lift increases by only two dimensions (Storer, 1948).

In general, as has been stated by others, the small birds have relatively large, broad wings which give great maneuverability. This wing size is usually accompanied by tails that assist materially in quick change of direction or in landing. Small birds take off essentially by the same process as that used in free flight, the functions of lift and propulsion being common to a wing undifferentiated on the long axis and unadapted for kite-surface action (Demoll, 1930).

If the various species were arranged according to the size of the most important flight muscles (pectoralis superficialis plus supracoracoideus) we find that other values bear no relation to this arrangement. In table 5 (p. 91) typical examples are shown. Those species with 30 percent pectoralis plus supracoracoideus possessed wings ranging from 3.67 to 0.95 cm.² per gram (buoyancy index, 3.31 to 2.91), glide areas from 6.71 to 1.16 cm.² per gram, and hearts from 2.10 to 0.20 percent of the body. What does this indicate? The small wing would require a more rapid beat for the same performance. Large leg muscles suggest greater activity on the ground. The behavior of the birds listed bears this out. The hummingbird is a powerful sustained flier with little use for his legs. The tinamou is a ground bird and an explosive flier that spends little time in the air.

Consider the three birds with the smallest pectoralis plus supra-

coracoideus in the table. None are especially good fliers. *Podiceps* has large legs which it uses in swimming. *Aramides* has the largest legs of all, which it can use in stalking through the swamps. *Crotophaga* spends much time on foot. Among the other birds in this table, the trogons, swallows, and kingfishers use their legs very little.

Let us examine the master table (table 1) with both the muscle size and flight areas in mind to see whether these values are related to the habits and activities of the bird. There appears to be a correlation; some illustrations may serve as examples. In the stork, Mycteria, the large legs indicate much ground work, yet the pectorals suggest medium flying power, the heart suggests ability to sustain activity, while the moderate wing area together with a high aspect ratio mean efficient flying and gliding once the bird is airborne. In the duck, Aythya, a medium-sized leg indicates moderate use, the pectoralis is fairly powerful, but the wings are small, thereby requiring a faster beat. An interesting comparison may be made in the two vultures. Cathartes has a much larger wing area and a greater aspect ratio than Coragyps, indicating more soaring and gliding, while the heart of Cathartes is small so that less sustained effort is possible. This agrees with the performance. Coragyps soars much less and flaps frequently in flight.

In the hawks large legs are useful in capturing prey, while large wings and high aspect ratio go with easy flight and soaring, but a medium-sized heart prevents long sustained effort.

All the rails have large legs but vary much in wing area. Their hearts can support moderate activity. The jaçana could be more active than the rails, having a larger heart, larger pectoralis, and very large wings, but medium-sized legs. Therefore, it could be in the air longer and fly with slower strokes. Likewise, the shore birds, with moderately large hearts and pectoralis and large wings with high aspect ratio, would be good fliers.

The large wings, high aspect ratio, but rather moderate pectoralis and fair-sized heart of larids suggest soarers. In the columbids, large pectoralis, large wings, but moderate aspect ratio and fair-sized hearts, with good tails, indicate good flying. Parrots as well as some columbids have fair-sized legs and good flight mechanisms. Cuckoos could not use their wings as much as some birds do, since they possess small pectoral muscles and small hearts. With their large wings, the beat need not be fast. The large wings of owls, moderate hearts and pectoral muscles, together with large legs, enable them to pounce noiselessly and seize prey. The large wings and fairly large pectoral muscles of the goatsuckers, together with rather small legs, suggest a life in the air for the capture of prey.

In the hummingbird, with tiny legs, large pectoralis, supracoracoideus, and heart, and wings with a high aspect ratio, together with large tail and glide area, we have the most capable and most active of the airborne birds. It possesses both speed and maneuverability. It hovers, flies in any direction, flies like an arrow or, on long trips over water, describes an undulating course (Murphy, 1913). Trogons, with somewhat broader but large wings and moderate hearts, would be good fliers, while kingfishers, with smaller pectoral muscles than the trogons, would be less powerful. The small heart of the motmot indicates little sustained activity, which would also be true for the puffbird. Barbets, with large legs and small pectoral muscles, suggest more footwork. Toucans likewise possess less powerful pectoral muscles and large legs.

In the woodpecker large, broad wings and a moderately powerful pectoralis enable it to flap and glide alternately. Its sizable legs suggest active use. The woodhewer is similar, except that a somewhat smaller heart could support less activity. In the ovenbird, the larger heart and a smaller pectoralis, together with larger legs, go with greater activity in the form of less flying and more footwork. In similar fashion the antbird seems to be adapted to ground activity. The cotingas and flycatchers have large, powerful wings, with medium to small legs and moderate hearts.

Large wings with a high aspect ratio and a very large heart are found in the very active swallow. The various values for the crows and jays suggest moderate activity. Many of the small perchers can be included in the classification of the large, broad-winged kinds but with varied pectoral muscles and leg power. The wrens have large legs and small pectorals. The thrushes should be better fliers, using their legs less. The troupials make much use of their legs, as do also some finches.

Among all these birds two groups are most striking: The timamous, with large flight muscles, large lower-extremity muscles, and the smallest hearts; and the hummingbirds, with the largest hearts, large flight muscles, and very small lower-extremity muscles.

Our data show that muscle weights are just as characteristic as is body weight, and this, coupled with the values of certain muscle groups, helps to identify the species. Beddard (1898) said, "the muscular system of birds is remarkably constant for the species." He was referring to the presence and arrangement of the individual muscles. Although the size of a muscle is inherited through many generations and is usually related to the activity, this is not always so. In a comparison of domesticated and wild forms in the same families, we find that in the domesticated parakeet, *Melopsitticus undulatus*, the various values are similar to those of the wild forms, while in the domestic fowl, *Gallus gallus*, the pectoral muscles and wings are much smaller, but the leg muscles are equal to those in wild species of the family. Although the parakeet leads a rather inactive life, it is not far removed from its wild ancestor. On the other hand the domestic fowl has passed through countless generations of selective breeding.

In conclusion, our observations show that muscle weights are related to the activities of the bird. Since the heart is the driving force that circulates oxygen and nutrients and removes waste products, a small heart limits activity, while a large heart can maintain it much longer. In other words, heart size indicates staying power. The flight muscles tend to parallel the performance in the air, or at least the ability to perform. The area of the wings together with their aspect ratio gives further indication of their use. Finally, the relative weight of a muscle or group of muscles, and the wing areas together with their aspect ratios, appear to be just as characteristic of a species as is the body weight.

LITERATURE CITED

American Ornithologists' Union Committee.

1957. Check list of North American birds, 5th ed.

AYMAR, G. C.

1935. Bird flight. New York.

BEDDARD, F. E.

1898. The structure and classification of birds. New York.

BENT, A. C.

1922. Life histories of North American petrels and pelicans and their allies. U.S. Nat. Mus. Bull. 121.

CONVREUR, E., and CHAPEAUX.

1926. Conditions of sustained flight in pigeons. C. R. Soc. Biol., vol. 94, pp. 1160-1161.

DEMOLL, R.

1930. Flight in large and small birds. Zeitschr. Biol., vol. 90, pp. 199-230. EISENMANN, E.

1955. The species of Middle American birds. Trans. Linnaean Soc. New York, vol. 7.

FISHER, H. I.

1946. Adaptations and comparative anatomy of the locomotor apparatus of New World vultures. Amer. Midland Nat., vol. 35, pp. 545-727. GEORGE, J. C., and JYOTI, D.

- 1955. The lipid content and its reduction in the muscle and liver of birds and bats during long and sustained activity. Journ. Animal Morphol. and Physiol., vol. 2, pp. 38-45.
- 1957. The relation of fat and glycogen in the pectoralis major muscle during sustained activity. Journ. Animal Morphol. and Physiol., vol. 4, pp. 119-123.

GEORGE, J. C., and NAIR, K. K.

1952. Wing spread and its significance in the flight of some common Indian birds. Journ. Univ. Bombay, vol. 20, pp. 1-5.

GROEBBELS, F.

1932. Der Vogel, Erster Band: Atmungswelt und Nahrungswelt. Berlin. HARTMAN, F. A.

1955. Heart weight in birds. Condor, vol. 57, pp. 221-238.

Јаск, А.

1953. Feathered wings. London.

Lowe, P. R.

- 1942. Anatomy of Gould's manakin in relation to display. Ibis, vol. 6, ser. 14, pp. 50-83.
- MURPHY, R. C.
- 1913. Undulating flight of hummingbirds. Ibis, vol. 1, ser. 10, pp. 708-709. NAIR, K. K.

1952. The chemical composition of the pectoral muscle of some Indian birds and its bearing on their flight. Journ. Univ. Bombay, Sect. B, vol. 21, pt. 3, pp. 90-98.

PARROT, C.

1893. Ueber die Grössenverhaltnisse der Herzen bei Vögeln. Zool. Jahrb. (Syst.), vol. 7, pp. 496-552.

PETERS, J. L.

1931-1951. Check list of birds of the world. Cambridge, Mass.

POOLE, E. L.

1938. Weights and wing areas in North American birds. Auk, vol. 55, pp. 511-517.

RENSCH, B.

1948. Organproportionen und Körpergrösse bei Vögeln und Saügetiere. Zool. Jahrb. Jena (Allg. Zool.), vol. 61, pp. 337-412.

Shufeldt, R. W.

1890. The myology of the raven. New York.

STIEVE, H.

1934. Muskelleistung und Herzgrösse bei verschiedenen Tierarten. Verhandl. Anat. Ges., vol. 42, pp. 86-107.

STILLSON, BLANCHE.

1954. Wings. Indianapolis.

STORER, J. H.

1948. The flight of birds. Cranbrook Inst. Sci. Bull. 28.

TRAYLOR, M. A.

1950. Altitudinal variation in Bolivian birds. Condor, vol. 52, pp. 123-126. VAN TYNE, J., and BERGER, A. J.

1959. Fundamentals of ornithology. New York.

TABLE 1.—Data obtained in the present study of the locomotor mechanism of birds (Species marked with an asterisk give typical values for each family as used in drawing the figures. Figures in parentheses indicate the number of individuals of the species.)

38

										Buoyancy index	2.96	3.14	2.86	2.72	2.48	4.22	3.40	3.27
Aspect ratio	$(4)1.49\pm0.03$	(4)1.46土0.03	(12)1.62±0.03	(11)2.51±0.06	(5)2.91±0.12	(12)3.89±0.08	(11)2.86±0.13	(6)2.68 <u>+</u> 0.04		Glide cm. ² per B gram	(4)1.11±0.05	(4)1.24土0.06	(12)1.62±0.03	(11)1.83土0.04	(5)1.13±0.08	(12)1.39±0.07	(11)1.24±0.07	$(7)1.38\pm0.10$
Wings cm. ² per gram	(4)0.89土0.06	$(4)1.04\pm0.05$	$(12)1.33\pm0.04$	$(11)1.48\pm0.04$	(5)0.86±0.06	(12)1.19±0.06	(11)0.97±0.05	$(7)1.07\pm0.09$		Tail cm. ^s per gran:	(4)0.07±0.01	(4)0.05±0.01	(12)0.09±0.02	:	0.02, 0.05	(14)0.09±0.01	(11)0.11±0.01	(7)0.15±0.01
Lower extremities % body weight	(4)13.0±0.18	17.5, 18.2	(8)13.90±0.74	(8)15.85±0.48	$(3)18.5\pm0.70$	22 4.48, 4.52 63 5.66±0.26	(4)12.1 ±0.50	(6)10.73±0.46		"Rest" %o body weight	(3)7.62±0.70	0 0	(6)6.83土0.23	(5)2.91±0.23	2.07, 3.44	22 4.57, 4.80 63 5.41±0.24	49 4.61 <u>±</u> 0.37	(5)5.10±0.26
Upper extremities % body weight	(3)40.73 <u>+</u> 2.39	•	(6)37.33±1.26	(5)14.30±0.42	9.45, 13.63	22 14.99, 15.94 6ď 19.48 <u>+</u> 0.18	4\$ 17.00±0.80	(5)17.68±0.55		Supra- coracoideus % body weight	(7)7.91±0.23	•	(7)7.55土1.36	(5)1.41±0.19	0.68, 0.77	22 1.49, 1.51 6ď 1.99 <u>+</u> 0.04	4\$ 1.04±0.03	(5)1.07±0.06
Heart % body weight	(5)0.19±0.03	(3)0.25±0.02	(12)0.25±0.01	(19)1.05土0.04	$(7)1.00\pm0.05$	62 0.72±0.06 83 0.89±0.05	(11)0.91±0.03	(7)0.91±0.03	Upper extremities	Pectoralis % body weight	(3)25.2 <u></u> 1.46	•	(7)22.46土1.20	(5)9.86±0.19	4.83, 5.24	22 8.70, 9.86 63 12.1 <u>+</u> 0.22	49 11.3±0.7 0	(5)11.51±0.17
Body weight grams	{12 1175 {43 1168±61	$\left\{ \begin{array}{c} 1 & 1050\\ 4 & 344 \pm 18.1 \end{array} \right\}$	{ 62 245±4 { 83 225±6	$\left\{ \begin{array}{c} 12 & 116\pm 3.42\\ 12 & 129\pm 3.29 \end{array} \right\}$	$\begin{cases} 62 & 321\pm19 \\ 53 & 411\pm37 \end{cases}$	$\begin{cases} 47 \ 2 \\ 56 \ 3702 \pm 52 \end{cases}$	$\left\{\begin{array}{c} 32\wp1540\pm38\\ 33\sigma1808\pm39\end{array}\right.$	$\left\{\begin{array}{c} 3 & 1070\pm 67\\ 10\sigma & 1260\pm 4\end{array}\right.$		Pectoral and sup. % body weight	(4) 32.33±1.37	(4)21.85±0.83	$(12)29.49\pm0.68$	(7)11.14 <u>+</u> 0.20	(5)9.97土1.40	$\begin{cases} 62 & 12.46\pm0.65 \\ 83 & 14.07\pm0.29 \end{cases}$	(11) 12.16 <u>+</u> 0.34	(7)12.72±0.17
	TINAMIDAE Tinamus major	Nothocercus bonapartei	*Crypturellus soui	Podicifedidae *Podiceps dominicus	Podilymbus podiceps	PELECANIDAE *Pclecanus occidentalis	Phalacrocoracidae Phalacrocorax auritus	Phalacrocorax *olivaceus			TINAMIDAE Tinamus major	Nothocercus bonapartei	*Crypturellus soui	Podicifedidae *Podiceps dominicus	Podilymbus podiceps	PELECANIDAE *Pelecanus occidentalis	Phalacrocoracidae Phalacrocorax auritus	Phalacrocorax *olivaceus

	NO.	I	LOC	OMO	OTOF	R MI	ЕСН	ANI	SMS	OF BI	IRDS	—HA	RTMA	AN			39	
										Buoyancy index	3.7	5.48	5.28	4.12	4.24	4.62	4.87	6.40
Aspect ratio	(14)2.69 <u></u> 40.04	3.67, 4.38	2.63±0.05	$(14)2.34\pm0.08$	(6)2.43±0.08	(5)2.6 <u>∓</u> 0.04	$(10)2.66\pm0.01$	(7)2.69土0.08		Glide cm. ^s per gram	$(13)1.79\pm0.06$	2.94, 3.59	2.32±0.13	3.0 ± 0.13	(6)3.75±0.21	3.38±0.14	$(10)3.86\pm0.07$	(8)3.50±0.11
Wings cm. ⁸ per gram	$(13)1.31\pm0.04$	2.52, 3.06	(7)2.06±0.13	2.85 ± 0.09	(6)3.25±0.18	(5)2.95±0.11	$(10)3.42\pm0.07$	(8)3.05±0.27		Tail cm. ^e þer gram	$(13).32\pm0.03$	2.38, 2.88	0.12 ± 0.01	0.16 ± 0.013	(6)0.19±0.019	0.19 ± 0.02	$(10)0.22\pm0.02$	(7)0.18土0.02
Lower extremities % body weight	(7)9.01土0.30	•	(2)9.3, 12.0	• •	(3)10.78±0.21	• •	(5)10.6±0.35	(9)8.97±0.22		"Rest" % body weight	(6)6.07±0.38	• • •	7.11	• •	(3)6.67±0.58	• •	(4) 6.55±0.34	(9)7.12±0.15
Upper extremities % body weight	(5)21.99±0.30	•	:	• • •	(3)20.52±0.90	•	(4)22.28 <u>+</u> 0.34	(9)23.54±0.47		Supra- coracoideus % body weight	(5)1.30±0.15	•	1.06	•	(3)1.21±0.19	• •	$(4)1.24\pm0.10$	1.59±0.08 (continued)
Heart % body weight	(22)0.89±0.03	(2)0.81, 1.03	(19).83±0.02	$(10)0.83\pm0.04$	(8)0.70 <u>十</u> 0.03	(5).83±0.05	(13).71±0.018	(9).88±0.02	Upper extremities	Pectoralis 70 body weight	(5)14.10±2.7	• • •	(1)15.0	• •	(3)12.65±0.77	•	(4)14.5 <u>+</u> 0.26	14.85 ± 0.37
Body weight grams	$\left\{ \begin{array}{c} 14\text{Q} & 1227\pm32.1 \\ 12\text{d} & 1244\pm44.6 \end{array} \right\}$	$\left\{\begin{array}{ccc} 6 & 1667 \pm 29.4 \\ 16\sigma & 1281 \pm 8.7 \end{array}\right.$	{ 159 2204±87 { 17♂ 2576±72.5	$\left\{\begin{array}{c} 20\text{Q} & 212\pm3.6\\ 14\text{Q} & 211\pm4.7 \end{array}\right.$	$\begin{cases} 62 & 175 \pm 9.29 \\ 20' & 156, 157 \end{cases}$	$\begin{cases} 3 & 378 \pm 40 \\ 2 & 375, 390 \end{cases}$	$\left\{\begin{array}{c} 3 & 288 \pm 32.2 \\ 8 & 341 \pm 12.5 \\ \end{array}\right.$	$\begin{array}{c} 72 & 341.5 \pm 11.6 \\ 23 & 295, 351 \\ \end{array}$		Pectoral and sup. 76 body weight	$(13)14.38\pm 0.30$	(2)13.7, 17.4	(8)13.94±0.72	$(10)14.2\pm0.45$	(6)13.53±0.61	(5)14.2±0.01	$(11)15.12\pm0.22$	(9)16.42 <u>±</u> 0.37
	ANHINGIDAE *Anhinga anhinga	FREGATIDAE *Fregata magnificens	ARDEIDAE Ardea herodias wardi	Butorides virescens (Florida)	Butorides virescens (Panamá)	Florida cacrulea (Florida)	Florida caerulea (Panamá)	Bubulcus ibis			ANHINGIDAE *Anhinga anhinga	FREGATIDAE *Fregata magnificens	Arbeidae Ardea herodias wardi	Butorides virescens (Florida)	Butorides virescens (Panamá)	Florida caerulea (Florida)	Florida caerulea (Panamá)	Bubulcus ibis

	40			2						0.								* ' †	0	
											Buoyancy	5.19	5.11	4.77	4.64	4.71	4.38	4.43	3.68	4.84
Aspect ratio	$(13)2.60\pm0.04$	(6)2.54±0.06	2.58 ± 0.03	(1)2.38	2.49 ± 0.02	(7)2.02±0.03	$(7)2.12\pm0.04$	(8)2.18+0.05	(6)2.10±0.04	۵	Glide cm. ^s fer	$(13)3.12\pm0.11$	(6)3.82±0.08	(19)3.44±0.07	(1)3.11	2.69 ± 0.09	(7)2.32±0.06	(7)2.06 <u>∓</u> 0.04	(8)3 54+0 11	(6)3.02±0.08
Wings cm. ² per gram	$(13)2.82\pm0.10$	(6)3.41±0.15	(20)3.09±0.063	(1)2.73	2.42 ± 0.08	(7)2.09土0.04	(7)1.89±0.084	(7)3.09+0.06	(6)2.72±0.10		Tail cm. ⁸ per aram	$(13)0.15\pm0.01$	$(6)0.16\pm0.04$	(19)0.15±0.01	(1)0.17	0.16 ± 0.02	$(7)0.11\pm0.00$	(7)0.08±0.01	(7)0 37+0 12	(6)0.12±0.01
Lower extremities % body weight	$(7)10.4\pm0.14$	(6)8.21±1.10	11.3 ± 1.73	(1)11.9	12.15	(4)12.06±0.27	$(5)11.3\pm0.30$	(3)12.16+0.17	(6)10.69 <u>+</u> 0.24		"Rest" Vo body meiaht	$(5)7.68\pm0.31$	(6)6.85±0.26	(3)7.77±0.49	(1)9.14	••••	$(4)8.99\pm0.19$	(5)8.08±0.37	$(3)4.11\pm0.21$	(5)8.80±0.21
Upper extremities % body weight	(5)22.29±0.81	$(5)21.53\pm0.51$	$(3)22.81\pm0.440$	(1)29.17	:	$(4)25.81\pm0.93$	$(5)21.69\pm1.00$	(3)13.89+0.11			Supra- coracoideus %o body weight	$(6)1.17\pm0.04$	$(5)1.26\pm0.07$	$(3)1.18\pm 0.22$	(1)1.63		$(4)1.43\pm0.03$	$(5)1.19\pm0.10$	$(3)1.39\pm0.22$	(5)1.71±0.13
% body weight	$(16)0.77\pm0.023$	(e)0.78 <u>+</u> 0.05	(25).86±0.28	(2)0.67, 0.72	(4)0.73土0.02	$(11).69\pm0.023$	(7)0.57 <u></u> 40.02	$\begin{cases} (4) 0.815 \pm 0.03 \\ P < 0.01 \\ (Fla.) \\ (6) 0.55 \pm 0.03 \\ (Pan.) \end{cases}$	(6).77±0.021	Upper extremities	Pectoralis % body weight	$(5)13.04\pm0.54$	$(3)12.3\pm1.29$	$(3)13.8\pm0.6$	(1)18.4	•	(4)15.40 <u>+</u> 0.96	(5)12.41 <u>+</u> 0.58	$(3)8.39\pm0.04$ (Pan)	(5)14.53土0.19
Body weight grams 9 2 812 \pm 28.1 9 2 812 \pm 0.05	$12\sigma 935 \pm 38.8$	$\begin{cases} 52 348\pm22.7 \\ 12\sigma 380.7\pm18.4 \end{cases}$	$\begin{cases} 59 334\pm21.2 \\ 350 415\pm7.66 \end{cases}$	$\begin{cases} 12 475 \\ 335\pm 9.35 \end{cases}$	{ 24 775,780 { 23 725,780	$\begin{cases} 62 823\pm22 \\ 53 897\pm12.44 \end{cases}$	$\begin{cases} 42 & 1046\pm 49.3 \\ 33 & 1274\pm 110 \end{cases}$	{ 69 83.69 <u>+</u> 3.78 { 14♂ 87.4 <u>+1</u> .96	$\left\{\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Pectoral and sup. % body weight	$(13)13.56\pm0.31$	$(5)14.40\pm0.55$	$(19)13.97\pm0.25$	(1)20.03	(4)14.3±0.29	$(9)17.02\pm0.43$ P< 0.05	(7)14.85±0.79	$\begin{cases} (2) 9.55, 10.10 \\ (Fla.) \\ (6) 9.34\pm 0.22 \\ (Pan.) \end{cases}$	(6)15.97±0.32
* Ca con oronities e altrus e	Cushervarns 410 hs	Leucophoyx thula	Hydranassa tricolor	Agamia agami	Nycticorax nycticorax	Tigrisoma lineatum	Heterocnus mexicanus	Ixobrychus exilis	Cochlearndae *Cochlearius cochlearius			*Casmerodius albus	Leucophoyx thula	H yaranassa tricolor	Agamia agami	Nycticorax nycticorax	Tigrisoma lineatum	H eterocnus mexicanus	Ixobrychus exilis	Cochlearidae *Cochlearius cochlearius

TABLE I.—continued

	1	NO. I	1	LOCOM	OTOF	R MI	EC	HAN	IISM	s o	F BIR	DS1	HART	MAN	T		41				
											Buoyanc y index	* • •	4.62	3.85	3.36	3.10	2.84	2.55	2.62	2.63	
Aspect ratio	* * *	(6)2.85±0.07	$(14)2.33\pm0.05$	(6)2.16 ±0.01	$(4)3.37\pm0.07$	(4)2.84±0.13	2.75	$(10)3.10\pm0.10$	2.47 ± 0.14		Glide cm. ^s per gram	• •	(6)1.76 <u></u> ±0.08	(13)1.96±0.05	(6)1.09 <u>+</u> 0.02	$(4)1.45\pm0.09$	$(4)1.55\pm0.07$	1.45	$(10)1.07\pm0.04$	1.33 ± 0.11	
Wings cm. ^e per gran	. :	(6)1.54±0.07	(13)1.65±0.02	(6)0.84 <u>±</u> 0.03	$(4)1.13\pm0.07$	(4)1.16±0.04	1.08	$(10)0.79\pm0.03$	(5)0.97±0.08		Tail cm. ^e per gram	• • •	(6)0.10±0.00	$(14)0.10\pm0.01$	(6)0.14±0.03	$(4)0.07\pm0.01$	$(4)0.11\pm0.03$	0.12	$(10)0.05\pm0.01$	0.18 ± 0.01	
Lowcr extremities % body weight	(3)9.6 <u>+</u> 0.28	(4)10.9±0.02	8.48	$\begin{array}{c} 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(4)5.69 <u>+</u> 0.13	(4)4.85±0.32	5.82	(8)6.67±0.37	(1)7.77		"Rest" % body wcight	(3)5.45±0.66	(3)8.37±0.58	9.68	3♀ 6.20±0.28 3♂ 6.23±0.31	$(4)7.11\pm0.62$	$(4)6.83\pm0.27$	6.40	$(7)5.70\pm0.34$:	
Upper extremities % body weight	(3)10.99±0.97	(3)27.29 <u>∓</u> 0.28	(1)31.32	$\begin{array}{c} 3 \wp \ 23.51 \pm 0.54 \\ \mathrm{P} < 0.01 \\ 3 \varsigma \ 20.85 \pm 0.47 \end{array}$	$(4)31.36\pm 1.56$	$(4)29.24\pm0.41$	27.17	$(7)22.38\pm0.96$	• •		Supra- coracoideus % body weight	(3)0.73 <u>±</u> 0.09	$(3)1.30\pm0.09$	2.24	3♀ 2.08±0.06 3♂ 1.86±0.14	(4)2.94±0.29	$(4)2.77\pm0.09$	2.39	(7)1.94±0.11	•	(continued)
Heart % body weight	(3)0.59±0.4	(10)0.82 ±0.05	(19)1.02±0.03	(e)0.79±0.05	(4)1.23±0.05	$(5)1.15\pm0.03$	0.98	$(15)0.90\pm0.03$	$(7)1.12\pm0.06$	Upper extremities	Pectoralis % body weight	(3)4.82±0.24	(3)17.6±0.61	19.40	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$(4)21.3\pm0.35$	(4)19.64±0.21	18.38	(7)14.7±0.64	•	
Body weight	{ 1 2 520 { 2 3 505,515	{19 2050 {9♂ 2702±250	$\left\{\begin{array}{c}18\ 9\\12\ 3\\12\ 0\\8\\12\ 3\\12\ 0\\8\\12\ 3\\1.3\\0\\12\ 3\\12\ 3\\1.3\\0\\12\ 3\\$	{3\$ 2022±39.4 {3& 2015±115	$\begin{cases} 32 568\pm 19.8 \\ 13 675 \end{cases}$	$\begin{cases} 32 & 365\pm10.4 \\ 8d' & 333\pm9.3 \end{cases}$	12545	$\left\{\begin{array}{c} 72 \ 577 \pm 35.3 \\ 113 \ 621 \pm 22.6 \end{array}\right.$	{ 3 ♀ 368±23.6 { 4♂ 359±36		Pectoral and sup. % body weight	(3)5.55±0.30	(6)18.4±0.41	$(13)20.16\pm0.43$	$ \begin{cases} 3 & 17.30 \pm 0.27 \\ P < 0.05 \\ 3 & 14.95 \pm 0.58 \end{cases} $	$(4)24.26\pm0.22$	$(4)22.41\pm0.30$	20.77	$(11)17.24\pm0.60$	(5)19.7±0.47	
	Cochlearius cochlearius, immature	CICONIIDAE *Mycteria americana	THRESKIORNITHIDAE *Eudocimus albus	ANATIDAE Cairina moschata (domestic)	Anas acuta	Anas discors	Mareca americana	*Aythya affinis	Oxyura dominica			Cochlearius, cochlearius, immature	CICONIIDAE *Mycteria americana	THRESKIORNITHIDAE *Eudocimus albus	ANATIDAE Cairina moschata (domestic)	Anas acuta	Anas discors	Mareca americana	*Aythya affinis	Oxyura dominica	

	42			SMIT	THSON	IAI	J M	ISCI	ELL	ANI	EOUS	COLL	ECTI	ONS	5	VOL.	143			
											Buoyancy index	4.50	4.47	5.81	5.86	4.84	4.79	5.56	4.51	4.42
Aspect ratio	2.20 <u>+</u> 0.15	(7)2.31 <u></u> - 0.03	2.65 ± 0.04	(4)2.63土0.06	3.37, 3.48	$(3)2.01\pm0.09$	(7)1.94 <u></u> 10.02	2.01	2.01		Glide cm. ² per gram	1.99 ± 0.11	$(7)1.91\pm0.07$	3.90 ± 0.16	(4)3.94±0.27	3.66, 4.06	$(3)4.14\pm0.39$	(6)6.99±0.16	4.55	4.13
Wings cm. ⁸ per gram	1.59±0.06	$(7)1.54\pm0.10$	2.98 ± 0.10	(4) 3.15 <u>+</u> 0.23	2.72, 3.28	(3)3.29±0.31	(6)5.24±0.14	3.44	3.17		Tail cm. ^s per gram	0.15 ± 0.01	$(7) 0.18 \pm 0.01$	0.43 ± 0.01	(4)0.53土0.04	0.58, 0.66	(3)0.65土0.10	(7)1.11±0.08	0.83	0.77
Lower extremities % body weight	:	(6)15.0±0.65	•	(3)9.90 ±0.68	4.67, 5.14	(2)9.06, 10.11	(7)7.54±0.10	•	10.3		"Rest" % body weight	•	(5)9.38±0.31	•	$(3)11.2\pm0.13$	9.02	(1)11.24	(6)11.61 <u></u> ±0.36	• •	•
Upper extremities % body weight	:	(5)25.02±1.24	•	(3)28.86±0.79	(1)23.30	(1)31.45	(6)29.92±0.56	•	0 0 0		Supra- coracoideus % body weight	• • •	(4)1.31±0.19	•	(3)1.26±0.03	0.39	(1)5.65	(6)0.68±0.05	0.78	•
Heart % body weight	$(8)0.89\pm0.03$ P<.05	(7)0.79±0.03	(15)0.74±0.02	(9)0.66±0.01 smaller than Fia. P<0.01	0.81, 0.81	(3)0.43 <u></u> ±0.04	(7)0.56±0.01	(1)0.49	1.28	Upper extremities	Pectoralis % body weight	•	(5) 14.33 <u>+</u> 0.76	• • •	(3)16.4 <u>十</u> 0.64	13.90	(1)14.56	(6)17.64±0.32	16.87	•
Body weight grams	{12 1950 {58 2065±76	$\begin{cases} 3Q \ 1865\pm82.7 \\ 4G' \ 1775\pm127 \end{cases}$	$ \begin{cases} 52 & 1589 \pm 118.35 \\ 150 & 1426 \pm 10 \end{cases} $	$\begin{cases} 3 & 1458 \pm 208 \\ 66 & 1175 \pm 58.9 \\ \text{smaller than} \\ \text{Fla. P} < 0.01 \end{cases}$	2ď 445 , 505	{ 1 2 540 { 2 3 435, 445	$\begin{cases} 32296\pm22.2 \\ 402265\pm11.6 \end{cases}$	$\left\{ \begin{array}{c} 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	o [*] 235		Pectoral and sup. % body weight	(8)16.0±0.44	(6) 16.39 <u>+</u> 0.43	$(11)15.8\pm0.21$ P<0.01	(4)17.45 <u>+</u> 0.51	14.0, 14.29	(3)16.60 <u>+</u> 2.23	(7)18.30 ±0.29	(1)17.65	22.00
	CATHARTIDAE Coragyps atratus (Florida)	*Coragyps atratus (Panamá)	Cathartes aura (Florida)	Cathartes aura (Panamá)	Accipitridae Elanoides forficatus	Leptodon cayanensis	Chondrohierax uncinatus	Harpagus bidentatus	Accipiter bicolor			CATHARTIDAE Coragyps atratus (Florida)	*Coragyps atratus (Panamá)	Cathartes aura (Florida)	Cathartes aura (Panamá)	Accipitridae Elanoïdes forficatus	Leptodon cayanensis	Chondrohierax uncinatus	Harpagus bidentatus	Accipiter bicolor

TABLE I.—continued

			NO.	I	L	0001	MO	TOR	ME	СНА	NIS	MS	OF B	IRI)S	HAI	RTM	AN			43				
													Buoyancy index	4.50	4.40	5.29	4.76	4.35	4.36		5.50	5.06	5.19	4.72	
Aspect ratio	2.19	2.18	(4)2.35±0.18	(8) 2.24±0.06	(7)2.28±0.02	$(2)2.01\pm0.03$	2.21	1.98 ± 0.03	(8)2.07±0.05	1.99, 2.41	1.95		Glide cm. ² per gram	3.32	4.84	(4)3.45 <u>十</u> 0.22	3 $2, 3.19 \pm 0.23$ 5 $3, 4.00 \pm 0.22$	(7)3.59±0.17	$(12)3.78\pm0.08$	3.38	3.61 ± 0.14	(8)3.10±0.24	3.44, 3.51	3.64	
cm. ^z per gram	2.54	3.49	(4)2.97 <u></u> 40.25	$\begin{array}{c} 3 Q & 2.46\pm 0.14 \\ 5 Q & 3.14\pm 0.16 \\ P < 0.05 \end{array}$	(7)2.70 <u></u> -0.10	(12)2.97±0.07	2.59	3.21 ± 0.12	(8)2.60 <u>+</u> 0.20	2.95, 3.08	(1)2.76		Tail cm. ² per gram	0.54	1.14	(4)0.26±0.04	(8)0.56 <u>+</u> 0.05	(7)0.59±0.07	(12)0.62±0.03	0.62	0.26 ± 0.01	(8)3.8±0.04	•	0.58	
extremities %o body weight	•	- 10.2	(4)14.08±0.67	(1)15.9	(6)13.96 ±0.25	(7)13.8±0.26	•	15.2	(5)17.6±0.96	15.4	10.5		"Rest" % body weight	• •	• • •	6.35, 9.50	(1)7.74	(5)7.59 <u></u> 40.27	(5)7.59±0.27	• •	• • •	(3)8.71土0.36	:	10.8	
extremities % body weight	:	:	18.09, 25.09	(1)22.71	(5)21.39±0.78	(4)21.70 <u>十</u> 0.09	•	•	(3)22.21±0.56	•	26.41		Supra- coracoideus % body weight	•	:	0.38, 0.59	(1)0.47	(5)0.42±0.05	$(4)0.45\pm0.04$	• •	•	(3)0.52 <u></u> 0.03	•	0.56	(continued)
Heart % body weight	0.81	0.73	(4)0.69±0.06	(7)0.55±0.03	(9)0.54±0.02	(13)0.56±0.02	0.40	$(3)0.65\pm0.03$	(8)0.57±0.03	(2)0.40, 0.48	0.42	Upper extremities	Pectoralis % body weight	:	•	12.2, 15	•	(5)12.81 <u>+</u> 0.58	(4)12.65±0.35	•	• •	$(3)13.05\pm0.37$	•	15.05	
Body weight	$\begin{cases} 62 535\pm19 \\ 10^3 315 \end{cases}$	1 2 171.0	{ 29 800, 866 { 5♂ 776±33.5	$\left\{\begin{array}{c}14\text{\ } 643\pm25.7\\10\text{\ } 475\pm25.6\end{array}\right.$	$\left\{\begin{array}{c} 4\ \ 4\ \ 4\ \ 259.6\pm14\\ 12\ \ 359.6\pm8.7\end{array}\right.$	$\begin{cases} 7 & 272 \pm 11.68 \\ 9 & 266 \pm 8.6 \end{cases}$	1 \$ 420	{ 2 2 895, 900 { 1 0 725	$\begin{cases} 42 & 1199 \pm 142 \\ 63 & 793 \pm 95.8 \end{cases}$	2 2 625, 900	19 525		Pectoral and sup. % body weight	13.3	22.2	(2)13.99, 0.74	$\begin{array}{c} 3\ \ 2\ \ 13.60\pm0.88\\ 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(7)13.76±0.57	(12)12.79 <u>于</u> 0.27	12.28	$(3)13.9\pm0.33$	(8)13.52±0.44	(2)12.5,12.8	15.61	
	Accipiter cooperii	Accipiter striatus	H eterospizias meridionalis	Buteo lineatus	*Buteo platypterus	Buteo magnirostris	Buteo nitidus	Busarellus nigricollis	Buteogallus anthracinus	Hypomorphnus urubitinga	Spizastur melanoleucus		A	acceptier cooperii	Accipiter striatus	H eterospizias meridionalis	Buteo lineatus	*Buteo platypterns	Buteo magnirostris	Buteo nitidus	Busarellus nigricollis	Buteogalus anthracinus	H ypomorphnus wrubitinga	Spizastur melanoleucus	

										Buoyancy index 4.32	5.25	5.05	4.66	4.01	4.07	4.79	4.42	3.98
										Buoy inc	ν	v	4		4	4	4	3
Aspect ratio 1.74	2.02, 1.91	3.00	2.17, 2.08	(8)1.72±0.04	1.58	2.34, 2.41	2.60±0.04	3.06		Glide cm. ^s þer gram 2.42	5.51, 5.25	2.49	3.05, 2.18	(8)3.94 <u>+</u> 0.20	2.61	3.60, 4.60	2.53 ± 0.07	2.19
Wings cm ² per gram (1)1.75	(2)3.82, 3.25	(1)2.16	2.41, 1.53	(8)2.83 <u>+</u> 0.11	1.72	2.85, 3.65	(11)2.02±0.07	(1)1.69		Tail cm. ^s per gram 0.45	0.77, 1.18	0.18	0.45, 0.43	(8)0.78±0.08	0.67	0.62, 0.80	0.35±0.02	0.37
Lower extremities % body weight 17.1	17.0, 18.6	8.5	14.05, 15.05	(8)18.59±0.49	23.5	11.3, 12.0	(4)12.9 <u>十</u> 0.54	12.0		"Rest" % body weight 15.4	7.59, 8.46	10.10	8.66, 8.35	(6)8.72±0.13	8.64	• •	(3)8.21±0.57	10.9
Upper extremities % body weight 29.33	18.86, 20.97	24.79	23.14, 22.14	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	25.63		(3)23.22±0.09	29.92		Supra- coracoideus % body weight 0.43	0.37, 0.41	0.69	0.48, 0.79	5 0.73 ± 0.01 P < 0.01 4σ 0.85 ± 0.01	1.04	• •	0.64 ± 0.04	0.82
Heart %o body weight 0.35	(2)0.61, 0.69	(1)0.84	(2)0.71, 0.49	$(11)0.60\pm0.03$	0.62	0.65, 0.75	(12)1.11±0.04	(1)1.23	Upper extremities	Pectoralis % body weight 13.50	12.1, 10.9	14.0	13, 14	49 12.11±0.20 40 13.7±0.77	15.95	14.1, 15.2	$(3)14.4\pm0.64$	18.2
Body weight grams 1& 1215	$\left\{ \begin{array}{c} 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 3 & 1837 \pm 235 \\ 2 & 1530, 1500 \end{array}$	ر 1 ب 1 م 800 1 م 675	$\begin{cases} 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1 \$ 900	{ 1 \overline{2} 410 { 1 \overline{3} 325	$ \left\{ \begin{matrix} 10 & 953 \pm 20.0 \\ P < 0.01 \\ 14 \sigma & 834 \pm 35.5 \end{matrix} \right. $	29 825, 825		Pectoral and sup. % body weight 13.93	12.51, 11.27	14.69	13.48, 14.79	$\begin{cases} 62 & 12.80\pm0.16 \\ 40' & 14.56\pm0.17 \end{cases}$	16.99	14.1, 15.2	$(11)15.4\pm0.09$	19.20
S pizačtus ornatus	Geranospiza caerulescens	Pandionidae *Pandion haliaetus	FALCONIDAE Herbctotheres cachinnans	Micrastur ruficollis	Micrastur semitorquatus	Milvago chimachi <mark>ma</mark>	*Caracara cheriway	Falco peregrinus		Spizaëtus ornatus	Geranospiza caerulescens	PandionIDAE *Pandion haliaetus	FALCONIDAE Herpetotheres cachinnans	Micrastur ruficollis	Micrastur semitorquatus	Milvago chimachima	*Caracara cheriway	Falco peregrinus

TABLE I.—continued

	N	D. I		LOCON	MOT (OR M	ECHA	NI	SM	SOF	BIR	DS	I	IAR'	FMAN		4	5		
										Buoyancy index	3.25	4.04	3.68	3.66	2.62	3.10	2.38	2.60	2.11	
Aspect ratio	3.05 (11)2.63 <u>+</u> 0.04	(7)1.51±0.04	(5)1.38±0.07	$(4)1.74\pm0.10$	(8)1.56±0.06	(3)2.15±0.07	(20)1.31+0.02	1.48, 1.53		Glide cm. ^s per gram	2.58	$(11)4.92\pm0.16$	(7)2.55±0.07	(5)2.05±0.18	(4)1.70 <u>十</u> 0.04	(9)1.54±0.03	$(3)1.49\pm0.06$	$(17)0.85\pm0.02$		
Wings cm. ⁹ per gram	1.98 (11)3.49±0.09	$(7)1.63\pm0.07$	(5)1.36 <u>+</u> 0.11	$(4)1.19\pm0.03$	(9)1.26 <u>+</u> 0.03	(3)1.13 <u>±</u> 0.04	(20)0.53+0.02	(2)0.30, 0.32		Tail cm. ^s per gram	0.35	1.05 ± 0.06	$(7)0.74\pm0.03$	(5)0.52±0.02	(4)0.24 <u>±</u> 0.01	(8)0.13±0.01	(3)0.04土0.01	$(15)0.08\pm0.02$	0.73, 0.78	
Lower extremities % body weight	9.04 (8)8.54 <u>±</u> 0.22	(6)19.86±0.58	(2)15.7, 15.7	(4)14.6 <u>+</u> 0.60	(6)16.38 ±0.56	(3)12.16±0.85	$\begin{array}{c} 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2)6.92, 7.23		"Rest" % body weight	7.72	(7)6.92±0.17	(5)8.09±0.18	8.46	(4)5.53±0.32	$(5)6.17\pm0.40$	$(3)4.46\pm0.14$	4.28	•	
Upper extremities % body weight	24.08 (5)21.82 <u>±</u> 0.55	(5)23.20 <u>∓</u> 0.53	(1)26.46	(4)34.31 <u></u> −0.60	(5)30.02±0.97	(3)25.60±0.08	(1)16.56	•		Supra- coracoideus %o body weight	0.61	$(7)0.59\pm0.03$	$(5)2.28\pm0.13$	3.30	(4)7.16 <u>±</u> 0.10	(6)5.89±0.29	(3)5.66 <u>+</u> 0.40	3.50	•	(continued)
Heart % body weight	1.0/ (15)1.01 <u>+</u> 0.03	(7)0.62 <u>+</u> 0.04	$(10)0.48\pm0.02$	(10)0.38±0.02	(11)0.34±0.01	(3)1.00 <u>+</u> 0.08	$\begin{array}{c} 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2)0.32, 0.38	Upper extremities	Pectoralis % body weight	16.35	$(7)14.82\pm0.39$	(5)12.83±0.63	14.7	(4)21.6 <u>∓</u> 0.55	(6)18.06 <u>∓</u> 0.63	(3)15.49 <u>±</u> 0.32	(1)8.78	• •	
Body weight grams 1.2 140 0	$\begin{cases} 112.5\pm3.43 \\ 4385.7\pm7.42 \end{cases}$	{12 470 {63 541±25.5	$\begin{cases} 72 \ 1148\pm51.9 \\ 53 \ 1116\pm78.6 \end{cases}$	{ 2 2 150, 170 { 8 3 150±5.28	$\left\{\begin{array}{c}4\ 294\pm5.95\\18\ 314\pm5.10\end{array}\right.$	39 123.48 <u>+</u> 4.2	$\begin{cases} 102 & 1705 \pm 48.3 \\ P < 0.01 \\ 100' & 2430 \pm 54.0 \end{cases}$	29 2846, 3126		Pectoral and sup. %o body weight	16.96	$(13)15.0\pm0.33$	(7)15.05±0.39	(5)16.6±0.41	(4)28.79 <u></u> 40.47	(8)24.06 <u>+</u> 0.50	(3)21.14±0.12	(20)10.6±0.23	(2)5.53, 5.85	
Ealos alkiaulania	Falco sparverius	Cracidae Ortalis garrula	*Chamaepetes unicolor	Phasianidae Colinus virginianus floridanus	*Odontophorus guttatus	Coturnix coturnix japonica	Gallus gallus (White Leghorn)	(Buff Orpington)			Falco albigularis	Falco sparverius	CRACIDAE Ortalis garrula	*Chamaepetes unicolor	PHASIANIDAE Colinus triginianus floridanus	*Odontophorus guttatus	Coturnix coturnix japonica	Gallus gallus (White Leghorn)	(Buff Orpington)	

p
õ
~
2
. 69
6
<u> </u>
Ť
- L.
BLE
- H
8
-
· · ·

										Buoyancy index	3.13	3.59	3.34	2.90	2.96	3.15	2.79	3.04
Aspect ratio	$(10)1.48\pm0.02$	2.20, 2.90	(8)1.67±0.04	(16) 1.65 <u>+</u> 0.04	$(11)2.09\pm0.03$	(14)2.29±0.04	(9)2.32±0.10	(5)2.07±0.03		Glide cm. ^g per gram	$(10)1.19\pm0.05$	2.03, 2.44	(8)1.72±0.05	$(16)2.81\pm0.11$	$(11)1.58\pm0.06$	$(12)2.02\pm0.07$	(6)1.25土0.04	(5)2.60±0.08
Wings cm. ^s per gram	$(10)0.90\pm0.02$	1.36, 1.74	$(8)1.50\pm0.05$	(16)2.32±0.09	$(11)1.26\pm0.06$	(14)1.61±0.05	$(9)1.00\pm0.03$	(5)1.83±0.05		Tail cm. ² per gram	$(10)0.14\pm0.01$	0.12, 0.18	(7)0.06 <u>+</u> 0.01	(10)0.11±0.01	(12)0.11 <u>+</u> 0.01	$(14)0.10\pm0.01$	(6)0.04±0.01	(5)0.51±0.06
Lower extremities % body weight	(10)16.6±0.20	16.2, 16.9	(6)23.16±1.14	(7)17.41土0.60	(4)16.1±0.51	(5)15.7±0.76	$(3)11.4\pm0.88$	(5)14.90 <u>十</u> 0.73		"Rest" % body weight	$(10)6.14\pm0.13$	7.11, 9.34	(6)5.72±0.29	(6)3.29±0.33	5.39, 5.43	(3)3.61±0.35	(3)4.04 <u>十</u> 0.33	(4)5.12±0.16
Upper extremities % body weight	$(10)24.97\pm0.28$	(2)24.12, 21.39	(7)15.93±0.65	(6)11.97 <u></u> 40.67	$(3)16.31\pm0.85$	(3)13.66±0.52	$(3)13.47\pm0.31$	(4)17.64 <u></u> 40.56		Supra- coracoideus % body weight	(10)4.51±0.13	1.28, 1.38	$(6)1.34\pm0.13$	$(6)1.29\pm0.14$	$(3)1.50\pm0.05$	$(3)1.12\pm0.06$	$(3)1.24\pm0.14$	(4)1.86±0.08
Heart % body weight	(10)0.57±0.02	(6)0.71 <u></u> -0.04	(11)0.59±0.02	(20)0.61 <u>±</u> 0.02	$(15)0.58\pm0.03$	(23)0.63±0.02	$(11)0.65\pm0.04$	(6)0.67±0.03	Upper extremities	Pectoralis % body weight	$(10)14.31\pm0.14$	13.0, 13.4	(6)8.62±0.26	(6)7.01±0.31	$(3)10.2\pm0.45$	(3)8.93±0.21	(3)8.20±0.21	$(4)10.66\pm0.34$
Body weight grams	{ 7 2 1299 <u>+</u> 41.64 { 3♂ 1299 <u>+</u> 25.23	$ \begin{cases} 3 & 863\pm16.1 \\ P < 0.01 \\ 3 & 1028\pm13.0 \end{cases} $	$\left\{\begin{array}{c}13 & 385\pm20.0\\5 & 427\pm22.7\end{array}\right.$	$\left\{\begin{array}{c} 12\text{\scriptsize \mathbb{Q}} \ 44.99\pm1.83\\ 13\text{\scriptsize \mathbb{Q}} \ 49.68\pm1.60\end{array}\right.$	$\left\{ \begin{array}{l} 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \left\{ \begin{array}{c} 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\{\begin{array}{c}14\ 2\ 460\pm14.2\\11\ 3\ 62\pm26.7\end{array}\right\}$	$\begin{cases} 3 & 129.9 \pm 3.10 \\ 4 & 39.8 \pm 2.4 \end{cases}$		Pectoral and sup. % body weight	$(10)18.83\pm0.22$	14.28, 14.78	(8)9.75±0.33	(17)7.76±0.06	$(12)11.63\pm0.44$	$(13)10.83\pm0.34$	(9)9.32±0.40	(5)12.36±0.32
	N UMIDIDAE *Numida melcagris	Aramidae *Aramus guarauna	RALLIDAE Aramides cajanea	*Laterallus albigularis	Gallinula chloropus	Porphyrula martinica	Fulica americana	HELIORNITHIDAE *Heliornis fulica			N UMIDIDAE *Numida meleagris	Aramidae *Aramus guarauna	RALLIDAE Aramides cajanea	*Laterallus albigularis	Gallinula chloropus	Porphyrula martinica	Fulica americana	HELIORNITHIDAE *Heliornis fulica

46

																			Т/			
												Buoyancy index	3.64	3.83	3.62	3.66	3.82	3.44	3.62	3.12	2.90	
	Aspect ratio	(14)1.99 <u>+</u> 0.03	3.00	(8)3.09±0.02	(1)3.17	(1)2.81	(1)2.51	(1)2.73	(1)2.95	(4)2.63±0.12		Glide cm. ² per gram	(15)3.33±0.08	4.42	(9)3.79±0.05	2.88	4.93	4.85	2.73	2.74	(4)2.59 <u>+</u> 0.13	
Wince	cm. ⁸ per gram	(15)2.98 <u></u> ±0.10	(1)3.34	(9)2.63 <u></u> ±0.14	(1)2.34	(1)4.16	(1)3.82	(1)2.20	(1)2.13	(5)1.95±0.18		Tail cm. ² per gram	(12)0.07±0.01	0.71	(9)0.46±0.02	0.31	0.48	0.48	0.18	0.27	$(5)0.22\pm0.02$	
Tamoa	extremities % body weight	49 12.1 <u>+</u> 0.54 26 9.80, 10.45	7.88	(9)4.64 <u>∓</u> 0.06	(1)6.57	(1)6.05	•	(1)8.91	•	(5)9.30±0.25		"Rest" % body weight	49 6.35±0.38 20 3.30, 4.33	5.26	(9)4.64±0.06	5.58	•	•	6.52	•	$(4)4.19\pm0.72$	
TTenan	extremities % body weight	5 25.24 <u>+0.51</u> 2ď 17.68 <mark>, 19.45</mark>	(1)29.30	(7)27.81 <u></u> ±0.50	(1)30.61	:	•	(1)30.43	•	(4)31.67±1.20		Supra- coracoideus %o body weight	49 2.83±0.09 20 1.82, 1.98	(1)2.54	(9)2.59±0.14	3.43	•	• •	2.81	:	$(4)4.55\pm0.34$	(continued)
	Heart % body weight	(23)0.77±0.02	(8)1.36 <u>+</u> 0.05	(9)1.29 <u>+</u> 0.04	(2)1.21, 1.26	$(3)1.08\pm0.09$	(3)1.04±0.06	(1)1.10	(5)1.45±0.09	(7)1.22±0.05	Upper extremities	Pectoralis % body weight	49 16.21 <u>+</u> 0.18 26 12.4, 13.3	(1)21.5	(7) 20.5±0.26	21.6	•	• •	21.1	:	(4)22.94±0.79	
	Body weight grams	$\left\{ \begin{array}{l} 162 & 112.0\pm2.7 \\ 203 & 78.9\pm1.9 \end{array} \right\}$	{ 42 86.5±0.48 { 80 80.96 <u>±</u> 3.78	{ 62 91.16 <u>+</u> 4.34 { 63 78.15 <u>+</u> 2.29	$\begin{cases} 42 & 221\pm19 \\ 53 & 200\pm13 \end{cases}$	{22 54.5, 66.0 {33 51.5±10	{ 2 2 38,45 { 1 3 28.6	{12 250 {3♂ 213±24	$\begin{cases} 52 \ 105\pm2 \\ 63 \ 98\pm2 \end{cases}$	{52 114.7±0.5 {33 99±6		Pectoral and sup. Co body weight	$\begin{cases} 92 & 18.35\pm0.36 \\ P < 0.05 \\ 63 & 16.29\pm0.64 \end{cases}$	(1)23.04	(7)23.19±0.33	(1)25.03	(1)22.20	(1)19.8	(1)23.91	(1)18.8	$(5)27.86\pm0.83$	
		Jacanıdae *Jacana spinosa	CHARADRIIDAE *Charadrius vociferus	Scolopacidae Totanus flavipes	Totanus melanoleucus	Tringa solitaria	Actitis macularia	Catoptrophorus semipalmatus	Linnodronus griseus	Capella gallinago			Jacanidae *Jacana spinosa	CHARADRIIDAE *Charadrius vociferus	Scolopacidae Totanus flaviĝes	Totanus melanoleucus	Tringa solitaria	Actitis macularia	Catoptrophorus semipalmatus	Linnodromus griseus	Capclla gallinago	

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

												Buoyancy index	3.36	3.83	3.65	3.31	4.00	4.79	4.55	4.78	4.63	4.32
Aspect ratio	(8)3.17±0.07	(7)2.94土0.07	(2)2.77, 3.00	(6)3.23±0.05	(4)2.94土0.08	(3)3.75±0.09	3.53, 3.88	(11)3.46<u>+</u>0.08	(3)3.5±0.09	(3)4.48 <u>+</u> 0.12		Glide <i>cm.² per</i> Bu gram i	$(9)3.71\pm0.10$	(7)4.76±0.18	4.50, 4.98	(6)3.75±0.12	$(4)3.38\pm0.28$	(3)3.59 <u>±</u> 0.11	2.27, 2.68	(9)4.18±0.14	(3)4.18 <u>十</u> 0.43	$(3)4.50\pm0.32$
Wings cm ^s per gram	(9)2.89±0.07	$(7)3.70\pm0.10$	(2)3.52, 3.93	(6)2.87±0.09	(4)2.87土0.28	(3)2.81±0.09	1.78, 2.11	(10)3.44±0.10	(3)3.33±0.29	(3)3.69±0.25		Tail cm. ² per gram	$(7)0.42\pm0.03$	(7)0.59土0.06	0.57, 0.70	$(6)0.48\pm0.02$	0.22 ± 0.01	(3)0.51±0.01	0.29, 0.30	(12)0.44±0.04	(3)0.49 <u>±</u> 0.08	$(3)0.44\pm0.04$
Lower extremities % body weight	(7)4.85±0.21	(6)4.50±0.14	(2)5.86, 6.10	(6)4.75±0.12	0 • •	(3)5.28±0.17	6.38, 8.20	$(4)4.74\pm0.37$	(3)4.48±0.32	(3)2.72±0.07		"Rest" % body weight	$(6)3.58\pm0.08$	$(6)2.85\pm0.10$	4.84, 5.81	$(6)3.75\pm0.05$	• • •	(3)6.45 <u>±</u> 0.41	6.51, 6.55	(5)6.15±0.18	(3)5.30土0.43	$(3)5.04\pm0.11$
Upper extremities % body weight	(7)26.13±0.28	(6)22.88 <u>+</u> 0.38	(2)28.66, 32.40	(6)26.74±0.38	• • •	(3)20.43 <u></u> ±0.53	(2)19.47, 22.46	(5)19.81±0.61	(3)17.54±0.70	(3)20.38±0.35		Supra- coracoideus % body weight	$(7)2.54\pm0.11$	$(6)2.37\pm0.11$	3.32, 3.65	(6)2.96±0.11	:	(3)1.02 ±0.05	1.11, 1.16	$(5)1.04\pm0.07$	(3)0.91土0.07	$(3)1.31\pm0.12$
Heart % body weight	(9)1.54±0.05	(8)1.26±0.08	(2)1.13, 1.25	(6)1.48±0.0 4	(15)1.22±0.04	(3)0.85±0.09	(3)0.84±0.06	(13)0.85±0.03	(3)0.68±0.10	(10)1.08±0.05	Upper extremities	Pectoralis % body weight	$(7)20.0\pm0.31$	(6)17.7±0.32	20.50, 22.95	$(6)20.0\pm0.28$:	$(3)13.3\pm0.19$	11.8, 14.8	(5)12.6 <u>十</u> 0.54	$(3)11.32\pm0.27$	$(3)14.0\pm0.25$
Body weight grams	$\begin{cases} 42 58.14\pm2.59 \\ 60^{\circ} 53.16\pm0.87 \end{cases}$	$\begin{cases} 4\ & 28.33 \pm 2.20 \\ 9\ & 0.26.06 \pm 0.84 \end{cases}$	$\left\{ \begin{array}{c} 1 & 2 & 48.9 \\ 1 & 3 & 41.0 \end{array} \right\}$	$\begin{cases} 32 57.36\pm2.32 \\ 73 52.36\pm2.74 \end{cases}$	{ 72 152±10 { 8♂ 173±5	4♂ 502 <u>+</u> 24.1	$\left\{\begin{array}{c}11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\left\{\begin{array}{cccc} 102299\pm20.5\\ 36d295\pm5.5\end{array}\right.$	2 J 230, 289	$\left\{\begin{array}{c} 92 & 99\pm2.96\\ 100^{\circ} & 115\pm6.17 \end{array}\right.$		Pectoral and sup.	$(9)22.13\pm0.39$	$(8)19.7\pm0.36$	(2)23.8, 26.59	$(6)22.98\pm0.35$	(4)17.1土0.15	(3)14.32±0.16	(2)12.96, 15.91	$(12)12.86\pm0.31$	$(3)12.24\pm0.29$	$(3)15.34\pm0.24$
	Crocethia alba	*Ercunetes mauri	Erolia melanotos	Erolia alpina	RECURVIROSTRIDAE *Himantopus mexicanus	Laridae Larus delawarensis	Larus argentatus	Larus atricilla	Larus pipixcan	Sterna hirundo			Crocethia alba	*Ereunetes mauri	Erolia melanotos	Erolia alpina	RECURVIROSTRIDAE *Himantopus mexicanus	Laridae Larus dclawarensis	Larus argentatus	Larus atricilla	Larus pipircan	Sterna hirundo

TABLE I.—continued

48

]	NO.	I	LO	сомо	TOR	MEC	HAN	ISM	5 O	F BIR	DS	—H	ART	MAI	Ň			49		
												Buoyancy index	4.37	3.95	4.44	5.00	3.52	3.49	3.16	3.66	3.64	
	Aspect ratio	3.85, 4.08	(18)4.69 <u>+</u> 0.14	(4)3.72±0.66	(10)4.42 <u>+</u> 0.14	(7)2.28土0.05	(12)1.98±0.06	(8)1.95±0.03	1.80, 1.82	(5)2.00±0.11		Glide cm. ² per gram	(2)4.6, 4.8	(1 8)2.51±0.06	(4)3.69±0.24	(10)3.97 <u></u> ±0.24	(7)2.72 <u>∓</u> 0.09	(12)2.54±0.04	(8)2.27±0.08	3.07, 4.42	(4)3.40±0.18	
Wings	cm. ² per gram	3.8, 4.0	(18)2.06 <u>+</u> 0.05	(4)2.97 <u></u> 40.16	(10)3.34±0.22	(7)1.85 <u></u> -0.04	(12)1.79±0.04	(8)1.56 <u>+</u> 0.05	(2)2.19, 2.97	(4)2.29 <u>十</u> 0.08		Tail cm.² per gram	0.47, 0.53	(18)0.21±0.01	(4)0.38±0.02	(10)0.33土0.02	(7)0.61±0.06	$(12)0.54\pm0.02$	$(8)0.48\pm0.03$	0.61, 1.16	(4)0.85 <u></u> ±0.07	
Lower	extremities % body weight	:	(9)2.68±0.10	(1)2.28	(10)2.73土0.09	(7)6.10±0.16	(5)5.54±0.36	(8)5.01±0.13	(1)6.95	(3)5.28±0.15		"Rest" % body weight	•	(9)5.57±0.13	4.85	(10)6.46 <u>±</u> 0.17	(6)7.18 <u>±</u> 0.26	$(3)8.87\pm0.47$	$(7)8.38\pm0.06$	•	(3)8.61±0.75	
Unner	extremities % body weight	:	(9)20.12±0.44	(1)18.74	(10)20.75±0.35	(e) 30.90 <u>+</u> 0.82	(3)34.06±2.33	(7)37.68 <u>+</u> 0.85	: :	(3)36.45±1.02		Supra- coracoideus % body weight	•	(9)1.19±0.02	1.09	$(10)1.04\pm0.04$	(7)3.22±0.17	$(3)3.89\pm0.41$	(7)4.57±0.08	(1)4.58	4.33 ± 0.11	(continued)
	Heart % body weight	(3)1.08±0.14	(23)0.98 <u>+</u> 0.03	(4)0.84 <u></u> ±0.03	(10)1.00±0.05	(7)1.29 <u></u> ±0.05	(12)1.17±0.03	(7)1.25土0.40	(2)1.24, 1.58	(5)1.20±0.15	Upper extremities	Pectoralis % body weight	•	(9)13.5±0.35	(1)12.8	$(10)13.35\pm0.24$	(7)20.3土0.54	(3)21.30±1.62	(8)25.0±0.57	24.15, 36.2	$(4)23.1\pm0.58$	
	Body weight grams	$\begin{cases} 4 & 117 \pm 3.3 \\ 3 & 3 & 118 \pm 3 \end{cases}$	{ 11 ♀ 463±18.6 { 17♂ 475±6.47	{ 1 2 270 { 2 3 330, 210	$\begin{cases} 52 & 235\pm14.9 \\ 83 & 351\pm18.5 \end{cases}$	{ 1 2 278 { 6♂ 307 <u>+</u> 10.63	$\left\{\begin{array}{cccc} 52 & 312 \pm 9.5 \\ 120 & 309 \pm 6.6 \end{array}\right\}$	$\left\{\begin{array}{c} 6^{\circ}_{0} 255\pm5.8\\ \mathbf{P}<0.05\\ 13^{\circ}_{0} 262\pm3.2\end{array}\right.$	2ď 128, 160	$\left\{ \begin{array}{cccc} 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Pectoral and sup. % body weight	(2)14.3, 13.6	(18)14.40 <u>±</u> 0.21	(4)12.6 <u>十</u> 0.76	$(10)14.29\pm0.27$	(7)23.50±0.65	$(12)25.16\pm 0.49$	(8)29.07±0.59	(1)28.73	(5)26.85±0.79	
		Sterna forsteri	*Thalasseus maximus	Thalasseus sandvicensis	RYNCHOPIDAE *Rynchops nigra	Columbidae Columba liria	Columba albilinea	Columba speciosa	Columba nigrirostris	Columba subrinacea			Sterna forsteri	*Thalasseus maximus	Thalasseus sandvicensis	RYNCHOPIDAE *Rynchops nigra	Columbidae Columba livia	Columba albilinea	Columba speciosa	Columba nigrirostris	Columba subvinacea	

			TABLE I.—continued	pənu			
	Body weight grams	, Heart % body weight	Upper extremities % body weight	Lower extremities % body weight	Wings cm. ^s per gram	Aspect ratio	
Columbigallina passerina	$\begin{cases} 32 & 41.1\pm5.2 \\ 96 & 44.0\pm1.3 \end{cases}$	$(8)1.11\pm0.05$ P<0.05	:	•	2.87±0.15	1.59 ± 0.28	
Columbigallina minuta	{ 3 ♀ 45.57±2.46 { 1♂ 33.8	(2)1.00, 1.00	(2)33.52, 34.42	5.42, 5.57	2.13, 2.99	1.62, 1.69	
*Columbigallina talpacoti rufipennis	{ 14 ♀ 47.12±0.85 { 26♂ 46.74±1.01	(16)0.96±0.0 4	(5)34.08 <u>∓</u> 0.45	(5)5.39±0.16	(15)2.86±0.05	(15)1.69±0.03	
Claravis pretiosa	$\begin{cases} 12 59.56 \\ 113 70.97 \pm 1.36 \end{cases}$	$(10)1.27\pm0.04$ $P < \overline{0.01}$	(5)38.97±1.01	(6)4.53±0.06	(10)2.69土0.05	$(10)1.85\pm0.02$	
Claravis mondetoura	3♂ 82.93 <u>+</u> 1.76	(3)1.04±0.0 8	•	6.62	(3)2.28±0.06	1.74 ± 0.08	
Leptotila verreauxi	$\begin{cases} 152 \ 154\pm 3.67 \\ 193 \ 152\pm 3.38 \end{cases}$	(23)0.93±0.02	(7)36.9 <u>+</u> 0.89	(7)5.31±0.22	(16)2.01±0.06	(16)1.63±0.03	
Leptotila cassini	$\{22,131.1,150\537.7\pm8.3$	(10)0.49±0.02	(4)42.35±0.27	(6)5.55±0.17	(6)2.24±0.09	(8)1.82±0.06	
Leptotila rufinucha	$\begin{cases} 32 & 155\pm 1.8 \\ 63 & 170\pm 0.25 \end{cases}$	(8)0.57±0.01	(5)43.9土0.69	(5)5.63±0.20	(6)1.77±0.05	(6)1.71±0.03	
Geotrygon costaricensis	{ 29 225, 283 / { 28 310, 330	0.31, 0.31	37.96	$(3)7.81\pm0.70$	$(4)1.42\pm0.16$	(4)1.59±0.06	
Geotrygon montana	$\begin{cases} 4 & 128 \pm 3 \\ 4 & 141 \pm 6.7 \end{cases}$	(7)1.08±0.06	$(7)34.37\pm 1.04$	(7)5.72±0.25	(8)2.00±0.09	(8)1.85±0.03	
Geotrygon chiriquensis	$\left\{\begin{array}{c} 82 & 306\pm7.05 \\ 110^{\circ} & 309\pm6.33 \end{array}\right.$	$(14)0.32\pm0.02$	(5)38.04±0.52	(6)8.84土0.37	$(10)1.30\pm0.03$	(10)1.58 <u>+</u> 0.02	
		Upper extremities					
	Pectoral and sup. % body weight	Pectoralis %o body weight	Supra- coracoideus % body weight	"Rest" % body weight	Tail cm. ² per gram	Glide cm. ^s per gram	Buoyancy index
Columbigallina passerina	(6)29.3±0.76	6 6 9	:	• •	(6)0.68±0.04	4.07±0.16	3.17
Columbigallina minuta	27.7, 28.16	22.7, 22.7	5.00, 5.46	5.82, 6.26	0.71, 0.80	3.23, 4.31	3.04
*Columbigallina talpacoti rufipennis	(14)28.09 <u>+</u> 0.44	(2)22.76 <u>∓</u> 0.54	(5)5.63±0.27	(5)5.70±0.69	(15)0.72±0.02	(15)3.99 <u></u> 0.06	3.22
Claravis pretiosa	$(10)30.92\pm0.42$	(5) 26.21 <u></u> ±0.44	(5)5.40 <u>±</u> 0.16	(5)7.36±0.43	$(10)0.74\pm0.05$	$(10)3.78\pm0.06$	3.31
Claravis mondetoura	$(3)30.2\pm0.92$	•	:	•	(3)0.63±0.09	3.20 ± 0.02	3.15
Leptotila verreauxi	$(18)30.33\pm0.37$ P< 0.01	(9)24.7±0.57	(8)5.99±0.25	(8)6.82±0.55	(15)0.66±0.03	(15)2.96±0.09	3.28
Leptotila cassini	(8)34.16 <u>+</u> 0.76	(4)27.99土1.25	(4)6.78 <u>+</u> 0.04	(4)7.58 <u>-</u> 0.26	(6)0.48 <u>+</u> 0.05	(5)2.97±0.08	3.47
Leptotila rufinucha	(6)36.65±0.19	(6)29.34±0.47	(6)7.31±0.16	(5)7.36 <u>+</u> 0.37	(5) 0.44 <u>+</u> 0.02	(6)2.38±0.05	3.11
Geotrygon costaricensis	(4)30.59 <u>+</u> 1.23	24.35	6.42	7.19	(4)0.23±0.04	(4)1.81±0.20	3.06
Geotrygon montana	(8)26.38±0.60	(8)22.36±0.65	(8)4.65±0.21	(7)7.58±0.22	(8) 0.40±0.04	(8)2.66±0.05	2.72

			1	0001		UK .			DHID	01 1	51605	11	AKI	MAN	N			51		
										Buoyancy index	3.71	3.20	3.04	3.23	3.49	3.51	2.84	CC 4	2 0 2	00
(6)1.87±0.05	(9)2.36 <u>+</u> 0.05	(2)2.22, 2.44	(7)2.22±0.05	(8)2.17±0.06	(14)2.00 <u>+</u> 0.03	$(16)2.44\pm0.04$	2.14, 2.37	$(10)1.34\pm0.03$		Glide cm. ^s per gram	(6)4.01±0.11	(9)3.25±0.13	(2)3.07, 3.75	(7)2.42±0.11	(8)2.76 <u>+</u> 0.16	(12)2.20土0.06	(16) 4.04 <u></u> ±0.12	7 00 7 65	(10)6 37+0 32	10,001 10,001
(¢)3.17±0.05	(9)2.54 <u>∓</u> 0.07	(2)2.34, 2.72	(7)1.91土0.14	(8)2.17±0.10	(11)1.66±0.07	(16)2.52 <u>+</u> 0.11	(2)4.54, 4.76	(10)3.26±0.15	,	Tail cm. ^e per gran	(6)0.46 <u>+</u> 0.04	(9)0.40±0.02	(2)0.52, 0.73	(7)0.31 <u>±0.02</u>	$(7)0.34\pm0.04$	$(13)0.31\pm0.04$	(15)0.77±0.04	187 263	(0) 61+0 20	07:07:07(0)
(4)5.52 <u>+</u> 0.18	(5)6.30 <u>十</u> 0.14	(1)5.44	(5)6.70 <u>十</u> 0.14	(4)7.24 <u>∓</u> 0.64	(6) 8.00±0.22	(16) 5.54 <u>+</u> 0.16	6.33, 6.66	$(7)13.93\pm0.64$		"Rest" % body weight	(3)5.69±0.11	(4)5.43±0.21	(1)5.11	(4)6.57 <u></u> 40.53	(1)9.0, 6.39	(4)7.56±0.31	(16)4.98 <u></u> 40.16	82 9 62 9	$(4) 4.52 \pm 0.13$	10.0 < 1
(3)27.36±0.16	(4)28.51±0.13	(1)28.92	(4)28.66±0.91	(2)31.28, 29.75	(5)26.94 ±1.06	(16)26.39 <u></u> ±1.08	(2)19.95, 20.92	$(4)13.59\pm0.36 \\ P < \overline{0.01}$		Supra- coracoideus % body weight	(3)2.97土0.05	(4)3.12±0.09	3.76, 3.78	(4)2.97±0.19	(1)2.98, 3.36	(4)2.38 <u>+</u> 0.14	(6)3.87±0.14	0.82 1.16	(4)0 63-0 05	(continued)
(21)1.41 <u></u> ±0.06	(12)1.33±0.05	(2)1.58, 1.81	(7)1.51±0.04	(7)1.19土0.06	(15)1.03±0.03	$\begin{array}{c} 9 \begin{array}{c} 2 \\ 7 \end{array} 1.36 \pm 0.04 \\ 7 \begin{array}{c} 3 \\ 1.45 \pm 0.07 \end{array}$	(6)1.15 <u>+</u> 0.04	$(9)0.57\pm0.02$ P<0.01	Upper extremities	Pectoralis % body weight	(3)18.7±0.25	(4)19.96 <u>+</u> 0.35	(2)20.05,20.07	(4)19.12±0.88	(1)19.3, 20.0	(4)17.27 <u></u> ±0.93	(16)20.0 <u></u> 40.70	12 41 13 78	$(4)7.56\pm0.26$	10.0 - 1
${172 81.8\pm1.2 \\ 173 82.8\pm3.0 }$	$ \left\{ \begin{array}{l} 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	{ 1 \$ 53.2 { 1 \$ 45.2	$\{4\% 146.1\pm6.5$ $\{4\% 145.4\pm0.6$	$\begin{cases} 7 & 208.9 \pm 8.4 \\ 4 & 217 \pm 5.0 \end{cases}$	$\begin{cases} 82 & 408\pm10.3 \\ 80^{\circ} & 424\pm9.1 \end{cases}$	$\left\{ \begin{array}{c} 9\ \ 2 \ \ 3 \ \ 1 \ \ 0 \ \ \ 0 \ \ 0 \ \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ \ 0 \ \ \ \ 0 \ \ \ \ \ 0 \ \ \ \ \ 0 \$	{ 5 2 57.60±0.35 { 2 3 62, 63	$\begin{cases} 52 & 116\pm7.1 \\ 80' & 106.8\pm2.7 \end{cases}$		Pectoral and sup. % body weight	(14)21.36 <u>+</u> 0.38	(9)21.82 <u>+</u> 0.50	(2)23.81, 23.85	(7)22.10±0.57	(6)20.82±0.95	$(14)18.73\pm0.36$	$(16)23.91\pm0.87$	13 57 14 60	$(9)8.81\pm0.31$	10.0 / 1
PSITTACIDAE *Pyrrhura hoffmanni	Brotogeris jugularis	Bolborhynchus lineola	Pionopsitta haematotis	Pionus senilis	Amazona autumnalis	Melopsitticus undulatus	Cuculidae Coccyzus americanus	*Piaya cayana (sea level)			Psittacidae *Pyrthura hoffmanni	Brotogeris jugularis	Bolborhynchus lineola	Pionopsitta haematotis	Pionus senilis	Amazona autumnalis	Melopsitticus undulatus	CUCULIDAE Coccyzus amoricanus	*Piaya cayana (sea level)	
	$ \begin{cases} 179 & 81.8\pm1.2 \\ 176^{\circ} & 82.8\pm3.0 \end{cases} $ (21)1.41 ±0.06 (3)27.36 ±0.16 (4)5.52 ±0.18 (6)3.17 ±0.05	$ \begin{cases} 179 & 81.8\pm1.2 \\ 176' & 82.8\pm3.0 \\ 99 & 65.50\pm0.13 \\ 166' & 00\pm1.17 \\ 146' & 61.00\pm1.17 \\ 1201.33\pm0.05 \\ 1201.33\pm0.05 \\ 140' & 61.00\pm1.17 \\ 1201.33\pm0.05 \\ 1201.33\pm0.05 \\ 120.35\pm0.13 \\ 120.35\pm0.14 \\ 1201.33\pm0.07 \\ 1201.33\pm0.07 \\ 1201.33\pm0.05 \\ 1201.33\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055 \\ 1201.35\pm0.055$	$ \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{cases} 172 & 81.8\pm1.2 \\ 176 & 82.8\pm3.0 \\ 176^{\circ} & 82.8\pm3.0 \\ 146^{\circ} & 100\pm117 \\ 146^{\circ} & 61.00\pm1117 \\ 16^{\circ} & 45.50\pm0.13 \\ 146^{\circ} & 110^{\circ} & 120\\ 16^{\circ} & 45.2 \\ 10^{\circ} & 15^{\circ} & 181 \\ 10^{\circ} & 110^{\circ} & 100^{\circ} \\ 10^{\circ} & 10^{\circ} & 100^{\circ} & 100^{\circ} \\ 10^{\circ} & 10^{\circ} & 100^{\circ} \\ 10^{\circ} & 10^{\circ} & 100^{\circ} & 100^{\circ} & 100^{\circ} & 100^{\circ} & 100^{\circ} \\ 10^{\circ} & 10^{\circ} & 100^{\circ} & 100^{\circ$	$ \begin{cases} 172 & 81.8\pm1.2 \\ 176 & 82.8\pm3.0 \\ 176 & 82.8\pm3.0 \\ 146 & 61.00\pm1.17 \\ 146 & 61.00\pm1.17 \\ 146 & 61.00\pm1.17 \\ 164 & 61.2 \\ 162 & 45.2 \\ 162 & 45.2 \\ 162 & 45.2 \\ 162 & 45.2 \\ 162 & 45.2 \\ 162 & 45.2 \\ 100 & 45.2 \\ 100 & 45.2 \\ 101 & 45.2 \\ 101 & 45.2 \\ 101 & 191 & 0.04 \\ 1151\pm0.04 \\ 110 & 4128.66\pm0.91 \\ 110 & 4128.66\pm0.91 \\ 110 & 4128.66\pm0.91 \\ 110 & 4128.66\pm0.91 \\ 110 & 417.24\pm0.64 \\ 1101\pm0.14 \\$	$ \begin{cases} 177\ 818\ 871.2\ 65550\ -015\ 6518\ -106\ 63)\ 27.36\ -016\ 64)\ 552\ -018\ 66)\ 1.87\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ 66)\ 1.81\ -0.05\ -0$	$ \begin{cases} 176 & 81.8\pm1.3 \\ 176 & 82.8\pm3.0 \\ 176 & 82.8\pm3.0 \\ 176 & 82.8\pm3.0 \\ 186.59\pm0.13 \\ 146^{-1.002+1117} & (21)1.41\pm0.06 \\ 137.36\pm0.15 \\ 147 & 576-0.5 \\ 147 & 576-0.5 \\ 147 & 576-0.5 \\ 147 & 512-5.0 \\ 118 & 532 \\ 467 & 155.4\pm0.6 \\ 118 & 452 \\ 467 & 155.4\pm0.6 \\ 118 & 452 \\ 467 & 155.4\pm0.06 \\ 118 & 452 \\ 478 & 2085+84 \\ 77119\pm0.06 \\ 88 & 424\pm0.1 \\ 167119\pm0.06 \\ 88 & 424\pm0.1 \\ 167110\pm0.00 \\ 167123\pm0.00 \\ 76^{-1.45\pm0.00} & (15)5.54\pm0.16 \\ 10724\pm0.64 & (8)2.17\pm0.10 \\ 107222\pm0.05 \\ 107222\pm0.05 \\ 107222\pm0.05 \\ 1051103\pm0.00 \\ 76^{-1.45\pm0.00} & (15)26.94\pm1.06 \\ 16926.39\pm1.06 \\ 1692.54\pm0.16 \\ 1692.54\pm0.16 \\ 1692.54\pm0.16 \\ 1692.52\pm0.10 \\ 1692.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.54\pm0.16 \\ 1052.52\pm0.11 \\ 1052.44\pm0.04 \\ 1$	$ \begin{cases} 178 & 81.8\pm3.0 \\ 1776 & 82.8\pm3.0 \\ 1776 & 82.8\pm3.0 \\ 1476 & 61.00\pm117 \\ 1476 & 1252 \\ 15670 & (1)151\pm0.04 \\ 1476 & 1451\pm6.06 \\ 1121133\pm0.05 \\ 17119\pm0.04 \\ 17119\pm0.06 \\ 17119\pm0.06 \\ 17119\pm0.06 \\ 17119\pm0.06 \\ 16763\pm1.00 \\ 16753\pm0.01 $	$ \begin{cases} 178 & 31.8 \pm 1.3 \\ 170 & 82.8 \pm 3.0 \\ 170 & 82.8 \pm 3.0 \\ 146 & 61.00\pm 1.11 \\ 161 & 412 \\ 161 & 452 \\ 161 & 452 \\ 161 & 452 \\ 161 & 452 \\ 161 & 452 \\ 161 & 452 \\ 161 & 461 & 461 \\ 161 & 4128 & 66\pm 0.91 \\ 171 & 119\pm 0.06 \\ 172 & 208.9 \pm 8.4 \\ (7)1.19\pm 0.06 \\ 172 & 208.9 \pm 8.4 \\ (7)1.19\pm 0.06 \\ 172 & 208.9 \pm 8.4 \\ (7)1.19\pm 0.06 \\ 172 & 208.9 \pm 8.4 \\ (7)1.19\pm 0.06 \\ 172 & 208.9 \pm 8.4 \\ (7)1.19\pm 0.06 \\ 10115\pm 0.04 \\ 101104 & (2)25.94\pm 1.06 \\ 10115\pm 0.04 \\ 101104 & (2)25.94\pm 1.06 \\ 10115\pm 0.01 \\ 101134\pm 0.01 \\ 101133\pm 0.01 \\ 101133\pm 0.04 \\ 101134\pm 0.01 \\ 101134\pm 0.03 \\ 1011335\pm 0.$	$ \begin{cases} 178 \ 81.8\pm1.2 \\ 176 \ 82.3\pm1.0 \\ 176 \ 82.3\pm1.0 \\ 176 \ 82.3\pm1.0 \\ 176 \ 82.3\pm1.0 \\ 171 \ 172 \ 82.3\pm1.0 \\ 184 \ 172 \ 171 \ 1$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

Piona canana	Body weight grams [90 108 4+1 8	Heart % body weight	Upper extremities % body weight	Lower extremities % body weight	Wings cm. ^e per gram	Aspect ratio	
<i>1ya cayana</i> Chiriquí)	{ 11♂ 107±1.6	(14)0.64±0.02	(4)17.77±0.67	(4)15.5±0.79	(6)3.43±0.10	(6)1.36±0.03	
Piaya minuta	2° 36.62, 37.2	(2)0.72, 0.64	(1)18.98	10.3	(1)4.31	1.35	
Crotopliaga major	$\begin{cases} 9 \ 2 \ 140 \pm 3.25 \\ P < 0.01 \\ 16 \ 3.157 \pm 3.16 \end{cases}$	(16)0.67±0.02	(7)19.59 <u>+</u> 0.89	(7)11.27 <u></u> 40.34	(16)3.65±0.08	(16)1.76±0.0 2	
<i>Crotophaga ani</i> (sea level)	$ \left\{ \begin{matrix} 15 \varphi & 87.7 \pm 0.83 \\ P < 0.01 \\ 23 \sigma & 104.37 \pm 1.99 \end{matrix} \right.$	$(31)0.59\pm0.02$ P < 0.01	$(5)16.69\pm0.68$ P< 0.01	(8)13.05±0.44	(11)3.38±0.14	(10)1.75±0.01	
<i>Crotophaga ani</i> (Chiriquí)	$\begin{cases} 6 & 104.1 \pm 7.8 \\ 9 & 117.1 \pm 7.4 \end{cases}$	(15)0.80 <u>+</u> 0.02	(9)17.91±0.35	(9)12.7±0.43	$(14)2.89\pm0.07$	(15)1.79土0.04	
Crotophaga sulcirostris	$ \begin{cases} 5 \ \varphi \ 65.1 \pm 1.55 \\ P < 0.05 \\ 9 \ \sigma \ 72.8 \pm 2.14 \end{cases} $	(9)0.75±0.03	(3)20.39 <u>+</u> 0.35	(4)13.00 <u>+</u> 0.57	(9)3.75±1.11	(9)1.67±0.03	
Tapera naevia	$\begin{cases} 42 & 47.49\pm 5.0 \\ 63 & 55.1\pm 1.00 \end{cases}$	(7)0.78±0.04	(4)20.65±0.12	(4)10.7±0.89	(5)3.78±0.08	(2)1.73 <u>∓</u> 0.04	
Dromococcyx phasianellus	ර් 85.63	0.94	::	6.7	4.84	1.67	
Tytonidae *Tyto alba	$ \left\{ \begin{array}{l} 4 \ \varphi \ 516\pm10.3 \\ P < 0.01 \\ 4 \ \sigma \ 439\pm15.9 \end{array} \right. $	(5)0.72±0.04	(3)19.23±0.72	(4)13.8±1.35	(5)3.17土0.06	(5)2.68±0.07	
		Upper extremities					
	Pectoral and sup. % body weight	Pectoralis % body weight	Supra- coracoideus %o body weight	"Rest" % body weight	Tail cm. ^e per gram	Glide cm. ² pcr gram	Buoy ancy index
<i>Piaya cayana</i> Chiriquí)	$(5)10.31\pm0.20$	(4)9.67±0.15	(4)0.78±0.05	(4)6.57±0.10	(6)2.95±0.26	(6) 6.72±0.33	3.98
Piaya minuta	(1)11.99	11.0	0.99	6.99	2.54	7.81	3.77
Crotophaga major	$(16)11.25\pm0.33$	$(7)11.29\pm0.35$	$(7) 0.80 \pm 0.06$	$(7)7.50\pm0.52$	$(16)2.08\pm0.06$	$(16)5.99\pm0.13$	4.40
<i>Crotophaga ani</i> (sea level)	$(11)10.44\pm0.31$ P< 0.01	(6)9.99±0.17	(6) 0.86 <u>+</u> 0.04	(6)6.15±0.62	$(11)1.68\pm0.13$	$(11)5.40\pm0.23$	3.90
<i>Crotophaga ani</i> (Chiriquí)	(14)11.72±0.18	(9)10.78±0.19	(9)0.75 ±0.06	(9) 6.36 <u>+</u> 0.19	(13)1.62±0.08	(13)4.94±0.20	3.72
Crotophaga sulcirostris	(9)12.8±0.19	(3)12.4 <u></u>	(3)0.92±0.04	(3)7.13±0.11	(9)1.56±0.15	(9)5.67 ±0.22	3.92
Tapera naevia	(5)12.63±0.58	$(4)12.03\pm0.43$	$(4)1.02\pm0.07$	(4)7.60±0.42	(5)1.91±0.11	(5)6.17±0.25	3.73
Dromococcyx phasianellus	22.3	• • •	• • •	•	1.88	6.94	4.20
Tyto alba	(5)10.63±0.92	(4)9.79土1.11	(4)0.62土0.05	(3)9.16±1.02	(5)0.33±0.02	(5)3.71±0.11	4.96

TABLE I.—continued

52

	NO.	I	I	2000	MO.	FOR	M	ECI	HANI	ISMS	OF	BIRI	os—	HAF	RTM.	AN			53	
											Buoyancy index	4.36	4.78	4.24	5.08	5.11	4.72	4.58	5.19	
Aspect ratio	(4)1.88 <u>+</u> 0.08	(4)2.08±0.03	$(3)1.88\pm0.19$	1.93, 1.96	1.94	1.83 ± 0.10	2.25	:	(13)2.47 <u></u> ±0.04		Glide cm. ² per grain	$(4)4.74\pm0.16$	2.92 ± 0.30	(3)4.20±0.27	3.48, 4.08	4.93	3.07 ± 0.26	3.22	(14)6.25±0.17	
Wings cm. ² per gram	(4)3.55 <u>+</u> 0.49	(4)2.52±0.26	$(3)3.51\pm0.34$	2.75, 3.44	4.05	(4)2.49 <u>+</u> 0.2	2.75	•	(1 4)4.66 <u>+</u> 0.19		Tail cm. ^e per gram	$(4)0.36\pm0.10$	(3)0.27±0.03	(3)0.59±0.04	0.45, 0.49	0.54	0.28 ± 0.05	0.32	$(14)1.37\pm0.04$	
Lower extremities % body weight	$(3)10.64\pm1.35$	(2)12.9, 14.3	•	10.5, 11.42	9.86	•	16.2, 17.59	•	(8)2.46 <u>+</u> 0.04		"Rest" % body weight	$(3)10.07\pm 1.08$	(1)10.3	:	11.87	9.37	•	9.05	(6)11.11±0.35	
Upper extremities % body weight	$(3)24.34\pm0.74$	(1)22.0	•	(1)27.19	21.82	•	(1)20.55	•	(6)28.06±0.77		Supra- coracoideus % body weight	$(3)0.85\pm0.14$	(1)0.42		0.57	0.65	• •	1.18	(6)0.94±0.04	(continued)
Heart % body weight	(5)0.52±0.02	(4)0.31±0.03	$(10)0.89\pm0.01$	(2)0.50, 0.40	0.46	$(7)0.58\pm0.04$	0.50, 0.44	0.39,0.42	(19)0.60 <u>+</u> 0.02	Upper extremities	Pectoralis % body weight	(3)13.44 <u>+</u> 0.66	(1)11.3	•	14.75	11.8	•	10.32	(6)15.91±0.53	
Body weight grams	3♀143 <u></u> 18.8	$\left\{ \begin{array}{c} 2 & 900, 970 \\ 2 & 710, 800 \end{array} \right\}$	$\begin{array}{c} 52 & 149\pm7.4 \\ 63 & 146.7\pm9.7 \end{array}$	{ 12 500 { 13 417	1♂ 230	{ 2 2 850, 875 { 63 718±35.1	f49,425±22.7	(20' 305, 335	$\begin{cases} 13 & 185 \pm 4.6 \\ 80 & 184 \pm 10 \end{cases}$		Pectoral and sup. % body weight	$(3)14.27\pm0.53$	(3)13.01±0.96	$(3)12.37\pm0.38$	17.3, 15.32	12.45	(4)12.8 <u>+</u> 0.64	12.8, 11.50	$(14)17.07\pm0.26$	
	STRIGIDAE Otus choliba	*Pulsatrix perspicillata	Spcotyto cunicularia	Ciccaba nigrolineata	Ciccaba virgata centralis	Strix varia alleni	Rhinottvnx	clamator	Nycribiidae *Nyctibius griseus			STRIGIDAE Otus choliba	*Pulsatrix perspicillata	S peotyto cunicularia	Ciccaba nigrolineata	Ciccaba virgata centralis	Strix varia alleni	Rhinoptynx clamator	NYCTIBIIDAE *Nyctibius griseus	

	1	and the second	XXXX	She want to the set	a a contra a state a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	cher o	
	2.83	$(11)6.64 \pm 0.20$	(11)2.56+0.13	1 Q 3,51 4 Å 3.85+0.46	19 7.65 5.2 12.11+0.35	1 Q 16.01 5 x 19 82+0 71	2 2 23.66, 26.80 0 2 23 2840 67	Campylopterus
	2.72	(7)5.88±0.21	(7)1.74±0.17	1오 3.01 3♂ 3.67±0.08	22 8.00, 9.03 40 12.22±0.51	$\begin{array}{c} 2 \mbox{\scriptsize φ} \ 16.08, 16.22 \\ 4 \mbox{\scriptsize σ} \ 20.02 \underline{+} 0.97 \end{array}$	$\begin{cases} 2 & 24.08, 25.25 \\ 7 & 33.12 \pm 0.88 \end{cases}$	Phaeochroa cuvierii
	2.26	(8)6.84±0.09	(8)2.46 <u>+</u> 0.17	1 Q 1.92 4 0 3.27	2 Q 9.31 , $9.544 O 10.40 \pm 1.24$	$\begin{array}{c} 2\ \ 2\ \ 15.60, \ 15.88\\ 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 3 & 25.33\pm 0.20 \\ 7 & 30.00\pm 1.57 \end{array}$	Phaethornis longuemareus
.0	1.92	(21)7.14土0.19	$(21)2.57\pm0.09$	(3) 2.36 \pm 0.33 (5) 2.64 \pm 0.12	$3 \ 8.27 \pm 0.35$ $10 \ 9.18 \pm 0.23$	$3 + 16.88 \pm 0.46$ $10 + 19.9 \pm 0.07$	$\left\{\begin{array}{c} 8 \mbox{27.63 ± 0.09} \\ 10 \ \mbox{29.11 ± 0.81} \end{array}\right.$	*Phaethornis guy
	1.31	(6)7.14土0.34	(4)2.53±0.20	$(3)2.88\pm0.20$	(5)10.02 <u>+</u> 0.36	(5)19.4 <u>+</u> 1.09	(6)29.88±1.17	Trochilidae Glaucis hirsuta
	4.96	6.24	1.25	• •	•	•	19.90	Caprimulgus carolinensis
	4.52	(20)7.54±0.15	(20)1.79±0.05	(9)8.28 <u>+</u> 0.05	$(10)1.80\pm0.07$	$(10)15.47\pm0.29$	(19)17.23±0.25	*Nyctidromus albicollis
	4.36	6.5, 5.6	0.75, 0.85	• •	• •	• • •	(2)19.4, 21.2	Chordeiles minor chapmani
	4.83	(3) 7.60±0.66	(3)1.27±0.25	(4)7.91 <u></u> ±0.30	(4)1.92±0.04	(4)19.58±0.78	(4)21.50 <u></u> +0.76	CAPRIMULGIDAE Chordeiles acutipennis
	Buoyancy index	Glide cm. ^s per gram	Tail cm. ² per gram	"Rest" % body weight	Supra- coracoideus % body weight	Pectoralis % body weight	Pectoral and sup. % body weight	
						Upper extremities		
		(10)2.64±0.08	(11)3.68±0.10	(6)1.64±0.11	1	521.94 ± 0.04 $9d$ 2.08 ± 0.06	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	Campylopterus hemileucurus
		(7)2.95±0.10	(7)3.51 <u></u> 0.08	(6) 2.33 <u></u> ±0.14	1우 27.09 3♂ 35.99 <u>+</u> 1.84	$\begin{array}{c} 4\ \ \varphi \ \ 1.65\pm 0.11 \\ 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\left\{\begin{array}{c} 928.35\pm0.25\\ 160^{\circ}9.19\pm0.15\end{array}\right.$	Phacochroa cuvieris
		(8)3.11±0.11	(8)3.75±0.16	(5)1.17±0.16	$1 \stackrel{\circ}{_{\circ}} 27.11 \\ 4 \stackrel{\circ}{_{\circ}} 32.05 \pm 2.70$	322.29 ± 0.09 $7d^2.53\pm0.10$	$\begin{cases} 4 & 2.71 \pm 0.03 \\ 7 & 2.52 \pm 0.04 \end{cases}$	Phaethornis longuemarens
		(21)3.04±0.05	(20)4.15 <u></u> ±0.09	(9)1.13±0.09	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\{\begin{array}{cccc} 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	*Phaethornis guy
		(5)2.36 <u></u> -0.17	(6)4.43 <u>+</u> 0.51	(5)1.23±0.08	(3)32.16土1.73	(5)2.54±0.15	$ \begin{cases} 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Trochilidae Glaucis hirsuta
		2.56	5.13	• •	•	(1)0.95	(1)110	Caprimulgus carolinensis
		(2)2.20土0.04	(19)5.42±0.16	(11)5.71±0.19	(9)25.60±0.82	(27)0.78±0.02	$\begin{array}{l} 15 \varphi \ 52.53 \pm 0.96 \\ 22 \mathcal{S} \ 53.58 \pm 1.11 \end{array}$	*Nyctidromus albicollis
		3.26, 3.40	4.96, 5.6	•	0 0 0	(2)1.04, 1.38	$\begin{cases} 5 & 64 \pm 4.8 \\ 8 & 0 & 60 \pm 1.53 \end{cases}$	Chordeiles minor chapmani
51		(3)3.09 <u>+</u> 0.04	(3)5.7±0.52	(4) 2.73±0.31	(4)29.41±0.71	(4)1.12±0.06	$\{\begin{smallmatrix}1&57.2\\4&52.40\pm0.20\end{smallmatrix}$	CAPRINULGIDAE Chordciles acutipeunis
		Aspect ratio	Wings cm. ² pcr gram	Lower extremities % body weight	Upper extremities % body weight	Heart % body weight	Body weight grams	
				ned	TABLE Icontinued	N		

			:	NO. 1	E	LO	CON	IOTOP	RМ	ECH.	ANISI	AS .	OF BL	RDS-	— H	ARTN	MAN	I		5	5			
													Buoyancy index	2.59	1.37	2.65	2.66	2.37	2.58	2.32	2.50	2.63	2.58	
	Aspect ratio	(4)3.26 <u>+</u> 0.13	(2)2.81, 2.96	(7)3.08 <u>+</u> 0.09	(4)3.06±0.19	(5)3.03±0.18	3.01, 3.56	(9)3.07±0.13	(3) 2.91 <u>+</u> 0.14	(8)3.13±0.13	(17)2.94 <u>±</u> 0.05		Glide cm. ² per gram	(4)6.57土0.54	(2)8.15, 8.19	(7)6. 68 <u>+</u> 0.30	(4)8.71±0.21	(5)6.93±0.39	(2)6.94, 6.34	(9)6. 84 <u>+</u> 0.21	(3)6.05±0.26	(8)6.97±0.22	$(17)6.58\pm0.14$	
Wings	cm." per gram	(4)3.47 <u>+</u> 0.18	(2)4.88, 4.90	(7)3.61±0.13	$(4)5.16\pm0.11$	(5)3.99±0.26	(2)4.12,4.25	(9)3.71±0.13	(3)3.87±0.18	(8)4.15±0.13	(17)3.97±0.11		Tail cm. ^e per gram	(4)2.44 <u>+</u> 0.44	(2)2.58, 2.73	(7)2.29土0.21	(4)2.44 <u>+</u> 0.19	$(5)1.91\pm0.23$	(2)2.46, 1.81	(9)2.21 <u>+</u> 0.23	(3)1.57±0.06	(8)2.03±0.13	(16)1.98±0.08	
Lower	extremities % body weight	(4)1.02±0.02	(1)1.38	(4)1.25±0.06	$(3)1.33\pm0.17$	(4)1.43 <u>+</u> 0.25	(1)1.19	(8)1.42±0.12	2.13	$(7)1.40\pm0.12$	(7)1.32±0.10		"Rest" % body weight	2 2 1.86, 2.44 20 2.81, 2.94	• • •	1 2 3.41 30 3.46±0.43	24 3.27, 4.64 16 2.66	22 2.02, 2.68 10 3.16	(1)2.18	14 2.16, 1.79 5& 2.63±0.05	•	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$:	
Upper	extremities % body weight	29 25.33, 27.33 20 31.81, 35.04	•	O+*O (2 2 24.89, 30.22 10 27.86	2	(1)24.76	29 25.02, 32.86 56 29.52±0.71		$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	49 28.34 <u>+</u> 0.45		Supra- coracoideus 7/0 body weight	2 2 7 .12, 8.54 20 9.9, 10.9	•	22 7.40, 7.63 36 8.56±0.15	$\begin{array}{c} 32 \\ 10 \\ 8.6 \\ \end{array}$	32 8.88 <u>+</u> 0.61 20 8.36, 9.97	(2)6.62, 6.48	$32 10.30\pm0.51$ $53 10.30\pm0.51$	•	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	528.33 ± 0.22 $1d^{2}9.39$	(continued)
	Meart % body weight	$\begin{array}{c} 3\ Q \\ 2\ d \end{array} \begin{array}{c} 1.98\pm0.09 \\ 2\ d \end{array} \begin{array}{c} 2.33, 2.54 \end{array}$	1 9 1.88 20 2.40, 2.46	$\begin{array}{c} 4\ \ 2.75\pm 0.01\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	322.10 ± 0.04 $1d^22.39$	$\begin{array}{c} 12\ \ 9 \\ 3\ \ 0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(2) 1.95, 2.33	$\begin{array}{c} 5 & 1.88 \pm 0.10 \\ 11 & 2.29 \pm 0.06 \\ P < \overline{0.01} \end{array}$	3♀ 1.98 <u>+</u> 0.20	792.03 ± 0.0853 2.32 ±0.13	1322.21 ± 0.05 $9d^{2}2.64\pm0.10$ P<0.01	Upper extremities	Pectoralis Go body weight	2 $\frac{2}{6}$ 16.25, 16.30 2 $\frac{19}{1}$, 21.2	:		3215.4 ± 0.61 1016.6	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2)15.2, 16.1	32 16.19 \pm 0.42 4 σ 16.24 \pm 1.00	•	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Body weight grams	$\begin{cases} 4 & 7.08 \pm 0.19 \\ 2 & 7.82, 7.83 \end{cases}$	{ 1♀ 4.80 { 3♂ 5.56±0.37	$\begin{array}{c} 52 & 6.99\pm0.22 \\ 73 & 6.84\pm0.14 \end{array}$	$\begin{cases} 3 & 2.55 \pm 0.11 \\ 1 & 2.63 \end{cases}$	$\left\{\begin{array}{c}13\text{2}\ 3.15\pm0.07\\3\text{3}\ 3.08\pm0.06\end{array}\right.$	2 2 3.86, 4.47	$\begin{cases} 823.07\pm0.05\\ P<0.01\\ 26\sigma3.41\pm0.04 \end{cases}$	3♀ 4.20 <u>±</u> 0.31	$\begin{cases} 82 3.90\pm0.10 \\ P<0.01 \\ 12d 4.70\pm0.10 \end{cases}$	$ \begin{cases} 18 \mbox{4.39 ± 0.05}\\ P < 0.01 \\ 20 \ \mbox{3.90 ± 0.07} \end{cases} $		Pectoral and sup. % body weight	{ 20 23.47, 24.79 { 20 29.0, 32.10	(2)26.86, 28.74	$\begin{cases} 324.60\pm1.99 \\ P < 0.05 \\ 430.51\pm0.70 \end{cases}$	$\begin{cases} 3 & 23.33 \pm 1.35 \\ 1 & 25.20 \end{cases}$	$\left\{ \begin{array}{l} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2)21.82, 22.58	$\{49, 26.18\pm2.09\}$ $\{53, 26.89\pm0.74\}$	$(3)24.08\pm 1.43$	$\begin{cases} 442 \ 24.50\pm0.43\\ 30^3 \ 30.43\pm0.45\\ P<0.01 \end{cases}$	$\begin{cases} 82 26.20 \pm 0.41 \\ 40^{\circ} 32.54 \pm 1.48 \\ P < 0.01 \end{cases}$	
		Florisuga mellivora	Colibri thalassinus	Anthracothorax nigricollis	Klais guimeti	Chlorostilbon canivetii	Thalurania furcata	Damophila julie panamensis	Lepidopyga coeruleogularis	Amozilia amobilis	Amazilia edward			Florisuga mellivora	Colibri thalassinus	Anthracothorax nigricollis	Klais guimeti	Chlorostilbon canivetii	Thaluronia furcata	Damophila julie panamensis	Lepidopyga coeruleogul <mark>aris</mark>	Amazilia amabilis	Amazilia edward	

													Buoyancy index	2.61	2.72	2.60	2.69	2.62	3.09	2.15	2.49	2.06	1.87
	Aspect ratio	(18)3.10 ±0.08	(7) 3.00±0.07	(14)3.08±0.09	(3 2)3.04 <u>+</u> 0.05	(5)3.39±0.15	(6)3.07±0.10	3.00	(3)3.08±0.19	2.67	(16)3.08 <u>+</u> 0.08		Glide cm. ^e per gram	(18)6.70+0.16	$(7)7.58\pm0.38$	(14)7.39 <u>+</u> 0.21	(33)6.84 ±0.09	(5)6.14 ±0.25	(7)8.53±0.42	5.68	(3)5.33±0.11	4.79	(16)7.08±0.23
	Wings cm. ² per gram	(18)4.01±0.09	$(7)4.62\pm0.10$	(14)4.55±0.12	(33)4.21 <u>+</u> 0.05	$(5)3.44\pm0.12$	(7)5.07±0.30	3.11	$(3)3.23\pm0.17$	(1)2.51	, (16)2.27±0.14		Tail cm. ^e per gram	$(18)2.11\pm0.10$	(7)2.46 <u>∓</u> 0.30	$(13)2.33\pm0.13$	(33)2.02 <u>∓</u> 0.05	(5)2.23±0.23	(7)2.95±0.24	1.66	$(3)1.71\pm0.10$	1.58	(16)2.27±0.14
inned	Lower extremities % body weight	(8)1.66 <u>∓</u> 0.10	$(4)1.51\pm0.10$	(4)1.49土0.15	(7)2.48 <u>∓</u> 0.23	(1)2.37	(2)1.03, 1.05	2.06	(2)1.46, 1.52	•	(7)1.18±0.09		"Rest" % body weight	322.93 ± 0.64 $4\sigma2.80\pm0.35$	(3)2.59±0.30	4 ♀ 2.22 <u>+</u> 0.21	(5)2.62±0.23	:	(2)2.79, 3.50	1.75	1 \$ 2.36	• •	19 1.66 4ở 1.84 <u>+</u> 0.42
TABLE I.—continued	Upper extremities % body weight	39 28.98±1.59 40 38.73±2.67	52 26.43 <u>+</u> 0.69	3♀ 26.56 <u>+</u> 1.02	$\begin{array}{c} 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	•	2 Q 29.24, 30.26	(1)29.42	1 \$ 36.82	•	1 Q 29.18 5ď 28.31±0.84		Supra- coracoideus % body weight	$\begin{array}{c} 52 & 8.05 \pm 0.28 \\ 53 & 10.0 \pm 0.37 \end{array}$	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	727.20 ± 0.40 1 37.90	42 7.69±0.39 30 9.36±0.26	1 Q 6.24 1 d 8.90	3 2 8.10 <u>+</u> 0.29 2 3 7.41, 8.36	9.67	1 Q 8.86 1 d 9.80	• •	29 9.23, 8.28 6ď 9.36 <u>+</u> 0.41
	Heart % body weight	$14\ 2.09\pm0.06$ P<0.05 $19\ c$ 2.35 ±0.07	4 2 2.31 \pm 0.06 5 d° 2.43 \pm 0.12	$10\ 2.07\pm0.08$ $4\ 0^{2}\ 2.58\pm0.12$ P<0.01	$\begin{array}{c} 15\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2Q 1.98, 2.09 4♂ 2.51 <u>土</u> 0.17	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(1) 3.25	1 2 2.68 2 0 2.11, 2.31	$(4)2.30\pm0.15$	$\begin{array}{c} 16 Q 2.36\pm 0.07 \\ 8 d^{2} 2.74\pm 0.11 \\ P < 0.01 \end{array}$	Upper extremities	Pectoralis %o body weight	52 17.32 \pm 0.92 53 23.46 \pm 2.58	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	7216.25 ± 0.6913	$\begin{array}{c} 4\mathrm{Q} & 16.63 \pm 0.57 \\ 3\mathrm{d}^{2} & 21.64 \pm 2.20 \end{array}$	1 Q 19.8 1 d 22.9	$\begin{array}{c} 3\ Q \\ 2\ G \end{array} \begin{array}{c} 18.2 \pm 0.60 \\ 2\ G \end{array} \begin{array}{c} 20 \\ 16.20 \\ \end{array} \begin{array}{c} 19.04 \end{array}$	18.00	19 25.6 10 25.6	•	2우 16.8, 19.24 6ď 17.89 <u>+</u> 0.56
	Body weight grams	{242 4.73±0.06 {28♂ 5.29±0.07	$\left\{ \begin{array}{l} 52 & 4.25 \pm 0.10 \\ 70^{\circ} & 4.49 \pm 0.12 \end{array} \right\}$	$\left\{\begin{array}{c} 10\ \ 2.08\pm 0.06\\ 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{cases} 152 5.14\pm0.06 \\ P<0.01 \\ 21\sigma 6.07\pm0.06 \end{cases} $	$\begin{cases} 2Q & 7.39, 8.37 \\ 4d^{\circ} & 9.14\pm0.22 \end{cases}$	$\begin{cases} 52 5.48\pm0.20 \\ 33 5.46\pm0.25 \end{cases}$	193.31	$\left\{ \begin{array}{c} 1 \mbox{\scriptsize Q} 6.01 \\ 2 \mbox{\scriptsize Q} 6.96, 7.20 \end{array} \right.$	$\begin{array}{c} 3 & 3.36 \pm 0.21 \\ 3 & 3.40 \pm 0.28 \\ \end{array}$	$ \begin{cases} 159 2.24\pm0.06 \\ P<\overline{0.01} \\ 12\sigma 2.05\pm0.03 \end{cases} $		Pectoral and sup. % body weight	$\begin{cases} 62 26.04\pm0.55 \\ P<0.01 \\ 10d 33.14\pm1.29 \end{cases}$	{ 5 2 21.26±0.96 { 2♂ 22.90, 25.98	$\begin{cases} 92 & 23.42\pm0.62 \\ 3\sigma & 27.66\pm0.84 \end{cases}$	$ \begin{cases} 11 \ 24.41 \pm 0.31 \\ P < 0.01 \\ 14 \ 30.98 \pm 0.67 \end{cases} $	{1♀26.04 {4♂31.9±1.14	$\begin{cases} 4$ 26.50 \pm 0.50 \end{cases} 3 3 26.47 \pm 1.36	27.67	{ 1 \$ 34.46 { 20 29.18, 35.4	(1)25.5	人 69 25.40 <u>十</u> 0.28 人 7♂ 29.50 <u>十</u> 1.44
		Amazilia tzacatl	Eupherusa eximia	Elvira chionura	Lampornis castaneoventris	Heliodo xa jacula	Heliothrix barroti	F hilodice bryantae	Heliomaster longirostris	Archilochus colubris	Selasphorus scintilla			Amazilia tzacatl	Eupherusa eximia	Elvira chionura	Lampornis castaneoventris	Heliodox a jacula	Heliothrix barroti	Philodice bryantae	Heliomaster longirostris	Archilochus colubris	Selasphorus scintilla

J			200							Buoyancy index	3.79	3.80	3.91	3.79	3.69	3.71		3.68	
ratio	(1 0)1.90±0. 0 3	(17)1.99±0.04	(6)2.05 <u>+</u> 0.12	(1)2.00	(22)1.92±0.03	1.91	(5)2.07±0.08	(13)2.01±0.04		Glide cm. ⁸ per gram	(11)4.21 <u></u> ±0.18	(17)4.64± 0.20	(6)4.30±0.15	(1)5.76	(22)5.52±0.12	5.94	(6)6.10 <u>+</u> 0.42	$(13)5.71\pm0.14$	
gram	(9)2.40 <u>+</u> 0.05	(17)2.90土0.16	(6)3.11±0.17	(1)3.17	(23)3.32 <u>+</u> 0.10	3.59	(6)3.51±0.15	(13)3.51±0.07		Tail cn. ^s per gram	(9)1.50 <u>+</u> 0.22	$(17)1.59\pm0.10$	(6)1.37±0.06	(1)2.26	$(21)1.80\pm0.07$	1.94	(6)1.99±0.13	$(12)1.74\pm0.11$	
% body weight	(5)3.41±0.48	(9)3.21±0.12	(4)3.11±0.17	(1)2.88	(9)2.81土0.10	2.68	(6)2.67 <u>∓</u> 0.13	(10)2.67±0.13		"Rest" % body weight	29 10.1, 10.5 20 9.86, 10.68	(6)10.72±0.70	(3)8.94±0.29	(1)9.44	(8)8.87±0.37	• • •	$(4)9.05\pm0.58$	$(8)8.78\pm0.29$	
% body weight	2 2 31.60, 32.08 20 32.64, 33.64	6♀ 30.04 <u>+</u> 2.84	(3)29.65±0.09	(1)34.26	(7) 31.15 <u>+</u> 0.22	• • •	(4) 31.16 <u>+</u> 1.09	(8)30.54±1.00		Supra- coracoideus % body weight	29 17.8, 1.90 26 1.88, 2.14	$(9)1.92\pm0.09$	(3)1.65±0.04	(1)2.22	$(14)2.40\pm0.06$	÷	$(4)2.12\pm0.17$	$(9)2.23\pm0.10$	(continued)
heart % body weight	(14)1.29土0.09	(18)1.24±0.06	(6)1.25 <u></u> ±0.07	(1)1.29	(40)1.05±0.02	1.14	(6)1.10 <u>+</u> 0.04	(16)1.18±0.03	Upper extremities	Pectoralis % body weight	29 19.2, 20.2 20 20.5, 20.82	$(9)19.57\pm0.35$	(3)19.1±0.67	(1)22.6	(14)20.82±0.31	:	(4)20.09±0.49	(9)19.54±0.58	
Body weight grams	{ 82 206±7.0 { 93 205±4.5	$\left\{ \begin{array}{c} 11\text{$\mathbbmm$$9$} \ 139\pm5.19 \\ 15\text{$\mathbbmm$$0$} \ 142\pm4.27 \\ \end{array} \right.$	5ơ 118.8 <u>+</u> 0.25	$\left\{ \begin{array}{ccc} 2Q63.7,62.4 \\ 1Q93.71 \end{array} \right.$	$\left\{\begin{array}{c}18\ \ 65.42\pm0.96\\29\ \ 63.36\pm0.66\end{array}\right.$	1961.85	22 48.3, 57.17 43 51.92 \pm 1.96	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$		Pectoral and sup. % body weight	$\begin{cases} 5\ 2\ 1.76\pm0.08\\ P<0.01\\ 6\ d\ 22.69\pm0.18 \end{cases}$	$(17)21.78\pm0.33$	(6)20.13 <u></u> ±0.43	(1)24.82	$(28)23.37\pm0.21$	21.8	(6)22.27±0.38	$(19)22.90\pm0.42$	
	Troconidae Pharomachrus mocinno	Trogon massena	Trogon melanurus	Trogon strigilatus	*Trogon collaris	Trogon aurantiiventris	Trogon curucui	Trogon caligatus			Trogonidae Pharomachtus mocinno	Trogon massena	Trogon melanurus	Trogon strigilatus	*Trogon collaris	Trogon aurantiiventris	Trogon curucui	Trogon caligatus	

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

			TABLE I.—continued	pənu			
	Body weight <i>grams</i>	, Heart % body weight	Upper extremities % body weight	Lower extremities % body weight	· Wings cm. ² per gram	Aspect ratio	
ALCEDINIDAE Megaceryle torguata	$\begin{cases} 52 & 335\pm7.4 \\ 43 & 317\pm5.9 \end{cases}$	(9)1.02±0.06	(4)26.27土1.02	(5)3.07±0.20	(7)1.97土0.06	(8)2.33±0.04	
Megaceryle alcyon	$\left\{ \begin{array}{c} 13 & 148\pm 2.8\\ 116 & 147\pm 3.4 \end{array} \right.$	$(12)1.38\pm0.03$:	(1)2.48	(1)2.49	2.50	
*Chloroceryle amazona	$\left\{\begin{array}{cccc} 6 & 131.8 \pm 4.48 \\ 110 & 120.9 \pm 2.4 \end{array}\right.$	(10)1.06 <u>+</u> 0.03	(5)25.90±1.02	(5)2.99±0.17	(8)2.59±0.06	(8)2.16±0.03	
Chloroceryle americana	$\left\{\begin{array}{c} 6 \varphi & 39.81 \pm 2.03 \\ 14 \varphi & 36.54 \pm 0.6 \end{array}\right.$	$(12)1.23\pm0.04$	(5) 24.12 <u>+</u> 0.78	(6)2.84±0.11	$(11)3.36\pm0.17$	(11)2.19 <u>+</u> 0.06	
Chloroceryle aenea	$\begin{cases} 1 & 15.1 \\ 4 & 0 & 15.59 \pm 0.49 \end{cases}$	(5)1.35土0.06	(3)23.27 <u></u> 10.64	(3)2.66±0.32	(3)3.81±0.36	(3)1.94土0.07	
Momotidae Momotus momota lessoni	$\left\{\begin{array}{cccc} 5 & 130.3 \pm 4.0 \\ 10 & 135.0 \pm 4.2 \end{array}\right.$	(11)0.49土0.02	(5)31.02 <u></u> 40.73	(5)6.23土0.24	$(11)2.94\pm0.07$ P $<$ 0.01	$(11)1.70\pm0.03$	
*Momotus momota conexus (Chagres)	$\left\{\begin{array}{c} 5\ 2\ 102\pm1.5\\ 11\ 0\ 112\pm2.0\end{array}\right.$	(10)0.39土0.01	(5)28.69±1.08	(6)6.44±0.30	(10)3.36 <u>+</u> 0.08	$(10)1.74\pm0.02$	
Bucconidae *Notliarchus macrorhynchos	$\left\{\begin{array}{c} 5 \mbox{97.0 ± 5.2} \\ 12 \ \mbox{05.4 ± 2.0} \end{array}\right\}$	(11)0.45±0.02	(e)28.56 <u>+</u> 0.66	(6)4.70 <u></u> -0.21	(3)2.68±0.22	(4)2.03±0.35	
Malacoptila panamensis	{ 4 ♀ 43.9±1.30 { 6♂ 44.1±0.55	(6)0.58±0.02	(4)27.90±0.59	(4)4.21 <u></u> ±0.08	(6)3.28±0.04	(5)1.81±0.12	
		Upper extremities					
	Pectoral and sup. % body weight	Pectoralis % body wcight	Supra- coracoideus % body weight	"Rest" % body weight	Tail cm. ^s per gram	Glide cm. ^s per B gram	Buoyancy index
AL CEDINIDAE Megaccryle torquata	(9)15.41 ±0.57	(3) 14.9 <u>+</u> 0.41	(4)1.25±0.05	(4)9.43±0.32	(7)0.30 <u></u> 0.01	(7)2.46±0.05	3.68
Megaceryle alcyon	(1)17.40	:	•	•	0.48	3.16	3.63
•Chloroceryle amazona	(9)16.48±0.43	$(5)15.78\pm0.49$	(5)1.56±0.08	(5)8.56 <u>-</u> 0.72	(8)0.49 <u>∓</u> 0.04	(8)3.38±0.10	3.60
Chloroceryle americana	$(11)16.56\pm0.45$	(5)15. 42 <u></u> ±0.63	$(5)1.54\pm0.11$	(5)7.16 <u>∓</u> 0.29	$(11)0.72\pm0.07$	(11)4.80±0.33	3.35
Chloroceryle aenca	(4)16.98 <u>+</u> 0.19	$(3)15.22\pm0.31$	$(3)1.85\pm0.10$	(3)6.53±0.15	(3)0.69±0.09	(3)5.15±0.26	3.09
Momoridae Momotus momota lessoni	(11) 20.48 <u></u> ±0.32	(7)19.29±0.32	(7)1.63土0.09	(5)10.07 <u></u> 40.39	(10)1.03±0.03	(10)4.30 <u>十</u> 0.13	3.85
*Momotus momota conexus (Chagres)	(9)19.05 <u>±</u> 0.55	(5)17.73±0.97	(5)1.67±0.07	(5)9.30±0.11	(10)1.19±0.06	(10)4.76±0.11	3.99
Bucconidae *Notharchus macrorhynchos	$(10)18.72\pm0.49$	(6)18.02 <u>∓</u> 0.43	(6)1.38±0.07	(6)9.17±0.23	<pre>(4)0.45±0.11</pre>	(3)3.39 ±0.29	3.53
Malacoptila panamensis	(6)18.09 <u>+</u> 0.46	(6)16.9±0.33	(6)1.21土0.04	(4)9.48土0.16	(6)0.84 <u>+</u> 0.05 [°]	(6)4.58±0.11	3.40

					(continued)			
	3.67	3.00, 3.99	0.53, 0.68	7.73, 8.76	1.09, 1.44	16.9, 18.7	25.72, 28.90	Colaptes auratus lutcus (Ohio)
9	3.39	(9)6.37±0.13	(9)0.58±0.03	(6)6.75 <u>±</u> 0.58	(6)1.35±0.07	(6)14.3±0.55	(9)15.91 <u>十</u> 0.66	PICIDAE Picumnus olivaceus
•	3.77	(7)2.42±0.08	(7)0.42±0.04	(6)9.16 <u>+</u> 0.45	(6)1.27 <u>+</u> 0.06	$(6)13.12\pm0.50$	$(7)14.19\pm0.48$	Ramphastos swainsonii
	3.34	$(11)2.40\pm0.06$	(11) 0.46±0.03	$(6)8.43\pm0.30$	(6)1.16 <u>+</u> 0.06	(6)13.70±0.14	$(11)14.75\pm0.16$	Pteroglossus frantzii
	3.43	(15)2.56±0.07	(15)0.42±0.02	(5)7.88±0.52	(5)1.14±0.05	(5)13.06 ±0.50	$(15)13.73\pm0.30$ P< 0.01	Pteroglossus torquatus (sea level)
	3.19	(15) 2.49 <u>+</u> 0.06	(16)0.38±0.02	(4)7.81 <u></u> 40.46	(4)1.25 <u>±</u> 0.09	(4)13.1±0.59	(16)14.39土0.29	RAMPHASTIDAE *Aulacorhynchus prasinus
	3.04	(13)3.90±0.18	$(12)0.49\pm0.03$	(6)6.52 <u>∓</u> 0.36	$(7)1.10\pm0.03$	(7)11.8土0.50	(13)13.07±0.26	Capitonidae *Eubucco bourcierii
DIKI	3.56	2.09	1.34	7.28	1.15	15.6	16.75	Nonnula frontalis
3 01	Buoyancy index	Glide cm. ² per gram	Tail cm. [®] per gram	"Rest" % body weight	Supra- coracoideus % body weight	Pectoralis % body weight	Pectoral and sup. % body weight	
1.9 141						Upper extremitics		
TUU		1.78, 1.85	2.15, 2.91	6.2, 7.69		(4)1.19±0.10	$\left\{\begin{array}{c} 9\ 2\ 136\pm2.32\\ 16\ 0\ 135\pm2.99\end{array}\right.$	Colaptes auratus luteus (Ohio)
MILCI		(9)1.62 ±0.04	(9)5.24±0.15	(8)8.41 <u>+</u> 0.33	(6)22.36 <u>+</u> 0.37	(9)1.24±0 .04	$\begin{cases} 52 10.57 \pm 0.20 \\ 83 10.63 \pm 0.18 \end{cases}$	Picumus Picumus olivaceus
.UK		(6)1.64±0.03	(7)1.80±0.05	(6)12.98±0.64	(6)23.55±0.77	(7)0.79土0.05	$\begin{cases} 62 563\pm20 \\ 23 397, 432 \end{cases}$	Rampliastos svainsonii
		$(11)1.69\pm0.03$	(11)1.76±0.03	(6)10.92±0.29	(6)23.29 <u></u> ±0.36	$(14)0.77\pm0.01$	$\left\{ \begin{array}{c} 16\mathrm{Q} 263\pm4 \\ 10\mathrm{Q} 266\pm5 \end{array} \right.$	Pteroglossus frantzii
LUCU		(14)1.71±0.02	(15)1.91±0.08	(6)9.93 ±0.39	(5)21.87±1.07	$(18) \frac{0.68 \pm 0.02}{P < 0.01}$	$\left\{\begin{smallmatrix} 8&216\pm9.0\\10&236\pm7\end{smallmatrix}\right.$	Pteroglossus torquatus (sea level)
1		(15)1.69 <u></u> -0.28	(15)1.88 <u>+</u> 0.05	(5)11.0±0.23	(4)22.19±1.01	(26)0.62±0.01	$\left\{ \begin{array}{c} 16 \wp 149\pm 4.05 \\ 15 \wp 160\pm 3.49 \end{array} \right.$	RAMPHASTIDAE *Aulacorhynchus prasinus
NO. 1		$(13)1.64\pm0.03$	(13)3.03 <u>+</u> 0.14	(6) 9.4 <u>±</u> 0.37	(6)19.54±0.70	(13)0.75土0.02	$\left\{\begin{array}{cccc} 8\ \varphi & 32.80\pm0.50\\ 12\ \sigma & 34.00\pm0.60\end{array}\right.$	CAPITONIDAE *Eubucco bourcierii
		1.63	5.11	3.91	(1)24.03	(1)0.76	{ 22 14.5, 15.0 { 10 ⁷ 15.66	Nonnula frontalis
		Aspect ratio	Wings cm. ² per gram	Lower extremities % body weight	Upper extremities % body weight	Heart % body weight	Body weight grams	
			117.000	Τ				

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

												, Buoyancy index	4.25	3.67	4.22	3.92	3.80	3.91	3.76	3.69	3.91	4.02
Aspect ratio	(8)1.87±0.03	(8) 1.86±0.04	(7)1.84±0.02	(16)2.07±0.08	(4)1.98±0.06	(20)1.86土0.02	(10)1.89 <u>+</u> 0.04	(8)1.99 <u>+</u> 0.04	(7)1.88±0.05	(4)1.97±0.12		Glide cm. ⁸ ber gram	(8)4.12±0.18	(9)4.02±0.09	(9)3.71±0.08	(16)4.68±0.13	(4)4.72 <u>+</u> 0.33	(20)5.11土0.19	(10)4.50±0.19	(8)4.56 <u>+</u> 0.22	(7)4.78±0.17	(4)6.01±0.27
Wings cm. ² per gram	(8)3.15±0.13	(9)3.18 <u>+</u> 0.10	(9)3.04±0.07	(16)3.70±0.13	(4)3.84土0.25	(20)4.05±0.12	$(10)3.74\pm0.14$	(8)3.58 <u>+</u> 0.14	(8)4.08±0.17	(4)4.74±0.25		Tail cm. ^s per gram	(8)0.59±0.05	(10)0.46±0.03	(9)0.36±0.02	(15)0.53±0.02	(4)0.55±0.09	(19)0.63±0.04	(10)0.39±0.03	(8)0.40 <u></u> ±0.04	(7)0.45±0.03	(4)0.76±0.01
Lower extremities % body zveight	$(3)7.47\pm0.15$	(6)7.83±0.18	(8)8.37±0.17	(6)6.36 <u>+</u> 0.12	(1)6.04	(8)6.29±0.24	(7)6.02±0.15	(8)7.06 <u>+</u> 0.16	5.45, 6.92	5.18, 8.45		"Rest" % body weight	(3)9.16±0.43	(5)8.67±0.14	(8)9.55±0.36	(5)8.77±0.44	8.43	(8)8.32±0.16	(6)8.21±0.29	(8)7.95±0.17	7.02	6.76, 10.70
Upper extremities % body weight	(3)29.62±0.35	(5)26.85±0.87	(8)27.79 <u>∓</u> 0.58	(5)24.97±1.30	(1)26.32	(7)28.27±0.31	(e)27.3±0.90	(8)25.85 <u></u> −0.54	24.25	23.90, 34.22		Supra- coracoideus % body weight	$(3)1.24\pm0.09$	(8)1.31土0.06	(8)1.33土0.03	(6)1.14土0.07	0.99	(2)0.98±0.06	(7)1.13±0.08	(8)1.09±0.05	1.03	$(3)1.31\pm0.14$
 Heart Vo body weight 	$(10)1.14\pm0.03$	$(10)1.32\pm0.04$	$(11)1.06\pm0.03$	$(20)1.12\pm0.03$	$(5)1.17\pm0.11$	$(20)1.18\pm0.03$	(12)1.23±0.03,	(8)1.23±0.04	$(11)1.24\pm0.02$	(7)1.41土0.05	Upper extremities	Pectoralis % body weight	(3)19.22±0.02	(8)17.25 <u></u> +0.44	(8)16.41 <u>+</u> 0.28	(6)17.03±0.29	(1)16.9	(8)18.7±0.25	(7)18.04±0.51	(8)16.81±0.49	16.2	$(3)21.34\pm1.02$
Body weight grams	$\begin{cases} 8\ \ 9\ \ 102.8 \pm 3.41\\ 5\ \ 0\ \ 114 \pm 3.08 \end{cases}$	$\begin{cases} 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 62 & 175\pm5\\ 80' & 185\pm4 \end{cases}$	$\{ \begin{array}{c} 11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\{\begin{array}{c} 9 \mbox{\mathcal{P}} 56.24 \pm 2.22 \\ 22 \ \mbox{\mathcal{P}} 67.22 \pm 1.25 \\ \end{array}\right.$	$ \left\{ \begin{matrix} 12 \varphi \ 49.0 \pm 1.11 \\ P < 0.01 \\ 19\sigma \ 55.9 \pm 0.97 \end{matrix} \right.$	22 49.87, 51.6 1 & 58.37±1.82	$ \left\{ \begin{matrix} 59 & 47.0 \pm 0.51 \\ P < 0.01 \\ 4 \sigma & 58.6 \pm 2.60 \end{matrix} \right. $	$\left\{\begin{array}{cccc} 7 & 46.12 \pm 1.80 \\ 180 & 47.2 \pm 0.93 \end{array}\right.$		Pectoral and sup. % body weight	(5)20.01土0.27	(10)18.51±0.38	$(10)17.98\pm0.29$	$(17)18.41\pm0.33$	(4)16.2 <u></u> ±0.88	(16)17.80±0.55	(9)19.09±0.45	(8)17.90±0.52	(8)18.77±0.47	$(3)22.74\pm1.1$
	Colaptes auratus (Florida)	Piculus rubiginosus	Dryocopus lineatus	Melanerpes formicivorus	Melanerpes erythrocephalus	Centurus carolinus	Centurus rubricapillus	Centurus pucherani	Centurus chrysauchen	S phyrapicus varius		Colastos	auratus auratus (Florida)	Piculus rubiginosus	Dryocopus limeatus	Melanerpes formicivorus	Melanerpes erythrocephalus	Centurus carolinus	Centurus rubricapillus	Centurus pucherani	Centurus chrysauchen	S phyrapicus varius

TABLE I.—continued

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL

VOL. 143

			NO	. І		LOC	омот	OR	MECH	IANJ	ISM	S OF	BIF	RDS-	-HA	RTN	IAN		(61			
												Buoyancy index	3.78	3.80	3.97	3.90	3.90	4.16	4.09	3.83	4.13	3.74	
Aspect	(7)1.60±0.05	(8)1.81±0.03	(8)1.96±0.03	1.87, 1.91	(9)1.74±0.06	(6)1.79±0.04	$(3)1.69\pm0.09$	$(3)1.67\pm0.12$	$(20)1.72\pm0.03$	(8)1.78±0.05	-	Glide cm. ² per gram	(8)5.57±0.15	(8)4.96 <u>+</u> 0.21	(9)7.03±0.20	(2)5.50, 5.83	(9)2.92±0.11	(6)3.12±0.13	(3)6.36 <u>+</u> 0.46	(4)5.65 <u>+</u> 0.25	(20)9.64 <u>+</u> 0.15	(8)7.96±0.38	
cm. ⁸ per aram	(8)4.48±0.13	(8)3.96±0.20	(9)5.25±0.16	(2)4.18, 4.50	(9)2.42±0.07	(6)2.61±0.10	(3)4.81 <u>+</u> 0.39	(4)4.32 <u></u> ±0.24	(22)6.91±0.13	(9)5.81±0.23		Tail cm. ² per gram	(8)0.65±0.03	(7)0.66 <u>+</u> 0.09	(8)1.19±0.06	(2)0.79, 0.87	(9)0.25±0.01	(6)0.27±0.02	(3)1.22±0.09	(4)0.87±0.12	(20)2.06±0.08	$(7)1.56\pm0.17$	
extremities % body weight	(4)6.79±0.19	(4)7.71±0.47	(9)6.08±0.22	:	(6)11.51±0.62	(6)11.36±0.2 1	(3)7.65±0.68	(2)7.9, 7.45	(11)6.57±0.33	(8)7.56±0.21		"Rest" % body weight	7.89, 8.70	(4)8.56 <u>+</u> 0.44	(9)7.00±0.59	:	(5)8.49 <u>+</u> 0.36	(6)8.48 <u>+</u> 0.14	8.07, 8.52	$(3)8.68\pm0.34$	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	22 4.56, 4.31 60 6.73±0.15	
extremities % body weight	(2)25.36, 26.49	(3)29.24±0.70	(9)25.08±0.54	:	(5)24.42 <u>+</u> 0.37	(6)23.83±0.56	(2)24.95, 27.40	(2)29.45, 31.86	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2 2 19.54, 21.11 60 24.85±0.40		Supra- coracoideus % body weight	$(5)1.38\pm0.05$	(4)1.63±0.09	(9)1.35±0.05	•	(5)1.13±0.08	(6)1.15±0.08	1.54, 1.73	$(3)1.87\pm0.11$	$52 1.71\pm0.07$ $9c^{2}2.11\pm0.05$	22 1.28, 1.50 60 1.76±0.14	(continued)
Heart % body weight	(8)1.35±0.05	(7)1.22土0.06	(6)1.34±0.03	$(10)1.31\pm0.04$	(10)0.91土0.03	(6) 0.87 <u>+</u> 0.05	(3)1.09 <u>+</u> 0.09	(6)1.53±0.06	$\begin{array}{c} 7 \mbox{2} \ 1.10\pm 0.04 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(9)1.45±0.11	Upper extremities	Pectoralis %o body weight	$(5)15.22\pm0.49$	$(4)18.37\pm0.49$	(9)16.69 <u>∓</u> 0.36	:	(5)14.8±0.20	(6)14.20 <u>+</u> 0.44	15.15, 17.34	$(3)19.23\pm1.1$	$52 15.54\pm0.51$ $9d^2 20.91\pm0.55$	22 13.7, 15.30 $63 16.35\pm0.36$	
Body weight grams	$\begin{cases} 42 & 31.79\pm1.85 \\ 33 & 30.28\pm0.81 \end{cases}$	$\begin{cases} 62 & 42.30\pm 3.16 \\ 33^{\circ} & 44.84\pm 1.64 \end{cases}$	$\begin{array}{c} 22 \ \ 25 \ \ 26.22 \pm 0.43 \\ 25 \ \ \ 26.22 \pm 0.38 \end{array}$	$\left\{ \begin{array}{c} 52 & 44.7 \pm 3.0 \\ 73 & 42.9 \pm 2.5 \end{array} \right\}$	$\left\{\begin{array}{ccc} 6233\pm10\\ 113247\pm5\end{array}\right.$	{ 4 2 225±7 { 2♂ 215, 248	$\begin{smallmatrix} 4 & 41.73 \pm 1.94 \\ 1 & 43.0 \end{smallmatrix}$	$\left\{ \begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{cases} 112 & 12.89\pm0.22 \\ P < 0.01 \\ 210' & 14.32\pm0.13 \end{cases} $	$\begin{array}{c} 3\ 9\ 12.53\pm0.92 \\ 7\ 0\ 13.90\pm0.78 \end{array}$		Pectoral and sup. %o body weight	(8)17.42±0.52	(7)19.19±0.75	(9)18.04 <u>+</u> 0.41	(2)15.6, 16.12	(9)15.53±0.23	(6)15.32±0.41	$\begin{cases} 3 & 20.25 \pm 3.0 \\ 1 & 27.40 \end{cases}$	(4)20.62±0.97	$\left\{\begin{array}{c} (8) 16.90 \pm 0.38 \\ (12) 22.13 \pm 0.74 \end{array}\right.$	{20 14.98, 16.80 {70 18.35±0.44	
	V eniliornis fumigatus	Dendrocopos villosus	*Dendrocopos pubescens	Dendrocopos borealis	Phloeoceastes guatemalensis	Phloeoceastes melauoleucos	Dendrocolartidae Dendrocincla fuliginosa	Dendrocincla homochroa	* Sittasomus griseicapillus	Glyphorynchus spirurus			V enuiornis fumigatus	Dendrocopos villosus	*Dendrocopos pubescens	Dendrocopos borealis	Phlococeastes guatemalensis	Phloeoceastes melanoleucos	DENDROCOLAPTIDAE Dendrocincla fuliginosa	Dendrocincla homochroa	* Sittasomus griscica pillus	Glyphorynchus spirurus	

																		10			
											Buoyancy index	4.19	3.92	3.88	4.20	3.65	2.98	3.33	3.59	3.92	3.37
1.66, 1.70	(11)1.68±0.02	(8)1.76±0.03	$(30)1.73\pm0.02$	1.66, 1.62	(5)1.53±0.01	(4)1.54±0.04	(18)1.58 ±0.03	1.73	(6)1.53±0.06		Glide cm. ² per gram	4.08, 5.61	(11)5.73±0.06	(9)6.39土0.28	(30)7.46±0.13	4.77, 6.28	(5)6.51±0.20	(5)5.51±0.17	$(18)7.18\pm0.13$	7.38	(6) 6.22±0.19
4.29	(11)4.29 <u></u> 40.15	(9)4.46±0.11	(27)5.38±0.09	(2)3.33, 4.34	(7)4.01±0.13	(5)3.65±0.13	(17)5.01±0.09	5.68	(6)4.56 <u>+</u> 0.13		Tail cm. ² per gram	0.97, 1.14	(11)1.12 <u></u> ±0.04	(9)1.24 <u>+</u> 0.06	(26)1.58±0.06	1.03, 1.46	(6)1.62±0.11	(5)1.43±0.08	(18)1.61±0.08	1.68	$(5)1.36\pm0.14$
8.71, 9.30	(5)8.19±0.33	(8)7.40.42	(7)8.41±0.40	:	(6)11.08±0.50	(4)12.77 <u></u> 40.77	(10)10.33 ±0.47	•	(3)9.82±0.27		"Rest" % body weight	7.33, 8.19	32 6.62 <u>+</u> 0.41 1♂ 8.51	3 2 7.32 <u>+0.53</u> 5 3 9.58 <u>+0.59</u>	3 2 7.82±0.57 3 3 9.08±0.62	•	2 0 4.48, 4.61 4♂ 5.83 <u>+</u> 0.24	(3)6.15±0.28	(8)6.18±0.21	:	5.74
(2)23.63, 26.21	3 24.17 ± 0.33 3 27.32	3223.88 ± 1.10 5331.17 ± 2.53	$\begin{array}{c} 32 & 25.99 \pm 1.08 \\ 36 & 29.8 \pm 1.78 \end{array}$:	1 오 16.30 4 ♂ 19.55±0.69	$(3)18.49\pm0.89$	(8)19.77 <u>+</u> 0.69	:	20.64		Supra- coracoideus % body weight	1.49, 1.72	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4 2 1.60 <u>+0.05</u> 5 3 1.89 <u>+0.05</u>	59 1.58±0.05 4♂ 1.70±0.15	1.43, 1.43	1 오 1.42 6♂ 1.57±0.08	$(4)1.54\pm0.08$	(12)1.20±0.03	:	(4)1.52 <u>+</u> 0.11
(2)0.62, 0.66	(12)0.78±0.02	(11)1.00土0.04	(35)0.90±0.02	(2)0.78, 0.97	(8)1.07±0.04	(7)1.00±0.07	$\begin{array}{c} (4) & 9 & 1.05 \pm 0.02 \\ P < 0.01 \\ 7 & 1.26 \pm 0.08 \end{array}$	(2)0.97, 1.83	$(8)1.00\pm0.03$	Upper extremities	Pectoralis % body weight	14.81, 16.3	3215.83 ± 0.20 1317.0	(9)18.95土1.47	5 2 17.0 <u>+</u> 0.65 4♂ 18.22 <u>+</u> 0.93	15.2, 16.0	19 10.4 50 12.18±0.32	(4)11.06 <u>+</u> 0.44	(12)12.91±0.45	:	(4)12.46±0.41
20 67.10, 69.07	$\begin{cases} 102 \ 44.85\pm0.42 \\ P<0.01 \\ 9d' \ 48.16\pm0.99 \end{cases}$	82 45.57 <u>+0.56</u> 73 49.0 <u>+0</u> .70	$\begin{array}{c} 202 & 34.6\pm0.50 \\ 160^{\circ} & 35.36\pm0.58 \end{array}$	$\left\{ \begin{array}{c} 1 & 45.33 \\ 1 & 39.0 \end{array} \right\}$	{ 29 13.24, 15.53 { 6♂ 13.50 <u>+</u> 0.21	{12 16.89 {50 18.84±0.96	$\left\{\begin{array}{ccc} 6\ \ 6\ \ 2\ \ 16\ \ 12\ \ 17.04\pm 0.26\\ 12\ \ \ 0.26\end{array}\right\}$	2ď 16.1, 19.53	$\begin{cases} 3 & 15.68 \pm 0.50 \\ 5 & 15.81 \pm 0.41 \end{cases}$		Pectoral and sup. % body weight	(2)16.30, 18.02	$ \begin{cases} 6 & 16.91 \pm 0.36 \\ P < 0.01 \\ 5 & 21.18 \pm 1.01 \end{cases} $	$\begin{cases} 42 & 17.13\pm0.74 \\ 53 & 23.59\pm1.81 \end{cases}$	$ \begin{cases} 142 \ 17.33\pm0.28 \\ P < 0.01 \\ 13d \ 18.86\pm0.35 \end{cases} $	16.63, 17.43	{ 29 11.82, 14.40 { 50 13.78±0.35	(6)12.98 <u>+</u> 0.54	$(18)13.75\pm0.30$	18.3	(6) 14.14±0.29
certhia	Xiphorhynchus guttatus	Xiphorhynchus erythropygius	Lepidocolaptes affinis	Campylorhamphus pusillus	FURNARIIDAE Synallaxis albescens	Synallaxis brachyura	Cranioleuca erythrops	Margarornis rubiginosus	Premnoplex brunnescens			Dendrocolaptes certhia	Xiphorhynchus guttatus	Xiphorhynchus erythropygius	Lepidocolaptes affinis	Campylorhamphus pusillus	FURNARIIDAE Synallaxis albescens	Synallaxis brachywra	Cranioleuca erythrops	Margarornis rubiginosus	Premnoplex brunnescens
	2 <i>d</i> ² 67.10, 69.07 (2)0.62, 0.66 (2)23.63, 26.21 8.71, 9.30 4.29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2c^{2} 67.10, 69.07 \\ 102 4.85\pm 0.42 \\ 9c^{4} 4.85\pm 0.42 \\ 9c^{4} 8.5\pm 0.42 \\ 9c^{4} 4.85\pm 0.40 \\ 9c^{4} 4.85\pm 0.40 \\ 110, 100\pm 0.04 \\ 3c^{2} 27.32 \\ 3c^{2} 23.88\pm 1.10 \\ 3c^{2} 23.88\pm 1.10 \\ 3c^{2} 23.88\pm 1.10 \\ 3c^{2} 23.88\pm 1.10 \\ 3c^{2} 23.98\pm 1.10 \\ (10)1.0.8\pm 0.42 \\ (10)1.0.3\pm 0.01 \\ (11)1.2.77\pm 0.42 \\ (11)1.2.77\pm 0.42 \\ (11)1.2.77\pm 0.41 \\ (11)1.2.11 \\ (11)1$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE I.—continued

																					-0			
													Buoyancy index	3.63	3.74	4.00	3.44	3.40	3.73	3.78	3 15	3.18	3.44	
	Aspect	(3)1.73+0.06	(6)1.59 <u>+</u> 0.05	(15)1.66+0.02	(5)1.53+0.03	(4)1.48+0.05	(11)1.74+0.02	1.57, 1.60	(6)1.45+0.05	$(5)1.45\pm0.05$	(7)1.48 <u>+</u> 0.04		Glide cm. ^{\$} per gram	$(13)4.92\pm0.23$	(6)6.24 <u>+</u> 0.14	(15)7.79+0.30	(5)4.73+0.08	(4)4.29+0.13	$(11)8.08\pm0.18$	5.15, 5.82	22 0426 5(9)	$(5)3.51\pm0.12$	(7)5.19±0.25	
Wings	cm. ² per aram	$(3)3.55\pm0.18$	$(5)4.33\pm0.08$	(15)5.82+0.08	(5)3.46+0.06	$(4)3.02\pm0.13$	(11)6.11+0.11	(2)4.09, 4.50	(6)2.94+0.19	$(5)2.60\pm0.10$	(7)3.92±0.18		Tail cm. ³ per gram	$(3)1.07\pm0.07$	$(5)1.36\pm0.10$	$(14)1.47 \pm 0.04$	$(6)0.89\pm0.07$	$(4)0.84\pm0.11$	$(10)1.45\pm0.07$	0.72, 0.82	(6)0 70+0 11	(5)0.53±0.06	(7)0.76±0.05	
Lower	extremities % body weight	12.7	(3) 10.48 <u>+</u> 0.21	(8)7.99 <u>+</u> 0.19	(4)8.83 <u>+</u> 0.19	12.1	5.95, 8.18	(1)9.98	$(5)10.98\pm0.55$	(5)13.42 <u></u> ±0.89	(7)10.8±0.45		"Rest" % body weight	:	(2)7.63, 8.60	(4)8.42 <u>+</u> 0.66	7.71	• • •	6.28	(1)7.30	(5)5 76+0 24	$(5)6.00\pm0.31$	(2)4.43 <u>+</u> 0.63	
Upper	extremities % body weight	• • •	(2)27.12, 28.10	(4)29.98±1.49	27.46	•	(1)20.57	(1)28.59	(5)17.46±0.51	(5)17.26±0.5 0	$(5)16.13\pm0.55$		Supra- coracoideus % body weight	::	(5)1.61±0.06	321.53 ± 0.07 631.75 ± 0.07	(3)1.68±0.24	1.28, 1.36	$(3)0.88\pm0.24$	2.04, 2.18	(4)1.19+0.12	(5)1.12±0.05	(5)1.15±0.07	(continued)
TT	% body weight	$(5)1.16\pm0.22$	(5)1.17±0.06	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$(4)1.48\pm0.09$	$(4)1.01\pm0.10$	$(10)1.35\pm0.05$	(2)1.27, 1.32	(6)0.55±0.02	(10)0.61±0.03	(12)0.70±0.03	Upper extremities	Pectoralis % body weight	•	(5)15.11 <u></u> ±0.91	$\begin{array}{c} 3 & 14.94 \pm 1.00 \\ 6 & 19.49 \pm 1.08 \end{array}$	$(3)17.8\pm0.60$	(2)12.52,9.94	$(3)13.79\pm0.15$	19.20, 19.25	(4)10.76+0.41	$(5)10.14\pm0.28$	(5)10.55±0.16	
Pode mainte	grams	{ 3 2 50.94 ± 0.19 { 2 3 52.55, 55.0	{ 2 2 33.41, 32.50 { 3 3 34.60 <u>+</u> 0.37	$\left\{\begin{array}{c} 5\ \ 20.57\pm 0.44\\ 11\ \ 22.62\pm 0.25\end{array}\right\}$	$\begin{cases} 12 42.10 \\ 5d 40.05\pm 1.00 \end{cases}$	{ 29 52.63, 64.8 { 23 56.02, 51.5	$\begin{array}{l} \begin{array}{c} 5\ & 2\\ 7\ & 3\\ 7\ & 12.40 \pm 0.19 \end{array} \end{array}$	{ 1 \$\overline{2}\$ 163.48 \$\overline{10}\$ 37.65	$\left\{\begin{array}{cccc} 2 & 38.65, 40.53\\ 6 & 32.92 \pm 1.19 \end{array}\right.$	$\begin{cases} 52 \ 68.0\pm2.26 \\ 53 \ 67.15\pm0.74 \end{cases}$	$ \begin{cases} 11 & 28.10\pm 0.31 \\ 13 & 28.0\pm 0.40 \end{cases} $		Pectoral and sup. % body weight	$(3)13.1\pm0.39$	(5)15.82±0.80	$\left\{\begin{array}{c}4\text{Q}16.49\pm0.66\\10\text{Q}20.36\pm0.82\end{array}\right.$	(6)18.60±0.72	(4)13.07±0.75	$(10)16.13\pm0.51$	(2)21.38, 21.29	(6)11.59+0.39	$(6)11.12\pm0.27$	$(7)11.50\pm0.19$	
10111 10 101 10 10 10 10 10 10 10 10 10		Pseudocolaptes lawrencii	Syndactyla subalaris	*Anabacerthia striaticollis	Automolus ochrolaemus	Thribadectes rufobrunneus	Xenops rutilans	Sclerurus guatamalensis	Formicaridae *Cymbilaimus lineatus	Taraba major	Thamnophilus doliatus			Pseudocolaptes lawrencii	Syndactyla subalaris	*Anabacerthia striaticollis	Automolus ochrolaemus	Thripadectes rufobrumeus	Xenops rutilans	Sclerurus guatamalensis	Formicaridae *Cymbilaimus lineatus	Taraba major	Thamnophilus doliatus	

	6	4			SMI	THS	ONI.	AN	MIS	CELI	LAN	IEOUS	CO)	LLE	CTIO	NS	V	OL.	143			
												Buoyancy index	3.40	3.46	3.53	3.62	3.75	3.48	3.23	3.16	2.85	3.39
Aspect ratio	$(8)1.45\pm0.04$	(4)1.55土0.06	$(16)1.51\pm0.02$	$(7)1.48\pm0.02$	$(11)1.50\pm0.04$	(11)1.42 <u>+</u> 0.03	(4)1.36土0.12	(6)1.42 <u>+</u> 0.06	1.25	(6)1.59 <u></u> ±0.04		Glide cm. ² pcr gram	(7)6.99±0.57	(4)5.68±0.31	(17)6.44 <u>+</u> 0.10	(7)7.19±0.35	$(11)7.99\pm0.23$	$(11)6.52\pm0.10$	(5)6.23±0.16	(6)4.23土0.18	3.54	(7)3.50+0.16
Wings cm. ² per gram	(7)4.20 <u></u> 40.15	(4)4.35±0.26	$(17)5.19\pm0.08$	(7)6.09±0.31	$(11)6.37\pm0.19$	(10)4.82±0.11	(5)4.40 <u>+</u> 0.24	$(6)3.14\pm0.13$	2.64	(6)2.92±0.12		Tail cm.ª pcr gram	$(7)0.96\pm0.10$	(4)0.89±0.05	(12)0.73±0.05	(7)0.58 <u>+</u> 0.04	(11)0.99±0.05	$(10)1.15\pm0.04$	(4)0.82±0.16	(6)0.70±0.07	0.31	(7)0.35+0.03
Lower extremities % body weight	$(6)8.63\pm0.34$		(10)8.77±0.36	(4)8.69±0.61	(6)8.07±0.29	$(7)11.12\pm0.30$	$(4)10.13\pm0.47$	(e)12.70 <u></u> ±0.44	14.01	$(3)9.30\pm0.27$		"Rest" % body weight	(3)5.79±0.66	:	32 5.68 <u>+0.68</u> 53 5.93 <u>+0.15</u>	(3)5.25±0.19	(4)6.25土0.44	32 4.25±0.68 53 5.41±0.12	(4)5.22 <u>十</u> 0.46	(6)5.93±0.26	6.46	(3)7 37+0.28
Upper extremities % body weight	$(3)19.51\pm 1.46$	•	$32 19.37\pm0.81$ $53 20.97\pm0.62$	(3)16.86±0.15	$(3)23.15\pm 1.10$	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(4)15.43 <u>+</u> 0.60	32 17.89 <u>+</u> 0.69 23 18.86, 19.37	(1)19.60	(6)30.68±0.98		Supra- coracoideus % body weight	(3)1.42±0.04	1.47	$52 1.32\pm0.14$ $73 1.54\pm0.07$	(3)1.33土0.09	(8)1.51土0.07	42 1.22 <u>+0.04</u> 53 1.16 <u>+0.10</u>	(4)0.97 <u></u> ,0.07	(6)1.59±0.03	1.46	1712.72+0 07
Heart % body weight	$(8)0.79\pm0.03$	(4)0.93 <u>+</u> 0.09	92 1.10±0.05 93 1.23±0.05	(7)0.99±0.03	$(11)1.26\pm0.05$	(10)0.92±0.04	$(10)0.84\pm0.05$	(7)0.63±0.03	(1)0.66	(7)0.86 <u>+</u> 0.05	Upper extremities	Pectoralis % body weight	(3)12.3±0.82	12.1	$52 13.9\pm0.90$ $53 13.46\pm0.51$	$(3)10.31\pm0.48$	(8)14.31 <u></u> +0.67	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(4)9.20 <u>+</u> 0.55	(6)11.1±0.20	11.68	(7)20.14+0.48
Body weight arams	$\begin{array}{c} 20 \\ 40 \\ 21.11 \\ \pm 1.41 \end{array}$	{ 29 22.87, 23.58 { 23 19.25, 19.67	$\left\{\begin{array}{c} 12 & 14.55 \pm 0.28 \\ 18 & 14.21 \pm 0.19 \end{array}\right.$	$\begin{cases} 62 & 9.60\pm0.11 \\ 43 & 9.88\pm0.20 \end{cases}$	$\begin{cases} 82 9.57 \pm 0.22 \\ 83 9.56 \pm 0.16 \end{cases}$	$\begin{cases} 82 & 15.94\pm0.27 \\ 93 & 16.58\pm0.36 \end{cases}$	$\begin{array}{c} 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 42 & 28.23 \pm 0.72 \\ 53 & 30.37 \pm 0.53 \end{cases}$	1 \$ 28.80	$\begin{cases} 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Pectoral and sup. 7,0 body weight	(7)14.36±0.54	(4)12.29±0.60	$\left\{\begin{array}{cccc} 7 & 13.50\pm 0.33\\ 10\sigma & 14.64\pm 0.40 \end{array}\right.$	$(7)11.77\pm0.21$	(11)15.72±0.56	$\begin{array}{c} 5\ \ 9\ \ 11.33\pm 0.63\\ 5\ \ 7\ \ 12.36\pm 0.20\end{array}$	(4)10.21土0.50	(6)12.72±0.27	13.14	· (17)22-86+0-53
	Thamnophilus punctatus	Thamnistes anabatinus	Dysithamnus mentalis	Myrmotherula surinamensis	Myrmotherula schisticolor	Cercomacra tyrannina	Cercomacra nigricans	Myrmeciza longipes	Myrmeciza exsul	Formicarius analis			Thamnophilus punctatus	Thamnistes anabatinus	Dysithamnus mentalis	M yrmotherula surinamensis	M yrmotheruia schisticolor	Cercomacra tyrannina	Cercomacra nigricans	M yrmeciza longipes	M yrmeciza exsul	Formicarius

TABLE I.-continued

64

		N	10.	I	LOC	омот	OR	MECI	HAN	ISMS	OF H	BIRE)S	HAR	TM	٩N		65	5		
											Buoyancy index	3.35	3.62	3.26	3.85	3.58	2.76	3.69	3.50	3.76	
Aspect	(8)1.46 <u>+</u> 0.04	1.54, 1.56	(4)1.66±0.02	(4)1.61±0.05	(9)1.59±0.03	(10)1.61 <u></u> ±0.02	1.82	(14)1.94 <u></u> 0.02	(9)1.68±0.02		Glide cm. ² pcr gram	(8)4.56±0.16	(2)5.88, 6.42	(5)5.42土0.34	(4)6.48 <u>±</u> 0.38	(9)7.01±0.14	(13)3.81±0.10	5.43	(14)4.17 <u></u> 40.11	(10)4.96 <u></u> 0.19	
711155 CML ⁸ <i>þer</i> Gran	(9)3.56±0.12	4.85, 5.36	(5)4.30 <u>+</u> 0.30	(4)5.46 <u>∓</u> 0.34	(9)5.69±0.13	(13)2.91土0.09	4.14	(13)3.18±0.07	$(10)3.65\pm0.10$		Tail cm. ² per gram	(8)0.58±0.03	(2)0.65, 0.73	(5)0.62土0.03	4)0.56 <u>+</u> 0.02	(9)0.79土0.03	(13)0.45土0.03	0.87	(15)0.69 <u></u> 40.03	(10)0.93±0.04	
extremities	(8)13.22±0.56	(2)10.42,13.10	1 오 4.84 4♂ 5.99 <u>+</u> 0.14	(4)6.49 <u>十</u> 0.30	(4)5.24土0.58	42 8.42 <u>+0.37</u> 43 11.91 <u>+0.73</u>	7.42	(9)6.36 <u>∓</u> 0.20	$(8)7.80\pm0.18$		% body weight	(6)6.46 <u>+</u> 0.45	:	1 오 6.58 4♂ 8.00 <u>+</u> 0.17	7.52±0.34	4.25, 6.1	4 2 4.76±0.54 4 3 7.28±0.55	8.59	(6)8.12±0.57	(6)7.20±0.51	
extremities	(6) 29.57±0.38	•	1♀ 26.48 4♂ 29.50±1.01	(3)29.27 <u>+</u> 2.68	22.84, 26.20	$\begin{array}{c} 4 \mbox{21.22} & 0.55 \\ P < 0.01 \\ 4 \ \mbox{3} & 26.89 \pm 0.40 \end{array}$	(1)29.94	(e)33.04 <u>∓</u> 0.45	(6)25.77 <u></u> 40.93		Supra- coracoideus % body weight	$(8)1.38\pm0.16$:	1우 2.96 4♂ 4.72 <u>+</u> 0.11	(3)1.76 <u>±0.07</u>	1.69, 1.91	$\begin{array}{c} 4\ \ 2.58\pm0.09\\ 4\ \ 3.82\pm0.26\\ \end{array}$	2.16	(7)2.51±0.12	(9)1.83±0.06	(continuted)
Heart % body meight	$(10)1.01\pm0.05$	(2)0.72, 0.85	(7)1.03±0.05	(4)1.11±0.07	(13)1.51±0.06	(22)1.08 <u>+</u> 0.04	(2)1.49, 1.52	(16)1.19土0.03	$(10)1.40\pm0.08$	Upper extremities	Pectoralis % body weight	(8)11.93±0.70	• •	$\begin{array}{c} 1\ \wp \ 16.94 \\ 4\ \u \sigma \ 18.79 \pm 0.80 \end{array}$	(3)16.98 <u>+</u> 0.36	16.9, 18.2	49 13.88±0.52 40 15.79±0.51	19.19	(7)22.60 <u>∓</u> 0.43	(9)16.66±0.29	
Body weight	$\begin{cases} 62 & 29.58\pm1.03 \\ 53 & 29.57\pm0.38 \end{cases}$	{ 12 16.5 { 13 16.5	$\begin{cases} 1 & 16.11 \\ 6 & 14.70 \pm 0.47 \end{cases}$	4♀ 20.30 <u>+</u> 1.04	$ \left\{ \begin{array}{ccc} 3 & 13.26\pm 0.75 \\ P < 0.01 \\ 10 & 11.05\pm 0.18 \end{array} \right. \\$	$ \begin{cases} 16\ \ 17.08\pm 0.05\\ P< 0.01\\ 17\ \ 39\pm 0.05\\ 17\ \ 39\pm 0.05 \end{cases} $	2ď 34.1, 36.1	{ 69 61.04±2.2 { 16♂ 53.55±0.90	{12 37.7 {7♂ 43.01±1.3		Pectoral and sup. % body weight	(10)13.69 <u>+</u> 0.68	(2)12.98, 13.70	$\left\{ \begin{array}{ccc} 1 & 19.90 \\ 6 & 19.88 \pm 1.26 \end{array} \right\}$	(3)18.41 <u></u> ±0.71	$(13)19.18\pm0.20$	$ \begin{cases} 52 \ 16.42 \pm 0.40 \\ P < 0.01 \\ 80' 19.27 \pm 0.31 \end{cases} $	(1)21.35	(15)25.20±0.26	(10)18.59 <u>+</u> 0.34	
and the second s	Gymnopithys bicolor	Hylophylax naevioides	PIPRIDAE Pipra mentalis	Chiroxiphia Ianceolata	Corapipo leucorrhea	*Manacus vitellinus	Schiffornis turdinus	Cortngldae Cotinga ridgwayi	Attila spadiceus			Gymnopithys bicolor	Hylophylax naevioides	PIPRIDAE Pipra mentalis	Chiroxiphia lanceolata	Corapipo leucorrhea	*Manacus vitellinus	Schiffornis turdinus	Cotinga Cotinga ridgwayi	Attila spadiceus	

	O	0		5	MIII	н 50	INIA.		SCELL	2211012	000	COLL		1011	Ň	. 02		ŧJ			
											Buoyancy index	3.28	3.86	3.47	3.87	3.31	3.60	3.95	4.83	4.19	3.75
Aspect ratio (15)1.68+0.02	1.89	1.65	1.80, 1.84	$(3)1.73\pm0.06$	(16)1.89±0.08	(3)2.00±0.08	(8)1.66±0.03	(5)1.79土0.05	(3)1.64土0.13	:	Glide cm. ^s per gram	(15)7.42 <u>+</u> 0.13	1.89	6.39	6.90, 7.52	(3)6.17土0.78	(17)3.79土0.24	(4)5.69±0.22	(7)6.47±0.12	(5)8.96±0.49	(3)8.21±0.67
Wings cm ² pcr gram (16)5.21+0.08	3.43	4.82	5.19, 5.74	$(3)4.53\pm0.46$	$(16)3.02\pm0.06$	(4)4.49 <u>±</u> 0.20	(8)5.33±0.18	(5)6.69 <u></u> 40.50	(3)6.21±0.56		Tail cm. ^s þer gram	(16)1.55±0.05	1.08	1.06	1.24, 1.27	$(3)1.10\pm0.24$	(17)0.51±0.07	(4)0.76±0.06	(7)0.97±0.06	(5)1.77±0.14	(3)1.11±0.11
Lower extremities 66 body weight 1116 05+018		7.00	5.65, 7.43	(3)8.18±0.94	(9)9.23土0.78	(3)5.79±0.18	(7)5.00 <u></u> 40.13	4.27	$(3)7.35\pm0.36$		"Rest" % body weight	4 2 8.11 - 0.45 4 3 8.47 - 0.42		•	• •	(1)5.27, 5.85	(7)7.56±0.25	$(3)7.45\pm0.55$	(8)8.98 <u>+</u> 0.29	(1)8.92	(3)6.30±0.18
Upper extremities % body vcight 4 27.43±0.67	···	:	•	(2)22.44, 21.78	$(7)25.98\pm0.48$	$(3)25.05\pm 1.25$	(7)25.98±0.38	(1)32.93	$(3)22.31\pm0.16$		Supra- coracoideus % body weight	6 1.71 \pm 0.10 4 1.93 \pm 0.14	2.04	•	•	(1)1.57, 1.73	$(7)1.55\pm0.04$	(4)1.55±0.02	$(7)1.25\pm0.04$	(3)2.10±0.13	$(3)1.70\pm0.17$
Heart 7,0 body weight	00.01.41 <u>土</u> 0.00 1.06	1.68	(3)1.20土0.22	$(4)1.16\pm0.03$	(18)1.24±0.03	$(4)1.23\pm0.08$	$(8)1.05\pm0.04$	(5)1.18 ±0.06	(3)1.26±0.07	Upper extremities	Pectoralis % body weight	$62 17.82\pm0.46$ $43 19.84\pm1.10$	19.1	•	•	(2)15.6, 14.25	(7)17.35±0.36	(4)16.23±0.51	(7)15.82±0.29	$(3)20.5\pm1.0$	(3)14.3+0.21
Body weight <i>grams</i> { 9 2 36.25±0.61	(9♂ 37.27 <u>年</u> 0.82 19 80 34	10 14.86	$\left\{ \begin{smallmatrix} 1 & 2 & 1 \\ 2 & 3 & 19.5, 20.2 \end{smallmatrix} \right.$	22 20.52, 20.8 33 18.79 \pm 0.54	$\left\{ \begin{array}{c} 10\ \varphi \ 79.53\pm2.14 \\ 15\ \sigma \ 79.17\pm1.12 \end{array} \right.$	$\left\{ \begin{array}{c} 1 & 40.2 \\ 3 & 42.0 \pm 3.0 \end{array} \right\}$	$\begin{cases} 4 & 100.1\pm2.98 \\ 4 & 0.106.76\pm1.28 \end{cases}$	$\left\{\begin{array}{ccc} 2 & 20.46, 16.85\\ 3 & 3 & 20.05 \pm 0.76\end{array}\right.$	$ \begin{cases} 32 & 10.8\pm0.27 \\ P < 0.01 \\ 4\sigma' & 12.20\pm0.24 \end{cases} $		Pectoral and sup. % body weight	$\begin{cases} 79 & 19.41\pm0.21 \\ 76 & 21.28\pm0.77 \end{cases}$	21.14	16.00	(3)16.56 <u>+</u> 2.01	$(3)16.85\pm0.84$	(16)18. 44 <u>+</u> 0.30	(4)17.52±0.51	(7)17.06±0.26	(5)22.86+0.51	12.00.4.0.21
Rhvtibterna	liolērythra Lipangus	www.wj.ws Pachyramphus versicolor	Pachyramphus cimamomeus	Pachyramphus polychopterns	*Tityra semifasciata	Erator inquisitor	Querula purpurata	Tyrranidae Sayornis nigricans	Fluvicola pica			Rhytipterna holerythra	Lipaugus unirufus	Pachyramphus versicolor	Pachyramphus cinnamomeus	Pachyramphus polychopterus	*Tityra semifasciata	Erator inquisitor	Querula purpurata	TYRRANIDAE Sayornis	Elmonicala hira

TABLE I.—continued

4.27 3.96 4.04	(7)7.51土0.17 (5)7.63土0.49 7.01土0.20	$(7)1.45\pm0.15$ $(5)1.28\pm0.09$ $(5)1.46\pm0.12$	(3)7.46±0.42 8.06, 9.25	(5)2.36±0.12 (4)2.26±0.35 (continued)	(5)21.65 <u></u> 1.02 (3)19.9 <u></u> 1.13	$(5)23.35\pm 1.42$ $(4)22.08\pm 0.88$ $(5)19.94\pm 1.23$
3.84	$(4) 8.08 \pm 0.47$	$(4)1.44\pm0.17$	(3)7.87土1.69	(3)2.23土0.26	(3)20.15土3.36	(4)22.39±2.40
3.67	$(5)4.65\pm0.40$	(5)0.87±0.06	(4)8.73±0.30	$(4)2.23\pm0.21$	(4)22.17±1.43	(5)24.04土1.10
4.04	8.09	1.15	•	2.14	21.39	(1)23.53
3.96	(11)6.05土0.14	(11)1.20±0.07	(6)8.76 <u>+</u> 0.41	(6)2.26土0.09	(6)22.64±0.81	(11)24.65±0.59
3.64	$(3)6.19\pm0.28$	$(3)1.07\pm0.14$	(1)7.85	1.86, 2.21	(2)20.8, 20.5	(4)22.09土0.41
4.04	(8)6.79±0.19	(7)1.34土0.05	(6)8.83±0.27	$(7)2.25\pm0.09$	(7)22.27 <u></u> 40.68	(8)24.43±0.58
4.71	7.06土0.30	(8)1.15土0.11	• •	• •	:	(5)21.6±1.2
4.06	$(7)8.03\pm0.10$	$(7)2.11\pm0.18$	(3)8.12土0.49	24 1.97, 2.21 26 2.29, 2.47	24 20.1, 24.7 28 23.6, 26.6	$\begin{cases} 32 & 23.8\pm1.77 \\ 36 & 27.52\pm1.13 \end{cases}$
Buoyancy index	Glide cm. ^s per gram	Tail cm. ² per gram	"Rest" % body weight	Supra- coracoideus % body weight	Pectoralis % body weight	Pectoral and sup. % body weight
					Upper extremities	
	1.74 ± 0.07	(5)5.00±0.23	*	• •	(6)1.10±0.04	{ 2 ♀ 31.6, 32.2 { 3♂ 36.3±0.91
	$(5)1.77\pm0.07$	$(5)5.11\pm0.26$	(3)3.63±0.18	28.19, 39.83	$(5)1.02\pm0.03$	$\begin{cases} 52 & 29.44\pm2.35 \\ 33 & 27.6\pm1.69 \end{cases}$
	$(6)1.77\pm0.03$	$(7)5.51\pm0.20$	$(4)3.97\pm0.34$	$(3)31.55\pm 2.12$	(7)0.89±0.05	$\begin{cases} 4 & 29.7 \pm 4.0 \\ 4 & 329.60 \pm 4.18 \end{cases}$
	(4)1.66±0.07	$(4)4.94\pm0.36$	(4)4.56 <u>十</u> 0.56	$(3)27.25\pm1.09$	(8)0.88±0.03	$\begin{cases} 89 25.33, 0.77 \\ 60 28.7 \pm 1.33 \end{cases}$
	$(5)1.70\pm0.03$	(5)3.25±0.32	(5)3.86 <u>+</u> 0.01	$(4)33.14\pm1.53$	$(5)1.23\pm0.14$	$\begin{cases} 29 & 71.83, 78.2 \\ 40 & 70.85 \pm 2.32 \end{cases}$
	1.78	4.69	• •	• • •	(1)0.92	10 [°] 43.4
	$(11)1.81\pm0.04$	$(11)4.43\pm0.10$	(7)4.49 <u></u> -0.21	(6)33.66±1.19	(12)1.03±0.04	$\left\{ \begin{array}{c} 11\text{$\stackrel{\circ}{$}$} \ 47.19\pm0.59\\ 12\text{$\stackrel{\circ}{$}$} \ 45.1\pm0.08 \end{array} \right.$
	(3)1.95土0.09	(3)4.49 <u>+</u> 0.12	(3)4.29 <u>+</u> 0.46	(1)30.56	(4)1.71±0.17	$\begin{cases} 12 25.64 \\ 33 26.19 \pm 0.54 \end{cases}$
	$(9)1.85\pm0.03$	(9)4.79 <u>+</u> 0.21	(7)3.42±0.24	(6)32.72±0.6 8	(9)1.11±0.04	$\begin{cases} 7 & 40.73 \pm 0.85 \\ 8 & 38.98 \pm 1.33 \end{cases}$
	(8)2.05±0.04	(8)5.22 <u>+</u> 0.25	•	• •	(5)1.28±0.07	$\begin{cases} 52 38.8\pm0.16 \\ 50 37.1\pm1.51 \end{cases}$
	$(7)1.94\pm0.07$	(7)5.42±0.20	(4)3.16±0.27	(3)33.88±2.75	$(7)1.48\pm0.10$	$\begin{cases} 52 \ 27.08\pm0.59 \\ 40 \ 28.88\pm0.90 \end{cases}$
	Aspect ratio	cm.* per gram	extremities % body weight	extremutes % body weight	Co body weight	DOUY WEIGHT

NO. I LOCOMOTOR MECHANISMS OF BIRDS-HARTMAN

													Buoyancy index	4.10	3.99	3.80	4.09	4.08	3.94	3.79	3.73	4.04	3.67	3.76
Aspect ratio	(6)1.70±0.04	$(14)1.63\pm0.02$	1.74	1.73, 2.11	1.86, 1.91	$(14)1.75\pm0.03$	$(13)1.82\pm0.02$	$(11)1.70\pm0.03$	(12)1.75±0.02	1.71, 1.71	$(4)1.58\pm0.08$		Glide cm. ^s her E gram	(6)7.40 <u>+</u> 0.46	(15) 8.26 <u>+</u> 0.13	5.89	9.36, 10.6	9.92, 11.11	(14)7.49±0.17	(13)8.56±0.04	$(11)8.11\pm0.23$	$(12)11.00\pm0.26$	9.46, 8.90	(4)8.48 <u>+</u> 0.08
Wings cm. ^s pcr gram	(5)5.35±0.19	(15)5.86±0.11	4.47	6.29, 7.61	(2)7.15, 7.86	(14)5.56±0.13	$(13)6.33\pm0.13$	(11)6.12±0.21	(12)8.11±0.19	6.86, 7.16	(4)6.56 <u>+</u> 0.25		Tail cm² her gram	$(6)1.58\pm0.24$	(15)1.87±0.07	1.00	2.17, 2.25	1.96, 2.03	$(14)1.59\pm0.08$	(12)1.66 <u>+</u> 0.09	$(10)1.41\pm0.09$	$(11)2.18\pm0.09$	1.53, 1.72	(4)2.08±0.29
Lower extremities % body weight	(5)6.42 <u>于</u> 0.47	(5)5.52±0.48	3.94	3.02, 3.36	(1)2.6	(4)4.16 <u></u> 40.60	(3)4.76±0.18	(7)4.76±0.15	3.5, 3.68	4.32	(3)6.02±0.61		"Rest" % body weight	(4)8.12 <u>十</u> 0.44	(4)7.24 <u>+</u> 0.69	4.49	5.74, 6.50	• •	(1)8.28	(3)5.60土0.29	(2)7.29, 7.47	Q 7.72 Ø 6.62, 7.73	••••	(3) 6.64 ± 0.09
Upper extremities %0 body weight	(4)29.52±1.61	(4)29.54土1.63	24.98	23.70, 27.94	• •	(1)35.32, 32.93	$(3)24.83\pm0.34$	(3)26.53±3.70	9 26.63 28 27.90, 27.95	• •	$(3)24.36\pm0.47$		Supra- coracoideus % body weight	(4) 2.44 <u>+</u> 0.25	(4)2.13 <u></u> ±0.16	1.92	1.48, 2.12	2.08	(2)2.47, 2.04	$(5)1.93\pm0.09$	ç 2.03 4♂ 2.35±0.31	Q 1.12, 1.69 Ø 1.83, 1.97	••••	(4)2.15±0.17
Heart % body weight	$(7)0.91\pm0.03$	(16)0.85±0.03	(1)1.26	$(3)1.35\pm0.13$	(2)1.26, 1.35	(24)1.16±0.03	$(15)1.00\pm0.02$	$(15)1.01\pm0.02$	$\begin{array}{c} 0 \neq 1.40\pm0.04\\ P< 0.01\\ 8 \sigma 1.88\pm0.07\end{array}$	(2)1.05, 1.22	$(5)1.08\pm0.04$	Upper extremities	Pectoralis % body weight	(4)18.97±1.05	(4)20.1土0.84	18.57	16.48, 19.32	(1)20.0	(2)26.20, 25.00	$(5)17.4\pm0.10$	♀ 16.2 4♂ 21.67±1.86	9 16.8, 14.2 0 18.2, 19.5	•••••	(4)16.1 <u></u> _0.81
Body weight grams	6 6 30.3±0.90 6 6 32.1±0.98	11219.28 ± 0.39 14020.44 ± 0.38	10 33.3	$\left\{\begin{array}{c}2\ 2\ 13.35, 15.50\\10\ 6\ 14.03\pm0.31\end{array}\right.$	50 12.6±0.5	200221.01 ± 0.76	13011.72 ± 0.16	{ 60 12.33±0.22	$\begin{cases} 82 & 8.28 \pm 0.09 \\ 80' & 8.91 \pm 0.13 \\ 80' & 8.91 \pm 0.13 \\ 10' & 10' & 10' \\ 10'$	{ 17 6.45 { 10 8.1	$\begin{cases} 42 9.88\pm0.61 \\ 10^{\circ} 10.0 \end{cases}$		Pectoral and sup. % body weight	$(6)20.89\pm0.33$	$ \begin{cases} \frac{5 + 12.3 \pm 0.20}{11 \sigma} \\ 11 \sigma 22.11 \pm 0.50 \end{cases} $	20.49	17.96, 23.70	20.5, 22.08	(15)21.61±0.42	$(13)18.74\pm0.25$	$\begin{cases} 5 \times 17.90\pm0.54 \\ P < 0.01 \\ 9 \sigma' 24.05\pm0.89 \end{cases}$	$\begin{cases} 52 18.44\pm0.40 \\ P < 0.01 \\ 63 20.53\pm0.26 \end{cases}$	(2)18.9, 20.4	(4) 18.29+0.50
	M yiarchus ferox	M yrarchus tuberculifer	Nuttallornis borealis	Contopus virens	Contopus sordidulus	Contopus lugubris	Empidonax flaviventris	Lmpidonax flavescens	Mitrephanes phaeocercus	l erenotriccus erythrurus	M yrobrus sulphureipygius			M yıarchus ferox	M yiarchus tuberculifer	N uttallornis borealis	Contopus vurens	Contopus sordidulus	Contopus lugubris	L'mpadonax flaviventris	Empidonax flavescens	Mitrephanes phaeocercus	Terenotriccus erythrurus	M yiobius sulphureiþygius

TABLE I.—continued

					(commuea)			
	3.60	(3)8.53±0.07	(3)1.20±0.03	• •		• •	{ 1 2 12.93 { 28 14.70, 14.84	Oncostoma olivaceum
	3.49	7.14, 8.44	0.91	4.44, 6.33	1.12, 1.53	(2)11.4, 12.29	$(3)13.45\pm0.57$	Todirostrum sylvia
	3.52	(8)8.39±0.35	$(8)1.00\pm0.13$	(5) 4.46 <u>+</u> 0.21	(5)1.12±0.09	$(5)10.1\pm0.50$	(8)11.64 <u>±</u> 0.18	Todirostrum cinereum
i9	3.73	(10)6.43±0.32	(10)1.23±0.07	(4)9.63 <u>+</u> 0.95	(5) 2.45±0.22	(5)22.35±1.93	$\begin{cases} 4 \ 20.45 \pm 0.86 \\ 6 \ 24.37 \pm 1.78 \end{cases}$	Rhynchocyclus brevirostris
6	3.79	8.96	2.15	• •	• •	• • •	19.60	Tolmomyias sulphurescens
	3.78	7.48	1.68	5.40	2.20	18.85	21.05	Craspedoprion aequinoctialis
N	3.84	(3)7.23±0.19	(3)1.53±0.06	7.26	2.23	18.7	(3)21.02±0.61	Cuipodectes subbrunneus
ГMA	3.63	(6)7.22±0.18	(5)0.68 <u>+</u> 0.09	4.93, 5.42	(5)1.35±0.02	(5)13.12±0.19	(5)14.43±0.18	Platyrinchus mystaceus
IAR	4.16	9.68, 8.34	2.18, 1.72	6.99, 7.77	1.45, 1.51	16.7, 16.33	18.15, 17.84	Onychorhynchus coronatus
5—I	3.63	8.76	1.98	6.53	1.78	17.00	18.78	M yiophobus fasciatus
[RDS	3.78	9.32	2.05	7.53	2.05	16.00	18.05	M yroorus atricaudus
OF BI	Buoyancy index	Glide cm. ^g per gram	Tail cm. ^e per gram	"Rest" % body recight	Supra- coracoideus % body weight	Pectoralis %o body wcight	Pectoral and sup. %o body weight	
MS.						Upper extremities		
NISI		(3)1.66±0.01	$(3)6.91\pm0.10$	5.11	• • •	$(3)0.98\pm0.03$	{ 22 6.3, 7.08 { 10 6.82	Oncostoma olivaceum
СНА		1.44, 1.51	5.72, 6.52	(3)7.21土0.46	(2)16.96, 20.15	$(3)1.12\pm0.06$	$\left\{ \begin{array}{c} 1 & 7.70 \\ 2 & 6.81, 8.05 \end{array} \right.$	Todirostrum sylvia
ME		(8)1.64±0.02	(8)6.69±0.16	(4)8.72 <u>十</u> 0.49	(5)15.72±0.61	$(13)1.08\pm0.03$	$\left\{\begin{array}{c} 9 \varphi 6.34\pm 0.16 \\ 14 \sigma 6.49\pm 0.13 \end{array}\right.$	Todirostrum cinereum
OR		(11)1.56±0.03	(9)4.96±0.23	(7)4.44±0.37	4♂ 30.38 <u>+</u> 1.30	$(10)0.83\pm0.04$	$\begin{cases} 4 & 24.83 \pm 1.03 \\ 7 & 23.35 \pm 0.62 \end{cases}$	Rhynchocyclus brevirostris
мот		1.52	6.10	4.30	• • •	(1)0.89	2ď 11.63, 15.0	Tolmomyias sulphurescens
000		1.53	5.26	4.78	26.45	0.74	{ 0 19.2 { 22.61	Craspedoprion aequinoctialis
L		(3)1.63±0.07	(3)5.27±0.08	(3)3.79±0.09	28.19	$(3)0.71\pm0.02$	3¢ 21.94±0.05	Cnipodectes subbrunneus
I		(6)1.58±0.07	(6)6.04±0.16	(3)6.29±0.23	19.89, 19.42	(5)1.19±0.08	$\begin{cases} 42 9.65 \pm 0.18 \\ 20^{\circ} 12.5, 12.3 \end{cases}$	Platyrinchus mystaceus
NO.		1.53, 1.70	6.93, 5.93	5.52, 5.59	(2)25.14, 25.61	$(3)1.03\pm0.08$	$\begin{cases} 32 \ 15.97 \pm 0.19 \\ 10^{\circ} \ 19.83 \end{cases}$	Onychorhy <mark>nchus</mark> coronatus
		• • •	6.16	4,11	25.31	1.65	ත් 9.68	M yiophobus fasciatus
		1.65	6.46	6.68	25.58	1.18	1ď 10.62	M yiobius atricaudus
		Aspect ratio	v 11155 Cm. ² per grant	extremities c/o body weight	Cuper extremities % body weight	Heart % body weight	Body weight grams	
			AV 111KS	TUWCI	UNUCI			

													Buoyancy index	3.39	3.48	3.49	3.89	3.88	3.88	3.78	3.67	3.61	3.75	3.74
Aspect ratio	$(10)1.64\pm0.04$	$(5)1.47\pm0.02$	$(3)1.64\pm0.05$	(5)1.59土0.05	(7)1.76 <u></u> -0.04	1.78, 1.94	$(10)1.67\pm0.03$	$(3)1.78\pm0.06$	$(5)1.65\pm0.03$	1.69, 1.75	1.80		Glide cm. ^s per gram	$(10)7.62\pm0.33$	$(5)8.30\pm0.21$	$(3)7.78\pm0.11$	(5)7.27±0.38	$(10)7.59\pm0.23$	7.46, 8.27	$(9)8.38\pm0.19$	$(3)8.74\pm0.60$	(5)8.33±0.44	9.11, 9.13	8.90
Wings cm. ⁸ per gram	(9)5.86±0.27	(5)6.14±0.07	(3)5.92±0.22	(5)4.87土0.33	(8)5.56±0.1 9	5.49, 5.73	$(10)6.01\pm0.13$	(3)6.84±0.44	(5)6.27±0.31	6.13, 6.62	6.43		Tail cm. ^s per gram	(8)1.20±0.09	(5)1.36 <u>+</u> 0.18	$(3)1.27\pm0.11$	(5)1.71±0.11	(9)1.59±0.08	1.52, 1.74	(9)1.85±0.09	(3)1.07±0.11	(4)1.35±0.20	1.24, 1.77	1.65
Lower extremities % body weight	(7)4.68±0.21	(4)6.95±0.60	(1)5.95	(5)6.01±0.40	(7)5.45 <u>±</u> 0.11	4.61, 5.27	(6)5.97±0.28	(3)5.57±0.25	4.3	4.92, 5.40	4.67		"Rest" % body weight	(7)5.23土0.36	(4)6.57土0.48	• •	1 $\begin{array}{c} 2 \\ 3 \\ \end{array}$ $7.26 \\ \pm 0.10 \\ \end{array}$	22 7.34, 8.16 30 8.88±0.18	7.48, 8.16	(5)6.92±0.15	2 8.07 8 6.65, 6.70	• • •	4.99, 5.63	6.17
Upper extremities % body weight	(7)20.84 <u>±</u> 0.44	(4)23.36 <u>±</u> 0.94	• •	$1 \stackrel{1}{\circ} 23.20$ $3 \stackrel{1}{\circ} 29.89 \pm 0.57$	$\begin{array}{c} 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(2)33.30, 33.78	(5)26.05 <u></u> ±0.36	1 $\bigcirc 24.52$ 2 $\circlearrowright 28.32, 29.42$	• • •	(2)23.11, 24.06	25.40		Supra- coracoideus % body weight	(6)1.63±0.12	(4)1.75±0.09	(1)2.21	12 1.57 $40^{\circ} 2.39\pm0.11$	322.20 ± 0.19 362.40 ± 0.27	2.52, 2.72	(6)2.03±0.12	9 1.85 8 2.77, 2.96	19 2.55 10 2.31	1.72, 1.93	2.12
Heart % body weight	(12)1.04±0.04	(4)1.18±0.06	$(3)1.55\pm0.13$	$(7)1.37\pm0.10$	$52 1.07\pm0.05$ $43 1.22\pm0.03$	(2)1.48, 1.57	$(8)1.04\pm0.04$	(3)1. 42 <u>+</u> 0.08	(5)1.17±0.08	(2)1.30, 1.32	1.39	Upper extremities	Pectoralis % body weight	(8)13.8±0.28	(4)14.36±0.63	(1)16.85	$\begin{array}{c} 1\ \varphi \ 15.7 \\ 4\ \sigma \ 20.41 \pm 0.45 \end{array}$	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	22.90, 23.30	$(6)16.85\pm0.35$	2 14.6 & 18.71, 19.95	12 13.4 18 19.6	16.4, 16.5	17.11
Body weight grams	$\begin{cases} 72 & 6.93\pm0.15 \\ 9d^* & 8.06\pm0.13 \end{cases}$	{ 29 6.80, 7.45 { 30 7.85±0.62	{ 3 2 7.98±0.18 { 10 8.31	$\left\{\begin{array}{c} 5 & 24.7\pm 0.11\\ 13d^2 & 22.25\pm 0.85\end{array}\right.$	$\begin{cases} 5 & 19.81 \pm 1.02 \\ 6 & 0.83 \pm 0.35 \end{cases}$	2&218.2, 19.1	$\begin{cases} 52 & 12.75 \pm 0.33 \\ 70' & 14.14 \pm 0.44 \end{cases}$	{ 29, 5.94, 7.00 { 20, 7.31, 8.12	$\begin{cases} 52 8.48\pm0.35 \\ 43 9.29\pm0.33 \end{cases}$	{12 7.25 {13 7.34	1ď 10.28		Pectoral and sup. % body weight	(10)15.93±0.41	(4)16.78±1.02	19.49 <u>+</u> 0.44	$\begin{cases} 1 & 17.27 \\ 6 & 21.03 \pm 1.25 \end{cases}$	$\begin{cases} 52 \ 20.30\pm0.38 \\ 46^{\circ} \ 24.89\pm0.71 \end{cases}$	25.62, 25.82	$\begin{cases} 4\ \ 22.36\pm 1.57 \\ 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	{12 16.45 {23 21.67, 22.72	$\begin{cases} 32 \ 15.8\pm0.32 \\ 10^2 \ 21.91 \end{cases}$	18.12, 18.43	19.23
	Lophotriccus pileatus	Capsicmpis Aqveola	Serpophaga cinerea	Elaenia flavogaster	Elaenia frantzii	Elacnia chiriquensis	M yiopagis viridicata	Camptostoma obsoletum	Tyranniscus vilissimus	Tyranniscus elatus	Acrochordopus zeledoni			Lophotriccus pileatus	Capsiempis Haveola	Serpophaga cinerea	Elaenia flavogaster	Elaenia frantzii	Elaenia chiriquensis	M yiopagis viridicata	Camptostoma obsoletum	T yranniscus vilissimus	T yranniscus elatus	Acrochordopus zeledoni

TABLE I.—continued

			NO.	I	LO	СОМ	ίοτο	R MEC	HAN	ISM	S OF	BIR	DS—	-HA	RTMA	N		7	I	
											Buo yancy index	3.87	3.58	3.71	3.56	4.30	4.16	3.98	4.70	4.02
Aspect ratio	$(4)1.58\pm0.04$	(9)1.66 <u>+</u> 0.03	$(4)1.46\pm0.07$	(14)2.59 <u></u> ±0.04	$(9)2.41\pm0.08$	(7)2.31±0.02	(3)2.46±0.06	1.83, 1.88	(3)1.56±0.06		Glide cm. ^s per gram	(5) 8.77 <u>+</u> 0.40	$(10)7.09\pm0.27$	(4)8.00±0.51	(13)5.08±0.13	(9)9.55±0.33	$(7)10.19\pm0.38$	$(3)8.72\pm1.01$	(3)3.63土0.23	(3)3.70±0.12
Wings cm. ² per gram	(5) 6.36±0.28	$(10)5.51\pm0.24$	(4)6.00±0.36	(14) 3.89 <u>+</u> 0.09	(9)7. 49 <u>+</u> 0.24	(7)7.89 <u></u> 40.30	(3)6.60±0.53	(3)2.89±0.13	(3)2:65±0.10		Tail cm.* per gram	(5)1.73±0.14	(9)1.14±0.08	(4)1.11±0.09	(13)0.76±0.03	(9)1.46±0.13	$(7)1.55\pm0.10$	(4)1.00±0.25	(3)0.46 <u>+</u> 0.06	(3)0.83±0.01
Lower extremities % body weight	(3)4.55±0.04	(7)4.97±0.35	(3)4.20±0.24	(7)2.90 <u></u> 0.30	(6)1.80±0.11	(6) 2.84 <u>+</u> 0.30	(3)2.53±0.12	:	(2)14.4, 16.34		"Rest" % body weight	$(3)7.36\pm0.45$	29 4.68, 6.11 26 7.12, 7.30	5.94, 8.08	(5)5.91±0.65	(4)6.19 <u>+</u> 0.93	(4)4.75 ±0.26	(3)5.09±0.62	:	9.03
Upper extremities % body weight	(3)26.67±0.80	Q 23.22, 25.84 S 29.84, 30.65	26.71, 37.02	(5)24.05土1.28	(4)25.55±0.31	$(4)19.70\pm0.27$	(4)21.66±1.52	:	(1)22.40		Supra- coracoideus % body weight	$(5)2.19\pm0.05$	$3 \ 2.08 \ 0.10$ $4 \ 0.232 \ 0.14$	2.37, 3.14	(5)1.39土0.05	(4)1.62±0.25	(4)1.25±0.11	(4)1.30±0.27	•	1.01 (continued)
Heart % body weight	(15)1.08±0.06	(9)1.41±0.05	(5)1.19土0.07	(14)1.40 <u>十</u> 0.04	$(8)1.59\pm0.05$	$(12)1.32\pm0.04$	(4)1.61±0.17	(8)1.06±0.03	(3)0.85±0.02	Upper extremities	Pectoralis % body weight	$(5)17.93\pm0.36$	$\begin{array}{c} 3 & 2 \\ 4 & 3 \\ 2 \\ 2 \\ 0 \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ 0$	18.4, 25.8	(5)16.75±0.67	$(4)17.74\pm 2.31$	(4)13.7 <u></u> 10.05	$(4)15.69\pm0.88$:	(1)12.36
Body weight grams	$\begin{cases} 3\ 9\ 13.15, 13.77 \\ 2\ 6\ 13.15, 13.77 \end{cases}$	$\begin{cases} 52 13.65 \pm 0.76 \\ 60^3 13.93 \pm 0.36 \end{cases}$	{ 2 2 9.6, 9.8 { 5 3 11.93±0.27	$\left\{\begin{array}{cccc} 6 & 37.20 \pm 0.54 \\ 18 & 39.66 \pm 0.65 \end{array}\right\}$	$\begin{cases} 6 & 13.26 \pm 0.63 \\ 9 & 14.51 \pm 0.54 \end{cases}$	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{ \begin{array}{cccc} 1 & 2 & 13.53 \\ 3 & 3 & 13.60 \pm 0.49 \end{array} \right.$	{62 438 <u>+</u> 30.6 {63 457.6 <u>+</u> 35.8	{ 2 2 210,221 { 1 ♂ 204		Pectoral and sup. % body weight	$(5)20.12\pm0.39$	$\begin{cases} 52 18.50\pm0.98 \\ 53 22.19\pm0.62 \end{cases}$	(4)24.48±2.01	(15)17.69±0.31	$(8)20.43\pm1.39$	$(7)14.70\pm0.34$	(4)16.99±1.03	(3)14.2±0.33	(3)12.45±0.64
	Leptopogon superciliaris	Mionectes olivaccus	Pipromorpha oleaginea	HIRUNDINIDAE Progne chalybea	*Stelgidopteryx ruficollis	Pygochclidon cyanoleuca	Iridoprocne albilinca	Corvidae Corvus brachyrhynchos pascuus	Cyanocorax affinis			Leptopogon superciliaris	Mionectes olivacens	Pipromorpha oleaginea	HIRUNDINIDAE Progne chalybea	*Stelgidoptery: ruficollis	Pygochelidon cyanoleuca	Iridoprocne albilinea	Corvidae Corvus brachyrhynchos pascuus	Cyanocorax affinis

Cyanolyca argentigula Aphelocoma coerulescens *Cyanocitta cristata bromia Cyanocitta cristata bromia cristata bromia cristata bromia cristata bromia cristata parus farus familiaris Connolyca	Body weight <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i> <i>grams</i>	^A Heart % body weight 0.90, 0.92 (13) 0.94±0.03 (7) 1.02±0.04 (7) 1.02±0.04 (7) 1.02±0.06 (11) 1.35±0.05 (11) 1.35±0.05 (11) 1.29±0.03 (10) 1.22±0.07 (10) 1.22±0.07 (10) 1.22±0.07 (9) 1.48±0.04 (9) 1.48±0.04	Upper extremities c% body ucright 19.54 (2) 19.55, 21.02 (4) 23.67±0.42 (4) 23.67±0.42 (9) 25.48±0.37 (9) 25.48±0.37 (5) 23.73±0.89 (5) 23.73±0.89 (5) 23.13±0.45 (6) 23.17±0.45 (6) 23.17±0.45 Supra- coracoidents coracoidents coracoidents	Lower extremities co body weight 15.05 15.05 12.8, 14.5 (4) 10.6±0.22 (9) 11.0±0.19 (5) 7.18±0.21 (7) 7.35±0.21 (7) 7.35±0.21 (7) 5.95±0.17 (7) 5.95±0.17 (7) 5.95±0.17	Wings $cm.^{g}$ per gram 2.52, 2.58 (13) 2.89 \pm 0.08 (13) 2.89 \pm 0.08 (13) 3.33 \pm 0.05 (13) 3.346 \pm 0.07 (21) 3.46 \pm 0.07 (5) 5.85 \pm 0.11 (11) 5.21 \pm 0.17 (11) 5.21 \pm 0.17 (10) 6.56 \pm 0.02 (10) 6.56 \pm 0.02 (7) 8.59 \pm 0.14 (7) 8.59 \pm 0.14	Aspect ratio 1.40, 1.50 (13)1.54±0.02 (4)1.57±0.04 (21)1.53±0.02 (5)1.62±0.03 (11)1.60±0.02 (11)1.60±0.02 (5)1.95±0.02 (5)1.95±0.02 (7)1.65±0.02 (7)1.65±0.02 (7)1.65±0.02	Buoyancy
argentigula	12.18, 12.85	11.2, 11.9	0.95, 0.98	7.34	0.69, 0.75	3.62, 3.63	
A phelocoma coerulescens	$(11)11.78\pm0.11$	(2)11.3, 12.9	1.03, 1.22	6.9, 7.22	(13)1.16±0.08	$(13)4.38\pm0.16$	
*Cyanocitta cristata bromia	(4)16.21±0.23	(4)15.0±0.24	(4)1.21土0.06	(4)7.68±0.05	(4)1.32±0.04	(4)5.10±0.02	
Cyanocitta cristata cristata	(21)15.72±0.36	(9)16.0±0.23	(9)1.27±0.04	(9)8.21	(21)1.15±0.07	(21)5.16 <u>+</u> 0.12	
Paridae Parus carolinensis	(2)18.07 <u></u> ±0.46	(5)16.62 <u>∓</u> 0.42	(5)1.45 <u>±</u> 0.11	(4)6.21 <u></u> 10.27	(5)2.22±0.22	(6)9.42 ±0.39	
*Parus bicolor	(11)18.25±0.69	(7)17.94±0.31	$(7)1.71\pm0.13$	(7)7.71土0.16	(9)1.43±0.10	$(11)7.33\pm0.23$	
SITTIDAE *Sitta carolinensis	(5)17.66±0.24	(2)16.37 <u>±</u> 0.24	(5)1.29 ±0.24	(5)6.41土0.02	(5)1.10 <u>∓</u> 0.06	(S)7.65 <u>±</u> 0.18	
Sitta pusilla	$(10)14.5\pm0.43$	• •	•	:	0.81 ± 0.03	8.31	
CERTHIIDAE * <i>Certhia</i> familiaris	(6)17.38土0.46	(6)16.16±0.50	(6)1.38土0.08	(6)5.62±0.10	(6)2.35±0.09	(7)11.80±0.16	

TABLE I.—continued

			NO	. I		LOC	омс	TOR	MF	CHA	ANI	SM	S OF	BIRI)S—H	ART	MA	N		7	3		
													Buoyancy index	2.99	3.12	3.39	3.19	3.27	3.02	3.25	3.21	3.26	3.25
The stars there are the star	Aspect	(6)1.55±0.03	(11)1.55 <u></u> 0.06	(6)1.47 <u>+</u> 0.03	(3)1.46 <u>+</u> 0.05	(4)1.53±0.05	(13)1.55±0.03	(3)1.40 <u>+</u> 0.05	(7)1.4 8 <u>+</u> 0.04	(14)1.49 <u>+</u> 0.03	(4)1.64±0.04		Glide cm. ² per gram	(6)4.57 <u></u> 40.18	(11)4.96±0.14	(7)5.42±0.12	(3)4.75±0.22	(5)5.82±0.27	(14)5.09 <u>+</u> 0.14	(3)5.71±0.40	(8)4.89±0.28	(14)4.86±0.11	(4)4.21 <u></u> ±0.07
Wings	cm.* per	(6)3.28 <u>+</u> 0.13	(11)3.77 <u>+</u> 0.11	(7)4.17±0.20	(3)3.67±0.02	(5)4.28 <u>+</u> 0.09	$(14)3.84\pm0.10$	(3)4.54±0.37	(8)3.98±0.16	(14)4.06<u>+</u>0.08	(4)3.54±0.06		Tail cm. ^e pcr gram	(5)0.75±0.09	(10)0.71±0.04	(7)0.70 <u>+</u> 0.04	(3)0.56±0.07	$(4)1.18\pm0.07$	(13)0.72 <u></u> 40.03	(3)0.63±0.04	(8)0.46 <u>+</u> 0.07	$(13)0.41\pm0.03$	(4)0.27 <u>土</u> 0.03
Lower	extremities % hody weight	(1)13.2	(5)11.7 <u></u> 0.84	(6)12.62±0.34	$(3)12.10\pm0.77$	(4)11.0 <u>+</u> 0.43	(7)12.00 <u>+</u> 0.20	(3)10.07±0.36	(4)12.7±0.47	(8)12.83±0.31	(4)12.17土0.54		"Rest" % body weight	(1)6.26	(3)5.30 <u>+</u> 0.29	(5)5.80 <u>+</u> 0.15	5.42, 6.08	5.55, 5.83	(7)6.13土0.26	5.14	(3)5.61±0.21	(4)4.78土0.19	(3)7.54±0.3 3
Upper	extremities	(1)20.27	(3)15.65±0.35	(5)17.69 <u>十</u> 0.69	(2)16.97, 18.13	18.03, 18.32	(7)20.24 <u>+</u> 0.67	(1)16.85	(3)20.40±1.11	(6)16.43土0.39	(3)26.98±2.27		Supra- coracoideus %o body weight	(1)1.41	(4)1.04 <u>±</u> 0.08	(4)1.30 <u>+</u> 0.15	1.20, 1.25	(3)1.27±0.06	(9)1.48 <u>+</u> 0.07	1.11	(4)1.45±0.05	(7)1.04土0.03	(3)2.09±0.30 (continued)
- ILP THE ME OF FRANK	Heart Co hodw moinht	(7)1.02±0.06	$\begin{array}{c} 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(10)0.86\pm0.03$	(3)0.77±0.03	(5)0.99±0.04	$(15)1.18\pm0.04$	$(3)1.18\pm0.10$	(8)1.03±0.06	(15)1.08±0.03	(5)0.80 <u>+</u> 0.02	Upper extremities	Pectoralis % body weight	(1)12.6	(4)9.13±0.32	(5)10.70±0.48	10.85, 10.30	$(3)11.3\pm0.07$	(9)12.52±0.31	(1)10.60	(5)11.42±0.70	(7)10.25±0.19	(3)17.31±2.02
1 1 1 1 1 1 1 1 1 1 1 1	Body weight	$\begin{cases} 42 & 19.2\pm1.00 \\ 110 & 21.6\pm0.56 \end{cases}$	$\left\{ \begin{matrix} 72 & 17.90\pm0.50 \\ 63 & 19.73\pm0.38 \\ P < 0.01 \end{matrix} \right\}$	$\begin{cases} 62 & 18.69 \pm 0.56 \\ 93 & 20.03 \pm 0.41 \end{cases}$	3 ♀ 23.01±1.00	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{\begin{array}{cccc} 72 & 15.65 \pm 0.65 \\ 123 & 14.76 \pm 0.21 \end{array}\right.$	{ 2 2 9.35, 10.0 { 13 10.0	$\begin{array}{c} 52 \ 16.48 \pm 0.14 \\ 63 \ 17.89 \pm 0.66 \end{array}$	$\left\{\begin{array}{cccc} 6\ & 16.36\pm0.36\\ 17\ & 18.1\pm0.25\end{array}\right.$	5ď 27.08±0.60		Pectoral and sup. % body weight	(6)13.5+0.61	$ \begin{cases} 42 & 10.8\pm0.37 \\ 7d^{2} & 13.07\pm0.68 \\ P < 0.01 \end{cases} $	$(7)11.51\pm0.40$	$(3)12.12\pm0.43$	(5)12.38±0.14	(15)14.06±0.25	(3)11.87±0.46	(8)12.88±0.69	(14)11.31±0.21	(5)19.02 <u>+</u> 1.20
		Troclodytidae Thryothorus Iudovicianus	Thryothorus modestus	*Thryothorus leucotis	Thryothorus fasciato-ventris	Thryothorus rutilus	Troglodytes musculus	Troglodytes ochraceus	Henicorhina lencosticta	Henicorhina leucophrys	Leucolepis phaeocephalus			TROGLODYTIDAE Thryothorus Indovicianus	Thryothorus modestus	*Thryothorus leucotis	Thryothorus fasciato-ventris	Thryothorus rutilus	Troglodytes nnusculus	Troglodytes ochraccus	Henicorhina leucosticta	Henicorhina leucophrys	Leucolepis phaeoccphalus

											Buoyancy index	3.67	3.75	3.81	3.79	3.85	3.62	3.61	3.64	3.20
Aspect ratio	1.73, 1.76	$(11)1.67\pm0.03$	(8)1.79±0.03	$(8)1.77\pm0.03$	(16)1.85±0.03	$(8)1.73\pm0.03$	$(6)1.87\pm0.07$	1.48	$(3)1.53\pm0.01$		Glide cm. ^a per] gram	5.79, 7.18	(11)6.33±0.24	(8)4.83±0.18	(8)4.48 <u>±</u> 0.05	(16)4.52±0.15	$(8)5.55\pm0.40$	(6)5.95±0.23	5.65	(3)4.47土0.27
Wings cm. ⁸ per gram	(2)3.53, 4.36	$(11)4.11\pm0.12$	(8)3.56±0.12	(8)3.29 <u>+</u> 0.16	(16)3.38±0.09	(8)4.17±0.10	(6)4.12 <u>+</u> 0.21	4.20	(3)3.27±0.30		Tail cm. ^s per gram	1.90, 2.31	$(11)1.67\pm0.14$	(8)0.95±0.07	(8)0.81±0.08	$(15)0.84\pm0.04$	(8)1.30±0.09	(6)1. 24 <u>+</u> 0.05	1.15	(3)0.76±0.10
Lower extremities % body weight	8.24, 8.64	(7)9.65±0.28	(5)7.29 <u>+</u> 0.41	(4)7.25±0.22	(4)7.56 <u>+</u> 0.35	4.75, 4.94	(6)5.60±1.94	11.78	(1)9.47		"Rest" % body weight	5.56, 5.60	(7)6.94±0.05	(3)8.25±0.05	(4)9.28 <u>+</u> 0.24	$(3)10.01\pm0.11$	6.72	46 7.03 <u>+</u> 0.27 \$ 4.98	7.19	6.40
Upper extremities % body weight	(2)19.35, 19.89	(7)23.15±0.72	(3)31.06±0.44	4♂ 32.89 <u>+</u> 0.99	(3)36.53±0.99	(1)25.06	(4)27.30 <u>十</u> 0.57	(1)24.07	(1)20.17		Supra- coracoideus % body weight	1.13, 1.31	(7)1.41±0.05	(3)2.06±0.06	4♂ 2.32 <u>+</u> 0.23	(3)2.25±0.06	$(3)1.74\pm0.10$	$\begin{array}{c} 4 \circ 1.73 \pm 0.04 \\ 2 & 1.40 \end{array}$	1.59	(3)1.54±0.22
Heart %0 body weight	(5)1.09±0.05	$(10)1.12\pm0.03$	(8)1.31±0.06	$(11)1.04\pm0.05$	(21)1.22±0.05	(8)1.03±0.01	(6)1.14±0.06	(1)1.38	(5)0.82±0.04	Upper extremities	Pectoralis % body weight	12.62, 13.02	(7)14.8±0.66	(3)20.75±0.35	$4d^{\circ} 21.29\pm0.60$	(3)23.9±0.50	(3)17.3±0.46	$\begin{array}{c} 4 \circ 18.57 \pm 0.36 \\ 1 \circ 13.20 \end{array}$	15.29	$(3)12.87\pm0.58$
Body weight grams	$\left\{\begin{array}{cccc} 8\ Q & 38.8\pm1.56 \\ 10\sigma & 38.20\pm1.38 \\ \end{array}\right.$	$\left\{\begin{array}{c}15\text{2},48.4\pm1.19\\14\sigma^{2}53.4\pm1.46\end{array}\right.$	10♂ 67.50土1.90	$\left\{\begin{array}{c} 62 \ 72.69 \pm 1.17 \\ 103 \ 72.69 \pm 1.17 \end{array}\right\}$	$ \left\{ \begin{array}{c} 5 \mbox{91.93 ± 2.35} \\ {\bf P} < 0.01 \\ 16 \mbox{81.12 ± 2.39} \end{array} \right. $	$\begin{bmatrix} 3 & 32.07 \pm 2.42 \\ 6 & 32.08 \pm 0.63 \end{bmatrix}$	$\left\{\begin{array}{c} 2 Q \\ 7 \mathcal{O} \\ 30.61 \pm 0.96 \end{array}\right.$	13 31.4	{ 5 2 30.87±0.57 { 10 28.53		Pectoral and sup. % body weight	13.75, 14.31	$(11)15.99\pm0.48$	(8)22.50 <u>+</u> 0.75	$\left\{ \begin{array}{ccc} 2 & 18.7, 19.8 \\ 6 & 23.36 \pm 0.51 \end{array} \right\}$	$(16)21.98\pm0.70$	(7)18.65±0.53	(5)19.58±0.61	16.88	(4)14.23±0.56
	MIMIDAE Dumctella carolinensis	*Mimus polyglottos	Turdidae Turdus assimilis	Turdus grayi	Turdus plebejus	M yadestes melanops	*Hylocichla ustulata	Catharus frantzii	Catharus griseiceps			MIMIDAE Dumetella carolineusis	*Mimus polyglottos	T URDIDAE Turdus assimilis	Turdus grayi	Turdus plebejus	M yadestes melanops	*Hylocichla ustulata	Catharus frantzii	Catharus griseiceps

TABLE I.—continued

74

	N	0. I		LOCO	мото	R ME	CHAN	ISM	S OF	BIRI	DS—H	[AR]	(MAN		75	;
									Buoyancy index	3.73	3.53	3.25	3.66	3.29	3.80	3.50
Aspect ratio	1.95 ± 0.07	(4)1.64±0.04	1.38, 1.44	$(14)1.77\pm0.02$	(3)2.13±0.08	1.63, 1.65	1.77 ± 0.01		Glide cm. ² per gram	5.54 ± 0.27	(4)9.42±0.44	7.36, 5.40	(14)7.05 <u></u> 0.10	(3)4.57 <u></u> 40.32	5.86, 6.41	4.8 4±0.03
Wings cm. ^g per gram	(9)4.41±0.23	(4)7.14±0.18	(2)5.76, 4.15	(14)5.62 <u>∓</u> 0.09	(3)3.40±0.24	(2)4.43, 4.13	(6)3.36 <u>+</u> 0.03		Tail cm. ^s per gram	(9)0.67±0.02	(4)1.60±0.20	1.07, 0.75	(13)0.83±0.05	(3)0.75±0.07	1.81, 1.07	0.88±0.006
Lower extremities % body wcight	• • •	(4)6.55±0.52	(1)9.72	(3)5.99 <u></u> ±0.44	(4)3.98 <u></u> ±0.43	4.93	• • •		"Rest" % body weight	• •	(3)5.76±0.5 4	(1)5.62	(3)6.85±0.47	(4)6.17 <u></u> -0.15	•	::
Upper extremities % body weight	•	(3)19.66±0.12	(1)16.77	(3)27.99±0.89	(4)28.81±1.34	• •	* *		Supra- coracoideus % body weight	• •	(3)1.03±0.01	(2)0.94, 1.02	$(3)1.27\pm0.38$	(4)1.84±0.13	• •	 (continued)
Heart % body weight	$(7)1.17\pm0.06$	(4)1.19土0.15	(1)1.58, 1.10	(14)1.57±0.03	(18)1.5 4 <u>+</u> 0.03	(5)1.33土0.04	(12)1.19±0.003	Upper extremities	Pectoralis % body weight	•	(3)12.87 ±0.76	(2)9.93, 11.6	(3)19.9±0.57	(4)20.8±1.19	:	:
Body weight grams	$\left\{\begin{array}{c}15\text{$2,0$}32.6\pm0.78\\18\text{$3,0.8\pm0.48}\end{array}\right.$	{29 6.07, 6.56 {20 6.80, 5.90	2 <i>d</i> 9.37, 10.08	$\begin{cases} 52 12.35\pm0.47 \\ 93 12.67\pm0.18 \end{cases}$	$\left\{ \begin{array}{c} 13 & 33.9 \pm 0.68 \\ 28 & 31.9 \pm 0.74 \end{array} \right.$	{1♀33.5 {4♂39.1±0.96	$\left\{\begin{array}{c} 9\ \ 9\ \ 4\ \ 4\ \ 1\ \ 1\ \ 1\ \ 1\ \$		Pectoral and sup. % body weight	(7)16.8 <u></u> -0.63	(4)13.95 ±0.68	10.95	(14)21.54 <u>∓</u> 0.20	<pre>(4)22.64±1.29</pre>	(2)19.3,18.5	(6)14.4 <u>+</u> 0.11
	Sialia sialis	SYLVIIDAE *Polioptila plumbea	Ramphocaenus rufiventris	Motacillidae *Anthus parvus	Bombycillatione *Bombycilla cedrorum	PTILOGONATIDAE *Ptilogonys caudatus	LANIIDAE *Lanius ludovicianus			Sialia sialis	SYLVIIDAE *Polioptila plumbea	Ramphocaenus rufiventris	Moracillidae * Anthus parvus	BombycitLIDAE * <i>Bombycilla</i> <i>cedrorum</i>	PTILOGONATIDAE *Ptilogonys candatus	LANIIDAE *Lanius ludovicianus

											Buoyancy index	3.17	3.41	3.88	3.44	3.88	3.74	3.41	3.57	3.56
Aspect ratio	(5)2.19土0.07	(3)1.62 <u>十</u> 0.01	1.71	(5)1.97土0.04	$(3)1.89\pm0.04$	$(10)1.79\pm0.03$	1.76, 1.58	$(7)1.61\pm0.27$	(4)1.48 <u>十</u> 0.05		Glide cm. ² her aram	(5)3.02±0.22	(4)4.85 <u>+</u> 0.10	7.76	(5)5.94±0.37	(3)7.35±0.32	$(11)8.14\pm0.17$	8.19, 6.85	(7)7.78±0.24	(4)7.37土0.47
Wings cm. ² per gram	(5)2.30±0.19	(4) 3.45±0.23	6.40	(5)4.49 <u>+</u> 0.33	(3)5.65±0.25	(10)6.23±0.12	(2)6.16, 4.96	(7)5.99±0.13	(5)5.55±0.37		Tail cm. ⁸ per gram	(5)0.37±0.06	(4)0.68土0.03	0.88	(5)0.96±0.14	$(3)1.08\pm0.15$	(12)1.19土0.05	1.53, 1.29	(5)1.30±0.07	(3)1.14±0.10
Lower extremities % body weight	(2)7.76 <u>∓</u> 0.24	(3)9.99±0.34	7.1	$(4)6.55\pm0.14$	(3)5.89±0.38	(3)6.61±0.64	(2)6.53, 6.70	(6)7.63±0.10	(4)8.61±0.14		"Rest" % bod v weight	(3)7.06±0.43	(3)6.24 <u></u> ±0.03	• • •	(4)5.50±0.12	$(3)5.91\pm0.45$	6.42	6,61	(4)6.93±0.54	(3)6.36±0.30
Upper extremities % body weight	(3)27.55±1.05	(3)20.42 <u>∓</u> 0.75	•	(4)22.65±0.42	(3)24.44 <u>+</u> 0.80	25.50	:	(4)20.94 <u></u> ±0.87	(3) 20.29 <u></u> ±0.43		Supra- coracoideus %o body weight	(5)1.80±0.08	(5)1.14±0.04	• •	(4)1.50±0.15	$(3)1.59\pm0.07$	(1) $\begin{array}{c} Q \\ 1, \\ 0 \end{array}$ 1.41 (1) $\begin{array}{c} Q \\ 0 \end{array}$ 1.8	1.31	(4)1.36±0.04	(3)1.31±0.17
, Heart % body weight	(8)1.29 <u>+</u> 0.05	(6)0.97 <u></u> 0.06	(4)1.02 <u></u> ±0.03	(5)1.13±0.06	$(18)1.43\pm0.04$	$(9)1.32\pm0.04$	(2)1.16, 1.22	$(7)1.06\pm0.05$	1 2 1.06 4& 1.35±0.10	Upper extremities	Pectoralis % body weight	(5)18.3±0.42	(2)13.11 <u>∓</u> 0.39	• • •	(4)15.6±0.2 9	(3)16.94±1.32	Q 12.7 & 17.2	(1)12.84	(4)12.65±0.55	(3)12.63±0.32
Body weight grams	$\left\{ \begin{array}{c} 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 5 & 31.89 \pm 0.91 \\ 4 & 30.22 \pm 0.78 \end{cases}$	{1♀13.4 {3♂12.99±0.36	$\begin{array}{c} 42 \\ 53 \\ 53 \\ 16.9 \\ -0.23 \\ 16.9 \\ -0.23 \\ \end{array}$	$\begin{array}{c} 19\ \ \ 16.45 \pm 0.42 \\ 21\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 52 & 11.6\pm0.25 \\ 83 & 10.9\pm0.21 \end{cases}$	$\begin{cases} 32 \ 9.33\pm0.83 \\ 33 \ 9.39\pm0.08 \end{cases}$	$\begin{cases} 32 9.33\pm0.81 \\ 33 9.40\pm0.08 \end{cases}$	$\begin{cases} 1 & 12.3 \\ 5 & 0.71 \end{cases}$		Pectoral and sup. % body weight	(2)20.12 <u></u> ±0.46	(5)14.25土0.39	13.90	(5)17.60 <u>+</u> 0.58	(3)18.55±1.36	$ \begin{cases} 8 & 17.41 \pm 0.57 \\ P < 0.01 \\ 3 & 13.90 \pm 0.14 \end{cases} $	(2)14.15, 15.3	$(7)13.13\pm0.54$	(5)13.92 <u>+</u> 0.59
CTTTINUTNER	Sturmus *Sturmus vulgaris	CYCLARHIDAE *Cyclarhis gujanensis	VIREONIDAE Vireo carmioli	*Vireo flavifrons	Vireo olivaceus	Vireo philadelphicus	Vireo leucophrys	Hylophilus aurantiifrons	Hylophilus viridiflavus			STURNIDAE *Sturnus vulgaris	CYCLARHIDAE *Cyclarhis gujanensis	Vireonidae Vireo carmioli	*Vireo flavifrons	Vireo olivaceus	Vireo philadelphicus	Vireo leucophrys	H ylophilus aurantiifrons	H ylophilus viridiflavus

TABLE I.—continued

			N	10 . 1		LOC	COM	OTOR	ME	CHAI	NISN	IS OF	BI	RDS-	—HAI	RTM	AN		7	7		
												Buoyancy	a.42	3.00	УС К 1010	3.32	3.37	3.39	3 01	3 7 7	372	
	Aspect ratio	$(5)1.48\pm0.02$	1.42	(6)1.68+0.04	(19)1.82+0.02	(3)1.76+0.01	$(39)1.83\pm0.02$	$(9)1.83\pm0.04$	$(8)1.89\pm0.03$	1.78		Glide cm. ² pcr	(5)7.59+0.22	4.66	(6)5.63+0.16	(19) 6.09+0.09	(4)5.61+0.22	(39)6.11+0.06	(9)9 52+0 41	(8)7 48+0 25	7.65	
TAV: and	em. ² per gram	(5)5.90±0.25	3.73	(6)4.31 <u>+</u> 0.13	$(19)4.72\pm0.07$	$(4)4.52\pm0.18$	$(38)4.67\pm0.05$	(9)7.09±0.29	(8)5.73±0.16	5.86		Tail cm. ² pcr	(5)0.99+0.08	0.54	(6)0.84+0.06	(19)0.87+0.03	(4)0.53+0.06	(38) 0.94+0.03	(9)1.72+0.14	$(8)1.12\pm0.08$	1.11	
Tomor	extremities % body weight	(5)8.32±0.10	:	(5) 8.07±0.48	(10)5.98±0.21	$(6)7.01\pm0.31$	(8)6.26 <u>+</u> 0.44	(6)7.12 <u>+</u> 0.21	(6)6.29 <u>+</u> 0.29	8.70		"Rest" % body weight	(5)6.14±0.52	:	(3)7.05+0.70	(8)7.09 <u>+</u> 0.42	$(5)5.29\pm0.13$	(5)8.39±0.54	(5)5.71+0.29	(4) 5.48+0.52		
IInner	extremities % body weight	(5)20.72±1.25	•	(3)26.47±1.51	(8)28.35±0.87	(5)22.47 <u></u> ±0.33	(5)31.60 <u>+</u> 2.02	(5) 23.04 <u>∓</u> 0.80	(4)22.13 <u></u> ⊥ 0.82	• •		Supra- coracoideus % body weight	$(5)1.21\pm0.10$	•	$(4)1.78\pm0.09$	$(10)1.85\pm0.16$	(6)1.78 <u>+</u> 0.17	$3\sigma^{2} 2.07\pm0.12$	(5)1.54+0.03	(4)1.52+0.14	1.78	(continued)
	Heart % body weight	$(4)1.12\pm0.05$	1.34	(5)1.28 ±0.06	$(17)1.44\pm0.03$	(6)1.32±0.05	(37)1.35±0.02	(18)1.13±0.04	(7)0.99±0.05	(2)1.00, 1.03	Upper extremities	Pectoralis % body weight	$(4)12.75\pm0.53$:	(3)16.58 <u>+</u> 0.60	$(10)18.90\pm0.69$	(6)15.54±0.31	4♂ 22.3±0.13	(5)15.8+0.52	(4)15.1+0.29	18.9	
	Body weight grams	{ 3 ♀ 9.43±0.49 { 4♂ 9.94±0.31	1 \$ 16.78	$\left\{\begin{array}{cccc} 4\ \ 2 & 18.71 \pm 0.89 \\ 4\ \ 3 & 17.78 \pm 0.50 \end{array}\right.$	$\left\{ \begin{array}{c} 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 2 & 11.68, 11.76 \\ 4 & 0 & 11.31 \pm 0.43 \end{array}$	$\left\{\begin{array}{c} 6\ \ 2\ \ 16.04\pm0.41\\ 37\ \ 37\ \ 16.12\pm0.19\end{array}\right.$	$\left\{\begin{array}{c}18\ 20.6\pm0.14\\19\ & 10.3\pm0.14\end{array}\right.$	$\begin{array}{c} 4 & 13.16 \pm 0.43 \\ 5 & 3 & 14.09 \pm 0.30 \end{array}$	{ 1 2 12.90 { 20 13.60, 13.47		Pectoral and sup. % body weight	(4)13.92±0.62	13.6	(e)18.75 <u></u> ±0.58	(11)20.62±0.65	(6)17.49土0.46	(38)22.09 <u></u> 40.42	$(9)17.7\pm0.37$	$(8)16.44\pm0.34$	(1)20.68	
		Hylophilus decurtatus	H ylophilus ochraceiceps	Coerebidae *Chlorophanes spiza	Cyanerpes cyaneus	Cyanerpes lucidus	Dacnis venusta	Paruridae Mniotilta varia	Protonatria citrea	Helmitheros vermivorus			Hylophilus decurtatus	Hylophilus ochraceice <mark>ps</mark>	COEREBIDAE *Chlorophanes spiza	Cyanerpes cyaneus	Cyancrpes lucidus	Dacnis venusta	PARULIDAE Mniotilta varia	Protonatria citrea	Helmitheros vermivorus	

													Buoyancy index	4.05	3.86	3.79	3.83	3.62	3.68	3.90	3.74	3.66	3.71	
Aspect ratio	$(6)1.74\pm0.02$	1.79	$(21)1.85\pm0.02$	(6)1.70±0.03	(15)1.69+0.03	1.85	(9)1.84±0.02	1.98 ± 0.02	(10)1.85 <u></u> 0.02	1.76 ± 0.06	1.75 ± 0.04		Glide cm.* per oram	0.25	9.36	$(21)8.92\pm0.13$	8.18 ± 0.31	$(15)9.15\pm0.15$	8.13	(12)9.86±0.19	8.69±0.51	(10)9.73+0.30	8.02+0.09	
Wings cm. ^g per gram	(5)6.95±0.10	7.12	(23)6.86 <u>+</u> 1.20	(6)6.85±0.20	(12)6.90+0.12	6.25	(12)7.21±0.15	(9)6.51 <u></u> ±0.41	$(10)7.03\pm0.23$	(5)5.93±0.38	(11)6.60 <u>±</u> 0.13		Tail cm. ^s per oram	(6)1.84±0.11	1.68	(23)1.42±0.05	1.16 ± 0.02	$(12)1.44\pm0.07$	0.94	$(8)1.68\pm0.06$	(9)1.77±0.01	(9)1.92 <u>+</u> 0.13	1.23+0.12	1
Lower extremities % body weight	(3)7.00±0.32	:	(5)6.56 <u>十</u> 0.33	7.55	(6)7.05+0.32	(2)6.18, 6.97	(6)6.35±0.37	(2)5.3,7.02	(4)7.00 <u></u> 40.26	•	•		"Rest" % body weight	(1)6.56	•••	$(3)5.19\pm0.45$	•	(5)5.32±0.30	(1)6.18	(5)6.26±0.33	5.02	$(3)5.09\pm0.16$:	
Upper extremities % body weight	(2)24.41, 26.18	•	(3)21.88±0.77	•	$(5)20.17\pm0.80$	(1)20.91	(4)22.49 <u>+</u> 0.57	(1)20.84	(3)20.21 <u></u> ±0.94	:	•		Supra- coracoideus % body weight	(3)1.91±0.26	•••	(3)1.63±0.15	••••	$(8)1.37\pm0.09$	(1)1.34	$(5)1.45\pm0.02$	(1)1.42	$(3)1.51\pm0.17$:	
Heart % body weight	$(4)1.30\pm0.18$	1.05	(24)1.26±0.03	(9)1.22±0.07	(16)1.34±0.04	(8)1.40 <u>+</u> 0.11	$(15)1.26\pm0.04$	$(18)1.14\pm0.03$	$(20)1.13\pm0.03$	(5)1.16 <u>十</u> 0.06	$(11)1.17\pm0.04$	Upper extremities	Pectoralis % body weight	$(3)15.35\pm 1.31$	6 9 9	$(3)15.05\pm0.33$	• • •	(8)13.21±0.33	(1)13.39	(6)14.90±0.36	(1)14.40	$(3)13.61\pm0.71$	• • •	
Body weight grams f 1 2 8.4	{3ở 8.92±0.30	(1)8.92	1 7 2 9.42±0.38 17 3 9.40±0.06	24 2 9.240.24 33 9.940.28	$\left\{\begin{array}{c} 6\ \ 6\ \ 6\ \ 6\ \ 6\ \ 6\ \ 10\ \ 0\ \ $	$ \begin{cases} 162 \ 9.6\pm0.40 \\ 176 \ 10.\overline{25}\pm0.30 \end{cases} $	{ 22 2 8.64±0.12 { 260 9.29±0.11	1829.5 ± 0.14 12010.0 ± 0.58	$\left\{ \begin{array}{c} 172 & 9.41\pm0.18 \\ 253 & 9.49\pm0.14 \\ \end{array} \right\}$	134 12.5±0.97 13ď 12.0±0	$\begin{cases} 30^{\circ} 11.8\pm0.43 \\ 30^{\circ} 11.8\pm0.21 \end{cases}$		Pectoral and sup. 70 body weight	(6)15.69 <u>+</u> 0.58	17.05	$(16)17.05\pm0.25$	(6)14.8±1.0	$(16)14.99\pm0.31$	(2)14.73, 15.0	$(11)16.35\pm0.35$	(10)15.7±0.20	$(10)15.21\pm0.44$	$(5)14.9\pm0.81$	11411111
Vermivora	chrysoptera Verminora	Sund	v ermivora peregrina	v ermivora gutturalis	Parula pitiayumi	Dendroica petechia	Dendroica virens	Denaroica fusca	Dendronca pensylvanica	Denaroica Dinus	discolor			Vernivora chrysoptera	V ermuora pinus	Vermivora peregrina	V ermivora gutturalis	Parula pitiayumi	Dendroica petechia	Dendroica virens	Dendroica fusca	Dendroica pensylvanica	Dendroica pinus	Dendroica

TABLE I.—continued

				NO	. I		L00	СОМ	от	OR	ME	CHA	NIS			RDS-	-HA	ARTN	IAN			79			
														Buoyancy index	3.70	4.16	3.68	3.50	3.60	3.39	3.50	3.80	3.97	4.10	
	Aspect	(5)1.84+0.48		c0.0土气/.1(c)	1.83	$(4)1.89\pm0.05$	$(5)1.72\pm0.04$	1.56	1.72	(18)1.68 <u>+</u> 0.02	$(4)1.64\pm0.03$	(25)1.54±0.05		Glide cm. ^s per gram	$(5)7.01\pm0.18$	(5) 7.83 <u></u> ±0.31	6.74, 6.77	(6)6.90±0.27	(5)7.48 <u>+</u> 0.13	6.56	5.96	(18)10.11±0.12	$(4)11.82 \pm 0.62$	$(26)11.12\pm0.22$	
vv mgs	cm. ^s per aram	(5)5.08+0.18			(6) 5.03, 3.13	らいの中でいて(n)	80.0 <u>4</u> 86.6(c)	4.68	4.16	$(18)7.38\pm0.09$	(4)7.93 <u>+</u> 0.34	(26)7.88 <u>+</u> 0.17		T _{ail} cm. ^s per gram	$(4)1.38\pm0.21$	$(4)1.35\pm0.12$	(2)1.17, 1.12	(6)1.23±0.06	$(4)1.13\pm0.03$	1.90	1.29	(17)2.04 <u></u> 40.07	(4)2.65±0.45	(26)2.45±0.09	
TOWCI	extremities % body weight	$(5)6.10\pm0.12$	(4)6.89+0.34	(2)663 640	(4)0.07+0.77		44.010.00/c7	02.11	8.16	(6)7.47 <u>+</u> 0.45	(3)6.68±0.64	$(8)7.10\pm0.45$		"Rest" %o body weight	(5)6.16±0.20	(3)6.43 <u>+</u> 0.32	8.07	(4)5.77±0.13	$(4)5.11\pm0.45$	•	5.48	(6)5.55±0.21	(3)5.49±0.59	(6)7.39±0.70	
The provision	% body weight	$(5)25.43\pm0.83$	$(3)25.84 \pm 1.21$	(1)29.59	$(4)23.35 \pm 0.23$	(4)20 51+0 86		• • •	10.02	(5)20.21 <u>±0.75</u>	(3)22.14±1.29	(6)24.78±0.11		Supra- coracoideus % body weight	(5)1.94±0.12	$(3)1.93\pm0.03$	2.32	$(3)1.72\pm0.07$	(4)1.66±0.14	* * *	1.49	(5)1.41±0.08	$(3)1.48\pm0.04$	$(6)1.63\pm0.10$	(continued)
Heart	% body weight	(15)1.17±0.03	(5)1.03±0.07	(2)1.20, 1.27	(6)1.14+0.07	(9)0.98+0.02	(1)1.31			$(26)1.18\pm0.04$	(13)1. 20 <u>+</u> 0.03	(32)1.39±0.03	Upper extremities	Pectoralis % body weight	(5)17.33±0.72	$(3)17.48\pm0.93$	19.2	(4)15.80±0.34	(4)13.75 <u>±</u> 0.57	• •	13.1	(5)13.19±0.49	$(3)15.2\pm0.35$	(6)15. 88 <u>+</u> 0.30	
Body weight	grams	$\begin{cases} 92 18.86\pm0.49 \\ 123 19.38\pm0.50 \end{cases}$	$\begin{cases} 62 \ 18.8 \pm 1.12 \\ 70 \ 16.4 \pm 0.98 \end{cases}$	29 18.1, 20 .0 2	$\left\{ \begin{array}{cccc} 2\mbox{2} & 13.92, 14.61 \\ 4\mbox{6} & 14.48\pm0.89 \end{array} \right.$	$\begin{cases} 42 \ 11.20\pm0.47 \\ 80 \ 11.69\pm0.17 \end{cases}$	{ 1 Q 13.77 { 10 ⁷ 14.70	$\begin{cases} 32 30.03\pm1.02 \\ 6.7 24.73\pm0.42 \end{cases}$	∫ 12 ♀ 7.10+0.16	~18♂7.47 <u>王0.06</u> ~110 8 13 <u>-0 18</u>	$\left\{\begin{array}{c}111\\96\\96\\100\\100\\100\\100\\100\\100\\100\\100\\10\\10\\1$	27 0 9.51 ± 0.43		Pectoral and sup. % body weight	(5)19.26 <u>+</u> 0.73	$(5)18.93\pm0.39$	(2)21.52, 23.00	(4)17.59 <u>十</u> 0.26	$(5)15.68\pm0.60$	12.30	14.59	(20)14.20 <u>+</u> 0.21	(4)16.26 <u>±</u> 0.52	$(29)15.78\pm0.38$	
	. U #	Semrus aurocapillus	Seturus noveboracensis	Seiurus motacilla	O porornis formosus	O porornis Philadelphia	Geothlypis chiriquensis	Icteria virens	Wilsonia	pusilla Setobhaga	ruticilla Maioborne	miniatus		* Seiurus	aurocapillus Seiurus	noveboracensis Seiurus	motacilla O borornis	formosus Oborornis	philadelp hia Geothlybis	chiriquensis Icteria	virens Utilsonia	pusilla	Tuticilla Muichause	survey with	

											Buoyancy index	4.03	3.64	3.81	3.43	3.05	3.77	4.04	4.41	3.83
Aspect ratio	(4)1.55±0.06	(15)1.57±0.03	(6)1.54±0.02	(4)1.55 <u>±</u> 0.05	(20)1.88±0.08	(12)1.99 <u>+</u> 0.04	(5)2.03±0.04	(10)1.93±0.06	(4)1.74±0.10		Glide cm. ^s pcr gram	(5)10.04±0.3 2	(15)8.07±0.12	(7)8.09 <u></u> 40.28	(5)7.08 <u></u> 40.28	(19)4.45 <u>±</u> 0.08	(12)3.75±0.16	(5)3.44±0.21	(8)4.65 <u>+</u> 0.19	(4)5.00±0.23
Wings cm. ² per gram	(5)7.49土0.26	(15)5.84±0.09	(7)5.98±0.25	(5)4.87±0.19	(19)3.10±0.05	(12)2.93±0.13	(5)2.44土0.14	(9)3.57±0.11	(4)3.89±0.15		Tail cm. ^s per gram	(4)1.96 <u>+</u> 0.15	(15)1.66±0.06	(6)1.47 <u></u> 0.10	(5)1.22土0.10	(19)0.74±0.03	(12)0.63±0.04	(3)0.85±0.12	(8)0.78±0.05	(4)0.67土0.01
Lower extremities % body weight	(4)7.84 <u>±</u> 0.31	(5)8.10±0.28	10.2, 10.38	(3)9.73±0.61	(19)6.47±0.14	(7)9.36±0.38	(5)12.44±0.67	(6)9.11 <u>±</u> 0.57	(3)9.91±1.37		"Rest" % body weight	(4)6.43土0.37	(3)5.30±0.78	4.87	(3)6.83±0.30	(15)6.29 <u>十</u> 0.12	(6)7.90±0.32	(5)8.25±0.23	(5)6.18±0.49	(3)6.92±0.68
Upper extremities % body weight	(4)21.10±1.40	(4)20.78±1.22	(1)15.42	(3)23.20±0.74	(15)25.37±0.32	(6) 24.92±0.59	(5)23.54±0.38	(5)21.66±0.18	(3)23.49 <u>+</u> 1.95		Supra- coracoideus % body weight	(4)1.25 <u></u> ±0.04	(4)1.29±0.11	(2)1.10, 1.38	(5)1.75±0.07	(20)1.71±0.05	(6)1.33±0.05	(5)1.25±0.04	(5)1.25±0.07	(4)1.34±0.05
Heart % body weight	(5)1.18±0.06	$(16)1.37\pm0.07$	(5)1°07±0.05	(5)1.12±0.04	(22)1.39±0.03	(13)1.10±0.03	(4)0.91±0.06	(12)1.05±0.02	(4)1.08±0.03	Upper extremities	Pectoralis % body weight	$(4)13.40\pm1.03$	(4)12.56±0.49	9.45	(4)14.56 <u>+</u> 0.48	(20)17.1土0.24	(6)15.69± 0.30	(5)14.03 <u>+</u> 0.16	(5)14.2±0.10	(4)14.80 <u>+</u> 1.00
Body weight grams	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 7 & 11.14 \pm 0.52 \\ 8 & 12.14 \pm 0.63 \end{cases}$	$\begin{cases} 4 & 11.78 \pm 0.12 \\ 5 & 11.78 \pm 0.60 \end{cases}$	{ 29 14.32, 15.50 { 20 ³ 14.15, 16.48	$\begin{array}{c} 27\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{smallmatrix} 7 & 112.7 \pm 2.30 \\ 9 & 214.0 \pm 0.41 \\ \end{smallmatrix}$	{ 1 Q 170 { 40 314±0.88	$\left\{\begin{array}{c} 10\ \varphi \ 68.35\pm0.99\\ 11\ \sigma \ 113.1\pm2.49\end{array}\right.$	$\left\{ \begin{array}{l} 2Q & 52.7, 57.40 \\ 2\sigma & 56.5, 69.00 \end{array} \right.$		Pectoral and sup. % body weight	(5)14.75±0.73	(14)14.59 <u>+</u> 0.54	(4)12.7 <u></u> 0.60	(4)16.29±0.42	(20)18.83 <u></u> <u></u> -26	(12)17.22±0.38	(5)15.28±0.16	(10)16.71±0.42	(4)15.64±0.96
	Myioborus torquatus	Basilenterus culicivorus	Basileuterus melanogenys	Phaeothlypis fulvicanda	PLOCEIDAE Passer domesticus	ICTERIDAE Zarhynchus wagleri	Psarocolius decumanus	Cacicus vitellinus	Cacicus microrhynchus			Myioborus torquatus	Basileuterus culicivorus	Basileuterus melanogenys	Phaeothlypis fulvicauda	PLOCEIDAE Passer domesticus	Icrekidae Zarhynchus wagleri	Psarocolius decumanus	Cacicus vitellinus	Cacicus microrhynchus

TABLE I.—continued

80

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL

VOL. 143

				NO.	I		LO	СОМ	.отс	OR M	ECHA	NISI	MS	OF BI	RDS	5Н	[AR	TM.	AN			81			
														Buoyancy index	3.87	3.65	3.63 d	3.45	3.50	3.65	3.72	3.67	3.13	3.13	3.31
Acnert	ratio	$(4)1.31\pm0.07$	(4)1.96±0.04	(9)1.83±0.03	$(5)1.85\pm0.05$	(4)1.59±0.06	$(7)1.84\pm0.34$	(6)1.61±0.04	$(12)1.78\pm0.02$	(13)1.83±0.08	(10)1.68±0.03	1.78±0.05		Glide cm. ^e per gram	(4)3.82±0.26	(3)3.49 <u>十</u> 0.08 4 0 3 99 + 0 24	50 3.68+0.18	(5)5.13±0.49	(4)4.87±0.10	(7)5.59±0.11	(8)5.35±0.30	(12)4.79±0.10	(12)2.76±0.10	2.88 <u>+</u> 0.05	4.76±0.16
Cm. 8 her	gram	(4)2.50土0.12	$(3)2.48\pm0.07$	4 2.91 ± 0.14 P<0.05 5 3 2.37 ± 0.10	$(5)4.01\pm0.40$	(4)3.32±0.15	(7)4.16 <u>±</u> 0.12	(8)3.87±0.17	(12)3.86 <u>+</u> 0.10	(13)2.22土0.08	(10)2.16 <u></u> -0.04	(7)3.73±0.13		Tail cm. ^s per gram	(4)0.83±0.10	(4)0.71 <u>土</u> 0.04	(9) 0.79±0.09	(4)0.69 <u>+</u> 0.12	$(3)1.36\pm0.13$	(6)0.95 <u>±0.</u> 03	(7)0.85±0.19	(12)0.59 <u>+</u> 0.02	(11)0.33±0.02	(7)0.33土0.02	(4)0.60 <u>+</u> 0.07
extremities	% body weight	(3)15.23±0.67	(4)9.32±0.24	2오 10.0, 11.0 3♂ 12.6 <u>+</u> 0.46	(5)7.46 <u>十</u> 0.34	(4)12.16 <u>+</u> 0.13	$(3)8.12\pm0.11$	8.86, 8.94	(4)13.5±0.03	(4)14.91±0.17	•	(3)7.15±0.09		"Rest" % body weight	(3)6.52±0.42	$(4)8.41\pm0.16$ 22 6.68.7.37	30° 7.27±0.52	(5)6.12±0.19	(4)6.91±0.43	7.32, 8.34	20 7.22, 7.52	(3)7.37 <u></u> 14	(3)6.38 <u>+</u> 0.32	• •	• • •
extremities	% body weight	(5)19.20±0.78	(4)26.84 <u>+</u> 0.20	1우 27.0 4 3♂ 23.61 <u></u> ±1.05	$(5)21.89\pm0.97$	(4)21.38 <u>+</u> 1.09	(2)25.48, 27.47	2ď 26.89, 26.91	(3)28.00 <u>十</u> 0.54	(3)26.39 <u>+</u> 1.15	• •			Supra- coraccideus % body weight	(5)1.09±0.08	$(4)1.60\pm0.03$ 1 2 1.41	3 o 1.50±0.08	(5)1.28±0.14	(4)1.38±0.10	1.96, 1.73	2ď 1.39, 1.67	(3)1.83±0.09	(4)1.82 <u>±</u> 0.10	• •	 (continued)
Heart	% body weight	(9) 0.91±0.02	$(4)1.18\pm0.03$	(22)0.98 <u>∓</u> 0.02	(4)0.94±0.05	(7)0.91土0.06	$(12)1.27\pm0.06$	(7)1.08土0.04	(12)0.91土0.02	$(13)0.85\pm0.02$ P<0.01	$(11)1.08\pm0.02$	(7)1.27 <u></u> 40.06	Upper extremities	Pectoralis % body weight	(5)11.86±0.51	(4)16.84 <u>+</u> 0.03 1	3ở 14.8 <u>+</u> 0.66	(5)14.48 <u>+</u> 0.81	(4)13.08 <u>+</u> 0.66	(2)16.20, 17.40	2ď 18.0, 18.0	(3)18.8±0.36	(4)18.03±0.89	• •	
Body weight	grams (4256.4+0.73	$\{130, 71.0\pm 1.21$	20 175.30, 200	$\left\{\begin{array}{cccc} 8 & 100.5 \pm 3.00 \\ 200 & 191.0 \pm 6.04 \\ \end{array}\right.$	1 2 32.42 60 24.06±1.22	$\begin{cases} 42 50.75\pm1.50 \\ 50 56.21\pm2.98 \end{cases}$	$\begin{cases} 4233.46\pm0.98\\ 10033.82\pm0.48 \end{cases}$	842 34.0±2.71 96 50.7±0.79	845 33.48 <u>40.27</u> 90 46.16 <u>40.83</u>	{ 69 72.61 <u>+</u> 2.95 { 83 98.22 <u>+</u> 1.95	{ 3 2 73.0±5.26 { 8ď 97.8±2.5	{29 25.2, 28.1 {4♂ 25.4±1.02	!	Pectoral and sup. % body weight	$(6) 12.71 \pm 0.63$	(4)18.44 <u>±0.05</u> {42 14.09 <u>±1.15</u>	ر 5♂ 15.66 <u>∓</u> 0.59	(5)15.76 <u>+</u> 0.87	(4)14.47 <u>十</u> 0.69	(7)17.95 <u>十</u> 0.37 [29]13.6]15.2	{ 60 19.4 <u>±0.80</u>	(3)20.44 <u>土</u> 0.34	(14)19.56 <u>+</u> 0.36	$(11)18.5\pm0.31$	(6)18.3±0.54
and a second	Amblycercus	holosericeus	oryzivorus	Cassidix mexicanus	l cterus spurius	Icterus mesomelas	Icterus galbula	Agelaus phoeniceus	Levses militaris Chumalla	magna (Panamá)	Sturreud magua (Florida)	L HKAUPIDAE Chlorophonia callophrys		Amblincorrus	holosericeus Permocolor	oryzivorus Cassidiz	mexicanus Icterus	spurius Icterus	mesomelas Icterus	galbula Agelaius	phoeniceus Loittes	militaris Sturnella	magna (Panamá) Sturnella	magna (Florida) Thraufidae	Chlorophonia callophrys

														ancy ex	3.27	2.82	3.10	2.98	3.05	3.44	3.53	3.58	3.52	3.53	3.23
														Buoyancy index	з.	2.	3.	2.	3.	3.	3.	з.	3.	3.	3.
	Aspect ratio	1.86 ± 0.02	1.69, 1.74	1.80, 1.92	$(3)1.81\pm0.13$	1.86, 2.03	$(5)1.69\pm0.03$	(16)1.78±0.02	1.76, 1.82	(7)1.73±0.05	(12)1.68±0.03	(12)1.67±0.02		Glide cm. ² per gram	5.56土0.46	4.66, 5.86	5.22, 5.48	(3)5.21±0.55	5.15, 5.36	(6)6.21±0.30	(17)5.74±0.12	6.46, 6.71	(8)6.10±0.17	(15)5.72±0.17	(12)5.15±0.20
	Wings cm. ⁸ per gram	(4)4.33±0.34	3.95, 4.76	(2)4.27, 4.4	$(3)3.99\pm0.42$	(2)4.11, 4.29	(6)4.90±0.23	82 4.09±0.03	4.66, 4.76	$(6)4.67\pm0.18$	/ ¥ 4.10±0.15 P<0.05 50 4.79±0.21 60 3 45+0 10	60 4.27±0.11		Tail cm. ⁸ per gram	1.81 ± 0.07	0.36, 0.61	0.48, 0.55	(3)0.69±0.13	0.43, 0.58	(6)0.73±0.06	(17)0.84±0.04	1.05, 1.14	$(5)1.01\pm0.07$	(12)0.85±0.06	$(12)0.79\pm0.04$
pənu	Lower extremities % body weight	(3)5.61±0.42	6.1	(1)4.66	(3)5.19±0.31	5.27	(3)6.09±0.33	(4)6.42±0.23	6.82, 6.92	(6)6.07±0.39	(8)7.49土0.30	(6)9.34 <u>+</u> 0.48		"Rest" % body weight	(1)6.70	• •	•	(3)5.75±0.35	•	5.4	(3)6.94±0.21	5.89, 6.32	$(5)7.18\pm0.29$	$(7)7.80\pm0.48$	$(5)7.18\pm0.73$
TABLE I.—continued	Upper extremities % body weight	(1)26.74	•	• •	$(3)23.90\pm0.39$	• •	21.83	(3) 28.92 <u>+</u> 0.61	(2)23.72, 25.97	2日 25.51, 28.67 4♂ 29.87土0.63	(7)28.86土1.21	(5)25.75±1.39		Supra- coracoideus % body weight	(1)1.85	1.61	• •	$(3)1.51\pm0.05$	• •	(3)1.66±0.12	(3)1.85土0.09	1.50, 1.63	$(7)1.34\pm0.21$	(8)1.98±0.08	(5)1.58±0.05
	Heart % body weight	$(5)1.43\pm0.06$	1.10, 1.11	(2)1.25, 1.38	$(3)1.33\pm0.07$	(2)1.29, 1.45	$(5)1.25\pm0.03$	$(26)1.09\pm0.03$	(2)1.07, 1.21	$(11)1.16\pm0.04$	(15)0.98±0.03	(10)0.96±0.02	Upper extremities	Pectoralis %o body weight	(1)19.19	16.5	• •	$(3)16.63\pm0.08$	•	(3)17.26±1.66	(3)19.80±0.61	16.2, 18.15	$3 \ 20.50 \pm 0.83$	(8)17.14±0.92	(5)17.19±0.56
	Body weight	22 12.7, 16.0 20 17.70, 14.39	29 13.21, 19.93	$\begin{cases} 12 10.93 \\ 10^{2} 11.28 \end{cases}$	$\begin{array}{c} 2 & 10.92 \\ 1 & 11.75 \\ \end{array}$	2 2 10.53, 11.00	4 ° 13.28±0.24	$\left\{\begin{array}{c} 17\ 22.5\pm0.37\\ 24\ 321.49\pm0.24\end{array}\right\}$	{ 12 19.36 { 10 19.97	$\left\{\begin{array}{cccc} 6\ & 19.79 \pm 0.20 \\ 10\ & 17.84 \pm 0.36 \end{array}\right.$	$\left\{\begin{array}{c}11\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{cases} 6 & 21.28\pm 0.51 \\ 6 & 0.128\pm 0.12 \\ \end{cases}$		Pectoral and sup. %0 body weight	$(5)19.91\pm0.85$	(2)18.2, 18.11	(1)17.00	$(3)18.15\pm0.12$	(2)15.2,16.9	$(5)17.63\pm0.53$ $(82\ 19.7\pm0.39$	{90 20.9±0.22	18.83, 19.65	$\begin{cases} 32 & 20.15 \pm 0.94 \\ 60 & 22.87 \pm 0.87 \end{cases}$	(15)20.79±0.49	$(12)17.78\pm0.40$
		Tanagra clegantissima	I anagra fulvicrissa	Tanagra minuta	Tanagra Inteicapilla	Tanagra lauta	Tanagra imitans	Tangara icterocephala	Tangara inornata	Tangara larvata	Tangara gyrola	Tangara guitata			Tanagra elegantissima	l'anagra fulvicrissa	l'anagra minuta	l'anagra luteicapilla	l anagra lauta	l anagra imitans r	1 angara icterocephala 	Tangara inornata	Tangara larvata	Tangara gyrola	Tangara " outtața

				NO.	I		LOC	омо)TOF	R M	ЕСНА	NIS	SMS OF	BI	RDS-	—н.	ART	MAI	V		83			
													Buoyancy index	3.61	3.64	3.54	3.27	3.56	3.70	4.06	3.73	3.68	3.69	3.64
Aspect	(20)1.76±0.02	$(4)1.61\pm0.13$	(4)1.64土0.04	(9)1.55±0.01	1.68, 1.57	$(13)1.89\pm0.02$	2.00	(17)1.61 ±0.02	1.18	(8)1. 70±0.04	(12)1.54±0.03		Glide cm. ² per gram	(20)5.49±0.03	(4)4.71土0.71	(4)6.00 <u>+</u> 0.20	(9)4.94 <u>+</u> 0.13	5.04, 5.58	(12)5.96±0.02	4.46	(15)7.05 <u>+</u> 0.10	5.95	(8)5.82±0.15	(12)5.64 <u>+</u> 0.20
CM1.8 PET	(20)4.08 <u>+</u> 0.08	(4)3.90±0.25	(4)4.02±0.07	(9)3.38±0.11	3.85, 3.89	$(13)4.46\pm 0.10$	(1)5.22	$(20)5.34\pm0.08$	4.31	(6)4.13±0.12	(12)4.01±0.12		Tail cm. ^s fer gram	$(20)0.88\pm0.04$	$(4)0.90\pm0.11$	$(3)1.34\pm0.01$	(9)1.12 ±0.04	0.74, 1.24	$(11)1.14\pm0.04$	1.14	(18)1.30±0.03	1.16	$(7)1.33\pm0.06$	(12)1.09 <u>于</u> 0.04
extremities of hody monoth	(7)6.90 <u>+</u> 0.20	•	(4)7.41±0.29	(4)8.41 ±0.62	8.18, 8.76	(6)5.63 ±0.22	5.67	(7)6.03土0.16		6.2, 6.5	(5)8.81 <u>+</u> 0.15		"Rest" % body weight	39 8.05±0.22 40 7.61±0.85	(3)8.06 <u>十</u> 0.44	(4)5.68 <u>+</u> 1.11	(3)7.00±0.1 2	6.60, 8.20	(5)7.39±0.22	7.50	3♀ 6.72 <u>+</u> 0.22 4♂ 7.44 <u>+</u> 0.23		(4)6.60±0.02	22 6.89, 8.38 3ď 7.33 <u>+</u> 0.86
extremities	40 31.32 <u>+</u> 0.85	(3)29.04土1.45	$(3)22.23\pm2.97$	(3)25.95±0.57	22.56, 25.62	(5)26.50±0.51	(1)27.57	$\begin{array}{c} 4 Q & 23.74 \pm 1.18 \\ 4 G & 26.05 \pm 0.62 \end{array}$		(2)26.26, 27.97	♀ 23.51, 24.81 3♂ 27.57 <u>+</u> 3.57		Supra- coracoideus %0 body weight	321.65 ± 0.24 432.02 ± 0.10	$(3)1.72\pm0.02$	(4)1.59±0.21	$(3)1.91\pm0.12$	1.27, 1.69	$(5)1.74\pm0.07$	1.84	$\begin{array}{c} 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1.54	$(3)1.80\pm0.09$	32 1.61±0.16 50 1.89±0.13 (continued)
Heart	(23)1.33 <u>+</u> 0.03	$(5)1.31\pm0.10$	(6)0.83±0.07	(10)0.98 <u>-</u> 0.04	(2)0.70, 0.87	$(12)1.15\pm0.05$	1.11, 1.22	$(17)1.07\pm0.03$	0.93	(8)1.02 <u>+</u> 0.04	$\begin{array}{c} 4\ \ 2 \ \ 1.05\pm 0.04 \\ P \le 0.01 \\ 7\ \ \ 3 \ \ 1.46\pm 0.12 \end{array}$	Upper extremities	Pectoralis % body weight	$32 18.60\pm0.60$ $40^{\circ} 20.35\pm1.30$	(3)19.25 <u></u> −0.70	(4)14.88 <u>+</u> 0.97	$(3)17.03\pm0.47$	14.27, 16.15	(5)17,58±0.17	18.25	32 15.80±0.80 53 16.83±0.57	19.03	$(3)17.05\pm0.75$	32 16.36±1.62 50 19.6±1.65
boay weight	$\begin{cases} 142 & 32.90 \pm 0.53 \\ 190^{\circ} & 31.95 \pm 0.53 \end{cases}$	$\begin{cases} 1 & 37.81 \\ 7 & 39.17 \pm 1.46 \end{cases}$	$\begin{cases} 22 30.1, 30.6 \\ 100 30.14 \pm 0.64 \end{cases}$	$\begin{cases} 52 & 30.66\pm1.14 \\ 93 & 33.56\pm0.75 \end{cases}$	$\begin{cases} 32 & 33.98 \pm 0.18 \\ 10^3 & 37.67 \end{cases}$	$\left\{\begin{array}{ccc} 6228.81\pm0.59\\ 1130.43\pm1.05\end{array}\right.$	$\begin{cases} 2\sigma 30.68 \\ 32.10 \end{cases}$	$\left\{\begin{array}{ccc} 6 \varphi \ 16.27 \pm 0.19 \\ 13 \sigma \ 17.03 \pm 0.26 \end{array}\right.$	1° 31.2	{12 34.52 {7♂ 36.47±0.56	$\begin{array}{c} 42 & 37.12\pm0.98 \\ 7 & 35.01\pm0.71 \end{array}$		Pectoral and sup. % body weight	$\begin{cases} 10^{\pm} P < 0.01 \\ P < 0.01 \\ 10^{\circ} 22.13 \pm 0.47 \end{cases}$	(4)20.83 <u></u> ±1.06	(5)15.90 <u>±</u> 0.81	(9)18.26±0.65	15.96, 17.42	(7)19.05±0.22	20.09	$ \left\{ \begin{array}{c} 6 \varrho \ 16.89\pm 0.44 \\ P < 0.01 \\ 14 \sigma \ 18.71\pm 0.30 \end{array} \right. $	20.57	(8)19.60±0.39	$\left\{ \begin{array}{l} 62 & 16.81 \pm 0.62 \\ 7 & 20.79 \pm 1.15 \end{array} \right\}$
and the summer of the state of the summer of	Thraupis virens	Thraupis palmarum	Ramphocelus dimidiatus	Ramphocelus passerinii	Ramphocelus iceteronotus	Piranga rubra	Piranga olivacea	Piranga leucoptera	Piranga Iudoviciana	Piranga bidentata	Habia rubica		ľ	Thraupis virens	Thraupis Þalmarum	Ramphocelus dimidiatus	Ramphocelus passerinii	Ramphocelus iceteronotus	Piranga rubra	Piranga olivacea	Piranga leucoptera	Piranga Indoviciana	Piranga bidentata	Habia rubica

$ \left\{ \begin{array}{l} \text{Pectoral and sup} \\ \begin{array}{l} \text{Pectoral and sup} \\ \begin{array}{l} & & & & & & & & & & & & & & & & & & &$
52 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

			NO.	I	I	.000	омо	TOR	MB	CHA	NI:	SMS	5 OF 1	BIRD	S—н	ART	MA	N		8	5			
													Buoyancy index	3.54	3.50	3.68	3.56	:	3.72	3.37	3.39	3.54	3.36	3.42
Aspect	(9)1.51 <u>±</u> 0.03	(6)1.59+0.03	$(5)1.79\pm0.01$	$(17)1.88\pm0.07$	(2)1.51, 2.00	$(3)1.78\pm0.06$	(10)1.61±0.01	(6)1.58±0.06	(6)1.60±0.05	(6)1.52±0.02	2.00		Glide cm. ² per gram	(9)5.80±0.19	(e)5.17 <u>+</u> 0.31	(4)4.59 <u>+</u> 0.08	$(17)4.87\pm0.08$	(2)4.36, 6.10	(4)8.55 <u></u> −0.87	(12)7.43±0.17	(6)7.10±0.27	(6)7.67±0.15	(6)7.44±0.21	6.40
em. ² per	(9) 3.80 <u>+</u> 0.11	(5)3.48+0.09	$(4)3.42\pm0.11$	$(18)3.55\pm0.04$	(2)3.25, 4.34	(4)6.17±0.71	$(12)5.47\pm0.13$	(6)5.23±0.37	(5)5.59±0.02	(6)5.44±0.13	4.99		Tail cm. ² per gram	(9)1.54±0.22	$(5)1.35\pm0.23$	$(4)0.82\pm0.10$	$(17)0.95\pm0.07$	(2)0.64, 1.24	$(3)1.77\pm0.18$	$(12)1.34\pm0.07$	(5)1.12±0.08	(6)1.45±0.06	(6)1.31±0.07	0.92
extremities of holy moiolt	(4) 6.68±0.32	(6)6.66+0.29	$(3)7.15\pm0.21$	(6)6.62±0.24	(2)6.71, 6.87	(3)5.43±0.20	(9)7.65±0.43	(5)5.63 <u>+</u> 0.41	(8)6.70±0.29	(3)7.86±0.57	5.18		"Rest" % body weight	(4)8.26 <u>+</u> 0.40	(e)7.19 <u>∓</u> 0.28	7.54, 7.68	42 7.61±0.36 13 8.85	(1)7.57	6.9, 6.32	325.28 ± 1.225 537.10 ± 0.46	(4)5.41 ±0.46	(7)6.40 <u>+</u> 0.08	5.79	6.40
extremities of hody moiobt	(4) 29.51±1.16	(6)25.52+0.59	26.21, 28.04	4 2 25.89 <u>+</u> 0.60 10 30.50	(1)28.52	27.84, 27.25	3220.58 ± 1.74 5324.51 ± 0.60	(4)22.02±0.97	(7)22.67 <u>+</u> 0.46	22.02	27.70		Supra- coracoideus % body weight	(4)2.01±0.10	(6)1.74±0.11	1.62, 1.76	$\begin{array}{c} 4 \ 2 \\ 1 \ \ 3 \ \ 3 \\ 1 \ \ 3 \ \ \ 3 \ \ 3 \ \ 3 \ \ 3 \ \ 3 \ \ \ 3 \ \ \ 3 \ \ \ 3 \ \ \ \ 3 \$	1.90, 1.95	1.74, 2.03	321.42 ± 0.16 531.85 ± 0.13	(5)1.65±0.10	$(7)1.78\pm0.07$	1.83	1.88 (continued)
Heart of hode residet	(15)0.94±0.03	(12)1.21+0.09	(7)1.03 <u>+</u> 0.04	$(19)1.10\pm0.02$	(2)0.95,0.97	(7)1.38±0.07	(15)1.15±0.03	(8)1.19 <u>+</u> 0.06	$\begin{array}{c} 4 & 2 \\ 4 & 3 \\ 4 & 3 \\ 1.22 \pm 0.05 \\ 1.22 \pm 0.05 \\ \end{array}$	$(6)1.08\pm0.03$	1.59	Upper extremities	Pectoralis %o body weight	(4)19.2 <u></u> 40.75	(e)16.58 <u>+</u> 0.36	17.05, 18.6	$\begin{array}{c} 4 Q & 16.68 \pm 0.25 \\ 1 d & 19.71 \\ \end{array}$	15.22, 19.00	19.2, 18.9	3 2 13.88±0.52 5 3 15.56±0.71	(5)15.17±0.60	(7)14.49±0.51	14.4	19.42
Body weight	$\left\{\begin{array}{c} 3 & 37.0 \pm 3.17 \\ 12 & 38.0 \pm 0.50 \end{array}\right.$	$\begin{cases} 132 43.2\pm0.66 \\ 196 44.2\pm0.80 \end{cases}$	$\begin{cases} 52 & 61.1\pm0.85 \\ 70 & 63.1\pm0.91 \end{cases}$	$\left\{\begin{array}{c} 10\ \varphi \ 44.91 \pm 0.49 \\ 14\ \varphi \ 44.46 \pm 0.75 \end{array}\right.$	{12 32.06 332.7 <u>+</u> 0.7	{ 1 2 14.0 { 80 15.35±0.45	$\begin{cases} 82 9.19\pm0.34 \\ 133 8.81\pm0.16 \end{cases}$	${11010.19}{11010.00\pm0.14}$	$\begin{array}{l} \begin{array}{c} 4 & 2 \\ 7 & 3 \\ 7 & 3 \\ \end{array} \\ \begin{array}{c} 11.30 \pm 0.43 \\ \end{array} \end{array}$	5ď 9.01±0.26	1ď 13.12		Pectoral and sup. %o body weight	(10)18.46 <u>±</u> 0.89	(6)18.32 <u></u> −0.41	(5)18.47 <u>十</u> 0.43	$\left\{\begin{array}{c}4 & 2 \\ 10 & 39 \\ 10 & 19.39 \\ 10 & 39 \\ 10.43 \\ 10 & 39 \\ 10.43 \\ 10 & 39 \\ 1$	(2)17.12, 20.95	(3)20.96 <u>∓</u> 0.03	$\begin{cases} 52 \ 15.95\pm0.66 \\ 73 \ 17.29\pm0.47 \end{cases}$	(6)16.87±0.52	(8)16.37 <u></u> ±0.48	(6)15.10 <u>+</u> 0.42	21.30
	Richmondena cardinalis floridana	Richmondena cardinalis cardinalis	Pheucticus tibialis	Pheucticus ludovicianus	Cyanocompsa cyanoides	Passerina cyanea	Tiaris olivacea	Sporophila aurita	Oryzoborus funereus	Volatinia jacarina	Spinus xanthogaster		D'shumed and	Antonnena cardinalis floridana	Richmondena cardinalis cardinalis	Pheucticus tibialis	Pheucticus Iudovicianus	Cyanocompsa cyanoides	Passerina cyanea	Tiaris olivacea	Sporophila aurita	Oryzoborus funereus	Volatinia jacarina	Spinus zanthogaster

												Buoyancy index	3.63	3.13	3.72	3.19	3.28	3.29	3.22	3.18	3.09	214
Aspect ratio	1.96, 1.96	1.41, 1.45	$(7)1.48\pm0.03$	$(5)1.42\pm0.03$	(3)1.46±0.06	$(4)1.45\pm0.04$	$(9)1.50\pm0.03$	(6)1.51±0.07	(23)1.53±0.02	(4)1.55±0.02		Glide cm. ² per gram	6,98, 8,02	3.74, 3.83	(10) 6.06±0.20	$(5)4.40\pm0.11$	(3)4.45±0.09	(5)4.27土0.24	(9)4.63±0.19	$(6)4.10\pm0.14$	$\begin{array}{c} 10 \mbox{2} + .42 \pm 0.24 \\ 13 \ \mbox{3} + .17 \pm 0.12 \\ \mathbf{P} < 0.01 \end{array}$	1414 F5-10 13
Wings cm. ^s per gram	5.41, 5.79	(2)2.40, 2.74	(8)4.39±0.18	$(5)2.98\pm0.10$	$(3)3.09\pm0.11$	$(5)3.06\pm0.20$	$(9)3.14\pm0.05$	(6)2.97±0.15	$\begin{array}{c} 10\mbox{2.68 ± 0.11} \\ 13\mbox{3.10 ± 0.07} \\ \mathbf{P} < 0.01 \end{array}$	(4)2.86±0.14		Tail cm. ^e per gram	0.99, 1.41	0.73, 0.98	$(10)1.42\pm0.09$	$(5)1.11\pm0.07$	(3)0.92±0.06	(5)0.82±0.08	$(8)1.27\pm0.08$	(6) 0.60±0.09	$10\ \ 1.23\ -0.14$ $13\ \ 1.45\ -0.10$	LANT DELONG
Lower extremities % body weight	3.77, 4.82	16.80	$(4)11.69\pm0.65$	11.6, 14.0	12.08, 13.12	$(4)11.2\pm0.59$	$(4)13.11\pm0.55$	(6)12.97 ±0.63	(10)13.2±0.17	(4)11.5 <u>+</u> 0.29		"Rest" %o body weight	6.18, 6.38	•	(3)7.09 ±0.42	• • •	(2)6.53, 7.13	5.78, 6.45	5.44, 5.84	(6)5.33±1.40	(10)6.18±0.15	1476 54-1010
Upper extremities % body weight	(2)25.96, 28.33	•	$(3)21.04\pm 2.36$	•	(2)20.05, 23.21	22.24, 22.42	17.82, 19.43	(6)19.61±0.80	49 19.83 <u>+</u> 0.69 68 22.72 <u>+</u> 0.75	(4)24.58 <u>+</u> 0.66		Supra- coracoideus ¢o body weight	1.45, 1.70	• •	$(3)1.35\pm0.15$	1.70	$(3)1.79\pm0.03$	1.56, 1.92	(3)1.39±0.01	$(6)1.68\pm0.03$	•	10 0 1 62 1161
Heart % body weight	$(3)1.70\pm0.06$	(2)0.59, 0.62	(11)0.81±0.04	(5)0.82±0.06	$(3)0.84\pm0.01$	(4)0.82±0.06	$(11)0.88\pm0.04$	(10)0.85±0.0 4	$\begin{array}{c} 12 \mbox{0.83}{-0.03}\\ {\rm P}{<}\ 0.05\\ 23 \mbox{0.94}{-0.04}\\ \end{array}$	(5)1.07 <u></u> -0.04	Upper extremities	Pectoralis % body weight	18.08, 20.5	••••	$(3)12.59\pm 1.83$	12.95	(3)13.37±0.64	14.05, 14.90	$(3)11.9\pm0.53$	$(6)12.61\pm0.32$	• • •	111501010
Body weight grams	$\begin{cases} 7 & 12.8 \pm 0.5 \\ 9 & 13.1 \pm 0.4 \end{cases}$	{ 1 2 55.94 { 1 3 55.83	$\begin{cases} 52 & 30.1\pm0.60 \\ 73 & 32.1\pm0.70 \end{cases}$	$\begin{cases} 52 & 38.88 \pm 1.50 \\ 333 & 40.76 \pm 0.48 \end{cases}$	$\left\{ \begin{array}{c} 1\ \varphi \ \ 39.03 \\ 2\ \sigma' \ \ 38.9, \ 43.8 \end{array} \right.$	$\begin{array}{c} 3\ 2 \\ 3\ 3 \\ 3\ 3 \\ 3\ 43.58 \\ \pm 3.38 \\ \end{array}$	$\begin{cases} 32 36.84\pm1.24 \\ 83 36.15\pm0.52 \end{cases}$	$ \left\{ \begin{array}{c} 102 \ 37.23 \pm 0.69 \\ P < 0.01 \\ 7 \ 32.26 \pm 0.84 \end{array} \right. $	$\left\{\begin{array}{c} 15 & 38.0\pm0.90\\ 26d & 39.0\pm0.55 \end{array}\right.$	$\begin{array}{c} 32 & 38.96\pm1.06 \\ 196 & 42.17\pm0.48 \end{array}$		Pectoral and sup. 7,0 body weight	19.78, 21.95	10.9, 13.4	$(10)13.15\pm0.66$	(5)14.57±0.47	$(3)15.16\pm 1.01$	(4)15.26±0.69	$(10)13.23\pm0.28$	(7)14.49±0.37	(24)14.0 <u>十</u> 0.46	74140 04 + 0 ED
	Spinus tristis	Pezopetes capitalis	Pselliophorus tibialis	Atlapetes brunnei-nuch a	Atlapetes assimilis	Atlapctes torguatus	Atlapctes gutturalis	Arremonops conirostris	Pipilo erythrophthalmus alleni	Pipilo erythrophthalmus erythrophthalmus			Spinus tristis	Pezopetes capitalis	Pselliophorus tibialis	Atlapetes brunnei-nucha	Atlapetes assimilis	Atlapetes torquatus	Atlapetes gutturalis	Arremonops conirostris	Pipilo erythrophthalmus alleni	Pipilo erythrophthalmus

TABLE I.—concluded

					Buoyancy index	3.52	3.21	3.20	
Aspect ratio	(3)1.68±0.04	$(16)1.63\pm0.02$	(3)1.59±0.03		Glide cm. ^s per gram	(4)8.22 <u>+</u> 0.36	(16)5.08±0.12	(3)5.72±0.31	
Wings cm.ª per gram	(4)5.77 <u>+</u> 0.22	(16)3.74±0.06	$(3)3.73\pm0.21$		Tail cm. ^s per gram	(4)1.52±0.17	$(16)0.83\pm0.03$	1.08, 1.10	
Lower extremities % body weight	(3)5.50±0.40	(5)11.32±0.54	(3)9.68±0.5 6		"Rest" % body weight	(3)6.00±0.33	(4)5.55 <u>±</u> 0.08	(3)5.84±1.03	
Upper extremities % body weight	(3)26.21±0.27	(4)19.44±0.55	$(3)25.99\pm 2.35$		Supra- coracoideus %o body weight	(3)1.94土0.25	$(5)1.55\pm0.09$	$(3)1.69\pm0.22$	
Heart % body weight	$(11)1.28\pm0.03$	$(21)0.86\pm0.03$	$(8)1.15\pm0.06$	Upper extremities	Pectoralis % body weight	(3)18.27±1.88	(5)12.84±0.64	$(3)15.1\pm1.73$	
Body weight grams	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{ \begin{array}{c} 11 & 19.96 \pm 0.49 \\ 15 & 20.96 \pm 0.23 \end{array} \right\}$	$\left\{\begin{array}{c} 10\text{20.32 ± 0.34}\\ 23\text{30^{2}}\ 22.1\pm0.42 \end{array}\right.$		Pectoral and sup. % body weight	$(3)20.20\pm 2.05$	$(16)14.88\pm0.42$	(3)16.82±1.94	
	Spizclla pusilla	Zonotrichia capcusis	Melospiza melodia			Spizella pusilla	Zonotrichia capensis	Melos piza melodia	

TABLE 2.—Seasonal variation of proportional weight of the heart

		January February Percent of		June Percent of	Significance of differ-
Species	No.	body weight	No.	body weight	ence
Anhinga anhinga	(8)	1.01±0.03	(7)	0.79±0.038	P<0.01
Ardea herodias	(5)	0.90±0.04	(5)	0.76±0.04	P<0.05
Eudocimus albus	(13)	1.12±0.03	(13)	0.97±0.03	P<0.01
Buteo lineatus	(7)	0.73±0.05	(7)	0.55 ± 0.03	P<0.01
Aphelocoma					
coerulescens	(6)	1.07±0.03	(11)	0.92±0.03	P<0.01

TABLE 3.—Muscles of the upper extremities (percent of body weight)

	,		Supra-		5645 116.5	5
Species	Total	Pectoralis	cora- coideus	Shoulder	Brachium	Forearm
Tinamus major		26.9	8.17	3.44	2.43	2.80
Pelecanus occidentalis	-	11.30	1.85	2.24	2.30	I.2 6
Phalacrocorax olivaceus.		11.90	1.24	1.91	2.54	1.15
Anhinga anhinga		12.95	1.28	I.04	2.46	1.57
Ardea herodias		15.00	1.06	1.47	3.40	2.24
Heterocnus mexicanus	-	13.40	1.38	3.06	3.12	2.14
Ixobrychus exilis	-	8.32	1.57	1.25	I.77	1.15
Mycteria americana		18.35	I.44	2.77	2.23	2.45
Eudocimus albus		19.40	2.24	2.80	4.60	2.48
Aythya affinis		14.60	2.02	2.45	2.16	1.12
Coragyps atratus		15.10	0.81	2.49	4.65	2.48
Chondrohierax uncinatus		17.10	0.49	3.30	4.77	3.82
Caracara cheriway		14.30	0.62	1.60	3.81	2.19
Ortalis garrula	22.80	12.20	2.19	3.34	2.81	2.35
Coturnix coturnix			0			
japonica		15.36	5.58	1.90	1.59	0.74
Colinus virginianus		22.40	7.06	3.42	1.72	1.05
Odontophorus guttatus	• -	16.25	5.74	2.05	1.80	I.47
Gallus gallus	10.50	8.78	3.50	1.61	I.4 4	1.23
(White Leghorn)		6.47				0
Laterallus albigularis		6.91	0.75	1.66	1.35	0.58
Squatarola squatarola		19.60	2.35	1.64	2.11	1.16
Ereunetes mauri	-	16.60	2.35	1.13	0.84	0.84
Sterna hirundo		14.00	1.13	1.57	1.71	1.61
Thalasseus sandvicensis.		12.80	1.09	1.37	1.88	1.57
Rynchops nigra		13.10	1.13	2.93	1.94	1.96
Columba livia		20.50	3.57	1.26	3.27	3.24
Columba speciosa		26.45	4.78	3.15	3.07	2.74
Crotophaga sulcirostris		12.50	0.97	1.60	3.15	2.45
Otus choliba		14.00	1.04	1.87	4.24	2.20
Megaceryle torquata		14.50	1.26	3,25	4,24	2.06
Chloroceryle aenea		14.75	2,00	1.60	2.83	1.06
Colaptes auratus		19.20	I. 10	2.90	4.53	2.34
Melanerpes erythrocepha- lus		76.00	0.00	0.70	o 5 9	0.06
Synallaxis albescens		16.90	0.99	2.59	3.78	2.06
		11.00	1.34	2.14	3.04	0.50
Muscivora tyrannus Iridoprocne bicolor		23.60	2.29	2.76	3.29	1.51
Aphelocoma coerulescens		16.20	I.04	2.49	2.45	1.29
Mimus polyglottos		12.90	I.22	2.24	2.84	1.82
Mniotilta varia		11.70 16.80	1.35	2.19	3.11	1.53
Parula americana		16.80	1.55	4.46	6.6	
Agelaius phoeniceus		14.30 18.00	1.39 1.67	2.19	2.36	1.29
Richmondena cardinalis .		21.00	1.67	2.54	2.80	1.87
Spizella passerina		18.30	2.08 1.62	2.85	4.14	1.97 1.62
Spisetta passerina	20.01	10.30	1.63	2.06	2.97	1.62

TABLE 4.—Muscles of the lower e	xtremities	(percent of body weigh	t)
Species	Total	Thigh	Leg
Tinamus major		7.36	5.78
Pelecanus occidentalis		3.37	2.42
Phalacrocorax olivaccus	11.30	3.95	5.93
Anhinga anhinga	8.72	4.36	4.36
Ardea herodias	12.00	5.79	6.28
Heterocnus mexicanus		6.31	5.88
Ixobrychus exilis		6.13	6.08
Mycteria americana		4.70	5.63
Eudocimus albus	•	4.65	2.72
Aythya affinis	5.20	2.78	2.42
Coragyps atratus	14.40	7.75	6.62
Chondrohierax uncinatus	7.50	4.36	3.14
Caracara cheriway	13.60	6.68	6.90
Ortalis garrula		10.60	9.40
Coturnix coturnix japonica		6.38	4.40
Colinus virginianus		7.43	5.77
Odontophorus guttatus		8.22	5.90
Gallus gallus (White Leghorn)	15.38	7.02	5.36
Laterallus albigularis	18.15	10.30	7.82
Squatarola squatarola		2.81	2.61
Ereunetes mauri	4.76	2.79	1.98
Sterna hirundo	2.63	1.52	1.11
Thalasseus sandvicensis	2.28	1.36	0.91
Rynchops nigra	2.46	I.4I	1.04
Columba livia	6.38	3.39	2.55
Columba speciosa	4.78	2.73	1.97
Crotophaga sulcirostris	12.35	7.44	4.92
Otus choliba	8.83	3.34	5.49
Megaceryle torquata	2.95	2.10	0.86
Chloroceryle aenea	2.50	1.59	0.91
Colaptes auratus	7.25	4.60	2.66
Melanerpes erythrocephalus	6.04	3.11	2.93
Synallaxis albescens	10.20	5.01	5.15
Muscivora tyrannus	2.73	I.47	1.26
Iridoprocne bicolor	2.68		
Aphelocoma coerulescens	14.50	6.87	7.57
Mimus polyglottos	10.80	5.29	5.50
Mniotilta varia	6.58		• • •
Parula americana	6.95	2.97	3.48
Agelaius phoeniceus	8.86	4.00	4.86
Richmondena cardinalis	7.14	3.67	3.47
Spizella passerina	6.14	3.15	2.99

TABLE 4.—Muscles of the lower extremities (percent of body weight)

	Heart % body weight	2.10	1.31	0.20	1.17	0.33	1.05	1.61	I.43	0.86	1.23	0. 89	1.24	0.88	0.70	1.06	0.54	0.70
	Leg muscles % body weight	1.17	4.65	12.80	6.00	16.9	1.62	1.60	5.60	5.30	5.70	7.00	2.92	12.70	0.70	16.40	24.40	12.1
	Glide cm ^s per gram of body	6.71	3.71	1.16	4.18	1.50	5.35	9.69	3.87	8.29	4.77	1.06	4.43	5.11	3.66	1.87	1.87	5.41
	Aspect ratio	2.63	1.82	1.44	1.92	1.45	1.95	2.40	2.18	1.70	1.92	2.84	2.24	1.64	2.39	2.56	1.62	1.72
Wings	Buoyancy index	2.91	3.28	3.31	3.50	2.84	3.66	4.30	3.53	4.00	3.92	2.60	3.31	3.21	4.23	2.81	3.48	3.94
	cm. ^s per gram of body	3.67	2.58	0.95	3.22	1.22	3.32	7.54	2.85	5.87	4.12	0.81	3.31	3.76	3.26	1.60	1.65	3.78
	Pectoralis plus supracoracoideus % body weight	31.75	30.20	30.00	25.30	24.70	23.50	21.40	21.30	20.50	18.8	18.20	16.80	15.00	13.20	10.90	9.10	8.60
	Body weight grams	11.85	72.20	1140.0	55.00	290.0	65.00	14.50	84.00	20.00	52.00	575.00	35.50	20.50	165.0	120.0	385.0	00.00
	Species	Campylopterus hemileucurus	Claravis pretiosa	Tinamus major	Cotinga ridgwayi	Odontophorus guttatus	Trogon collaris	Stelgidopteryx ruficollis	Pyrrhura hoffmanni	Myiarchus tuberculifer	Melanerpes rubricapillus	Aythya affinis	Chloroceryle americana	Zonotrichia capensis	Butorides virescens	Podiceps dominicus	Aramides cajanea	Crotophaga sulcirostris

NO. I

TABLE 5.-Comparative values of typical species

91