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fossils underwent considerable transport prior to preservation 
( Crouch and Visscher, 2003 ). In general, the proportion of ter-
restrial pollen and spores increased during the PETM, which 
is taken as an indication of higher runoff.  Crouch and Viss-
cher (2003)  considered the pollen and spores to represent 
four types of vegetation: conifer-dominated rainforest with 
abundant podocarps, lowland rainforest with Casuarinaceae, 
heathlands dominated by ferns, and  Nypa -dominated man-
grove forest. During the PETM, there were relatively minor 
changes in the proportions of species or vegetation types to 
one another. 

 Dispersed cuticle, leaf fossils, and pollen and spores from the 
coal-bearing Kakahu region on the east side of the South Island 
are also thought to record changes across the PETM, though the 
correlation to the Paleocene-Eocene boundary is by pollen/
spore biostratigraphy and a carbon isotope record is lacking 
( Pole, 2010 ). Pollen indicate a shift from conifer- to angio-
sperm-dominated vegetation with abundant grains linked to Ca-
suarinaceae ( Pole, 2010 ). Fossil charcoal is also exceptionally 
abundant in the sediments thought to be deposited during the 
PETM, raising the possibility that intervals of wet climate, dur-
ing which thick coal seams formed, alternated with periods dry 
enough for wildfi re ( Pole, 2010 ). 

 Two factors suggest that New Zealand might have been buffered 
from climatic and fl oristic changes during the PETM. The isolation 

southern latitudes are thought to have experienced even hotter, 
wetter climate during the PETM than before or after ( Robert 
and Kennett, 1994 ;  Crouch, et al., 2003 ;  Crouch and Brinkhuis, 
2005 ). 

 Palynofl oras from the Kumara-2 core on the western side of 
the South Island record moderate change in fl oristic composi-
tion across the PETM. Changes at the onset of the CIE include 
the fi rst occurrences of the tropical mangrove palm  Nypa  Steck., 
and  Cupaneidites  Cookson & Pike, a thermophilic eudicot 
probably belonging to Sapindaceae, along with an increase in 
the abundance of other probable warm-climate eudicots in the 
families Malvaceae and Myrtaceae ( Crouch et al., 2009 ;  Handley 
et al., 2011 ). Also at the onset of the PETM there was a de-
cline in the abundance of probable temperate elements such as 
podocarpaceous conifers and Proteaceae ( Crouch et al., 2009 ; 
 Handley et al., 2011 ). Conifer abundance increased upward into 
the latter part of the PETM, and overall the palynofl ora returns 
to a composition similar to that seen in the late Paleocene, 
though with thermophilic pollen types being less abundant 
( Handley et al., 2011 ). The higher abundance of oleananes, a 
biomarker for angiosperms, near the base of the PETM is con-
sistent with the pollen fl ora ( Handley et al., 2011 . 

 The Tawanui outcrop near the south end of the North Island 
preserves terrestrial pollen and spores in a deep marine envi-
ronment not far from the paleoshoreline, but all terrestrial 

 Fig. 10. Global paleogeographic reconstruction for 56 Ma showing positions of sites in  Table 1  and mentioned in text. Paleogeographic positions from 
C. Scotese, PALEOMAP project.   
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exceeded the physiological tolerances of tropical plants, result-
ing in a die-off of terrestrial vegetation, which in turn contrib-
uted more carbon to the ocean and atmosphere upon decay. 
Although all known low-latitude paleobotanical records for the 
PETM are coastal and thus would have had more equable cli-
mates than continental interiors, there is no evidence for major 
extinction or dieback of tropical plants during the PETM. 

 Europe and the North Sea —    A number of middle latitude sites 
in western Europe preserve records of fl oristic change during the 
PETM. Schmitz and colleagues ( Schmitz et al., 2001 ;  Schmitz and 
Pujalte, 2003 ) recovered terrestrial palynomorphs from deep ma-
rine deposits near Ermua in the Tremp Basin of northern Spain 
(~37 ° N paleolatitude). The samples are depauperate, probably be-
cause of the marine environment, but still give some insight into 
vegetational change during the PETM. The most common pollen 
type in the late Paleocene just below the PETM is that of Cupres-
saceae,  Taxodiaceapollenites hiatus  (Potonié) Kremp. Angiosperm 
palynomorphs are markedly more diverse within the PETM than 
below or above it, and nine of the species in the PETM are found 
only at that time. The most abundant sporomorphs within the 
PETM are of ferns, although angiosperms are also common 
( Schmitz et al., 2001 ;  Schmitz and Pujalte, 2003 ). Sedimentologi-
cal data and fossil pollen/spores from multiple stratigraphic sec-
tions across the Tremp Basin suggest that late Paleocene coastal 
swamps dominated by cupressaceous conifers gave way to angio-
sperm–fern vegetation growing in a climate with extreme varia-
tion in water availability during the PETM ( Schmitz et al., 
2001 ;  Schmitz and Pujalte, 2003 ,  2007 ). 

 The St. Pankraz outcrop in the Austrian Alps preserves 
deep marine sediments deposited near the north shore of 
Tethys at the time of the PETM ( Hofmann et al., 2011 ). As in 
many marine depositional settings, reworked Cretaceous and 
Paleocene pollen and spores are common along with those 
thought to be derived from plants living during the PETM 
( Hofmann et al., 2011 ). Only two samples in this stratigraphic 
section are from within the PETM, but they document the fi rst 
occurrences of three Eocene pollen types. Cupressaceous 
pollen is rare in the PETM samples, and overall the palyno-
fl ora is consistent with a warm, humid but not tropical climate 
( Hofmann et al., 2011 ). 

 During the late Paleocene-early Eocene, northern Europe 
from Germany to England was a low-lying coastal plain sup-
porting paludal, lagoonal, and shallow marine environments, 
and small fl uctuations in sea level alternately inundated or ex-
posed vast areas ( Collinson et al., 2003 ;  Fairon-Demaret et al., 
2003 ;  Steurbaut et al., 2003 ). Freshwater swamps around the 
fringes of the marine environment were generally dominated 
by cupressaceous conifers, probably related to  Glyptostrobus  
( Fairon-Demaret et al., 2003 ). The Kallo borehole in Belgium 
produced a succession of palynofl oras from the late Paleocene, 
PETM, and early Eocene ( Steurbaut et al., 2003 ). Throughout 
the core, reworked pollen and spores are common, and small 
fl uctuations in sea level on the shallow shelf generated large 
variations in the relative proportion of marine and terrestrial pa-
lynofl ora ( Steurbaut et al., 2003 ). Overall the terrestrial fl ora is 
composed of Cupressaceae, Juglandaceae, Myricaceae, Tili-
aceae, and palms—a typical mix for the subtropical greenhouse 
vegetation of northern Europe at this time. There are no major 
changes in the composition of terrestrial vegetation associated 
with the PETM ( Steurbaut et al., 2003 ). 

 The Cobham Lignite of southeastern England represents 
highly organic deposition in a coastal swamp near the time of 

of New Zealand from other land masses ( Crouch and Visscher, 
2003 ) would have made dispersal to the island diffi cult, limiting 
the number of immigrant taxa. Furthermore, changes in tempera-
ture and precipitation might have been subdued compared with 
many other parts of the earth because of maritime buffering of 
temperature change and the short distances that water vapor 
would have to travel from sea-surface to land. Subdued fl oristic 
change during the PETM is to be expected in such a protected 
environment. 

 Low latitudes —    The low-latitude record of fl oristic change 
across the PETM is restricted to three areas: subtropical East 
Africa, tropical South America, and subtropical North America. 

 Cores of nearshore marine sequences from Tanzania preserve 
palynofl oras and plant biomarkers from the Paleocene-Eocene 
boundary at ~18 ° S ( Handley et al., 2012 ). There are no obvi-
ous changes in palynofl oral composition across the PETM, but 
there are major fl uctuations in the chain length of higher plant 
epicuticular waxes ( n -alkanes) that may signal shifts in the com-
position of the vegetation or in climate ( Handley et al., 2012 ). 
An increase in the deuterium to hydrogen ratio of  n -alkanes has 
been interpreted as refl ecting greater evapotranspiration and 
plant water-use effi ciency, and other lines of evidence suggest 
episodic heavy rainfall and higher rates of erosion ( O’Halloran 
et al., 2010 ;  Handley et al., 2012 ). 

 Palynofl oras from paleotropical Colombia and Venezuela 
provide our only record of tropical rainforest during the PETM 
( Jaramillo et al., 2010 ). Broad-scale studies have demon-
strated that fl oristic diversity increased strongly from the Pa-
leocene to the Eocene in northern South America, with the 
new forms arising within existing tropical lineages ( Jaramillo, 
2002 ;  Jaramillo et al., 2006 ). Higher resolution studies show 
that the rate of diversity increase infl ects upward at the time 
of the PETM, indicating that global warming did not exceed 
the heat tolerance of these plants living near the equator 
( Jaramillo et al., 2010 ). Carbon isotope data are, however, con-
sistent with higher water stress on tropical plants during the 
PETM. The negative CIE measured in leaf waxes from this 
area is small (2–3‰) compared with the approximately −5‰ 
CIE measured in leaf waxes from other regions ( McInerney 
and Wing, 2011 ). The small CIE could refl ect increased 
closure of stomata during the PETM to conserve water, which 
would have slowed diffusion of atmospheric CO 2  into leaves, 
decreasing their discrimination against  13 C, thereby partially 
offsetting the decrease in the carbon isotopic composition of 
the atmosphere ( Jaramillo et al., 2010 ). 

 Studies of pollen from marginal marine deposits in the Gulf 
Coastal Plain of the United States (about 35 ° N paleolatitude) ini-
tially suggested a 35% decrease in plant diversity across the 
PETM ( Harrington and Jaramillo, 2007 ). The decrease in diver-
sity was attributed to extinction of plants that were unable to sur-
vive the higher temperatures of the PETM and the inability of 
plants adapted to hot climates to disperse to the southern shores 
of North America from across the Tethys Seaway ( Harrington 
and Jaramillo, 2007 ). More recent work may indicate a minor 
hiatus in deposition during part of the PETM in this area ( van 
Roij, 2009 ) and raises the possibility that the diversity decline 
occurred in post-PETM time, which would coincide with a cool-
ing, rather than warming, climate phase ( Wing et al., 2000 ). 

 The response of tropical lowland vegetation to the PETM is 
of particular interest because of the high average temperatures 
in the tropics ( Winguth et al., 2010 ;  Huber and Caballero, 
2011 ).  Huber (2008)  suggested that initial PETM warming 
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have been wetter as well as warmer during the PETM, and 
continental runoff was high ( Pagani et al., 2006b ;  Sluijs et al., 
2006 ;  Cui et al., 2011 ;  Dypvik et al., 2011 ;  Harding et al., 2011 ; 
 Kender et al., 2012 ). 

 DISCUSSION AND CONCLUSIONS 

 Several key conclusions emerge from synthesizing the re-
sults of our detailed study of fl oristic change through the PETM 
in the Bighorn Basin with other results from around the globe. 
First, there is no evidence for dramatically increased rates of 
extinction among terrestrial plants at the time of the PETM in 
any region or local stratigraphic section. This is not a trivial 
result, because some groups of organisms, notably benthic fora-
minifera, did experience extinction rates of 35–50% during the 
PETM ( Thomas, 2007 ). 

 Second, in the Bighorn Basin, rates of local extirpation were 
exceptionally high. Eighty-eight percent (46 of 52) of plant taxa 
present in the last 100 kyr of the Paleocene are not recorded in 
the PETM, and four of those that are present in the PETM are 
known only from the recovery phase of the CIE, as CO 2  con-
centration was declining and climate became cooler and wetter 
again. Local extirpation is not seen in other PETM fl oral re-
cords. These extirpations might be hard to detect in palyno-
fl oras, which have lower taxonomic resolution and are more 
subject to reworking and thus smearing of temporal patterns, 
but it is also possible that the vegetation of continental interiors 
was more affected than that of the coastal regions from which 
the pollen records come. 

 Third, the Bighorn Basin record shows very high levels of 
range extension, with only 23% (6 of 26) of plants in the PETM 
having earlier occurrences in the region. A few of these range 
extensions were clearly intercontinental, with the lineages pres-
ent in Europe prior to their occurrences in North America. As 
with the extirpations, range extensions are not prominent in the 
pollen and spore data from elsewhere in the world, but a combi-
nation of lower taxonomic and temporal resolution could be 
disguising the pattern. Some tropical range extensions are seen 
even on the isolated landmass of New Zealand. 

 Fourth, the botanical affi nities and foliar physiognomy of the 
winners and losers during the PETM in the Bighorn Basin sug-
gest higher temperature and increased water stress in midlati-
tude continental interiors during the PETM, as do geological 
lines of evidence. This contrasts with high latitudes, where wa-
ter availability and runoff appears to have been higher during 
the PETM. Evidence from the tropics is equivocal. 

 Fifth, most records of fl oristic change show that conifers de-
creased in abundance near the onset of the PETM wherever they 
had formerly been abundant; this includes decreases in Podo-
carpaceae in New Zealand and declines in Cupressaceae in the 
middle to high latitudes of the northern hemisphere in regions 
that remained wet (the Arctic and North Sea) as well as those 
that became drier (Wyoming, Spain). The simultaneous decline 
in abundance of different lineages of conifers in different re-
gions with different precipitation regimes raises the possibility 
that higher temperatures were an underlying cause. There is 
little evidence from studies of extant conifers that they would 
be competitively disadvantaged by higher CO 2  ( Hyvönen et al., 
2007 ). Possibly conifers were less able than angiosperms to in-
crease growth rates under higher temperatures and higher rates 
of evapotranspiration ( Lusk et al., 2003 ;  de Boer et al., 2012 ). 

the Paleocene-Eocene boundary ( Collinson et al., 2003 ,  2009 ). 
Carbon isotope measurements through the 2-m-thick lignite are 
thought to indicate that the onset of the CIE occurred during its 
deposition, and biostratigraphic correlation confi rms that the 
lignite formed at about the time of the PETM. Pollen and spores 
from the Cobham Lignite reveal few last appearances of com-
mon taxa at the PETM onset and only minor shifts in relative 
abundances ( Collinson et al., 2009 ). The fl oristic composition 
of PETM samples can be statistically distinguished from late 
Paleocene samples, but this is thought mostly to refl ect a de-
crease in fi re frequency and an increase in the wetness of the 
substrate, including an increase in the abundance of cupressa-
ceous conifers ( Collinson et al., 2009 ), which contrasts with the 
decrease in conifer abundance seen in many PETM sections. 

 Core 22/10a-4 from the North Sea, north of Britain, preserves 
the PETM in organic-rich marine sediments that were deposited 
in a restricted marine environment surrounded by Scandinavia, 
Britain, and Greenland during rifting of this part of the North 
Atlantic ( Kender et al., 2012 ). The late Paleocene is dominated 
by pollen of cupressaceous and pinaceous conifers, but their 
abundance drops sharply just before the onset of the CIE, and 
the proportion of alder ( Alnipollenites  Potonié) pollen rises, 
along with ferns and fungal spores ( Kender et al., 2012 ). Alder 
pollen declines later in the PETM and hickory-type pollen 
( Caryapollenites  G. V. Raatz ex R. Potonié), and moss spores 
become abundant. The decrease in cupressaceous pollen near 
the onset of the PETM was attributed to changes in coastal plain 
area, changes in temperature and precipitation regime, or both 
( Kender et al., 2012 ). 

 Most European stratigraphic sections that preserve the PETM 
were deposited in marine environments where palynofl oral 
composition is strongly infl uenced by distance to shoreline, dis-
persability of pollen, and differential preservation of various 
pollen types. Most contain substantial amounts of reworked 
material, which may well smooth out short-lived changes in 
terrestrial fl ora associated with the PETM. The records from 
Cobham and the North Sea appear to have the least reworked 
material, but they record essentially opposite fl oristic changes 
(increase vs. decrease in cupressaceous conifers, respectively), 
leaving it diffi cult to generalize about northern European veg-
etational change during the PETM. 

 The Arctic —    Two cores of marine sediments have yielded 
terrestrial palynomorphs from the PETM in the Arctic, one 
from central Spitsbergen at ~70 ° N paleolatitude ( Harding et al., 
2011 ) and the other from the Lomonosov Ridge of the central 
Arctic Ocean at ~80 ° N paleolatitude ( Sluijs et al., 2006 ,  2008 ; 
 Schouten et al., 2007 ). The Spitsbergen palynofl ora has only 
rare angiosperm pollen, but there is an abundance peak of the 
fern spore  Cicatricosisporites  Potonié & Gelletich near the base 
of the PETM, ~5 kyr following the onset, which could be con-
sistent with increasing wetness ( Harding et al., 2011 ). 

 Palynofl oras from Lomonosov Ridge generally have abun-
dant conifer pollen during the late Paleocene, but dominance 
shifts to angiosperms during the PETM ( Sluijs et al., 2006 ), a 
pattern somewhat at odds with that in biomarkers, which sug-
gest decreases in both gymnosperm and angiosperm abundance 
during the CIE ( Schouten et al., 2007 ). The isotopic composi-
tion of angiosperm- and gymnosperm-specifi c biomarkers 
suggests that water-use effi ciency of angiosperms decreased 
during the PETM, while that of conifers remained unchanged 
( Schouten et al., 2007 ). In contrast to evidence of dryness and 
fl uctuating discharge at midlatitudes, high latitudes appear to 
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 The value of the fossil record of the PETM is that it pro-
vides data on the integrated long-term response of real, fully 
complex ecosystems to a major increase in CO 2  and tempera-
ture. The results of the PETM “experiment” indicate that at 
rates of environmental forcing that are probably 1/10th to 
1/20th those predicted for the near future, the dominant mode 
by which plants responded was through range change. Low 
levels of plant extinction during the PETM imply that plant 
populations were able to disperse to refugia and persist there 
for >100 kyr. The vast difference in rate between the PETM 
and future climate change complicates our efforts to use the 
past as a way of understanding the future; nevertheless, the 
PETM example shows that large, slow (by anthropogenic 
standards) changes in climate did not cause high levels of ex-
tinction among the abundant and widespread species of plants 
that make up the fossil record. 

 Projections of the effects of anthropogenic global warming 
on terrestrial plants are controversial, but some models antici-
pate high levels of extinction (15–30%) during the decades and 
centuries ahead under climate scenarios that anticipate far less 
warming than occurred during the PETM ( Thomas et al., 
2004 ). At fi rst blush, one might think that the high extinction 
rates anticipated for the future refl ect much faster climate 
change, but this cannot be the reason because such models as-
sume infi nite dispersal capacity even in scenarios that produce 
substantial extinction. Extinction is predicted because the cli-
matic envelopes of many species are not projected to exist any-
where in the future. 

 How can this apparent contradiction between modeling 
and the fossil record be resolved? Montane regions surround-
ing the Bighorn Basin might have provided nearby refugia 
for cool-adapted plants, reducing extinction rates, but such 
altitudinal refugia cannot explain the low extinction rates seen 
in all other PETM records. Alternately, the low extinction 
observed at the PETM in the Bighorn Basin, as well as in 
other regions, might be misleadingly low because the rare 
species with small ranges that are most vulnerable to climat-
ically driven extinction are also very unlikely to be sampled. 
It might also be that extinction rates for extant plants are 
overpredicted by methods that assume the current climate 
region occupied by a species is a full expression of its cli-
matic tolerances. If current distributions refl ect competition, 
disturbance, and history as well as climatic limitation, many 
species may survive better under climate change than would 
be predicted by models that assume a strict climate envelope 
derived from the current distribution. 

 We cannot yet resolve the apparent contradiction between 
models and the fossil record, but it is worth a much greater ef-
fort to improve the record of plant response to past global cli-
mate change and to improve our ability to compare models and 
data. Data about the past are hard to get and hard to interpret, 
but data about the future are impossible to get without waiting 
an unacceptably long time. 
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