Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests

Geertje M. van der Heijden1,2, Stefan A. Schnitzer1,2, Jennifer S. Powers3, and Oliver L. Phillips4,5

1 University of Wisconsin-Milwaukee, P.O Box 413, Milwaukee, WI 53201, U.S.A.
2 Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama
4 School of Geography, University of Leeds, LS2 9JT Leeds, U.K.

ABSTRACT

Mature tropical forests sequester large quantities of atmospheric CO₂, which they store as plant biomass. These forests are changing however, including an increase in liana abundance and biomass over recent decades in Neotropical forests. We ask here how this increase in lianas might impact the tropical forest carbon cycle and their capacity for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however, lianas also invest significantly in leaf production, and the increase in lianas could conceivably offset liana-induced reductions in tree canopy productivity with no adverse effects to the forest-level canopy productivity. By contrast, lianas decrease the total ecosystem uptake of carbon by reducing tree biomass productivity. Lianas themselves invest little in woody biomass, and store and sequester only a small proportion of the biomass in tropical forests. As lianas increase they may effectively displace trees, but the greater liana carbon stocks are unlikely to compensate for liana-induced losses in net carbon sequestration and storage by trees. A potentially important additional consideration is the impact of lianas on the tree community. By competing more intensely with shade-tolerant, more densely wooded trees than with fast-growing, light-wooded trees, lianas may shift tree composition toward faster-growing species, which store relatively little carbon, and thereby further reduce the carbon storage capacity of tropical forests. Overall, current evidence indicates that the increase in lianas will negatively impact the carbon balance of tropical forests, with potentially far-reaching consequences for global atmospheric CO₂ levels and associated climate change.

Abstract in Spanish is available in the online version of this article

Key words: carbon balance; carbon cycle; carbon sequestration; lianas; tree growth; tree mortality; tropical forests.

Tropical forests worldwide constitute the largest pool of terrestrial biomass carbon stocks, contribute more than half of the planet's terrestrial biodiversity and a third of its terrestrial global net primary productivity (Beer et al. 2010, Pan et al. 2011). Consequently, any modification to the productivity and dynamics in these forests may have global consequences, including increases in the concentration of atmospheric greenhouse gases and depletion of the world’s biodiversity. Recent evidence indicates that tropical forests biomass, composition, and structure are now changing, presumably due to a combination of higher atmospheric CO₂ concentrations, changes in climatic conditions, and intensification of human interferences, such as logging and hunting (e.g., Lewis et al. 2009a, Phillips et al. 2009). These changes include an increase in the abundance and biomass of lianas in tropical forests (Phillips et al. 2002, Wright et al. 2004, Ingwell et al. 2010, Schnitzer & Bongers 2011).

Lianas (woody vines) are structural parasites and have overcome the constraint of being self-supporting. They therefore depend on other plants, mainly trees, to support their biomass as they climb up into the canopy. The climbing habit of lianas and herbaceous vines has evolved many times during the course of plant evolution, with more than 130 plant families including one or more climbing species (Gentry 1991). The majority of lianas are restricted to tropical forests, where they can contribute up to 35 percent of the total number of woody plant species (Schnitzer et al. 2012) and up to 45 percent of woody stems present (Putz 1983, Gentry 1991, DeWalt & Chave 2004).

Supporting lianas is not without risks for their host trees. Lianas often damage the trees on which they rely for support, leading to stem deformations and breakage of tree branches and stems (Putz 1991, 1995). Once they have reached the canopy, lianas can form a layer of dense foliage over the tree crown, thereby severely reducing the light intensity in the underlying tree crowns (Putz 1995, Avalos et al. 1999, 2007). In addition, lianas appear to have well-developed root systems (Holbrook & Putz 1996, Restom & Nepstad 2004, Caï et al. 2007) and extremely efficient vascular systems (Ewers & Fisher 1989, Ewers et al. 1990, 1991, Gartner et al. 1990, Carquist 1991, Fisher & Ewers 1995, Restom & Nepstad 2001), and therefore may compete for water and nutrients with both their hosts and neighboring, non-host trees (Whigham 1984, Dillenburg et al. 1993a,b, 1995, Pérez-Salicrup & Barker 2000, Schnitzer 2005, Toledo-Aceves & Swaine 2008). Thus, lianas are strong competitors with their hosts for a combination of light, water, and nutrients.

Over recent few decades lianas have been increasing in abundance and biomass relative to trees, most notably in Neotropical forests (Phillips et al. 2002, Wright et al. 2004, Wright & Calderon 2006, Ingwell et al. 2010, Schnitzer & Bongers 2011, Schnitzer et al. 2012), though information from Africa and Asia is limited by lack of long-term datasets (Caballé & Martin 2001, Ewango 2010). Although the drivers of this increase in liana dominance in the Neotropics still remain unknown, several mechanisms have been suggested (reviewed by Schnitzer & Bongers 2011), including increased atmospheric CO2 concentrations (Granados & Körner 2002, Phillips et al. 2002, Hättenschwiler & Körner 2003, Mohan et al. 2006, Zetz et al. 2006), changing climatic conditions, and seasonal droughts (Schnitzer 2005), increases in natural disturbances (Phillips & Gentry 1994, Phillips et al. 2004) and changes in forest land use (Launerae et al. 2001, Wright et al. 2007). None of these drivers are necessarily mutually exclusive and all are expected to intensify over the coming decades. Because lianas have the potential to reduce tree growth by as much as 84 percent (van der Heijden & Phillips 2009), and lianas can increase tree mortality risks, by two- to threefold (Phillips et al. 2005, Ingwell et al. 2010), increasing liana abundance and biomass are likely to influence the carbon cycle and balance of tropical forests.

In this review, we discuss the role of lianas in tropical forest carbon dynamics and carbon balance. We detail how lianas impact carbon cycling, carbon uptake, and the carbon storage capacity of tropical forests. We also examine the extent to which increasing liana abundance and biomass compensate for any liana-induced reductions in ecosystem carbon sequestration and storage. Our goal is to provide a comprehensive assessment of the potential role of lianas in tropical forest carbon dynamics, which can help predict future impacts of lianas on tropical forest carbon balance.

CONTRIBUTION OF LIANAS TO THE CARBON CYCLE

The tropical forest biome is characterized by high productivity and tropical forests contribute approximately one-third of the global terrestrial productivity (Beer et al. 2010). Considerable effort has been put into quantifying the different components of the internal carbon cycling of tropical forests to be able to understand their impact on the global carbon balance (Malhi & Grace 2000, Cavaleri et al. 2006, 2008, Aragão et al. 2009, Girardin et al. 2010, Robertson et al. 2010, Malhi 2012). Tropical forest canopies absorb atmospheric CO2 via photosynthesis (gross primary productivity [GPP]) and release CO2 into the atmosphere due to autotrophic respiration of leaves, wood, and roots and heterotrophic respiration due to decomposition processes. Approximately 30–40 percent of tropical forest GPP is used to produce plant structural biomass and organic compounds (net primary productivity [NPP]) (Malhi 2012). Eventually, these plant components will be transferred to the soil in the form of leaf, wood, and root litter. From the soil, carbon is eventually released through decomposition and respiration by heterotrophic organisms.

Lianas contribute to the different components of the carbon cycle of tropical forests, though remarkably few studies have quantified their exact contribution. In this section, we focus on the aboveground carbon cycle, where the majority of the research has been conducted, and discuss the contribution of lianas to aboveground net primary productivity (ANPP). By focusing specifically on ANPP, we will also indirectly cover information on the contribution of lianas to ecosystem autotrophic respiration (Cavaleri et al. 2006, 2008, Robertson et al. 2010, Fig. 1).

LIANA CONTRIBUTIONS TO ABOVEGROUND NET PRIMARY PRODUCTIVITY.—The main components of ANPP of tropical forests consist of the production of the woody stems, branches, and canopy components (twigs, leaves, flowers, fruit), plus a small contribution of the production of volatile organic compounds (Clark et al. 2001). Stem productivity of tropical forests is typically measured as the annual woody stem diameter increment based on repeated tree censuses. Aboveground biomass accumulation is then estimated from these repeated growth measurements. However, similar measurements for lianas are lacking. So far just one published study, in southeast Peru, has specifically focused on estimating liana biomass growth over time (van der Heijden & Phillips 2009). They estimated that liana biomass growth was 0.09 Mg C/ha/yr (average of two 1-ha plots, TAM-05 & 06), whereas tree biomass growth in those same two plots averaged 2.70 Mg C/ha/yr (Aragão et al. 2009). Thus, they reported that lianas contribute only a very small proportion (3.3%) of the total stem production in these plots. Branch production is often not measured in many studies (Aragão et al. 2009, Girardin et al. 2010) and therefore the separate contribution of lianas to this component currently remains unknown. As lianas invest relatively little in woody components (Putz 1983), their contribution to branch productivity is likely to be small.

Tropical forest canopy productivity consists of the formation and growth of leaves, twigs, flowers, and fruits, and is typically estimated to be equal to the rate of litterfall (e.g., Malhi 2012). Indeed, litterfall is one of the most frequently measured components of ANPP. Leaf litterfall is typically the largest fraction of total litterfall (Malhi 2012). Studies from sites around the world
have indicated that lianas can contribute to 11–38 percent of the total leaf litter production (Table 1). Liana leaf productivity is high because lianas allocate relatively less resources to a self-supporting stem, and thus more resources can be allocated to leaf productivity of the canopy (Putz 1983, Gehring et al. 2004, Gerwing 2004, Cai et al. 2007, Selaya et al. 2007) (Fig. 1). To date, however, the extent that lianas contribute to forest-level fruit and flower production is unknown for nearly all tropical forests.

There is limited information on the contribution of lianas to ANPP. In a tropical forest in southeast Peru (Tambopata), detailed measurements for most components of ANPP are available for both trees and lianas, which provide a unique estimate of the proportional contribution of lianas on ANPP for this forest (Fig. 1). Aragão et al. (2009) estimated ANPP in this forest to be 8.85 Mg C/ha/yr. This estimate is based on a total (lianas and trees) canopy productivity of 5.1 Mg C/ha/yr of litterfall, tree stem productivity of 2.7 Mg C/ha/yr, and tree branch productivity of 1.05 Mg C/ha/yr, but does not include liana stem and branch productivity. We therefore added stem (0.09 Mg C/ha/yr, van der Heijden & Phillips 2009) and branch (0.036 Mg C/ha/yr, assumed to be 40% of stem production; cf. Girardin et al. 2010) productivity of lianas to this estimate of ANPP, which increased the total ANPP to 8.98 Mg C/ha/yr for this forest. The contribution of lianas to the litterfall in Tambopata was not known, so we assumed that liana litterfall contributed 23.5 percent of the total litterfall (the mean of the studies represented in Table 1). Based on these figures, lianas contribute to 1.32 Mg C/ha/yr or 14.8 percent of the total ANPP (Fig. 1).

The leaf area index of a forest is likely to correlate with its ANPP (Asner et al. 2003) and five studies from sites worldwide have quantified leaf area index of lianas in relation to that of trees (Table 1). The contribution of liana leaves to the forest leaf area ranged from as low as nine percent to as high as 31 percent (Table 1), suggesting that lianas also contribute to approximately nine to 31 percent of the ANPP in these sites. Lianas comprise a relatively small percentage of the forest biomass: 1.9 percent in Costa Rica (Clark et al. 2008) and Malaysia (Kato et al. 1978), 4.1 in Venezuela (Putz 1983), and 4.7 percent in Thailand (Ogawa et al. 1965). Thus, lianas contribute disproportionately to forest-level canopy productivity, compared to forest-level stem and branch production, and compared to forest biomass.

FIGURE 1. Proportional contribution of lianas to the individual components of the aboveground part of the carbon cycle of tropical forests. GPP, gross primary productivity; NPP, net primary productivity; NPPAG, aboveground NPP; NPPcanopy, canopy NPP (Table 1); NPPstem, aboveground stem wood NPP (trees: Aragão et al. 2009; lianas: van der Heijden & Phillips 2009); NPPbranch, branch turnover NPP (40% of NPPstem; cf. Girardin et al. 2010); Dlitterfall, canopy litterfall (Table 1); DcWD, wood mortality; Rleaf – leaf dark respiration (Cavaleri et al. 2008); Rstem, aboveground woody respiration (Cavaleri et al. 2006); RcWD, coarse woody debris respiration. Question marks indicate that the proportional contribution of lianas to the component of the carbon cycle is currently unknown. The proportional contribution of lianas to ANPP is calculated based upon the average values for the different ANPP components for two plots (TAM-05 and TAM-06) in Tambopata, Peru (Aragão et al. 2009), an average contribution of lianas to NPPcanopy of 23.5 percent and an NPPstem based upon van der Heijden & Phillips 2009 (see text).
TABLE 1. Contribution of trees and lianas to Leaf Area Index (m²/m²) and annual leaf litterfall (Mg C/ha¹) in tropical forests.

<table>
<thead>
<tr>
<th>Country</th>
<th>Forest type</th>
<th>Leaf Area Index</th>
<th>Litterfall</th>
<th>Trees</th>
<th>Lianas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m²/m²</td>
<td>%</td>
<td>m²/m²</td>
<td>%</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Tropical wet forest</td>
<td>5.3</td>
<td>88</td>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>Brazil</td>
<td>Tropical seasonal forest</td>
<td>1.3</td>
<td>81</td>
<td>1.2</td>
<td>19</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Tropical wet forest</td>
<td>5.2</td>
<td>69</td>
<td>3.3</td>
<td>31</td>
</tr>
<tr>
<td>Thailand</td>
<td>Tropical seasonal forest</td>
<td>7.4</td>
<td>91</td>
<td>0.7</td>
<td>9</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Tropical wet forest</td>
<td>7.3</td>
<td>91</td>
<td>0.7</td>
<td>9</td>
</tr>
<tr>
<td>Litterfall</td>
<td>Mg C/ha¹</td>
<td></td>
<td>%</td>
<td>Mg C/ha¹</td>
<td>%</td>
</tr>
<tr>
<td>Panama</td>
<td>Tropical seasonal forest</td>
<td>5.2–7.8</td>
<td>83–87</td>
<td>0.9–1.6</td>
<td>11–17</td>
</tr>
<tr>
<td>Brazil</td>
<td>Tropical seasonal forest</td>
<td>5.4</td>
<td>81</td>
<td>2.3</td>
<td>19</td>
</tr>
<tr>
<td>Gabon</td>
<td>Tropical seasonal forest</td>
<td>3.9</td>
<td>62</td>
<td>2.3</td>
<td>38</td>
</tr>
<tr>
<td>Australia</td>
<td>Subtropical forest</td>
<td>4.7</td>
<td>76</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Tropical wet forest</td>
<td>5.7</td>
<td>87</td>
<td>0.8</td>
<td>13</td>
</tr>
<tr>
<td>India</td>
<td>Tropical seasonal forest</td>
<td>5.6–6.9</td>
<td>62–71</td>
<td>2.8–3.4</td>
<td>29–38</td>
</tr>
</tbody>
</table>

*Values indicate the range within a time series from 1986–2002.
*Values for two different plots in the same location.

EFFECT OF INCREASING LIANAS ON FOREST CARBON CYCLING.—The increases in liana densities observed in the last few decades (Phillips et al. 2002, Wright et al. 2004, Wright & Calderon 2006) have likely increased the proportional contribution of lianas to all components of ANPP due to a combination of: (1) the increasing direct contribution of lianas and (2) the liana-induced decrease in the contribution of trees. Increasing liana density can reduce woody tree biomass through reduced tree growth, greater mechanical damage, and higher mortality. The liana-induced loss of tree biomass is unlikely to be offset by increases in liana biomass (e.g., van der Heijden & Phillips 2009). Increasing liana density therefore should lead to an overall decrease in forest-level woody biomass productivity.

By contrast, the effects of increasing lianas on forest-level canopy productivity are less clear. Trees that support a higher biomass of liana leaves appear to have a lower biomass of tree leaves, with lianas replacing host tree leaf biomass on a one-to-one basis (Ogawa et al. 1965, Kira & Ogawa 1971). In addition, since individual tree fruiting success in tropical forests is closely related to the light received by their canopy (e.g., Phillips 1993), infestation with lianas can reduce or even completely halt host fruit production (Stevens 1987, Wright et al. 2005, Kainer et al. 2006, 2007, Fonseca et al. 2009, Nabe-Nielsen et al. 2009, Klimas et al. 2012). The loss of tree flower and fruit production may be offset, in terms of forest productivity, to some degree by the increased contribution of lianas to flower and fruit production (Wright & Calderon 2006). Increases in lianas might therefore reduce the overall contribution of trees to forest-level canopy productivity, but the effect on total forest-level canopy productivity is not known.

Lianas on Barro Colorado Island (BCI) have been increasing (Ingwell et al. 2010, Schnitzer et al. 2012) and this has led to a considerable proportional increase in liana leaf, flower, and fruit production relative to trees from 1986–2002 (Wright et al. 2004, Wright & Calderon 2006). Both liana and tree leaf production on BCI increased over this period, leading to an increase in forest-wide canopy leaf production (Wright et al. 2004). Similarly, flower production of both lianas and trees increased, though that of lianas has increased nearly three-times faster than that of trees (Wright & Calderon 2006). Thus, both the relative productivity of lianas as well as the forest-level canopy production has increased on BCI, implying that factors beyond the increase in lianas might be affecting canopy productivity. Any liana impacts on the canopy productivity appear to be masked at the forest scale by an overall increase in leaf productivity and fecundity of trees, presumably due to a combination of elevated atmospheric CO₂ concentrations (Norby et al. 2005) and changing climatic conditions, possibly including increased solar radiation (Wright & Calderon 2006). Because of these wider changes in forest metabolism, additional research will be necessary to disentangle the effects of lianas from other factors impacting forest-level canopy productivity.

LIANA-INDUCED EFFECTS ON CARBON BALANCE

Tropical forests currently store 285 ± 64 Pg C in aboveground biomass worldwide (Feldpausch et al. 2012), which is over 30 percent of the earth’s terrestrial carbon stock (e.g., Cao & Woodward 2002). The exchanges of carbon between this long-term pool of carbon and the atmosphere dictate the carbon balance of tropical forests. Although the carbon balance is part of the larger carbon cycle of tropical forests, it warrants a separate discussion because it relates specifically to whether net fluxes into this carbon pool equal net fluxes out of this carbon pool. Any differences in those fluxes provide valuable information on whether tropical forests act as a carbon sink, i.e., carbon stocks increase over time, or source, i.e., carbon stocks decrease over time.

Aboveground carbon stocks of tropical forests change over time due to the difference between carbon gains by growth and carbon losses due to branch loss, mortality, and subsequent
branch and stem decomposition. The amount of carbon stored in tropical forests can also be altered by changes in species composition. Directional changes in species composition toward more fast-growing tree species with low wood densities, which store less carbon, will lead to a decrease in the carbon storage capacity of tropical forests, while changes toward more high wood density species, which store more carbon, will increase it. Currently, carbon stocks in tropical forests worldwide are increasing by ~1.2 Pg C/yr, equivalent to ~0.49 Mg/ha (Lewis et al. 2009b, Pan et al. 2011), indicating that these forests contribute to 50 percent of the global terrestrial carbon sink (Denman et al. 2007). In relative terms the net change per hectare in mean carbon stocks is low (<0.3% per ha per year), but the absolute impacts are large due to the scaling effects of the large geographical extent of tropical forests, their high productivity, and the large size of their trees.

Several observational studies have indicated that tree biomass of forests with a high biomass of lianas is considerably lower than that of forests with lower liana abundance, with their carbon storage capacity reduced by up to 50 percent (Chave et al. 2001, Laurance et al. 2001, Malhi et al. 2006). This liana-induced reduction in carbon stocks is likely caused by a combination of liana-induced: (1) reductions in tree growth; (2) increases in tree mortality; and (3) shifts in tree species composition due to different susceptibilities of trees to liana infestation and competition. In the next section, we will review these three distinct processes by which lianas impact on carbon balance, and assess how increasing liana abundance and biomass might influence the carbon balance of tropical forests in the future.

Carbon Sequestration.—By reducing tree survival and growth, lianas constrain the net carbon gain, i.e., difference of carbon gains and losses, of tropical forests. While the negative effects of lianas on individual tree growth are now well-known, so far only one study has attempted to estimate the total effect of liana-induced reduction in tree growth on stand-level carbon sequestration. van der Heijden and Phillips (2009) evaluated the effect of lianas on tree growth while accounting for competition for light, potential competition for nutrients and water with neighboring trees, and wood density, by combining all these factors in a multi-species model. The model predicted tree growth in the presence of lianas (as measured) and in a scenario in which none of the trees were competing with lianas (by setting the liana competition component in the model to zero). The predicted growth rates were used to calculate the increment in aboveground biomass per plot for each of the scenarios (i.e., with and without lianas), with the difference between the scenarios being a forest-level estimate of the effect of lianas (Fig. 2). Their results suggested that the decrease in tree growth due to lianas reduced mean aboveground tree biomass increment by 0.51 Mg dry weight/ha/yr. Since approximately 50 percent of the woody tissue of trees is composed of carbon, this effect translates to a reduction of 0.25 Mg C/ha/yr, which is equivalent to a relative reduction in 10 percent of tree carbon increment in this forest. Adding also the effects of lianas on tree mortality to these estimates of liana-induced reduction in carbon uptake, the focus of the multi-species model developed by van der Heijden and Phillips (2009), would increase the estimated effect of lianas on the net forest-level carbon uptake.

A study by Schnitzer et al. (unpubl. data) has experimentally quantified the effect of lianas on both the loss of tree growth and the increase in tree mortality in treefall gaps. After 8 yr, the cumulative aboveground biomass increment of the liana-free gaps was, on average, 0.16 Mg/ha higher than that of the control gaps (controlling for gap size and initial tree biomass). An estimated 84 percent of this increase in carbon was due to a greater tree growth in the gaps where lianas were removed, whereas the remaining 16 percent was attributed to the decrease in tree mortality. Based on these average effects, the authors estimated that the effect of lianas in gaps alone reduces forest carbon uptake by nearly 10 percent of the total net carbon gain. Expanding this liana-removal approach to include both gap and non-gap forest sites would substantially increase the estimate of liana-induced carbon reduction in tropical forests.
Changes in tree species composition.—Trees differ in their susceptibility to lianas, potentially because some tree species are able to dislodge lianas or escape liana infestation altogether (Putz 1984a, a, Clark & Clark 1990, Balfour & Bond 1993, Campbell & Newbery 1993, Schnitzer et al. 2000, Pérez-Salicrup et al. 2001, Alvira et al. 2004, van der Heijden et al. 2008, Ingwell et al. 2010). In particular, fast-growing and light-wooded tree species tend to have lower levels of liana infestation, whereas dense-wooded, shade-tolerant tree species, which store the vast majority of forest carbon, have much higher liana infestation rates and suffer a proportionately greater reduction in liana-induced growth, survival, and recruitment (Putz 1984a, Clark & Clark 1990, Schnitzer et al. 2000, van der Heijden et al. 2008, van der Heijden & Phillips 2009, Ingwell et al. 2010, Schnitzer & Carson 2010). Fast-growing trees have wood densities that are, on average, 15 percent lower than shade-tolerant trees that suffer high liana infestations (van der Heijden et al. 2008).

By imposing a much stronger effect on slower-growing shade-tolerant tree species than on fast growing trees, lianas might alter the outcome of competition among tree species (Schnitzer et al. 2000, Schnitzer & Carson 2010). The differential effect of lianas has been shown in a liana-removal study in Panama, which tested whether lianas comparatively affected recruitment and diversity of shade-tolerant trees more than that of pioneer trees (Schnitzer & Carson 2010). Eight years after lianas had been removed from treefall gaps, shade-tolerant tree diameter growth, density, and diversity had increased considerably compared with control gaps, whereas pioneer trees remained relatively unaffected. These results indicate that by suppressing the growth and recruitment of shade-tolerant tree species, lianas may alter the floristic composition of tropical forests by replacing dense-wooded, shade-tolerant tree species by liana and tree species with lower density wood.

There is accumulating evidence that the tree composition of tropical forests is changing in locations far from obvious, direct anthropogenic impacts – a process that may, in part, be due to lianas. In Tambopata, Peru, stand-level mean wood density has decreased since the early 1980s, indicating an overall relative increase of more fast-growing tree species (Fig. 3). In addition, a large cluster of plots in central Amazonia (18 1-ha plots over a 300 km² area) indicates an increase in the basal area or density of many genera of fast-growing trees, whereas there is no such increase in slower-growing trees (Laurance et al. 2004). The changes in floristic composition may be due to a rise in atmospheric CO₂ concentration, which may benefit faster-growing species more than shade-tolerant species (Phillips & Gentry 1994, Körner 1998, Laurance et al. 2004, Phillips et al. 2004). The directional changes in tree species composition toward fast-growing trees with low-density wood might also be driven, in part, by the negative effects of lianas.

Effects of increasing liana abundance on carbon balance.—Increases in liana stem density and biomass in tropical forests will likely exacerbate liana effects on forest-level tree growth and mortality, as the liana loads carried by trees increase. Using what we know about liana impacts and current forest structural and dynamical trends, we can now develop a simple first estimate of the likely impact of lianas over the first quarter of the 21st century. The relative basal area of large lianas has doubled over two decades in many western Amazonian locations (Phillips et al. 2002, van der Heijden and Phillips 2009) used a tree growth model to suggest that if this rate of lianas increase were to continue, stand-level reduction in carbon gains could decrease from 0.25 Mg C/ha/yr to 0.37 Mg C/ha/yr by 2025. This projected reduction would be equivalent to 25 percent of the current total average net carbon uptake of tropical forests (0.49 Mg C/ha/yr; Lewis et al. 2009b). This estimate is likely conservative because the model omits tree mortality (van der Heijden & Phillips 2009), and increasing liana abundance and biomass will likely lead to higher tree mortality rates (Ingwell et al. 2010). Hence, increases in liana density and biomass have the potential to severely reduce the carbon sink function of tropical forests.

Increased liana abundance and biomass may also significantly decrease carbon stocks of tropical forests by decreasing the proportion of trees with high wood density. A study simulating the effect of several biodiversity scenarios on the carbon storage capacity for a 50 ha forest in BCI showed that a liana-induced loss of slower-growing tree taxa could reduce the carbon storage capacity by trees of this forest by as much as 34 percent (Bunker et al. 2005). If the increase in liana abundance and biomass persists, and the 34 percent liana-induced reduction in carbon storage is representative of the wider tropics, the eventual potential liana-driven
reduction in carbon stored in tropical forest trees could conceivably reach as much as 36 Pg C in Amazonia and 97 Pg C worldwide.

Compensatory effects of lianas.—Liana growth and their potential increase in biomass stocks will compensate, to some extent, for the liana-induced reduction in tree biomass storage and sequestration. Few studies have attempted to quantify the compensation of lianas for the liana-induced decreases in tree biomass increment and stocks. Liana biomass growth has been estimated to compensate for 0.07 Mg ha/yr, equivalent to 30 percent, of the liana-induced reduction in carbon uptake by tree growth in an old-growth forest in Peru (van der Heijden et al. 1983). In a fragmentation study in Brazil, the compensatory effect of lianas was smaller; increases in liana biomass in forest edges only compensated for 8 percent of the tree biomass lost 10–17 years after fragmentation (Laurance et al. 1997).

Lianas displace far more carbon than they contribute because they have a relatively low amount of structural tissue and have porous stems. Instead of allocating carbon to a self-supporting trunk and an anchoring root system, lianas can invest the resources otherwise necessary for support tissue into height growth, increased leaf area, and stem and presumably root elongation without large investment in woody support tissue (Putz 1983, Gehring et al. 2004, Gerwing 2004, Schnitzer 2005, Cai et al. 2007, Selaya et al. 2007). For example, on the BCI 50 ha plot, lianas contribute 25 percent of woody stems (lianas and trees ≥1 cm diameter), 35 percent of woody species, but less than 3 percent of basal area (Schnitzel et al. 2012). In addition, lianas are dynamic components of tropical forests, with turnover rates as much as three times faster than those of trees (Phillips et al. 2005), so they have short woody biomass residence times. Carbon sequestered due to liana biomass growth will therefore be released back into the atmosphere much sooner than carbon taken up by trees. Increasing liana abundance and biomass in tropical forests is therefore likely to offset a small portion of the reduction in tree carbon sequestration and storage caused by competitive effects of lianas.

CONCLUSIONS AND FUTURE DIRECTIONS

Lianas are currently responsible for around 15 percent of the ANPP in tropical forests. As liana leaves replace tree leaves on an approximately one-to-one basis, their contribution to forest-level canopy productivity most likely at least offsets the liana-induced reduction in tree canopy productivity. By contrast, lianas appear to be reducing carbon sequestration and carbon storage in tropical forests by: (1) reducing tree growth and survival; (2) causing a shift in tree species composition toward faster growing species with low-density wood; and (3) replacing carbon-dense trees with lianas, which sequester and store far less carbon than the trees they replace. Increasing liana abundance and biomass will exacerbate these effects of lianas in tropical forests and are therefore projected to accentuate losses in carbon sequestration and storage in these forests. While the recent whole-forest trend has been toward increased biomass in tropical Amazonia and Africa, possibly driven by carbon dioxide fertilization, the effects of increasing lianas are one of several highly plausible mechanisms by which the tropical forest biomass sink may be reduced or reversed, with significant consequences for global atmospheric CO2 levels and hence climate change.

Biogeography.—Thus far, the observation that lianas are increasing has been a Neotropical phenomenon, with the very limited evidence from other tropical regions inconsistent with the observed pattern in the Americas (Schnitzer & Bongers 2011). This may indicate that the magnitude of change in the responsible driver(s) for the increase in lianas may vary across continents. Additional research in Africa and Asia is necessary to determine whether the increase in lianas is indeed just a Neotropical occurrence or is, in fact, happening worldwide.

A large variation in the abundance and biomass of lianas exists both within the Neotropics as well as across the continents. It has been difficult to identify key environmental variables that drive both Neotropical as well as pan-tropical differences in liana success, though the availability of host trees and their characteristics (van der Heijden & Phillips 2008) and rainfall seasonality (Schnitzel 2005, DeWalt et al. 2010) have been suggested. Multivariate data-rich biogeographical studies will be needed to pinpoint what factors drive pantropical variation in liana success, and therefore make it possible to identify the mechanisms responsible for liana increases.

Belowground processes.—Currently, information on the effect of lianas on belowground NPP and carbon sequestration and storage is completely lacking. To be able to accurately determine the total effect of lianas on the total (i.e., above- and belowground) carbon cycle and balance, studies which focus specifically on quantifying liana effects on belowground processes are urgently needed.

Liana removal studies.—Large scale experimental liana removal studies are needed to: (1) accurately quantify the current total effect of lianas on forest carbon sequestration and storage; (2) assess whether lianas indeed alter species composition on a large enough scale to affect the carbon storage capacity of tropical forests; (3) investigate the impacts of lianas on net primary productivity; and (4) to confirm and refine the findings of observational studies in case they were affected by confounding variables. These experiments should provide details of the functioning of the internal carbon cycle and carbon balance of tropical forests when liana impacts are completely removed, with insights likely beyond those that can be offered by observational studies alone. In addition, they may provide better indications of how increasing lianas will affect tropical forest productivity and their carbon balance.

One such large scale experiment is currently running in Panama, where the fate of more than 10,000 trees and 7500 lianas (≥1 cm) in eight 80 × 80 m control plots and more than 10,000 trees (≥1 cm) in eight 80 × 80 m liana-removal plots is followed.
(S. Schnitzer, J. Powers, G. van der Heijden, and others). The goal of this experiment is to quantify the effects of lianas on tree and forest-level carbon dynamics, soil nutrient dynamics, and tree community composition. Additional experiments of this kind in other tropical forests will allow researchers to accurately quantify the effects of lianas in tropical forests as a whole. Such studies will provide the data necessary to be able to include the effects of lianas in vegetation models, and help predict the effects of increasing liana abundance and biomass on carbon sequestration and storage in tropical forests.

Vegetation models.—At present, lianas and liana-induced effects are not taken into account in any of the vegetation models on the carbon cycle and carbon balance of tropical forests. Because of the multitude of liana-induced effects on tropical forest carbon dynamics, we argue it will be necessary to include lianas as a functional type, and to account for liana-induced effects on tropical forests in these models to be able to provide better predictions of tropical forest behaviour this century. To further assist the incorporation of lianas into global vegetation models, more research should be dedicated to discovering the mechanisms responsible for the increase in liana abundance and biomass, as well as additional studies quantifying the effects of lianas on the carbon cycle and carbon balance of tropical forests.

ACKNOWLEDGMENTS

Fieldwork at Tambopata was possible through grants from the Explorer’s Club, the Coalbourn Trust, and the Alberta Mennega Foundation, financial support from the University of Leeds and logistical support from the Instituto Nacional para Recursos Naturales (INRENA) and Peruvian Safaris S.A. We thank Tatiana Boza Espinoza for help with liana data collection, Abel Montenegro and Rodolfo Vásquez for their contribution to tree species determination at Tambopata and Yadvinder Malhi for sharing his carbon cycle graphics template. Support for OL Phillips was provided by an Advanced Grant from the European Research Council, “Tropical forests in the changing earth system” and by a Royal Society Wolfson Research Merit Award. Research and support for SA Schnitzer and GMV van der Heijden in Panama by was supported by NSF grants DEB-0613666, DEB-0845071, DEB-1019436, and the University of Wisconsin–Milwaukee Research Growth Initiative program. JS Powers gratefully acknowledges support from NSF grant DEB-1019441.

LITERATURE CITED

