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The theory of island biogeography1 asserts that an island or a
local community approaches an equilibrium species richness as a
result of the interplay between the immigration of species from
the much larger metacommunity source area and local extinction
of species on the island (local community). Hubbell2 generalized
this neutral theory to explore the expected steady-state distri-
bution of relative species abundance (RSA) in the local commu-
nity under restricted immigration. Here we present a theoretical
framework for the unified neutral theory of biodiversity2 and an
analytical solution for the distribution of the RSA both in the
metacommunity (Fisher’s log series) and in the local community,
where there are fewer rare species. Rare species are more extinc-
tion-prone, and once they go locally extinct, they take longer to
re-immigrate than do common species. Contrary to recent
assertions3, we show that the analytical solution provides a better
fit, with fewer free parameters, to the RSA distribution of tree
species on Barro Colorado Island, Panama4, than the lognormal
distribution5,6.

The neutral theory in ecology2,7 seeks to capture the influence of
speciation, extinction, dispersal and ecological drift on the RSA
under the assumption that all species are demographically alike on a
per capita basis. This assumption, while only an approximation8–10,
appears to provide a useful description of an ecological community
on some spatial and temporal scales2,7. More significantly, it allows
the development of a tractable null theory for testing hypotheses
about community assembly rules. However, until now, there has
been no analytical derivation of the expected equilibrium distri-
bution of RSA in the local community, and fits to the theory have
required simulations2 with associated problems of convergence
times, unspecified stopping rules, and precision3.

The dynamics of the population of a given species is governed by
generalized birth and death events (including speciation, immigra-
tion and emigration). Let b n,k and dn,k represent the probabilities of
birth and death, respectively, in the kth species with n individuals
with b21;k ¼ d0;k ¼ 0: Let p n,k(t) denote the probability that the kth
species contains n individuals at time t. In the simplest scenario, the
time evolution of p n,k(t) is regulated by the master equation11–13

dpn;kðtÞ

dt
¼ pnþ1;kðtÞdnþ1;kþ pn21;kðtÞbn21;k 2 pn;kðtÞðbn;k

þ dn;kÞ ð1Þ

which leads to the steady-state or equilibrium solution, denoted by
P:

Pn;k ¼ P0;k

Yn21

i¼0

bi;k

diþ1;k
ð2Þ

for n . 0 and where P 0,k can be deduced from the normaliza-
tion condition

P
nPn;k ¼ 1: Note that there is no requirement of

Box 1
Derivation of the RSA of the local community

We study the dynamics within a local community following the
mathematical framework of McKane et al.27, who studied a mean-field
stochastic model for species-rich communities. In our context, the
dynamical rules2 governing the stochastic processes in the
community are:

(1) With probability 1–m, pick two individuals at random from the
local community. If they belong to the same species, no action is
taken. Otherwise, with equal probability, replace one of the individuals
with the offspring of the other. In other words, the two individuals serve
as candidates for death and parenthood.

(2) With probability m, pick one individual at random from the local
community. Replace it by a new individual chosen with a probability
proportional to the abundance of its species in the metacommunity.
This corresponds to the death of the chosen individual in the local
community followed by the arrival of an immigrant from the
metacommunity. Note that the sole mechanism for replenishing
species in the local community is immigration from the
metacommunity, which for the purposes of local community dynamics
is treated as a permanent source pool of species, as in the theory of
island biogeography1.

These rules are encapsulated in the following expressions for effective
birth and death rates for the kth species:

bn;k ¼ ð1 2 mÞ
n

J

J 2 n

J 2 1
þm

mk

JM
1 2

n

J

� �
ð8Þ

dn;k ¼ ð1 2 mÞ
n

J

J 2 n

J 2 1
þm 1 2

mk

JM

� �
n

J
ð9Þ

where mk is the abundance of the kth species in the metacommunity
and JM is the total population of the metacommunity.

The right hand side of equation (8) consists of two terms. The first
corresponds to rule (1) with a birth in the kth species accompanied by a
death elsewhere in the local community. The second term accounts
for an increase of the population of the kth species due to immigration
from the metacommunity. The immigration is, of course, proportional
to the relative abundance mk/JM of the kth species in the
metacommunity. Equation (9) follows in a similar manner. Note that
bn,k and dn,k not only depend on the species label k but also are no
longer simply proportional to n.

Substituting equation (8) and (9) into equation (2), one obtains the
expression27:

Pn;k ¼
J!

n!ðJ 2 nÞ!

GðnþlkÞ

GðlkÞ

Gðck 2 nÞ

Gðck 2 JÞ

Gðlk þck 2 JÞ

Gðlk þckÞ
; FðmkÞ ð10Þ

where

lk ¼
m

ð1 2 mÞ
ðJ 2 1Þ

mk

JM
ð11Þ

and

ck ¼ Jþ
m

ð1 2 mÞ
ðJ 2 1Þ 1 2

mk

JM

� �
ð12Þ

Note that the k dependence in equation (10) enters only through mk.
On substituting equation (10) into equation (4), one obtains:

kfnl¼
XSM

k¼1

FðmkÞ ¼ SMkFðmkÞl¼ SM

ð
dmr̂ðmÞFðmÞ ð13Þ

Here r̂ðmÞdm is the probability distribution of the mean populations of
the species in the metacommunity and has the form of the familiar Fisher
log series (in a singularity-free description15,28):

r̂ðmÞdm¼
1

Gð1Þd1
expð2m=dÞm121dm ð14Þ

where d ¼ x/(1 2 x). Substituting equation (14) into the integral in
equation (13), taking the limits SM ! 1 and 1 ! 0 with v ¼ SM1

approaching a finite value15,28 and on defining y ¼ m g
dv
; one can obtain

our central result, equation (7).
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conservation of community size. One can show that the system is
guaranteed to reach the stationary solution (2) in the infinite time
limit14.

The frequency of species containing n individuals is given by:

fn ¼
XS

k¼1

Ik ð3Þ

where S is the total number of species and the indicator I k is a
random variable which takes the value 1 with probability Pn,k and 0
with probability (1 2 Pn,k). Thus the average number of species
containing n individuals is given by:

kfnl¼
XS

k¼1

Pn;k ð4Þ

The RSA relationship we seek to derive is the dependence of kfnl
on n.

Let a community consist of species with bn;k ; bn and dn;k ; dn

being independent of k (the species are assumed to be demographi-
cally identical).

From equation (4), it follows that kfnl is simply proportional to
Pn, leading to:

kfnl¼ SP0

Yn21

i¼0

bi

diþ1
ð5Þ

We consider a metacommunity in which the probability d that an
individual dies and the probability b that an individual gives birth to
an offspring are independent of the population of the species to
which it belongs (density-independent case), that is, bn ¼ bn and
dn ¼ dnðn . 0Þ: Speciation may be introduced by ascribing a non-
zero probability of the appearance of an individual of a new species,
that is, b0 ¼ v – 0: Substituting the expressions into equation (5),

one obtains the celebrated Fisher log series15:

kfM
n l¼ SMP0

b0b1…bn21

d1d2…dn
¼ v

xn

n
ð6Þ

where M refers to the metacommunity, x ¼ b/d and v¼ SMP0v=b is
the biodiversity parameter (also called Fisher’s a). We follow the
notation of Hubbell2 in this paper. Note that x represents the ratio of
effective per capita birth rate to the death rate arising from a variety
of causes such as birth, death, immigration and emigration. Note
that in the absence of speciation, b0 ¼ v¼ v¼ 0; and, in equili-
brium, there are no individuals in the metacommunity. When one
introduces speciation, x has to be less than 1 to maintain a finite
metacommunity size JM ¼

P
nnkfnl¼ vx=1 2 x:

We turn now to the case of a local community of size J undergoing
births and deaths accompanied by a steady immigration of indi-
viduals from the surrounding metacommunity. When the local
community is semi-isolated from the metacommunity, one may
introduce an immigration rate m, which is the probability of
immigration from the metacommunity to the local community.
For constant m (independent of species), immigrants belonging to
the more abundant species in the metacommunity will arrive in the
local community more frequently than those of rarer species.

Our central result (see Box 1 for a derivation) is an analytic
expression for the RSA of the local community:

kfnl¼ v
J!

n!ðJ 2 nÞ!

GðgÞ

GðJþ gÞ

ðg

0

Gðnþ yÞ

Gð1þ yÞ

GðJ 2 nþ g 2 yÞ

Gðg 2 yÞ

expð2yv=gÞdy ð7Þ

where GðzÞ ¼
Ð1

0 tz21e2tdt which is equal to (z 2 1)! for integer z

and g¼ mðJ21Þ
12m : As expected, kfnl is zero when n exceeds J. The

computer calculations in Hubbell’s book2 as well as those more
recently carried out by McGill3 were aimed at estimating kfnl by
simulating the processes of birth, death and immigration.

One can evaluate the integral in equation (7) numerically for a
given set of parameters: J, v and m. For large values of n, the integral
can be evaluated very accurately and efficiently using the method of
steepest descent16. Any given RSA data set contains information
about the local community size, J, and the total number of species in
the local community, SL ¼

PJ
k¼1kfkl: Thus there is just one free

fitting parameter at one’s disposal.
McGill asserted3 that the lognormal distribution is a more

parsimonious null hypothesis than the neutral theory, a suggestion
which is not borne out by our reanalysis of the Barro Colorado
Island (BCI) data. We focus only on the BCI data set because, as
pointed out by McGill3, the North American Breeding Bird Survey
data are not as exhaustively sampled as the BCI data set, resulting in
fewer individuals and species in any given year in a given location.
Furthermore, the McGill analysis seems to rely on adding the bird
counts over five years at the same sampling locations even though
these data sets are not independent.

Figure 1 shows a Preston-like binning5 of the BCI data4 and the fit
of our analytic expression with one free parameter (11 degrees of
freedom) along with a lognormal having three free parameters (9
degrees of freedom). Standard chi-square analysis17 yields values of
x2 ¼ 3.20 for the neutral theory and 3.89 for the lognormal. The
probabilities of such good agreement arising by chance are 1.23%
and 8.14% for the neutral theory and lognormal fits, respectively.
Thus one obtains a better fit of the data with the analytical solution
to the neutral theory to BCI than with the lognormal, even though
there are two fewer free parameters. McGill’s analysis3 on the BCI
data set was based on computer simulations in which there were
difficulties in knowing when to stop the simulations, that is,
when equilibrium had been reached. It is unclear whether
McGill averaged over an ensemble of runs, which is essential to
obtain repeatable and reliable results from simulations of stochastic

Figure 1 Data on tree species abundances in 50-hectare plot of tropical forest in

Barro Colorado Island, Panama4. The total number of trees .10 cm DBH in the data set is

21,457 and the number of distinct species is 225. The red bars are observed numbers of

species binned into log2 abundance categories, following Preston’s method5. The first

histogram bar represents kf 1l/2, the second bar kf 1l/2 þ kf 2l/2, the third bar

kf 2l/2 þ kf 3l þ kf 4l/2 the fourth bar kf 4l/2 þ kf 5l þ kf 6l þ kf 7l þ kf 8l/2
and so on. The black curve shows the best fit to a lognormal distribution

kfnl¼ N
n

expð2ðlog2n 2 log2n0Þ
2=2j2Þ (N ¼ 46.29, n 0 ¼ 20.82 and j ¼ 2.98),

while the green curve is the best fit to our analytic expression equation (7) (m ¼ 0.1 from

which one obtains v ¼ 47.226 compared to the Hubbell2 estimates of 0.1 and 50

respectively and McGill’s best fits3 of 0.079 and 48.5 respectively).
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processes because of their inherent noisiness. However, simulations
of the neutral theory are no longer necessary, and all problems with
simulations are moot, because an analytical solution is now
available.

The lognormal distribution is biologically less informative and
mathematically less acceptable as a dynamical null hypothesis for
the distribution of RSA than the neutral theory. The parameters of
the neutral theory or RSA are directly interpretable in terms of birth
and death rates, immigration rates, size of the metacommunity, and
speciation rates. A dynamical model of a community cannot yield a
lognormal distribution with finite variance because in its time
evolution, the variance increases through time without bound.
However, as shown in ref. 18, the lognormal distribution can arise
in static models, such as those based on niche hierarchy.

The steady-state deficit in the number of rare species compared to
that expected under the log series can also occur because rare species
grow differentially faster than common species and therefore move
up and out of the rarest abundance categories owing to their rare-
species advantage19. Indeed, it is likely that several different models
(such as an empirical lognormal distribution, niche hierarchy
models18 or the theory presented here) might provide comparable
fits to the RSA data (we have found that the lognormal does slightly
better than the neutral theory for the Pasoh data set20, obtained in a
tropical tree community in Malaysia). Such fitting exercises in and
of themselves, however, do not constitute an adequate test of the
underlying theory. Neutral theory predicts that the degree of
skewing of the RSA distribution ought to increase as the rate of
immigration into the local community decreases. Dynamic data on
rates of birth, death, dispersal and immigration are needed to
evaluate the assumptions of neutral theory and determine the role
played by niche differentiation in the assembly of ecological
communities.

Our analysis should also apply to the field of population genetics in
which the mutation-extinction equilibrium of neutral allele frequen-
cies at a given locus has been studied for several decades21–26. A
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Marine unicellular cyanobacteria are responsible for an esti-
mated 20–40% of chlorophyll biomass and carbon fixation in
the oceans1. Here we have sequenced and analysed the 2.4-
megabase genome of Synechococcus sp. strain WH8102, revealing
some of the ways that these organisms have adapted to their
largely oligotrophic environment. WH8102 uses organic nitro-
gen and phosphorus sources and more sodium-dependent trans-
porters than a model freshwater cyanobacterium. Furthermore,
it seems to have adopted strategies for conserving limited iron
stores by using nickel and cobalt in some enzymes, has reduced
its regulatory machinery (consistent with the fact that the open
ocean constitutes a far more constant and buffered environment
than fresh water), and has evolved a unique type of swimming
motility. The genome of WH8102 seems to have been greatly
influenced by horizontal gene transfer, partially through phages.
The genetic material contributed by horizontal gene transfer
includes genes involved in the modification of the cell surface and
in swimming motility. On the basis of its genome, WH8102 is
more of a generalist than two related marine cyanobacteria2.

Most species of picoplanktonic marine cyanobacteria currently
known belong to two genera: Synechococcus and Prochlorococcus.
Members must have the ability to acquire major nutrients and trace
metals at the submicromolar concentrations found in the oligo-
trophic open seas. Their light-harvesting apparatus is uniquely
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