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Preface 

 
Governments, policymakers, and businesses are now asking ecologists for guidance as 

nations worldwide work to combat the causes and consequences of global anthropogenic change, 

especially those of climate change. Not only have ecologists become responsible for providing 

sound data on the effects of climate change, but are also being called on to provide reliable 

predictions.  Ecologists, and scientists in general, increasingly need to balance their commitment 

to rigorous independent investigation of their study systems with the need to actively advocate 

for the conservation of those same systems. However, there is no inherent trade-off between 

these two activities. We as scientists are trained to be independent-minded, able to assess and 

draw conclusions based on the merits of the evidence at hand. Given the enormous challenges of 

global climate change and the threat it poses to our field, my generation of ecologists must 

aggressively use the expertise and understanding of natural systems we posses to educate those 

responsible for making decisions affecting the future of our planet. Only then can we truly say 

our work has made a lasting difference.  
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Abstract 

 
Disentangling the mechanisms and uncovering the scale  

of increasing liana size and abundance in neotropical forests 
 

By 
 

David C. Marvin 
 

Chair: Robyn J. Burnham 
 

Humans are altering tropical ecosystems and their biotic and biogeochemical processes 

with unprecedented scale and severity. The increasing size and abundance of tropical lianas 

(woody climbing plants) relative to trees may be the result of global anthropogenic change, and 

may further alter forest function. Yet the mechanisms responsible for this reported phenomenon 

are unclear, and the scale at which it occurs has been unexamined. In this dissertation, I use a 

combination of empirical experimentation, ground-based forest censuses, and advanced airborne 

remote sensing imagery and analysis to investigate the question of why lianas are increasing and 

at what spatial scale. First, I tested the hypothesis that elevated CO2 gives species of lianas a 

growth advantage relative to trees, especially during periods of seasonal drought. In the first 

experiments to directly compare the relative response of tropical liana and tree species to 

elevated CO2, I found no significant differences between the two growth forms. Both lianas and 

trees responded equally well to elevated CO2, even when soil water was limited by seasonal 

drought. Second, I extended the tests of liana-tree response to CO2 to include the effects of soil 
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nutrient availability. No interactions between elevated CO2 and either soil nitrogen or 

phosphorus availability were found for lianas. Instead, changes to soil nutrient availability or 

CO2 alone had strong and significant effects on lianas. Finally, I used data collected from my 

field censuses to train machine learning algorithms to detect severe liana coverage in tree 

canopies using high-resolution hyperspectral imagery. This method proved to be very accurate at 

distinguishing severe liana cover from liana-free cover in tree canopies, and quantified severe 

liana infestation as 11.9%-18.0% of the total canopy cover over a 600-ha tropical forest. The 

results of the experiments and the development of landscape-scale liana detection methods are 

key steps toward a full understanding of the mechanisms and scope of the liana increase.  
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Chapter I 

Introduction  

Forest dynamics, or the changes in community composition over time, are fundamental to 

the study of tropical forest community ecology. For years many ecologists assumed tropical 

forests eventually attained a state of ‘dynamic equilibrium,’ where tree growth and death rates 

are equal and composition (abundance and diversity) of species within a community remained 

stable (Whitmore, 1978). This assumption has been challenged recently (but as early as Connell 

(1978)), with studies revealing that biomass, productivity, mortality, recruitment, and community 

composition of neotropical forests are changing over time (Phillips et al., 1998; Baker et al., 

2004; Laurance et al., 2004; Phillips et al., 2004). These pervasive changes have been attributed 

to global anthropogenic alterations of the biosphere and atmosphere. The unprecedented scale 

and severity on which humans are altering tropical ecosystems and their biotic and 

biogeochemical processes are of global consequence: tropical forests alone account for 60% of 

total terrestrial carbon uptake from the atmosphere (Pan et al., 2011).  

One particular concern is the reported increase in the size and abundance of lianas 

(woody climbing plants). In tropical forest ecosystems, trees and lianas represent the two 

dominant plant growth forms. In tropical and temperate forest surveys that include lianas, 

climbers comprise roughly one-quarter of the woody species richness (Table 1.1). Liana 

abundance within these forests, however, is more variable, ranging anywhere from 4 to 45% of 

woody stems in forests. In a study on Barro Colorado Island, Panama, Schnitzer & Carson 
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(2001) found lianas to represent almost 30% of the species richness in the seedling layer (with 

trees comprising 55%).  

Across tropical forests lianas are consistently observed climbing in at least 50% of 

surveyed trees (Clark & Clark, 1990; Gentry, 1991; Campbell & Newbery, 1993; Ingwell et al., 

2010; van der Heijden et al., 2010; Campanello et al., 2012; Chapter 4) The close association 

between lianas and trees is a consequence of the liana growth strategy, whereby they depend on 

trees and other growth forms (including other lianas) for structural support (Putz & Mooney, 

1991). The interactions between lianas and trees will be essential to understanding how future 

forest richness and composition may respond to anthropogenic global change.  

Liana-Tree Interactions  

The growth strategy, morphology, and physiology of lianas differ greatly from that of 

trees. Lianas invest few resources in mechanical support and instead rely on trees and other 

structures for support (Putz, 1984a). This shifts the available resource allocation to favor growth 

and reproduction. As a result, lianas have a high leaf area to stem mass ratio resulting in larger 

photosynthetic biomass than trees (Schnitzer & Bongers, 2002; Zhu & Cao, 2010; Paul & Yavitt, 

2011). In addition, vertical growth rates of lianas outpace other woody life forms (Schnitzer, 

2005). Rapid growth and the ability to follow virtually any structural support pathway (within 

the constraints of their specific climbing mechanism) confers a greater flexibility among lianas 

than trees in seeking out new sources or higher levels of light. The well-developed root system of 

lianas, combined with large vessel elements, allows lianas to efficiently and rapidly absorb and 

transport water and nutrients (Ewers et al., 1991; Schnitzer, 2005; Foster & Brooks, 2005; 

Domingues et al., 2007; Cai et al., 2009).  
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Forest managers have long known that lianas negatively impact tree growth and 

regeneration (Putz, 1984a). Lianas have a disproportionately large negative effect on tree 

biomass accumulation by reducing tree diameter increment (Lowe & Walker, 1977; Whigham, 

1984; Clark & Clark, 1990; Grauel & Putz, 2004; van der Heijden & Phillips, 2009; Schnitzer et 

al., unpublished data), leaf productivity (Dillenburg et al., 1993b; Perez-Salicrup, 2001; Toledo-

Aceves & Swaine, 2008), sap flow velocity (Tobin et al., 2012; Alvarez-Cansino et al., 

unpublished data), and stem height (Perez-Salicrup, 2001). Lianas also decrease forest carbon 

accumulation and long-term storage (Duran & Gianoli, 2013) through reduced tree fecundity 

(Stevens, 1987; Kainer et al., 2006; Nabe-Nielsen et al., 2009), increased tree mortality (Putz, 

1984b; Phillips et al., 2002; Garrido-Perez et al., 2008; Ingwell et al., 2010; Schnitzer et al., 

unpublished data), and suppressed tree regeneration (Toledo-Aceves & Swaine, 2008; Schnitzer 

& Carson, 2010). These effects of lianas are achieved not only through classic competitive 

mechanisms, but also through unconventional interactions specific to lianas. 

Intense aboveground interactions between lianas and trees results in decreased tree 

growth. Lianas use tree stems as structural support in order to reach the canopy where light 

levels are the highest. Once in the canopy, lianas spread outward and in some cases form a dense 

layer of vegetation, shading out the leaves of trees below (Dillenburg et al., 1993b; Avalos et al., 

1999). In addition to competition for light in the canopy, lianas grow rapidly into light gaps that 

open as a result of a disturbance (Schnitzer et al., 2000). Their ability to grow into and dominate 

forest gaps allows them to outcompete trees for space. Lianas have been found in such high 

densities in treefall gaps in tropical forests that they mechanically prevent trees from growing 

upward (Schnitzer et al., 2000).  
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While belowground competition was for some time ignored as a substantial component of 

liana-tree interactions, recent studies have found it may be at least as important as aboveground 

competition. Experiments restricting liana-tree interactions to only belowground competition 

have found that tree growth rates and biomass were reduced (Dillenburg et al., 1993a; 1993b; 

1995; Barker & Perez-Salicrup, 2000; Schnitzer et al., 2005; Chen et al., 2008). In a study 

testing the effect of light on the relative importance of above- and belowground competition, 

Chen et al. (2008) found that in high light conditions, belowground competition between lianas 

and trees significantly and negatively affected tree seedling development.  

Studies of belowground competition between lianas and trees not only investigated 

biomass and growth rates, but also the cause of the growth decrease. Dillenburg et al. (1993a) 

found that trees had lower leaf nitrogen concentration in belowground competition treatments 

than in either aboveground only or above- and belowground competition, suggesting that soil 

nitrogen availability was responsible for the competitive interaction. However, results from 

studies of competition for soil water are mixed. Soil water availability was significantly reduced 

when measured in trees with lianas than in trees whose lianas were experimentally cut (Perez-

Salicrup & Barker, 2000). In a separate liana removal experiment, Barker & Perez-Salicrup 

(2000) found that liana competition did not reduce tree water status even after a prolonged dry 

period.  

Lianas also indirectly compete with trees through unconventional means. As multiple 

individual lianas climb a single tree, or as one liana accumulates biomass in a tree canopy, the 

added weight can exert torque on the stem and roots increasing the likelihood of tree mortality or 

reduced growth (Putz 1984a). If a liana uses twining as its climbing mechanism it may constrict 

a tree’s phloem as it tightens around the bole of the tree, reducing translocation of nutrients 



 

 5 

(Hegarty 1991). When a liana reaches a tree canopy it can grow into neighboring tree crowns 

thereby binding the trees together. In the tropics a liana, on average, climbs in more than one tree 

(Putz 1984b), increasing the chance that a single tree falling will bring down multiple trees at the 

same time. In a survey of treefall events, Putz (1984b) found that many trees were brought down 

along with the causal tree as a consequence of lianas linking them. The number of trees that fell 

from a hurricane event was lower in an experimental plot where lianas were removed from the 

trees than the unmanipulated controls (Garrido-Perez et al. 2008). Yet, it is rare that a liana will 

die when brought down in a treefall. In fact, 90% of liana stems survive such an event (Putz 

1984b). Each of these mechanisms serves to give lianas an added advantage when competing 

with trees for limited resources.  

Increasing Liana Size and Abundance 

Due to their importance to forest structure and function, lianas have attracted increasing 

interest over the past two decades (Gerwing et al., 2006). A result of the increasing study of 

lianas has been the discovery that their size and abundance are increasing. In a synthesis of 

studies from multiple neotropical plots, stem density and basal area of large lianas was 

documented to have increased by 4.3% per year over the last two decades of the 20th century 

(Phillips et al. 2002), representing nearly a doubling in proportional liana basal area. More recent 

studies have reported annual increases in liana stem abundance ranging from 0.23% to 7.8%, 

while in the same study areas trees either underwent smaller annual increases or have declined in 

stem abundance (Phillips et al., 2002; Chave et al., 2008; Schnitzer et al., 2012; Yorke et al., 

2013). These same studies found increases in liana biomass or basal area ranging from 0.6% to 

4.6% annually over the same time period. And again, over the same period, only a 0.34% per 

year increase in tropical tree biomass or basal area was reported.  
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Proxy evidence for the increasing size and abundance of lianas also exist. Benítez-

Malvido & Martinez-Ramos (2003) found a 500% increase in liana seedling recruitment over a 

six and a half year period (1993-1999) in a Brazilian lowland moist forest. Ingwell et al. (2011) 

documented a 57% increase in the proliferation of lianas in tropical tree canopies since 1980. 

Similarly, in tropical Panamanian forests liana leaf litter production increased by 55% over 17 

years (Wright et al., 2004). Furthermore, Wright & Calderon (2006) calculated a 4.1% and 1.8% 

per year increase from 1987 to 2003 in flower production of lianas and trees, respectively. These 

trends have been implicated in the recent increase of neotropical tree mortality, with lianas being 

associated with a 40% to 100% increased risk of tree mortality (Phillips et al. 2002, Ingwell et al. 

2011).  

The trends are not restricted to the tropics. Allen et al. (2007) found that liana importance 

(as measured by density, stem proportion, and basal area) has increased across a southeastern 

U.S. temperate forest. However, Londre & Schnitzer (2006) did not find any increase in the 

abundance of lianas in a northern temperate forest, suggesting that the liana increase is limited to 

the tropics and subtropics.  

Proposed mechanisms to explain the trend of increasing liana size and abundance 

(reviewed by Schnitzer & Bongers, 2011) include increasing rates of natural and anthropogenic 

disturbances, increasing length and severity of dry seasons, and increasing atmospheric carbon 

dioxide (CO2). Elevated CO2 is often invoked as a main cause of increasing lianas, with 

measurements of tropical liana species exposed to elevated CO2 showing increases in biomass, 

height, leaf area, and root mass compared to ambient CO2 (Condon et al., 1992; Korner & 

Arnone, 1992; Granados & Korner, 2002). These latter three studies are the only known 

experiments to have exposed tropical lianas to elevated CO2 and included only 8 species.  
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Despite the known negative consequences of increasing lianas, few studies have 

investigated the underlying causes or examined the scale of the increase in tropical liana 

abundance and size. In this dissertation I investigate why lianas are increasing and on what 

spatial scale. I describe a series of experiments designed to investigate one of the main proposed 

mechanisms for the liana increase: increasing atmospheric CO2 (Chapter 2). Since tropical forest 

soils are often assumed to be nutrient deficient, a subset of these experiments manipulated 

nutrient availability to test interactions with elevated CO2 (Chapter 3). Even if we were to fully 

understand the underlying mechanisms that could give lianas a further competitive edge over 

trees, an understanding of the spatial scale on which liana infestations can occur is needed to 

assess the magnitude of the problem (Chapter 4). Each of these chapters is introduced in more 

detail below.  

Chapter 2: No evidence that elevated CO2 gives tropical lianas an advantage over 

tropical trees. In this chapter I describe two experiments I conducted in Panama testing the 

hypothesis that elevated CO2 confers a growth advantage on tropical lianas relative to trees. 

While prior studies found tropical lianas respond with increased growth and biomass to elevated 

CO2, no study had yet simultaneously tested the response of lianas and trees grown under 

elevated CO2. Without comparing the relative response to CO2 of both growth forms in the same 

experiment, we cannot demonstrate whether lianas respond more to atmospheric CO2 increases 

than trees. The two studies presented in this chapter explicitly tested the response to elevated 

CO2 of seedlings of 11 tropical liana and 10 tropical tree species growing together in the ground, 

and whether seasonal drought altered the response of either growth form.  

Chapter 3: The relative growth response of tropical lianas to elevated CO2 does not 

depend on soil nutrient availability. Here I describe two multifactorial experiments that tested 
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whether changes in soil nutrient availability produce differences in the relative response of lianas 

and trees to elevated CO2. While phosphorus availability has long been recognized as a key 

constraint of lowland tropical forest productivity, recent evidence suggests that nitrogen may 

also be in limiting supply (Wright et al., 2011). As global biogeochemical cycles of carbon, 

nitrogen, and phosphorus continue to change, increasing atmospheric CO2, higher rates of 

nitrogen deposition, and decreasing soil phosphorus levels may interact to give tropical lianas an 

advantage over trees. In one experiment, seedlings of two liana and two tree species were grown 

in pots with low and high soil nitrogen. In a second experiment, seedlings of three liana species 

were grown in pots with low and high soil phosphorus. Both experiments measured species 

response to elevated CO2.  

Chapter 4: Mapping liana canopy cover across tropical forest landscapes using 

high-resolution imaging spectroscopy. This chapter presents the results of a new approach to 

mapping the tree canopy coverage of lianas at the landscape scale in contiguous tropical forests. 

The historical exclusion of lianas from many forest censuses has resulted in a severe lack of data 

(both spatially and temporally) from which we can assess the scale and impact of increasing 

liana size and abundance relative to trees. Remotely sensed (satellite and airborne) data of 

tropical forests can potentially provide these data at far larger spatial and temporal scales than 

plot-based censuses. The contrasting foliar chemical and structural properties of lianas and trees 

are reflected in different spectral reflectance patterns that may allow the two growth forms to be 

distinguished at the sub-canopy scale. I combined advanced airborne imaging spectroscopy with 

a ground-based census and machine learning classification techniques to investigate the accuracy 

of detecting individual tree crowns with severe liana cover (>80%) from those with no lianas. 
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This approach was applied to a nearly 600 ha intact tropical forest to quantify and examine the 

distribution of high liana coverage at the landscape scale.   

My concluding section frames the results of my work in the broader context of 

understanding the effects of global change on tropical forests.   
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Table 1.1. Liana species richness and abundance (as a percent of total woody 
plants) from selected plots across the world. Note: Averages of several sites are 
reported in places where multiple plots exist. 

Location Richness (%) Abundance (%) Reference

Ecuador 26 12 Gentry and Dodson (1987)

Malaysia 24 26 Appanah et al. (1993)

Borneo 14 10 Appanah et al. (1993)

Panama NA 22 DeWalt et al. (2000)

India 33 45 Muthuramkumar and Parthasarathy (2001)

Nigeria 48 39 Muoghalu and Okeesan (2005)

NE North America
13 NA Quigley and Plantt (1996)

NE North America
22 19 R Burnham (unpublished data)

SE North America 29 NA Quigley and Plantt (1996)
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Chapter II 

No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees* 

Abstract 

Increases in the size and abundance of lianas relative to trees in neotropical forests have 

been reported in recent decades. As a result, forest dynamics and carbon balance may be altered 

through the suppression of tree growth and increases in tree mortality by lianas. Increasing 

atmospheric CO2 is hypothesized as one mechanism causing the reported tropical liana increase, 

yet no study has directly compared the relative response of tropical lianas and trees to elevated 

CO2. For the first time, we explicitly tested whether tropical lianas had a relatively larger 

response to elevated CO2 compared to tropical trees, and whether seasonal drought alters the 

response of either growth form. In two experiments conducted in central Panama, one spanning 

both wet and dry seasons and one conducted only during the dry season, we grew locally 

abundant liana (n=11) and tree (n=10) species in open-top growth chambers maintained at 

ambient or twice-ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were 

grown in the ground in each chamber for at least three months during each season. We found that 

both lianas and trees had a significant and positive response to elevated CO2 (in biomass, leaf 
                                                

* In collaboration with Winter K†, Burnham R‡, & Schnitzer S§. 
 

† Smithsonian Tropical Research Institute, Panama City, Republic of Panama 
‡ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI  
§ School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 
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area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 was 

not significantly greater for lianas than trees in all response variables measured. The lack of 

differences in the relative response between growth forms leads us to conclude that elevated CO2 

is unlikely the main mechanism underlying the reported increases in liana abundance and size 

across the neotropics.  

Introduction 

Lianas (woody vines) are increasing in size and abundance relative to trees throughout 

neotropical forests (Schnitzer & Bongers, 2011; Schnitzer et al., 2012; Yorke et al., 2013). 

Reported annual increases in liana abundance range from 0.23% to 7.8% over recent decades, 

whereas trees either underwent smaller annual increases or have declined in abundance in the 

same study areas (Phillips et al. 2002; Chave et al., 2008; Schnitzer et al., 2012). Liana seedling 

recruitment, reproduction, and leaf productivity have also increased relative to trees (Wright et 

al., 2004; Wright & Calderon, 2006; Benitez-Malvido & Martinez-Ramos, 2008). 

The reported liana increases have broad implications for the global carbon cycle because 

tropical forests account for the single largest terrestrial share (60%) of annual global carbon 

dioxide uptake (Pan et al., 2011). The negative effect that lianas exert on tree growth, 

reproduction, and lifespan, combined with their very low contribution to forest biomass, suggest 

a future in which neotropical forests will absorb and store less atmospheric carbon dioxide 

annually. 

Lianas commonly comprise a large proportion of the woody species and stem number in 

tropical forests (Schnitzer et al., 2012); however, lianas constitute a small proportion of total 

tropical forest biomass (Putz, 1983; Gerwing & Farias, 2000; DeWalt & Chave, 2004; Letcher & 

Chazdon, 2009). Nevertheless, lianas have a disproportionately large negative effect on tree 
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biomass accumulation by reducing tree diameter increment (Lowe & Walker, 1977; Whigham, 

1984; Clark & Clark, 1990; Grauel & Putz, 2004; van der Heijden & Phillips, 2009; Schnitzer et 

al., unpublished data), leaf productivity (Dillenburg et al., 1993; Perez-Salicrup et al., 2001; 

Toledo-Aceves & Swaine, 2008), sap flow velocity (Tobin et al., 2012; Alvarez-Cansino et al., 

unpublished data), and stem height (Perez-Salicrup, 2001). Lianas also decrease forest carbon 

accumulation and long-term storage through reduced tree fecundity (Stevens, 1987; Kainer et al., 

2006; Nabe-Nielsen et al., 2009), increased tree mortality (Putz, 1984; Phillips et al., 2002; 

Garrido-Perez et al., 2008; Ingwell et al., 2010; Schnitzer et al., in review), and suppressed tree 

regeneration (Toledo-Aceves & Swaine, 2008; Schnitzer & Carson, 2010). Depending on the 

level of infestation, lianas are associated with a 40-100% increase in tree mortality (Phillips et 

al., 2002; Ingwell et al., 2010).  

The causes of increasing lianas have not been empirically determined, but the main 

putative mechanisms include: increased intensity of seasonal drought, higher rates of natural and 

anthropogenic disturbance, and increasing atmospheric CO2 (Phillips et al., 2002; Schnitzer & 

Bongers, 2011). Increasing atmospheric CO2 is often invoked as a main cause of increasing 

lianas (e.g., Phillips et al., 2002) because global atmospheric CO2 levels have increased 41% 

since 1750 (IPCC, 2001), with well over half the increase occurring since 1960 (NOAA, 2013). 

Because lianas invest less in structural support, relying instead on trees for access to the high-

light environment of forest canopies, their ratio of leaf area to stem or total plant biomass (LAR) 

is higher than in trees (Zhu & Cao, 2009; 2010; Paul & Yavitt, 2011). The high LAR of lianas 

may allow them to take advantage of increases in CO2 levels to a greater extent than can trees 

(Schnitzer & Bongers, 2011). Lianas and trees have similar photosynthetic capacity per unit leaf 

area (Asner & Martin, 2012), therefore lianas should gain proportionally more carbon per unit of 
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plant mass due to their relatively greater leaf area. This additional carbon should give lianas an 

advantage over trees through greater growth and reproduction, leading to increasing liana 

density, biomass, and productivity relative to trees in tropical forests.  

To date, the empirical evidence for increasing atmospheric CO2 as the cause of increasing 

tropical lianas is derived from just three greenhouse studies of lianas grown in ambient and 

elevated CO2 – none of which compared the response of lianas to trees. Granados & Korner 

(2002) found an increase in biomass for three tropical liana species grown under elevated CO2, 

but did not find a consistent growth response for other traits. Condon et al. (1992) reported that 

two congeneric species of tropical lianas exposed to elevated CO2 increased in total biomass, leaf 

area, and height compared to ambient CO2. Korner & Arnone (1992) found neither an 

aboveground biomass response nor an increase in leaf area index, but did find increased root 

mass under elevated CO2 for a model community that included two liana and three tree species. 

However, their reported results did not compare the responses between the two growth forms. 

While there is evidence that some tropical liana species respond to elevated CO2, previous 

studies have not simultaneously and explicitly compared tropical lianas to trees, and 

consequently are unable to demonstrate that lianas respond more than trees to increased 

atmospheric CO2. Furthermore, none of these studies were conducted in-ground in the tropics.  

Lianas may have a further advantage over trees under elevated atmospheric CO2 in 

forests that experience seasonal drought. Relative to trees, liana stems increase in abundance in 

neotropical forests as annual precipitation decreases (Schnitzer 2005). This dry season advantage 

may result from the inherently higher water use efficiency of lianas (Cai et al., 2009) combined 

with the potential ability of lianas to access moisture from deeper soil strata than trees (Schnitzer 

2005). Elevated CO2 is known to increases the water use efficiency of plants by reducing 
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stomatal conductance and increasing rates of photosynthesis (Battipaglia et al., 2012; Cernusak 

et al., 2013), thus allowing more carbon to be fixed per unit water lost through transpiration. 

Seasonal drought-adapted lianas should increase carbon fixation, and thus water use efficiency, 

proportionally more than trees under elevated CO2 because water-stress or deciduousness may 

limit carbon gain in many trees during periods of seasonal drought (Schnitzer & Bongers, 2011). 

This hypothesis has not been empirically tested in tropical lianas and trees.  

We tested the hypothesis that lianas respond more than trees to elevated atmospheric CO2 

using a large and phylogenetically diverse set of liana and tree species in common gardens in the 

tropics. We examined the growth of seedlings of eleven liana species and ten tree species grown 

in the ground within open-top chambers maintained at either ambient or elevated CO2. We 

included seasonal drought as a factor and examined the response of both growth forms to 

elevated CO2 over two studies: one conducted during the dry season only (“dry-only”) and one 

conducted during both wet and dry seasons (“wet-dry”). We asked whether 1) elevated CO2 

differentially affects the growth of tropical lianas and trees and 2) seasonal drought alters the 

response of these growth forms to elevated CO2. We hypothesized that: 1) lianas would show 

larger relative growth than trees under elevated CO2 due to higher proportional investment in leaf 

area and photosynthesis than trees, and 2) lianas would increase their water use efficiency more 

than trees during seasonal drought in elevated CO2, which would offset decreases in growth 

during the dry season to a greater extent for lianas than trees.  

Materials and Methods 

Site and Species 
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We conducted the study along a forest edge at the Smithsonian Tropical Research 

Institute’s Experimental Plant Growth Facility in the Republic of Panama (Figure 2.1a). Over the 

past seven years the Smithsonian collected hourly readings of temperature, precipitation, and 

full-sun photosynthetically active radiation (PAR) at this site. During the wet season (May-

December) the monthly average daytime temperature is 27.9 °C, average monthly precipitation is 

244 mm, and average daily total PAR is 25.2 mol m-2. During the dry season (January-April) the 

monthly average daytime temperature is 29.3 °C, average monthly precipitation is 44 mm, and 

average daily total PAR is 33.8 mol m-2. 

We constructed an array of 36 open top growth chambers measuring 1 m length x 1 m 

width x 2 m height, spaced approximately 1.5 m from each other, and wrapped with 90% shade 

cloth to reduce incoming sunlight and interior temperature. An air delivery system composed of 

three industrial blower fans attached to plastic plenums (4 m length x 1 m diameter) fed each 

chamber through 10 cm diameter flexible dryer ducting. Metal duct dampers controlled the 

ambient airflow rate through the ducting to exchange the air in each chamber once every two 

minutes (see Supplemental Methods for details). Half of the chambers received pure CO2 

regulated through manual flow meters to a level of 780 µmol mol-1. An automated sampling 

system and infrared gas analyzer monitored levels of CO2 in all elevated and two ambient 

chambers (see Supplemental Methods for details). Sensors inside and outside a subset of 

chambers monitored temperature, light, and soil volumetric water content (VWC) throughout 

each experiment (see Supplemental Methods for details). At the end of each experiment, and 

after the harvest, we extracted and homogenized four soil samples from the upper 5 cm of each 

chamber. We analyzed each homogenized sample for ammonium, nitrate, and total mineral 

element concentrations (see Supplemental Methods for details). We extracted, dried, and 



 

 24 

weighed fine root material of non-experimental plants growing into the chamber soil from each 

of the homogenized samples.  

We used eleven liana and ten tree species in the two separate experiments reported here 

(Table 2.1). We selected the species from among the most common species in central Panama 

(DeWalt et al., 2000; Hubbell et al., 2005; Schnitzer et al., 2012) and across a range of life 

history strategies. The availability of fruits, seeds, and seedlings from Barro Colorado Nature 

Monument forests, and from local reforestation nurseries, also guided species selection. We used 

a phylogenetically diverse group of liana and tree species to apply the experimental results more 

broadly to neotropical terrestrial communities.  

Experimental Design 

We conducted two experiments: a three month “dry-only” experiment starting February 

2011, and a seven month “wet-dry” season experiment starting September 2011. In both the dry-

only and wet-dry season experiments, we transplanted newly germinated seedlings (with at least 

one fully-expanded true leaf) into the chambers and allowed them to establish for 30 days before 

starting the CO2 treatment.  

The dry-only CO2 treatment began in late February 2011, one month after the end of the 

wet season that year, and ran for 90 days, until late May. Although the wet season normally starts 

in early May, the precipitation during the May portion of the experiment (98 mm) was 48% 

below the historical average, and soil VWC in the chambers did not change between April and 

May. In the dry-only experiment we used a randomized complete block design, in which eight 

species of lianas and eight species of trees were randomly assigned to one of eight subplots 

within a pair of chambers (block) with the restriction that four distinct liana and four distinct tree 

species be in each chamber (Figure 2.1b). Species-level replication was nine individuals per CO2 
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treatment, resulting in 72 individuals of each growth form per CO2 treatment. Due to the young 

age of the seedlings and high temperatures during the dry-only experiment, we applied 

supplemental water to maintain daily soil moisture at 30% VWC. Average soil moisture in the 

chambers without supplemental water during the subsequent (2012) dry season was 30% VWC 

(Table S2.1).  

The wet-dry season CO2 treatment began in September 2011 and ran until the end of 

March 2012 (204 days). In this experiment, we used a balanced factorial design, with four 

species of lianas and four species of trees randomly assigned to the eight subplots within each 

chamber. Species-level replication was 18 individuals per CO2 treatment, resulting in 72 

individuals of each growth form per CO2 treatment. We did not use supplemental watering 

during this experiment. To reduce soil nutrient heterogeneity within the chamber plots, we 

removed, homogenized, and returned the top 50 cm of soil from all plots. We added up to 5 cm 

of soil from a nearby site to each growth chamber plot to compensate for soil lost during this 

process and during the root excavation at the end of the previous experiment. To reduce growth 

of roots into the chamber soil from nearby trees, we dug, lined with plastic, and backfilled a 75 

cm deep trench around the entire site.   

Plant Measurements 

At the beginning of each experiment, we harvested 12 to 20 extra seedlings per species 

not used in the experiment and measured the height of the apical bud above soil (cm), diameter at 

5 cm height (mm), number of live leaves, leaf area (cm2), and dry above- and belowground 

biomass (g). We used these data to estimate the biomass of the experimental seedlings 

allometrically at the start of the experiment (see Supplemental Methods). We used the initial 
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biomass estimates to calculate the relative growth rate (RGR) of the biomass of each plant during 

the experiment:  

RGR = !" !!"#$% !!" !!"!#
!       (1) 

where Minit is the allometrically estimated dry biomass of each plant at the start of the treatment, 

Mfinal is the measured dry biomass at harvest, and t is the number of days between the treatment 

start and plant harvest.  

Every fifteen days during both experiments we measured the diameter, height, and live 

and dead leaf count for each plant. During the wet-dry season experiment, three weeks before the 

end of the wet season, we measured the length (cm) and width (cm) of every leaf and leaflet to 

calculate approximate leaf area. After the harvest we measured 50 to 100 leaves from each 

species for length, width, and fresh leaf area using a leaf area meter (LI-3100C, LI-COR, 

Nebraska, USA). We used these data with stem diameter, height, and number of live leaves to 

allometrically estimate the total biomass of each plant mid-way through the experiment (see 

Supplemental Methods).  

One week prior to the end of each experiment, and three weeks prior to the end of the wet 

season in the wet-dry experiment, we collected gas exchange measurements from the newest 

fully-expanded leaf on all plants. A portable photosynthesis system (6400XT, LI-COR, 

Nebraska, USA) measured the maximum photosynthetic rate (µmol CO2 m2 s-1), stomatal 

conductance (mol H2O m2 s-1), and transpiration rate (mmol H2O m2 s-1). Inside the leaf chamber 

of the photosynthesis system, we set light levels to 1000 µmol m-2 s-1 PAR and CO2 

concentration to the appropriate chamber target level (i.e., 390 µmol mol-1 or 780 µmol mol-1). 

Maximum (i.e., light saturated) photosynthetic rate is a commonly used parameter in studies 
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evaluating changes in photosynthetic capacity in response to elevated CO2 (see Curtis & Wang 

1998).  

At the end of each experiment, in addition to the final biweekly measurements, we 

harvested all plants above and below ground, and measured the dry biomass of leaves, stems, and 

roots. Total leaf production is defined here as the difference between the number of live leaves at 

the beginning and number at the end of the treatment, plus all dead leaves. Leaf loss is calculated 

as the total number of dead leaves regardless of the mechanism (e.g., abscission, herbivory, 

pathogen). We ground approximately 200 mg of dried leaf material for each plant to a powder 

and measured the ratio of carbon to nitrogen (C:N) by combustion and thermal conductivity on a 

Thermo Flash EA112 analyzer (CE Elantech, New Jersey, USA).  

Data Processing and Analysis 

We performed all data processing and analysis in the open-source statistical software 

program R (R Development Core Team, 2012). See Supplemental Methods for a description of 

the allometric estimations and processing of site abiotic data.  

The plant response variables analyzed in each experiment are presented in Table 2.2. To 

test each response variable for categorical treatment main effects and interactions we fit linear 

mixed-effects models with restricted maximum likelihood (REML) estimation (Pinhero & Bates, 

2000) in the R package ‘lme4’ (Bates et al., 2012). CO2 treatment (elevated and ambient), 

growth form (liana and tree), and their interaction are fixed effects in the model. We used fixed 

and random effects in the model because we wished to examine growth form differences while 

still accounting for species-level differences. To account for chamber-to-chamber variability we 

used environmental variables measured within the growth chambers as covariates in the model. 

These include total PAR, average soil moisture (VWC), standard deviation of CO2 concentration, 
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soil ammonium and nitrate, and the fine root biomass of non-experimental species growing into 

the chamber plots (see Supplemental Methods for a summary of each covariate). To make the 

coefficients directly comparable we standardized all covariates by subtracting the mean and 

dividing by two standard deviations (Gelman & Hill, 2007). Random effects were included for 

chamber to account for any extra-treatment variation not captured by the covariates, and for 

species to account for species variation not due to growth form and treatment. For i individuals 

in the wet-dry season we used a linear mixed effects model of the form:  

Response! = !α!"! ! ,!" ! + δ!"#$%&$'() ! + !β!"#$%&' ! + !γ!"#$%#& ! + !ε!  (2) 

where Response! is one of the measured plant response variables (Table 2.2). Fixed effects 

α!"! ! ,!"(!) represent the set of regression coefficients for each treatment and their interaction, 

and δ!"#$%&$'()(!) represent the environmental variables used as covariates. The crossed random 

effects structure β!"#$%&' ! !and γ!"#$%#& !  allow the regression intercepts to vary, and!ε!!are the 

residual model errors. For i individuals in the dry-only experiment we used a model of the form: 

Response! = !α!"! ! ,!" ! + δ!"#$%&$'() ! + !β!"#$% ! + !γ!"#$%#& ! + !ε!  (3) 

where each term is the same as in (2) except the random effect β!"#$% !  is used to allow intercepts 

to vary by block rather than chamber to reflect the block design of this experiment.  

We tested one alternate random effects structure for the models with only γ!"#$%#& !  as the 

random intercept. We chose the optimal random effects structure for each response variable 

using likelihood ratio tests in a simplified model containing only covariates. When chamber-to-

chamber variation was small to nonexistent, this alternate “species-only” random effects 

structure was selected.  

To generate p-values for each model coefficient, we used code adapted from Moore 

(2010) that iteratively fits reduced fixed effects models and compares them to the full fixed 
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effects model using a likelihood ratio test. These models are all fit using maximum likelihood 

estimation instead of REML because REML estimates are not comparable among models with 

different fixed effects structures (Pinhero & Bates, 2000). When the interaction or a main effect 

term was not significant, the term(s) were removed and the model refit using the same procedure 

as above.  

We used the R package ‘lsmeans’ (Lenth, 2013) to calculate the least squares means for 

each level of CO2 and growth form in the interaction model. From these data we calculated the 

mean effect size (i.e., log response ratio) and the 95% confidence interval of the effect size 

separately for the liana and tree response to elevated CO2 following the method of Hedges et al. 

(1999). 

Results 

Among the 19 growth and physiological response variables analyzed in the experiments, 

there were no significant differences in the relative effect of CO2 on lianas versus trees (Table 

2.3). While lianas tended to have a larger relative response to elevated CO2, the lack of a 

significant interaction between CO2 and growth form can be clearly seen across all response 

variables (Figures 2.2 and 2.3). There were very few variables where the two growth forms 

differed significantly, even when pooling the data across CO2 treatments (Table 2.3). The 

substantial intra- and interspecific variation in the experiment shows that common species of 

these two growth forms do not respond in a clear and predictable manner to elevated CO2. Full 

results from the linear mixed model estimations are presented in Tables 2.4 and 2.5.  

While no differences between growth forms were found, a number of response variables 

had a significant and large CO2 fertilization effect when pooled across growth form (Table 2.3) – 

evidence that validates the design of our experimental array and CO2 treatment procedures. 
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These CO2 main effects are briefly discussed below for each experiment, and then for the wet 

and dry halves of the wet-dry season experiment. 

Dry-only and wet-dry season experiments 

In the dry-only experiment, four response variables showed a significant response to 

elevated CO2 when growth forms are pooled (Table 2.3). Stem diameter significantly increased 

24.7%, even though this is only an absolute change of < 1 mm. Root mass significantly increased 

37.4%, while the aboveground biomass components (leaf and stem mass) did not show a 

significant increase in response to elevated CO2. Leaf mass per area, a measure of a plant’s 

investment in light interception (Poorter et al., 2009), significantly increased 5.4%. The 

maximum photosynthetic rate significant increase of 37.3%, combined with no significant 

change in stomatal conductance or transpiration, meant an increase in water use efficiency for 

both lianas and trees.  

The wet-dry season experiment, which ran for twice as long as the dry-only experiment 

but included half the number of species, also resulted in several significant differences between 

elevated and ambient CO2. Significant leaf-level responses to elevated CO2 included a 31.5% 

increase in leaf area and a 49.0% increase in leaf mass. Stem biomass significantly increased by 

84.6%, the largest percentage increase of all the variables. Total plant biomass increased 

significantly over the study period, with an increase of 64.8% in response to elevated CO2. 

Response of plant gas exchange to elevated CO2 in this experiment is discussed below in the 

context of each half of the experiment because of the strong influence of seasonality. 

Wet half and dry half growth and biomass response 

During the wet half of the wet-dry season experiment, none of the growth or biomass 

response variables showed a significant response to elevated CO2. However, in the dry half leaf 
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area showed a significant increase in response to elevated CO2 of 37.2%. Total biomass change 

during the dry half increased significantly between ambient and elevated CO2 by 69.8%, with 

RGR significantly increasing 19.0% in response to elevated CO2.  

Wet half and dry half physiological response 

Elevated CO2 caused significant increases in maximum photosynthetic rate in both the 

wet and dry halves of the wet-dry season experiment, with a 36.0% increase in the wet half and a 

48.2% increase in the dry half. In the wet half, there was a positive but non-significant response 

to CO2 for stomatal conductance and transpiration, whereas in the dry season stomatal 

conductance significantly decreased 28.9% and transpiration decreased 19.5%. These results 

indicate that water use efficiency increased in both seasons but did not differ between lianas and 

trees. 

Random effects of chamber and species  

Examining the random effects structures selected by the likelihood ratio test for the 

analysis of each response variable, we find that the crossed random effects structure (chamber 

and species) was selected for just over half the variables in the dry-only and the wet and dry 

halves of the wet-dry experiment. The crossed random effects structure was only selected in 4 of 

14 response variables in the wet-dry experiment analysis. In the cases where the crossed random 

effects structure was selected, there was sufficient between chamber extra-treatment variation to 

include chamber as a random effect in addition to species. When the “species-only” random 

effects structure was selected, there was either little to no between chamber extra-treatment 

variability or the environmental covariates measured throughout the experiment sufficiently 

explained the chamber-to-chamber variability.  
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Discussion 

We did not find strong empirical support for the hypothesis that lianas respond more than 

trees to elevated CO2 in the first two experiments conducted in the tropics to compare growth 

forms. Based on the lack of any significant, stronger relative responses by lianas to elevated CO2 

across the variables measured, we find it unlikely that increasing atmospheric CO2 is the main 

mechanism underlying the reported increase in neotropical liana size and abundance. 

As the locus of CO2 absorption and carbon fixation, leaf-level variables should show a 

strong response if the liana growth form had an inherent advantage over trees under elevated 

CO2. However, we did not find support for the hypothesis that lianas invest more than trees in 

photosynthetic tissue under elevated CO2. For all leaf variables measured in each experiment, 

lianas and trees invested a similar amount of resources, or did not show a significant response, 

when exposed to elevated CO2. We found a moderate increase in leaf area and leaf biomass in 

response to elevated CO2 during the wet-dry experiment, but this did not differ between lianas 

and trees. In the dry-only experiment, both lianas and trees invested similarly in the leaf-level 

cost of light interception (leaf mass per area).  

There was not a significantly greater increase in liana biomass or height than trees in 

response to elevated CO2. We therefore find no support for the hypothesis that high leaf area 

ratio (LAR) strategy of lianas necessarily confers an advantage under elevated CO2. This 

hypothesis has been suggested as one of the underlying mechanisms explaining the reported 

increase in lianas (Mohan et al., 2006; Körner, 2009; Schnitzer & Bongers, 2011). In fact, lianas 

and trees either had a very similar LAR, or trees had significantly larger LAR than lianas, at the 

end of each experiment.  
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We were surprised that lianas did not show a larger relative physiological response to 

elevated CO2 during seasonal drought than trees, given their higher water use efficiency at 

ambient CO2 levels, wider vessel elements, and potentially deeper root systems (Schnitzer, 2005; 

Foster & Brooks, 2005; Domingues et al., 2007; Cai et al., 2009). Many lianas retain their leaves 

and are able to increase their relative growth during the dry season (Putz & Windsor, 1987; 

Schnitzer, 2005), whereas many trees are deciduous or reduce their photosynthetic activity 

(Condit et al., 2000; Schnitzer, 2005; Cai et al., 2009). We anticipated lianas to take advantage 

of increased water use efficiency that elevated CO2 imparts on plants (Battipaglia et al., 2012).  

However in the first reported gas exchange measurements conducted on tropical lianas 

under elevated CO2, we found no significant differences in the relative increase in maximum 

photosynthetic rate between lianas and trees in either the wet or dry seasons. Similarly, we did 

not find any significant differences in the relative decrease in stomatal conductance and 

transpiration shown by lianas and trees. In both studies we found increases in water use 

efficiency, but there was no difference between lianas and trees. The lack of physiological 

differences between lianas and trees in response to CO2 is reflected in their similar growth 

response. This runs contrary to our hypothesis that a greater increase in the water use efficiency 

of lianas compared to trees would offset dry season-induced growth reductions in lianas.  

Our results are consistent with previous studies of lianas grown under elevated and 

ambient CO2. All three prior studies found increases in either aboveground or belowground liana 

biomass in response to elevated CO2. In two of the studies no other significant positive responses 

at the growth-form level were detected (Korner & Arnone, 1992; Granados & Korner, 2002), 

while Condon et al. (1992) found lianas also increased significantly in leaf area and height. We 

find similar results for the response of plant biomass and leaf area to elevated CO2, but we find 
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no differences between growth forms – elevated CO2 has the same stimulative effect on both 

lianas and trees.  

We assessed the response of liana and tree seedlings and young saplings to elevated CO2, 

therefore our conclusions are limited to this life stage. Recent research that found evidence of 

increasing lianas in tropical forests was conducted on adult stems (Schnitzer & Bongers, 2011). 

However, if elevated CO2 were the main mechanism driving an increase in the size and 

abundance of lianas relative to trees we would expect at least some effect at earlier life stages. 

The reported increase in lianas likely is not limited to the adult life stage, because Benitez-

Malvido & Martinez-Ramos (2003) found a 500% increase in liana seedling recruitment over a 

six and a half year period (1993-1999) in a Brazilian lowland moist forest.  

While the interaction between elevated CO2 and light availability was not included in our 

experimental design, we acknowledge its importance. Granados & Korner (2002), the only 

published work on tropical liana response to elevated CO2 and light, found that lianas only 

increased in biomass under elevated CO2 when grown under low light. In addition, three 

extratropical studies have found a larger liana response to CO2 under low light (Korner, 2009). 

This advantage when light is limiting may allow lianas to escape the low-light understory and 

proliferate in the high light canopy faster than trees can. However, total daily average PAR in the 

wet-dry study and the low light level of Granados & Korner (2002) were similar (1.6 and 1.8 mol 

m-2, respectively). Since neither study achieved the low-light level of the understory of a closed 

canopy neotropical forest (0.2-1.0 mol m-2; Chazdon & Fetcher, 1983), further study of the 

interaction between understory light levels, plant growth form, and elevated CO2 is needed.   

Our results for the 11 liana and 10 tree species are reported at the growth form level, 

however species-specific response to CO2 are not uniform. For example, in the dry-only 
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experiment, the liana Stigmaphyllon lindenianum increased in biomass 322% under elevated CO2 

relative to ambient, while the liana Paullinia pinnata showed a biomass decrease of 19%. In the 

same study, the tree Cedrela odorata increased in biomass 111% under elevated CO2 relative to 

ambient, while the tree Paquira quinata showed a biomass decrease of 15%. The large species-

level variation of lianas in response to CO2 (Figures 2.2 and 2.3) led to a lack of any significant 

differences at the growth form level. Lianas are a diverse plant growth form in the neotropics 

with 162 species from 36 families present on the 50-ha plot alone at Barro Colorado Island in 

Panama (Schnitzer et al., 2012), so it is unreasonable to expect they would respond uniformly. It 

is possible that the reported increase in liana size and abundance is caused by a subset of species 

that differ among regions of the neotropics. Unfortunately, temporal censuses of lianas to date 

have not included species-level data. Not only are temporal species censuses needed, but any 

further study of lianas under elevated CO2 should be focused on those liana species that do 

increase over time.  

We conclude that elevated CO2 is unlikely the main mechanism behind the reported liana 

increase, yet we cannot rule it out entirely. Other global change mechanisms such as increasing 

length and severity of seasonal drought, changes in soil nutrient cycles, and changes in 

temperature may interact with increasing atmospheric CO2 to produce the reported increase in 

lianas. As with any perturbation to a natural system the underlying mechanisms and their effects 

on ecosystems are likely to be complex and interactive. Further experimentation on the 

mechanisms underlying increasing lianas in the neotropics should therefore be multifactorial and 

include species selected based on the results of temporal censuses.  
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Table 2.1. Species (listed by family) used in the two experiments. Species in bold indicate 
those used in both studies.   

Lianas Trees
Experiment Family Species Family Species
Dry-only Boraginaceae Tournefortia hirsutissima L. Apocynaceae Lacmelia panamensis

Dry-only Celastraceae Prionostemma asperum (Lam.) Miers Malvaceae Paquira quinata (Jacq.) W.S. Alverson

Dry-only Connaraceae Connarus turczaninowii Triana Combretaceae Terminalia amazonia (J.F. Gmel.) Exell

Dry-only Dilleniaceae Davilla kunthii A. St.-Hil. Fabaceae  (Faboideae) Vatairea erythrocarpa (Ducke) Ducke

Dry-only Loganiaceae Strychnos panamensis Seem. Meliaceae Cedrela odorata L.

Dry-only Malpighiaceae Stigmaphyllon lindenianum A. Juss. Moraceae Brosimum alicastrum Sw.

Dry-only Sapindaceae Paullinia pinnata  L. Rubiaceae Calycophyllum candidissimum (Vahl ) DC.

Dry-only Vitaceae Vitis tiliifolia Humb. & Bonpl. ex Schult. Rubiaceae Randia armata (Sw.) DC.

Wet-dry Bignoniaceae Bignonia corymbosa  (Vent.) L.G. Lohmann Bignoniaceae Tabebuia rosea (Bertol.) A. DC.

Wet-dry Connaraceae Connarus sp. Boraginaceae Cordia alliodora (Ruiz & Pav.) Oken

Wet-dry Fabaceae (Faboideae) Clitoria javitensis (Kunth) Benth. Combretaceae Terminalia amazonia (J.F. Gmel.) Exell

Wet-dry Malpighiaceae Stigmaphyllon hypargyreum Triana & Planch. Rubiaceae Calycophyllum candidissimum (Vahl ) DC.

Table 1. Species (listed by family) used in the two experiments. Species in bold indicate those used in both studies.  



 

 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Variables measured in the experiments and 
used as the response variables in the model, broken 
down by variable category and experiment. Note: the 
Wet-half and Dry-half experiments are subsets of the 
Wet-Dry experiment. 

Table 2. Variables measured in the experiments and used as the response variables in 
the model, broken down by variable category and experiment. Note: the Wet-half and 
Dry-half experiments are subsets of the Wet-Dry experiment. 

ExperimentExperimentExperimentExperiment

Response Variable
Dry-only Wet-dry Wet-half Dry-half

Response Variable

Growth Change
Height (cm) ● ● ● ●
Diameter (cm) ● ● ● ●
Leaf Area (cm2) ● ● ● ●
Total Leaf Production ● ● ● ●
Leaf Loss ● ● ● ●

Biomass Change
Leaf Biomass (g) ● ●
Stem Biomass (g) ● ●
Root Biomass (g) ● ●
Total Biomass (g) ● ● ● ●
Relative Growth Rate ● ● ●

Ratios
Leaf Area Ratio
(cm2 mg-1) ● ● ● ●
Leaf Mass Area 
(mg cm-2) ● ●
Specific Leaf Area 
(cm2 mg-1) ● ●
Root:Shoot Ratio ● ●
Leaf:Stem Ratio ● ●

Physiology
Max Photosynthetic Rate 
(µmol CO2 m2 s-1) ● ● ●
Stomatal Conductance
(mol H2O m2 s-1) ● ● ●
Transpiration
(mmol H2O m2 s-1) ● ● ●
Foliar C:N ratio ●

1Relative growth rate is for aboveground biomass only in this experiment
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Table 2.3. Likelihood ratio test results for the interaction between CO2 and growth form (GF) and for a main effect of 
CO2 and GF separately. The random effects structure used for each model is given (see table footnotes for description). 
Significant effects are highlighted in bold, n.s. denotes non-significant effects, and - indicates variables not measured in a 
particular experiment or subset. Note: the Wet-half and Dry-half experiments are subsets of the Wet-Dry experiment. 
 

Table 3. Likelihood ratio test results for the interaction between CO2 and growth form (GF) and for a main effect of CO2 and GF separately. The random effects structure used for each model is 
given (see table footnotes for description). Significant effects are highlighted in bold, n.s. denotes non-significant effects, and - indicates variables not measured in a particular experiment or 
subset. Note: the Wet-half and Dry-half experiments are subsets of the Wet-Dry experiment. 

ExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperiment

Response Variable
Dry-onlyDry-onlyDry-onlyDry-only Wet-dryWet-dryWet-dryWet-dry Wet-halfWet-halfWet-halfWet-half Dry-halfDry-halfDry-halfDry-half

Response Variable
Interaction Main EffectMain Effect Random 

structure1 Interaction Main EffectMain Effect Random 
structure1 Interaction Main EffectMain Effect Random 

structure1 Interaction Main EffectMain Effect Random 
structure1Growth Change

Interaction
CO2 GF

Random 
structure1 Interaction

CO2 GF
Random 
structure1 Interaction

CO2 GF
Random 
structure1 Interaction

CO2 GF
Random 
structure1

Stem Length (cm) n.s. n.s. n.s. 2 n.s. n.s. n.s. 1 n.s. n.s. n.s. 1 n.s. n.s. n.s. 2

Diameter (cm) n.s. 0.040 n.s. 2 n.s. n.s. n.s. 1 n.s. n.s. n.s. 2 n.s. n.s. n.s. 1

Leaf Area (cm2) n.s. n.s. n.s. 1 n.s. 0.038 n.s. 2 n.s. n.s. n.s. 2 n.s. 0.034 n.s. 2

Total Leaf Production n.s. n.s. n.s. 1 n.s. n.s. n.s. 1 n.s. n.s. 0.035 2 n.s. n.s. n.s. 1

Leaf Loss n.s. n.s. n.s. 2 n.s. n.s. n.s. 2 n.s. n.s. n.s. 2 n.s. n.s. n.s. 2

Biomass Change

Leaf Biomass (g) n.s. n.s. n.s. 1 n.s. 0.008 n.s. 2 - - - - - - - -

Stem Biomass (g) n.s. n.s. n.s. 1 n.s. 0.007 n.s. 2 - - - - - - - -

Root Biomass (g) n.s. 0.018 n.s. 1 n.s. n.s. n.s. 2 - - - - - - - -

Total Biomass (g) n.s. n.s. n.s. 1 n.s. 0.012 n.s. 2 n.s. n.s. n.s. 2 n.s. 0.017 n.s. 2

Relative Growth Rate - - - - n.s. n.s. n.s. 1 n.s. n.s. n.s. 1 n.s. 0.044 n.s. 1

Allocation Ratios
Leaf Area Ratio
(cm2 mg-1) n.s. n.s. n.s. 1 n.s. n.s. 0.016 2 n.s. n.s. n.s. 1 n.s. n.s. n.s. 2
Leaf Mass Area 
(mg cm-2) n.s. 0.025 n.s. 2 n.s. n.s. n.s. 2 - - - - - - - -
Specific Leaf Area 
(cm2 mg-1) n.s. n.s. n.s. 2 n.s. n.s. n.s. 2 - - - - - - - -

Root:Shoot Ratio n.s. n.s. n.s. 2 n.s. n.s. n.s. 2 - - - - - - - -

Leaf:Stem Ratio n.s. n.s. n.s. 2 n.s. n.s. n.s. 2 - - - - - - - -

Physiology
Max Photosynthetic Rate 
(µmol CO2 m2 s-1) n.s. <0.001 n.s. 1 - - - - n.s. <0.001 n.s. 1 n.s. <0.001 n.s. 1

Stomatal Conductance
(mol H2O m2 s-1) n.s. n.s. n.s. 2 - - - - n.s. n.s. n.s. 1 n.s. 0.001 n.s. 1

Transpiration
(mmol H2O m2 s-1) n.s. n.s. 0.038 1 - - - - n.s. n.s. n.s. 1 n.s. 0.019 n.s. 1

Foliar C:N ratio - - - - n.s. n.s. n.s. 2 - - - - - - - -
1Random effects structures:
1: ( βChamber(i) + γSpecies(i) )
2: ( γSpecies(i) )
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Table 4.   Mixed model estimates of liana and tree response to CO2 treatment, percent change of response, and effect size for growth, biomass, response ratio, and physiological variables between 
the a) dry-only and b) wet-dry experiments. These values take into account the environmental covariates and random effects used in the model. SE = standard error (pooled variance); CI95 = 95% 
confidence interval; - indicates variables not measured in a particular experiment. 

Dry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-onlyDry-only Wet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dryWet-dry
Response VariableResponse Variable LianasLianasLianasLianasLianasLianasLianasLianas TreesTreesTreesTreesTreesTreesTreesTrees LianasLianasLianasLianasLianasLianasLianasLianas TreesTreesTreesTreesTreesTreesTreesTrees

Growth ChangeGrowth Change AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size

Stem Length (cm)
mean 20.0 27.0 35.2 0.30 6.0 8.4 41.0 0.34 89.8 108.1 20.4 0.19 21.3 25.53 19.7 0.18

Stem Length (cm) SE 6.9 6.9 CI95 ±  0.84CI95 ±  0.84 6.9 6.9 CI95 ±  2.78CI95 ±  2.78 41.0 41.0 CI95 ±  1.16CI95 ±  1.16 41.0 41.0 CI95 ±  4.91CI95 ±  4.91

Diameter (cm)Diameter (cm)
0.54 0.55 3.1 0.03 0.51 0.48 -5.7 -0.06 0.15 0.18 20.1 0.18 0.18 0.21 17.0 0.16

Diameter (cm)Diameter (cm) 0.04 0.04 0.22 0.04 0.04 0.25 0.05 0.05 0.89 0.05 0.05 0.73

Leaf Area (cm2)Leaf Area (cm2)
153.7 240.2 56.3 0.45 198.8 293.3 47.5 0.39 802.8 1086.7 35.4 0.30 651.3 823.9 26.5 0.23

Leaf Area (cm2)Leaf Area (cm2) 89.8 90.2 1.36 89.9 90.0 1.07 442.2 441.8 1.34 442.2 442.4 1.70

Total Leaf ProductionTotal Leaf Production
4.9 10.3 108.4 0.73 4.5 6.0 31.8 0.28 18.5 27.4 47.5 0.39 31.2 35.5 13.8 0.13

Total Leaf ProductionTotal Leaf Production 2.8 2.9 1.25 2.8 2.8 1.54 13.2 13.2 1.68 13.2 13.2 1.10

Leaf LossLeaf Loss
1.5 1.7 11.3 0.11 1.7 1.3 -20.5 -0.23 3.2 3.4 6.4 0.06 8.4 7.5 -10.1 -0.11

Leaf LossLeaf Loss 0.55 0.55 0.95 0.55 0.55 1.03 1.9 1.9 1.55 1.9 1.9 0.65
Biomass ChangeBiomass Change

Leaf Biomass (g)Leaf Biomass (g) 0.51 0.91 78.8 0.58 0.60 0.85 42.6 0.35 2.26 3.66 61.4 0.48 1.80 2.40 32.9 0.28Leaf Biomass (g)Leaf Biomass (g) 0.23 0.23 1.02 0.23 0.23 0.93 1.30 1.30 1.32 1..30 1.30 1.77

Stem Biomass (g)Stem Biomass (g)
0.36 0.72 98.8 0.69 0.43 0.69 60.0 0.47 2.65 5.18 95.9 0.67 1.09 1.68 32.9 0.28

Stem Biomass (g)Stem Biomass (g) 0.18 0.18 1.11 0.18 0.18 0.98 1.30 1.30 1.32 1.30 1.30 1.77

Root Biomass (g)Root Biomass (g)
0.40 0.62 55.3 0.44 0.47 0.57 22.4 0.20 1.63 2.52 54.4 0.43 0.64 1.12 75.8 0.56

Root Biomass (g)Root Biomass (g) 0.14 0.14 0.82 0.14 0.14 0.77 1.14 1.14 1.63 1.14 1.14 4.04

Total Biomass (g)Total Biomass (g)
1.27 2.24 76.4 0.57 1.49 2.12 41.8 0.35 6.64 11.36 73.8 0.55 3.52 5.18 46.9 0.38

Total Biomass (g)Total Biomass (g) 0.46 0.46 0.82 0.46 0.46 0.74 4.26 4.25 1.47 4.26 4.26 2.87

Relative Growth RateRelative Growth Rate - - - - - - - - 0.012 0.013 8.8 0.08 0.010 0.011 6.9 0.07
Relative Growth RateRelative Growth Rate 0.003 0.003 0.71 0.003 0.003 0.74

RatiosRatios
Leaf Area Ratio
(cm2 g-1)
Leaf Area Ratio
(cm2 g-1)

0.12 0.11 -8.5 -0.09 0.11 0.10 -10.8 -0.11 0.13 0.12 -11.4 -0.12 0.18 0.17 -9.1 -0.10Leaf Area Ratio
(cm2 g-1)
Leaf Area Ratio
(cm2 g-1) 0.02 0.02 0.54 0.02 0.02 0.58 0.02 0.02 0.43 0.02 0.02 0.31
Leaf Mass Area 
(mg cm-2)
Leaf Mass Area 
(mg cm-2)

3.89 4.12 6.0 0.06 3.82 4.01 4.9 0.05 3.46 3.89 12.4 0.12 3.56 31.8 -10.8 -0.11Leaf Mass Area 
(mg cm-2)
Leaf Mass Area 
(mg cm-2) 0.42 0.42 0.29 0.42 0.42 0.30 0.51 0.51 0.39 0.51 0.51 0.42
Specific Leaf Area 
(cm2 mg-1)
Specific Leaf Area 
(cm2 mg-1)

0.30 0.29 -5.2 -0.05 0.29 0.28 -4.5 -0.05 0.31 0.28 -10.3 -0.11 0.42 0.37 -11.6 -0.12Specific Leaf Area 
(cm2 mg-1)
Specific Leaf Area 
(cm2 mg-1) 0.38 0.38 0.35 0.38 0.38 0.37 0.05 0.05 0.51 0.05 0.05 0.39

Root:Shoot RatioRoot:Shoot Ratio
1.72 1.82 6.1 0.06 1.25 1.17 -6.2 -0.06 0.33 0.26 -22.1 -0.25 0.30 0.34 14.7 0.14

Root:Shoot RatioRoot:Shoot Ratio 0.60 0.60 0.93 0.60 0.60 1.37 0.06 0.06 0.58 0.06 0.06 0.54

Leaf:Stem RatioLeaf:Stem Ratio
1.59 1.56 -1.8 -0.02 1.29 1.30 1.0 ` 0.01 1.26 1.20 -5.4 -0.06 1.77 1.69 -4.3 -0.04

Leaf:Stem RatioLeaf:Stem Ratio 0.32 0.32 0.56 0.32 0.32 0.68 0.30 0.30 0.67 0.30 0.30 0.48
PhysiologyPhysiology

Max Photosynthetic Rate 
(µmol CO2 m2 s-1)
Max Photosynthetic Rate 
(µmol CO2 m2 s-1)

5.87 8.01 36.5 0.31 5.05 6.96 38.0 0.32 - - - - - - - -Max Photosynthetic Rate 
(µmol CO2 m2 s-1)
Max Photosynthetic Rate 
(µmol CO2 m2 s-1) 0.62 0.62 0.26 0.61 0.62 0.29
Stomatal Conductance
(mol H2O m2 s-1)
Stomatal Conductance
(mol H2O m2 s-1)

0.15 0.15 -0.7 -0.01 0.11 0.08 -26.2 -0.30 - - - - - - - -Stomatal Conductance
(mol H2O m2 s-1)
Stomatal Conductance
(mol H2O m2 s-1) 0.02 0.02 0.39 0.02 0.02 0.64
Transpiration
(mmol H2O m2 s-1)

2.21 2.14 -3.0 -0.03 1.77 1.40 -20.8 -0.23 - - - - - - - -Transpiration
(mmol H2O m2 s-1) 0.25 0.25 0.31 0.25 0.25 0.44

Foliar C:N ratio - - - - - - - - 17.4 18.3 5.4 0.05 13.7 14.3 4.7 0.05Foliar C:N ratio
2.9 2.9 0.45 2.9 2.9 0.57

*Relative growth rate is for aboveground biomass only in the dry-only study

Table 2.4. Mixed model estimates of liana and tree response to CO2 treatment, percent change of response, and effect size for 
growth, biomass, response ratio, and physiological variables between the dry-only and wet-dry experiments. These values take into 
account the environmental covariates and random effects used in the model. - indicates variables not measured in a particular 
experiment. 
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Table 5.   Mixed model estimates of liana and tree response to CO2 treatment, percent change of response, and effect size for growth, biomass, response ratio, and physiological variables between 
the a) wet-half and b) dry-half of the wet-dry experiment. These values take into account the environmental covariates and random effects used in the model. - indicates variables not measured in a 
particular subset of the experiment. 

Wet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-halfWet-half Dry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-halfDry-half
Response VariableResponse Variable LianasLianasLianasLianasLianasLianasLianasLianas TreesTreesTreesTreesTreesTreesTreesTrees LianasLianasLianasLianasLianasLianasLianasLianas TreesTreesTreesTreesTreesTreesTreesTrees

Growth ChangeGrowth Change AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size AmbientAmbient ElevatedElevated % ∆% ∆ Effect SizeEffect Size

Stem Length (cm) mean 35.8 31.2 21.0 0.19 5.9 6.4 8.4 0.08 63.4 76.5 20.6 0.19 15.6 20.2 29.9 0.26
Stem Length (cm)

SE 15.0 15.0   ±CI95   1.50  ±CI95   1.50 15.0 15.0   ±CI95   6.88  ±CI95   6.88 27.5 27.5   ±CI95   1.11  ±CI95   1.11 27.5 27.5 ±CI95     4.40±CI95     4.40

Diameter (cm)Diameter (cm)
0.05 0.05 15.3 0.14 0.05 0.06 15.4 0.14 0.10 0.12 18.1 0.17 0.13 0.15 17.2 0.16

Diameter (cm)Diameter (cm) 0.02 0.02 0.92 0.02 0.02 0.83 0.04 0.04 0.91 0.04 0.04 0.68

Leaf Area (cm2)Leaf Area (cm2)
192.4 217.3 12.9 0.12 247.0 253.1 2.5 0.02 630.9 862.8 36.7 0.31 415.8 572.5 37.7 0.32

Leaf Area (cm2)Leaf Area (cm2) 67.1 67.0 0.91 67.1 67.1 0.74 389.9 389.4 1.50 389.9 389.9 2.27

Total Leaf ProductionTotal Leaf Production
3.9 4.3 9.8 0.09 9.9 10.5 5.9 0.06 14.9 23.5 57.7 0.46 21.3 25.9 21.8 0.20

Total Leaf ProductionTotal Leaf Production 2.1 2.1 1.44 2.1 2.1 0.57 11.7 11.7 1.82 11.7 11.7 1.39

Leaf LossLeaf Loss
0.7 0.9 26.4 0.23 1.8 2.1 17.4 0.16 2.6 2.7 3.0 0.03 6.9 5.7 -17.3 -0.19

Leaf LossLeaf Loss 0.5 0.5 1.90 0.5 0.5 0.74 1.5 1.5 1.61 1.5 1.5 0.68
Biomass ChangeBiomass Change

Leaf Biomass (g)Leaf Biomass (g) - - - - - - - - - - - - - - - -Leaf Biomass (g)Leaf Biomass (g)

Stem Biomass (g)Stem Biomass (g) - - - - - - - - - - - - - - - -Stem Biomass (g)Stem Biomass (g)

Root Biomass (g)Root Biomass (g) - - - - - - - - - - - - - - - -Root Biomass (g)Root Biomass (g)

Total Biomass (g)Total Biomass (g)
1.13 1.32 16.4 0.15 0.98 1.00 2.9 0.03 5.72 9.78 71.0 0.54 2.23 3.70 65.4 0.50

Total Biomass (g)Total Biomass (g) 0.40 0.40 0.91 0.34 0.34 0.96 4.05 4.05 4.14 4.05 4.05 1.60

Relative Growth RateRelative Growth Rate
0.014 0.015 4.8 0.05 0.014 0.014 1.8 0.02 0.009 0.011 17.0 0.16 0.007 0.009 21.6 0.20

Relative Growth RateRelative Growth Rate 0.004 0.004 0.77 0.004 0.004 0.69 0.003 0.003 0.71 0.003 0.003 0.87
RatiosRatios

Leaf Area Ratio
(cm2 g-1)
Leaf Area Ratio
(cm2 g-1)

0.013 0.013 -0.9 0.01 0.019 0.019 1.4 0.01 0.082 0.075 -7.8 -0.08 0.104 0.103 -1.3 -0.01Leaf Area Ratio
(cm2 g-1)
Leaf Area Ratio
(cm2 g-1) 0.03 0.03 0.58 0.03 0.03 0.42 0.021 0.021 0.73 0.021 0.021 0.56
Leaf Mass Area 
(mg cm-2)
Leaf Mass Area 
(mg cm-2)

- - - - - - - - - - - - - - - -Leaf Mass Area 
(mg cm-2)
Leaf Mass Area 
(mg cm-2)

Specific Leaf Area 
(cm2 mg-1)
Specific Leaf Area 
(cm2 mg-1)

- - - - - - - - - - - - - - - -Specific Leaf Area 
(cm2 mg-1)
Specific Leaf Area 
(cm2 mg-1)

Root:Shoot RatioRoot:Shoot Ratio - - - - - - - - - - - - - - - -Root:Shoot RatioRoot:Shoot Ratio

Leaf:Stem RatioLeaf:Stem Ratio - - - - - - - - - - - - - - - -Leaf:Stem RatioLeaf:Stem Ratio

PhysiologyPhysiology
Max Photosynthetic Rate 
(µmol CO2 m2 s-1)
Max Photosynthetic Rate 
(µmol CO2 m2 s-1)

5.56 7.95 42.8 0.36 5.86 7.58 29.5 0.26 6.21 8.88 42.9 0.36 5.73 8.84 54.0 0.43Max Photosynthetic Rate 
(µmol CO2 m2 s-1)
Max Photosynthetic Rate 
(µmol CO2 m2 s-1) 0.68 0.68 0.29 0.68 0.68 0.29 1.30 1.30 0.50 1.30 1.31 0.53
Stomatal Conductance
(mol H2O m2 s-1)
Stomatal Conductance
(mol H2O m2 s-1)

0.12 0.14 17.7 0.16 0.15 0.17 10.2 0.10 0.10 0.06 -37.9 -0.48 0.11 0.09 -19.7 -0.22Stomatal Conductance
(mol H2O m2 s-1)
Stomatal Conductance
(mol H2O m2 s-1) 0.03 0.03 0.65 0.03 0.03 0.50 0.02 0.02 0.86 0.02 0.02 0.71
Transpiration
(mmol H2O m2 s-1)
Transpiration
(mmol H2O m2 s-1)

1.50 1.71 14.0 0.13 1.89 2.00 6.4 0.06 1.69 1.26 -25.7 -0.30 1.79 1.61 -9.9 -0.10Transpiration
(mmol H2O m2 s-1)
Transpiration
(mmol H2O m2 s-1) 0.25 0.24 0.43 0.25 0.25 0.35 0.34 0.34 0.67 0.34 0.34 0.56

Foliar C:N ratio - - - - - - - - - - - - - - - -Foliar C:N ratio

Table 2.5. Mixed model estimates of liana and tree response to CO2 treatment, percent change of response, and effect size for 
growth, biomass, response ratio, and physiological variables between the wet-half and dry-half of the wet-dry experiment. These 
values take into account the environmental covariates and random effects used in the model. - indicates variables not measured in 
a particular subset of the experiment. 
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Figure 2.1. a) Open top chamber array location, layout, and dimensions. b) 
experimental design and species distribution among CO2 treatments and chambers 
for each experiment. L = liana, T = tree; each subscript number represents a distinct 
species. Species locations within each chamber for both experiments, and between 
chambers within block for the dry-only experiment, were randomized before 
planting.  

Elevated

Ambient

Dry-Only 
(8 liana, 8 tree species)

Wet-Dry 
(4 liana, 4 tree species)

(a)

(b)

bl
oc

k
bl

oc
k

L1 L2

L3L4

T1

T2

T3

T4

L5 L6

L7L8

T5

T6

T7

T8

L1 L2

L3L4

T1

T2

T3

T4

L5 L6

L7L8

T5

T6

T7

T8

L1 L2

L3L4

T1

T2

T3

T4

L1 L2

L3L4

T1

T2

T3

T4



 

 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Effect size response to CO2 for growth variables, biomass variables, response variable ratios, and 
physiological variables in the a) dry-only and b) wet-dry experiments. Positive/negative effect sizes indicate an 
increased/decreased response to CO2. Points represent the mean effect size, lines represent the 95% confidence 
interval. Arrows denote confidence intervals that extend beyond the boundaries of the figure.  
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Figure 2.3.   Effect size response to CO2 for growth variables, biomass variables, response variable ratios, and 
physiological variables in the a) wet-half and b) dry-half of the wet-dry season experiment. Positive/negative 
effect sizes indicate an increased/decreased response to CO2. Points represent the mean effect size, lines 
represent the 95% confidence interval. Arrows denote confidence intervals that extend beyond the boundaries 
of the figure. 
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Supplemental Methods  

Chamber array and site details 

Each chamber measured 1m x 1m x 2m (l x w x h) with frames constructed of ½ inch 

PVC pipe, wrapped with clear 8-gauge PVC film. Chambers were wrapped with 90% neutral 

density shade cloth to regulate incoming light levels and internal temperature. Chambers were 

arranged in three rows running west to east, each separated from the nearest chamber by 1.5 m. 

Chambers received a constant input of ambient air supplied by one of three industrial 51 cm 

panel fans (Multifan V4E5006, Vostermans Ventilation), attached to a plastic cylindrical plenum 

(4 m length x 1 m diameter). Each chamber was supplied from a plenum via flexible clothes 

dryer ducting (10 cm diameter) with the flow rate adjusted by metal duct dampening collars, 

resulting in a full air exchange approximately once every two minutes. Air entered the chambers 

from the ducting through 12 cm diameter PVC tee-junctions that split the airflow into each 

chamber at 90-degree angles and prevented direct airflow onto the plants. We randomly assigned 

half of the chambers to receive pure CO2 at the air duct entrance. We regulated concentrations of 

CO2 in each elevated treatment chamber to ≥ 700 µmol mol-1 through a bank of manual flow 

meters (Gilmont Industrial Flowmeter 200SML/min, Thermo Scientific) from sunrise to sunset 

(see below for details on CO2 monitoring).  

We constructed the experimental array next to a secondary forest edge in an area that 

may contain excavated or dredged soil from the construction of the Panama Canal 100 years ago 

(J. Wright, pers comm). The soil approximates native soils from a nearby undisturbed site. We 

determined total leaf mineral elements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, Zn) by nitric acid 

digestion and ICP-OES (inductively coupled plasma atomic emission spectroscopy) detection in 
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a subset of individuals (two per species, per treatment).  Elemental concentrations in the leaves 

of the plants showed no abnormal accumulation or deficiency, compared with data from 300 

species on the 50 ha plot of Barro Colorado Island (B. Turner, pers comm).   

Environmental monitoring 

CO2: An automatic sampling system monitored concentrations of CO2 in all 18 elevated 

chambers and two ambient chambers. One of two diaphragm pumps (2107 Vacuum Pump, 

Thomas) pulled air from a single chamber and passed it into a 5 L buffer volume containing an 

infrared gas analyzer (GMW20, Vaisala) for a five-minute period. Two banks of solenoids 

powered by a microcontroller (Mega, Arduino) switched the sample stream among the chambers 

such that each chamber was sampled 5-6 times during the day. CO2 concentrations were 

recorded to a datalogger (CR10X, Campbell Scientific) at the end of each five-minute period 

(Table S2.1).  

Soil moisture: Three volumetric water content (VWC) meters (EC-5, Decagon Devices) 

continuously monitored moisture from 2-7 cm soil depth and recorded hourly averages to the 

datalogger throughout the wet-dry season experiment. Two of the sensors were permanently 

installed inside two chambers, while one rotated every three days among all the other chambers. 

During the dry-only experiment a VWC probe (CS616, Campbell Scientific) was used to spot 

check moisture in the upper 20 cm of the soil in each chamber weekly (Table S2.1). 

Light: In the wet-dry season experiment two quantum sensors (LI190SB, Campbell 

Scientific) continuously monitored photosynthetically active radiation (PAR) and recorded five-

minute averages to the datalogger. One sensor was permanently installed in a chamber in the 

middle of the array, while the other rotated every three days among all the chambers. In the dry-

only experiment one quantum sensor was used to spot check light levels inside every chamber 



 

 53 

during periods of full sun twice throughout the experiment. Light levels in each chamber as a 

percentage of full sun were calculated. To calculate daily total PAR (mol m-2), full-sun average 

daily PAR was multiplied by individual chamber percentage light level (Table S2.1).   

Temperature: Twenty-four thermocouples (Type T, Omega Engineering) were evenly 

spaced throughout the array (half inside and half outside the chambers) and recorded five-minute 

averages through a multiplexer (AM416, Campbell Scientific) linked to the datalogger (Table 

S2.1). 

Soil nutrients: Soil samples were processed and analyzed at the STRI Soils Laboratory 

in Panama City, Panama. Ammonium and nitrate concentrations were determined by KCl 

extraction and automated colorimetry. Phosphorus concentrations were determined by anion 

exchange membrane extraction and automated molybdate colorimetry.  

Plant biomass allometry 

We calculated allometric estimates of plant total biomass at the beginning of both 

experiments and at the end of the wet season for the wet-dry experiment for each species using 

the equation: 

ln ! = !!!!!
!! + !!!

!! +⋯+ !!!!!!!! + !!!!!! + !    (1) 

where y is the response variable (biomass), Xn is a predictor variable, βn1 and βn2 are 

regression coefficients, βn3 is a coefficient that allows the errors to scale with the predictor 

variables (Mascaro et al., 2011), and e is the regression error term. We fit this model using a 

non-linear maximum likelihood optimization function (R function ‘optim’). We compare full 

models with all predictor variables (leaf area, leaf number, diameter, and height) to nested 

models, and the model with the lowest corrected AIC (i.e., for sample size) value was chosen. 
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We used coefficients from this best-fit model to predict the initial and end-of-wet season biomass 

of the plants grown in the experiments.  

We developed simple linear regression equations for each species to predict the mid-point 

leaf area from the length and width measurements taken from each leaf or leaflet 1) in the field 

halfway through the study and 2) in the lab at harvest.  

Site abiotic variable modeling 

We modeled light levels (PAR 5-min averages) in each chamber throughout the wet-dry 

experiment using a non-linear maximum likelihood optimization function (R function ‘optim’) to 

fit the overlapping data from the roving and stationary light sensors. We used an asymptotic 

model of the form: 

y = !β! ∗ 1 − e!!!!!!       (2) 

where y is the light level from the roving sensor, X is the light level from the stationary sensor, 

and β1, β2, and β3 are the model coefficients. We used the model coefficients to predict light 

values during times the roving sensor was not present in each chamber. We used the same 

process to predict soil moisture from the permanent and roving VWC sensors. 
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Table S2.1 – Mean and standard deviation for each experimental period of all 
environmental variables recorded inside the chambers (except precipitation, which was 
recorded at the nearby monitoring station). VWC = soil volumetric water content. PAR = 
photosynthetically active radiation (mol m-2). 

Experimental Period Elevated CO2 
(ppm)

Ambient CO2 
(ppm) VWC

Monthly 
Precipitation 

(mm)

Light (Total 
Daily PAR)

Temperature 
(°C)

Dry-only Mean 759 387 0.29 68 5.17 31.2
SD 214 38 0.02 4.53 5.3

Wet 733 388 0.39 381 1.18 26.4

203 40 0.03 0.45 4.6

Dry 699 367 0.30 7* 1.95 29.2

214 28 0.06 0.39 5.5
*Missing data 1-28-2012 to 2-20-2012
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Chapter III 

The relative growth response of tropical lianas to elevated CO2 does not depend on soil 
nutrient availability* 

Abstract 

A potential cause of increasing liana size and abundance relative to trees in neotropical 

forests is the change in global biogeochemical cycles. Increasing atmospheric CO2, higher rates 

of nitrogen deposition, and decreasing soil phosphorus levels may interact to give tropical lianas 

an advantage over trees. If lianas continue to increase, they may continue to change these 

biogeochemical cycles by reducing tropical forest carbon storage and redistributing nutrients at 

local scales. We investigated the growth response of locally abundant tropical liana and tree 

species grown in open-top chambers in Panama, half of which were maintained at twice-ambient 

levels of CO2. In two separate studies, seedlings of two liana and two tree species were grown 

with reduced soil nitrogen (N), and seedlings of three liana species were grown with reduced soil 

phosphorus (P). Half the pots in each experiment received weekly additions of a nutrient 

mixture. Our experiments showed no evidence that either soil N or soil P availability interact 

with increasing atmospheric CO2 to significantly affect the growth and physiology of the species 

studied. Instead, increases in soil nutrient availability or in CO2 alone had both strong and 

significant effects on the growth response of the species studied. For both the N and P 
                                                

* In collaboration with Morrison E†, Quebbeman A‡, Turner B‡, Winter K‡. 
 

† Department of Soil and Water Science, University of Florida, Gainesville, FL 
‡ Smithsonian Tropical Research Institute, Panama City, Republic of Panama 

 



 

 57 

experiments, higher soil nutrient availability led to a larger number of significant differences in 

plant growth response between treatments than did increased CO2. This suggests that while 

explanations for the reported liana increase may not lie in the interaction among changing 

biogeochemical cycles, changes within these cycles alone could be a potential contributor. 

Introduction 

The recently reported increase in the size and abundance of neotropical lianas (woody 

vines) relative to trees (Schnitzer & Bongers, 2011; Schnitzer et al., 2012; Yorke et al., 2013) 

has the potential to alter biogeochemical cycles of neotropical forests. Lianas have a 

disproportionate impact on the growth and mortality of trees relative to the overall liana 

contribution to forest biomass. While lianas comprise about 10% of aboveground forest biomass 

(Putz, 1983; DeWalt & Chave, 2004), lianas can reduce tree growth (Lowe & Walker, 1977; 

Whigham, 1984; Clark & Clark, 1990; Grauel & Putz, 2004; van der Heijden & Phillips, 2009) 

and they are associated with a 40-100% increase in tree mortality (Phillips et al., 2002; Ingwell 

et al., 2010). Consequently, lianas do not fully replace the forest biomass lost as a result of their 

negative effects on trees (Chave et al., 2001; van der Heijden & Phillips, 2009), potentially 

altering the balance of carbon exchanged between the atmosphere and biosphere.  

Nutrient cycles have the potential to change as a result of increasing liana size and 

abundance. Leaf nitrogen (N), phosphorus (P), and other nutrient (mass-based) concentrations 

are higher in lianas than trees (Asner & Martin, 2012), which could result in higher soil nutrients 

where lianas become more abundant. Liana canopies can grow tens of meters horizontally away 

from their root zone (Penalosa, 1984; Putz, 1984), thereby redistributing nutrients at a local scale 

(Powers & Kalicin, 2004).  
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Global scale alterations of biogeochemical cycles have been implicated as a potential 

cause of the relative increase in lianas (Zhu & Cao 2010; Schnitzer & Bongers, 2011). However, 

whether the increase in liana size and abundance relative to trees is a product of the interactions 

between increasing atmospheric CO2 and changing nutrient cycles has yet to be empirically 

tested. Global atmospheric CO2 levels have risen 40% since 1750 (IPCC, 2013), with most of the 

increase occurring since 1960 (NOAA, 2013). The relatively greater investment in 

photosynthetic tissue by lianas may allow them to take advantage of increased CO2 levels to a 

greater extent than trees (Schnitzer & Bongers, 2011).  

In addition to increasing CO2 levels, moist tropical forests have experienced increased 

anthropogenic N deposition in the last 40 years (Hietz et al., 2011) and are projected to receive 

the highest loadings of N deposition globally in coming decades (Galloway et al., 2004). In 

lowland tropical forests, N is presumed to be in excess of plant demand (Hedin et al., 2009; 

Brookshire et al., 2012), however in situ fertilization experiments show that current soil N 

availability does in fact limit tree growth (Wright et al., 2011). Lianas were not analyzed in these 

experiments, but there is evidence that liana density is positively correlated with soil fertility in 

the neotropics (Gentry, 1991). High liana abundance is often found in disturbed areas, which 

tend to have higher N availability resulting from increased N mineralization (Kazda & Salzer, 

2000). Lianas have both higher foliar (Asner & Martin, 2012) and whole plant (Cernusak et al., 

2008) N concentrations than trees, so the association between high soil N availability and liana 

abundance suggests lianas may benefit from increased N deposition. The response of lianas to 

both elevated atmospheric CO2 and higher available soil N may provide a mechanistic 

understanding of the reported increase of liana size and abundance.  
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Phosphorus availability, often assumed to be of key importance in constraining the 

productivity of lowland tropical forests, may decline as a consequence of increased N deposition 

(Matson et al., 1999). Higher concentrations of N increase soil acidity, resulting in increased 

base cation losses and increased fixation of P into insoluble forms (Matson et al., 1999). Liana 

abundance has been associated with high soil P availability (Laurance et al., 2001; Malizia et al., 

2010), suggesting that a decline in soil P availability may constrain future increases of lianas. 

Under elevated atmospheric CO2, soil P available to lianas may be further restricted by lower 

transpiration rates that result from higher plant water use efficiency (Battipaglia et al., 2012; but 

see Chapter 2). Lower transpiration rates decrease mass-flow of soil water and dissolved P into 

roots, resulting in reduced acquisition by plants (Cramer & Hoffmann, 2008; Cernusak & Winter, 

2011).  

An alternative hypothesis put forth by Zhu & Cao (2010) argues that an interaction 

between elevated CO2 and low soil P availability may actually give tropical lianas an advantage 

over trees. They hypothesize that the generally low soil P availability in tropical forests will 

constrain the CO2 fertilization effect for all plants, but that lianas may be less constrained due to 

higher phosphorus-use efficiency than trees.  

We tested the strength of interactions among carbon, nitrogen, and phosphorus in tropical 

forests to determine whether the interactions contribute to the reported increase in liana 

abundance. In two separate experiments, we investigated how soil nutrient (N and P) availability 

affected the response of lianas to increasing atmospheric CO2. Tropical lianas and trees were 

grown in pots within open top plant growth chambers where they were exposed to either ambient 

or elevated levels of CO2. One experiment manipulated soil N availability on both tree and liana 

species and the other manipulated soil P availability on liana species only. Each experiment held 
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other nutrients constant across treatments. We asked whether 1) higher levels of soil N 

availability lead to a larger growth response in lianas than in trees under elevated CO2, and 2) 

lower soil P availability reduces the growth response of lianas under elevated CO2 compared to 

ambient CO2. We hypothesized that tropical lianas growing under elevated CO2 would show 1) a 

larger relative growth response than trees at high soil N levels, and 2) a reduction in relative 

growth response when available P is low compared with growth under ambient CO2.  

Methods 

Site and Species 

We constructed an array of 36 open-top growth chambers along a forest edge at the 

Smithsonian Tropical Research Institute’s (STRI) Experimental Plant Growth Facility in the 

Republic of Panama (Figure 3.1a). Chamber design and CO2 delivery system are described in 

Chapter 2 Materials and Methods. Sensors monitored temperature and light inside a subset of 

chambers throughout each experiment. Additionally, STRI collects hourly readings of 

temperature, precipitation, and full-sun photosynthetically active radiation (PAR) at this site. 

Over the last seven years monthly average daytime temperature was 28.4 °C, average yearly 

precipitation was 2133 mm, and average daily total PAR was 28.0 mol m-2.  

We germinated seeds in trays (5 cm diameter x 9 cm height cells) in a shade house 

(covered with 70% shade cloth) and transplanted seedlings with at least one true leaf to 2.5 L 

pots (10 cm diameter x 30 cm height) 30 days before being placed in the chambers. Each pot 

included one individual, and we placed four pots in each chamber (Figure 3.1b). We conducted 

both experiments during a concurrent experiment with plants growing in the soil of each 

chamber plot (Chapter 2). Runoff from the pots was physically isolated to avoid nutrient transfer 
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to the chamber plot soil. We connected plastic containers (28 cm diameter x 30 cm height) 

isolating the four individual pots per chamber to a PVC pipe network that drained the containers 

downslope and away from the chamber array. 

We used two liana and two tree species in the nitrogen experiment, and three liana 

species in the phosphorus experiment (Table 3.1). We selected species from among the most 

common species in central Panama (DeWalt et al., 2000; Hubbell et al., 2005; Schnitzer et al., 

2012), and based on the availability of fruits, seeds, and seedlings from Barro Colorado Nature 

Monument forests and local reforestation nurseries.  

Experimental Design 

We used a balanced factorial design for both nutrient manipulation experiments (Figure 

3.1b), with nine individuals per species per treatment combination. Each pot in a chamber 

contained a distinct species in each experiment (Table 3.1). All pots in each chamber received 

the same nutrient treatment (either low or high) and CO2 treatment (either elevated or ambient). 

Nutrient treatments were applied weekly to half the pots in each experiment and are described 

immediately below. Both experiments ran for 60 days. 

Nitrogen Experiment 

The nitrogen experiment (“N experiment”) ran from September to November 2011. We 

used a volumetric mixture of 80% soil and 20% rice husks as the growing medium. By 

increasing the carbon to nitrogen (C:N) ratio of the soil, rice husks reduce available soil N to 

plants due to increased microbial immobilization of nitrate (Dalling et al., 2013). Soil was 

collected from the top 10 cm of a nearby orchard, air-dried, and passed through a 1 cm sieve to 

remove large rocks and organic debris. The soil is considered relatively fertile (see Dalling et al., 

2013). 
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To return the level of N in the high-N treatment pots to the original level of the soil 

(Dalling et al., 2013), we added 150 ml of 11.2 mg N (from 24 mg urea) solution to each of these 

pots weekly (“high N treatment”). We added 150 ml of deionized water to the depleted N 

treatment pots weekly (“low N treatment”). Additional watering was not needed because this 

experiment was conducted during the wet season. Final concentrations of soil ammonium, 

nitrate, and P are shown in Table 3.2.  

Phosphorus Experiment 

The phosphorus experiment (“P experiment”) ran from January to March 2012. The 

growing medium was a volumetric mixture of 60% acid washed river sand, 30% fine silica sand, 

and 10% soil (same soil as described in “Nitrogen Experiment” above). We used this sand-soil 

combination to reduce total nutrient availability while inoculating the growing medium with soil 

biota. All pots received a weekly addition of 200 ml nutrient solution that consisted of 72.0 mg 

N, 201.1 mg K (from 520 mg potassium nitrate), 61.1 mg Mg (from 232 mg magnesium sulfate), 

and 208.2 mg Ca (from 571 mg calcium chloride). The nutrient solution for the high P treatment 

contained an additional 21.2 mg of P (from 82 mg monosodium phosphate) to approximate soil P 

levels for the area (Garrish et al., 2010). All pots also received 0.1 ml of a micronutrient solution 

and 0.1 ml of iron chelate solution. We watered all pots with 100 ml of deionized water 4 days 

after the nutrient solution addition to maintain soil moisture near typical wet season levels (c. 

40% volumetric water content). Final concentrations of soil ammonium, nitrate, and P are shown 

in Table 3.2.  

Plant and Soil Measurements 

At the beginning of each experiment, we harvested 10 to 20 extra seedlings per species 

that were not used in the experiment and measured the height of the apical bud above soil (cm), 
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diameter at 5 cm height (mm), number of live leaves, and dry above- and belowground biomass 

(g). We used these data to estimate the biomass of the experimental seedlings allometrically at 

the start of the experiment using the equation: 

ln y = !β!X!!! + X!!! +⋯+ β!"X!!!" + X!!!" + !ε    (1) 

where y is the response variable (biomass), Xn is a predictor variable, βn1 and βn2 are regression 

coefficients, βn3 is a coefficient that allows the errors to scale with the predictor variables 

(Mascaro et al., 2011), and ε is the regression error term. We fit this model using a non-linear 

maximum likelihood optimization function (R ‘optim’; R Development Core Team, 2012). We 

compared the full models with all predictor variables (leaf number, diameter, and height) to 

nested models, and chose the model with the lowest corrected AIC value (i.e., corrected for 

sample size) value. We used the coefficients from this best-fit model to predict the initial 

biomass of the plants grown in the experiments.  

We used initial biomass estimates to calculate the relative growth rate (RGR) of the 

biomass of each plant during the experiment:  

 RGR = !" !!"#$% !!!"(!!"!#)
!     (2) 

where Minit is the allometrically estimated dry biomass of each plant at the start of the treatment, 

Mfinal is the measured dry biomass at harvest, and t is the number of days between the treatment 

start and plant harvest.  

Every fifteen days during both experiments we measured the stem diameter (at 5 cm 

above the soil) and height, and counted the number of live and dead leaves for each plant. One 

day before the end of each experiment, we collected gas exchange measurements from the 

newest fully-expanded leaf on each plant. We used a portable photosynthesis system (LI-COR 

6400XT) to measured maximum photosynthetic rate (µmol CO2 m2 s-1), stomatal conductance 
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(mol H2O m2 s-1), and transpiration rate (mmol H2O m2 s-1). Inside the leaf chamber of the 

photosynthesis system, light levels were set to 1000 µmol m-2 s-1 PAR and CO2 concentration set 

to the appropriate chamber target level (i.e., 390 µmol mol-1 or 780 µmol mol-1). Maximum (i.e., 

light saturated) photosynthetic rate is a commonly used parameter in studies evaluating changes 

in photosynthetic capacity in response to elevated CO2 (see Curtis & Wang 1998). In the P 

experiment, we also measured nighttime respiration (µmol CO2 m2 s-1), stomatal conductance, 

and transpiration rates between 10 pm and 4 am using the same procedures as above but with the 

leaf chamber light off.  

At the end of each experiment, in addition to the final biweekly measurements, we 

harvested all plants above and below ground, and separately weighed the dry biomass of leaves, 

stems, and roots. Total leaf production is defined here as the difference between the number of 

live leaves at the beginning and number at the end of the treatment, plus all dead leaves. Leaf 

loss is calculated as the total number of dead leaves regardless of the mechanism (e.g., 

abscission, herbivory, pathogens).  

We determined foliar carbon and nitrogen by combustion and thermal conductivity 

detection using a Thermo Flash 1112 elemental analyzer (CE Elantech, New Jersey, USA). 

Foliar P was determined by ignition (550C, 1 hour) and dissolution in 1 M H2SO4, with 

phosphate detection by automated molybdate colorimetry using a Lacaht Quikchem 8500 flow 

injection analyzer (Hach Ltd, Loveland, CO, USA). In both experiments we conducted root 

phosphatase enzyme assays on fine roots from a subset of individuals per species from each 

treatment (Table 2). Root phosphatase activity was determined in sodium acetate buffer (pH 5.0) 

using para-nitrophenyl phosphate (pNP) as substrate (5 mM final concentration) and 

spectrophotometric detection using a method similar to that of Turner et al. (2001). Stable 
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isotope ratios (δ13C and δ15N) of leaves from the P experiment were determined simultaneously 

by isotope ratio mass spectrometry using a Flash HT Elemental Analyzer coupled through a 

Conflo III interface to a Delta V Advantage continuous flow isotope ratio mass spectrometer 

(Thermo Scientific, Bremen, Germany).  

Homogenized soil samples from the top 10 cm of each pot were analyzed for extractable 

ammonium and nitrate by KCl extraction and automated colorimetry, and plant available P 

concentrations by anion exchange membrane extraction and automated molybdate colorimetry, 

as described previously (Turner and Romero, 2009).  

Data Processing and Analysis 

All data processing and analysis was performed in the open-source statistical software 

program R (R Development Core Team, 2012). To test each response variable for categorical 

treatment main effects and interactions we fit linear mixed-effects models with restricted 

maximum likelihood (REML) estimation (Pinhero & Bates, 2000) in the R package ‘lme4’ 

(Bates et al., 2013). The plant response variables analyzed in each experiment are presented in 

Table 3.2. To partially account for chamber-to-chamber variability we used environmental 

variables measured within the growth chambers as covariates in the model. These included total 

chamber PAR and soil ammonium, nitrate, and phosphorus concentrations in each pot. To 

compare coefficients directly we standardized all covariates by subtracting the mean and 

dividing by two standard deviations (Gelman & Hill, 2007). Random effects were included for 

chamber to account for any extra-treatment variation not captured by the covariates, and for 

species to account for species variation not due to growth form and treatment. 
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For the N experiment, fixed effects were CO2 treatment (levels: elevated and ambient), 

growth form (levels: liana and tree), nutrient treatment (levels: high and low N), and their 

interactions for i individuals in a model of the form: 

 Response! = !α!"! ! ,!" ! ,! ! + δ!"#$%&$'() ! + !β!"#$%&' ! + !γ!"#$%#& ! + !ε!    

where Response! is one of the measured plant response variables (Table 3.2), α!"! ! ,!" ! ,!(!) 

represents the set of regression coefficients for each treatment and their interactions, δ!"#$%&$'()(!) 

represents the environmental variables used as covariates, β!"#$%&' ! !and γ!"#$%#& !  are crossed-

random effects that allow the regression intercepts to vary, and ε!!are the residual errors. 

For the P experiment, CO2 treatment (elevated and ambient), nutrient treatment (high and 

low P), and their interaction were the fixed effects for i individuals in a model of the form: 

Response! = !α!"! ! ,! ! + δ!"#$%&$'() ! + !β!"#$%&' ! + !γ!"#$%#& ! + !ε!  (4) 

where each term is the same as (3) except growth form and its interaction with the other 

treatments was not included because only liana species were used in this experiment.  

We tested one alternate random effects structure for the models with only γ!"#$%#& !  as the 

random intercept. We chose the optimal random effects structure for each response variable 

using likelihood ratio tests in a simplified model containing only covariates. When chamber-to-

chamber variation was small to nonexistent, this alternate “species-only” random effects 

structure was selected.  

To generate p-values for each model coefficient, we used code adapted from Moore 

(2010) that iteratively fits reduced fixed effects models and compares them to the full fixed 

effects model using a likelihood ratio test. These models are all fit using maximum likelihood 

estimation instead of REML because REML estimates are not comparable among models with 

different fixed effects structures (Pinhero & Bates, 2000). When the interaction or a main effect 
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term was not significant, the term(s) were removed and the model refit using the same procedure 

above.  

We used the R package ‘lsmeans’ (Lenth, 2013) to calculate the least squares means for 

each level of CO2 and growth form in the interaction model. From these data we calculated the 

mean effect size (i.e., log response ratio) and the 95% confidence interval of the effect size 

separately for the liana and tree response to elevated CO2, following the method of Hedges et al. 

(1999).  

Results 

Nitrogen Experiment 

We found no significant differences between lianas and trees in their response to changes 

in CO2 and soil N availability for all response variables measured. Results from the N 

experiment are presented as percent change in the response variable from ambient to elevated 

CO2 in Table 3.4. Lianas tended to have similar positive responses to elevated CO2 regardless of 

soil N availability for all growth and biomass response variables, however trees did not. While 

this three-way interaction was non-significant, trees consistently had a negative or reduced 

response to elevated CO2 in the high compared to the low N treatment. This was seen across 

almost all of the growth and biomass response variables with the exception of RGR, and lends 

partial support to our hypothesis that lianas would show a larger relative growth response to 

elevated CO2 with higher N availability than trees.  

When compared to the growth response variables, a smaller number of physiological 

response variables had large differences between ambient and elevated CO2 under low and high 

N treatments. Lianas and trees had very similar relative increases in maximum photosynthetic 
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rate in response to elevated CO2 regardless of N availability. In contrast, stomatal conductance 

and transpiration increased in lianas and decreased for trees under elevated CO2, but did not 

differ between N treatments. The production of root phosphatase, an N-rich enzyme excreted by 

plants to convert organic to usable inorganic P near the root surface (Houlton et al., 2008) 

increased under elevated CO2 for both growth forms. While non-significant, lianas tended to 

show a larger phosphatase increase in response to CO2 than trees, especially under the low N 

treatment.   

When growth form was removed from the model, and only the interaction between 

elevated CO2 and N treatment was analyzed, we found no significant interactions for any 

variables (not shown). To demonstrate the presence of experimental treatment effects we review 

briefly the main effects of CO2, N, and growth form below.  

When pooled across N treatments and growth forms, elevated CO2 led to a significant 

increase in plant diameter (63.1%) and root biomass (46.2%), compared to ambient CO2 (Figure 

3.2). There was also a significant main effect of CO2 for maximum photosynthetic rate (31.5% 

increase) and transpiration (24.8% decrease), which suggests the plants increased their water use 

efficiency under elevated CO2 (Figure 3.2).  

We found a number of significant main effects of N treatment when CO2 treatment and 

growth forms were pooled. Higher soil N availability led to a 34.3% increase in total leaf 

production and a 33.2% increase in the relative growth rate of plants (Figure 3.2). Significant 

increases were found for both leaf area ratio (14.6%) and leaf-to-stem mass ratio (29.1%), but the 

root-to-shoot ratio significantly decreased by 24.9% (Figure 3.2). Thus, higher N availability 

appears to shift biomass allocation aboveground, especially toward leaves for both lianas and 

trees independent of CO2 levels. Plants in the high N treatment also significantly increased their 



 

 69 

maximum photosynthetic rates by 27.0% and their root phosphatase activity by 27.1% (Figure 

3.2).  

Lianas and trees showed differences mainly in their allocation strategies when we pooled 

the data across CO2 and N treatments. Trees had significantly higher leaf mass per area (79.0%) 

than lianas, which indicates higher investment by the trees in light capture. This was also 

reflected in a significantly higher (47.9%) leaf-to-stem mass ratio in trees than in lianas. Trees 

had substantially and significantly higher (184.1%) root phosphatase activity than did lianas.  

For the majority of the response variables measured (15 of 20), the “species-only” 

random effects structure was selected by the likelihood ratio test, and not the crossed random 

effects structure including both chamber and species. This suggests that the environmental 

covariates measured throughout the experiment sufficiently explained any chamber-to-chamber 

variability, or there was little to no inherent chamber-to-chamber variability for most of the 

response variables.  

Phosphorus Experiment 

We present results from the P experiment as the percent change in the response variable 

from ambient to elevated CO2 (Table 3.5). Similar to the N experiment, almost no interactions 

between the CO2 and P treatments were found for the 26 response variables measured for the 

three liana species. The one significant exception was leaf loss: in the high P treatment 

significantly more leaves were retained (92.2%) in response to elevated CO2, but in the low P 

treatment significantly more leaves were lost (120.7%) in response to elevated CO2. Other 

notable but non-significant patterns between the treatments were the larger relative responses to 

elevated CO2 in the low P compared to the high P treatment for stem height, diameter, total leaf 

production, and relative growth rate.  
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To demonstrate the presence of experimental treatment effects we review briefly the main 

effects of CO2 and P treatments separately. Most of the significant differences between ambient 

and elevated CO2 occurred at the leaf level when pooling across P treatment. Elevated CO2 

stimulated significant increases in leaf area (39.4%), leaf biomass (40.2%), leaf area ratio 

(15.9%), and maximum photosynthetic rate (49.1%) (Figure 3.3). The significant increase in 

δ13C (3.1%) in response to elevated CO2 indicates higher intrinsic water use efficiency at 

elevated compared to ambient CO2 (Figure 3.3). Finally, there was a significant decrease (30.1%) 

in the root-to-shoot ratio in response to elevated CO2 (Figure 3.3), indicating a shift in biomass 

allocation from below to above ground.  

Many response variables showed a significant difference between P treatments when 

pooling across CO2 treatments. A significant increase was found in stem height (33.0%), leaf 

area (43.5%), total leaf production (32.5%), leaf biomass (47.2%), stem biomass (42.3%), total 

biomass (42.3%), and relative growth rate (53.4%) between low and high P treatments (Figure 

3.3). Leaf area ratio and leaf-to-stem ratio significantly increased by 21.5% and 24.9%, 

respectively, in response to higher P availability (Figure 3.3). Significant changes in leaf mass 

per area (16.4% decrease) and its inverse, specific leaf area (14.6% increase) (Figure 3.3), 

suggest that increased P allows lianas to invest more efficiently in light capture (Poorter & 

Bongers, 2006). Higher P availability also resulted in a number of significant physiological 

responses. Photosynthetic rate was significantly higher (23.7%), as was foliar P concentrations 

(24.5%) under the high P treatment (Figure 3.3). Both foliar C:N ratio and foliar δ15N decreased 

significantly under the high P treatment (11.6% and 21.0% respectively) (Figure 3.3). 

For most of the response variables, the “species-only” random effects structure was 

chosen by the likelihood ratio test. In only 5 of the 26 response variables did chamber-to-
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chamber variability have an effect. This suggests that there was little inherent chamber-to-

chamber variability or that the environmental covariates sufficiently captured most of the 

between chamber variability.  

Discussion 

Our results do not support our hypothesis that interactions between changing carbon, 

nitrogen, and phosphorus cycles are a prime contributor to the liana increase in neotropical 

forests. In our experiments, lianas and trees responded similarly in growth and physiological 

responses to elevated CO2 at both N treatment levels, and lianas did not change their relative 

response to CO2 between the P treatment levels.  Based on the lack of any interactions between 

elevated CO2 and soil nutrient availability in either the N or the P experiment (with the exception 

of leaf loss for P), we conclude that increasing CO2, combined with either N deposition or P 

depletion, is unlikely the main underlying mechanism explaining the liana increase in size and 

abundance.   

Lianas in both high and low N treatments and trees in the low N treatment responded 

positively to elevated CO2. Conversely, we observed a strong pattern of negative or decreased 

tree growth and biomass response to elevated CO2 under high N treatment. However, none of 

these response variables had a significant three-way interaction among growth form, CO2, and N. 

Our hypothesis that we would find a larger relative growth response under elevated CO2 and 

high N in lianas than in trees was not supported. The lack of an interaction between elevated CO2 

and higher N availability regardless of growth form stands in contrast to previous studies of 

woody plant response to CO2 and N availability. A meta-analysis of 18 temperate studies found 

that aboveground biomass increased significantly more in response to elevated CO2 with higher 

N availability (de Graaff et al., 2006). On the other hand, Liu et al. (2011) did not find a 
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significant CO2 by N interaction when the results of four subtropical species were pooled. Only 

when examining the responses at the species level did they find elevated CO2 and higher N 

availability interact to produce significant differences between treatments. While a handful of 

studies examined how general soil fertility affects plant response to CO2 (Winter et al., 2001a; 

2001b; de Oliveira et al., 2012), experiments investigating the interaction between CO2 and soil 

N availability are lacking for tropical species.  

We also observed a pattern of a higher liana relative growth and physiological response 

to CO2 when P availability was low, but none of the interactions were statistically significant. 

However, there were an equal number of growth and physiological response variables that 

showed the opposite: lianas relative response to CO2 was larger under the high than the low P 

treatment. We do not find evidence for our hypothesis that lianas would have a reduced relative 

response to elevated CO2 under low P availability compared to high P availability.    

There were strong and significant main effects for CO2 and soil nutrient availability in 

each experiment, even though we found almost no interactions among the treatment variables. In 

both studies, elevated CO2 resulted in increased plant growth, biomass, and maximum 

photosynthetic rate. These results are similar to the main effects of CO2 observed in Chapter 2 

and in many other studies of tropical plant response to CO2 (see Cernusak et al., 2013 for a 

review). A larger number of response variables showed significant main effects when the plants 

were grown with higher soil nutrient availability. Higher soil N availability resulted in plants 

shifting resources to their leaves, while higher P availability resulted in across the board 

increases in most growth and biomass variables.  

One explanation for the lack of an interaction between CO2, N, and growth form may be 

low N availability even in the high N treatment (Table 3.2). Although the concentration of soil 
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NO3 at the end of the experiment was more than twice as high in the high N than in the low N 

treatment, both NO3 and NH4 concentrations were quite low compared to ambient soil N 

concentrations (~14 mg/kg) in nearby forests (Yavitt & Weider, 1988). We expected strong 

microbial immobilization of N available to plants from the addition of rice husks, yet we added 

an amount of N equivalent to the original level of the soil to each high N treatment pot on a 

weekly basis. The fact that N remained low in the high N treatment pots could be explained by a 

two factors. Plant uptake of N could have been very rapid, depleting the available soil N within a 

few days after application. We found significant differences between the low and high N 

treatments that indicate the plants with higher N availability grew faster, produced more leaves, 

allocated more biomass to leaves, and had a higher maximum photosynthetic rate (Table 3.4). 

However, we did not observe a significantly lower foliar C:N ratio, indicative of higher foliar N, 

in the high N treatment. Translocation of N away from the leaves may explain why we failed to 

detect any increase in N uptake. An alternative explanation for the low N availability in the high 

N treatment is that microbial immobilization, nitrification, and/or denitrification rapidly depleted 

plant available N (Dalling et al., 2013). The high C:N ratio of the soil due to the presence of rice 

husks might have led to such high microbial decomposition rates that any additional inorganic N 

was quickly immobilized by the microbial community. Similarly, the high organic content of the 

soil may have led to high nitrification rates with resulting gaseous N losses (Koehler et al., 

2009), but we found lower net nitrification rates in the high N compared to the low N treatment 

(data not shown). Additionally, this experiment was conducted during the wet season where high 

soil water content may have encouraged high rates of denitrification. While the use of an 80:20 

soil to rice husk mixture may have had too strong an N limiting effect, the differences in plant 
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growth between the N treatments indicate at least some extra N was available for plant uptake in 

the high N treatment.  

The stark difference in the concentration of soil P between lianas and trees in the N 

experiment (Table 3.2) might at first appear to be the result of higher uptake of soil P by lianas. 

However, the higher soil P associated with the trees is entirely due to the tree species Terminalia 

amazonia. Average soil P for this species is 14.06 mg kg-1 in the low N treatment and 26.03 mg 

kg-1 in the high N treatment, while the soil P for the other tree, Inga sapindoides, was 

comparable to soil P for both liana species (ca. 1.2-1.8 mg kg-1). We do not know whether this 

was the result of extremely high root phosphatase activity in Terminalia because this species was 

not assayed, but we find it unlikely given that Inga had above-average phosphatase activity and 

yet did not result in higher soil P availability than the three liana species that had 

correspondingly lower phosphatase activity.  

The results of the elevated CO2 and soil P availability experiment on three liana species 

provide evidence that soil P may have more of a stimulative effect on liana growth than elevated 

CO2. Except for leaf loss, levels of soil P provided neither a constraint nor a boost to liana 

growth under elevated CO2 contrary to both our hypothesis and that of Zhu & Cao (2010). 

Instead, higher soil P alone acted as a stronger growth stimulant than either elevated CO2 alone 

or elevated CO2 in combination with increased soil P. The effect of higher soil P was larger than 

the effect of elevated CO2 in both the number of variables with a significant change and the 

magnitude of that change. We did not include tree species as part of this experiment, and this is 

the first study to our knowledge to examine tropical plant response to elevated CO2 and soil P 

availability, so we do not know whether this effect is stronger for lianas than for trees. However, 
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we believe this result provides a template for future studies on the underlying mechanisms for 

the relative increase of lianas over trees.   

We have no evidence in our experiments that soil N and P availability interacts with 

increasing atmospheric CO2 to significantly affect plant growth and physiology. Instead, changes 

to soil nutrient availability or CO2 alone had strong and significant effects on the species studied 

here. For both the N and P experiments, higher soil nutrient availability led to a larger number of 

significant differences between treatments than did increasing CO2. This suggests that while 

explanations for the reported liana increase may not lie in the interaction among changing 

biogeochemical cycles, changes within these cycles alone could be a potential contributor. We 

recommend further study of a broader range of liana and tree species for their response to 

changes in soil N and P availability. 

  



 

 76 

References  

Asner GP, Martin RE (2012) Contrasting leaf chemical traits in tropical lianas and trees: 

implications for future forest composition. Ecology Letters, 15, 1001–1007. 

Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. R 

package version 0.999999-0. 

Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca 

Cotrufo M (2012) Elevated CO2 increases tree-level intrinsic water use efficiency: insights 

from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New 

Phytologist, 197, 544–554. 

Brookshire E, Gerber S, Menge D (2012) Large losses of inorganic nitrogen from tropical 

rainforests suggest a lack of nitrogen limitation. Ecology Letters, 15, 9–16. 

Cernusak L, Winter K (2011) Transpiration modulates phosphorus acquisition in tropical tree 

seedlings. Tree Physiology, 31, 878–885. 

Cernusak LA, Winter K, Aranda J, Turner BL (2008) Conifers, angiosperm trees, and lianas: 

Growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (delta 

C-13 and delta O-18) of seedlings grown in a tropical environment. Plant Physiology, 148, 

642–659. 

Cernusak LA, Winter K, Dalling JW, et al. (2013) Tropical forest responses to increasing 

atmospheric CO2: current knowledge and opportunities for future research. Functional Plant 

Biology, 40, 531. 

Chave J, Riéra B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French 

Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17, 79–96. 

Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody 



 

 77 

hemiepiphytes in a Costa Rican tropical wet forest. Journal of Tropical Ecology, 6, 321–331. 

Cramer M, Hoffmann V (2008) Nutrient availability moderates transpiration in Ehrharta 

calycina. New Phytologist, 179, 1048–1057. 

Curtis P, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, 

and physiology. Oecologia, 113, 299–313. 

Dalling JW, Winter K, Andersen KM, Turner BL (2013) Artefacts of the pot environment on soil 

nutrient availability: implications for the interpretation of ecological studies. Plant Ecology, 

214, 329–338. 

de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between 

plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change 

Biology, 12, 2077–2091. 

de Oliveira EAD, Approbato AU, Legracie JR, Martinez CA (2012) Soil-nutrient availability 

modifies the response of young pioneer and late successional trees to elevated carbon 

dioxide in a Brazilian tropical environment. Environmental and Experimental Botany, 77, 

53–62. 

DeWalt S, Chave J (2004) Structure and biomass of four lowland Neotropical forests. Biotropica, 

36, 7–19. 

DeWalt S, Schnitzer S, Denslow J (2000) Density and diversity of lianas along a chronosequence 

in a central Panamanian lowland forest. Journal of Tropical Ecology, 16, 1–19. 

Galloway J, Dentener F, Capone D, et al. (2004) Nitrogen cycles: past, present, and future. 

Biogeochemistry, 70, 153–226. 

Garrish V, Cernusak LA, Winter K, Turner BL (2010) Nitrogen to phosphorus ratio of plant 

biomass versus soil solution in a tropical pioneer tree, Ficus insipida. Journal of 



 

 78 

Experimental Botany, 61, 3735–3748. 

Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. 

New York, NY, Cambridge University Press. 

Gentry A (1991) The distribution and evolution of climbing plants. In: The Biology of Vines. 

Putz F pp3–50. Cambridge, Cambridge University Press. 

Grauel W, Putz F (2004) Effects of lianas on growth and regeneration of Prioria copaifera in 

Darien, Panama. Forest Ecology and Management, 190, 99–108. 

Hedges, LV, Gurevitch J, Curtis, PS (1999) The meta-analysis of response ratios in experimental 

ecology. Ecology, 80, 1150–1156.  

Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical 

forest ecosystems. Annual Review of Ecology Evolution and Systematics, 40, 613–635. 

Hietz P, Turner B, Wanek W, Richter A, Nock C, Wright SJ (2011) Long-term change in the 

nitrogen cycle of tropical forests. Science, 334, 664–666.  

Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen 

fixation in the terrestrial biosphere. Nature, 454, 327–330. 

Hubbell SP, Condit R, Foster RB (2005) Barro Colorado Forest Census Plot Data. 

http://ctfs.arnarb.harvard.edu/webatlas/datasets/bci. 

Ingwell L, Wright SJ, Becklund K, Hubbell S, Schnitzer SA (2010) The impact of lianas on 10 

years of tree growth and mortality on Barro Colorado Island, Panama. Journal of Ecology, 

98, 879–887. 

IPCC (2001) Climate change 2001: The scientific basis (JT Houghton, Y Ding, DJ Griggs, M 

Noguer, PJ van der Linden, X Dai, K Maskell, and CA Johnson, Eds.). Cambridge, 

Cambridge University Press. 



 

 79 

Kazda M, Salzer J (2000) Leaves of lianas and self-supporting plants differ in mass per unit area 

and in nitrogen content. Plant Biology, 2, 268–271. 

Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ (2009) Immediate and long-term 

nitrogen oxide emissions from tropical forests exposed to elevated nitrogen input. Global 

Change Biology, 15, 2049–2066.  

Laurance W, Perez-Salicrup D, Delamonica P, et al. (2001) Rain forest fragmentation and the 

structure of Amazonian liana communities. Ecology, 82, 105–116. 

Lenth RV (2013) Package ‘lsmeans’. cran.r-project.org/web/packages/lsmeans. 

Liu J, Zhou G, Xu Z, Duan H, Li Y, Zhang D (2011) Photosynthesis acclimation, leaf nitrogen 

concentration, and growth of four tree species over 3 years in response to elevated carbon 

dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11, 

1155–1164. 

Lowe R, Walker P (1977) Classification of canopy, stem, crown status and climber infestation in 

natural tropical forest in Nigeria. Journal of Applied Ecology, 14, 897–903. 

Malizia A, Grau HR, Lichstein JW (2010) Soil phosphorus and disturbance influence liana 

communities in a subtropical montane forest. Journal of Vegetation Science, 21, 551–560. 

Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA (2011) Minimizing bias in biomass 

allometry: model selection and log-transformation of data. Biotropica, 43, 649–653. 

Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N 

deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46, 67–83. 

Moore C (2010) Linear mixed-effects regression p-values in R: a likelihood ratio test function. 

http://blog.lib.umn.edu/moor0554/canoemoore/2010/09/lmer_p-values_lrt.html. 

NOAA (2013) Mauna Loa CO2 data. Earth Systems Research Laboratory. Boulder, Colorado.  



 

 80 

Penalosa J (1984) Basal branching and vegetative spread in two tropical rain forest lianas. 

Biotropica, 16, 1–9. 

Phillips OL, Vasquez Martinez R, Arroyo L, et al. (2002) Increasing dominance of large lianas 

in Amazonian forests. Nature, 418, 770–774. 

Pinhero J, Bates D (2000) Mixed-effects models in S and S-PLUS. New York, NY, Springer-

Verlag. 

Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain 

forest species. Ecology, 87, 1733–1743. 

Powers JS, Kalicin MH (2004) Tree species do not influence local soil chemistry in a species-

rich Costa Rica rain forest. Journal of Tropical Ecology, 20, 587–590. 

Putz F (1983) Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro basin, 

Venezuela. Biotropica, 15, 185–189. 

Putz F (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 

1713–1724. 

R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: 

emerging patterns and putative mechanisms. Ecology Letters, 14, 397–406. 

Schnitzer SA, Mangan SA, Dalling JW, et al. (2012) Liana abundance, diversity, and distribution 

on Barro Colorado Island, Panama. PLoS ONE, 7, e52114. 

Turner BL, Baxter R, Ellwood N, Whitton BA (2001) Characterization of the phosphatase 

activities of mosses in relation to their environment. Plant Cell and Environment, 24, 1165–

1176. 



 

 81 

Turner B L, Romero TE (2009) Short-term changes in extractable inorganic nutrients during 

transport and storage of tropical rain forest soils. Soil Science Society of America Journal, 73, 

1972–1979. 

van der Heijden GMF, Phillips OL (2009) Liana infestation impacts tree growth in a lowland 

tropical moist forest. Biogeosciences, 6, 2217–2226. 

Whigham D (1984) The influence of vines on the growth of Liquidambar styraciflua L. 

(sweetgum). Canadian Journal of Forest Research, 14, 37–39. 

Winter K, Aranda J, Garcia M, Virgo A, Paton S (2001a) Effect of elevated CO2 and soil 

fertilization on whole-plant growth and water use in seedlings of a tropical pioneer tree, 

Ficus insipida Willd. Flora, 196, 458–464. 

Winter K, Garcia M, Gottsberger R, Popp M (2001b) Marked growth response of communities 

of two tropical tree species to elevated CO2 when soil nutrient limitation is removed. Flora, 

196, 47–58. 

Wright SJ, Yavitt JB, Wurzburger N, et al. (2011) Potassium, phosphorus, or nitrogen limit root 

allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616–

1625. 

Yavitt J (1988) Nitrogen, phosphorus, and sulfur properties of some forest soils on Barro 

Colorado Island, Panama. Biotropica, 20, 2-10. 

Yorke SR, Schnitzer SA, Mascaro J, Letcher SG (2013) Increasing liana abundance and basal 

area in a tropical forest: the contribution of long-distance clonal colonization. Biotropica, 45, 

317–324. 

Zhu S-D, Cao K-F (2010) Contrasting cost–benefit strategy between lianas and trees in a tropical 

seasonal rain forest in southwestern China. Oecologia, 163, 591–599.



 

 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 Species used in the nitrogen and phosphorus availability experiments  

Lianas Trees
Experiment Family Species Family Species

Nitrogen Fabaceae 
(Faboideae) Machaerium milleflorum PittierMachaerium milleflorum Pittier Combretaceae Terminalia amazonia  

(J.F. Gmel.) Exell

Nitrogen Malpighiaceae Stigmaphyllon hypargyreum
Triana & Planch.
Stigmaphyllon hypargyreum
Triana & Planch.

Fabaceae 
(Mimosoideae) Inga sapindoides Willd.

Phosphorus Aristolochiaceae Aristolochia anguicida Jacq. Aristolochia anguicida Jacq.  − −

Phosphorus Convolvulaceae Bonamia trichantha HallierBonamia trichantha Hallier − −

Phosphorus Dilleniaceae Davilla nitida (Vahl) KubitzkiDavilla nitida (Vahl) Kubitzki − −

Table 1. Species (listed by family) used in the two elevated CO2 and nutrient experiments.
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Table 3.2. Average soil nutrient availability 
at the end of the N and P experiments. Bold 
number indicate the treatment level average. 
L = pots with liana species; T = pots with 
tree species; - indicates a treatment 
combination not used for the study.  

ExperimentExperimentExperimentExperiment
NitrogenNitrogen PhosphorusPhosphorus

-N +N -P +P

Nitrate (mg/kg)Nitrate (mg/kg) 0.12 0.28 18.3 18.8

L 0.10 0.22 - -

T 0.13 0.33 - -

Ammonium (mg/kg)Ammonium (mg/kg) 0.45 0.43 0.31 0.32

L 0.45 0.41 - -

T 0.45 0.44 - -

Phosphorus (mg/kg)Phosphorus (mg/kg) 4.43 7.62 0.19 7.29

L 1.53 1.63 - -

T 7.41 13.06 - -
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Table 3.3. Variables measured in the 
experiments and used as the response variables 
in the model, classified by variable category and 
experiment.  

Table 2. Variables measured in the experiments and used as the response variables in 
the model, broken down by variable category and experiment.

ExperimentExperiment

Response Variable
Nitrogen Phosphorus

Response Variable

Growth Change

Stem Length (cm) ● ●
Diameter (cm) ● ●
Leaf Area (cm2) ● ●
Total Leaf Production ● ●
Leaf Loss ● ●

Biomass Change
Leaf Biomass (g) ● ●
Stem Biomass (g) ● ●
Root Biomass (g) ● ●
Total Biomass (g) ● ●
Relative Growth Rate ● ●

Ratios
Leaf Area Ratio
(cm2 mg-1) ● ●
Leaf Mass Area 
(mg cm-2) ● ●
Specific Leaf Area 
(cm2 mg-1) ● ●
Root:Shoot Ratio ● ●
Leaf:Stem Ratio ● ●

Physiology
Day: Max Photosynthetic Rate 
(µmol CO2 m2 s-1) ● ●
Day: Stomatal Conductance
(mol H2O m2 s-1) ● ●
Day: Transpiration
(mmol H2O m2 s-1) ● ●
Night: Respiration Rate
(µmol CO2 m2 s-1) ●
Night: Stomatal Conductance
(mol H2O m2 s-1) ●
Night: Transpiration
(mmol H2O m2 s-1) ●
Foliar C:N Ratio ● ●
Foliar P (mg/g) ●
δ13C (‰) ●
δ15N (‰) ●
Root Phosphatase
(µmol pNP g-1 h-1)  ●* ●†

* Root phosphatase was measured on 5 individuals per treatment (CO2, N) for 
all species except Termanalia amazonia which was not assayed.
† 
Root phosphatase was measured on at least 5 individuals per treatment (CO2, 

P) in all species except for Bonamia tricantha which had insufficient fine roots 
for the assay under ambient CO2 and ambient P (n=1), and ambient CO2 and 
reduced P (n=4).



 

 85 

 

 

 

Table 3.4. Mixed model estimates of liana and tree % response to CO2 treatment and p-values 
for growth, biomass, response ratio, and physiological variables in the N experiment. Results of 
the three-way interaction between growth form, CO2 treatment, and N treatment are on the left 
side of the table, while main effects of each treatment are on the right. These values take into 
account the environmental covariates and random effects used in the model. The random effects 
structure is in the far right-hand column. 1 = !β!"#$%&' ! + !γ!"#$%#& ! ; 2 = !γ!"#$%#& !  

InteractionInteractionInteractionInteractionInteractionInteractionInteractionInteractionInteraction Main effectsMain effectsMain effectsMain effectsMain effectsMain effectsMain effectsMain effectsMain effects

LianasLianasLianasLianas TreesTreesTreesTrees CO2CO2CO2 NNN GFGFGF
Response Variable -N-N +N+N -N-N +N+N

CO2CO2CO2 NNN GFGFGF
Random 
Structure
Random 
StructureGrowth Change % ∆CO2% ∆CO2 % ∆CO2% ∆CO2 % ∆CO2% ∆CO2 % ∆CO2% ∆CO2 p-val % ∆ p-val % ∆ p-val % ∆ p-val
Random 
Structure
Random 
Structure

Stem LengthStem Length
47.3 41.2 137.9 -24.9 n.s. 41.4 n.s. 9.3 n.s. -90.3 n.s. 2

Stem LengthStem Length

DiameterDiameterDiameter
93.8 43.7 318.1 11.5 n.s. 63.1 0.007 39.0 n.s. -49.6 n.s. 1

DiameterDiameterDiameter

Leaf AreaLeaf AreaLeaf Area
21.5 16.9 30.9 0.6 n.s. 16.2 n.s. 13.5 n.s. -32.9 n.s. 2

Leaf AreaLeaf AreaLeaf Area

Total Leaf ProductionTotal Leaf ProductionTotal Leaf Production
47.1 12.1 82.4 -8.7 n.s. 21.9 n.s. 34.3 0.008 -11.1 n.s. 2

Total Leaf ProductionTotal Leaf ProductionTotal Leaf Production

Leaf LossLeaf LossLeaf Loss
-52.5 -80.0 -34.4 16.8 n.s. -41.1 n.s. -34.1 n.s. 75.4 n.s. 2

Leaf LossLeaf LossLeaf Loss

Biomass ChangeBiomass ChangeBiomass Change

Leaf BiomassLeaf BiomassLeaf Biomass
25.0 23.5 20.0 4.5 n.s. 16.1 n.s. 21.4 n.s. 15.4 n.s. 2

Leaf BiomassLeaf BiomassLeaf Biomass

Stem BiomassStem BiomassStem Biomass
39.4 31.6 49.8 -12.4 n.s. 23.8 n.s. 0.3 n.s. -28.8 n.s. 2

Stem BiomassStem BiomassStem Biomass

Root BiomassRoot BiomassRoot Biomass
92.1 87.3 54.8 -8.0 n.s. 46.2 0.015 -8.5 n.s. -0.3 n.s. 2

Root BiomassRoot BiomassRoot Biomass

Total BiomassTotal BiomassTotal Biomass
39.6 34.2 33.8 -2.4 n.s. 23.0 n.s. 8.9 n.s. -3.5 n.s. 2

Total BiomassTotal BiomassTotal Biomass

Relative Growth RateRelative Growth RateRelative Growth Rate 34.6 15.5 -26.6 7.2 n.s. 8.5 n.s. 33.2 0.005 -22.8 n.s. 2
Relative Growth RateRelative Growth RateRelative Growth Rate

RatiosRatiosRatios
Leaf Area RatioLeaf Area RatioLeaf Area Ratio 0.6 -5.5 -1.2 1.4 n.s. -1.6 n.s. 14.6 <0.001 -36.0 n.s. 2Leaf Area RatioLeaf Area RatioLeaf Area Ratio

Leaf Mass Area Leaf Mass Area Leaf Mass Area -3.0 3.2 -3.5 2.3 n.s. -0.4 n.s. -0.2 n.s. 79.0 0.017 2Leaf Mass Area Leaf Mass Area Leaf Mass Area 

Specific Leaf Area Specific Leaf Area Specific Leaf Area 1.2 -3.3 -0.8 -1.3 n.s. -1.0 n.s. 0.0 n.s. -43.4 0.021 2Specific Leaf Area Specific Leaf Area Specific Leaf Area 

Root:Shoot RatioRoot:Shoot RatioRoot:Shoot Ratio
6.0 16.9 -2.6 4.7 n.s. 5.2 n.s. -24.9 <0.001 6.4 n.s. 2

Root:Shoot RatioRoot:Shoot RatioRoot:Shoot Ratio

Leaf:Stem RatioLeaf:Stem RatioLeaf:Stem Ratio
-3.3 26.0 -7.3 7.3 n.s. 4.0 n.s. 29.1 0.007 47.9 0.006 2

Leaf:Stem RatioLeaf:Stem RatioLeaf:Stem Ratio

PhysiologyPhysiologyPhysiology
Max Photosynthetic RateMax Photosynthetic RateMax Photosynthetic Rate 30.7 34.2 36.5 24.8 n.s. 31.5 <0.001 27.0 <0.001 -7.4 n.s. 1Max Photosynthetic RateMax Photosynthetic RateMax Photosynthetic Rate

Stomatal ConductanceStomatal ConductanceStomatal Conductance 18.1 18.2 -33.4 -38.5 n.s. -10.5 n.s. 17.8 n.s. -17.8 n.s. 1Stomatal ConductanceStomatal ConductanceStomatal Conductance

TranspirationTranspiration 5.8 3.0 -29.5 -28.5 n.s. -13.2 0.047 12.1 n.s. -8.5 n.s. 1TranspirationTranspiration

Foliar C:N RatioFoliar C:N RatioFoliar C:N Ratio 12.2 -4.4 4.6 -4.8 n.s. 1.7 n.s. -4.7 n.s. 18.2 n.s. 1Foliar C:N RatioFoliar C:N RatioFoliar C:N Ratio

Root PhosphataseRoot PhosphataseRoot Phosphatase 63.5 25.3 14.6 12.7 n.s. 24.7 n.s. 27.1 0.04 184.1 <0.001 2Root PhosphataseRoot PhosphataseRoot Phosphatase
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Table 3.5. Mixed model estimates of liana % response to CO2 
treatment and p-values for growth, biomass, response ratio, and 
physiological variables in the P experiment. Results of the two-way 
interaction between CO2 treatment and P treatment are on the left side 
of the table, while main effects of each treatment are on the right. 
These values take into account the environmental covariates and 
random effects used in the model. The random effects structure is in 
the far right-hand column. 1 = !β!"#$%&' ! + !γ!"#$%#& ! ; 2 = !γ!"#$%#& !  

InteractionInteractionInteractionInteractionInteractionInteractionInteraction Main EffectsMain EffectsMain EffectsMain EffectsMain EffectsMain Effects
Response VariableResponse VariableResponse Variable -P-P +P+P CO2CO2CO2 PPP Random 

StructureGrowth Change % ∆CO2% ∆CO2 % ∆CO2% ∆CO2    p-val % ∆% ∆% ∆ p-valp-val % ∆   p-val  p-val
Random 
Structure

Stem HeightStem Height
26.3 12.7 n.s.n.s. 20.2 n.s. 33.0 0.048 2

Stem HeightStem Height

DiameterDiameterDiameter
58.5 -11.6 n.s.n.s. 15.8 n.s. 32.2 n.s. 2

DiameterDiameterDiameter

Leaf AreaLeaf AreaLeaf Area
33.5 39.7 n.s.n.s. 39.4 0.031 43.5 0.018 2

Leaf AreaLeaf AreaLeaf Area

Total Leaf ProductionTotal Leaf ProductionTotal Leaf Production
33.7 6.5 n.s.n.s. 18.6 n.s. 32.5 0.034 1

Total Leaf ProductionTotal Leaf ProductionTotal Leaf Production

Leaf LossLeaf LossLeaf Loss
120.7 -92.2 0.0130.013 -17.2 n.s. -39.5 n.s. 2

Leaf LossLeaf LossLeaf Loss

Biomass ChangeBiomass ChangeBiomass Change

Leaf BiomassLeaf BiomassLeaf Biomass
31.8 42.0 n.s.n.s. 40.2 0.039 47.2 0.018 2

Leaf BiomassLeaf BiomassLeaf Biomass

Stem BiomassStem BiomassStem Biomass
28.4 41.4 n.s.n.s. 38.0 n.s. 42.3 0.042 2

Stem BiomassStem BiomassStem Biomass

Root BiomassRoot BiomassRoot Biomass
-2.5 11.3 n.s.n.s. 5.9 n.s. 23.5 n.s. 2

Root BiomassRoot BiomassRoot Biomass

Total BiomassTotal BiomassTotal Biomass
17.7 37.4 n.s.n.s. 30.8 n.s. 42.3 0.014 2

Total BiomassTotal BiomassTotal Biomass

Relative Growth RateRelative Growth RateRelative Growth Rate 56.1 14.2 n.s.n.s. 31.2 n.s. 53.4 0.004 1
Relative Growth RateRelative Growth RateRelative Growth Rate

RatiosRatiosRatios
Leaf Area RatioLeaf Area RatioLeaf Area Ratio 16.5 13.3 n.s.n.s. 15.9 0.033 21.5 0.005 2Leaf Area RatioLeaf Area RatioLeaf Area Ratio

Leaf Mass Area Leaf Mass Area Leaf Mass Area -1.8 5.3 n.s.n.s. 0.4 n.s. -16.4 0.004 2Leaf Mass Area Leaf Mass Area Leaf Mass Area 

Specific Leaf Area Specific Leaf Area Specific Leaf Area 15.8 2.3 n.s.n.s. 9.3 n.s. 14.6 0.007 2Specific Leaf Area Specific Leaf Area Specific Leaf Area 

Root:Shoot RatioRoot:Shoot RatioRoot:Shoot Ratio
-35.2 -22.0 n.s.n.s. -30.1 0.017 -16.5 n.s. 2

Root:Shoot RatioRoot:Shoot RatioRoot:Shoot Ratio

Leaf:Stem RatioLeaf:Stem RatioLeaf:Stem Ratio
-6.9 5.6 n.s.n.s. 0.9 n.s. 24.9 0.01 2

Leaf:Stem RatioLeaf:Stem RatioLeaf:Stem Ratio

PhysiologyPhysiologyPhysiology
Max Photosynthetic Rate Max Photosynthetic Rate Max Photosynthetic Rate 38.9 56.8 n.s.n.s. 49.1 <0.001 23.7 0.022 1Max Photosynthetic Rate Max Photosynthetic Rate Max Photosynthetic Rate 

Stomatal ConductanceStomatal ConductanceStomatal Conductance -24.2 6.5 n.s.n.s. -9.8 n.s. 7.1 n.s. 2Stomatal ConductanceStomatal ConductanceStomatal Conductance

TranspirationTranspirationTranspiration -18.0 12.4 n.s.n.s. -4.1 n.s. 4.1 n.s. 2TranspirationTranspirationTranspiration

Night: Respiration RateNight: Respiration RateNight: Respiration Rate -46.4 -7.7 n.s.n.s. -35.2 n.s. -38.6 n.s. 2Night: Respiration RateNight: Respiration RateNight: Respiration Rate

Night: Stomatal 
Conductance
Night: Stomatal 
Conductance
Night: Stomatal 
Conductance

-12.7 -0.8 n.s.n.s. -7.8 n.s. -14.3 n.s. 1Night: Stomatal 
Conductance
Night: Stomatal 
Conductance
Night: Stomatal 
Conductance

Night: TranspirationNight: TranspirationNight: Transpiration -9.7 1.9 n.s.n.s. -5.1 n.s. -16.5 n.s. 1Night: TranspirationNight: TranspirationNight: Transpiration

Foliar C:N RatioFoliar C:N RatioFoliar C:N Ratio
14.1 -9.5 n.s.n.s. 2.2 n.s. -11.6 0.046 2

Foliar C:N RatioFoliar C:N RatioFoliar C:N Ratio

Foliar P Foliar P Foliar P 
-11.7 1.5 n.s.n.s. -4.3 n.s. 24.5 <0.001 2

Foliar P Foliar P Foliar P 

δC13δC13δC13
3.2 2.9 n.s.n.s. 3.1 <0.001 0.2 n.s. 2

δC13δC13δC13

δN15δN15δN15
4.0 -8.4 n.s.n.s. -2.4 n.s. -21.0 <0.001 2

δN15δN15δN15

Root PhosphataseRoot PhosphataseRoot Phosphatase -5.9 -2.4 n.s.n.s. -5.4 n.s. -10.1 n.s. 2Root PhosphataseRoot PhosphataseRoot Phosphatase
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Figure 3.1. a) Open top chamber array location, layout, and dimensions b) 
Experimental design and species distribution among treatments and within 
chambers, L = liana, T = tree; each subscript number represents a distinct 
species (Note: three liana species and no tree species were used in the P 
experiment). Species locations within each chamber for both experiments 
were randomized.  
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Figure 3.2. Effect size of main effect response to N treatment 
(solid lines) and CO2 treatment (dashed lines) for all response 
variables. Positive/negative effect sizes indicate an 
increased/decreased response to the treatment. Points represent 
the mean effect size, lines represent the 95% confidence 
interval. * indicate significant differences in treatment effect 
(P<0.05), while – indicates no significant difference in 
treatment effect. 
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Figure 3.3. Effect size of main effect response to P treatment 
(solid lines) and CO2 treatment (dashed lines) for all response 
variables. Positive/negative effect sizes indicate an 
increased/decreased response to the treatment. Points represent 
the mean effect size, lines represent the 95% confidence 
interval. * indicate significant differences in treatment effect 
(P<0.05), while – indicates no significant difference in 
treatment effect. 
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Chapter IV 

Mapping liana canopy cover across tropical forest landscapes using high-resolution 
imaging spectroscopy* 

Abstract 

Increasing size and abundance of lianas relative to trees are among the pervasive changes 

observed in undisturbed neotropical forests over the last two decades. The negative effect that 

lianas exert on tree growth, reproduction, and lifespan, combined with their very low 

contribution to forest biomass, suggest a future in which neotropical forests will absorb and store 

less atmospheric carbon dioxide annually. Yet the liana growth form is chronically understudied 

in forest censuses, resulting in few data on the scale, cause, and impact of increasing lianas. 

Satellite and airborne remote sensing provide ecologists with the tools that potentially can map 

and monitor lianas at very large spatial and rapid temporal scales, compared with plot-based 

forest censuses. Contrasting foliar chemical and structural properties between lianas and trees 

result in documented differences in the reflectance spectra of the growth forms. Recent advances 

in imaging spectrometers and classification algorithms provide the possibility of distinguishing 

levels of liana coverage at the tree canopy scale. We combined high-resolution airborne imaging 

spectroscopy and a ground-based tree canopy census of an intact, seasonally dry forest in central 

Panama to investigate whether tree canopies supporting lianas could be discriminated from tree 

                                                
* In collaboration with Asner G†, Anderson C†, Féret JB†, Knapp DE†, Martin RE†, & Schnitzer 
S‡ 

† Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 
‡ School of Freshwater Science, University of Wisconsin-Milwaukee, Milwaukee, WI 
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canopies with no liana coverage. Using support vector machine classification algorithms, we 

achieved testing accuracies of greater than 90% in discriminating trees with severe (>80%) liana 

canopy cover from trees with 0% liana cover. When applied to the full image of the study site, 

the classification model had a 2.3% false-positive error rate when validated against an 

independent plot-level dataset of liana canopy cover. Using our landscape-scale liana cover 

classification map, we show that 11.9%-18.0% of the 585 ha study site has >80% liana canopy 

cover. When viewed in the context of the relative increase in lianas, this extent of severe liana 

canopy cover across such a large fraction of the landscape has broad implications for ecosystem 

function and forest carbon storage. 

Introduction 

Tropical forests are a critical part of the global climate system and carbon cycle. Intact 

tropical forests alone absorb and store c. 1.19±0.41 Pg carbon yr-1 from the atmosphere (Pan et 

al., 2011), an amount equivalent to 12.3% of total global carbon emissions in 2012 (Peters et al., 

2013). For perspective, this amount is greater than all yearly carbon emissions from the 

European Union (CDIAC, 2012). Recently, plot-based studies in the neotropics have 

documented pervasive changes in old-growth forests that may alter their role in the global carbon 

cycle. These changes include increased biomass and productivity (Phillips et al., 1998; Baker et 

al., 2004), increased tree turnover (Phillips et al., 2004), and shifted floristic composition 

(Korner, 2004; Laurance et al., 2004; Feeley et al., 2011; Schnitzer & Bongers, 2011).  

Tropical lianas (woody vines) are reported to be increasing relative to trees in neotropical 

forests over recent decades (Schnitzer & Bongers, 2011; Schnitzer et al., 2012; Yorke et al., 

2013). Reported annual increases in liana stem abundance range from 0.23% to 7.8%, while in 

the same study areas trees either underwent smaller annual increases or have declined in stem 
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abundance (Phillips et al., 2002; Chave et al., 2008; Schnitzer et al., 2012; Yorke et al., 2013). 

These same studies found increases in liana basal area ranging from 0.6% to 4.6% annually over 

the same time period, with just a 0.34% per year increase in tree basal area. Liana seedling 

recruitment, reproduction, leaf productivity, and canopy cover have also increased relative to 

trees (Benítez-Malvido & Martinez-Ramos, 2003; Wright et al., 2004; Wright & Calderon, 2006; 

Wright et al., 2008; Ingwell et al., 2010). 

The reported relative increase of lianas has broad implications for tropical forests and the 

global carbon cycle. Lianas commonly comprise a large proportion (see Chapter 1) of the woody 

species and stem numbers in tropical forests (Schnitzer et al., 2012); however, lianas constitute 

only a small proportion of total tropical forest biomass (Putz, 1983; Gerwing & Farias, 2000; 

DeWalt & Chave, 2004; Letcher & Chazdon, 2009; Durán & Gianoli, 2013). Nevertheless, lianas 

have a disproportionately large negative effect on tree biomass accumulation by reducing tree 

diameter increment (Lowe & Walker, 1977; Whigham, 1984; Clark & Clark, 1990; Grauel & 

Putz, 2004; van der Heijden & Phillips, 2009; Schnitzer et al., unpublished data), leaf 

productivity (Dillenburg et al., 1993; Perez-Salicrup et al., 2001; Toledo-Aceves & Swaine, 

2008), sap flow velocity (Tobin et al., 2012; Alvarez-Cansino et al., unpublished data), and stem 

height (Perez-Salicrup, 2001). Lianas also decrease forest carbon accumulation and long-term 

storage through reduced tree fecundity (Stevens, 1987; Kainer et al., 2006; Nabe-Nielsen et al., 

2009), increased tree mortality (Putz, 1984; Phillips et al., 2002; Garrido-Perez et al., 2008; 

Ingwell et al., 2010; Schnitzer et al., unpublished data), and suppressed tree regeneration 

(Toledo-Aceves & Swaine, 2008; Schnitzer & Carson, 2010). Trees that support large lianas or 

severe liana infestations have a 40-100% increased mortality risk (Phillips et al., 2002; Ingwell et 

al., 2010). The disproportionately negative effect that lianas can exert on tree growth, 
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reproduction, and lifespan, combined with their low contribution (Durán & Gianoli, 2013) to 

forest biomass, suggest a future in which neotropical forests will absorb and store less 

atmospheric carbon dioxide annually (van der Heijen et al., 2013).  

Despite the negative consequences of increasing lianas, few studies have examined 

temporal changes in tropical liana abundance and size. While some studies rely on proxy data 

(i.e., flowering, productivity, recruitment) to establish that lianas are increasing relative to trees, 

only five studies have used stem or canopy-based censuses (Phillips et al., 2002; Chave et al., 

2008; Ingwell et al., 2011; Schnitzer et al., 2012; Yorke et al., 2013). These studies examine a 

total of 125 ha of neotropical old-growth tropical forests among 114 plots ranging in size from 

0.1 ha to 50 ha (Figure 4.1). The limited spatial extent of long-term liana censuses restricts our 

ability to assess the scale and impact of increasing tropical lianas. 

Satellite and airborne remote sensing may allow ecologists to map and monitor liana 

abundance at far larger spatial, and more rapid temporal, scales than plot-based censuses. 

Previous lab and field studies have documented clear differences between liana and tree spectral 

reflectance signatures, with supporting foliar chemical and structural data (Supplementary 

Information, Table S4.1). These studies document specific regions of the electromagnetic 

spectrum where lianas and trees are separable, and show that leaf-level differences scale up to 

the canopy level. Only one study has successfully used remote sensing to map liana abundance at 

the landscape-scale. This study successfully identified 1150 ha of forest with severe liana canopy 

cover using moderate-resolution hyperspectral and multispectral imagery (Foster et al., 2008). 

However, the liana patches mapped in this study were within large (>0.45 ha) forest gaps with 

severe (c. >80%) liana cover, thus allowing detection with moderate-resolution imagery. It is 
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unlikely the same approach could successfully map liana abundance and distribution in 

contiguous closed-canopy neotropical forests. 

Recent advances in high-resolution imaging spectroscopy technology and analysis 

techniques now provide the potential to distinguish lianas from trees at the sub-canopy scale. 

Next generation high spatial and spectral resolution imaging spectrometers have the capability to 

discriminate subtle differences in leaf chemistry and structure (Kampe et al., 2010; Asner & 

Martin, 2010), and new supervised classification methods have proven accurate at discriminating 

individual tree species (Colgan et al., 2012; Féret & Asner, 2012).  

Our goal was to map the distribution and abundance of lianas in a seasonally dry 

neotropical forest using high-resolution imaging spectroscopy. Using imagery collected over 

central Panama by the Carnegie Airborne Observatory, combined with a ground-based liana 

canopy census of nearly 800 trees, we asked whether liana canopy cover could be mapped over a 

600 ha contiguous closed-canopy neotropical forest. We employed support vector machine 

classification algorithms, and evaluated their ability to discriminate between trees and lianas. We 

also explored the lower threshold of liana canopy cover for which liana-supporting trees could be 

accurately distinguished from liana-free trees.   

Methods 

Site 

The study site is a mainland peninsula of the Barro Colorado Nature Monument in the 

Republic of Panama (Figure 4.2). The Gigante Peninsula (9.1°N, 79.8°W) is covered by a 

seasonally-dry, secondary tropical moist forest >200 years old, interspersed with 50-70 year old 

forest patches recovering from agricultural disturbance (D. Dent unpublished data). The 



 

 95 

geological substrate is a Miocene basalt (Stewart et al., 1980), and the soils are considered 

relatively fertile for the lowland tropics (Wright et al., 2011). On nearby Barro Colorado Island, 

monthly precipitation averages c. 290 mm in the wet season (May-December) and c. 70 mm in 

the dry season (January-April; STRI, 2013).  

Imagery 

In February of 2012, the Carnegie Airborne Observatory (CAO) Airborne Taxonomic 

Mapping System (AToMS) acquired high-resolution data of the site with an integrated (i) full-

spectral range imaging spectrometer, (ii) a zoom imaging spectrometer, and (iii) a full-waveform 

LiDAR. Details of the AToMS are described in Asner et al. (2012). The visible-to-shortwave 

infrared (VSWIR) imaging spectrometer collects data in 428 contiguous spectral bands from 

380-2510 nm, with a signal-to-noise ratio that is up to five times higher than NASA’s Airborne 

Visible and Near-infrared Imaging Spectrometer (AVIRIS). Deployment of the CAO at a flight 

altitude of 2000 m resulted in imagery with a 2 m pixel spatial resolution. The visible-to-near 

infrared (VNIR) zoom imaging spectrometer collects 288 contiguous spectral bands over a 

smaller range (365-1052 nm) than the VSWIR, but at twice the pixel spatial resolution (1.0 m at 

2000 m altitude).  

We used LiDAR pulses that reached the ground surface to interpolate a raster digital 

terrain model (DTM) for the ground surface. This was achieved using a 10 m × 10 m kernel 

passed over each flight block; the lowest elevation estimate in each kernel was assumed to be 

ground. Subsequent points were evaluated by fitting a horizontal plane to each of the ground seed 

points. If the closest unclassified point was < 5.5° and < 1.5 m higher in elevation, it was 

classified as ground. This process was repeated until all points within the block were evaluated.  
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We radiometrically corrected the VSWIR data to radiance (W sr−1 m−2) using a flat-field 

correction, radiometric calibration coefficients, and spectral calibration data collected in the 

laboratory. We created a camera model to precisely describe the three-dimensional location and 

field-of view of each sensor and, combined with standardized timing information, for high-

precision data co-registration. We then used a smoothed best estimate of trajectory (SBET), 

LiDAR DTM, and camera model to produce an image geometry model and observational data 

containing information on exact solar and viewing geometry for each image pixel. We used these 

inputs to atmospherically correct the radiance imagery to apparent surface reflectance using the 

ACORN-5 model (Imspec LLC, Glendale, CA USA). To improve aerosol corrections in 

ACORN-5, we iteratively ran the model with different visibilities until the reflectance at 420 nm 

(which is almost constant for vegetated pixels) was 1%. We then corrected the reflectance data 

for cross-track brightness gradients using a bidirectional reflectance distribution function 

(BRDF) model (Colgan et al., 2012). Finally we geo-orthorectified the imagery to the LiDAR 

DTM, with accuracy better than 10 cm based on an embedded Global Navigation Satellite 

System (GNSS) and Inertial Measurement Unit (IMU). 

We used a 1270 by 1800 pixel VSWIR image of the study site covering 600 ha. We 

removed water absorption bands and bands near the instrument measurement boundaries, 

resulting in a 178-band VSWIR image used for the analyses described in “Support Vector 

Machine Classification” below. In addition, the precise positioning of the lidar-to-VSWIR data 

allowed for automated masking of pixels shaded by neighboring canopies and branches, as well 

as water bodies (Asner et al., 2007). We used a 4-band subset VNIR image of the same area only 

to identify and georeference individual tree crowns in the field (see “Field Data” below). 

Field Data 



 

 97 

Individual tree crown georeferencing: During July and August 2013, we collected field 

data outside the boundaries of ongoing forest manipulation experiments at the study site. We 

used a combined tablet computer (Apple Inc., Cupertino, CA USA) and Bluetooth-enabled 

GPS/GLONASS receiver (Garmin Ltd., Olathe, KS USA) system to navigate and collect field 

data within the study site. We uploaded the VNIR image of the study site to the application iGIS 

(Geometry Pty Ltd., Tasmania, Australia) on the tablet system, allowing us to georeference 

individual tree crowns directly on the imagery. Once an individual tree crown in the image was 

confirmed on the ground, we marked the tree in the iGIS application and recorded all data in a 

custom data entry pop-up form linked to each point. We only marked trees ≥10 cm diameter at 

breast height (dbh) that had 90% of the crown fully sun-exposed and were clearly identifiable on 

the imagery (n=775). All point coordinates and associated data were exported from the tablet 

system as shapefiles. 

Liana canopy cover survey: We assessed the percent cover of lianas in each 

georeferenced tree canopy using an improved version of the crown occupation index (cf. Clark & 

Clark, 1990; van der Heijden et al., 2010), as follows. The field team consisted of four people 

working in pairs, which rotated membership each day. In our improved version of the index, the 

centroid of each tree’s canopy was first determined, and the crown then visually bisected with 

north-south and east-west lines, forming four quadrants. Independent of their partner, each 

person thoroughly assessed each quadrant for the percent cover of lianas to the nearest 5%. The 

two partners then discussed the quadrant estimates and mutually agreed on a final estimate for 

each. To assess inter-rater reliability, at the beginning of each field day one tree was 

independently assessed by each of the four team members before splitting into pairs. We also 

measured the dbh and made qualitative estimates of the leaf area index (LAI) of each tree, noting 
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any major crown gaps or irregularities. We recorded the species identifications of commonly 

occurring trees only.    

Individual tree crown pixel extraction: Using the VNIR image in ERDAS IMAGINE 

(Hexagon Intergraph, Madison, AL USA) or ENVI (Exelis, Boulder, CO USA) software, we 

outlined the sunlit portions of the crown for each georeferenced tree, carefully avoiding shaded 

areas and crown edges. We extracted pixels from the VSWIR image using the crown polygons 

that encompassed at least three image pixels (smaller crowns were excluded). We calculated the 

normalized difference vegetation index (NDVI) as (NIR – VIS)/(NIR + VIS) where NIR and VIS 

are reflectances at 800 and 680nm, respectively. We filtered the data to retain only well-lit, live 

vegetation pixels with an NDVI ≥0.8 and mean near infrared (850-1050 nm) reflectance >20%. 

This yielded a total of 607 usable tree crowns in the analysis, representing a total of 23,270 

pixels. The distribution of individual tree crown liana canopy cover is presented in Figure 4.3.  

Support Vector Machine Classification 

Support vector machine (SVM) is a supervised machine learning technique increasing in 

use among the remote sensing community (Mountrakis et al., 2011). We chose to use SVM 

because they produce comparable or better results than other classification algorithms such as 

discriminant analysis, maximum likelihood, or artificial neural networks (Mountrakis et al., 

2011). SVM is a non-parametric classifier in which no assumptions about the underlying 

distribution of the data are made, making SVM particularly useful in remote sensing applications 

where the imagery data tend to have unknown distributions. SVM projects samples of different 

classes into multidimensional space and fits a hyperplane that best defines the boundaries 

separating the classes. To transform the hyperspectral data into higher dimensional space, we 

used the radial basis function (RBF) kernel because it has a low number of input parameters and 
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higher performance relative to other kernel functions (Féret & Asner, 2012). Other advantages of 

SVM are the ability to efficiently process large input spaces and its insensitivity to the Hughes 

phenomenon, or the decrease in classification accuracy after passing a threshold number of input 

features (Melgani & Bruzzone, 2004). This allows full use of the high dimensionality of 

hyperspectral data with relatively few training samples (Gualtieri & Cromp 1999).  

The general framework of SVM classification is similar to other classification techniques. 

First, data are split into training (SVM fitting) and testing (SVM validation) sets of a given 

proportion and balance (i.e., between-class proportion). Since we are evaluating liana cover of 

individual tree crowns, we selected pixels for the testing and training sets at the crown level, 

such that all pixels were included from a selected crown. Second, two SVM model parameters 

specific to the RBF kernel are optimized. Third, the performance and sensitivity of the SVM to 

the training/testing set proportion and balance are evaluated. Fourth, the final model is 

developed, validated, and applied to the entire image under investigation for the purpose of 

mapping liana coverage classes. All data processing and analysis was performed in the open-

source statistical software program R (R Development Core Team, 2012). SVM implementation 

was performed using the R package ‘e1071’ (Meyer et al. 2012).  

SVM Classification, Optimization, and Validation  

We binned all trees crowns from the field survey into six liana canopy cover classes and 

assigned this value to all pixels of each crown: zero (0% cover), thin (1-20% cover), mild (21-

40% cover), moderate (41-60% cover), heavy (61-80% cover), and severe (81-100% cover). We 

separately tested five different threshold values (>80%, >60%, >40%, >20%, ≥1%) against the 

0% liana cover class. These binary threshold classifications were used to evaluate the percentage 

canopy cover at which lianas can be accurately detected. 
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Before the final SVM classification and validation can be performed, the model 

parameters are optimized. The first parameter to be optimized for the RBF kernel is the gamma 

(ϒ) parameter controlling the flexibility of the classifier – or the trade off between model over-

fitting and under-fitting (Ben-Hur & Weston, 2009). The second parameter, penalty or cost (C), 

controls the trade off between model complexity and training errors (Cortes & Vapnik, 1995).  

We used an exhaustive grid search of the parameter space from 1e-10 to 1e10 for both, selecting 

the global optimum of the ϒ and C parameters based on the results of a 5-fold cross-validation of 

the model. This was done for each binary threshold classification, and the respective parameter 

set was used for all future SVM testing and implementation.  

We also tested SVM performance and sensitivity to the size and balance of sample 

training data. For each binary threshold classification, we input varying proportions of each class 

as training data to the SVM and evaluated the model performance when applied to the testing 

dataset (i.e., remaining tree crowns not selected for the training data). For each training data 

combination, we repeated this 100 times with a randomly selected sample of tree crowns, and 

computed the mean pixel-level testing classification accuracy and standard deviation. The 

unbalanced nature of the testing data (Figure 4.3) would strongly bias the reported accuracies in 

favor of the 0% liana cover in tree crowns. Therefore we calculated the pixel-level testing dataset 

balanced accuracy (BAC) following Féret & Asner (2012) as:  

BAC = !P target + P(non– target)
2 !×100 

where P(target) is the proportion of pixels correctly classified in the target class (i.e., tree crowns 

with liana cover) and P(non-target) is the proportion of pixels correctly classified in the non-

target class (i.e., tree crowns without liana cover). From the 100 SVM model iterations, we also 

computed the mean crown-level testing classification BAC and standard deviation, whereby the 



 

 101 

classified pixels are averaged over each tree crown, and the crown subsequently assigned to the 

liana cover class with the highest proportion of pixels.  

For each binary threshold classification we selected the training dataset combination that 

produced the highest mean BAC at the pixel and crown levels. Then from among the 100 SVM 

model iterations within each of the best training dataset combinations we chose the SVM 

classification model based on the testing dataset that achieved the highest BAC. The binary 

threshold classification with the highest resulting SVM model BAC was used to map liana 

canopy coverage (see “Landscape liana cover mapping”), and this final model is referred to as 

the “optimal SVM.” 

Strong cross-track brightness gradients within each flight line in the mosaicked image are 

present because of the time of day the site was flown by the CAO (1:00-2:30pm). We created a 

subset of the original VSWIR image that included only sections of each flight line closest to 

nadir that showed the least cross-track brightness gradient. Using the same procedures described 

above, we constructed a separate optimal SVM based on tree crowns extracted from just the 

VSWIR image subset with uniform brightness, and is referred to as the “optimal subset SVM.” 

The results from this procedure were used to assess the effect of flight line bias in liana cover 

classification only. 

Landscape Liana Cover Mapping 

We applied the optimal SVM model to the full VSWIR image extent of the study site. 

We assessed the total liana coverage of the study site from this classified image. We applied a 

5m inland buffer around all water features to remove any influence of below-canopy water 

reflectance. We summed the pixels in each class over the whole image to calculate the percent 

coverage for each class.  
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We performed the same procedure with the optimal subset SVM. We assessed the effects 

of the cross track brightness gradient by comparing the distributions of classified pixels from the 

optimal subset SVM and those pixels classified by the optimal SVM in the same image subset. 

The results from this procedure were used to assess the effect of flight line bias in liana cover 

classification only. 

To validate the full landscape liana cover map, we used data from an ongoing liana 

removal experiment at the study site (Schnitzer et al., unpublished data). Sixteen 80 by 80 m 

plots have been censused for all lianas and trees >1cm dbh. In April 2011, all lianas were cut 

near the soil surface from eight of the plots, and new liana sprouts have been pruned every 3 

months. The other eight plots are unmanipulated controls, and a similar liana canopy cover 

assessment as described in “Liana canopy cover survey” above is conducted every 6 months by 

their team. We calculated the number of pixels incorrectly classified by the SVM as lianas in the 

removal plots. We also compared the number of liana-classified pixels in each control plot to the 

total plot-level liana canopy cover as determined by the canopy survey. Only trees that were 

closest to the severe liana canopy cover survey class (>75% liana cover) and had sun-exposed 

crowns were included in these calculations. 

 Results 

SVM Classification Performance 

All of the binary threshold classifications achieved >90% cross-validation accuracy on 

the training data, but the severe liana cover classification outperformed the others with a mean 

cross-validation accuracy of 96.5±0.6% (Table 4.1). The severe cover classification had the best 

pixel-level mean BAC of 78.3%±5.8%, although the heavy liana cover classification was not far 
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behind with 73.1%±1.6% (Figure 4.5; Table 4.1). Crown-level mean BAC was similar between 

the severe and heavy cover classifications (75.8±9.4% and 76.1±15.8%, respectively). While the 

moderate threshold classification did not achieve the same level of accuracy as the severe and 

heavy threshold classifications, it nonetheless performed well with a BAC of 68.3±4.0% (pixel-

level) and 66.3±5.9% (crown-level). The mild and thin binary threshold classifications did not 

achieve mean BAC values that were as high as the other threshold classifications for either the 

pixel- or crown-level assessments (Figure 4.5; Table 4.1). This indicates that trees with thin to 

mild (i.e., 1-40%) liana canopy loads are unlikely to be separable from trees without any lianas 

present. Similar results were found when using data selected only for the optimal subset SVM 

(not shown).  

From among all of the binary threshold classifications, the severe threshold classification 

had the SVM model with the highest pixel-level (94.2%) and crown-level (92.4%) BAC (Table 

4.1). The heavy threshold classification followed with a pixel-level and crown-level BAC of 

83.6% and 79.2%, respectively. The best pixel-level moderate threshold classification achieved a 

moderate BAC of 73.8%, but the crown-level BAC dropped to 68.4%. The best SVM models of 

the mild and thin threshold classifications did not perform well (Table 4.1).  

Given the high performance of the severe threshold classification (94.2% pixel-level 

BAC), we used this SVM to produce liana cover classifications for the landscape-scale liana 

cover maps. Using crowns from the full image, the optimal SVM model was a model consisting 

of 98 tree crowns totaling 5640 pixels with no liana cover (30% of total within-class pixels) and 

216 pixels with >80% liana cover (80% of total within-class pixels). This model had a 97.4% 

cross-validation accuracy of the training data. 
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When using crowns only from the data selected only for the optimal subset SVM, a 

slightly better model was produced. The BAC of this optimal subset SVM model was 96.8% 

(pixel-level), with a 97.3% model cross-validation accuracy of the training data.  

Landscape Liana Cover Mapping 

The optimal SVM model applied to the full extent of the VSWIR image resulted in a total 

classified area of 585 ha (Figure 4.6). Pixels in the image were classified as 59.9% trees with 0% 

liana cover and 18.0% trees with severe liana cover (>80%). A large percentage (22.1%) of the 

image was not classified because it contained pixels that were shaded or contained dead and/or 

deciduous vegetation. 

The optimal subset SVM model was applied to an image subset of 264 ha (not shown). 

Pixels in this image subset were classified as 61.6% trees with 0% liana cover and 15.7% trees 

with severe liana cover (>80%). A similar percentage of unclassified shaded/dead/deciduous 

pixels were present (22.7%). When the optimal SVM model is applied to the same image subset, 

22.7% of the pixels are unclassified, 58.6% are classified as 0% liana cover tree pixels, and 

19.0% are classified as severe liana cover pixels. The difference in the percent of pixels 

classified as trees with severe liana cover using the optimal subset SVM vs. the optimal SVM 

indicates that there is a small bias (3.3%) toward overclassification of crowns with severe liana 

infestation due to differences in the non-uniform cross-track brightness of the full image.  

Examining the pixel classification of the liana experimental removal plots, we find that 

the optimal SVM model incorrectly classified an average of only 2.8±4.2% pixels as containing 

severe liana cover per removal plot. In the unmanipulated control plots, an average of 16.5±8.5% 

of the pixels are classified as severe liana cover. The plot-level pixel classifications differed 

significantly between the removal and control plots (Mann-Whitney U-test, W=60, p=0.004). 
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When we compare the average liana classified pixels in the control plots (16.5±8.5%) to the 

surveyed percent liana cover of those same plots (22.0±10.3%), no significant difference is 

detected (Mann-Whitney U-test, W=24, p=0.442). Both the low false positive error rate 

(2.8%±4.2%) in the removal plots and the similarity between classified and surveyed liana cover 

in the control plots support the validity of the optimal SVM model.  

Incorporating the severe liana cover overclassification bias due to non-uniform cross-

track brightness (3.3%) and the false positive error rate (2.8%), we estimate a landscape-scale 

presence of severe liana cover in the range of 11.9%-18.0%.  

Discussion 

We developed a method to successfully map the distribution of severe (>80%) liana 

canopy coverage at the landscape scale in a contiguous tropical forest. Of the 585 ha we 

classified in the study site, 11.9%-18.0% (70-105 ha) were identified as containing tree canopies 

with severe levels of liana coverage. Ingwell et al. (2011) reported that 16.0% of the 2127 tree 

crowns they surveyed on nearby Barro Colorado Island had a liana canopy cover > 75%. Our 

landscape classification estimate of this highest liana cover class is not very different from the 

average of the surveyed experimental control plots (22.0%) at the study site. Thus, our estimate 

of severe liana coverage from the SVM classification is within the range of reported values in the 

area, at least at the plot-level.  

An association between the topography of the site and the presence of severe liana 

canopy cover was detected. Severe liana canopy cover is concentrated along the central plateau, 

ridgetops, and in valley areas more than on slopes (Figure 4.6c). Stable topographic positions 

such as plateaus and ridgetops tend to contain nutrient depleted soils as rainfall runoff carries 

available nutrients downslope (Silver et al., 1994; Vitousek et al., 2003). Plateaus and ridgetops 
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also tend to have lower soil water availability than slopes (Daws et al., 2002). The low water and 

nutrient availability of plateaus and ridges may give lianas an advantage over trees given the 

higher-water use efficiency, wider vessel elements, and potentially deeper roots of lianas 

(Schnitzer, 2005; Foster & Brooks, 2005; Domingues et al., 2007; Cai et al., 2009), combined 

with their higher nitrogen- and phosphorus-use efficiencies (Zhu & Cao, 2010). The combination 

of these properties may lead to local dominance of lianas over trees at stable topographic 

positions. As erosional and depositional processes increase soil nutrient availability on slopes 

and valleys, respectively, we should expect the liana advantage to decrease along with liana 

canopy abundance.  

However, we also found severe levels of liana canopy cover at lower elevations and in 

some of the riparian valleys (lower middle-left portion of Figure 4.6a,c). Some of this area shows 

flight line and image mosaicking artifacts, evidenced by the high concentration of liana-

classified pixels that abruptly end to form a diagonal stripe in this portion of the image. 

However, not all of the severe cover of lianas in this area is an artifact, as we found large patches 

(>1ha) of low-lying, liana-dominated forests in this portion of the study site during our field 

work. This may be the result of recent (~50-70 years ago) agricultural disturbance throughout 

this portion of the study site (D. Dent, unpublished data), rather than the influence of soil water 

and nutrient availability on liana-tree competitive interactions.   

Although we did not use binary threshold classifications other than the severe cover 

threshold to classify liana abundance at the landscape scale, the BAC of the heavy and moderate 

thresholds were comparable to that of the severe threshold classification (Figure 4.5; Table 4.1). 

This suggests that the lower boundary for accurate liana detection may be as low as 40% canopy 

coverage. This is supported by results from a study by Kalacska et al. (2007) which found low 
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testing error rates (~14%) in discriminating trees crowns with liana coverage >40% from tree 

crowns with no lianas. Further investigation into the lower threshold of liana detection using 

SVM models is needed. 

The widespread severe liana coverage in tree canopies detected at the plot and landscape 

scales has significant implications for forest carbon dynamics, especially in the context of the 

reported neotropical liana size and abundance increase relative to trees. Liana loadings are 

associated with reductions in the carbon gain of trees at the stand level by an average of 0.25 Mg 

C ha-1 y-1 (van der Heijden & Phillips 2009). While these authors did not estimate the liana 

canopy coverage of the trees measured, they did find that as the basal area of lianas entering tree 

canopies increased, the growth rates of those trees strongly decreased. In fact, Ingwell et al. 

(2011) found that the mortality rate of trees with ≥75% liana canopy cover was double that of 

trees supporting fewer lianas. If severe liana canopy cover is between 11.9% and 18% of a 

forested landscape, and also increasing annually, the impact on forest carbon storage could be 

substantial.  

Before we can begin extracting estimated landscape liana coverage from other forests 

across the neotropics, further refinement of the methods presented are needed. Data reduction 

techniques to remove the influence of flight line and image mosaicking are important. Principle 

components (PC) transformation of the input bands produces orthogonal (i.e., uncorrelated) 

output bands that can be visually examined to discard those PC bands most associated with flight 

line, mosaicking artifacts, or other noise (Asner et al., 2012). The remaining bands can then be 

fit to an SVM model for classification. The imbalance between liana-free tree crowns and tree 

crowns with heavy to severe liana canopy cover highlights the need to target field data collection 
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to include a higher proportion of heavy to severe liana cover trees. Both of these steps should 

improve the accuracy and validity of the SVM classification models investigated here.  

This study was performed on imagery collected from a seasonally dry forest during the 

dry season. Previous work in nearby forests in Panama have shown that the reflectance spectra of 

lianas and trees are most different in seasonally dry forests (Castro-Esau et al., 2004; Sanchez-

Azofeifa et al., 2009) and during the dry season (Hesketh & Sánchez-Azofeifa, 2012), but tend 

to converge in aseasonal forests and during the wet season. Whether the methods presented here 

would achieve similar detection accuracies during the wet season at this site or in aseasonal 

forests needs to be explored.  

By combining ground-based canopy censuses with high-resolution imaging spectroscopy 

and machine learning classification algorithms, we have demonstrated the potential of mapping 

liana abundance at the landscape scale in neotropical forests. The refinement and deployment of 

these tools will be critical in verifying, quantifying, and monitoring the increase of lianas relative 

to trees across the neotropics. By uncovering the scale and velocity of the liana increase can we 

truly begin to understand what impact it will have on the role of tropical forests in the global 

climate system and carbon cycle.  
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Table 4.1. Liana cover classes, training data proportion, and number of crowns for each binary threshold classification. The SVM 5-
fold cross validation and balanced accuracy are presented for the pixel-level and the crown-level (where applicable).  

high coverhigh coverhigh cover med-high covermed-high covermed-high cover presencepresencepresence multiclassmulticlassmulticlassmulticlassmulticlass

Liana cover classesLiana cover classes 0%  80-100% 80-100% 0%  60-100% 60-100% 0% 1-100%1-100% 0% 1-25% 26-50% 51-75% 76-100%Liana cover classesLiana cover classes 0%  80-100% 80-100% 0%  60-100% 60-100% 0% 1-100%1-100% 0% 1-25% 26-50% 51-75% 76-100%

Proportion training (n)Proportion training (n) 0.15 (38) 0.8 (22)0.8 (22) 0.2 (51)   0.76 (38)  0.76 (38) 0.25 (64)  0.25 (88)0.25 (88) 0.1 (25) 0.25 (44) 0.25 (27) 0.25 (10) 0.33 (10)

SVM cross validationSVM cross validation Balanced 
accuracy

SVM cross validationSVM cross validation Balanced 
accuracy

SVM cross validationSVM cross validation Balanced 
accuracy

SVM cross validation SVM cross validation Balanced  accuracyBalanced  accuracy

pixel-level
mean 96.596.5 78.3 94.194.1 73.1 93.293.2 56.5 90.690.6 19.919.9

pixel-level
SD 0.60.6 5.8 1.01.0 1.6 0.70.7 18.3 1.21.2 6.66.6

crown-level
mean nana 75.8 nana 76.1 nana 56.7 nana nana

crown-level
SD nana 9.4 nana 15.8 nana 18.0 nana nana

Classification structureClassification structure severeseveresevere heavyheavyheavy moderatemoderatemoderate mildmild thinthin

Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%

Proportion training (n)Proportion training (n) 0.15 (38) 0.8 (22)0.8 (22) 0.2 (51)   0.76 (38)  0.76 (38) 0.2 (51) 0.4 (47)0.4 (47) 0.2 (51) 0.2 (39) 0.25 (64)  0.25 (88)

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

pixel-level
mean 96.596.5 78.3 94.194.1 73.1 92.8 68.3 92.4 62.4 93.293.2 56.5

pixel-level
SD 0.60.6 5.8 1.01.0 1.6 1.0 4.0 1.2 1.3 0.70.7 18.3

crown-
level

mean nana 75.8 nana 76.1 na 66.3 na 61.6 nana 56.7crown-
level SD nana 9.4 nana 15.8 na 5.9 na 1.6 nana 18.0

Threshold classificationThreshold classification severeseveresevere heavyheavyheavy moderatemoderatemoderate mildmild thinthin

Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%

Proportion training (n)Proportion training (n) 0.15 (38) 0.8 (22)0.8 (22) 0.2 (51)   0.76 (38)  0.76 (38) 0.2 (51) 0.4 (47)0.4 (47) 0.2 (51) 0.2 (39) 0.25 (64)  0.25 (88)

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

pixel-
level

mean 96.596.5 78.3 94.194.1 73.1 92.8 68.3 92.4 62.4 93.293.2 56.5
pixel-
level SD 0.60.6 5.8 1.01.0 1.6 1.0 4.0 1.2 1.3 0.70.7 18.3
pixel-
level

optimal SVM 97.497.4 94.2 92.792.7 83.6 92.7 73.8 92.6 66.4 92.592.5 60.7

crown-
level

mean nana 75.8 nana 76.1 na 66.3 na 61.6 nana 56.7
crown-
level SD nana 9.4 nana 15.8 na 5.9 na 1.6 nana 18.0

crown-
level

optimal SVM nana 92.5 nana 79.2 na 68.4 na 65.2 nana 59.0

Threshold classificationThreshold classification severeseveresevere heavyheavyheavy moderatemoderatemoderate mildmild thinthin
Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%Liana cover classesLiana cover classes 0% >80%>80% 0%  >60% >60% 0%  >40% >40% 0%  >20% 0% ≥1%

Proportion training (n)Proportion training (n) 0.15 (38) 0.8 (22)0.8 (22) 0.2 (51)   0.76 (38)  0.76 (38) 0.2 (51) 0.4 (47)0.4 (47) 0.2 (51) 0.2 (39) 0.25 (64)  0.25 (88)

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation
SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

SVM cross 
validation

Balanced 
accuracy

pixel-
level

mean (SD) 96.5 (0.6)96.5 (0.6) 78.3 (5.8) 94.1 (1.0)94.1 (1.0) 73.1 (1.6) 92.8 (1.0) 68.3 (4.0) 92.4 (1.2) 62.4 (1.3) 93.2 (0.7)93.2 (0.7) 56.5 (18.3)pixel-
level best SVM 97.497.4 94.2 92.792.7 83.6 92.7 73.8 92.6 66.4 92.592.5 60.7

crown-
level

mean (SD) nana 75.8 (9.4) nana 76.1 (15.8) na 66.3 (5.9) na 61.6 (1.6) nana 56.7 (18.0)crown-
level best SVM nana 92.5 nana 79.2 na 68.4 na 65.2 nana 59.0
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Figure 4.1. Geographic location of plots (Source: citations in text) where 
lianas have been censused at two different time periods in Central and South 
America (note: some locations contain multiple plots). Symbols indicate 
plot location and size of plot. Dashed line denotes the extent of the Amazon 
basin (Source: www.ore-hybam.org). Elevation data (1km) from NASA 
Shuttle Radar Topography Mission. 

Figure 1 . Locations of liana census data 
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Figure 4.2. Gigante Peninsula study site in central 
Panama. A LiDAR-derived digital elevation model (DEM) 
is displayed over the extent of the study site.   
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Figure 4.3. Distribution of individual tree crowns at the central 
Panama study site by level of liana canopy cover as determined by 
our field survey.  
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Figure 4.4. Balanced accuracy plotted by color (with standard deviation overlaid) resulting from 
100 SVM model iterations of randomly selected tree crowns in the (a) the severe cover and (b) 
heavy cover binary threshold classifications. Data not shown for the moderate, mild, and thin 
binary threshold classifications. 
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 Figure 4.5. Comparison of BAC among binary 
threshold classifications. Pixel-level accuracy (dark 
purple) and crown-level accuracy (light purple) with 
error bars +/-SD. 
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Figure 4.6. (a) Landscape liana severe cover classification of the full VSWIR image resulting from the optimal full SVM, (b) LiDAR-
derived digital elevation model (DEM), (c) transparent classification layer overlaid on top of the DEM.  
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Table S4.1. A review of studies examining liana and tree spectral differences in 
relation to leaf physiology.  
 
1 Asner GP (2008) Hyperspectral remote sensing of canopy chemistry, physiology, and 

biodiversity in tropical rainforests. In: Hyperspectral remote sensing of tropical and sub-
tropical forests. (eds. Kalacska M. & Sanchez-Azofeifa, A.). Boca Raton, FL, CRC Press.  

2 Sánchez-Azofeifa GA, CastroEsau K (2004) Canopy observations on the hyperspectral 
properties of a community of tropical dry forest lianas and their host trees. International 
Journal of Remote Sensing, 27, 2101–2109. 

3 Castro-Esau K, Sánchez-Azofeifa GA, Caelli T (2004) Discrimination of lianas and trees with 
leaf-level hyperspectral data. Remote Sensing of Environment, 90, 353–372. 

4 Sánchez-Azofeifa GA, Castro K, Wright SJ, et al. (2009) Differences in leaf traits, leaf internal 
structure, and spectral reflectance between two communities of lianas and trees: 
Implications for remote sensing in tropical environments. Remote Sensing of Environment, 
113, 2076–2088. 

5 Kalacska M, Bohlman S, Sánchez Azofeifa GA, Castro-Esau K, Caelli T (2007) Hyperspectral 
discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches 
at the leaf and canopy levels. Remote Sensing of Environment, 109, 406–415. 

6 Asner GP, Martin RE (2010) Canopy phylogenetic, chemical and spectral assembly in a lowland 
Amazonian forest. New Phytologist, 189, 999–1012 

Spectral Region
Mechanisms 
Controlling 
Reflectance

Relevance to Liana-Tree DiscriminationRelevance to Liana-Tree DiscriminationRelevance to Liana-Tree Discrimination

Spectral Region
Mechanisms 
Controlling 
Reflectance Leaf-level Canopy-level Physiology

Visible
Chlorophyll and 

carotenoid 
concentrations1

Higher reflectance of 
lianas in green peak 

important3,4,5

Higher reflectance of 
lianas found with 

increasing 
abundance2,5

Lianas contain lower 
pigment levels2,3,4

Red Edge
Chlorophyll content, 

biomass, water 
stress1

Higher reflectance of 
lianas in red edge 

important3,4,5

Same as visible but 
less important for 
discrimination2,5

Lianas contain lower 
chlorophyll2,3,4

Near Infrared
Leaf internal 

structure, nitrogen 
concentration1

Results are mixed; spectral and physiological differences are 
inconclusive2,3,5,6

Results are mixed; spectral and physiological differences are 
inconclusive2,3,5,6

Results are mixed; spectral and physiological differences are 
inconclusive2,3,5,6

Shortwave 
Infrared

Leaf water content, 
cellulose1

Most important 
region for 

discrimination5,6

By far the most 
important region for 

discrimination5
Leaf water content 
higher in lianas4,6
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Chapter V 

Conclusion and Synthesis 

While lianas have long fascinated biologists (Darwin, 1865), only recently have we 

begun to reveal the full extent of their ecological importance. As the second most dominant 

woody plant growth form in tropical forest ecosystems, lianas are integral to many aspects of 

forest ecosystem function. Lianas provide abundant food resources and shelter for animals, and 

ground-to-canopy and canopy-to-canopy pathways for arboreal animals (Emmons & Gentry, 

1983; Clay et al., 2010). On the other hand, by increasing tree mortality (Phillips et al., 2002; 

Ingwell et al., 2010), reducing tree growth and fecundity (e.g., Nabe-Nielsen et al., 2009; van der 

Heijden & Phillips, 2009), and suppressing regeneration of trees in forest gaps (Toledo-Aceves 

& Swaine, 2008; Schnitzer & Carson, 2010), lianas are important to whole-ecosystem carbon 

flux. It is precisely these negative effects that make the reported relative increase of lianas 

compared to trees such a concern for the world’s greatest terrestrial carbon sink: neotropical 

forests. This dissertation has focused on understanding the mechanisms responsible for the liana 

increase and the scale on which it is occurring.  

Using a combination of empirical experimentation, ground-based forest censuses, and 

advanced airborne remote sensing imagery and analysis, this work has contributed two key 

findings. First, that increasing atmospheric CO2 and its interaction with either seasonal drought 

or soil nutrient availability are unlikely the main underlying mechanisms responsible for 
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increasing lianas (Chapter 2 and 3). More empirical work, included species-specific tests of 

elevated CO2, is needed to form a mechanistic understanding of the processes driving lianas to 

become more abundant, relative to trees. Second, I have developed new methods to detect liana 

canopy cover at the landscape scale, which include the tools to verify, quantify, and monitor 

liana canopy cover in a spatially explicit manner (Chapter 4). Large-scale, high-resolution maps 

of liana canopy cover can be used to examine the temporal and spatial ecology of lianas and, 

when combined with field and other remote sensing data, document their effects on ecosystem 

function at an unprecedented scale. I review in more detail below the contribution of each 

chapter and the future questions each has provoked.  

Chapter 2: No evidence that elevated CO2 gives tropical lianas an advantage over 

tropical trees. While elevated CO2 is often cited as a main cause of increasing lianas, and is 

grounded in sound physiological and ecological theory, there have been few empirical tests of 

the effect of CO2 on tropical lianas. In the first experiments to directly compare the relative 

response of lianas and trees to elevated CO2, I tested a) the response of 11 tropical liana and 10 

tropical tree species to increased atmospheric CO2 and b) whether seasonal drought affected the 

response of each growth form. Both lianas and trees had a significantly positive response to 

elevated CO2, but their relative responses did not differ. If elevated CO2 was the main 

mechanism responsible for increasing lianas as a growth form we should expect at least some 

difference in their growth and physiological responses even at the seedling stage. I emphasize 

lianas as a growth form because what is often lost in the conversation about liana-tree dynamics 

in the context of increasing lianas is the essential role of species-specific differences. While my 

data analyses thus far have not examined the response to elevated CO2 at the species level in 

either growth form, I acknowledge the need for doing so and the important questions we can 
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answer as a result. Indeed, investigations into the mechanistic understanding of increasing lianas, 

as well as censuses of temporal demographic changes, must be performed at the species level. 

These two approaches, experimentation and field censuses, can inform one another, with 

demographic census data used in the selection of species for experimentation, and experimental 

results used to design field studies testing these mechanisms in natural systems.  

Chapter 3: The relative growth response of tropical lianas to elevated CO2 does not 

depend on soil nutrient availability. Ecological processes do not occur in isolation, therefore I 

extended the tests of liana-tree response to CO2 to include soil nutrient availability because 

nutrients are key constraints on plant growth and productivity. In two separate studies, tropical 

liana seedlings were grown in pots with either low or high soil nitrogen (N) or phosphorus (P), 

and exposed to elevated and ambient CO2. Counterpart tree species were also tested in the 

nitrogen experiment. Our experiments did not provide any evidence that soil N and P availability 

interacts with increasing atmospheric CO2 to significantly affect the growth and physiology of 

the liana species studied. Instead, changes to soil nutrient availability or to CO2 alone had strong 

and significant effects on lianas. This suggests that while explanations for the reported liana 

increase may not lie in the interaction among changing biogeochemical cycles, changes of these 

cycles alone could be a potential contributor. Further experimentation on a wider range of 

species of lianas and trees, older individuals, and on competition between the growth forms for 

soil nutrients are needed to clarify whether changes in nutrient availability could be a cause of 

increasing lianas. Additional belowground variables such as microbial feedbacks, pathogen 

effects, and other constituent soil nutrients other than N and P should be examined for their 

influence on liana and tree growth either alone or in concert with elevated CO2.   
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Chapter 4: Mapping liana canopy cover across tropical forest landscapes using 

high-resolution imaging spectroscopy. Studies documenting the relative increase of tropical 

lianas over trees have generated much attention, yet there still remains a lack of data to verify the 

existence, scale, and severity of the increase. The use of remote sensing to discriminate between 

the cover of lianas versus trees in tropical forests canopies provides a viable solution. I used data 

collected from my field surveys to train machine learning algorithms to detect liana coverage in 

tree canopies using high-resolution hyperspectral imagery. This method proved to be very 

accurate at distinguishing liana cover from tree cover, at least for severe liana infestations. When 

applied to a 600 ha contiguous tropical forest in central Panama, we demonstrate that trees with 

liana coverage of >80% constituted 11.9%-18.0% of the landscape. Liana infestation of this 

magnitude, even over relatively small areas, has broad implication for future forest ecosystem 

function and carbon dynamics. Our newly developed method needs to be applied and verified 

across a diversity of tropical forest locations and types before we can begin to characterize the 

temporal and spatial ecology of lianas in neotropical forests. By combining estimates of liana 

cover at large scales with data on carbon density, species demography, and edaphic variables at 

the plot-level, we can reveal the biotic and abiotic factors shaping liana community dynamics 

and how lianas in turn affect forest function.  

The very nature of ecological interactions requires that their study be multi-scale, 

temporal, and involve diverse investigative approaches. However, not every ecological 

mechanism operates across all scales of space, time, and phylogeny. I have shown here that even 

seemingly obvious explanations for a phenomenon cannot be verified once tested. Results of this 

nature are an important step in identifying a specific mechanism and the scale at which it 

operates. My dissertation suggests that increasing atmospheric CO2 is unlikely the mechanism 
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behind the reported increase in liana size and abundance. At the same time, I have developed 

new tools for investigating alternative mechanisms for the liana increase. The study of 

anthropogenic global change in an ecological context requires the flexibility to develop and 

employ new such methods as the results dictate.  

Elevated CO2 and climate change are a subset of the dramatic effects humans are having 

on the tropical biosphere. While deforestation rates have slowed in many parts of the Amazon, 

this decrease has been more than offset by dramatic increases in other tropical regions (Hansen et 

al., 2013). Worse still, the area subjected to forest degradation (selective logging, fire, mining, 

and hunting) is 20-30 times that of deforestation alone (Asner, 2013). However, proposals are 

being seriously considered that would simultaneously tackle the seemingly intractable issues of 

forest destruction and climate change. Reduced Emissions from Deforestation and Degradation 

(REDD+) seeks to incentivize tropical forest conservation by linking carbon emitters to parties 

able to reduce forest carbon losses (Stickler et al., 2009). The efficacy of REDD+ will depend in 

part on the ability of tropical ecologists to comprehensively understand and accurately monitor 

tropical forest dynamics and growth. Thus, ecologists will continue to play an integral role in 

solving some of my generation’s largest issues, and it is incumbent upon our field to recognize 

and meet the challenges presented.  
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