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Introduction

Queiroz, K. de (2004). The measurement of test severity, significance tests for resolution, and
a unified philosophy of phylogenetic inference. — Zoologica Scripta, 33, 463-473.

The philosopher Karl Popper described a concept termed degree of corroboration, C, for evalu-
ating and comparing hypotheses according to the results of their tests. C is, fundamentally,
a comparison of two likelihoods: p(e!bb), the likelihood of the hypothesis (b) in conjunction
with the background knowledge (4), and p(e1b), the likelihood of 4 alone. C is closely related
to the likelihood ratio of nested hypotheses. When phylogenetic analysis is interpreted as an
attempt to assess C for a phylogenetic tree (the hypothesis, ), several interpretations have
been given for p(elb). Here I describe a new interpretation that equates p(elb) with the
probability of the data in the absence of a hypothesis of phylogenetic resolution, that is with
the likelihood of an unresolved or polytomous tree. Under this interpretation, C for a fully or
partially resolved phylogenetic tree is the likelihood of that tree minus the likelihood of the
corresponding unresolved tree. These same two likelihoods can be used in a likelihood ratio
test (LRT) to assess the significance of the degree of corroboration of the hypothesis of
phylogenetic resolution. This LRT for resolution is closely related to permutation tests for
phylogenetic structure in the data, because data that evolved on a true polytomous tree are
expected to be phylogenetically randomized. It therefore reconciles the interpretation of the
evidence (¢) as the distribution of character states among taxa (rather than the score of the opti-
mal tree) with the interpretation of permutation tests as methods for assessing C. Likelihood
methods are (contrary to the views of some commentators) central to understanding how
Popper’s C applies to phylogenetic hypotheses, and they form the foundation of a unified
and inclusive philosophy of phylogenetic inference.
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sonian Institution, Washington, DC 205600162, U.S.A. E-mail: dequeiroz.kevin@nmnb.si.edu

the assessment of test severity — that is the calculation of

Phylogenetic methods have been interpreted (e.g. Faith
1992, 1999; Kluge 1997a,b; de Queiroz & Poe 2001) as
methods for evaluating alternative phylogenetic hypotheses
in terms of their degree of corroboration, C, a general measure
developed by the philosopher Karl Popper (1959, 1962,
1983) for evaluating and comparing hypotheses according to
the results of their tests. The assessment of test severity is
central to assessing C, and constitutes the most important
difference between that concept and Fisher’s (1921, 1970)
concept of likelibood, L, upon which C is otherwise based
(e.g. Popper 1959: 388, 410, 414; 1983: 252).

In Popper’s (1983) definition of C (p. 240), test severity is
measured by the term p(e5): the probability of the evidence
e given the background knowledge # (assumptions) alone,
that is, in the absence of the hypothesis of interest 4 (p. 238).
When phylogenetic analysis has been interpreted as the evalu-
ation of alternative phylogenetic hypotheses in terms of C,

p(elb) — has received several conflicting interpretations (e.g.
Faith 1992, 1999; de Queiroz & Poe 2001; Kluge 2001), none
of which is entirely satisfactory (e.g. Farris 1995; de Queiroz
& Poe 2001, 2003; Faith & Trueman 2001; Farriset /. 2001).

In this paper, I propose a direct method for calculating
p(elb), which forms the basis of a previously proposed likeli-
hood ratio test for phylogenetic resolution (e.g. Felsenstein
1988; Ota et al. 1999, 2000). The close relationship between
this test and the permutation tail probability (PTP) test of
Faith & Cranston (1991) reconciles two seemingly conflict-
ing interpretations of p(e | 5), resulting in a unified philosophy
of phylogenetic inference.

Degree of corroboration

Popper (1983: 240, 242) presented two definitions of C, the
simpler of which is C(h,e,b) = p(e| hb) — p(elb). This formula
states that the degree of corroboration (C) of the hypothesis
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of interest () by the evidence (e) in the presence of certain
background knowledge or assumptions (%) is equal to the prob-
ability of e given 4 in conjunction with # minus the probability
of e given b alone. Popper also provided a more complex
definition that divides p(elbb) — p(e1b) by the ‘normalization
factor’ p(elhb) — p(eb |b) + p(elb) so that C =—1, rather than
= 0 in the presence of falsifying evidence. In the present dis-
cussion, I will (for the most part) follow the simpler definition,
which corresponds with the numerator of the more complex
definition and thus forms the crux of the concept.

In both of these definitions, the two central terms, p(e | bb)
and p(elb), are likelihoods (Popper 1959: 388, 410-414;
1983: 252; de Queiroz & Poe 2001, 2003). The term p(e | bb),
the probability of e given 4 in conjunction with &, is what
Fisher (1921; 1970) called the Jikelibood (L), of the hypothe-
sis. In contrast to Popper’s terminology, the standard defini-
tion, L(hle) = p(el h), does not contain the separate term 4 but
treats it (including those components commonly termed the
model) as part of b. Therefore, b in the definition of L corre-
sponds with /b in the definition of C (de Queiroz & Poe
2001), which, defined as p(e!bb) — p(elb), is the likelihood of
b minus the likelihood of #; or, in Popper’ terminology, the
likelihood of 4 in conjunction with # minus the likelihood of
b alone.

In Popper’s philosophy (Popper 1959, 1962, 1983), the
comparison of these two probabilities is critically important.
Evidence (e) that has a high probability given a hypothesis (b)
in conjunction with particular background knowledge (4) can
only be considered to provide meaningful support for 5 if it
does not have a similarly high probability given & alone, that
is in the absence of » (Popper 1983: 237). In other words,
b can only be considered significantly corroborated if
plelbb) >> p(elb), and therefore an assessment of p(e | 5) is cru-
cial to assessing the degree of corroboration of 4. This prop-
osition bears an obvious similarity to the idea from classical
statistics that the probability of the data must differ to some
accepted degree from an expectation under a null hypothesis
if the data are to be considered to provide significant support
for a mutually exclusive alternative hypothesis.

Degree of corroboration and statistical inference

In fact, Popper’s C bears much more than this general simi-
larity to methods of statistical inference. In this section, I will
describe the relationship between C and three statistical
concepts and/or methods: Fisher’s (1921, 1970) likelibood, L,
Edwards’ (1972) support, S, and the significance tests of classical
statistical inference. Although Popper noted in several places
that C is based on L (e.g. Popper 1959: 388, 410, 414; 1983:
252) and discussed the testing of statistical hypotheses in gen-
eral (Popper 1959: chapter VIII, appendix *ix), he does not
seem to have addressed the relationship of C to S (i.e. likeli-
hood ratios) or to significance tests.

Popper stated very explicitly that C'is based on L. For example,
‘I'soon found that, in order to define C(x,y) — the degree of cor-
roboration of the theory x by the evidence y — I had to operate
with some converse p(y,x), called by Fisher the “/ikelibood of x”
(in light of the evidence y, or given y ... )’ (Popper 1959: 388).
Similarly, ‘these two definitions [of degree of corroboration] ...
are based on p(b,a) [i.e. p(elh)] — called the likelihood of #
with respect to & by R. A. Fisher — rather than upon p(a,5)
[i.e. rather than upon the probability of the hypothesis given
the evidence, p(hle)]’ (Popper 1983: 252). Thus, as noted in
the previous section, both of the conditional probabilities
that define C are likelihoods: the likelihood of 4 in conjunc-
tion with 4, p(elhb), and the likelihood of 4 alone, p(elb).

Although C is based on L, there is an important difference
between the degree of corroboration of a hypothesis C(h,e,b)
and the likelihood of that hypothesis, L(h | ¢). As noted above,
for Popper L(b | ¢) (represented by the term p(e | bb) in the def-
inition of C) is, by itself, inadequate for evaluating C(b, e, b).
The reason is that a high value of p(e!hb) may have little or
nothing to do with 4. In other words, the probability of e may
be high even without 4, that is in the presence of 4 alone.
According to Popper (1983: 237), ‘if e should be probable, in
the presence of 4 alone ... , then its occurrence can hardly be
considered as significant support of #’. Consequently, p(e | hb)
can only be considered an adequate measure of C in cases in
which the probability of ¢ given the background knowledge
alone, p(elb), is very small (Popper 1959: 413-414). More
generally, b can only be considered well-corroborated by e if
pelbb) > p(elb). For this reason, the central idea in Popper’s
C is a comparison of the likelihood of 4 in conjunction with
b, p(el hb), with the likelihood of 4 in the absence of b, p(eb).

Although the term 4 represents the hypothesis of interest,
both b and b in the definition of C represent hypotheses. The
background knowledge & consists of ‘assumptions’ or ‘theor-
ies not under test’ (Popper 1962: 238, 1983: 252), which are
themselves hypotheses. So b represents a hypothesis (or sev-
eral hypotheses in conjunction) not including 4. Moreover,
according to Popper (1983: 236), ‘b must be consistent with
P’. Given that b is consistent with 4 and differs from Ab in
lacking the hypothesis of interest 4, it represents a special case
of hb. Thus, hb and b represent more and less general (i.e.
nested) hypotheses. It follows that the central idea of Pop-
per’s C, p(el bb) — p(elb), is a comparison of the likelihoods of
nested hypotheses.

Statisticians have also developed a method for comparing
two hypotheses in terms of their likelihoods. It is called by
Edwards (1972: 31) support, S, ‘defined as the natural loga-
rithm of the likelihood ratio’ of the two hypotheses. In the
case of nested hypotheses, the likelihood ratio is, using Pop-
per’s symbols, p(e | bb)/p(elb). Thus, C and S applied to nested
hypotheses are both comparisons of p(el5b) and p(el5). The
main differences are that C is the difference between p(e | bb)
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and p(e!b) normalized (in the complex definition) so that it
varies between —1 and +1, while S is the 7atio of p(elbb) to
p(eld) transformed using the natural logarithm. This funda-
mental similarity confirms the belief of Edwards (1972: 211),
who stated ‘On the [wide subject of the philosophy of sci-
ence] I have the impression that the Method of Support is not
greatly at variance with the views of Popper [1959], whose
book would be a starting point in any attempt to relate the
Method to the wider field.’

The likelihood ratio (or its natural logarithm) is commonly
used as a test statistic in a significance test, called the /ikelibood
ratio test (e.g. Neyman & Pearson 1928a,b; Kendall & Stuart
1979) in the context of the classical approach to statistical
inference — that is, in the context of the ideas of repeated
sampling and type I and type II errors described by Neyman
& Pearson (1933). C varies between 0 and +1, or between —1
and +1 (normalized), but does not specify what range of
values corresponds to a significant degree of corroboration.
However, because of the close relationship between C and the
likelihood ratio of nested hypotheses, the likelihood ratio test
(LRT) applied to nested hypotheses is basically a test of the
significance of C(b,e,b) (i.e. of the significance of the value of
C obtained in a particular test of 5).

In light of the above discussion, three points seem worth
emphasizing concerning the relationship between Popper’s C
and various statistical concepts and tests. First, C is based on
(i.e. defined in terms of ) likelihood, L. Second, C is an altern-
ative metric for measuring the support, S, of a more general
hypothesis relative to a less general one. Third, if C were to
be used as a test statistic in the context of the ideas of repeated
sampling and type I and type II errors, then the resulting sig-
nificance test would be analogous to a likelihood ratio test.
Thus, Popper’s method for assessing the degree of corrobo-
ration of a hypothesis is basically a method of statistical infer-
ence. It is based on the concept of likelihood (as are most
approaches to statistical inference), it is fundamentally sim-
ilar to the likelihood ratio of nested hypotheses, and it is
therefore also closely related to likelihood ratio tests.

Because Popper’s method does not incorporate the ideas
of repeated sampling and type I and type II errors, or prior
probabilities, it bears a particularly close resemblance to an
approach to statistical inference based more or less exclu-
sively on the comparison of the likelihoods of alternative
hypotheses (e.g. Fisher 1925, 1970; Edwards 1972; Royall
1997), an approach that has been called /ikelibood inference to
distinguish it from the classical and Bayesian approaches (e.g.
Barnett 1999). On the other hand, the significance tests of
classical statistics, which are based on the ideas of repeated
sampling and type I and type II errors, represent explicit
attempts to reject a null hypothesis and are therefore highly
congruent with Popper’s general falsificationist philosophy
(Gillies 2000: 145-150).
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The measurement of p(e|b) in phylogenetics

When Popper’s C has been used as a context for understand-
ing methods of phylogenetic analysis, several conflicting
interpretations of p(e 1 5) have been proposed (e.g. Faith 1992,
1999; de Queiroz & Poe 2001; Kluge 2001). Both de Queiroz
& Poe (2001) and Faith & Trueman (2001) discuss C and test
severity in the context of several types of phylogenetic ana-
lyses, including tests of hypotheses about evolutionary pro-
cesses described by model parameters (de Queiroz & Poe
2001) and tests of monophyly (Faith & Trueman 2001). In
this paper, I will restrict my considerations to the case that de
Queiroz & Poe (2001) called a standard phylogenetic analysis,
defined as an attempt to identify an optimal tree using a
single data set (in the case of character data, a single
taxon X character matrix) and a single phylogenetic method
and its associated implicit and explicit assumptions. In partic-
ular, I will address the assessment of C for the optimal tree
identified in such an analysis. Most of the conflicts among
alternative interpretations p(e | 5) relate to this type of analysis.

In this discussion, I will adopt the interpretation of de
Queiroz & Poe (2001) concerning the correspondence
between the components of a standard phylogenetic analysis
and the terms in the definition of C. In particular, I will
equate a tree (commonly the optimal tree) with A, the
taxon X character matrix with e, and the analytical method
and any associated models with part of 5. Although this inter-
pretation differs from that of Faith and collaborators (Faith
1992, 1999; Faith & Cranston 1992; Faith & Trueman 2001),
in which e is interpreted not as the taxon x character data
matrix but as the score of the optimal tree, I will argue that
despite these differences, the general conclusions about
assessing C for a phylogenetic hypothesis proposed by those
authors are highly compatible with the methods that I discuss
in this paper.

For the case of a standard phylogenetic analysis, under the
interpretation of 4, e, and 4 just described, the first term in the
definition of C, p(el hb), is the probability of the data (distri-
bution of character states among taxa, or the different char-
acter patterns and their numbers) given a particular tree and
the assumptions of the phylogenetic method used. This is the
same thing as the likelihood of the tree, which can therefore
be calculated using a phylogenetic likelihood method with its
intrinsic probabilistic model (de Queiroz & Poe 2001). If a
nonprobabilistic phylogenetic method is used, then p(elbb)
must be calculated using a probabilistic equivalent. For
example, Tuffley & Steel (1997) proposed a probabilistic
model that is equivalent to (i.e. gives the same results as) a
Fitch (unordered) parsimony method with equally weighted
transformations both within and among characters (see also
Goldman 1990). Regardless of whether it is based on likelihood
or some other optimality criterion, a standard phylogenetic
analysis, by itself, contains no component that corresponds
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with p(e | 5) (Faith & Cranston 1992; de Queiroz & Poe 2001;
Faith & Trueman 2001). Consequently, such an analysis
assesses only the relative degree of corroboration of alter-
native phylogenetic hypotheses (de Queiroz & Poe 2001). It
is possible, however, to supplement a standard phylogenetic
analysis with an additional analysis that assesses p(elb) and
thus the full degree of corroboration as described by Popper.
Most authors agree that 4 in a standard phylogenetic anal-
ysis is a tree (e.g. de Queiroz & Poe 2001; Faith & Trueman
2001; Farris et al. 2001). If we interpret that tree as any tree
whatsoever, then p(e | ) is the probability of the data given the
assumptions of the phylogenetic method in the complete
absence of a tree (de Queiroz & Poe 2001). This interpre-
tation presents a problem regarding the calculation of a value
for p(elb), because a phylogenetic model cannot be used to
calculate the probability of a particular distribution of char-
acter states among taxa (i.e. a set of character patterns) in the
complete absence of a tree. For models used in phylogenetic
analysis, the probability of the data is based on estimates of
the probabilities of character state changes along the branches
of a tree, so the complete absence of a tree precludes the use
of those models. Conversely, although it is possible to calcu-
late the probability of the data in the absence of a tree, doing
so requires an entirely different (i.e. nonphylogenetic) model.
For example, Goldman’s (1993) unconstrained model, in
which the probability of a given character pattern is simply
the frequency of that pattern in the entire set of characters,
does not require, or even use, a tree. This model, however, is
not the same model used to calculate p(e|5b), the probability
of the data given a particular tree, in a phylogenetic analysis,
so it cannot be used to calculate p(e1 %) for such an analysis.
Alternatively, because a common goal of a standard phylo-
genetic analysis is to identify a fully or partially resolved tree,
it is possible to interpret 4 not as any tree whatsoever, which
might be completely unresolved, but as a fully or partially
resolved tree — a hypothesis of phylogenetic resolution. In
this context, p(eld) is the probability of the data given the
assumptions of the phylogenetic method and an unresolved
tree, that is, the absence of the hypothesis of resolution. The
probability p(el5) can therefore be calculated by constrain-
ing the relevant internal branches of the tree to have zero
length (Fig. 1). A completely unresolved or polytomous (star)
tree constraint is appropriate for cases involving unrooted
trees and no assumptions beyond those associated with the
phylogenetic method and its underlying probabilistic model
— that is, under no assumptions whatsoever about relation-
ships (Fig. 1A). Under an assumption of ingroup monophyly,
the unrooted tree would be allowed to have a single internal
branch with nonzero length separating the ingroup and out-
group taxa (Fig. 1B). If the tree is rooted and ingroup mono-
phyly is assumed, then the tree would have a single resolved
monophyletic group (the ingroup) with the branch subtend-

A t Cc

Fig. 1 A—C. Trees corresponding to different assumptions in a
standard phylogenetic analysis. —A. Completely unresolved and
unrooted (star) tree corresponding to no assumptions about
phylogenetic relationships. —B. Partially resolved unrooted tree
corresponding to an assumption of ingroup monophyly. —C.
Partially resolved rooted tree corresponding to an assumption of
ingroup monophyly. Abbreviations: t = taxon (outgroup and ingroup
taxa not distinguished), o = outgroup taxon, i = ingroup taxon.

ing it allowed to have nonzero length (Fig. 1C). Any addi-
tional assumptions about ingroup or outgroup relationships
allow additional internal branches to have nonzero length.
In any case, under the interpretation of 4 as a hypothesis of
resolution, it is possible to calculate a value for p(elb). The
probability p(e ) is simply the likelihood of the constrained
(unresolved or polytomous) tree.

The interpretation of p(elb) as the likelihood of a poly-
tomous tree is counterintuitive in that 4 is supposed to consist
of assumptions that are made when testing b, but one does
notassume that the optimal tree is polytomous when estimat-
ing that tree. Nevertheless, a polytomous tree does indeed
represent the absence of the hypothesis of resolution repre-
sented (for example) by the optimal tree. The likelihood of
this unresolved tree is the probability of the data under a
given probabilistic model assuming nothing more about rela-
tionships than that the taxa are related according to a general
diverging or tree-like model of evolution — that is, in the
absence of a hypothesis about the specific pattern of relation-
ships among those taxa. So a polytomous tree is effectively
assumed when estimating an optimal tree, not in the sense
that the optimal tree is assumed to be unresolved, but in the
sense that the analysis starts from a point that assumes that
the relationships to be inferred conform to a tree-like model
while assuming nothing about the specific relationships
among the taxa in question. This situation is manifested in
heuristic methods based on star decomposition, in which the
optimal tree is estimated through the successive uniting of
taxa starting from an initial star tree (reviewed by Swofford
et al. 1996). Other heuristic methods build up a tree by the
successive addition of taxa and therefore start from a point
(a small subset of the taxa) that has no relevance to assessing
the probability of the evidence in the absence of 4.

Tests for phylogenetic resolution
Now that a method for calculating a value for p(e|5) has been
identified, it is a straightforward matter to calculate a value
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for the degree of corroboration, C = p(elhb) —p(elb), of a
resolved phylogenetic tree, . Cis simply the likelihood of the
resolved tree (normally the optimal tree), p(el bb), minus the
likelihood of the unresolved (polytomous) tree, p(el5). This
value, however, will merely be a number greater than zero
and less than one, and it is both more useful and more in the
spirit of Popper’s general falsificationist philosophy to devise
a significance test based on the two probabilities. A signi-
ficance test provides an explicit criterion (o) for assessing
whether the resolved tree (b) is to be considered significantly
corroborated and the unresolved tree effectively falsified
(Popper 1959: 189-205). C itself could be used as the test
statistic; however, because both of its defining probabilities
are likelihoods, a more commonly adopted test statistic is the
likelihood ratio A = L(h,)/L(h,) or &= _2In[L(h,)/L(h,)] =
2(In[L(h,)] - In[L(h,)]) (e.g. Neyman & Pearson 1928a,b; Ken-
dall & Stewart 1979; see also Goldman 1993).

When the likelihood ratio is used as the basis of a signi-
ficance test for phylogenetic resolution, the constrained (unre-
solved or polytomous) tree represents the null hypothesis, 4,
in that it posits no resolution among the taxa — or zero length
for the internal branches. The unconstrained (usually re-
solved) tree represents the alternative hypothesis, 4. Recall
that in the definition of C, p(elb) corresponds to the likeli-
hood of the constrained (unresolved) tree, and p(e | bb) to the
likelihood of the unconstrained (resolved) tree or hypothesis
of resolution. Therefore, L(h,) = p(e!hb) and L(h,) = p(elb)
(de Queiroz & Poe 2003). If we set b, = b, and b, = b, then
the test statistic A = L(b,)/L(h,) = L(h )/ L(hy) = p(e| bb)/p(e|b) =
the likelihood of the unconstrained (resolved) tree divided
by the likelihood of the constrained (unresolved) tree.

Alikelihood ratio test comparing an unconstrained tree with
a tree in which a single branch is constrained to have zero
length was initially proposed by Felsenstein (1987). This test
has been discussed subsequently (e.g. Felsenstein 1988; Gaut
& Lewis 1995; Antezana & Hudson 1999; Slowinski 2001) and
generalized to trees with multiple zero-length branches
(e.g. Swofford er al. 1996: 506; Ota et al. 1999, 2000). The
constrained (less resolved) tree is a special case of the uncon-
strained (more resolved) tree in that certain branch lengths
are fixed at one of their many possible values (this situation
may be counterintuitive if one is accustomed to thinking of
the resolved tree as one of many possible resolutions of the
unresolved tree). Consequently, the hypotheses are nested.

For LRTs involving nested hypotheses, it is common to
assess significance using the x? distribution with degrees of
freedom equal to the difference in the number of parameters
(k) between the two hypotheses (Neyman & Pearson
1928a,b; Silvey 1975; see also Swofford ez al. 1996). In this
case, that number is the number of branches constrained to
have zero length in the constrained tree, which is the same as
the total number of internal branches in the unconstrained
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tree (= ¢ — 3, where ¢ is the number of taxa) if the constrained
tree is completely unresolved. However, the constraints used
in the null hypothesis are branch lengths of zero, which
correspond with boundary conditions for the 4 constrained
branch-length parameters, and therefore the y? distribution
with & degrees of freedom is inappropriate (Self & Liang
1987; Ota et al. 1999, 2000; Whelan & Goldman 1999). To
solve this problem, appropriate values can be calculated by
averaging the values of the standard y? distribution for differ-
ent degrees of freedom (Self & Liang 1987; Ota et a/. 1999,
2000; Goldman & Whelan 2000), assuming that the internal
branch length estimates are uncorrelated under 4. Alternat-
ively, a probability distribution can be generated using simu-
lations (Huelsenbeck & Rannala 1997; Whelan & Goldman
1999), though this approach is susceptible to type I (rejec-
tion) errors (Buckley 2002).

Analogous tests for resolution can be used with likelihood
as well as other optimality criteria. Several tests that have
been developed for comparing alternative topologies in
terms of differences in their ability to explain the data under
various optimality criteria can be used to compare a resolved
tree (e.g. the optimal tree) with an unresolved (polytomous)
tree. These tests include those proposed by Prager & Wilson
(1988) based on binomial probabilities, by Templeton (1983)
based on the Wilcoxon signed ranks test, and by Kishino &
Hasegawa (1989) based on the paired #-test, as well as the
modification of the Kishino-Hasegawa test proposed by
Shimodaira & Hasegawa (1999). Although use of these altern-
ative methods to test for significant resolution does not
involve calculating a value for p(e 1), the results can nonethe-
less be considered to provide a measure of the degree of cor-
roboration of a phylogenetic hypothesis (i.e. of a hypothesis
of resolution). If the test result is significant, then the
resolved tree, representing b, can be considered to have a sig-
nificant degree of corroboration in the sense that it explains
the data significantly better, under a specified optimality
criterion and model (and o value), than does the unresolved
tree that corresponds to part of 4.

A couple of things should be noted about resolution tests,
whether based on likelihood ratios or other test statistics.
First, these tests are susceptible to type I (rejection) errors if
the analytical method or model is inappropriate (Gaut &
Lewis 1995; Ota er al. 2000). In particular, if the method or
model is susceptible to long-branch attraction (Felsenstein
1978; Hendy & Penny 1989) and branch lengths are suffi-
ciently unequal, the test will tend to reject a true null
hypothesis (polytomous tree) as the result of false resolution
resulting from long-branch attraction (Fig. 2). Second, rejec-
tion of the null hypothesis constitutes evidence only that the
resolved tree is significantly better corroborated (i.e. explains
the data significantly better) than an unresolved tree. Thus,
when the resolved tree is the optimal tree, rejection of the
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A B

Fig. 2 A, B. An inappropriate method (model) can cause a resolution
test to reject a true null hypothesis (polytomous tree), representing
a type I error. —A. True polytomous tree with two long and two
short branches and parallel state changes (horizontal bars) in a
particular character on the long branches. —B. Incorrect
reconstructed tree with parallel state changes interpreted as a single
change (horizontal bar) on the internal branch. If the number of such
characters is sufficiently great, a resolution test will yield a significant
difference between the resolved and unresolved trees, leading to
rejection of the true null hypothesis (type I error).

null hypothesis does not constitute evidence that the optimal
tree is significantly better corroborated than other resolved
trees, which can only be established by direct comparisons
with those alternative trees. In most cases, the optimal tree
will not be significantly better corroborated than at least
some of the other resolved trees (those that are most similar
to it). This situation does not, however, call into question the
status of the optimal tree as the best estimate of the phylog-
eny. An analysis that attempts to identify an optimal tree,
regardless of whether itis used as part of a significance test for
resolution, is an example of estimation rather than hypothesis
testing. Therefore, in the terminology of statistics, the opti-
mal tree can be considered the best ‘point’ estimate of the
phylogeny; in Popper’s terminology, it can be considered to
have the highest relative degree of corroboration.

It should also be noted that in a significance test for reso-
lution, the hypothesis being tested is not the optimal tree
but the null hypothesis of a polytomous tree by, and the
mutually exclusive alternative hypothesis 4, is not the opti-
mal tree itself but a general hypothesis of resolution — the
hypothesis that the internal branches do not all have zero
length. The test is a standard LRT that asks whether the
maximum probability that can be assigned to the data is
significantly higher in the absence (4,) vs. the presence (b,)
of a constraint corresponding with the null hypothesis (e.g.
Huelsenbeck & Rannala 1997). Thus, the optimal tree,
rather than representing 4, per se, represents the estimated
tree for which the likelihood is maximal in the absence of the
constraint — that is, the tree corresponding with max[L(5 ,¢)].
This minor difference is simply a consequence of adapting
Popper’s C (or Edwards’ S) to the framework of significance
testing. For the purpose of assessing C (or S) itself (i.e. out-
side of the significance testing framework), there is no need

to identify a mutually exclusive alternative hypothesis 4, and
although systematists are often most interested in the optimal
tree, b can be any fully or partially resolved tree.

Different interpretations of p(e|b) and their
reconciliation

The LRT for resolution discussed in the previous section
provides a means for reconciling alternative interpretations
of p(elb) in Popper’s definition of C as it relates to standard
phylogenetic analysis. One of these interpretations was pro-
posed by Faith, Cranston, and Trueman (Faith & Cranston
1992; Faith 1992, 1999; Faith & Trueman 2001). Under the
Faith—Cranston—Trueman (FCT) interpretation, p(e!5) of C
is equated with the permutation tail probability (P TP) value
of Faith & Cranston’s (1991) PTP test. The PTP test is used
to test a null hypothesis of no hierarchical structure (no phy-
logenetic signal) in the data. It works by comparing the score
of the optimal tree(s) for the observed data with a frequency
distribution of optimal tree scores generated under the null
hypothesis by randomly permuting the data— specifically, by
randomly reassigning the observed character states within
each character to the taxa in which they occur. The PTP
value is the probability of obtaining an optimal tree score as
good as or better than the score obtained for the observed
data under the null hypothesis of randomized data.

The PTP test captures the spirit of Popper’s C in attempt-
ing to assess test severity. It does so by asking whether the
data contain sufficient hierarchical information (i.e. whether
the test is sufficiently severe) to provide a meaningful degree
of corroboration for the optimal tree. The reason that such a
test is important for assessing C is that a standard phylo-
genetic analysis will almost always yield a resolved optimal tree,
or a set of such trees the consensus of which is at least par-
tially resolved, even if the data are random. Therefore, given
that random data are not normally considered to confer a sig-
nificant degree of corroboration on any tree, simply obtain-
ing a resolved tree in a phylogenetic analysis does not, by
itself, indicate that the hypothesis (tree) is well-corroborated.
The PTP test addresses this concern by assessing whether
the score of the optimal tree(s) represents a significant degree
of corroboration. Under this test, the optimal tree(s) is only
considered significantly corroborated if obtaining a score as
good or better than its score is highly improbable given the
null hypothesis of randomized data.

Despite the intuitive appeal of the FCT interpretation,
there are several problems with equating p(elb) with PTP.
For one thing, p(elb) is a point probability while PTP is a
cumulative tail probability (Farris 1995; Farris et al. 2001).
For another, no satisfactory explanation has been given for
treating the null hypothesis of randomized data as part of &,
as it is under the FCT interpretation. It is claimed that the
‘null model [of the PTP test] provides the set of accepted
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facts or assumptions [for an analysis]” (Faith & Cranston
1992:254), even though those accepted assumptions (i.e. ran-
domized data) are commonly rejected by the test. The main
justification for equating PTP with p(e1b) seems to be that a
low value of PTP is associated with rejection of the null
hypothesis, implying a significant degree of corroboration
for the optimal tree, and similarly, a low value of p(eld) is
associated with a high degree of corroboration C (e.g. Faith
& Cranston 1992: 254). Thus, a convincing reason for associ-
ating PTP with p(e ) has been lacking, and the intuitive appeal
of the FCT interpretation seems to result mainly from the
general conformity of significance tests with Popper’s falsifi-
cationist philosophy (see ‘Degree of corroboration and stat-
istical inference’, above).

An alternative interpretation of p(e|5) was proposed by
de Queiroz & Poe (2001). Under the de Queiroz-Poe (QP)
interpretation, a standard phylogenetic analysis contains
no component corresponding with the assessment of test
severity, p(e|b), nor is it possible to calculate this particular
probability in the context of such an analysis. The reason,
described above (see “The measurement of p(e14) in phylo-
genetics’), is that a phylogenetic method or model cannot be
used to calculate the probability of the evidence e (the distri-
bution of character states among taxa) in the absence of a tree.
Nevertheless, de Queiroz & Poe (2001) described methods
for measuring probabilities analogous to p(e!4). In addition,
they interpreted PTP not as a direct measure of test severity,
p(eld), but as the (cumulative) tail probability used to test an
assumption (a component of b) adopted in a standard phylo-
genetic analysis — specifically, the assumption that the data
exhibit nonrandom hierarchical structure.

The QP interpretation avoids the problems with the FCT
interpretation concerning the confusion of point vs. cumulat-
ive probabilities. On the other hand, the QP interpretation
denies the possibility of identifying a value corresponding
precisely with p(e14) and thus of ever fully reconciling stand-
ard phylogenetic analysis with Popper’s method for assessing
C. This situation creates no logical inconsistencies in that
standard phylogenetic analysis is a method for estimation,
while C is a method for hypothesis testing. Nevertheless,
these two aspects of statistical inference (estimation and
hypothesis testing) are not entirely separate from one
another, and the QP interpretation seems to preclude fully
integrating standard phylogenetic analysis into the frame-
work of hypothesis testing and thus also of Popper’ C.

Similarities between resolution and PTP tests

The method for measuring p(eld) described in the present
paper (i.e. calculating the likelihood of an unresolved tree)
and the LRT of resolution based on it, overcome the prob-
lems with both the FCT and the QP interpretations of test
severity, p(elb), effectively merging the two interpretations
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into a single, unified view. Unification results because the
methods in question reconcile the fundamental incompatibil-
ities between the two interpretations, namely, the FCT pro-
position that the PTP test assesses C for the optimal tree (QP
interpret the PTP test as a test of an assumption adopted in
the analysis that identifies the optimal tree) and the QP pro-
position thate is a taxon X character matrix of character states
(FCT interpret e as the score of the optimal tree). More spe-
cifically, these methods eliminate the inconsistencies that
result (under the FCT interpretation) from equating PTP
with p(elb). They provide the missing connection (under the
FCT interpretation) between the null hypothesis of ran-
domized data and the absence of 4, and they overcome the
limitation (under the QP interpretation) of not being able to
calculate a value for p(elb).

The key to reconciling these alternative interpretations of
p(eld) is provided by a close relationship between resolution
and PTP tests, which is based, in turn, on a close relationship
between the null hypothesis of a polytomous (unresolved)
tree and that of randomized data. This relationship derives
from the fact that characters that have evolved on a true poly-
tomous tree are expected to exhibit phylogenetically unin-
formative, and in this sense effectively randomized, state dis-
tributions. On a tree with no (or all zero length) internal
branches, all character state changes must occur on terminal
branches, and all changes that produce shared derived states
must result from homoplasy. Therefore, provided that
homoplasy is randomly distributed among the terminal
branches, derived character states should be shared randomly
with respect to taxa. Moreover, although randomized data
can evolve on a tree with internal branches, when the data are
effectively randomized, that tree should be statistically indis-
tinguishable from a polytomous tree. That is, the two trees
should not differ significantly in terms of their scores under
a given optimality criterion (provided that the phylogenetic
method is appropriate — see below).

This situation can occur when all (variable) characters have
high probabilities of change on all of the terminal branches,
which might result from high rates of change, long temporal
duration, or a combination of both factors. In any case, cir-
cumstances that result in failure to reject the null hypothesis
of randomized data under a PTP test should also result in
failure to reject the null hypothesis of an unresolved tree
under a resolution test. Conversely, circumstances that lead
to rejection of the null hypothesis under a PTP test should
also lead to rejection of the null hypothesis under a resolution
test. (I am here assuming that both tests employ the same
phylogenetic model and ignoring possible differences in
power. I am therefore interpreting PTP as a general statistic
that can be used in conjunction with any phylogenetic opti-
mality criterion, as opposed to a restricted one based on
parsimony length, as in the original proposal.)
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The relationship between resolution and PTP tests
provides the missing justification for interpreting the null
hypothesis of randomized character state distributions as part
of b (e.g. Faith & Cranston 1992; Faith 1992; Faith & True-
man 2001). According to the interpretation proposed in this
paper, the absence of 5 (e.g. the optimal tree) corresponds to
an unresolved tree for the same taxa, which therefore forms
part of 4. This unresolved tree can also be treated as a con-
straint corresponding to a null hypothesis in a significance
test (see “Tests for phylogenetic resolution’), thus establishing
the connection between b and a null hypothesis. Moreover,
because data that evolved on a polytomous tree are expected
to be phylogenetically randomized, a specific connection is
established between a component of # (the unresolved tree)
and the null hypothesis of randomized data adopted in the
PTP test.

Differences between resolution and PTP tests

Despite the close relationship between PTP and resolution
tests, the two types of tests evaluate different null hypotheses.
Consequently, although they are generally expected to give
congruent assessments of C, similar test results can have
somewhat different implications. Table 1 summarizes the
relationship between PTP and resolution tests for the four
possible cases (combinations) regarding the truth or falsity of
their respective null hypotheses under a stochastic process of
character state change. The first and fourth cases are unprob-
lematic in that both tests are expected to yield congruent and
appropriate results. When both null hypotheses are true (case
1), both tests should fail to reject their respective null hypo-
theses; similarly, when both null hypotheses are false (case 4),
both tests should reject their respective null hypotheses.

It should be noted that for both types of tests, appropriate
test results when the null hypothesis is true depend on the
appropriateness of the phylogenetic method and its associated
assumptions. Thus, in case 1, where the data are effectively
randomized and the true tree is polytomous, appropriate

assumptions should result in the failure of both tests to reject
their respective null hypotheses. Inappropriate assumptions,
however, can cause both tests to reject true null hypotheses,
representing type I errors. For example, if homoplasy is more
common on long branches and some branches are suffi-
ciently long, then methods that are susceptible to long-
branch attraction (Felsenstein 1978; Hendy & Penny 1989)
could cause a PTP test to yield a result indicating that phylo-
genetically uninformative data generated on a polytomous
tree are informative (exhibit significant, nonrandom, hierar-
chical structure). For the same reason, such a method could
cause a resolution test to yield a result indicating that a false
resolved tree explains the data significantly better than does
the true polytomous one.

Case 2, in which the null hypothesis of the PTP test is
true and that of the resolution test is false, reveals the most
important difference between the tests. When the data are
effectively randomized, both tests should fail to reject their
respective null hypotheses. In the case of the PTP test, this
result is appropriate in that the null hypothesis is true — the
data are randomized. In the case of the resolution test, how-
ever, the null hypothesis is false (the true tree has internal
structure), so failure to reject it represents a type II error. As
noted above (see ‘Similarities between resolution and PTP
tests’), this situation is expected to occur when the true tree
has internal structure but the terminal branches are suffi-
ciently long that the data are effectively randomized. Despite
this difference between PTP and resolution tests, when
either test fails to reject the null hypothesis, it is appropriate
to interpret the optimal tree as not being significantly cor-
roborated. Regardless of whether the true tree has internal
structure, randomized data cannot confer a significant degree
of corroboration on the optimal (or any other) resolved tree.

Case 3, the combination of a false null hypothesis for the
PTP test (nonrandomized data) and a true null hypothesis for
the resolution test ( polytomous tree), should not occur. If the
true tree is polytomous, the data should be phylogenetically

Table 1 The relationship between PTP and resolution tests. The cell entries describe the expected test results under four cases (1-4)
corresponding to the four possible combinations concerning the truth or falsity of the null hypotheses of the two different types of tests. A
stochastic process of character state change is assumed, and differences in power are not considered. Case 3 should not occur for reasons
discussed in the text, though data that evolved on a polytomous tree may appear nonrandomized if branch lengths are sufficiently unequal and

the phylogenetic method is misled by long-branch attraction.

H, (PTP; Resolution)

(1) True; True
(Randomized data;

(2) True; False
(Randomized data;

(3) False; True
(Non-randomized data;

(4) False; False
(Non-randomized data;

Test Polytomous tree) Non-polytomous tree) Polytomous tree) Non-polytomous tree)
PTP Fail to reject* Fail to reject — Reject
Resolution Fail to reject™ Fail to reject (Type Il error) — Reject

*This result assumes an appropriate phylogenetic method/model. If the phylogenetic method/model is inappropriate, the test may tend to reject a true null hypothesis (type I error).
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uninformative (effectively randomized) for the reasons described
above (see ‘Similarities between resolution and PTP tests’),
thus corresponding with case 1 (i.e. both null hypotheses are
true). However, if the phylogenetic method is inappropriate,
then the data may appear to exhibit significant nonrandom
structure (and the optimal tree may appear to exhibit signi-
ficant resolution) even when the true tree is polytomous. As
noted above (see “Tests for phylogenetic resolution’), the
appearance of nonrandom hierarchical structure (phylo-
genetic information) in data that evolved on a polytomous tree
can occur when there is variation in branch lengths and the
phylogenetic method or model incorrectly interprets conver-
gent or parallel changes on long branches as single changes
on an internal branch.

The true tree is not normally expected to lack internal
structure entirely. For this reason, it seems reasonable to
interpret failure to reject the null hypothesis in a resolution
test (at least when many branches are involved) as suggesting
that the data are phylogenetically uninformative. This possi-
bility could be investigated further by estimating the terminal
branch lengths to determine if they exceed an expected ran-
domization threshold, or by examining the power of the test
to determine if sufficient data have been collected to be able
to reject the null hypothesis under the assumption that the
lengths of the internal branches exceed some specified mini-
mum value (e.g. Poe & Chubb, 2004). In any case, and set-
ting aside problems with the interpretation of negative
results, the possibility of interpreting failure to reject the null
hypothesis in a resolution test as indicative of phylogeneti-
cally uninformative (or insufficient) data highlights the rela-
tionship between resolution and PTP tests, as this conclusion
is precisely the implication of failure to reject the null
hypothesis in a PTP test.

The preceding discussion has assumed a stochastic process
of evolutionary change in the context of a real phylogeny. For
cases in which data are manufactured by human contrivance,
resolution and PTP tests can yield conflicting results. For
example, the PTP test has been criticized for returning a
significant result when the data consist of characters that are
highly incongruent with one another in a highly regular (i.e.
nonrandom) pattern (e.g. Killersjo ez al. 1992; Carpenter
et al. 1998). Although the PTP test appropriately rejects the
null hypothesis of randomized data (the data set in question,
designated Matrix Three in the previously cited papers,
clearly is not random), it seems inappropriate to interpret this
result as indicating a significant degree of corroboration for
the optimal trees, given that their strict consensus is com-
pletely unresolved. If these same data are evaluated with
parsimony-based resolution tests that use the strict consensus
of the optimal trees as the hypothesis of interest 4, the tests
will not, of course, reject the null polytomous tree in favour
of the similarly unresolved strict consensus tree (though
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they will reject the null polytomous tree in favour of each
individual highly resolved optimal tree).

Reconciliation

Because of the close relationship between PTP and resolu-
tion tests, the former can legitimately be considered to assess
degree of corroboration through a consideration of test
severity. Although PTP is not the same quantity as p(elb), it
nonetheless serves as the basis for a significance test that is
closely related to a test based on a direct estimate of p(e!5).
The close relationship between resolution and PTP tests
thus provides an at least partial reconciliation of the FCT and
QP interpretations of p(e | ). Full reconciliation requires only
minor changes to each of those interpretations. (I consider
the necessary changes minor in that they compromise neither
the fundamental FCT proposition that the PTP test, or
something like it, is necessary to assess the degree of corrobo-
ration of the optimal tree identified in a standard phyloge-
netic analysis, nor the fundamental QP proposition that, in
the context of a standard phylogenetic analysis, p(e| bb) is the
likelihood of a particular tree.) The FCT interpretation must
be modified so that PTP is not considered strictly equivalent
to p(e| &) but instead is considered the tail probability in a sig-
nificance test (the PTP test) thatis analogous to a significance
test for resolution based on p(e | 5). Likewise, the QP interpre-
tation must be modified so that the absence of b, represented
by the optimal tree, is interpreted not as the complete
absence of a tree but instead as the absence of phylogenetic
resolution.

A unified and inclusive philosophy of phylogenetic
inference

Both de Queiroz & Poe (2001) and Faith & Trueman (2001)
described what can be considered inclusive philosophies
of phylogenetic inference in the terminology of Faith &
Trueman (2001). Both views are inclusive in considering
diverse phylogenetic methods to be philosophically justified
and thus scientifically legitimate. The close correspondence
between resolution and PTP tests described in this paper
provides the basis for unifying these views into a single, inclu-
sive philosophy of phylogenetic inference. This inclusive
philosophy stands in contrast to the exclusive philosophy
of authors (e.g. Siddall & Kluge 1997; Kluge 2001) who
consider only parsimony-based methods to be scientifically
legitimate. Although commonly defended in the context of C,
the exclusive philosophy turns out to be inferior in terms of
exemplifying Popper’s method. In particular, it has so far pro-
vided no concrete method for calculating p(e 1) or for assess-
ing whether a particular data set provides a significant degree
of corroboration for a particular phylogenetic tree. Instead, it
equates test severity with a vague, nonprobabilistic, non-
quantitative notion of ‘traditional character reanalysis’ (e.g.
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Kluge 2001: 327), which implies the dubious proposition that
simply reanalysing characters ought to result in a systematic
decrease in the value of p(e|5), thus indicating a more severe
test (see de Queiroz & Poe 2003).

In contrast, the unified inclusive philosophy provides an
explicit and direct method for calculating p(eld), which is
simply the likelihood of an unresolved tree. It also provides
explicit methods for assessing whether particular data pro-
vide a significant degree of corroboration for the optimal tree
estimated from them, including the likelihood ratio and
other tests for phylogenetic resolution discussed in this
paper, as well as the PTP and other tests, such as that based
on skewness of the distribution of tree scores (Hillis 1991;
Hillis & Huelsenbeck 1992), for phylogenetically informat-
ive data. Moreover, in agreement with Popper’s statements
that p(elb) is inversely related to test severity and sample size
(Popper 1959: 411, 413, 1983: 238), the likelihood of the
unresolved tree is expected to decrease with increasing
sample size — that is, with increasing numbers of characters
(see de Queiroz & Poe 2001). Similarly, in significance tests
for both resolution and phylogenetically informative data,
test severity, as manifested in the related concept of statistical
power, is expected to increase with increasing sample size (de
Queiroz & Poe 2001, 2003).

Given this situation, it is ironic that proponents of the
exclusive philosophy (e.g. Siddall & Kluge 1997; Kluge 2001)
have argued that probabilistic approaches to phylogenetics in
general, and maximum likelihood methods in particular, are
incompatible with the philosophy of science described by
Popper (1959, 1962, 1983). On the contrary, the probabilistic
concept of likelihood provides the foundation for Popper’s
concept of degree of corroboration (de Queiroz & Poe 2001,
2003; see above, ‘Degree of corroboration and statistical
inference’) and therefore also for any philosophy of phyloge-
netic inference based on that concept. Both of the central
terms in Popper’s definition of C — p(e| bb) and p(elb) — are
likelihoods (de Queiroz & Poe 2001, 2003). In the case of a
phylogenetic analysis, p(e | bb) is the likelihood of a particular
resolved tree, representing b, and p(e15) is the likelihood of an
unresolved (polytomous) tree for the same taxa. Thus, far
from being inconsistent with Popper’s philosophy, likelihood
methods are central to understanding how his method for
assessing C applies to phylogenetic hypotheses, and they pro-
vide the foundation for a unified and inclusive philosophy of
phylogenetic inference.
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