Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
D. W. Ming et al.
Science 343, (2014);
DOI: 10.1126/science.1245267

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 23, 2014):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/343/6169/1245267.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2013/12/05/science.1245267.DC1.html

This article cites 46 articles, 14 of which can be accessed free:
http://www.sciencemag.org/content/343/6169/1245267.full.html#ref-list-1

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/343/6169/1245267.full.html#related-urls

This article appears in the following subject collections:
Planetary Science
http://www.sciencemag.org/cgi/collection/planet_sci
Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars

H2O, CO2, SO2, O2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, and Ca-sulfate mineral(s). Evolved water in the Yellowknife Bay drill hole. The CB sample was collected from an area rich in nodules and poor in Ca-sulfate-rich veins. The CB sample was collected from an area rich in nodules and poor in Ca-sulfate-rich veins, to aid in mineralogical and geochemical characterization of the nodules. Powders extracted from both holes were gray in color, suggesting a relatively unoxidized material (1,8), in contrast to the red-colored, oxidized materials observed earlier by Curiosity at the Rocknest aeolian deposit (9,10) and other surface soils (11) encountered by previous missions (12). Additional details on the drill holes are described in (1) and (8), including maps of light-toned fractures in the drill hole walls (8).

H2O, CO2, SO2, O2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, and Ca-sulfate mineral(s). Evolved water in the Yellowknife Bay drill hole. The CB sample was collected from an area rich in nodules and poor in Ca-sulfate-rich veins. The CB sample was collected from an area rich in nodules and poor in Ca-sulfate-rich veins, to aid in mineralogical and geochemical characterization of the nodules. Powders extracted from both holes were gray in color, suggesting a relatively unoxidized material (1,8), in contrast to the red-colored, oxidized materials observed earlier by Curiosity at the Rocknest aeolian deposit (9,10) and other surface soils (11) encountered by previous missions (12). Additional details on the drill holes are described in (1) and (8), including maps of light-toned fractures in the drill hole walls (8).

Here we describe the volatile and organic C content of the Sheppard mudstone and evaluate its potential for preservation of organic C. Volatile-bearing phases (including possible organic material) in Sheppard are indicators of its past environmental and geochemical conditions and can shed light on whether the environment recorded in this mudstone once was habitable, i.e., met the requirements for microbial life as known on Earth (13). The volatile and organic compositions of JK and CB materials were characterized by the SAM instrument’s evolved gas analysis (EGA), gas chromatography–mass spectrometry (GCMS), and tunable laser spectroscopy (TLS) experiments (14). Four JK subsamples (JK-1, JK-2, JK-3, and JK-4) and four CB subsamples (CB-1, CB-2, CB-3, and CB-5) of the <150-μm-size fraction of drill fines were delivered to SAM for EGA and GCMS analyses (15). Evolved H2O

The most abundant gas evolved from JK and CB materials was H2O. H2O abundances released from JK [1.8 to 2.4 weight percent (wt %) H2O] and CB (1.7 to 2.5 wt % H2O; Table 1) were similar to those of Rocknest (1.6 to 2.4 wt % H2O).
Other major evolved gases, in descending order of abundance, were H2, CO2, SO2, and O2 from JK and H2, O2, CO2, and SO2 from CB (Table 1 and Figs. 1 and 2).

An independent estimate of the volatile inventory of JK and CB can be obtained from measurements made by the Alpha Particle X-ray Spectrometer (APXS) (16). The measurements calculate the bulk concentration of the aggregate of excess light elements (including H2O, CO2, C, F, B2O3, and Li2O) using the relative intensities of Compton- and Rayleigh-scattering peaks (14, 17). Estimates of the average excess light-element concentrations for the JK drill tailings (APXS measurement on sol 230) and the CB drill tailings (sol 287) were 4.3 (±5.5) and 6.9 (±6.2) wt %, respectively. The two methods for determining volatile abundances in the mudstone are consistent within uncertainties.

The JK and CB samples showed similar releases of H2O in EGA experiments with a continuous temperature ramp (Figs. 1A and 2A) (18, 19). Evolved H2O from JK (JK-4) resulted in two major H2O releases, with very broad peaks at about 160°C and 725°C (Fig. 1A). Cumberland samples exhibited similar behavior (Fig. 2A). The majority (~70%) of H2O was driven off in the lower-temperature peak.

CheMin results constrain the potential phases releasing H2O in the lower peak in JK and CB samples. CheMin detected basaltic silicate minerals (feldspar, pyroxene, olivine), magnetite (maghemite), anthophyllite, bassanite, akaganéite, sulfides, and ~30 wt % x-ray amorphous components in addition to a 2:1 trioctahedral phyllosilicate in JK and CB (8). Therefore, candidates for the lower-temperature water release are H2O adsorbed on grain surfaces, interlayer H2O associated with exchangeable cations in 2:1 phyllosilicates (e.g., smectite), structural H2O (e.g., bassanite), structural OH (e.g., Fe-oxhydroxides such as akaganéite), and occluded H2O in glass or minerals. Adsorbed H2O and interlayer H2O in 2:1 phyllosilicates will generally release water below 300°C. Bassanite (CaSO4·½H2O) dehydrates at ~150°C. Akaganéite [FeO(OH);Cl] undergoes dehydroxylation at ~250°C (fig. S2). H2O incorporated into the amorphous components (e.g., nanophase Fe-oxides, allophane/hisingerite) may also evolve below 450°C. Water as liquid or vapor inclusions in glass or minerals would be released over a wide range of temperatures. Additional sources of evolved H2O at low temperatures not constrained by CheMin include structural H2O in oxychlorine compounds (e.g., hydrated perchlorates), structural OH in organics, and H2O formed during organic reactions in the SAM pyrolysis oven. Organic matter can release H2O over a wide range of temperatures from structural O and H as a consequence of reactions that take place in the SAM oven.

The high-temperature H2O release between 450° and 835°C is consistent with the dehydroxylation of 2:1 phyllosilicates, the proportions of 2:1 phyllosilicate present in the JK and CB samples are 17 (±12) wt % and 16 (±11) wt %, respectively. These values are consistent with the independent estimates from CheMin x-ray diffraction semiquantitative data, which give 22 (±11) and 18 (±9) wt % for 2:1 phyllosilicate in JK and CB, respectively (8).

High-temperature release of H2 occurs over roughly the same temperature regions as the high-temperature releases of H2O and H2S (Figs. 1 and 3).

Table 1. Evolved gas abundances released during SAM pyrolysis runs of samples (<150 μm fraction) obtained from the John Klein and Cumberland drill holes. Rocknest aeolian material evolved gas abundances are provided for comparison with the Sheepbed mudstone materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>John Klein</th>
<th>Cumberland</th>
<th>Rocknest† Average of four runs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JK-1</td>
<td>JK-2</td>
<td>JK-3*</td>
</tr>
<tr>
<td>Molar abundances (μmol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>57.4 ± 32.7‡</td>
<td>54.2 ± 30.8</td>
<td>59.9 ± 33.7</td>
</tr>
<tr>
<td>CO2</td>
<td>7.0 ± 1.9</td>
<td>8.1 ± 1.7</td>
<td>6.6 ± 1.6</td>
</tr>
<tr>
<td>SO2</td>
<td>1.6 ± 0.6</td>
<td>1.4 ± 0.1</td>
<td>2.9 ± 0.1</td>
</tr>
<tr>
<td>O2</td>
<td>0.6 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>H2</td>
<td>9.3 ± 1.8</td>
<td>5.1 ± 1.0</td>
<td>4.9 ± 0.9</td>
</tr>
<tr>
<td>High-temperature H2O (%)‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>58.5 ± 26.1</td>
<td>72.4 ± 32.2</td>
<td>536.1 ± 238.7</td>
</tr>
<tr>
<td>H2S</td>
<td>79.0 ± 35.2</td>
<td>57.0 ± 24.5</td>
<td>95.2 ± 42.4</td>
</tr>
<tr>
<td>NO</td>
<td>190 ± 38</td>
<td>188 ± 38</td>
<td>162 ± 32</td>
</tr>
<tr>
<td>Sample weight (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>2.3 ± 1.6</td>
<td>2.2 ± 1.5</td>
<td>2.4 ± 1.5</td>
</tr>
<tr>
<td>CO2</td>
<td>0.7 ± 0.3</td>
<td>0.8 ± 0.4</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>SO2 equiv.</td>
<td>0.3 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.5 ± 0.12</td>
</tr>
<tr>
<td>Cl2O7 equiv.</td>
<td>0.07 ± 0.03</td>
<td>0.09 ± 0.04</td>
<td>0.24 ± 0.06</td>
</tr>
</tbody>
</table>

*Three sample portions (135 ± 31 mg) of John Klein drill material were delivered to SAM for the JK-3 experimental run. The numbers in this column have been normalized to one sample portion (45 mg). †Average of four SAM runs of the Rocknest aeolian material (10). ‡Errors reported for molar abundances of CO2, SO2, and O2 are the 2σ standard deviation from the mean of calculations done with different m/z values for the same species. H2O error bars are based on the uncertainty in prelaunch water abundance calibration. Errors for other species include the uncertainty in differences in ionization efficiency between masses with a calibrated mol/counts value and uncalibrated values (10). ††High-temperature H2O is the percentage of the H2O released between 450° and 835°C, which is the temperature region for dehydroxylation of a 2:1 phyllosilicate, compared to the total H2O released. Errors are the 2σ standard deviation from the mean.
and 2). The origin of the high-temperature evolved H₂ is unknown but is likely associated with the dehydroxylation of the most thermally stable OH groups in the 2:1 phyllosilicates.

Evolved O₂

The JK and CB samples have distinctly different O₂ releases (Figs. 1A and 2A and Table 1). The onset of O₂ evolution from JK (~150°C) was lower than for CB (~230°C). O₂ abundances released from CB (0.3 to 1.3 wt % Cl₂O₇) were nearly eight times the abundances for JK (0.07 to 0.24 wt % Cl₂O₇); Rocknest O₂ abundances (0.4 wt. % Cl₂O₇) were about four times those for JK (Table 1). By comparison, the perchlorate anion (ClO₄⁻) was present in soil at the Phoenix landing site at the 0.4 to 0.6 wt % level (20). The JK-4 sample had two distinct peaks, suggesting different or additional O₂-evolving phases in the JK sample or consumption of O₂ during combustion of organic materials (see below) or thermal oxidation of ferrous-containing phases (e.g., maghemite to maghemite transition). O₂ evolution in the Rocknest aeolian material occurred at a higher temperature (onset ~300°C with a peak temperature ~400°C) than in JK and CB (10, 21).

Evolved O₂ from JK and CB is inferred to result from decomposition of perchlorate or chlorate salts, based on analogy with other analyses on Mars, on bulk compositions of the JK and CB samples, on the timing of chlorinated hydrocarbon and HCl releases, and on laboratory experiments with perchlorate salts. Perchlorate was definitively identified in soil at the Mars Phoenix landing site (20), and O₂ release from the Rocknest aeolian material is roughly consistent with decomposition of Ca-perchlorate (10, 21). The CB sample contains three times the Cl of the JK sample as measured by APXS (1.41 wt % versus 0.4 wt % for CB and JK, respectively) (7), and the abundance of O₂ released from CB (splits CB-2 and CB-3) is nearly eight times the abundance from JK (Table 1), suggesting that the substance responsible for the release of O₂ from CB was a perchlorate or chlorate. Similarly, HCl and chlorinated hydrocarbons (chloromethane and dichloromethane) were released in conjunction with O₂ (Figs. 1 and 2), suggesting that Cl and O were hosted by the same compound in CB and JK.

The coincident release of HCl with O₂ in CB is consistent with several types of perchlorate salt (Fig. 2). HCl is evolved during thermal decomposition of Mg- and Fe-perchlorate, caused by reaction between Cl₂ gas and water vapor (22–24). Thermal decomposition of Ca-perchlorate alone does not yield substantial HCl at temperatures <450°C (22, 25). However, thermal decomposition of Ca-perchlorate in the presence of an Fe-bearing mineral such as pyrrhotite can also yield simultaneous releases of O₂ and HCl (Fig. 3B).

The O₂-release profiles and temperatures for JK and CB do not match exactly those of common perchlorate salts. Although the best matches are with Fe-perchlorates (Fig. 3C), the presence of Fe-oxides/oxyhydroxides may lower the decomposition temperature of perchlorate salts (26). Chlorate salts may also be stable on the martian surface (27), and mixtures of K-chlorate and hematite can decompose at temperatures consistent with O₂-release temperatures observed in JK and CB (26). Other possible sources of the low-temperature O₂ release—e.g., peroxides and superoxide radicals—cannot be ruled out (28–30).

Evolved CO₂

The CO₂ releases for the JK and CB samples peaked at temperatures below 300°C (Figs. 1A and 2A), distinct from the CO₂ release between 400° and 512°C from the Rocknest aeolian materials (10). The CO₂ releases in the Rocknest samples were interpreted to derive largely from carbonates (10), and the CO₂ release shoulder around 400° to 450°C in the JK samples could also derive from carbonate minerals, specifically fine-grained Fe/Mg-carbonate (10, 24, 31). The 400° to 450°C release shoulder is absent from the CB samples. Another possible CO₂ source, given the inferred presence of akaganite and substantial proportions of perchlorate or chlorate phases in the samples, is that HCl evolved at lower temperatures and then reacted with carbonate minerals (23). The onset of evolved HCl is nearly simultaneous with CO₂ releases in JK and CB (Figs. 1 and 2), suggesting that low-temperature acid dissolution and subsequent thermal decomposition of carbonates may be responsible for some of the evolved CO₂ (Fig. S2). Total CO₂ evolved is equivalent to <1 wt % carbonate and, if present, carbonates are at abundance below the detection limit by CheMin. Adsorbed CO₂ is an unlikely candidate for the CO₂ peak near 300°C because most adsorbed CO₂ is expected to be desorbed from smectite and palagonite-like material surfaces at temperatures ~200°C (32). The low-temperature shoulder around 100° to 200°C in JK materials could reflect adsorbed CO₂, although it was not seen in CB materials.

Although there are several possible CO₂ sources in JK and CB materials, the simultaneous evolution of CO₂ and O₂, in conjunction with a possible O₂ inversion (i.e., O₂ consumption) in JK-4 and the similar CO₂ and O₂ releases in CB samples, suggest combustion of C compounds. It is nearly certain that at least some of the CO₂ produced is derived from the combustion of vapor from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA, a derivatization agent carried in SAM) and its reaction products that were identified by the EGA and GC/MS experiments and adsorbed onto the samples and sample cups inside SAM during sample transfer in Curiosity’s sample acquisition and processing system (10, 21, 33). The background-derived C detected in the blank runs was up to ~120 and 30 nmol of C contributed to MTBSTFA and
dimethylformamide (DMF) (33), respectively. If the background was similar for the analyzed samples of the mudstone, another source of C for combustion to CO2 during pyrolysis is required to account for the >2 μmol of evolved CO2 (Table 2). The estimated amount of MTBSTFA + DMF C in the blank runs is only 1 to 3% of total evolved CO2-C from JK and CB analyses. Also, lower amounts of MTBSTFA C (~18 nmol C) and DMF C (~15 nmol C) were detected in the CB-5 analysis (Table 2), suggesting that substantially less MTBSTFA and DMF were available for combustion to CO2 in this run due to implementation of the MTBSTFA-reduction protocol (14). These results indicate that most of the evolved CO2 from CB is not related to the known terrestrial C background in SAM, and therefore additional C sources are required.

The initial amount of MTBSTFA and DMF C in the JK and CB analyses could have been higher than the levels measured in the empty-cup blank because of additional adsorption of these volatiles to the solid-sample surface area after sample delivery. A triple-sized sample portion (~135 mg of sample) of JK (JK-3) was delivered to SAM to explore the effects of adsorption on measured CO2 releases. Estimates of the amount of C from MTBSTFA and DMF sources that could contribute to evolved CO2 for the JK-3 triple-portion sample show that the levels are similar (within error) compared to the single-portion JK sample analyses (column 4 of Table 2), despite the potential for at least three times as much MTBSTFA and DMF adsorption to the sample due to greater surface area. Also, the triple-portion sample evolved 2.4 to 3.5 times as much CO2 (Table 2). MTBSTFA and DMF C likely contributed to a small portion of the evolved CO2 (21). The order-of-magnitude more C observed as CO2 in all samples and the near threefold increase in CO2 observed for the triple-portion run further demonstrate that the dominant C source for CO2 in the JK analyses came from the mudstone itself and not from known background C sources in SAM or Curiosity’s sample acquisition and delivery system.

Another possible C source for the evolved CO2 is combusted martian indigenous and/or exogenous (meteoritic) organic matter in the mudstone. The Sheepbed mudstone has trace-element compositions consistent with a meteoritic contribution that may have delivered 300 to 1200 parts per million (ppm) organic C (7) and/or from weathering of igneous material (34). Also, metastable partially oxidized weathering products of martian organics of indigenous and/or exogenous origins such as mellitic acid (35) may have undergone decarboxylation during analysis in SAM. Laboratory analog experiments using SAM-like instrument conditions where mellitic acid and perchlorate salts were heated together have shown that the primary degradation products detected during pyrolysis are CO2 and CO (36, 37). If mellitic acid or other benzenecarboxylates were present in Sheepbed, the organic degradation products may have decomposed to CO2 and other less-volatile degradation products, which could have gone undetected by SAM GCMS under the oven conditions used for the pyrolysis experiments.

Overall, the potential CO2 sources include combustion of terrestrial organics resident in SAM (for a small portion of the evolved CO2), low-temperature acid dissolution of martian carbonates, and combustion and/or decarboxylation of indigenous and/or exogenous organic materials.

Evolved SO2 and H2S

Sulfur dioxide and H2S evolved from the JK and CB samples during pyrolysis, and both also evolved from the Rocknest aeolian material (10). The release of both reduced and oxidized S volatiles suggests that reduced and oxidized S species were present in all samples, or that redox reactions in the SAM oven affected S speciation. The total abundance of S-bearing gases and the ratio of SO2/H2S observed at JK were both >30% of the values measured in Rocknest samples. Abundances of these gases were even lower in CB than in JK, consistent with the lower bulk S composition measured by APXS (1.57 (±0.03) wt % SO3 for CB compared with 5.52 (±0.21) wt % SO3 for JK (7)).

The evolved SO2 had a release peak temperature at ~600° to 625°C, with a shoulder at ~675°C (Figs. 1A and 2A). Several mineral sources of S are possible. CheMin detected anhydrite, bassanite, and pyrrhotite in both JK and CB and possible pyrite in JK (8). Pyrrhotite and possibly pyrite are candidate S sources for the SO2 and H2S releases from CB and JK. The lower-temperature SO2 and HCl evolutions occurred simultaneously with the release of O2 in CB (Fig. 2), and two additional SO2 release peaks were observed in the 500° to 800°C range. Laboratory pyrolysis experiments of mixtures of pyrrhotite and Ca-perchlorate exhibited similar release patterns for SO2, O2, and HCl (Fig. 3B); however, the onset temperatures for their release is lower in CB, consistent with a different perchlorate/chlorate salt (i.e., lower O2 release) or complex chemistry occurring in the SAM ovens that lowers the decomposition temperature of oxchlorine compounds (as discussed above). Thermal decomposition of Ca-sulfate is not likely to have contributed to the SO2 releases from JK and CB because they typically break down at higher temperatures than the maximum that can be achieved by the SAM oven used in these experiments (>835°C).

Although pyrrhotite and pyrite are candidate S-bearing phases in CB and JK, the evolved SO2 data are not uniquely diagnostic of these or any specific S-bearing phases. Fe-sulfate minerals...
will evolve SO₂ at 500° to 800°C under conditions similar to SAM operational conditions. However, formation of Fe-sulfates requires strongly acidic conditions (38, 39), and Sheepbed is interpreted to record depositional and diagenetic environments at near-neutral pH’s (1).

Evolution of H₂S occurred nearly simultaneously with evolution of H₂ and high-temperature H₂O resulting from the dehydroxylation of the 2:1 phyllosilicate (Figs. 1 and 2). H₂S may be a by-product of the reaction of H₂O with a Fe-sulfide such as pyrrhotite (Fig. 3B); however, it is possible that SO₂ evolved at high temperatures is reduced in the presence of H₂ to H₂S (40, 41). HCl also evolves at higher temperatures (Figs. 1B and 2B), which can react with reduced S phases to form H₂S (42, 43).

Evolved N-Bearing Species

Potential N-bearing compounds evolved from JK and CB include NO, HCN, CH₃CN, ClCN, CF₂CN, and C₂H₄F₃NO. Evolved NO [mass/charge ratio (m/z) = 30] in the JK and CB materials had abundances of 129 to 190 nmol and 190 to 389 nmol NO, respectively (Table 1). The abundances of NO in JK and CB blank runs were 70 and 12 nmol, respectively, and the predicted level of N contributed by MTBSTFA and DMF based on background measurements was typically less than 20 nmol N. Hence, the source for the evolved NO appears to be within the mudstone. Other N compounds detected by SAM (HCN, CH₂CN, and CICN) are present at substantially lower abundances, and they may be contributed by the MTBSTFA and DMF background in the SAM instrument. Both wet chemistry reagents contain one N atom per molecule of reagent. CF₂-CN is almost certain to be from decomposition of MTBSTFA because possible sources of F in the martian samples (i.e., fluorapatite) will not decompose in the SAM temperature range. In addition, HCN and CH₂-CN have also been identified during laboratory pyrolysis of MTBSTFA and DMF in the presence of perchlorate run under similar operating conditions as SAM (21).

Organic Compounds

Pyrolysis of the JK and CB samples led to low-temperature (125° to 350°C) release of chloromethane and dichloromethane that correlated with the release of O₂ and 1,3-bis(1,1-dimethylethyl)-1,1,3,3-tetramethyldisiloxane, a known reaction product of MTBSTFA and H₂O (Fig. S3). This correlation suggests that thermal degradation of the O₂ source (most likely an oxoyclorine compound, see above) is contributing to chlorination of C phases and/or the release of chlorinated hydrocarbons. Identification and quantification of these trace organic species by their characteristic m/z values in EGA mode was enhanced and confirmed by bulk collection and GCMS identification (44) of volatiles on an adsorbent-resin hydrocarbon trap (Fig. 4 and fig. S4). Detection of chlorinated hydrocarbons by SAM in Rocknest samples (10, 21), as well as supporting laboratory EGA and GCMS experiments conducted under SAM-like conditions, have shown that both chloromethane and dichloromethane are produced when MTBSTFA and DMF are heated in the presence of Ca- and Mg-perchlorates (21). Therefore, reaction of MTBSTFA and DMF carbon with an oxoyclorine compound is a likely source of some of the chloromethane and dichloromethane detected in JK and CB.

Empty-cup blank analyses before each sample set (Rocknest, JK, and CB) showed low chloromethane C abundance (<7 nmol C, including estimated error, via EGA) and no detection of dichloromethane. In comparison to the blanks, single-portion runs of JK and CB consistently showed more abundant chloromethane and dichloromethane C [up to about six times the abundance; range: 21 (±4) to 66 (±13) nmol C, Table 2], whereas lower amounts of chloromethane and dichloromethane [12 (±2) nmol C] were released from Rocknest single-portion samples, even though the total MTBSTFA C amounts measured during pyrolysis of Rocknest were similar (within error) to those measured in JK and the CB-1 and CB-2 runs (Table 2). Furthermore, the JK-3 EGA analysis of a triple-portion sample released approximately twice as much chloromethane + dichloromethane [127 (±25) nmol C] as a single-portion JK analysis [38 (±8) to 66 (±13) nmol C], and JK-3 released trichloromethane (CHCl₃) and carbon tetrachloride (CCl₄), which were not previously detected in the blank or single-portion JK experimental runs (table S2 and Fig. 4). However, the increase in chlorinated products in JK-3 could also be explained by three times as much sample (i.e., more oxoyclorine compounds) compared to the single-portion JK runs. Trichloromethane and carbon tetrachloride were also detected by GCMS in both CB-3 and CB-5 at similar levels (table S2). These data indicate that greater chlorinated hydrocarbon production is associated with the Sheepbed mudstone (compared with the Rocknest aeolian deposit) and with larger sample mass. However, the substantial reduction (~50%) in C abundance from MTBSTFA (and presumably DMF) in the CB-5 experiment compared with CB-3 (Fig. S5 and Table 2) was matched by a ~50% drop in chloromethane and dichloromethane detected by EGA [10.2 (±2.0) and 0.7 (±0.2) nmol C, respectively]. This suggests that
mariotan organics may not be substantial contributors to these chloromethanes detected in CB samples.

Trace quantities of chloromethane and dichloromethane were also identified by the Viking 1 and 2 lander GCMS instruments (45, 46). The Viking GCMS team attributed the chlorinated hydrocarbons to terrestrial sources including cleaning solvents, although the possibility that some of the chloromethane C was indigenous to Mars was not ruled out (46). Unlike SAM, the Viking GCMS instruments did not include an MTBSTFA and DMF wet chemistry experiment. Following the Phoenix perchorlate detection and subsequent laboratory experiments in which Atacama soils mixed with 1 wt % of Mg-perchlorate produced chloromethane and dichloromethane at 500°C, the Viking chloromethane compounds have been attributed to the presence of perchorlates and indigenous organic carbon at the Viking landing sites (47). The hypothesis has been challenged (48) and debated (49).

The EGA and GCMS observations of varying chlorinated hydrocarbon abundances in JK and CB could result from any combination of the following: (i) chlorination of MTBSTFA and DMF or other unknown terrestrial C sources in SAM (instrument background) that were not identified during EGA or GCMS in the empty-cup blank runs; (ii) chlorination of C contamination from the drill and/or sample handling chain; and (iii) chlorination of martian or exogenous C phases in the Sheepbed mudstone.

Terrestrial contamination from the sample handling chain is unlikely because it was scrubbed multiple times with Rocknest scooped material before the first drilled sample at JK (9, 10).

EGA and GCMS abundances of chloromethane and dichloromethane measured in JK-4 were similar within error to the abundances of the chlorinated hydrocarbons identified in the second drill sample at CB (CB-2) run under identical conditions (table S2). Therefore, if terrestrial C contamination from the drill was the primary source of C for these chlorinated hydrocarbons in JK-4, their abundances measured in the CB-2 sample should have been reduced compared to JK-4 due to sample scrubbing of hardware surfaces and disposal of the JK sample from the sample processing system. This was not observed. Moreover, swabbed surfaces of Curiosity's sample acquisition and processing system were found to be organically clean before launch (50, 51), and only trace quantities (~0.1 to 0.3 nmol) of perfluoroethene, a known pyrolysis product of Teflon that is within the drill system (52), were identified in the JK and CB EGA analyses.

Chlorinated hydrocarbons are likely produced in the SAM oven during heating of samples in the presence of Cl from the thermal decomposition of oxyclyhlorine compounds. Some of the chlorinated hydrocarbon detected at JK and CB may be derived from the sample. The SAM data do not allow us to prove, or disprove, organic C contributions from Sheepbed to evolved chlorinated hydrocarbons and CO2 from the JK and CB samples. There are no conclusive EGA or GCMS observations of other organic molecules indigenous to the Sheepbed mudstone.

Preservation of Organics

Although the detection and identification of possible organic compounds in the Sheepbed mudstone is complicated by reactions in the SAM oven, the lack of a definitive detection of martian organic suggests that, if organics were deposited in the Sheepbed mudstone, organic alteration and destruction mechanisms may present the single most fundamental challenge to the search for organics on Mars. Some organic compounds are expected on the surface of Mars. Exogenous delivery of meteorite organics to the martian surface has been estimated as 2.4 \times 10^3 g C/year (53) and may have been higher during periods of higher impact flux on the surface. Benzenecarboxylates derived from the oxidation of meteorite organic matter on Mars could contribute up to 500 ppm organic C by weight in the top meter of the martian regolith (35). Abiotic organic matter formed by igneous and/or hydrothermal processes (34, 54) is also expected to be embedded within basaltic minerals where it is protected from chemical oxidants in the environment. Consequently, at least a low concentration of organic compounds is likely in the source material for the Sheepbed mudstone.

In addition, the distal fluvial to lacustrine depositional environment of Sheepbed (1) makes it a prime site for concentration of organic matter through sedimentary processes (2).

If organics were present, evaluating their fate during diagenesis becomes critical for understanding their molecular structures, distribution in sediments, and SAM observations. The JK and CB samples experienced diagenesis, including the alteration of basaltic minerals to smectite and magnetite after deposition (7, 8). Organics may have been released during basaltic mineral alteration, and any reactive organic molecules present may have been incorporated into or adsorbed onto the forming smectite and magnetite. These types of mineral-organic associations could have enhanced

Table 2. Abundances of terrestrial C from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) reaction products and dimethylformamide (DMF) compared with the measured abundances of chloromethane (CM), dichloromethane (DCM) and CO2 detected during SAM evolved gas analysis (EGA) by the mass spectrometer.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total detected MTBSTFA-derived C (μmol)*</th>
<th>Estimate of missing DMF C (μmol)†</th>
<th>Total CM + DCM C (μmol)</th>
<th>Estimated amount of MTBSTFA- and DMF-derived C for combustion (μmol)‡</th>
<th>Total CO2 (μmol)</th>
<th>Estimated MTBSTFA + DMF C combustion in analysis relative to total CO2.§</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK blank</td>
<td>0.120 ± 0.024</td>
<td>0.030 ± 0.006</td>
<td>0.005 ± 0.001</td>
<td>≈ 0</td>
<td>≈ 0</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>JK-1</td>
<td>0.051 ± 0.010</td>
<td>0.013 ± 0.003</td>
<td>0.066 ± 0.013</td>
<td>0.086 ± 0.043</td>
<td>7.0 ± 1.9</td>
<td>1.2 ± 0.7%</td>
</tr>
<tr>
<td>JK-2</td>
<td>0.044 ± 0.009</td>
<td>0.011 ± 0.002</td>
<td>0.061 ± 0.012</td>
<td>0.095 ± 0.041</td>
<td>8.4 ± 1.7</td>
<td>1.2 ± 0.5%</td>
</tr>
<tr>
<td>JK-3 (3x portion)</td>
<td>0.071 ± 0.014</td>
<td>0.018 ± 0.004</td>
<td>0.127 ± 0.025</td>
<td>0.061 ± 0.048</td>
<td>19.8 ± 0.4</td>
<td>0.3 ± 0.3%</td>
</tr>
<tr>
<td>JK-4</td>
<td>0.047 ± 0.009</td>
<td>0.012 ± 0.002</td>
<td>0.038 ± 0.008</td>
<td>0.091 ± 0.041</td>
<td>5.7 ± 1.3</td>
<td>1.6 ± 0.7%</td>
</tr>
<tr>
<td>CB blank</td>
<td>0.097 ± 0.019</td>
<td>0.025 ± 0.005</td>
<td>0.006 ± 0.001</td>
<td>≈ 0</td>
<td>≈ 0</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>CB-1</td>
<td>0.068 ± 0.014</td>
<td>0.017 ± 0.003</td>
<td>0.025 ± 0.005</td>
<td>0.037 ± 0.041</td>
<td>2.0 ± 0.2</td>
<td>1.9 ± 2.1%</td>
</tr>
<tr>
<td>CB-2</td>
<td>0.041 ± 0.008</td>
<td>0.010 ± 0.002</td>
<td>0.022 ± 0.004</td>
<td>0.071 ± 0.034</td>
<td>2.5 ± 0.4</td>
<td>2.8 ± 1.4%</td>
</tr>
<tr>
<td>CB-3</td>
<td>0.032 ± 0.006</td>
<td>0.008 ± 0.002</td>
<td>0.021 ± 0.004</td>
<td>0.082 ± 0.032</td>
<td>3.1 ± 0.3</td>
<td>2.7 ± 1.1%</td>
</tr>
<tr>
<td>CB-5</td>
<td>0.018 ± 0.004</td>
<td>0.005 ± 0.001</td>
<td>0.011 ± 0.002</td>
<td>ND§</td>
<td>3.1 ± 0.7</td>
<td>ND§</td>
</tr>
<tr>
<td>CN blank</td>
<td>0.078 ± 0.016</td>
<td>0.020 ± 0.004</td>
<td>0.002 ± 0.001</td>
<td>≈ 0</td>
<td>≈ 0</td>
<td>≈ 0%</td>
</tr>
<tr>
<td>RN-1-4 (average)</td>
<td>0.058 ± 0.012</td>
<td>0.015 ± 0.003</td>
<td>0.012 ± 0.002</td>
<td>0.025 ± 0.035</td>
<td>9.9 ± 1.2</td>
<td>0.3 ± 0.4%</td>
</tr>
</tbody>
</table>

*Total MTBSTFA C value in μmol determined from the sum of the EGA measured abundances of silylated products: tert-butyldimethylsilanol, 1,3-bis(1,1-dimethyl-1H-1,3,3-tetramethyldisiloxane, and tert-butyldimethylfluorosilane, plus the mole fraction of C from 2,2,2-triuoro-N-methylacetamide in MTBSTFA relative to the sum of the silylated products. †DMF was not identified during pyrolysis by EGA or GCMS. However, the amount of DMF C was estimated from the total measured MTBSTFA C and the molar ratio of DMF/MTBSTFA carbon (0.25) that was originally loaded into the wet chemistry cups, to address a worst-case scenario. ‡Estimated amount of combusted MTBSTFA- and DMF-derived C equals the amount of C in the blank from these sources minus the amount of C from these sources that was observed and calculated for each solid sample run. ††Percentage of the total MTBSTFA and DMF carbon in the preceding blank analysis, assumed to be representative of the MTBSTFA and DMF derived carbon available for combustion to CO2, compared to total CO2 measured in the sample runs. ND: Values could not be determined because a comparable blank run was not carried out under the same experimental conditions that were used for CB-5.
the early preservation of organic matter. In addition, reducing conditions during deposition, as suggested by the presence of magnetite \(^7\), would have favored early preservation. Subsequently, and at any time during burial, oxidants already present in disequilibrium with reduced phases or circulated into the rock may have contributed to the oxidative degradation of organic compounds that were deposited with the sediment or released from the altering igneous minerals.

There is no evidence of mineral oxidation associated with the second diagenetic event that precipitated calcium sulfate minerals from fluids into the Sheepbed fracture network \(^7\), and the bulk rock remained largely reducing based on the presence of magnetite and pyrrhotite in JK and CB, and possibly pyrite in JK \(^8\). However, akaganeite in the samples may reflect oxidative weathering of pyrrhotite, which could indicate exposure of JK and CB to an oxidizing fluid in earlier diagenetic event(s) that may have degraded any organic compounds.

If any organic compounds remained throughout burial, they may have been altered by other mechanisms. The martian surface is subjected to strong ionizing radiation that can alter organic molecules \(^55\) depending on the chemical and physical microenvironment of the host sediments \(^56\). Ionizing radiation directly breaks chemical bonds in organic molecules and other chemicals, producing a reactive pool of radicals and oxidants (e.g., \(\text{OH}^\bullet\), \(\text{H}_2\text{O}_2\), oxychlorine compounds). In the presence of mineral catalysts, these reactants can fully oxidize organic matter to \(\text{CO}, \text{CO}_2\), and carbonates or produce partially oxidized organics such as acetate, oxalates, and other carboxylates that may survive in a metastable state on Mars \(^35\). If exogenous or martian organic matter survived largely intact until removal of the overlying Gillespie sandstone, it may still have degraded or oxidized during surface exposure of the sampling site to ionizing radiation. Therefore, surface-exposure age is also an important variable in the preservation of organics. Alternatively, the organics may have survived all of the martian processing that occurred naturally, only to be oxidized by oxide minerals or oxychlorine compounds at elevated temperatures in the SAM oven or, if sufficiently refractory, survive pyrolysis and pass undetected by SAM, as does most of the kerogen-like material in meteorites.

The complicated story of carbon on Mars is poorly understood. As of sol 370, SAM results support the presence of carbon source(s) in

Fig. 4. SAM gas chromatogram of the major \(^{m/z}\) values of the chlorinated hydrocarbons detected in JK and CB samples (cps, counts/s). **(A)** JK Sample 3 (JK-3; triple portion) compared with JK-2 (single portion) and the JK blank. **(B)** CB Sample 2 (CB-2, single portion) compared with the CB blank. **(C)** The mass spectra generated for the GC peaks detected in JK-3 are shown in red and compared with the mass spectra for chloromethane \(\text{CH}_3\text{Cl}\), dichloromethane \(\text{CH}_2\text{Cl}_2\), and trichloromethane \(\text{CHCl}_3\) in black from NIST/EPA/NIH Mass Spectral Database \(^44\).
Exploring Martian Habitability

samples from the Sheepbed mudstone that contribute(s) to the production of chlorinated hydrocarbons and evolved CO₂. There may be organic matter in these samples, but it has not been confirmed as martian.

References and Notes

3. By definition, a mudstone is a fine-grained sedimentary rock composed of 50% or more of particles <2 μm (4). The Sheepbed mudstone is composed of ~20% clay minerals and ~30% amorphous materials (6).

11. The term “soil” is used here to denote any loose, unconsolidated materials that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended.

14. Materials and methods are available as supplementary materials on Science Online.

15. The mass of each sample portion delivered to SAM was 18 mg, except for JK-3, where a CB-5 portion from Curiosity was used. Of the Cumberland material (CB-1, CB-2, and CB-3) were run under the same conditions that were used for the JK-3 sample, i.e., under a continuous temperature ramp starting at Mars ambient conditions. Sample CB-5 SAM cup was preheated to ~120°C and then moved into position directly under the solid sample inlet tube to receive the CB-5 portion from Curiosity’s sample delivery system (4).

16. R. Gellert et al., Initial MSX APXS activities and observations at Gale Crater, Mars. Paper presented at the 44th Lunar and Planetary Science Conference, Houston, TX, 18 to 22 March 2013 (Lunar and Planetary Institute, Houston, TX, 2013).

18. Only the John Klein sample 4 (JK-4) EGA data set is discussed in the text and shown in Fig. 1. The other three experiments were conducted with a preconditioning boil-off that prevented systematic examination of the temperature of evolution below the boil-off temperature (~100°C).

19. The three SAM continuous temperature ramp analyses of the Cumberland material (CB-1, CB-2, and CB-3) revealed similar evolved gas patterns (fig. S1), with variations in the abundances of gases evolved. Only the CB-2 sample is shown in Fig. 2 to represent the Cumberland evolved gas analysis. CB-5 EGA is not shown in this figure because it did not have the sample continuous temperature ramp conditions that were used in the previous three CB runs.

32. MBTSFA (N-methyl-N-tert-butyl-dimethyl-silyl-trifluoroacetamide) and DMF have been identified in both empty-cup blanks from Rocknest rocks. See supplementary materials on Science Online.

35. M. S. Anderson et al., Detection of organic constituents including chloromethylpropene in the analysis of the...
Rocknest drift by Sample at Mars (SAM). Paper presented at the 44th Lunar and Planetary Science Conference, Houston, TX, 18 to 22 March 2013 (Lunar and Planetary Institute, Houston, TX).

Acknowledgments: We are indebted to the Mars Science Laboratory Project engineering and management teams for making this mission possible and enhancing science operations. Much of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NASA provided support for the development of SAM. Data from these SAM experiments are archived in the Planetary Data System (pds.nasa.gov). Essential contributions to the successful operation of SAM on Mars and the acquisition of this data were provided by the SAM development, operations, and testbed teams. Development and operation of the SAM and APXS instruments were also supported by funds from the French Space Agency (CNES) and the Canadian Space Agency. Work in the UK was funded by the UK Space Agency. B.L.E., J.L.E., K.F., D.P.G., J.E.G., K.E.M., S.M.M., J.M., P.B.N., and R.E.S. acknowledge funding support from the NASA ROSES MSL Participating Scientist Program.

Supplementary Materials
www.sciencemag.org/content/343/6169/1245267/suppl/DC1
Materials and Methods
Figs. S1 to S6
Tables S1 to S3
References (57–65)
MSL Science Team Author List

28 August 2013; accepted 12 November 2013
Published online 9 December 2013;
10.1126/science.1245267