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Summary

1 By viewing animal movement paths as realizations of a continuous stochastic process, we introduce a rigorous

likelihood method for estimating the statistical parameters of movement processes. This method makes no

assumption of a hiddenMarkov property, places no special emphasis on the sampling rate, is insensitive to irreg-

ular sampling and data gaps, can produce reasonable estimates with limited sample sizes and can be used to

assignAIC values to a vast array of qualitatively differentmodels of animalmovement at the individual and pop-

ulation levels.

2 To develop our approach, we consider the likelihood of the first two cumulants of stochastic processes, the

mean and autocorrelation functions. Together, these measures provide a considerable degree of information

regarding searching, foraging, migration and other aspects of animal movement. As a specific example, we

develop the likelihood analyses necessary to contrast performance of animal movementmodels based on Brown-

ian motion, the Ornstein–Uhlenbeck process and a generalization of the Ornstein–Uhlenbeck process that

includes ballistic bouts.

3 We then show how our framework also provides a new and more accurate approach to home-range estima-

tionwhen compared to estimators that neglect autocorrelation in themovement path.

4 We apply our methods to a data set on Mongolian gazelles (Procapra gutturosa) to identify the movement

behaviours and their associated time and length scales that characterize the movement of each individual. Addi-

tionally, we show that gazelle annual ranges are vastly larger than those of other non-migratory ungulates.

Key-words: autocorrelation function, characteristic scale, home range, irregular sampling,Mongo-

lian gazelle, movement ecology, Procapra gutturosa, satellite collar movement data, time series,

tracking data gaps

Introduction

Movement ecology is currently undergoing a period of rapid

expansion, fuelled by the increasing availability of high-quality

animal relocation data sets. While the methods used to analyse

movement data are also evolving, most are still based on dis-

crete-time correlated random walks (CRWs) and their contin-

uous-time diffusion approximations. For example, recently

developed composite randomwalkmethods represent elabora-

tions of the basic CRW framework (Kareiva & Shigesada

1983; Turchin 1998; Codling, Plank & Benhamou 2008)While

these models enjoy widespread use in ecology, they have a

range of known limitations, (Bovet & Benhamou 1988; Tur-

chin 1998; Codling & Hill 2005; Nouvellet, Bacon &Waxman

2009; Gautestad 2012; Fleming et al. 2014) whose severity is

not fully acknowledged or appreciated, despite repeated dem-

onstrations. Key among these drawbacks is the unrealistic

assumption that estimated step lengths and turn angles

actually correspond to start and end points of discrete move-

ment behaviours, whereas location fixes usually follow a pro-

grammed schedule that may have little relationship with

important behavioural events (Bovet & Benhamou 1988).

When discretizing a continuous movement path, step-length

and turn-angle distributions are heavily influenced by the

choice of sampling rate (Nouvellet, Bacon & Waxman 2009;

Fleming et al. 2014), which is often based on logistical consid-

erations such as managing GPS-collar battery life rather than

a priori considerations of the important time-scales of the

movement process. As a result, these quantities often reveal lit-

tle about the movement process. The step-length and turn-

angle distributions only play a fundamental role for truly

discrete movement processes, where the sampling locations

and times correspond to actual behavioural events (i.e. steps

and turns).

The more realistic continuous-time stochastic processes

(CTSP) models have seen relatively limited use in movement

ecology (but see Dunn & Gipson 1977; Brillinger & Stewart

1998; and Blackwell 2003; Horne et al. 2007; Johnson et al.

2008; Gurarie, Andrews & Laidre 2009), and they have*Correspondence author. E-mail: chris.h.fleming@gmail.com
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always suffered from the key drawbacks of assuming a par-

ticular CTSP model and then fitting it to the data in a fash-

ion analogous to discrete CRW analysis. Prior to Fleming

et al. (2014), we have not seen any examples of exploratory

signal-processing analyses being used to motivate model

selection, whereby movement behaviours are first identified

in a general way, without assuming any particular model,

and then, models incorporating these behaviours are tested.

Instead, very particular CTSPs, such as the Orstein–Uhlen-

beck process, have always been assumed a priori, rather than

selected from a set of plausible candidate models. Finally,

the likelihood functions used in all studies that fit CTSPs to

movement of which we are aware condition only on move-

ments that occur at the sampling rate and effectively differ-

ence the data to yield a Markovian representation of the

movement process that is only valid if the model is true. This

results in a Markovian likelihood function that, while

straightforward to implement, is heavily influenced by the

choice of sampling rate. As we will show, this does not allow

CTSPs to be used to their full potential.

Animal movement data often feature rich autocorrelation

structure, including a broad range of spatial and temporal

scales and, in some cases, persistence over very long periods of

time (Polansky et al. 2010; Fleming et al. 2014). Although

autocorrelation has long been considered a nuisance factor in

spatiotemporal ecological data that must be ‘dealt with’ or

‘accounted for’ (Swihart & Slade 1985; Worton 1989), it can,

when properly harnessed, reveal a wealth of information about

the underlyingmovement behaviour (Boyce et al. 2010; Polan-

sky et al. 2010; Fleming et al. 2014) and provide new para-

digms for analysis (Legendre 1993). While there is growing

awareness of the importance of autocorrelation in understand-

ing animal movement, most current analytical methods can

only deal with autocorrelation in a very limitedway. For exam-

ple, the CRW framework de-emphasizes the importance of

autocorrelation by its very design. These models are con-

structed as Markov chains, where the current movement step

depends only on the previous step. This limits the autocorrela-

tion structure to simple autoregressive models, whether or not

this type of model is the most relevant. And while CTSPs are

inherently capable of incorporating a much broader array of

autocorrelations, currently used Markovian likelihood func-

tions effectively limit them to the same kind of short-range,

fast-decaying autocorrelations as CRWs. For more general

autocorrelated processes, movement at the current point in

time may depend upon a long continuation of past move-

ments. The strength of that dependence decays with time-lag

according to characteristic movement time-scales that are gen-

erally unrelated to the sampling schedule. Therefore, the inclu-

sion of dependence only on a single time step in the past is an

artificial, sampling-dependent construction.While the perspec-

tive we advocate is muchmore difficult to treat mathematically

(see, for instance, Adelman 1976; Calzetta, Roura & Verda-

guer 2003), only non-Markovian statistical methods that use

all possible time-lags in the data can account for and take

advantage of the full sweep of autocorrelated behaviour in

movement data.

Here, we introduce a non-Markovian likelihood function

that can unlock the full power of CTSPs for analysing and

understanding animal movement. This likelihood function can

fit autocorrelated movement models that can be constructed

without any assumption of stationarity or hidden Markov

property, whereas previously considered likelihood functions

assume that autocorrelated telemetry data can be differenced

to obtain ‘hidden’Markov processes. The sampling schedule is

given no special importance in our treatment, and instead, all

unobserved times are properly marginalized out of the full-

time distribution. In other words, we assume an underlying

continuous-time path and correctly treat discrete relocation

data as an incomplete sample of this path. Autocorrelation in

the data is not avoided by differencing or thinning, but,

instead, it is modelled and fit to using all lags in the data. In this

way, all noted drawbacks of the previous analyses can be

avoided, and arbitrary autocorrelation structures can be tested

and compared via likelihood ratio test or AIC. As a case study,

we consider a hierarchy of increasingly complex models, from

Brownian motion to a multiscale movement model derived in

(Fleming et al. 2014), with and without assumptions of isot-

ropy, at the population and individual level. The range of

included behaviours is beyond the scope of previous analyses

and is only possible due to the efficiency and generality of the

non-Markovian likelihood function. This family of models is

applied to sample of 36 Mongolian gazelles – a species previ-

ously described as nomadic (Olson et al. 2010; Mueller et al.

2011) and later identified as exhibiting movement behaviours

at multiple scales (Fleming et al. 2014).

THE TIME-SERIES ANALYSIS FRAMEWORK

In the CRW framework, there is a straightforward procedure

for inspecting the step-length and turn-angle distributions, pro-

posing candidate models and then selecting between them.

There is an analogous procedure for continuous-time models,

although with a slight difference. In general, one cannot esti-

mate the distribution of a continuous-time process, but one

can estimate the moments and cumulants of the process, such

as the mean (first cumulant) and autocorrelation function (sec-

ond cumulant). The first two cumulants alone are sufficient to

describe drift and diffusion and completely define any Gauss-

ian stochastic process that has a finite range. Furthermore, the

cumulants are not limited to any assumption of stationarity or

Markov property. Therefore, the cumulants, which may be

considered the fundamental statistics of the stochastic process

(Fleming et al. 2014), are given primacy in our analysis, rather

than the distribution.

Our framework begins by estimating of the movement pro-

cesses’ autocorrelation structure nonparametrically. The vario-

gram (Cressie 1993; Fleming et al. 2014) is an excellent

estimator of the mean squared displacement (MSD) for sta-

tionary processes. It uses the data much more thoroughly than

the conventional MSD statistic (Fleming et al. 2014, appendix

A.1), allowing investigators to better test theMSD patterns’ fit

to a particularmovementmechanism andmodel. The periodo-

gram (Lomb1976; Scargle 1982), which represents the autocor-
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relation structure in the frequency domain, can be used to iden-

tify cycles and periodicities in the movement. One might be

inclined to skipnonparametric estimation andperformamodel

selection based upon likelihood and AIC. However, this

assumes that all relevant models will be included in the AIC

comparison (and in their relevant parameter regimes). Our pre-

vious analysis of Mongolian gazelles offers a good example

against this practice, as our bestmovementmodel was invented

only after noting significant discrepancy between the vario-

gramandOrnstein–Uhlenbeckmotion (Fleming et al. 2014).

The second step, which this work focuses on, is to select the

best model and estimate model parameters. There are three

classes of approaches to parametric autocorrelation esti-

mation: weighted variogram regression (Cressie 1993),

Chi-squared (v2) periodogram regression (Whittle 1953) and

non-Markovian maximum likelihood (Table 1). Weighted

variogram regression, which we used in Fleming et al. (2014),

is the most accessible of the three methods, but it does not

produce reliable confidence intervals (Fleming & Calabrese

2013). v2 periodogram regression is the most computationally

efficient of the three methods, but it only applies to evenly sam-

pled data. Here, we derive the likelihood function for data of a

specifiedmean and autocorrelation function, as given by a par-

ticular model of movement. Non-Markovian maximum likeli-

hood accurately and efficiently uses limited data and is

completely insensitive to the irregular sampling and data gap-

ping often found in animal relocation data sets. We emphasize

that in our approach there are no assumptions pertaining to

the data quality (in terms of gaps), amount of data,1 or hidden

Markov property (i.e. that one can difference the data enough

times and rid it of autocorrelations).

Once a suitable modelling approach is selected, the autocor-

relation estimate can then be applied to better answer move-

ment-related questions, as any movement-related quantity of

interest necessarily requires knowledge of the autocorrelation

function (ACF) to make optimal estimates. We can compare

characteristic time and length scales basedondifferent behavio-

ural movement modes identified by the best-fit model. Using

the likelihood function, we can also estimate probabilities for

different movement behaviours in individuals and groups, and

even at different times, as with composite randomwalkmodels

(Morales et al. 2004; Jonsen, Flemming & Myers 2005;

McClintock et al. 2012). Finally, current strategies to estimate

home ranges such as kernel-density estimates (KDE) (Worton

1989) andminimal convex polygons (MCP) (Southwood 2000)

are incomplete because they do not adequately take autocorre-

lation into account, which results in the underestimation of

home-range sizes (Fleming et al. 2014, appendix E). To be

valid, these estimators require a coarsening of the data,which is

then discarding information that a better estimator could use

to improve the estimate (for an example of how small-scale

details can improve a large scale estimate, see Appendix S4).

Similarly, the problem of predicting an animal’s location when

it is not sampled (interpolation and forecasting) is nearly

impossible without a probabilistic movement model that fully

accounts for autocorrelation (see, for the spatial-field analogue,

Krige 1951;Cressie 1993).All of these quantities require knowl-

edge of the movement processes’ autocorrelation structure to

be optimally estimated. Estimators that ignore the underlying

autocorrelation structure can be heavily biased, resulting in

over- or underestimation of the desired quantities. In Fig. 1, we

summarize the principal analysis flow from the nonparametric

estimation of autocorrelation structure, to the parametric esti-

mation of model parameters (and model selection) and to the

estimation of quantities of interest related tomovement.

THE CASE STUDY

To demonstrate the power of a full non-Markovian likelihood

analysis, we analyse 5 years of relocation data for Mongolian

gazelles collected in the eastern steppe ofMongolia usingGPS-

Argos collars (Fleming et al. 2013). Mongolian gazelles are

intermediate herbivores (Jiang et al. 2002) that live in one of

the world’s largest remaining grasslands and have previously

been described as nomadic (Olson et al. 2010; Mueller et al.

2011). They exhibit long distance movements, and although

their individual ranges are smaller than the available grassland

(Fleming et al. 2014), they do not reside in small home ranges

that are typical for range resident species. It takes months for

the gazelles to cross their range, yet they do not undertake reg-

ular migrations, nor do gazelles exhibit any obvious cycles or

periodicities (Fleming et al. 2014). While the likelihood

method can easily handle complexities such as migrations and

repeating (periodic) behaviours, with the gazelle we only have

to address the autocorrelation function proper and not a time-

dependent mean. We consider a family of models including

Brownian motion with the possibility of home-range fidelity at

long time-scales and a ballistic phase at short time-scales,

whichmight be related to commuting or foraging behaviours.

Model identification for this species was previously per-

formed in (Fleming et al. 2014) using variogram analysis. We

Table 1. Comparison of parametric autocorrelation estimators:

weighted variogram regression, v2 periodogram regression and maxi-

mum likelihood

Variogram Periodogram ML

Estimation error Worse Oð1=nÞ Oð1=n2Þ
Confidence

intervals

Unreliable Asymptotically

reliable

Asymptotically

reliable*

Computational

complexity

Oðn2Þy Oðn log nÞ Oðn3Þ

Data quality

sensitivity

Intermediate Fragile Robust

Non-stationarity Problematic l(t) only l(t) andr(t,t0)

*The asymptotic properties of ML are typically achieved fairly easily

formost time-series data.
†A fastOðn log nÞ algorithm for the method-of-moments estimator is

given byMarcotte (1996).

1Although likelihood-based estimates, confidence intervals and AIC

comparisons are only asymptotically valid, this is typically not an issue

of primary concern for time-series data where ‘small’ data sets consist

of numerous observations.
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repeat the same model selection here for demonstration

purposes. However, we emphasize that, although maximum

likelihood is the superior estimator, it does not yield any visual

representation of theACF, and so a variogramor periodogram

analysis should always be the first step of analysis to ensure that

all important movement behaviours are included in the model-

ling. Here in step two of our framework (Fig. 1), we employ

maximum likelihood to obtain better parameter estimates and

confidence intervals. Themean andACF estimates can then be

applied to calculating quantities of interest, which is what we

do to estimate the individual- and population-level utilization

distributions and 95%confidence region ranges.

To ensure a variety of sampling rates, individual collars were

programmed for a pair of alternating collection intervals, with

periods of 1, 5 and 25 h. Additionally, to preserve battery life,

collars were programmed to have 10 day gaps after every

5 days of data collection. There was also data loss from mal-

function; however, estimated telemetry errors were very small

(details of the error estimates can be found in Fleming et al.

2014). It is important to note that this sampling schedule,

which represents an attempt to balance fine-scale detail

against collar longevity, is far from optimal and cannot be

recommended. Specifically, the mix of different sampling rates

and data gaps it introduced caused conventional variogram,

periodogram and composite random walk methods to fail on

this data set. After modifying conventional variogram analysis

to handle such heterogeneity and data gaps (Fleming et al.

2014), we were limited to the analysis of the time-averaged and

population-averaged isotropic (x–y averaged) autocorrela-

tions. As a result, previously we could only make inferences

about how an average gazelle moves in an average direction.

However, the irregular sampling schedule and random gaps do

not pose any problem for the non-Markovian likelihood func-

tion, and here, we can analyse individual movement paths and

relax the isotropy assumption.

Statistical framework andmovementmodels

The first two cumulants of the stochastic process provide the

backbone for our calculations: themean l(t):

lðtÞ ¼ rðtÞh i; rðtÞ � xðtÞ; yðtÞð Þ; eqn 1

and the autocorrelation function r(t,t0):

rðt; t0Þ ¼ rðtÞ � lðtÞ½ � rðt0Þ � lðt0Þ½ �T
D E

; eqn 2

where t denotes the time index, r = (x,y) denotes the location,

and 〈⋯〉 denotes the average over realizations of the process.
Different movement models predict different functional forms

for the first two cumulants. Our approach to fitting movement

models to relocation data is to first calculate the model mean

and ACF in terms of the movement parameters, such as the

characteristic time and length scales, and then to maximize the

likelihood of the location data with respect to these parame-

ters. A good method of fitting the first two cumulants to the

data is to assume a Gaussian distribution for the relocation

time series. This produces standard formulas for method-of-

moments estimates (Pawitan 2001), standard formulas for the

periodogram in the case of stationary cumulants (Dembo

1986), an asymptotically normal estimator for any autoregres-

sive moving-average (ARMA) model (Fan & Yao 2003), and

it is the distribution of maximum entropy given no further

knowledge of the higher-order cumulants (Cover & Thomas

2006). For time-correlated movement, this distributional

assumption is fairly permissive, in that it restricts neither the

step-length distribution (given a discrete sampling) nor the

home range to be a Gaussian function, and can incorporate

any number ofmovement behaviours.

The Gaussian probability density functional P[r] of a real-

ized trajectory r(t) is formally given by

P½r� ¼ e�
1
2

R R
dtdt0 rðtÞ � lðtÞ½ �Tr�1ðt; t0Þ rðt0Þ � lðt0Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det2pr
p :

eqn 3

This is a continuous generalization of the mutlivariate

Gaussian probability distribution, where t acts as an index for

the Gaussian random variable r(t), which is distinct from, yet

correlated to, the Gaussian random variable r(t0) at a different
time t0. The continuous trajectory is only sampled a countable

number of times, and so we marginalize over all times for

which data are not observed. This results in the marginal prob-

ability distribution of the observed time-series data

Autocorrelation estimation

Non-parametric
Parametric

Variogram

Likelihood

Cycles &
Periodicities

Behavioral
State

Home RangePath Length

Instantaneous
Velocity

Interpolation &
Forecasting

Movement
Scales

Quantities of Interest

Periodogram

Mean Squared
Displacement

Fig. 1. A visual overview of the analysis flow from the estimation of

autocorrelation to the estimation of important movement quantities,

such as characteristic scales, path length, velocity, area use (e.g. home

range), cyclicity and behaviour. Darker arrows indicate a preferred

method for approaching the endpoint. That is, the periodogram is

more suitable for addressing the existence of periodicities than the vari-

ogram, whereas maximum likelihood is generally preferable when pre-

ceded by a nonparametric analysis. Certain quantities of interest, such

as mean squared displacement, can be estimated quickly with little

effort, while quantities near the bottom of the figure require more

analysis beyond autocorrelation estimation.
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PðRÞ ¼ e�
1
2 R�Mð ÞTR�1 R�Mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det2pR
p ; eqn 4

in terms of the location dataR, sampled meanM and sampled

autocorrelationΣ, with components

½½R��i ¼ rðtiÞ; ½½M��i ¼ lðtiÞ; ½½R��ij ¼ rðti; tjÞ; eqn 5

where the observed times ti are indexed by i 2 {1,2,3,⋯}.
Arbitrary mean and autocorrelation functions can be consid-

ered for the stochastic process, which can incorporate various

movement behaviours and parameters. The likelihood func-

tion does not care how we sampled the data nor if it contains

gaps. The only mathematical requirement is that the autocor-

relation function is positive definite:2 Σ must have all positive

eigenvalues. Note that for q spatial dimensions and n sampled

times, R and M are n 9 q dimensional, while Σ is

n 9 n 9 q 9 q dimensional. These arrays must be properly

flattened into nq-dimensional vectors and (nq) 9 (nq)-dimen-

sional matrices to use conventional matrix operations. We will

explicitly do this in the case of two dimensions.

Following probability distribution (4), the log-likelihood

function is given by

‘ ¼ � 1

2
log det R� 1

2
R�Mð ÞTR�1 R�Mð Þ; eqn 6

to within a constant. Similar likelihood functions have been

derived in other contexts (e.g. see Mardia & Marshall 1984,

for spatial fields). An AIC comparison or likelihood ratio

test will then allow us to determine what behaviours, as

expressed by parameters in the mean and autocorrelation

function, are suggested by the data. In the family of models

we consider, there are two movement processes that have

been historically considered for movement processes: Brown-

ian motion (BM) and Ornstein–Uhlenbeck (OU) motion.

The OU process (Gardiner 2009) describes a random search

within a defined area that grows more-and-more slowly in

time and asymptotes to a finite value.

TheOUautocorrelation function is given by

rðt; t0Þ ¼ rHe
�jt�t0 j

sH ; eqn 7

where rH is the variance of the animal’s utilization distribu-

tion, while sH is the time-scale in which the animal crosses this

range. For small time-lags, s = |t�t0| < sH, the diffusion is

regular, and in the limit 1/sH?0, this model reduces to Brown-

ian motion with a diffusion rate given by the limit of rH/sH.
For larger lags, s > sH, the variance is asymptotically given

byrH and so the displacement is subdiffusive.

In Fleming et al. (2014), the OU model was generalized by

the inclusion of random periods of autocorrelated velocity (i.e.

periods of time in which an animal tended to maintain its pres-

ent rate of movement or lack thereof). These ballistic periods

are characterized by a short time-scale sF, which were hypothe-

sized to correspond to foraging behaviour, given that a grazing

ungulate tends to move in a relatively straight line as it feeds

(Bailey et al. 1996). However, this effect also arises fromCRW

behaviour at short time-scales (see Gurarie & Ovaskainen

2011, for the OU velocity process). The corresponding auto-

correlation function is given by

rðt; t0Þ ¼ rH
sHe

�jt�t0 j
sH � sFe

�jt�t0 j
sF

sH � sF
; eqn 8

and the quantity rF � (sF/sH)rH then corresponds to the

range associated with the autocorrelated movements, which

could possibly be associated with a foraging range. We will

refer to this model as the OUF process. The OUF model

contains within it the Ornstein–Uhlenbeck (OU) model and

within that the classical Brownian motion (BM) model. From

BM to OU to OUF, the likelihood cannot decrease; however,

each step adds one parameter. Like the OU process, for large

lags, s > sH, the variance is asymptotically constant, and for

intermediate lags, sF < s < sH, the diffusion is regular.

For small lags, s < sF, the displacement is technically super-

diffusive, with the semi-variance function and mean squared

displacement proportional to s2. However, the mean squared

displacement in this regime is always less than that from the

regular diffusion at intermediate lags, as the semi-variance and

mean squared displacement strictly grow larger with time-lag.

In the limit sF?0, thismodel reduces to theOUmodel.

The BM, OU and OUF models all describe stationary

processes, and yet ecological processes are assuredly non-sta-

tionary, as they are driven by diurnal and seasonal cycles.

Although the mean and autocorrelation functions can be

specified to incorporate non-stationary behaviours, this

requires some additional effort. The easiest, though, least

informative approach is to treat the non-stationarity as a

nuisance parameter and average over all time dependence.

This is effectively what is done when fitting a stationary

model to non-stationary processes via maximum likelihood

(Appendix S1). To construct specific parametric models of

non-stationary behaviour, one can rely upon nonparametric

estimates of the non-stationary mean and autocorrelation

function, such as the population mean and Wigner–Ville

function (Ville 1948; Hillery et al. 1984). Finally, we note

that most ideas for addressing non-stationarity in movement

ecology can be adapted to the formalism we propose, so that

they better take into account the non-Markovian behaviours.

In particular, behavioural change point analysis (BCPA, Gu-

rarie et al., 2009) requires only a minimal substitution of

likelihood functions.

The likelihood function

In the case of a two-dimensional stochastic movement process

with isotropic correlations, the autocorrelation function can be

represented

rðt; t0Þ ¼ r0 0
0 r0

� �
cðt; t0Þ; eqn 9

2Not all positive functions are positive definite and not all positive defi-

nite functions are everywhere positive.
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where r0 is the variance and c(t,t0) is a dimensionless, scalar

correlation function – it carries no units of space or time and is

not a matrix. E.g., c(t,t0) = exp (�|t�t0|/sH) for an OU

process. Under this assumption, log-likelihood function (6)

simplifies to

‘ ¼ �log det ðCÞ � n logr0 � n
sxx þ syy
2r0

; eqn 10

to within a constant, where n is the number of times that the

movement path is sampled (i.e. the number of relocations per

individual animal), the correlation matrix C is defined by

Cij � c(ti,tj), and the sample correlations are given by

sxx � 1

n
X�Mxð ÞTC�1 X�Mxð Þ; eqn 11

syy � 1

n
Y�My

� �T
C�1 Y�My

� �
; eqn 12

sxy � 1

n
X�Mxð ÞTC�1 Y�My

� �
; eqn 13

in terms of the data andmean vectors

Xi ¼ xðtiÞ; Yi ¼ yðtiÞ; eqn 14

Mx
i ¼ lxðtiÞ; My

i ¼ lyðtiÞ: eqn 15

So for the OU process, the location data enter into the likeli-

hood function via the vectors X and Y and the static mean lx,
ly, variance r0, and range crossing time-scale sH would be the

parameters allowed to vary in the likelihood function. Each

time the parameter sH is varied, the matrixC, its inverse and its

determinant must all be updated to evaluate the likelihood

function.

The assumption of isotropy can be relaxed at the cost of

additional model parameters, which can be justified by com-

paring AIC values or with a likelihood ratio test. We consider

a two-dimensional process with anisotropic correlations that

are uniform in time:

rðt; t0Þ ¼ r0cðt; t0Þ; r0 � rxx rxy

rxy ryy

� �
: eqn 16

Log-likelihood function (6) can then be expressed

‘¼�log det ðCÞ� n

2
log det r0 � n

ryysxx þrxxsyy � 2rxysxy
2 det r0

;

eqn 17

after some algebraicmanipulations (using block-matrix inverse

and determinant relations) to the multivariate Gaussian likeli-

hood function. Given the likelihood function in equations (10)

or (17), the mean (and its standard error) and the variance

(and its standard error) can be solved (i.e. maximized or pro-

filed) via some straightforward linear algebra (Appendix S2).

This allows formodel parameterization by standardmaximum

likelihood techniques and for model comparison via AIC or

likelihood ratio test.

The non-Markovian likelihood functions we have intro-

duced take into account an animal’s autocorrelations over all

possible time-lags, regardless of the model chosen and sam-

pling rate employed. Our approach stands in contrast to

conditional, Markovian likelihood functions that have been

used in ecology to estimate the parameters of Brownian and

OU movement processes (Dunn & Gipson 1977; Brillinger &

Stewart 1998; Blackwell 2003; Horne et al. 2007; Johnson

et al. 2008; Gurarie, Andrews & Laidre 2009). TheMarkovian

likelihood functions are conditioned upon data differences and

are constructed to be uncorrelated under the assumption of a

BM or OU model. The Markov property vastly simplifies the

resulting likelihood functions,which do not contain anymatrix

operations if only non-overlapping segments of time are con-

sidered. There are three significant drawbacks to this construc-

tion. First, the Markov property only applies under the

assumption that the particular model is correct, and this

assumption only holdswhen themodel is a very accurate repre-

sentation of the process that generated the data at the specific

sampling rate for which the differences are calculated. In con-

trast to this, ourmore general non-Markovian likelihood func-

tion accounts for all possible lags in the data via the correlation

matrixCij = c(ti,tj), and therefore, it ismuchmore robust to sit-

uations where the stochastic movement process is misspecified.

Second, we prove in Appendix S3 that for any realistic move-

ment process x(t) that has continuous and bounded velocities,

with fine sampling rate Dt = ti+1 � ti, the diffusion rates and

corresponding standard errors estimated by Markovian likeli-

hoodmethods will be proportional toDt, which vanishes in the
limit of continuously sampled data. Finally, by construction,

the Markovian likelihood functions are limited to a specific

order of continuous-time ARMA models. For instance, the

Markovian likelihood function that conditions upon pairs of

locations ℓ(xi,xj) can be applied to compare the AIC values of

the BM and OU models, but it cannot be applied to the OUF

model, which requires location triplets ℓ(xi,xj,xk). In contrast,

the more general likelihood function can be applied to arbi-

trarymean and autocorrelation functions.

Analysis of gazellemovement

Overall the anisotropic individual-level OUF model was best

supported by the data. We plot the likelihood profiles for this

model in Fig. 2 and summarize the model fits in Table 2. Start-

ing with the population-level isotropic OUFmodel, which was

selected by variogram analysis, we fit the models to each of the

gazelles. The gazelles had individual sample sizes ranging from

20 to 886 relocations. Allowing each gazelle to have indepen-

dent time and length scale parameters, rather than a single set

of scale parameters describing the entire population of gazelles,

resulted in a further AIC decrease of 2690, indicating genuine

variability in scales among the gazelles (Table 2). Compared to

the population scales, the individual sF range up to a day and

sH range down to tens of days (Fig. 2). This places the previous

population-level results of variogram regression (Fleming

et al. 2014; Table 2) within the range of individual variability.

Allowing each gazelle to have an independent anisotropic

covariance r0 resulted in a further AIC decrease of 416, with

very little effect on estimates of the time-scale parameters.

To repeat the model selection of our variogram analysis

(Fleming et al. 2014), we also considered the OU and BM
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models. The isotropic OU model resulted in a marginally lar-

ger range crossing time sH estimate and was roughly consistent

with some aspects of the data, while the BMmodel was found

to be a very poor model of gazelle movement (Appendix S7).

For comparison purposes, we also fit the data with the Mar-

kovian OU likelihood function that conditions only upon dif-

ferences in the data, which corresponds to the techniques of

Gurarie, Andrews & Laidre (2009). Relative to all non-Mar-

kovian estimates (including OU), this method resulted in an

approximately 50% smaller range crossing time estimate sH,
with grossly underestimated confidence intervals (Table 2).

Moreover, as we prove in Appendix S3, in the limit of continu-

ously sampled data, the Markovian likelihood function pro-

duces an estimate of sH that diverges. Ironically, the

Markovian likelihood actually benefited in this case from

the relatively infrequent sampling and excessive gapping in the

data. This means that if one could improve the data quality by

hand, perhaps by tracking down the collar and extracting data

that was not uploaded to the satellite, then theMarkovian like-

lihood estimate of sHwould increase through the correct range

of values and ultimately become arbitrarily large, yet with

deceptively small confidence intervals.

We also performed a data simulation using the same sam-

pling schedule, maximum likelihood (ML) parameter esti-

mates and estimated GPS errors, as detailed and performed in

Fleming et al. (2014). The results of an OUF fit showed

marked improvement over the variogram regression andMar-

kovian likelihood function, with the true values of all parame-

ters being contained inside the 95% confidence intervals of the

non-Markovian ML estimates. The simulations also served to

demonstrate that sH was genuinely difficult to estimate with

the given data schedule, even with the underlying model being

correctly specified, as the confidence intervals for sH were as

large with the simulated data as they were with the real data.

This results from the fact that the period of the data samples,

T = tn�t1, was not significantly larger than the true value of

sH, as the effective sample size necessary to estimate a long

time-scale sc in a single time series is roughly given byT/sc, and
not by the total amount of data n.

Analysis of gazelle area utilization

Using the probability relationships outlined in Appendix S6,

the population-level anisotropic OUF model resulted in a

ranging area of A95% = 77 600 � 1200 km2, which we plot in

Fig. 3, withAP referring to themost probable area in which the

36 gazelles in the sample population will be located a propor-

tion P of all time. The breakdown of the individual area scales

Table 2. Comparison of alternative movement model fits to Mongolian gazelle data, including Akaike Information Criterion and best-fit parame-

ters

DAIC sH [days] sF [hours] AH [km2] AF [km
2]

Population-level model

(Markovian) Isotropic OU NA 107� 13
11 NA 30 120 � 660 NA

(Variogram) Isotropic OUF NA 74�1 � 3�6 6�16 � 0�58 91 000 � 21 000 315 � 73

Isotropic BM >8729 NA NA NA NA

Isotropic OU 8229 274� 68
48 NA 80 500 � 1800 NA

Isotropic OUF 3106 199� 45
32

2�459� 0�083
0�082 80 500 � 1800 41�3 � 8�0

Anisotropic OUF 2797 198� 45
32

2�415� 0�083
0�081 77 600 � 1200 39�5 � 8�1

Individual-level model

Isotropic OUF 416 170 � 380 1�8 � 3�0 14 000 � 34 000 10 � 80

Anisotropic OUF 0 160 � 370 1�8 � 2�8 12 000 � 30 000 11 � 72

AH � z295%p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det r0

p
denotes the 95% confidence ranging area, while AF � z295%pðsF=sHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det r0

p
denotes the 95% confidence ballistic-motion or

foraging area. For the individual-level models, themaximum likelihood estimates are givenwith their 95%confidence intervals, whereas for the indi-

vidual-level models, the weighted mean of the parameter estimates are given with corresponding 95% confidence intervals for the population’s

parameter distribution (not standard errors).

Fig. 2. ML point estimates and 95% likelihood-profile confidence

regions for the individual gazelle time-scales. Foraging time-scales sF
range from two hours to a day, while ranging time-scales sH range from

tens to hundreds of days. The left sF = 0 boundary corresponds to the

OU model, while the bottom 1/sH = 0 boundary corresponds to a

model with regular diffusion at time-scales greater than sF and thus no

finite asymptotic ranging area. The origin corresponds to classical

Brownian motion. One can see that the ML estimate from the popula-

tion-level OUF model (Table 2) is located in the cluster of highly

peaked individual profiles at small sF and small 1/sH. While these indi-

viduals have very tight confidence intervals on their sF estimates, it is

also clear that many gazelles have much larger foraging time-scales

ranging from half a day to a day. One can see that a few gazelles were

consistent with OU motion, whereas none of the gazelles were consis-

tent with Brownian motion. What is not clearly visible in this plot is

that none of the individual gazelles touch the 1/sH = 0 boundary, and

so they are all predicted to have finite ranging areas, as one would rea-

sonably expect.
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are given in Fig. 4 and the joint utilization distribution of the

36 collared gazelles is given in Fig. 5, resulting in a joint-distri-

bution area of Ajoint
95% ¼ 200 000 � 3100 km2. Obviously, the

joint-distribution area of the population of � 1�1 million

gazelles will be even larger. However, the joint-distribution

area of a mere 36 gazelles already almost completely fills the

total available area of the Eastern Steppe, when bounded by

the fenced borders to China and Russia, as well as the Trans-

Mongolian railway, which is also fenced. Therefore, one can

easily predict that an analysis featuringmore individuals would

indicate that this entire area of land is being utilized (Fig. 6),

and so its encroachment would have a significant impact on

gazelle behaviour.

For comparison purposes, we also fit the data with both

Markovian and non-Markovian likelihood functions for the

isotropic OU model. The non-Markovian likelihood function

yielded a utilization range estimate similar to that of the

OUF model, whereas the Markovian likelihood function

resulted in a significantly smaller ranging area estimate of

30 120 � 660 km2. This mismatch is another indication of

significant bias in the Markovian likelihood function, as even

a bivariate Gaussian estimate (for an anisotropic 2D Gauss-

ian distribution without autocorrelation) yields an area esti-

mate of A95% = 63 480 � 500 km2. In other words, the

Markovian likelihood function has produced an area esti-

mate which is even worse than the simplest possible analysis.

By contrast, weighted variogram regression, which is also a

convenient estimator, yielded a more reasonable estimate of

A95% = 91 000 � 21 000 km2 (Fleming et al. 2014).

Discussion

We have introduced a rigorous method of modelling animal

movement focusing on the first two cumulants of a stochastic

process: the mean and autocorrelation function, which are suf-

ficient to describe drift and diffusion (Adelman 1976; Calzetta,

Roura & Verdaguer 2003). This method can incorporate a

diverse range of behaviours, including home-range fidelity,

searching and foraging. Using different movement models

beyond the three discussed here (BM, OU and OUF) allows

the approach to be extended to additional behaviour types,

such as migration. We express the models by their mean and

autocorrelation functions and then fit them to the data bymax-

imizing the (non-Markovian) likelihood function. This novel

approach to movement analysis allows us to identify mixtures

of movement processes at the individual level, along with their

corresponding characteristic time and length scales.

The flow of analysis we advocate (Fig. 1) involves three

stages, with the likelihood method being central. In the

first stage, one applies nonparametric estimators, such as

Fig. 3. Superimposed distributions of all mean-detrended gazelle loca-

tions in red, with the predicted density function for the population-level

anisotropic OUF model in blue, and blue contours delineating the

68%, 95%and 99�7% confidence regions. Structure present in the sam-

ple distribution represents not only deviation from the model, but also

the artefacts of bad gapping in the data and significant autocorrelation,

both of which cause clumping.

Fig. 4. ML point estimates and 95% likelihood-profile confidence

regions for the individual gazelle (95%CR) ranging and foraging areas.

Foraging areas vary from tens to hundreds of square kilometres, while

ranging areas vary from thousands to several hundred thousand kilo-

metres.

Fig. 5. An ecosystem and land coverage map of Mongolia outlining

the current geographical range of the Mongolian gazelle, which is

bisected by the Trans-Mongolian railway, and the result of our 36

gazelle study, with individual locations in light blue and a contour

delineating the 95% confidence region in dark blue. The 36 gazelle utili-

zation area does not correspond to a population range, but instead to

the most probable area containing the sampled gazelles 95% of the

time, with 5% of locations spilling out into less probable regions. We

further note that individual gazelle locations that are close together in

time receive lower weight in the calculation of the joint utilization area

than do observations that are farther apart. In other words, the uneven

time sampling of the gazelle data makes it all but impossible to visually

judgewhere the 95%probability contour should fall.
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variogram analysis (Fleming et al. 2014), to identify reason-

able movement models and obtain rough estimates of the

movement parameters. The identified movement models

should be capable of explaining the statistically significant and

visually apparent features of the mean, variogram and period-

ogram. In stage two, a likelihood analysis is used to obtain

more accurate parameter estimates, reliable confidence inter-

vals and a more efficient use of the data, allowing for fine-

grained analyses such as the estimation of anisotropy and indi-

vidual-level variability. In stage three, the best-fit mean and

autocorrelation functions are applied to obtain reliable and

statistically efficient estimates of quantities of interest that are

conditioned upon movement, and therefore based upon the

autocorrelation structure of the data.

There are four advantages of our likelihood approach over

variogram regression: heightened accuracy; reliable confi-

dence-interval estimation (Fleming & Calabrese 2013); robust-

ness to irregularities in the sampling schedule; and the ease

with which it can more naturally incorporate non-stationary

movement behaviours, such as migration. However, the likeli-

hood function requires that researchers identify a suitable

choice of movement model. For this purpose, a nonparametric

estimator, such as the variogram approach, remains useful as a

model identification tool. Our analysis has confirmed the exis-

tence ofmultiscalemovement processes suggested by the popu-

lation-level variogram analysis of Fleming et al. (2014), from

small-scale foraging to an asymptotic (multiyear) range (Table

2). The superior efficiency of maximum likelihood analysis

allowed us to obtain parameter estimates at the individual level

and in each of the spatial dimensions independently. This

analysis revealed significant variability among individuals as

well as pronounced directional bias in their movement.

Like the variogram method introduced in Fleming et al.

(2014), our non-Markovian likelihood approach conditions

upon all time-lags in the data, thereby avoiding the sampling

problem inherent in currently standard movement analyses.

For the conventional step-length and turn-angle analysis, such

limitations are well known (Bovet & Benhamou 1988; Turchin

1998; Codling & Hill 2005; Gautestad 2012; Fleming et al.

2014). However, we have demonstrated that similar limitations

also apply to Markovian likelihood functions that condition

upon differenced data (see Appendix S3). In contrast to ad hoc

estimators such as minimum convex polygons and kernel den-

sities, the home-range and area utilization estimation provided

by our likelihood analysis is inherentlymechanistic, as it condi-

tions upon the appropriate autocorrelation structure present

in the data. Moreover, as the underlying model is stochastic

and self-consistent, there is no fine tuning of ancillary parame-

ters, such as a degree of refinement or bandwidth size. Com-

pared to mechanistic home-range analysis (MHRA)

(Moorcroft, Lewis & Crabtree 2006; Moorcroft & Lewis

2006), the parametric home-range estimator introduced here is

limited because the stationary distributions of individuals will

always be Gaussian. This stationary approach is inappropriate

for migratory species. However, this limitation can be resolved

through the use of non-stationary movement processes and

related approaches, which we leave for a future effort. Two

factors give our non-Markovian likelihood estimator an

advantage over MHRA. First, MHRA requires a much more

detailed understanding of the underlying movement mecha-

nisms. Second, MHRA conditions upon advection-diffusion

equations, which are inherently incapable of generating the

multitime correlations that can be generated by Langevin

equations (Calzetta, Roura & Verdaguer 2003), which are the

stochastic (and possibly integro-differential) equations of

motion for the animal trajectories. The limitation implies that

the larger class of non-Markovian processes, and OUF in par-

ticular, cannot be modelled with MHRA, at present. On the

other hand, the MHRA has a more detailed and mechanistic

description of the movement process, and so it allows for the

prediction of movement behaviours under hypothetical

conditions.

The likelihood analysis is efficient and robust enough to fit

to each individual gazelle, which paves the way formany future

analyses that require individual-level estimates of movement

path autocorrelation structure. Quantities of interest that

require such estimates (Fig. 1) include optimal (nonparametric)

home-range estimation, interpolation and forecasting of ani-

mal locations, path length and instantaneous velocity estima-

tion, and transitions between behavioural states. The

individual-level analysis, whichwas precluded in the variogram

analysis by too little data (Fleming et al. 2014), also enables

the exploration of hypotheses on the relationships between dif-

ferent characteristic movement scales. Although no obvious

trends presented themselves in Figs 2 and 4, any relation

between time-scales, length scales, diffusion or rate scales can

be tested with the likelihood function. It is clear from our

analysis that the population scales are well defined by a single

global maximum in the likelihood profile, but the individual

scales vary significantly within the population (Table 2). This

naturally suggests the hypothesis that some of the variability in

movement behaviour among individuals may be attributable

to variability in the environment. We will explore this idea in

the future using individual-level analyses that relate movement

processes to environmental covariates.
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Fig. 6.. Joint utilization areas for collared gazelles as a function of

(sample) population size in blue. The thick red curve outlines the

asymptotic utilization behaviour, whereby a very small number of

gazelle utilize the entire Eastern Steppe, and the dashed black line rep-

resents the hypothetical asymptotic joint utilization area, which is

quickly filled by a relatively small sample of gazelles.
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