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Abstract

The hickory genus (Carya) contains ca. 17 species distributed in subtropical and tropical regions of eastern Asia and
subtropical to temperate regions of eastern North America. Previously, the phylogenetic relationships between
eastern Asian and eastern North American species of Carya were not fully confirmed even with an extensive
sampling, biogeographic and diversification patterns had thus never been investigated in a phylogenetic context. We
sampled 17 species of Carya and 15 species representing all other genera of the Juglandaceae as outgroups, with
eight nuclear and plastid loci to reconstruct the phylogeny of Carya. The phylogenetic positions of seven extinct
genera of the Juglandaceae were inferred using morphological characters and the molecular phylogeny as a
backbone constraint. Divergence times within Carya were estimated with relaxed Bayesian dating. Biogeographic
analyses were performed in DIVA and LAGRANGE. Diversification rates were inferred by LASER and APE
packages. Our results support two major clades within Carya, corresponding to the lineages of eastern Asia and
eastern North America. The split between the two disjunct clades is estimated to be 21.58 (95% HPD 11.07-35.51)
Ma. Genus-level DIVA and LAGRANGE analyses incorporating both extant and extinct genera of the Juglandaceae
suggested that Carya originated in North America, and migrated to Eurasia during the early Tertiary via the North
Atlantic land bridge. Fragmentation of the distribution caused by global cooling in the late Tertiary resulted in the
current disjunction. The diversification rate of hickories in eastern North America appeared to be higher than that in
eastern Asia, which is ascribed to greater ecological opportunities, key morphological innovations, and polyploidy.
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Introduction

As one of the typical phytogeographic disjunctions in the
Northern Hemisphere, the eastern Asian (EA)-eastern North
American (ENA) floristic disjunction pattern has received
considerable attention (see 1-4 and references therein). This
pattern is often explained by the boreotropical flora hypothesis
[5]. A relatively continuous, homogenous mesophytic forest that
spanned the Northern Hemisphere during the climatically warm
mid-Tertiary became fragmented as global temperature cooled
down in the late Tertiary and Quaternary [1,3,5-9]. Both the
Bering land bridge (BLB) [10,11] and the North Atlantic land
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bridge (NALB) [12,13] probably contributed to the floristic
intercontinental exchanges to form the boreotropical flora.
Paleontological and molecular data suggest that BLB was used
mostly by temperate taxa during the late Miocene and Pliocene
(<10 Ma [4,8,14]). NALB has been viewed as a crucial route for
the spread of subtropical and tropical taxa in the early Tertiary
[5,6,13,15]. So far, most studies have focused on the
temperate taxa in EA and ENA (see 1,3,14,16 and references
therein); our understanding of the biogeographic relationships
of the groups involving subtropical and tropical elements is still
preliminary [3]. It is also noteworthy that species diversities
within the two regions differ markedly. For taxa that distinctly
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Figure 1. Geographic distribution of both extant and extinct Carya species. The black areas indicate the geographical
distribution of extant Carya showing its disjunction between EA and ENA. Colored circles denote the locations of Carya fruit fossils

(detailed information of each fossil in Table S4).
doi: 10.1371/journal.pone.0070449.g001

distributed in EA and ENA, the former region usually has higher
species richness than the latter [1,17,18]; this has been
attributed to greater net speciation rate and accelerated
molecular evolution in EA species [19]. However, several
groups present a reverse biodiversity pattern, such as Catalpa
(Bignoniaceae), Lyonia (Ericaceae), and Carya
(Juglandaceae), in which ENA harbors more species [1]. Thus,
to better understand the evolution of biodiversity in the two
regions, an effort should be made to broaden the phylogenetic
and biogeographic investigations on various disjunct taxa.

The hickory genus Carya, one of eight genera of the
Juglandaceae, exhibits an intercontinentally  disjunct
distribution between EA and ENA (Figure 1). According to the
records in Flora of North America [20] and Flora of China [21],
Carya contains eleven species in ENA and four in EA. The
ENA Carya ovalis (Wangenh.) Sarg. was treated as a synonym
of C. glabra by Flora of North America [20], but this treatment is
still controversial as both taxa quite distinct morphologically
[22]. Carya sinensis Dode, endemic to southwestern China,
was formerly treated as the monotypic genus Annamocarya,
but it belongs to Carya according to molecular phylogenetic
analyses [23,24]. Carya poilanei (Chev.) Leroy is also an
accepted name of an EA hickory [25], which only has two
specimen collections in Laos, collected in 1932 and 1937 [26].
Using ITS data, Xiang et al. [19] sampled three EA species and
six ENA species and found that the EA clade was nested within
the ENA grade; thus the two major clades of Carya,
corresponding to geographical distribution, were not recovered.
Based on morphology (64 characters) in combination with
sequence data from three genomic regions (ITS, trnL-F, and
atpB-rbclL), sampling the same nine species, two clades
corresponding to the distributions of hickories in EA and ENA
were recovered [23,24]. Because the importance of increased
taxon sampling to enhance phylogenetic accuracy has been
supported by several studies (see 27,28 and references
therein), it is desired to test the reliability of phylogenetic
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relationships between EA and ENA species of Carya with an
analysis including more species and more molecular loci.

According to the climate classification of Troll and Paffen
(see 29), in EA, three hickory species are distributed in
subtropical regions (C. cathayensis, C. hunanensis, and C.
kweichowensis), and three in tropical regions (C. poilanei, C.
sinensis, and C. tonkinensis). The ENA hickory species are
distributed in the subtropical to temperate regions, with several
species more prominent in temperate regions, such as C.
glabra, C. ovata, and C. illinoinensis. Moreover, Carya also has
a rich macrofossil record of fruits and leaves in North America
[30,31] and Asia [30], as well as Europe [30,32,33]. Xiang et al.
[34,35] have suggested that fossil taxa, especially those from
sites outside the extant distribution, should be included in
biogeographic analyses. Morphological data can be collected
from both extinct and extant taxa, allowing the inclusion of
fossils in the analyses and providing a more complete window
to the evolutionary history that might not be revealed by
molecular data alone [36,37]. The Juglandaceae contains at
least eight extinct genera [30,38]. Some studies have
attempted to reconstruct the genus-level phylogeny for
Juglandaceae including extant and extinct genera [23,24,30]. It
is feasible to explore the biogeography of Carya in the
phylogenetic framework and geographic range of the whole
family. Thus, Carya offers a remarkable opportunity to study
biogeography and diversification of an EA-ENA disjunct group
distributed across the temperate, subtropical and tropical
regions in two continents.

The aims of our study were to (1) investigate phylogenetic
relationships between EA and ENA species of Carya using
eight plastid (matK, rbcL-atpB, rpoC1, rps16, trnH-psbA, and
trnL-F) and nuclear (ITS and phyA) loci and an extensive taxon
sampling, (2) reconstruct the historical biogeography of Carya
by combining fossil, morphological, and molecular data, and (3)
explore the causes of the unusual species richness pattern of
EA and ENA Carya.
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Materials and Methods

Ethics Statement

No special permits were required for this study because all
samples were collected by researchers with introduction letters
of IBCAS (Institute of Botany, Chinese Academy of Sciences)
in Beijing, and this study did not involve endangered or
protected species. Voucher specimens were deposited in the
Herbarium, Institute of Botany, Beijing (PE).

Sampling, DNA isolation, and sequencing

We sampled 17 accessions representing five species from
EA, including C. sinensis (formerly treated as Annamocarya
sinensis), recorded in Flora of China [21], and eleven species
from ENA as recognized in Flora of North America [20] as well
as C. ovalis. Only C. poilanei was not sampled because no
material was available for no more records have been found
since 1937 [26]. Fifteen species representing all other seven
genera of Juglandaceae were also sampled. All trees were
rooted with Rhoiptelea chiliantha [23,24,39]. Voucher
information and GenBank accession numbers are listed in
Table S1.

Eight markers, including plastid (matK, rbcL-atpB, rpoC1,
rps16, trnH-psbA, and trnL-F) and nuclear (ITS and phyA) loci
were used to reconstruct the phylogeny of Carya and its
relatives. Total DNA was extracted from silica-gel-dried leaf
material using TianGen extraction kits (Beijing, China). The
selected DNA regions were amplified with standard polymerase
chain reaction (PCR). PCR primers used for amplifying and
sequencing the eight plastid and nuclear loci are shown in
Table S2.

Molecular phylogenetic analyses

The resulting sequences were initially subjected to a search
in BLAST (implemented by the National Center for
Biotechnology Information (NCBI) website http://
www.ncbi.nim.nih.gov) against the GenBank nucleotide
database to test for contamination and to confirm the targeted
markers. All correct sequences were aligned using Clustal X
version 2.0 [40], then adjusted manually in BioEdit version 4. 8.
10 [41]. Phylogenetic analyses were conducted using
maximum likelihood (ML) and Bayesian inference (BI)
methods. ML analyses were done at the Cyperinfrastructure for
Phylogenetic Research (CIPRES; www.phylo.org) running
RAXML-HPC2 on XSEDE [42,43] with the default settings
except that the GTR + I model was applied. Analyses of each
independent data set produced no topological discordance with
ML bootstrap proportions > 70%, and the eight data sets were
therefore concatenated, yielding a combined molecular data
set of 6024 characters (Dataset S1). Substitution model
parameters were estimated separately for two partitions as
plastid (matK, rbcL-atpB, rpoC1, rps16, trnH-psbA, and trnL-F)
and nuclear (ITS and phyA) data partitions. The appropriate
substitution models were determined using jModelTest version
1.0 [44]. Both partitions used the GTR + I' model. Bayesian
inference was performed using MrBayes version 3.1.2 [45].
The MCMC algorithm was run for 5,000,000 generations with
four incrementally heated chains, starting from random trees
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and sampling one out of every 1000 generations. Trees
sampled before stable posterior probability (PP) values had
been reached were excluded from consensus as a burn-in
phase (initial 20% of the sampled trees), and the remaining
trees were used to construct the Bayesian majority-rule
consensus tree.

Morphological phylogenetic analyses

A previously published morphological matrix [24] with 64
vegetative, floral, and fruit characters was modified to include
more extant and extinct species, and the modified matrix
(Table S3) was used to reconstruct a phylogenetic tree
including both extant and fossil species of the Juglandaceae.
Seven extinct genera have been included, with three fossils,
representing extinct genera Hooleya, Palaeocarya, and
Paraengelhardia newly added in this study. The coding of their
morphological characters of the fossils was done according to
the descriptions of Manchester [30]. Combined analysis of
fossil and extant taxa with morphological and molecular data
was performed using the DNA scaffold method [24] under
Maximum Parsimony (MP) search on PAUP* version 4.0b10
[46], with the tree from our phylogenetic analysis of extant
species used as the backbone constraint.

Dating estimates

We estimated the divergence times within Carya using the
combined molecular data set in BEAST version 1.7.4 [47].
BEAST employs a Bayesian MCMC to co-estimate topology,
substitution rates, and node ages. Based on our phylogenetic
analyses of extant and extinct genera in the Juglandaceae, four
fossils were used for calibration purposes. Two fossils of
extinct genera were used as minimum-age calibration points.
Paleooreomunnea stoneana is from the middle Eocene [48],
and it is sister to the Oreomunnea-Alfaroa clade; we therefore
used 40.4 to 48.6 Ma to calibrate the node age of the
Oreomunnea-Alfaroa-Engelhardia clade [49].  Polyptera
manningii is from the early Paleocene [50] and is sister to
subtribe Juglandinae (including Cyclocarya, Juglans, and
Pterocarya) and Platycarya; and we used its minimum age 64
Ma [49] to constrain the stem of the Juglandinae clade.
Additionally, Cyclocarya brownii is an extinct species of
Cyclocarya, which now comprises a single living species
Cyclocarya paliurus in China [51]; thus we used 55.8 to 61.6
Ma [49] to constrain the stem age of Cyclocarya. These three
calibration points were constrained with the lognormal prior
distribution. In each implementation, the minimum age of each
fossil was used as an offset value. In addition, we adjusted
standard deviation and the mean in log space to match the
maximum bound of each fossil with the 97.5% of the
distribution [52]. An age of 84 Ma was used to constrain the
maximum root age of the phylogeny, which is the age of the
earliest Fagales fossil Antiquacupula [53-55], with a normal
prior distribution (standard deviation, 0.5) [49,55].

The data set was partitioned based on plastid or nuclear
genomes. According to the results of jModelTest version 1.0,
we used the GTR + ' model as described above. A starting
tree with branch lengths satisfying all fossil prior constraints
was created using the program r8s version 1.7 [56] by non-
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Table 1. Net diversification rates (r) estimated for Carya
based on the equation (7) of Magallén and Sanderson [59].

Crown group age Number of
Clade (95% HPD) Ma species r(e=0) r(=0.9)
Carya 21.58 (11.07-35.51) 17 0.0991 0.0418
ENA Carya 10.10 (5.26-16.78) 12 0.1774 0.0682
EA Carya  12.81 (5.60-22.04) 5 0.0716 0.0218

Note: ¢, the relative extinction rate

parametric rate smoothing (NPRS) [57]. Beast analysis was
performed with an uncorrelated lognormal relaxed molecular
clock model for 100,000,000 generations. Adequate sampling
and convergence of the chain to stationarity were confirmed by
inspection of MCMC samples using Tracer ver. 1.5 [58], as all
parameters of the effective sample size (ESS) values were
greater than 200, suggesting sufficient sampling in our BEAST
analysis. A maximum-credibility tree, representing the
maximum a posteriori topology, was calculated after removing
50% burn-in with TreeAnnotator version 1.5.4 [59], which also
calculated the mean ages and 95% highest posterior density
(95% HPD) intervals for each node.

Biogeographic analyses

After estimating the phylogenetic relationships including
fossils, we derived a summary tree at the generic level.
Subsequently, according to the records of fruit fossils of Carya
(Table S4) [30], we mapped three branches to represent the
distributions of Carya in the Eocene, Oligocene, and early
Miocene, respectively. Each branch was inserted manually in
the newick chronogram along the stem lineage of Carya, with
placement according to their position in the geologic time scale.
Using this phylogeny, we employed the dispersal-vicariance
analysis (DIVA) [60] and a maximum likelihood based method
LAGRANGE [61,62] to construct the biogeographic history of
Carya. Biogeographic analyses were also conducted without
fossil information. Based on the geographical distribution
patterns of extant and extinct genera of Juglandaceae (Table
S5), we categorized the distributions into the following endemic
areas: North America (A), Europe (B), and Asia (C).

Diversification rate analyses

To visualize the temporal diversification in Carya, we
produced lineage-through-time (LTT) plots using the R
package APE [63]. Plots were produced for 1000 sampled
trees from the converged BEAST trees for entire Carya genus,
then its EA lineages, and its ENA lineages, respectively. The
net diversification rate (r) for each clade within Carya was also
estimated following equation (7) of Magallén and Sanderson
[64] for crown groups under the assumptions of either no
extinction (¢ = 0) or high relative extinction (¢ = 0.9) to evaluate
relative species diversification between clades. Calculations
were done using the R package LASER [65] and the crown age
of each clade was inferred from the BEAST analysis (Table 1).
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Results

Phylogenetic analyses

A total of 200 sequences were newly obtained (Table S1).
ML and Bl result in almost the same trees (Figure 2). Within the
Juglandaceae, two major clades are identified. One includes
Alfaroa, Engelhardia, and Oreomunnea (maximum likelihood
bootstrap support, MLBS 100%; PP 1.00). Carya, Cyclocarya,
Juglans, Platycarya, and Pterocarya form the other clade
(MLBS 99%; PP 1.00), in which Carya is sister to the clade of
the remaining genera.

Carya is strongly supported as monophyletic (MLBS 100%;
PP 1.00), and two major clades are well supported, which
correspond to an EA group (MLBS 98%; PP 1.00) and an ENA
group (MLBS 98%; PP 1.00), respectively. Within the EA
group, C. cathayensis and C. kweichowensis are in a clade that
is sister to a subclade of the remaining three species. In the
ENA group, the relationships among ENA species are poorly
resolved; nevertheless C. ovalis and C. tomentosa form a clade
with moderate or strong support (MLBS 75%; PP 1.00).

The placements of extinct genera are resolved in our
analysis (Figures 3A and 4A). Three extinct genera,
Paleooreomunnea, Palaeocarya, and Paraengelhardia form a
clade, sister to the extant Alfaroa-Oreomunnea clade. The
extinct Paleoplatycarya and the extant Platycarya form a clade,
which is sister to the extinct Hooleya. The extinct Cruciptera is
sister to the clade containing extant Juglans and Pterocarya.
The extinct Polyptera and the extant Carya are in a clade.

Historical biogeography and divergence times

The chronogram of Carya is shown in Figure 5. Based on our
dating estimates, the age of the Juglandaceae is 77.15 (95%
HPD 70.76-83.76) Ma, and the time of origin of Carya is 66.64
(95% HPD 63.30-71.26) Ma. The split between the EA and
ENA clades occurred at 21.58 (95% HPD 11.07-35.51) Ma. EA
and ENA Carya began to diversify at 12.81 (95% HPD
5.60-22.04) Ma and 10.10 (95% HPD 5.26-16.78) Ma,
respectively.

Based on the phylogenetic tree including both extant and
extinct genera of the Juglandaceae, the DIVA and LAGRANGE
analyses suggest that Carya originated in North America
(Figures 3A and 4A). In contrast, results from the analyses for
the only extant genera of Juglandaceae, however, indicate that
the ancestral area of Carya is Asia (Figures 3B and 4B).

Diversification rates

The lineage-through-time (LTT) plots for the EA and ENA
clades are shown in Figure 5. Compared with the EA clade, the
ENA clade had a dramatic accumulation of lineages after the
middle Miocene. Our diversification rate estimates based on
net diversification rates (r) following equation (7) of Magallén
and Sanderson [64] also showed that the ENA clade had a
significantly higher net diversification rate (r) than the EA clade
after the middle Miocene (¢ = 0, 0.0863 > 0.0389; ¢ = 0.9,
0.0682 > 0.0218; Table 1).
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Discussion

Phylogeny

Juglans-Platycarya-Pterocarya clade. The results are
congruent with those of previous studies [23,24]. Within Carya,
two monophyletic groups corresponding to geographic

Our phylogenetic analyses indicate that the Juglandaceae distributions (EA and ENA) are well supported (EA: MLBS
comprise two major clades. Carya is sister to the Cyclocarya- 98%; PP 1.00; ENA: MLBS 98%; PP 1.00). Given that
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incomplete taxon sampling can sometimes influence
phylogenetic inference [66], our analyses with an extensive
sampling further clarified the correlation of phylogenetic
relationships and geographic distributions in Carya. Although
Stone [20] treated C. ovalis as a synonym of C. glabra, our
analyses indicate that C. ovalis is sister to C. tomentosa.
Morphologically, C. ovalis differs from C. glabra in many
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characters, such as reddish petioles (vs. plain), fruit stipe rarely
present (vs. often present), dehiscence of the fruits to the base
(vs. only at apex or to middle), mature husk warty and dull (vs.
smooth and shining), and nut shell ridged and thin (vs. not
ridged and thick) [22].

Seven extinct genera were placed into the phylogenetic
framework of extant species using the DNA scaffold method.
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Four of these, ie., Cruciptera,  Paleoplatycarya,
Paleooreomunnea, and Polyptera, were also used by Manos et
al. [24]. The placement of Cruciptera was congruent with that in
previous studies [23,24,30]. Paleooreomunnea and the two
newly added extinct genera Palaeocarya and Paraengelhardia
formed a clade showing a close relationship with an extant
clade that includes Alfaroa, Engelhardia, and Oreomunnea.
The sister relationship between Paleoplatycarya and
Platycarya from our inferences was also recognized in the
study of Manos et al. [24]. For the extinct genus Polyptera,
previous studies suggested it sister to the clade containing
Juglandinae (Cyclocarya, Juglans, and Pterocarya) and Carya
[50,67]. Our results support Polyptera with a closer relationship
to Juglandinae than Carya. This may be ascribed to the
similarity of some morphological characters. For example, both
Polyptera and Cyclocarya have the pollen with equatorial pores
readily distinguished from the subequatorial pores of Carya
[23]; the production of a large number of fruits on a spicate
infructescence in Polyptera is similar to the situation in
Cyclocarya and Pterocarya; and both Polyptera and
Cyclocarya have a disk-like wing oriented perpendicular to the
nut axis [50].

Evolution of intercontinental disjunctions in Carya

Both DIVA and LAGRANGE analyses including fossil
information suggested North America as the ancestral area for
Carya, but analyses without fossil information indicated that
Carya originated in Asia. Because Carya has a pollen type
known as Caryapollenites, which was suggested to be derived
directly from Normapolles [30,68], the origin of Carya should be
within or at least near the distribution of the Normapolles
complex, which defines a middle to late Cretaceous province
including ENA and Europe. Therefore, the palynological
evidence supports the inference by the analyses with fossil
information for an origin in North America. Although Carya is
not native in Europe today, according to the fossil evidence,
Europe was a center of diversity of Carya during the Tertiary,
especially during the Miocene, with some species extending
even to the Quaternary [30]. The difference in ancestral area
reconstruction is likely due to the much broader geographic
distributions of the fossils. Hence, the fossil information is
particularly important for reliably reconstructing the historical
biogeography of Carya and the following discussion is based
on the result inferred by the analyses that included occurrence
data from the fossil records.

Our result for the age of the Juglandaceae, as 77.15 (95%
HPD 70.76-83.76) Ma, is similar with the outcome of Sauquet
et al. [49] inferred with the default calibrations, as 72.6 (95%
HPD 64.4-81.3) Ma. Our estimations are also congruent with
those of Manos et al. [24] who constrained the minimum age of
the Juglandinae clade at 58 Ma. The age of the subfamily
Juglandoideae (including Platycarya, Carya, Cyclocarya,
Juglans, and Pterocarya) is herein estimated as 66.64 [95%
HPD 63.30-71.26] Ma, which is almost the same as the
estimation of 65.0 [95% HPD 58.3-73.0] Ma by Sauquet et al.
[49] using the default calibrations. In addition, based on the
presence of fossil pollen which is similar to that of extant Carya
of western Europe and North America in the Late Paleocene.
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Manchester [30] noted that the first hint of the Carinae (the
subtribe including Carya) occurred in the Paleocene. This also
supports our estimate for the stem age of Carya dating back to
the Paleocene (66.64 [95% HPD 63.30-71.26]). Therefore, the
divergence date estimates inferred by our calibration points
should be reliable to reconstruct the biogeographic history of
Carya.

The age estimates and biogeographic analyses suggest
Carya originated in North America during the early Paleocene.
Previous studies have inferred that a relatively uniform, warm
climate was prevalent in the Northern Hemisphere during the
early Tertiary, which allowed populations of the boreotropical
flora to move between continental areas via northern land
bridges [4-6,15,34]. Both the BLB and NALB played important
roles in plant exchanges during the Tertiary, but with differential
importance in different geologic times [34]. Previous studies
suggest that the floristic migration via the NALB was possible
during the Paleocene and Eocene, and it was more likely to be
used by thermophilic species [5,6,13,15]. The BLB was used
mostly by temperate taxa during the late Miocene and Pliocene
(<10 Ma [4,8,14]). The divergence time of the two Carya clades
indicates that Carya likely migrated from North America to
Europe via the NALB like other thermophilic groups, such as
Ampelopsis (Vitaceae) [69], Cercis (Fabaceae) [70], Cornus
(Cornaceae) [35], Malpighiaceae [71], and Quercus
(Fagaceae) [72]. The distribution pattern of Carya fossils also
supports this inference. Given that the NALB connected North
America and western Europe, Carya-like pollen was abundant
in both continents and nuts have been confirmed from the late
Eocene of North America [31]. Oligocene and younger
macrofossils of Carya have been confirmed in western Europe,
supporting an Oligocene regional diversification. In contrast,
the earliest eastern Asian Carya fruit fossils occurred only in
the Miocene (Figure 6). The group might have entered Asia
from Europe as the Turgai seaway receded, and/or from North
America via the BLB.

Starting in the Miocene, there was a distinct climatic cooling
period across the high Ilatitude areas of the Northern
Hemisphere, which may have resulted in a reduction of the
distribution of forests [5]. According to the maps of the past
geographic ranges of Carya presented by Manchester [30] and
Mai [32], Carya was more broadly distributed in the Miocene,
with occurrences including Europe, Siberia, and western North
America, where the genus is absent today. The present
disjunct distribution of Carya between EA and ENA can be
explained by extinctions in large parts of its former ranges.
Therefore, extinctions caused the range fragmentation of
Carya, ultimately leading to the modern intercontinental
distribution between EA and ENA. Extinction events could have
extirpated the old stem relatives that diverged prior to the
extant crown radiation, leaving a phylogeny that includes only
extant taxa with long stems and species-rich crowns [73]. A
remarkably long “temporal gap” between the Carya stem age
(the Early Cretaceous) and the beginning of the extant
radiation (the Early Miocene) is detected, which supports that
Carya has been experienced several extinction events during
the Tertiary.
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Higher diversification rate in the ENA Clade

Our results of diversification analyses showed that ENA
Carya has a significantly higher diversification rate than EA
since the Miocene. Both environmental [74-77] and biological
attributes [78-80] may directly facilitate species diversification
[81-83]. The formation of geologic barriers is one of the most
important factors driving speciation [84-87]. For ENA, after
being largely eroded to plains by the end of the Mesozoic,
renewed uplift of Appalachian Mountains occurred during the
Tertiary [88,89]. According to the data from the sedimentation
rates and fault ages, this major uplift occurred during the late
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Oligocene to Miocene, followed by a quiescent interval, in
which erosion occurred that lasted until the end of Miocene
[90-96]. These dramatic changes of environments offered
many ecological opportunities, contributing to divergence in
several taxa in this area [87,97-103]. This is consistent with our
inference that ENA Carya underwent a high diversification rate
since the late Miocene. On the other hand, EA Carya taxa are
primarily distributed in central, south-central, and south-eastern
China, a region that was relatively stable tectonically since the
late Tertiary [104,105]. This stability allowed these areas to be
refugia, facilitating the survival of many relict plant lineages
during the cold period of the Tertiary. Once climatic conditions
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improved, not all refugial species were able to migrate out but a
significant proportion of species remained restricted [105-108].
Hence, these species exhibit disjunct distributions and
relatively lower diversification rates [109]. The EA Carya
lineage is a typical example of this pattern. Although during
[110-112] or immediately before [113,114] the Pliocene and
Pleistocene, the major uplift of the Tibetan Plateau took place
in EA, which created a vast array of new habitats across wide
elevational ranges in the eastern fringe of the Tibetan Plateau
[115], the distribution areas of EA Carya are not part of this
region.

ENA Carya species have terminal bud scales, while the EA
species have naked terminal buds (excluding C. sinensis with
pseudo-valvate terminal bud scales). The presence of bud
scales is considered to be an adaptation for cooling climates
[116], so the ENA species may be better adapted for the cooler
temperate climate since the Miocene. At least six ENA Carya
species (C. floridana, C. glabra, C. myristiciformis, C. pallida,
C. texana, and C. tomentosa) are tetraploid (n = 32)
[20,117,118], and the only confirmed count for EA Carya
species is diploid (C. cathayensis, n = 16 [20,119]).
Polyploidization may allow species to adapt to dramatic
changes in the environment [118,120,121], so that polyploid
lineages may have higher diversification rates than that of
diploid lineages [122,123]. Furthermore, sympatric Carya
species in southeastern Ohio have shown distribution
replacement especially concerning topography and its
associated microhabitats [124]. Thus, the richness of ecological
opportunities, key morphological innovations, and polyploidy
may have been responsible for the high diversification rate of
ENA Carya.
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