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Abstract

Background: Although numerous studies model species distributions, these models are almost exclusively on single
species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared
history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor
lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known
localities and four ecological parameters.

Methodology/Principal Findings: We geo-referenced 751 localities for the four most studied Nephilengys species: N.
cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each
locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land
cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and
ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution.
For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and
the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined
to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis,
however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in
the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the
suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of
Australian (sub)tropics.

Conclusions: Our model is a customizable GIS tool intended to predict current and future potential distributions of globally
distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat
destruction and global climate change.
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Introduction

Imagine a map of the world with detailed localities for past,

present and future occurrence of species. A tool such as this, if

available for multiple species representing most lineages of living

beings, could be utilized beyond simple biodiversity assessments. It

could serve conservation purposes, landscape planning, tourism,

biomedicine, global change monitoring and management of

invasive species, to name but a few of numerous potential uses.

Such a tool unfortunately does not exist, but the ubiquity of

detailed taxonomic revisions and the wide availability, and

sophistication, of GIS and machine learning softwares, should

make it possible in the very near future. Today, numerous GIS

distribution studies exist at local [1–5] to continent and global

scales using single species [6]. However, to our knowledge, no

published study has focused on a global prediction of habitat

suitability for a whole evolutionary lineage of species, based on

actual specimen records and on ecological simulation [7]. Taxa

that are each other’s closest relatives have comparable evolution-

ary ages, comparable life histories as modified from the traits

inherited from the common ancestor, and importantly, these taxa

have likely experienced similar ecological histories. We argue that

studying several closely related species in a spatial and ecological

context can offer insights into broader patterns of species ecology

and exclusivity than studies confined to single, or several unrelated

species. Here, we present such a study on a clade of terrestrial

invertebrates—spiders.

Spiders are megadiverse, ubiquitous, and as general predators,

they are crucial elements of terrestrial ecosystems [8]. A large

percentage of spider diversity belongs to orb weaving spiders,

Orbiculariae [9], and these are particularly suitable for global level

studies because of their conspicuousness in most biomes. We chose
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to model global habitat suitability of the orb weaving hermit

spiders, genus Nephilengys, for several reasons beyond their global

reach. First, the genus is taxonomically revised [10,11], yet with six

species remains relatively species poor and thus manageable for

such a project. Second, these species range from small island

endemics (N. dodo, N. borbonica) to species widely spread over

continents [10,11]. Third, this taxonomic and geographic

knowledge is based on a wealth of examined specimen records,

available as geographic data points [10,11]. Fourth, there is strong

evidence that the six species currently recognized are globally fully

allopatric [10,11], which hints at their geographic, ecological and

behavioral exclusivity. Finally, these extremely sexually dimorphic

nephilid spiders are becoming model organisms in a range of

disciplines [11–14] and thus predicting their habitat suitability, or

even future occurrence would facilitate further research of their

biology.

Figure 1 shows the currently known ranges for all six Nephilengys

species, which are i) tropical, and ii) show a range in inhabited

areas from limited island distributions, such as in N. livida

(Vinson, 1863), N. borbonica (Vinson, 1863) and N. dodo Kuntner &

Agnarsson, 2011, to a wider distribution over several islands as in

N. papuana Thorell, 1881, and to extremely wide distributions

over vast areas as seen in N. malabarensis (Walckenaer, 1841) and

N. cruentata (Fabricius, 1775), the latter being even spread

intercontinentally. There is circumstantial evidence, partly from

their natural history and partly genetics, that these spiders are

moderately good dispersers [12], and as such they probably can

travel by air (balloon) long distances as juveniles. However, their

establishment in new areas and consequently their fine scale

distribution depends on the proximity, accessibility, and,

primarily, the ecological suitability of the available space. Their

natural history suggests that they need hard vertical surfaces

(trees) to anchor their large webs [10,14]. As any terrestrial

organism, they further need spaces of suitable elevation, year

round temperature and sufficient precipitation. We thus account-

ed for these ecological parameters and combined them with all

Nephilengys specimen records, which we databased and georefer-

enced. We then devised a GIS model [15] to predict habitat

suitability of Nephilengys species globally. We discuss the results in

the light of potential uses of the model in the future, in particular

how the maps may predict species propensity to invade previously

uninhabited territories.

Figure 1. Global distribution of hermit spiders (Nephilengys species) based on all available data (Table S1) with the numbers of
specimen records per species (inset).
doi:10.1371/journal.pone.0030047.g001

Global Nephilengys Distribution Model
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Methods

Locality data
We used the available Nephilengys locality data from a

comprehensive taxonomic revision [10] and updated them for

taxonomic changes affecting the island species in the Indian

Ocean [11]. All georeferenced data contain historic collections

from 27 museums [10] and additional specimen records from our

recent collecting trips to South Africa (2006), Brazil (2007), the

islands of the Indian Ocean (2008, 2010), and Southeast Asia

(2007–2011). We used a variety of online gazetteers and Google

Earth to georeference the unknown localities, but excluded from

this analysis all ambiguous localities. The final list contains 760

specimen records for all known six Nephilengys species (see Table

S1) and these records are shown on the World map (Fig. 1).

However, two species from the Indian Ocean islands of Réunion

(N. borbonica) and Mauritius (N. dodo) are only known from a few

localities (Fig. 1; [11]). Our preliminary analysis of all species

revealed that these two species are too poorly represented in our

georeferenced sample to be meaningful in predicting their ranges.

Thus, they were omitted from the model, where we only treat the

four species represented with putatively adequate data: N. cruentata

(specimen records N = 436), N. livida (N = 138), N. malabarensis

(N = 138) and N. papuana (N = 39).

Ecological parameters
Our model (Text S2) considers four ecological attributes for

each georeferenced locality that are deemed the most decisive in

local spider distribution [8,15,16]: elevation (m), annual mean

temperature (degrees C), annual mean precipitation (mm), and

land cover (Table 1, Table S1). We obtained three ESRI grid

layers available on the WORLDCLIM database [17] for the first

three parameters, and used the layer with global land cover from

the years 1999–2000 [18]. All overlaying grid layers have a

spatial resolution of 1 km at the Equator and use WGS84 datum.

As global projected coordinate system, we used Cylindrical

Equal Area, in order to measure areas without any distortion

[19].

Statistical Analyses
Our model is based on regression analysis using all four

ecological parameters (TMA, PMA, ALT and GLC; Table 1) as

independent variables [20,21], with each geographical coordinate

per species, and hence habitat suitability, representing a

dependent variable [22,23]. This results in a probability

distribution of the ecological conditions at each location [24].

To test which of the four parameters have the highest influence on

species distribution, and to select two best fit parameters, we

performed a linear backward regression analysis using spatial

statistics in ArcGIS 9.3.1 [25], which employs Ordinary Least

Squares (OLS) and Geographically Weighted Regression (GWR)

to compute linear regression. OLS is the more general analysis

representing a global modeling regression using all four ecological

parameters. The OLS analysis assesses model performance

through various results including the robust probability, the

Variance Inflation Factor (VIF) and the two metrics reported in

Table 2, namely the adjusted R2 and the Akaike Information

Criterion (AIC; [26]). The OLS regression helps us to detect

multicollinearity severity through VIF, an index measuring how

much the variance of the estimated regression coefficient was

increased because of collinearity. Explanatory variables with a VIF

greater than 7.5 were removed one by one, until the obtained

model became unbiased. Also, the robust probability has indicated

the most statistically significant variables. After examining the

robust probability and VIF values, we re-ran OLS removing the

variables following backward linear regression until the remaining

variables stabilized.

GWR then uses the two best ecological parameters from the

OLS to model the dependent variable (habitat suitability) for each

species. We selected the following settings in GWR [27]: the

number of nearest neighbors = 10; Bandwidth Method = Band-

width Parameter; Kernel Type = Adaptive. As above, we evalu-

ated the GWR results by the computed AIC and adjusted R2

values (Table 2). GWR also visualizes the results, as it provides

coefficient surface maps for each ecological parameter thereby

helping detect where the strongest relationships are [28].

Finally, we ran spatial autocorrelation (Global Moran’s I) to

estimate whether in the final combination of ecological parameters

the residuals exhibit a random spatial pattern. The autocorrelation

calculates the Moran’s I Index value and both p-value and Z score,

evaluating the significance of the index [29]. The null hypothesis

states that there is no spatial clustering of the values associated

with the geographic features in the study area. When the p-value is

small and the absolute value of the Z score is large enough that it

falls outside of the desired confidence level, the null hypothesis can

be rejected. If the Moran index value is greater than 0, the set of

features exhibits a clustered pattern. If the value is less than 0, the

set of features exhibits a dispersed pattern. In a good model the

residuals reflect random noise [28].

The Model
The main concept of our model (Text S2) is to build an area

within each species potential reach (see directional distribution

below) and to search within this area the points with specific values

for the selected two ecological parameters that are more or less

likely to represent suitable species habitat. We created our GIS

model using ModelBuilder, a graphic programming environment

within ArcGIS Desktop 9.3.1 [25], which visualizes the work flow

(Fig. 2) with all chained data and processes [30]. The model

combines vector data (specimen records as point layers), raster

data (ESRI grids for ecological parameters at the global scale) and

stand-alone tables, in order to summarize and store properly

specific information [7,31].

We computed the directional distribution (shown as orange ellipse

in Figs. 3, 4, 5, and 6) for each species as elliptical polygon

centered on the mean of all localities. Among the options of the

Table 1. Environmental parameters used for the habitat
suitability model.

Ecological parameters Range and Units1 Code

Elevation 0 – 3350 m ALT

Annual Mean Temperature 219,4–32uC TMA

Annual Mean Precipitation 0–11401 mm PMA

Global Land Cover Codes from 1 to 232 GLC

1Range of values included in the maximum search area computed with
Directional Distribution with SD3

2Land-cover legend: 1— Tree cover, broadleaved, evergreen; 2— Tree cover,
broadleaved, deciduous, closed; 3 — Tree cover, broadleaved, deciduous,
open; 7 — Tree cover, regularly flooded, fresh water; 9 — Mosaic: Tree cover/
Other natural vegetation; 11 — Shrub cover, closed-open, evergreen; 12 —
Shrub cover, closed-open, deciduous; 13 — Herbaceous cover, closed-open; 14
— Sparse herbaceous or sparse shrub cover; 15 — Regularly flooded shrub
and/or herbaceous cover; 16 — Cultivated and managed areas; 17 — Mosaic:
Cropland/Tree cover/Other natural vegetation; 20 — Water bodies; 22 —
Artificial surfaces and associated areas.

doi:10.1371/journal.pone.0030047.t001
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ellipse extent (one, two, or three standard deviations), we chose the

latter in order to maximize the potential species distribution to

cover approximately 99% of all feature centroids [28]. This ellipse

summarizes the central tendency and the spatial orientation of

existing specimen records, which is informative of potential species

dispersion. We used all terrestrial habitats within this ellipse as

each species potential target area. Biologically, such areas of

interest implicitly assume that they are within each species

dispersal range, and that they are not inhabited by competing

species. Especially the latter assumption is oversimplified as is clear

from Figure 1. However, such assumption is not unwarranted for

this model, as Nephilengys species in fact show a complete species

separation. In other words, their global distribution is fully

allopatric (Fig. 1, [10]).

Table 2. OLS and GWR regression results yielding two best parameters for each species habitat suitability model (see Methods for
details).

Species ecological
parameters OLS results GWR results Spatial Autocorrelation (Global Moran’s I)

N. cruentata AIC: 5380.4 Neighbours: 10 Moran’s Index: 0.061917

TMA, ALT R2Adjusted: 0.17 AICc: 228.9 Expected Index: 20.011111

R2: 0.92 Variance: 0.018019

R2Adjusted: 0.81 Z Score: 0.544034

p-value: 0.586418

Random

N. livida AIC: 1403.1 Neighbours: 10 Moran’s Index: 20.349273

ALT, GLC R2Adjusted: 0.12 AICc: 279.5 Expected Index: 20.020833

R2: 0.96 Variance: 0.034546

R2Adjusted: 0.92 Z Score: 21.767073

p-value: 0.077216

Quasi-random

N. malabarensis AIC: 1414.7 Neighbours: 10 Moran’s Index: 20.260731

PMA, GLC R2Adjusted: 0.10 AICc: 526.0 Expected Index: 20.008333

R2: 0.84 Variance: 0.006664

R2Adjusted: 0.67 Z Score: 23.091786

p-value: 0.001990

Quasi-dispersed

N. papuana AIC: 300.3 Neighbours: 10 Moran’s Index: 0.132592

PMA, GLC R2Adjusted: 0.12 AICc: 158.0 Expected Index: 20.038462

R2: 0.77 Variance: 0.097500

R2Adjusted: 0.52 Z Score: 0.547811

p-value: 0.583822

Random

doi:10.1371/journal.pone.0030047.t002

Figure 2. Diagram showing the model created in ModelBuilder: the case of Nephilengys papuana, shown here, where two best fit
parameters, land cover (GLC) and precipitation (PMA) were used to predict habitat suitability.
doi:10.1371/journal.pone.0030047.g002
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We extracted the values of the ecological parameters in stand-

alone tables by running a simple script (Text S1), and obtained

their observed frequency, then logically grouped them into three

classes: high, moderate and low frequency (Table S2). Within each

species directional distribution we then identified all values

corresponding to these classes for the two best correlated

ecological parameters (Table 2). We renamed these classes to

now represent a species habitat suitability (high = 3, moderate = 2,

low = 1), while all outlying values were ignored. The resulting two

ecological maps thus only contained the cells ranked as 3, 2 or 1

for high/moderate/low predicted habitat suitability for a species.

Both maps were then combined by receiving equal weight. We

finalized our prediction analysis by adjusting the habitat suitability

dot size to fit the global scale of our analysis; using Focal statistics

[15] the circular area was changed from the default radius value of

3 to 9 cell units, which corresponds to a radius of 8.67 km. All cells

whose center falls inside this radius were included in processing the

neighborhood. The resulting habitat suitability is visualized on

species maps (Figs. 3, 4, 5, and 6). Although the scales of these

maps vary, all circles representing actual specimen records are

equal sized (r = 50 km; 7853.83 km2), as are the colored habitat

dots representing three suitability classes (235.73 km2).

Results

Based on the outcomes of the OLS and GWR regressions

(Table 2), we selected the following ecological parameter pairs for

species models: TMA and ALT for the N. cruentata model (Fig. 3

inset), GLC and ALT for the N. livida model (Fig. 4 inset), and

GLC and PMA for both N. malabarensis and N. papuana models

(Figs. 5 and 6 inset). The species also differ in the type of

relationships between these variables. The N. cruentata OLS model

shows a strong positive correlation with temperature (OLS:

b= 19.8; p,0.0001) meaning high habitat suitability in warmer

areas (Table S2), and a positive correlation with altitude (OLS:

b= 0.12; p,0.0001) meaning high habitat suitability at the

elevation around 550 m (Table S2). The N. livida OLS model

shows a slightly negative correlation with altitude (OLS:

b= 20.02; p = 0.0004) meaning high habitat suitability at

elevations 500 to 700 m (Table S2, Fig. 4 inset), and a positive

correlation with land cover (OLS: b= 1.09; p = 0.04) meaning

preferences for a mix of natural vegetation and cultivated areas

(Table S2). The N. malabarensis OLS model, first ambiguous but

settling after several runs, shows a slightly positive correlation with

precipitation (OLS: b= 0.001; p = 0.6) meaning high habitat

Figure 3. Predicted habitat suitability for Nephilengys cruentata within its directional distribution area (see Methods for details). The
model builds on two best fit parameters, temperature (TMA) and altitude (ALT, see inset with GWR results from Table 2). Probability dots have an area
of 235.7 km2, and the specimen record circles are 7853.8 km2.
doi:10.1371/journal.pone.0030047.g003
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suitability in the wet tropics over 2000 mm (Table S2, Fig. 5 inset),

and a slightly positive correlation with land cover (OLS: b= 0.05;

p = 0.9) meaning preferences for a mix of natural vegetation and

cultivated areas (Table S2). In contrast, the N. papuana OLS model

shows a negative correlation with precipitation (OLS: b= 20.77;

p = 0.3) meaning high habitat suitability in the dry tropics

averaging 1500 mm (Table S2, Fig. 6 inset), and a negative

correlation with land cover (OLS: b= 20.77; p = 0.02) meaning

preferences for natural vegetation (Table S2). The results of the

spatial autocorrelation analysis, the N. cruentata and N. papuana

models indicated random residuals, while N. livida had quasi-

random residuals and N. malabarensis had quasi-dispersed residuals

(Table 2).

The four species, for which we provide spatial analyses, differ in

the total area they cover as well as in the ecological parameters of

their known localities (Tables S1 and S2). Nephilengys cruentata is

currently known from most regions within the tropical and

subtropical Africa and from an Atlantic coastal region of Brazil

and Colombia (Figs. 1, 3), where it is most likely introduced [10].

However, our model predicts that all over Africa there exist more

or less continuous areas with the species’ inferred moderate and

high habitat suitability, and only in the most arid parts of Africa

the habitats are unsuitable (Fig. 3). The species habitat suitability

also extends further out of Africa into the Mediterranean and into

Arabia and Asia and onto Madagascar, all of which are areas

currently not harboring N. cruentata. Moreover, in South America

there is a vast expanse of areas between Brazil and the Guiana

shield where the species, if indeed non-native, might very likely

spread in the future due to habitat suitability (Fig. 3, note the

absence of any currently known records there). The directional

distribution of N. cruentata, denoted as ellipse in Figure 3, largely

surpasses the actual distribution of the species, reaching into

Europe in the north and Asia as well as a large expanse of the

Indian Ocean in the east.

Nephilengys livida is currently known from Madagascar and

adjacent islands in the northwestern part of the Indian Ocean [11]

(Figures 1, 4). Based on the existing records, our model identifies

areas, in particular in eastern Madagascar, where their local

distribution is more likely than in the southern and western arid

zones (Fig. 4). Its directional distribution fits the known species

range well as the ellipse includes the Comoro island chain and that

of Seychelles and only slightly touches the coast of East Africa,

which is already outside of the species range (Fig. 4). Nephilengys

malabarensis is currently known from the tropical and subtropical

parts of South and Southeast Asia [10], where the model predicts

many areas of high and moderate habitat suitability for this species

Figure 4. Predicted habitat suitability for Nephilengys livida within its directional distribution area (see Fig. 3 and Methods for
details). The model builds on two best fit parameters, land cover (GLC) and altitude (ALT, see inset with GWR results).
doi:10.1371/journal.pone.0030047.g004
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(Fig. 5). The species directional distribution is longitudinally spread

over the Equator, however, it largely surpasses the species

eastward range into areas falling outside of the species range such

as New Guinea (Fig. 5). The known range of N. papuana is between

western New Guinea into Australia, but with an apparent absence

from all neighboring minor islands [10], while the model predicts

its directional distribution to reach much further northwest and

southeast into the tropical Southeast Asia and subtropical

Australia. There, an interesting pattern shows narrow strips of

coastal areas with mostly moderate habitat suitability, and a

narrow belt of low suitability bordering the arid expanse in

Australia (Fig. 6).

Discussion

Various ecological modeling approaches exist that quantify the

relationships between the species and their environment with the

goal of predicting species distributions or habitat suitability (e.g.

Maxent [22,23], GLM [32], DIVA GIS [33]). Specialized software

packages have been used for this purpose, and there is no clear

justification for using one over the other (e.g. Maxent versus

BIOCLIM [34], Maxent versus DIVA GIS [35], BIOCLIM,

DOMAIN, GARP and Maxent comparison [36]). Our approach

is not to follow a traditional niche modeling or a species

distribution modeling, but rather to offer a GIS based model to

easily identify most suitable areas for a group of species based on

particular environmental factors. Our model is easy to run, has a

high visual content, and uses simple and widespread GIS tools,

which can be implemented as a chain of processes in a single

operation. Additionally, the script can be customized and used for

organisms other than our target group.

To our knowledge, our study is the first of this kind to model

habitat suitability, which may be indicative of current and future

species distributions, of an entire genus whose species exhibit a

fully allopatric and global distribution. The data which we

intended to model reach 760 specimen records (Table S1), but

these range in species coverage from only a handful and too few to

model (N. borbonica, N. dodo) through moderate (N. papuana) to well

represented (N. malabarensis, N. livida) and even extremely well

sampled (N. cruentata). We believe the final models (Figs. 3, 4, 5,

and 6) performance is adequate for the intended purpose, although

the spatial autocorrelation results suggest that the N. cruentata and

N. papuana models are best due to random residuals, while N. livida

and N. malabarensis are not fully random (Table 2). Compared with

OLS regression analyses, the GWR regression produced much

better results in all species models with lower AIC and higher R2

Figure 5. Predicted habitat suitability for Nephilengys malabarensis within its directional distribution area (see Fig. 3 and Methods
for details). The model builds on two best fit parameters, land cover (GLC) and precipitation (PMA, see inset with GWR results).
doi:10.1371/journal.pone.0030047.g005
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values (Table 2). The GWR R2 values, measuring the goodness of

fit for the selected ecological parameter pairs, showed values over

75% in all models. They differed in performance, which we

believe relates to the number of data points available for each

species and their dispersion. In addition to a R2 over 90%, the

desired feature of a reliable model is a small difference between R2

and the adjusted R2 (maximum 0.15 [28]). Even the model

containing the least data (39 for N. papuana) showed a satisfactory

correlation between the two parameters at R2 = 77%. The two

models containing 138 data points each (N. malabarensis, N. livida)

had better to best performance (R2 = 84%; R2 = 96%), while the

data richest model (436 records for N. cruentata) also performed

very well (R2 = 92%).

The directional distribution, usually forming an ellipse (Figs. 3,

4, 5, and 6), uses the geostatistical mean center of the factual

species localities, then takes three SDs (approximately 99%) of all

georeferenced localities to predict the species total, or potential

range, which reflects the spatial orientation of existing specimen

records [28]. Although geostatistically clearly defined, the

biological significance of the directional distribution remains

obscure. To our knowledge, the closest use of the directional

distribution to biology has been in modeling the spread of diseases

[37,38]. Our interpretation of its significance is that this shape

defines a potential range to where individuals of the species in

question may reasonably reach via dispersal. The directional

distribution, however, ignores the ranges of other existing,

neighboring species, and thus ignores interspecific competition

for space and resources. Likewise, it fails to account for human

mediated colonization of new areas, which may flaw the

interpretations of synanthropic species, e.g. N. cruentata. Neverthe-

less, we discuss the calculated shapes of Nephilengys directional

distributions along the lines of potential range of natural dispersal,

although interpretations could differ in the case of other organisms

with overlapping species ranges.

The directional distribution of N. cruentata (Fig. 3) fails to account

for the lone Colombian coastal record (compare with Fig. 1),

which is clearly due to human assisted dispersal. However, it

reaches certain regions outside of the species actual range, such as

Madagascar, India and Sri Lanka, all occupied by other Nephilengys

species (Fig. 1) but also showing as suitable for N. cruentata (Fig. 3).

Interestingly, the model also predicts a large part of Northern

Africa and the Mediterranean as suitable for this species despite

the fact that no Nephilengys has ever been recorded there, and

despite the actual species range not reaching as far north as the

Figure 6. Predicted habitat suitability for Nephilengys papuana within its directional distribution area (see Fig. 3 and Methods for
details). The model builds on two best fit parameters, land cover (GLC) and precipitation (PMA, see inset with GWR results).
doi:10.1371/journal.pone.0030047.g006
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Sahara. In the case of the N. cruentata northern limits and

predictions, our model, which predicts N. cruentata habitat

suitability in warm tropical areas of medium altitude, could be

used in the future to test potential species distribution shifts due to

climate change [39]. Similarly, the Western hemisphere part of the

model clearly and boldly predicts potential avenues for the species

invading large tracts of South America. Naturally, the future limits

of the N. cruentata directional distribution will shift depending on

the species spreading into currently unpopulated territories.

Another area of interest considering species spreading and

potential invasiveness, perhaps linked to humans, is the Mozam-

bique Channel off east Africa. Due to its smaller size compared to

the Atlantic Ocean, the likely wind assisted dispersal in nephilid

spiders [12] and the relative proximity of related species in the

islands off Africa’s coast [11], we find it likely that these islands

may stage occasional cases of interspecific spreading and direct

competition. Our N. cruentata model indeed predicts habitat

suitability for this species over most of Madagascar, Comoros

and Mascarenes. A recent biogeographic study found phylogenetic

evidence of colonization of Nephilengys populations from Africa

onto Madagascar and further east, each such spread followed by

new species evolution [11]. Our spatial model clearly supports

such scenario.

In contrast to N. cruentata, the directional distribution of N. livida,

denoted as ellipse in Fig. 4, in fact mirrors its real distribution well,

as it only touches the coast of east Africa and the island of

Réunion, both regions falling just outside of the species range. The

model here predicts the species habitat suitability based on the

combination of mid elevation and mixed natural and altered land

cover. Although this suggests that N. livida inhabits both forests and

cultivated areas, this species is less synanthropic than N. cruentata

[11], and thus its invasiveness is clearly limited compared with N.

cruentata. As noted above, Kuntner and Agnarsson [11] found

evidence for a Madagascar origin of the Mascarene Nephilengys

fauna, and again, a low probability of N. livida occurring on

Réunion, where another species, N. borbonica is native, supports

such colonization pattern. Another contrast to N. cruentata is the

north-south shape of N. livida directional distribution (Fig. 4), but

this may reflect the shape and direction of the available territory,

notably Madagascar.

As in N. cruentata, the directional distribution of the N.

malabarensis model is east-west, clearly centered around the

Equator (Fig. 5). A further resemblance between the two models

is the vast geographical area covered by the species, in N.

malabarensis nearly entire tropical Asia. We believe these facts

reflect both species synanthropic habits. Nephilengys malabarensis is

common in coastal and higher elevation areas over SE Asia, where

its habitat ranges from native forest to introduced tree stands to

houses [14], which is also accurately reflected by our model

predicting high habitat suitability in wet areas of the mixed land

cover types. Despite its apparent absence from the areas that

biogeographically represent Australasia (e.g. Moluccas, New

Guinea; [10]), our model predicts a vast potential range with

many pockets of highly suitable habitat there. As a curiosity, the

name for the species refers to the coast of Malabar (W India).

Although we lack actual locality data north from Kerala, our

model predicts habitat suitability for N. malabarensis over the entire

western Indian coastal area.

The N. papuana directional distribution seems to mirror its

known distribution NW-SE fairly accurately (Fig. 6). The species

habitat suitability is defined in the model by the combination of

the same two parameters as in N. malabarensis. However, the

preferences are quite opposite hinting at both geographical and

ecological exclusivity of the two species. Highest N. papuana

habitat suitability is namely in the drier (sub) tropical native

forests.

Conclusions
Nephilengys cruentata suitable habitats span most of Africa, where

it has traditionally been known as a prominent and ecologically

important invertebrate, a large part of Brazil and into the Guiana

shield, where it has spread synanthropically in the past centuries

and is predicted to continue this trend, and even Northern Africa

and the Mediterranean, where it has never been recorded.

Although annual mean temperature is suitable there, we

nevertheless believe the winter extremes might be too harsh to

support any viable populations. However, it would be interesting

to predict the species potential reach in the light of global climate

change in the Mediterranean, and due to potential invasiveness in

South America. Nephilengys livida and N. papuana are confined to

their known ranges and they seem to occupy mixed (N. livida) and

natural forested areas (N. papuana), and thus show fewer

propensities to spread. Nephilengys malabarensis, however, ranges

across the Equator throughout Asia with many areas of high

ecological suitability, and the model predicts that the species may

potentially spread further eastwards, as e.g. New Guinea contains

many more areas suitable for the non-native N. malabarensis (Fig. 5)

compared to the native N. papuana (Fig. 6).

Vink and colleagues [39] modeled a potentially global

distribution of the invasive widow spider, Latrodectus hasselti, which

had invaded New Zealand and Japan from Australia, and may

represent a global health hazard due to its venom. Similar to a

single species model but more inclusive, our Nephilengys model

represents a tool to predict current and future habitat suitability of

globally distributed, fully allopatric, and at least in part,

synanthropic and invasive, clade of prominent invertebrates. This

tool will easily be tested in the future, especially evaluating the

effects that global climate change and habitat destruction may play

in invertebrate ecology. It is our hope that our model will be

applied to other organisms with similarly global distributions,

regardless of their biology.
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1. Kuntner M, Haddad CR, Aljančič G, Blejec A (2008) Ecology and web

allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae,

Araneoidea, Nephilidae). Journal of Arachnology 36: 583–594.

2. Cordellier M, Pfenninger M (2009) Inferring the past to predict the future:

climate modelling predictions and phylogeography for the freshwater gastropod

Radix balthica (Pulmonata, Basommatophora). Molecular Ecology 18: 534–544.

3. Booms TL, Huettmann F, Schempf PF (2010) Gyrfalcon nest distribution in

Alaska based on a predictive GIS model. Polar Biology 33: 347–358.

4. Robinson T, van Klinken R, Metternicht G (2010) Comparison of alternative

strategies for invasive species distribution modeling. Ecological Modelling 221:

2261–2269.

5. Poquet J, Mesquita-Joanes F (2011) Combined effects of local environment and

continental biogeography on the distribution of Ostracoda. Freshwater Biology

56: 448–469.

6. Tittensor D, Baco A, Brewin P, Clark M, Consalvey M, et al. (2009) Predicting

global habitat suitability for stony corals on seamounts. Journal of Biogeography

36: 1111–1128.

7. Elith JH, Graham C, Anderson P, Dudı́k M, Ferrier S, et al. (2006) Novel

methods improve prediction of species’ distributions from occurrence data.

Ecography 29: 129–151.

8. Foelix RF (2011) Biology of Spiders. Oxford, New York: Oxford University

Press. 419 p.

9. Blackledge TA, Scharff N, Coddington JA, Szuts T, Wenzel JW, et al. (2009)

Reconstructing web evolution and spider diversification in the molecular era.

Proceedings of the National Academy of Sciences of the United States of

America 106: 5229–5234.

10. Kuntner M (2007) A monograph of Nephilengys, the pantropical ‘hermit spiders’

(Araneae, Nephilidae, Nephilinae). Systematic Entomology 32: 95–135.

11. Kuntner M, Agnarsson I (2011) Biogeography and diversification of hermit

spiders on Indian Ocean islands (Nephilidae: Nephilengys). Molecular Phyloge-

netics and Evolution 59: 477–488.

12. Kuntner M, Agnarsson I (2011) Phylogeography of a successful aerial disperser:

the golden orb spider Nephila on Indian Ocean islands. BMC Evolutionary

Biology 11.

13. Kuntner M, Coddington JA (2009) Discovery of the largest orbweaving spider

species: the evolution of gigantism in Nephila. PLoS ONE 4: e7516.
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