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Abstract

The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue.
Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more
energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of
minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of
the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in
several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among
vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of
energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the
Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are
poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number
of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to
the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched
to the optimized properties of ionic conductances so as to minimize the ATP cost.
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Introduction

Electrical signaling within neurons dominates the energy

consumption of mammalian brains [1,2] and action potentials

(APs) make a significant contribution to overall usage [1]. The

energy consumption of APs is due to the influx of Na+ ions and

efflux of K+ ions through voltage-gated ion channels, which charge

the membrane capacitance to the peak of the AP and then

discharge it back to resting potential. To maintain signaling the

Na+/K+ ATPase pumps these ions back across the membrane

using energy provided by ATP [3]. There are three basic reasons

why APs use significant quantities of energy. First, to make a

robust signal, the membrane capacitance is usually charged by

more than 50 mV to the peak of the AP. Second, because APs

travel considerable distances along densely packed axons,

collaterals and dendrites, the total area of membrane invaded by

APs is large and so, therefore, is the capacitance that must be

charged to the peak voltage. Third, the flux of Na+ and K+ ions

exceeds the minimum required to charge the membrane to peak

potential because the Na+ and K+ currents overlap [4,5].

The high energy cost of transmitting APs in the central nervous

system is thought to have influenced the structure of neural codes

and circuits [6]. Redundancy reduction and sparse codes reduce

the number of APs required to represent information and efficient

wiring reduces the capacitance of neural circuits by minimizing the

distance over which APs must propagate. It is also possible to

reduce energy consumption by making APs energy efficient [7,8].

For example, in hippocampal mossy fiber axons the biophysical

properties of the voltage-gated Na+ and K+ channels generating

the AP are adjusted to reduce the flow of Na+ and K+ ions across

the membrane [7]. The activation, inactivation and deactivation

of the mossy fiber’s channels are particularly rapid, leading to a

very brief AP, with a half-width of 250 ms. These rapid channel

kinetics reduce the overlap between Na+ and K+ currents, thereby

reducing the number of Na+ ions entering the axon during the AP

to just 1.3 times the amount required to charge the membrane

capacitance [7].

The waveform of the mossy fiber AP is very different from the

squid giant axon’s, which has an amplitude of 100 mV, a half-width

of 1.5 ms and, because of extensive overlap between Na+ and K+

currents, produces a Na+ influx that is close to 4 times the capacitive

minimum [5]. A wide variety of AP shapes have been recorded in

vertebrate and invertebrate neurons (e.g. [7–14]). Carter and Bean

[8] have suggested that the primary determinant of differences in

Na+ entry efficiency among neurons is their different AP shapes

rather than Na+ channel kinetics. This raises a number of questions.

How energy efficient are APs in vertebrate and invertebrate

neurons? Is the reduction in the overlap of the Na+ and K+ currents

a general mechanism for improving the energy efficiency and are

other means, such as reducing AP width and amplitude, also

effective? What properties of voltage-gated ion channels are

necessary to produce energy efficient APs? The answers to these
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questions have important consequences for bottom-up energy

budgets of the mammalian brain as well as estimates of the numbers

of APs that they can support [1]. These in turn affect the

interpretation of non-invasive brain imaging methods that infer

neural activity from local changes in energy consumption.

We use single compartment models to assess the energy

consumption of APs from seven neurons from both vertebrates

and invertebrates. The energy costs of these APs vary by over an

order of magnitude from the most economical, the rat granule cell

and mouse thalamo-cortical interneuron, to the most profligate,

the squid giant axon. We developed optimization methods based

on perturbation theory to alter the number and/or biophysical

properties of the Na+ and K+ voltage-gated ion channels, including

their conductance per unit area and time constants, to find the

minimum energy consumption of APs in six of these neuron

models. In thalamo-cortical interneurons, hippocampal interneu-

rons and cerebellar granule cells the energy consumption of APs

measured experimentally is close to the minimum predicted by our

constrained optimization algorithm, and to the minimum Na+

entry needed to charge the membrane capacitance. Conversely,

the energy consumption of APs in a crab motor neuron and the

squid giant axon is far from the minimum achievable, and further

still from the capacitive minimum. Comparison among our

optimized models shows that the most energy efficient APs are

generated by Na+ and K+ currents that have a substantially

reduced overlap than those recorded experimentally. We argue

that functional constraints prevent many neurons from using the

most energy efficient APs but that in some situations APs approach

their optimum energy efficiency.

Results

Energy cost of Action Potentials (AP) in single
compartment models

Neurons contain a variety of voltage-gated ion channels that

contribute to action potential (AP) generation [15]. In several

neurons the properties of these ion channels, including their

density, single channel conductance, activation/inactivation

kinetics and voltage dependency, have been measured and then

incorporated into models to demonstrate that each neuron is using

its combination of channels to produce its particular AP. To

compare the energy costs of different APs we constructed

published single compartment models of seven of these neurons,

including examples from invertebrates and vertebrates (Figure 1).

The models were of the squid (Loligo fobesi) giant axon, SA [12], a

crab (Cancer magister) leg motor neuron axon, CA [9], a mouse (Mus

musculus) fast spiking GABAergic cortical interneuron, MFS [10], a

worker honeybee (Apis mellifera) mushroom body Kenyon cell, BK

[16], a rat (Rattus norvegicus) hippocampal interneuron, RHI [14], a

rat cerebellar granule cell, RG [13], and a mouse thalamocortical

relay neuron, MTCR [11] (Figure 1).

The different combinations of conductances (Table S1) in these

neurons produce AP’s with different waveforms and excitabilities

(Figure 1A). Every model has three basic conductances, a leak

conductance, a voltage-gated Na+ conductance and a voltage-gated

K+ conductance, all of which have properties particular to each

model (Table S1). Two models, the squid giant axon model [12] and

the hippocampal GABAergic interneuron model [14] use just these

three conductances. The other models contain more conductances

that produce additional currents. Three models have one additional

current; the crab motor neuron an A-type K+ current [9]; the fast

spiking cortical interneuron a slowly inactivating D-type K+ current

[10], and the thalamocortical relay neuron model a low-threshold

Ca2+ current [11]. The honeybee Kenyon cell model has three

additional currents, a second voltage-gated Na+ current, as well as

an A-type and a slow transient K+ current [16]. The cerebellar

granule cell model includes four additional currents, an A-type, a C-

type and a hyperpolarization-activated K+ current, and an L-type

Ca2+ current [13] (Table S1). Even in cerebellar granule cell or

thalamocortical relay neuron models, which possess inward currents

in addition to the inward Na+ current, 95 and 92% respectively of

the energy consumed by the AP is used to extrude Na+ ions entering

through voltage-gated Na+ channels. Additional inward currents,

such as T-type Ca2+ channels in thalamocortical relay neuron

model, consume energy because each Ca2+ ion is exchanged for

three Na+ ions by the Na+/Ca2+ exchanger [17,18] and these Na+

ions must then be extruded by the Na+/K+ ATPase.

We derived the energy consumption of a single AP from the

Na+ influx, which was determined by integrating the Na+ current

over a single period of repetitive firing (Figure 1B). Because these

are deterministic models the contributions of the sub-threshold

Na+ currents that flow between APs are negligible [4]. The Na+/

K+ ATPase extrudes the Na+ ions entering the neuron during the

AP to maintain the Na+ concentration gradient across the

membrane using the energy liberated by the hydrolysis of ATP

to ADP [1,3].

The combination of conductances in each model determines the

total Na+ influx and, hence, its ATP consumption. Consumption

differed widely among our 7 models (Figure 1B, Table 1). At one

extreme the Na+ charge transfer per unit membrane area

(hereafter the Na+ load) of an AP in the squid giant axon at

6.3uC was 1098 nC cm22, consuming 2.3*1012 ATP molecules

cm22. At the other extreme the Na+ load of an AP in the mouse

thalamocortical relay neuron was 17 times less, just 65 nC cm22

consuming 1.35*1011 ATP molecules cm22. Three other models

of both vertebrate (rat hippocampal interneuron and rat granule

cell) and invertebrate neurons (bee Kenyon cell) have low energy

consumption APs, with a Na+ load of below 200 nC cm22,

whereas the mouse fast spiking interneuron and crab motor

neuron APs have higher Na+ loads of 315 and 364 nC cm22,

Author Summary

Neurons produce a myriad of action potentials with
different shapes and varying heights and widths; under-
lying these action potentials are highly nonlinear, voltage-
dependent ionic conductances with varying biophysical
properties. Each action potential comes at a cost: the brain
uses a substantial portion of its total energy budget to
generate and propagate action potentials. Recent results
show that some mammalian action potentials have
biophysical properties that make them energy efficient.
Yet, how widespread are energy efficient action poten-
tials? Using mathematical analysis and modeling, we show
that there is no direct relationship between the height,
width, and the energy consumption of a single action
potential. Furthermore, we establish that many mamma-
lian action potentials have biophysical properties that
reduce the overlap between their inward and outward
currents so as to minimize energy consumption. This
reduction in overlap results from a combination of ion
channel properties uniquely tailored for each particular
neuron type and the functional purpose of the action
potential in that neuron. By comparing the measured
biophysical parameters to the parameters produced by
numerical optimization for maximal energy-efficiency, we
argue that natural selection for energy-efficiency could
help explain both the shape of the action potential and
the underlying biophysics of ionic currents.

Action Potential Energy Efficiency
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respectively (Figure 1B; Table 1). These calculations show that AP

energy consumption differs widely among our models, with low

energy consumption APs being found in both vertebrate and

invertebrate neurons. Six of our models fall within a six-fold range

of AP energy consumption, with the squid giant axon AP as an

outlier (Figure 1B, Table 1).

The biophysical parameters for our single compartment models

were taken from previous publications [9–14,16]. Only two of

these studies [12,16] specified the errors that were associated with

the experimental determination of these parameters. We incorpo-

rated a 65% error into the peak conductances of our models to

determine their effect on the Na+ load of the APs and, hence, their

energy consumption (Table S2). Introducing these errors into the

models made only a small difference (typically ,6%) to the Na+

load of each of the APs (Figure 1B), suggesting that AP energy

consumption is truly different for each of the models.

Figure 1. Action potential energy usage in seven neuron models from vertebrates and invertebrates. (A) The shapes of action potentials
in single compartment Hodgkin-Huxley type models from the squid giant axon (SA), (B) crab motor neuron axon (CA), (C) mouse fast-spiking neuron
(MFS), (D) honeybee Kenyon cell (BK), (E) rat hippocampal interneuron (RHI), (F) rat granule cell (RG) and (G) mouse thalamo-cortical relay neuron
(MTCR). The dashed grey line indicates the resting potential of each model. (H) The respective Na+ load (nC cm22) of each action potential (dark grey)
and the capacitive minimum Na+ load of each action potential (light grey). Error bars show the effect of changing the peak conductances of the
voltage-gated ion channels by 65% on AP energy consumption. (I) The efficiency of action potentials from each model. Error bars show the effect of
changing the peak conductances of the voltage-gated ion channels by 65% on AP energy efficiency.
doi:10.1371/journal.pcbi.1000840.g001
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The origins of differences in energy cost
The primary purpose of the nonlinear, AP-generating Na+

current is to charge the membrane to the peak of the AP. To load

the capacitive charge onto the membrane, the local Na+ current

and the current of synaptic origin flowing along the dendrite-to-

axon axis both contribute; the latter current is represented by the

constant injection current in the models. During the charging of

the membrane, the sum of currents must also overcome any

resistive losses through the membrane. For a given AP waveform

and a given set of passive neuronal parameters (specific membrane

capacitance and resistance), one can compute the active Na+

current that will minimize Na+ accumulation inside the cell. As a

rule of thumb, for a cell with high input resistance and low AP

threshold, the capacitive charge and the minimal Na+ load are

nearly equal. Hence, the minimum Na+ load scales with the AP

height. Assuming that specific membrane capacitance is constant,

this minimum Na+ load varies by a factor of approximately 2.3,

because the model APs range in height from 55.5 mV to 129 mV

(Figure 2A).

The other factor in the AP energy cost is efficiency. Efficiency is

the ratio (in percent) between the capacitive minimum Na+ load

and the total Na+ load (Figure 1B,C). Hodgkin (1976) observed

that in squid giant axon at 18uC the temporal overlap between

inward Na+ current and outward K+ current greatly reduced

efficiency to around 25%, although a recent modification of the

squid model suggests an efficiency of 40% [4]. By comparison

some mammalian neurons approach the theoretical minimum Na+

load with efficiencies approaching 100% [7,8]. Our modeling of

the mouse thalamocortical relay neuron (MCTR) and rat granule

cell (RG) demonstrates that different combinations of conduc-

tances can be used to achieve efficiencies close to 100%, and the

rat hippocampal interneuron (RHI) achieves an efficiency of 75%.

The efficiencies of the other APs are substantially lower; 3 models

fall in the range of 20%–40% and at 9%, the squid giant axon at

6.3uC (SA) is particularly inefficient (Figure 1C). Note that among

our 7 models the 3 most energy efficient APs also have low

theoretical minimum Na+ loads because they have low heights

(Figure 1A,C)

Temperature and efficiency
Changing the temperature at which the simulations are

executed influences both the Na+ load of the AP and, by changing

the amplitude, the capacitive load. At 18uC the squid giant axon

Na+ load is 331 nC cm22, less than one third of the

1098 nC cm22 that we calculate at 6.3uC. The Na+ load is 3.85

times the capacitive load of 86 nC cm22, close to value calculated

by Hodgkin [5] at the same high temperature but higher than the

value calculated by Crotty et al. [4] using a modified Hodgkin-

Huxley model. At 6.3uC the capacitive load is higher because the

AP is taller, and the total Na+ load is 11.2 times this load. Thus

lowering the temperature slightly increases the capacitive load but

massively reduces efficiency. We show below that efficiency is

lowered by increasing the time constants of voltage-gated

conductances.

Energy efficiency and AP shape
Both the energy consumption and the shape (height and width)

of an AP are determined by the currents that generate the AP, and

a comparison of 4 types of mouse CNS neurons has recently

shown that energy consumption increases as AP width decreases

[8]. Is there a clear relationship between width, height and energy

consumption among our 7 models? The models encompass a 2.3-

fold range of heights, from 55.5–129 mV, and a 13-fold range of

durations, from 0.2 ms to 2.6 ms (Figure 2A,B; Table 1). Over this

range there is a tendency for energy consumption to increase with

height, but there is no obvious relationship between width and

energy consumption (Figure 2C). We also incorporated a 65%

error into the peak conductances of our models to determine their

effect on AP height and half-width. Introducing errors into the

models a small difference to the height (,5%) but not to the width

of each of the APs (Figure 2A,B). Thus, AP height and width are

robust to small changes in the underlying conductances.

Overlap load dominates energy efficiency
Our models confirm that the overlap between the Na+ and K+

currents that generate the AP (Figure 2D) is the major determinant

of efficiency. Overlap makes the squid AP inefficient [4,5] and

efficient AP’s have little overlap [7,8] (Figure 2E). Following

Crotty et al. [4], we calculated the overlap load as the difference

between the total Na+ current and the depolarizing component of

the Na+ current (Figure 2D, also see Figure 3 in [4]). Among our

models there was a greater that 100-fold difference in the overlap

load from 9 nC cm22 in the rat granule cell model to

1034 nC cm22 in the squid giant axon model at 6.3uC
(Figure 2E), and the overlap load is linearly related to the

total Na+ load with a slope close to 1 (R2 = 0.99; p,0.0001)

(Figure 2F).

Biophysical basis of AP energy efficiency
We investigated how the properties of voltage-gated conduc-

tances influence efficiency by, for example, determining the

overlap load. We systematically varied either conductance per unit

area or activation/inactivation time constants in the squid giant

axon model (Figure 3). The measured values that defined the

original model were increased or decreased by multiplying them

with a scaling factor (see Methods). Because it is assumed that the

Table 1. Properties of action potential waveform of single action potentials from the seven single compartment models.

SA CA MFS BK RHI RG MTCR

Original Na+ load [nC cm22] 1098 364 315 186 76 72 65

Original AP height [mV] 98 106 129 61 55.5 69 65

Original AP full-width at half maximum [ms] 1.47 0.93 0.47 2.6 0.65 0.2 1.1

Original overlap [nC cm22] 1034 264 231 129 36 9 15

Optimum Na+ load [nC cm22] 263 169 225 121 59 - 65

Optimum overlap [nC cm22] 185 31 133 42 23 - 15

Capacitive minimum [nC cm22] 98 106 129 61 56 69 65

doi:10.1371/journal.pcbi.1000840.t001
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Figure 2. The overlap between Na+ and K+ currents affects action potential efficiency. (A) The heights of action potentials in the seven
models. Error bars show the effect on AP height of changing the peak conductances of the voltage-gated ion channels by 65%. (B) The half widths of
action potentials in the seven models. Error bars are not visible because changing the peak conductances of the voltage-gated ion channels by 65%
did not affect AP width. (C) The relationship between the height, width and Na+ load of action potentials from each of the models shown in Figure 1.
The size of each circle is proportional to the energy consumed by the action potential. (D) Schematic diagram of the ionic charge distributions of an

Action Potential Energy Efficiency
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single channel conductance remained constant, varying the

conductance per unit area is equivalent to changing the channel

density. Changes in channel density affect the gating charge,

which could influence the total Na+ load of the APs; however, our

modeling shows that the effect of gating charge on AP Na+ load is

small (see below). This agrees with the observation made by Crotty

et al. [4] that the gating current changes the ionic fluxes by less

than 5%. Reducing the Na+ and K+ conductances per unit area

revealed a small region of parameter space in which APs had a

lower Na+ load than the original (Figure 3A) because the voltage-

gated currents are reduced. Conversely, increasing the Na+ or K+

conductance per unit area produced APs with a higher Na+ load

(Figure 3A). Parameter combinations in which the K+ conduc-

tance per unit area was increased more than that of the Na+

conductance per unit area generally prevented the model from

generating APs (blank zone in Figure 3A).

We then scaled the inactivation time constant (th) of the voltage-

gated Na+ conductance against the activation time constant (tn) of

the voltage-gated K+ conductance in the squid giant axon model.

This scaling revealed a large region of parameter space with

shorter Na+ inactivation time constants (th), where the Na+ load

was lower than the original (Figure 3B) because the Na+ current

terminated more rapidly. Conversely, the Na+ load was increased

at longer th (Figure 3B). Longer K+ activation time constants

increased AP Na+ load when th was also longer, but had very little

effect with shorter th (Figure 3B). When the K+ activation time

constants were reduced to below the plotted values (Figure 3B) the

model demonstrated mixed-mode oscillations and period-doubling

towards chaos [19]. In contrast to scaling conductance per unit

area, scaling the channel time constants did not reveal large areas

of parameter space in which the membrane was inexcitable. In

conclusion, lowering conductances per unit area and shortening

Figure 3. Scaling biophysical properties of voltage-gated ion channels influences action potential energy consumption. (A) Scaling
the conductance per unit area of Na+ (gNa) and K+ (gK) channels affects the Na+ load of the action potential of the squid giant axon (SA) model. (B)
Scaling the inactivation (th) time constant of the Na+ voltage-gated channel and the activation (tn) time constant of the K+ voltage-gated channel
affects the Na+ load of the action potential of the squid giant axon (SA) model. (C) Scaling the conductance per unit area of Na+ (gNa) and K+ (gK)
channels affects the Na+ load of the action potential of the rat hippocampal interneuron (RHI) model. (D) Scaling the inactivation (th) time constant of
the Na+ voltage-gated channel and the activation (tn) time constant of the K+ voltage-gated channel affects the Na+ load of the action potential of
the rat hippocampal interneuron (RHI) model. Colors indicate the Na+ load of a single AP (nC cm22). ‘+’ indicates the Na+ load of the original model.
doi:10.1371/journal.pcbi.1000840.g003

action potential depolarizing charge (horizontal lines), overlap charge (hatched) and hyperpolarizing charge (vertical lines). (E) The overlap charge in
action potentials from each of the seven models. (F) The relationship between the overlap charge and the total Na+ load. SA, squid giant axon; CA,
crab motor neuron; MFS, mouse fast spiking neuron; BK, honeybee Kenyon cell; RHI, rat hippocampal interneuron; RG, rat granule cell; MTCR, mouse
thalamocortical relay neuron.
doi:10.1371/journal.pcbi.1000840.g002

Action Potential Energy Efficiency

PLoS Computational Biology | www.ploscompbiol.org 6 July 2010 | Volume 6 | Issue 7 | e1000840



channel time constants both produce squid APs with lower Na+

loads, and hence energy consumption, but changing the time

constant is much more effective (Figure 3A,B).

We also scaled the conductance per unit area (Figure 3C) and

the activation/inactivation time constants of the Na+ and K+

conductances (Figure 3D) in the rat hippocampal interneuron

model. Again, decreasing the Na+ or K+ conductance per unit area

produced APs with a lower Na+ load and, therefore, a lower

energy cost than the original (Figure 3C). So, too, did shortening

the Na+ inactivation time constant, although this region of

parameter space was much smaller than in the squid giant axon

model (Figure 3D). Within the parameter space we explored,

scaling of the conductance per unit area or channel time constants

in the hippocampal interneuron model produced regions that

failed to support APs (Figure 3D). These observations suggest that

the higher efficiency of the rat hippocampal interneuron is

achieved by reducing the Na+ inactivation time constant to a value

that approaches its lower limit for excitability.

Relationships between AP waveform and efficiency
within models

Changing the conductance per unit area or the activation/

inactivation time constants of the voltage-gated ion channels

usually changes the shape of the AP (e.g. [4,20]). Consequently the

results from our parameter variations allowed us to examine the

relationship between AP height, width and Na+ load within a

neuron model (Figure 4). In the squid giant axon, changing the

conductance per unit area or activation/inactivation kinetics of the

voltage-gated ion channels affected AP height, width and Na+ load

(Figure 4 A,B). At a particular height, the most expensive APs are

the widest, while taller APs tend to be more expensive than their

shorter counterparts (Figure 4A,B). In the rat hippocampal

interneuron, the main consequence of scaling the conductance

per unit area or the activation/inactivation kinetics was, like squid,

to produce taller APs with higher energy consumption

(Figure 4C,D). However, when time constants were varied the

wider APs almost invariably consumed less energy (Figure 4D); the

Figure 4. The relationship between action potential height, width and energy consumption within a neuron model. (A) The
relationship between action potential height, width and Na+ load when the conductances of the Na+ and K+ voltage-gated channels are scaled in the
squid giant axon (SA) model. In all the panels the size of the circle is proportional to the Na+ load of a single AP, larger circles indicating higher action
potential Na+ load. (B) The relationship between action potential height, width and Na+ load when the time constants (th, tn) of the Na+ and K+

voltage-gated channels are scaled in the squid giant axon (SA) model. (C) The relationship between action potential height, width and Na+ load when
the conductances of the Na+ and K+ voltage-gated channels are scaled in the rat hippocampal interneuron (RHI) model. (D) The relationship between
action potential height, width and Na+ load when the time constants (th, tn) of the Na+ and K+ voltage-gated channels are scaled in the rat
hippocampal interneuron (RHI) model.
doi:10.1371/journal.pcbi.1000840.g004
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opposite of what we observed in the squid giant axon (Figure 4B).

This comparison demonstrates that relationships between height,

width and energy consumption are strongly model dependent.

This model dependency is hardly surprising because many

different combinations of outward and inward currents can

produce the same net current, and hence rate of change of

membrane potential. To prove this point we adjusted the

conductance per unit area and the activation/inactivation kinetics

of the voltage-gated ion channels to produce APs with identical

height and width but very different currents and hence energy

consumptions (Figure S1). Thus shape alone is not generally a

reliable indicator of an AP’s energy cost.

Constrained optimization of AP energy efficiency
In the previous section we varied pairs of parameters while

holding all others constant but this is an unnatural restriction. A

more searching analysis, in which we test all possible combinations

of parameters (e.g. [20]) to find the most energy efficient AP, was

not feasible because it would involve more parameter combina-

tions than we could reasonably compute. Instead, we used

numerical methods for constrained optimization to traverse

through the high-dimensional parameter space. This procedure

enabled us to simultaneously vary several parameters and find

values that reduce the AP Na+ load heuristically, without imposing

excessive computational demands. The heuristic search combines

two standard approaches to finding an optimum in a bounded

parameter space. First a gradient-free simplex approach searches

the space, and quickly finds a set of parameter values that

minimizes energy consumption. Then this ‘‘simplex optimum’’ is

used as the starting point for a gradient descent method that

searches the bounded parameter space exhaustively, to find the

global optimum. The advantage of starting at the ‘‘simplex

optimum’’ is that it greatly reduces the time taken to complete the

exhaustive search. The search procedures were carefully designed

to take account of two factors (see Methods). First, the search

algorithm can enter regions of parameter space for which the input

produces no APs and hence no measure of AP energy

consumption is available. This is because the membrane is

inexcitable. Second, the AP height had to be kept within narrow

bounds to prevent optimization driving the AP amplitude down,

eventually to zero.

Using this optimization method we minimized AP Na+ load by

simultaneously varying five parameters, the conductances of the

Na+ and K+ voltage-gated ion channels, the Na+ channel

activation and inactivation time constants (tm, th) and the K+

channel activation time constant (tn). In each of the models we

optimized, the conductances of the Na+ and K+ voltage-gated ion

channels were constrained to remain within 30% to 400% of the

original, published values for each model. Similarly, the activation

and inactivation time constants of the Na+ and K+ voltage-gated

ion channels were not allowed to be rescaled to less than 30% or

more than 250% of the original values.

First, we ran the squid giant axon model with 20 mA/cm2

constant current injection and constrained our optimization to

generate the same height as the experimentally measured AP. If

the AP height is constrained from below, optimization always

matches the AP height to the lower bound imposed. When the

constraint on AP height was set to a value lower than the original,

the optimized AP was always matched to the height constraint and

consumed less energy than APs optimized with higher height

constraints. Thus, when the bound on AP height is lowered to

40 mV, our constrained optimization produces an AP of

approximately 40 mV, which consumes substantially less energy

than APs constrained to 50, 60 or 98 mV (Figure S2), emphasizing

the relationship between AP height and minimal energy

consumption. The optimized model was derived by driving trains

of APs with constant current. We checked that when this

optimized model was stimulated by single current pulses that

elicited single APs, the same marked decrease in energy cost was

observed (data not shown).

After constrained optimization, the Na+ load of the squid giant

axon AP at 6.3uC was 263 nC cm22, 78% lower than that of the

original (Figure 5A,B). Thus the energy efficiency improved from

9% in the original AP to 37% in the optimized AP. Comparison of

the Na+ and K+ currents that generate the AP before and after

optimization showed that the optimized AP had smaller, faster

currents with a reduced overlap (Figure 5C,D). The changes in the

currents were primarily through a decrease in the Na+ channel

activation/inactivation time constants and a decrease in the

magnitude of the K+ conductance (Figure 5E; Table S3). The

faster activation/inactivation of the Na+ channel enhanced an

initial transient increase of the Na+ current and reduced the

overlap between the Na+ and K+ currents (Figure 5D). The

reduction in the overlap of the Na+ and K+ currents reduced the

Na+ flux during the AP, thereby saving energy (Figure 5B).

We also controlled for the fact that gating charge influences the

shape of the AP and could affect the minimum energy

consumption of the AP after optimization. Gating charge

movement causes a transient change in capacitance that precedes

the activation, inactivation and deactivation of the channel. This

current becomes prominent during the rising foot of the AP [4].

The gating current can be described by a voltage-dependent

capacitive current, which we added to our model of the squid giant

axon [4]. Repeating the optimization, the parameter set that yields

the energy efficient AP is only slightly affected by the inclusion of

the gating charge, and the shape of the optimum AP is unaffected

(Figure S3).

Optimized parameters yield energy efficient APs in other
neurons

We then optimized five other neuron models (crab motor

neuron, mouse fast spiking interneuron, honeybee Kenyon cell, rat

hippocampal interneuron and mouse thalamocortical relay

neuron) to determine whether biophysical parameters can be

found that reduce the Na+ loads of these APs. AP height was fixed

at the original value in each model. Optimization reduced the Na+

load of APs from all of the models by an amount that was model

dependent; the largest reductions being made in those models with

the highest original Na+ load and lowest energy efficiency

(Figure 6A,B). After optimization, the energy efficiency of APs

from the crab motor neuron, mouse fast spiking interneuron,

honeybee Kenyon cell and rat hippocampal interneuron improved

to 63% (from 29), 57% (from 41), 50% (from 33) and 95% (from

74), respectively. As predicted, there was hardly any change in the

efficiency of the mouse thalamocortical relay neuron, which was

already highly efficient (Figure 6C). We also found that the

constrained optimization of 5 parameters produced higher energy

efficiencies than our attempts to improve efficiency by varying

pairs of parameters, confirming the value of the more biologically

realistic multivariate approach.

Four of the models we optimized contained conductances in

addition to the Na+ and delayed rectifier K+ conductances.

Incorporating these conductances into our optimization might

produce APs with lower energy consumption and increase AP

energy efficiency. We tested for this possibility in the crab motor

neuron model, which contains an additional A-type K+ conduc-

tance, because this is known to affect AP shape in pyramidal

neurons [21] and improve the energy efficiency of photoreceptors
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in Drosophila melanogaster [22]. Nevertheless, constrained optimiza-

tion incorporating the Na+, delayed rectifier and A-type K+

conductances produced APs with a Na+ load of 150.6 nC cm22.

This load is 11% lower than in the AP obtained after optimizing

the model with the A-current removed (Figure S4). Thus,

additional conductances can contribute to a reduction in AP

energy consumption, though in the crab motor neuron the

contribution of the A-type K+ conductance is small. This does not

exclude the possibility that additional conductances in other

neurons may make substantial contributions to reducing the

energy consumption and improving the energy efficiency of APs.

We compared models to see whether our constrained

optimizations produced similar changes in parameters. All

parameters were altered in every model (Figure 7A; Table S3),

but there were no obvious common patterns; the same parameter

increases in one model and decreases in another. For example, the

Figure 5. Constrained optimization of the Na+ load of the squid axon model produces energy efficient action potentials. (A) The
action potential waveform before (light grey) and after (black) optimization. (B) The cumulative Na+ load during the action potential before (light
grey) and after (black) optimization. (C) The Na+ (light grey, dashed line) and K+ (light grey, solid line) currents generating the action potential in the
original squid giant axon model. Note the extensive overlap between the Na+ and K+ currents. (D) The Na+ (black, dashed line) and K+ (black, solid
line) currents generating the action potential in the optimized squid giant axon model. Note the reduced overlap between the Na+ and K+ currents.
(E) The changes in each of the biophysical parameters included in our constrained optimization after optimization relative to the original parameter
values.
doi:10.1371/journal.pcbi.1000840.g005
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Na+ channel inactivation time constant is shorter in the optimized

squid giant axon, crab motor neuron, mouse fast-spiking

interneuron and rat hippocampal interneuron models but longer

in the optimized bee Kenyon cell model (Figure 5E, 7A). In the

bee Kenyon cell, which contain two Na+ conductances, we also

observed opposite changes in the density and kinetics of these

conductances after optimization (Figure 7A). The relative

magnitudes of changes vary considerably between models (Table

S3). Large changes in both the density and kinetics of Na+ and K+

channels occur, even in models that already have high efficiency

APs before optimization, such as the hippocampal interneuron

(Figure 7A), However, in the most efficient neuron, the mouse

thalamocortical neuron, the changes in channel densities and

kinetics are small.

The common characteristic of optimization, shared by all 5

models, is that the changes in conductances produce faster

currents that reduce the overlap load (Figure 7B; Figure S5).

Looking across optimized models, the overlap load is positively

correlated with the total Na+ load of the AP (R2 = 0.99; p,0.0001)

(Figure 7C). This confirms that the overlap load is the main factor

influencing efficiency.

Discussion

We used seven well-known single compartment models of action

potentials (APs) from vertebrate and invertebrate nervous systems

(Figure 1, Table 1) to investigate the relationships between the

shapes of APs, the currents that generate them and the energy they

consume. Energy cost was obtained by integrating the inward Na+

current to give the total Na+ load, and then calculating the number

of ATP molecules that were hydrolyzed by the Na+ pump when it

ejected this load, operating with a ratio of 3 Na+ ions per ATP

[1,4]. These calculations allowed us to compare energy consump-

tion and efficiency among models, identify contributory factors

and, by systematically varying parameters within models,

determine their effects.

We used single compartment models driven by current to

reduce the number of parameters to workable proportions. This

restriction limits our findings to the production of brief voltage

pulses triggered by injecting current into isopotential cells, but APs

rarely occur in such uniform isolation. APs transmit and process

information by interacting with other conductances, to integrate

inputs and distribute outputs, and often do so in extensive axons

and arbors that involve many electrical compartments. However,

these interactions are often complicated and particular to specific

neurons. We chose to start with a core process in a single

compartment to gain a better understanding of basic principles,

before working up to more extensive models. In defense of this

bottom-up approach, none of our findings contradict previous

modeling and experimental studies of the energy efficiency of APs

in multi-compartment axons [4,7].

Our results support previous theoretical work on AP efficiency

and energy consumption that used the Hodgkin Huxley (SA)

model for propagation along squid giant axon [5], and a

modification thereof, the HHSFL (Hodgkin Huxley Sangrey–

Friesen–Levy) model (Table S4) [4,23]. As pointed out by Hodgkin

[5] the squid AP is very inefficient, in the sense that the total Na+

ion influx (the total Na+ load) exceeds the minimum influx that is

required to charge the membrane capacitance to the peak of the

AP (the capacitive load) (Figure 1). Efficiency is low because the

voltage-gated currents of Na+ and K+ ions overlap (Figure 2,3),

allowing the outward K+ current to neutralize the charge carried

inwards by Na+. Efficiency can be increased (Figures 3,5) by

decreasing the overlap current and this can be achieved by

reducing total conductance via channel density [4] and by

reducing the time constants of voltage-gated conductances to

shorten the duration of overlap [23]. Consequently when time

Figure 6. Constrained optimization reduces the energy con-
sumption of action potentials in models of vertebrate and
invertebrate neuron models. (A) The Na+ load of action potentials in
each of the six models before (black) and after (light grey) constrained
optimization. (B) The same data as in A, replotted as the percentage
improvement in the Na+ load of action potentials. (C) The energy
efficiency of action potentials in each of the models after optimization.
SA, squid giant axon; CA, crab motor neuron; MFS, mouse fast spiking
neuron; BK, honeybee Kenyon cell; RHI, rat hippocampal interneuron;
RG, rat granule cell; MTCR, mouse thalamocortical relay neuron.
doi:10.1371/journal.pcbi.1000840.g006
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constants are decreased by raising the temperature at which the

model is run, overlap decreases and efficiency improves from 9%

at 6.3uC to 24% at 18uC. The HHSFL model returns a higher

efficiency, 40%, because its time constants are slightly shorter than

the SA, and the delay on the activation of the voltage gated K+

conductance is increased [4]. Reducing the time constant of Na+

inactivation at constant temperature (Figure 3B,5) is very effective

at increasing efficiency [23].

As well as increasing the conduction velocity of axons, higher

temperatures reduce noise in axons by reducing channel open

times, and hence the rate of spontaneous APs [24]. Our modeling

shows that the increased speed of ion channel kinetics at

higher temperatures also produces more efficient APs, by

reducing overlap between currents at higher temperatures. This

combination of reduced noise, increased conduction velocity and

improved energy efficiency favors exothermic animals inhabiting

warmer environments and might even promote the evolution of

endothermy.

We have also extended the analysis of energy efficiency with the

squid model by including more parameters, the activation time

constants for the voltage-gated Na+ and K+ conductances, and by

simultaneously varying all five of the core parameters, namely the

Figure 7. Optimization produces changes in the biophysical properties of voltage-gated ion channels reducing action potential
overlap load. (A) Proportional changes in the biophysical parameters of voltage-gated ion channels in five of the models after optimization. Positive
values indicate an increase and negative values indicate a decrease in the parameter relative to the original model. (B) The overlap load of each action
potential before (black) and after (grey) optimization. (C) The relationship between the overlap load and the total Na+ load of action potentials before
(black) and after (grey) optimization. SA, squid giant axon; CA, crab motor neuron; MFS, mouse fast spiking neuron; BK, honeybee Kenyon cell; RHI, rat
hippocampal interneuron; RG, rat granule cell; MTCR, mouse thalamocortical relay neuron.
doi:10.1371/journal.pcbi.1000840.g007
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total conductance, activation time constant and inactivation time

constant of the voltage-gated Na+ conductance, and the total

conductance and activation time constant of the voltage-gated K+

conductance (Figure 5). Some parameter combinations may not be

achieved by ion channels (e.g. large conductance, fast inactivation)

due not only to functional constraints, such as producing an AP or

maintaining the resting potential [25], but also to molecular

constraints on channel proteins. Although we imposed functional

constraints on the biophysical parameters of the models during the

directed search, they had to generate an AP, we did not impose

molecular constraints. When the magnitudes and activation/

inactivation time constants of the voltage-gated conductances for

Na+ and K+ are varied, either in pairs or simultaneously, we find

that reductions in conductance have a limited ability to improve

efficiency (Figure 3A,5), and reducing overlap by changing the

kinetics of activation and inactivation is more effective

(Figure 3B,5). Amongst these kinetic parameters, reducing the

time constant for Na+ inactivation is the most effective (Figure 5).

We have extended the theoretical analysis of AP energy

efficiency to six more models. This extension enabled us to

compare the costs and efficiencies of different APs and examine

how they depend on the properties of voltage-gated conductances.

The final biophysical properties of ion channels produced by our

optimization algorithm are within the biological bounds achieved

in ion channels recorded experimentally: Even the fastest

activation K+-channel time constant from our optimized models

is only 50 ms (CA), which is within the limits of experimental data.

For example, fast gating current time constants in voltage-gated

ion channels of Xenopus oocytes have been reported from Shaker K+

channels (12 ms) [26], whilst mutant Na+ channels have been

created with time constants of 0.0760.02 ms [27].

The energy cost of an AP varies 22 fold, through differences in

efficiency and height. Efficiency ranged from close to 100% in the

mouse thalamocortical relay neuron model to 9% in the squid

giant axon model at 6.3uC and was, as one might expect,

determined by overlap (Figure 7). AP height determines the

minimum capacitive Na+ load and this varied by a factor of 2.3

across models (Figure 2). Height may well be an important means

of reducing energy consumption in nervous systems because the

three lowest APs were also among the most efficient (Figure 1), but

height has not received much attention as a variable cost factor.

Remarkably energy efficient APs, with total Na+ loads less than

1.3 times the minimum capacitive load, have recently been

measured in 3 neurons, rat hippocampal mossy fibers [7] and

mouse pyramidal cells in hippocampus (CA1) and neocortex [8].

Three of our seven models, RHI, RG and MTCR, achieved this

same high level of efficiency (.70%), suggesting that energy

efficient neurons are not uncommon in mammalian CNS. In

agreement with the two earlier studies, these three models achieve

a high efficiency by reducing the duration of the voltage-gated Na+

current to the point that there is little or no overlap with the

voltage-gated K+ current, and this involves reducing the time

constants for both Na+ activation and inactivation [7]. Operating

at close to a rodent body temperature of 38uC must help to reduce

time constants, but the mammalian models we ran were

determined by experimental data gathered at room temperatures.

Nonetheless, three of these models produced energy efficient APs.

Our parameter variations (Figure 3C,D) confirm that overlap

current is also reduced by reducing channel density within

boundaries set by excitability, and Na+ inactivation is critical [7].

The importance of Na+ inactivation in reducing overlap current

has also been demonstrated in mouse fast-spiking interneurons [8].

These cells use a fast and powerful voltage-activated K+

conductance to drive the falling phase of the AP down so quickly

that there is very little Na+ inactivation, and this helps these fast-

spikers to fire at high frequencies, but they pay a price in Na+ load.

Because the Na+ conductance is not fully inactivated, there is a

relatively long overlap. This type of fast-spiking AP is narrowed by

advancing the repolarizing phase, leading to a longer overlap and

lower efficiency. Consequently the shape of the AP waveform

is a good predictor of efficiency – efficiency decreases as width

narrows [8].

We find that the relationship between AP waveform and energy

consumption is strongly model dependent (Figure 4). In the rat

hippocampal interneuron model (RHI), AP energy consumption

increases as width decreases (Figure 4B). In the squid giant axon

model the relationship is reversed (Figure 4A) because the speed of

Na+ inactivation is the major determinant of both AP width and

overlap (Figure 5). Consequently reducing the inactivation time

constant reduces the duration of both the AP and the overlap,

leading to cost decreasing with decreasing width. This degree of

model dependency shows that a trend that stands out among

neurons whose APs are similarly configured for a specific purpose

[8] can be reversed when APs are configured for a different

purpose. Consequently, when one compares models of APs

derived from a heterogeneous group of neurons, no trend is

apparent (Figure 2).

Strong model dependency is a generic property of systems that

use voltage-gated conductances to generate APs, and stems from

the fact that the rate of change of membrane potential, and hence

the behavior of voltage dependent conductances, depends on the

sum of currents (the net current). This simple fact means that two

large opposing voltage-gated conductances producing a massive

Na+ overlap load can generate the same AP waveform as two

smaller faster conductances with little overlap (Figure S1) – an

example of many to one mapping. As expected from the many to

one mapping of conductances onto voltage, and opposite

relationships between waveform and energy, the sensitivity of AP

efficiency to changes in conductance parameters is also strongly

model dependent. Model dependency is apparent when one varies

the same pairs of parameters in two models (Figure 3), but it was

much more revealing to vary several parameters simultaneously.

Why is this so?

The relationship between N conductance parameters and

energy defines a surface in an N-dimensional space. When we

vary a subset of parameters we get a limited impression of what is

going on. For example, if we vary a single parameter we might cut

across a valley in the landscape and see its low energy floor, but we

do not see the floor dropping away sharply as one moves down the

valley. Our search method explores the multidimensional energy

landscape surrounding a particular model and (for it is easy to get

lost in multi-dimensional space) it returns interpretable results. We

learn how to adjust several parameters to move the model across

the landscape from its starting point to the minimum energy value

in its neighborhood, where the size of the neighborhood is defined

by the boundaries of parameter variation. In comparison to

systematic searches of parameter space (e.g. [28]), our directed

search method is less computationally demanding.

The results of applying this search method demonstrate that it is

advantageous to adjust several parameters simultaneously. All six

models moved to their ‘‘neighborhood’’ minima by changing some

of their core parameters, namely the total conductance, activation

time constant and inactivation time constant of the voltage-gated

Na+ conductance, and the total conductance and activation time

constant of the voltage-gated K+ conductance. All models moved

to their neighborhood minimum by adjusting their parameters to

reduce the overlap between the Na+ and K+ currents (Figure 7).

However, the signs and the relative magnitudes of the adjustments
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to the five parameters differed markedly, according to model

(Figure 7A). For example, within the squid giant axon model, AP

efficiency is improved by making relatively large changes to the

Na+ activation and inactivation time constants, with lesser

adjustments to the magnitudes of these conductances (Figure 5).

By comparison, the cortical fast-spiking interneuron model

reached its neighborhood minimum by reducing the magnitudes

of both voltage-gated conductances and decreasing their time

constants. These observations demonstrate that each model ‘‘sees’’

a different energy landscape in its neighborhood.

Adding conductances to a model changes the energy landscape.

The crab motor neuron model contains an additional A-type K+

conductance (Figure S4). If the A-type conductance is fixed during

optimization the minimized model’s Na+ load is 11% higher than

when all three conductances are free to vary within their bounds.

Further energy savings should be possible through changes in other

parameters affecting the Na+ and K+ currents. For example, the

energy consumption can be decreased further by allowing the voltage

dependence (slopes and mid-point voltages of Boltzmann functions) of

the Na+ and K+ conductances to change (unpublished observation).

This emphasizes that a large number of biophysical parameters

contribute to the energy consumption of APs and that each of these

may be tuned to produce greater energy efficiency, ultimately within

boundaries set by the molecular dynamics of ions channels [25].

It is remarkable that, working within these boundaries, a

number of energy efficient APs achieve efficiencies better than

70% [7,8,15] including 3 of our models (Figure 1). The energy

consumption at rest can also have a considerable influence on

energy usage and can, in some cases, be associated with the cost of

generating signals [6,24]. We found that, the energy consumption

of the models at rest (calculated over the same period as the AP)

was less than 1.5% of that consumed by the AP, irrespective of the

AP’s energy efficiency (Table S5). The advantage of high AP

efficiency is clear [7]. The metabolic cost of APs has a significant

influence on energy usage in neural tissue, sufficient to influence

the function, design and evolution of nervous systems [1,6]. A

cubic millimeter of grey matter in cerebral cortex contains

approximately 3 km of excitable axons, mainly formed by

pyramidal neurons. Each pyramidal neurons uses approximately

4 cm of 0.3 mm diameter axon collateral to drive its 10,000 output

synapses in grey matter and when its drives these synapses with an

AP it incurs a minimum capacitive load of 2.36*108 Na+ ions that

requires approximately 8*107 ATP molecules to eject [1].

Realizing that this minimum energy requirement is inflated by

overlap, and noting that there was no data on the time course of

currents generating APs in pyramidal neuron axon collaterals,

Attwell and Laughlin (2001) adopted the squid overlap factor of 4

and calculated that AP transmission consumed significantly more

energy than synaptic transmission. Energy efficient APs will reduce

AP consumption by more than two thirds, so freeing up energy for

processing [7]. How effective might they be?

The effects of energy efficient APs on cortical processing can be

gauged by recalculating Attwell and Laughlin’s (2001) estimates,

using the overlap factor of 1.2, found in mouse cortical pyramidal

cells and assuming that the probability that a synaptic bouton

releases a vesicle in response to an incoming spike remains at 0.25

[8] (Figure 1). Using neurons whose APs are 80% efficient, as

opposed to the squid at 25%, has two pronounced effects. First, the

level of signal traffic that can be supported by the specific

metabolic rate of cortical grey matter increases by 60%, from an

average firing rate of 4 Hz per neuron to 6.8 Hz. Second, higher

AP efficiency shifts the balance of energy expenditure from APs to

synapses (Figure 8). Thus improving the energy efficiency of APs

enables nervous systems to devote more of their resources to

information processing by synapses and permits higher rates of

processing. Benefits of this magnitude could help to explain why a

number of mammalian CNS neurons use energy efficient APs.

The apparent advantages of using energy efficient APs raises the

obvious question, why do neurons produce APs with apparently

wasteful overlap loads? A number of analyses of neuronal wiring

patterns, circuit layouts and coding procedures demonstrate

convincingly that nervous systems evolve to use space, materials

and energy efficiently [6,29]. Work on squid giant axon shows that

this escape neuron puts overlap energy to good use, boosting

conduction velocity [5]. Modeling demonstrated that an important

determinant of overlap current, channel density, can be adjusted,

together with axon diameter, to minimize the energy required to

transmit an AP with a given velocity, and the native squid axon

operates in this regime [4]. Despite the fact that this AP is used

infrequently and overlap energy is invested in trying to survive

‘‘life or death’’ situations, the squid giant axon matches its

components to use energy efficiently (c.f. [8]).

Given that energy is a limiting resource, it is highly likely that

many other neurons produce APs with overlaps to improve the

performance of their function. Carter and Bean [8] demonstrate

this point by observing that the overlap current in their fast spikers

is the price they pay for enabling high rates by avoiding Na+

inactivation. Comparative studies have revealed numerous

examples of neurons in which conductance, and hence energy

consumption, is increased to improve performance [6] and in fly

photoreceptors the trade off between energy and performance has

been measured and related to the basic biophysics of photo-

transduction [30]. In auditory and electrosensory pathways that

are specialized to accurately code small time differences, axons

with high channel density drive large synapses onto spherical

neurons to reduce response time constants and noise [31]. These

processes could well be matched to each other to distribute

investment efficiently across the system, but ultimately energy is

being invested in the contributions that these neurons make to

Figure 8. A revised energy budget for signaling in the grey
matter of the rat brain. Incorporating the increased efficiency of
action potentials in mammalian neurons into Attwell and Laughlin’s [1]
original energy budget for grey matter in the rat brain reduced the
proportion of the energy budget consumed by action potentials. The
proportion of the energy budget consumed by synaptic transmission is
increased.
doi:10.1371/journal.pcbi.1000840.g008
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behavior, with respect to the animal’s fitness. It is possible

therefore that in many neurons functional constraints and

behavioral requirements prevent energy minimization – neurons

pay for what behavior needs [6].

Given this overtly functional scenario, the task of looking more

deeply into the efficiency of APs seems rather daunting. The

variety of AP waveforms and conductances reflects the multitude

of tasks they undertake [15,32] and it is well established we must

both measure and model APs to understand how they execute

their tasks. Furthermore, these methods must account for the

conductances that trigger APs and the conductances driven by

APs, within the circuitry of the parent neuron. Is each neuron a

special case or are their overarching principles? No matter what

the answer to that question is, if we are to progress to an

understanding of how conductances are organized to operate both

effectively and efficiently we need to vary the parameters in these

multi-compartment multi-conductance systems and observe the

results. Our study of single compartment systems suggests that to

reach this level of understanding the modeler, like the neuron,

must be free to vary parameters simultaneously and obtain

intelligible results in a reasonable time. Efficient optimization

routines, perhaps built on those that we have trialed here, may be

necessary for this endeavor.

Methods

Single compartment Hodgkin-Huxley model
We used single compartment deterministic Hodgkin-Huxley

(HH) type models for our simulations. Since, seven different

variants of Hodgkin-Huxley (HH) type models were used, we

illustrate our methodology taking the squid axon model (SA) as an

example.

The original Hodgkin-Huxley (SA) model contained two

voltage-gated ion channels, Na+ and delayed rectifier K+ along

with the leakage conductance. The dynamics of the membrane

potential was governed by a set of activation and inactivation

variables with the current balance equation having a form,

Cm
dv

dt
~{gNam3h(v{ENa){gK n4(v{EK ){gl(v{El)zIDC

where, Cm is the membrane capacitance, gNa is the conductance

per unit area for the Na+ channel, gK is the conductance per unit

area for the K+ channel and gl is the conductance per unit area for

the leak channel. Parameter values used for the simulations are

detailed in Table S1. IDC is the constant current injection. The

variables m, h and n follow first order kinetics of the type,

dm

dt
~

m?(v){m

tm(v)
,

where, m‘(v) is the steady-state activation and tm(v) is the voltage-

dependent time constant. To allow for the change of shape of APs

we introduce scaling terms for the time constants of the channels

without altering the voltage dependence of the channels i.e., the

activation and inactivation functions now read:

dm

dt
~

m?(v){m

Um|tm(v)

dh

dt
~

h?(v){h

Uh|th(v)

dn

dt
~

n?(v){n

Un|tn(v)

where, Um,Uh,Un are the speed factors (scaling terms) for the

channels, that determine the speed of the underlying kinetics.

Similarly, conductance per unit area for the Na+ and K+ channels

have scaling factors that pre-multiply them to either increase or

decrease the conductance per unit area. The crab leg axon (CA)

neuron was modeled as in [9]. Similar approach was adhered for

the mouse fast-spiking (MFS) cell model with parameters taken

from [10]. The bee Kenyon cell (BK) was modeled after [16]. The

rat hippocampal interneuron (RHI) model had parameters from

[14]. Similarly, the rat granule cell (RG) was modeled after [13]

and the mouse thalamo-cortical relay neuron (MTCR) was

modeled after [11]. All parameter values are detailed in Table S1.

Temperature was factored into the single compartment models

using a normalization term (Q) for the time constants of the

respective channels:

Q~3 temperature{T0ð Þ=10

dm

dt
~

Q| m? vð Þ{m vð Þð Þ
Um|tm vð Þ

where T0 is the temperature at which the experiments were

performed.

Optimization
Many neurons are excitable; quiescent at rest, they exhibit

strong, sustained oscillations if driven—these oscillations are the

APs of the neuron. Current driving the neuron typically causes a

transition (dynamical bifurcation) from the resting state to a

periodically spiking state. However, not all combinations of

biophysical parameters, such as the peak conductances, time

constants, or the voltage dependencies will give rise to periodic

spiking. As parameter shifts can cause sudden transitions in the

dynamics, extra care is needed in any optimization procedure. We

use standard linear analysis to test for the presence of a periodic

orbit in the single compartment Hodgkin-Huxley type models

[33]. Once a periodic orbit is obtained, numerical continuation

techniques [34] can be used to follow the change in the orbit and

its period as parameters are made to vary; in general, to allow for

large parameter shifts, we numerically solve the underlying

differential equations for each new parameter set.

In our case, the optimization objective is to minimize the

integral of the inward (Na+) current over the oscillation period, i.e.,

Q~
Ð T

0
Iinward (t)dt, subject to a fixed amplitude of the oscillation

in the membrane potential. Here, T is the oscillation period,

which itself depends on the parameters. Q is undefined for

parameter sets for which no oscillations result because T is not

well-defined; such an occurrence must be handled separately

during optimization.

Optimization is performed via a gradient-free, simplex-based

direct search method known as the Nelder-Mead algorithm. For

optimizing a function in two variables, the simplex is a triangle.

The algorithm compares the function values at the three vertices of

the triangle and reflects the triangle away from the worst vertex,

shrinks it towards the best vertex, or expands or contracts the

triangle [35]. The soft constraint on the AP height is implemented

as a quadratic loss function added to the ionic load [36,37]. Any

parameter set that does not lead to oscillations immediately

becomes the worst vertex. Alternatively, we search for the global

minimum of the ionic load by using a multi-start, hill-climbing

algorithm based on Newton’s method [37] that is designed to be

robust to local minima [38]. Both algorithms converged to the

nearly the same set of parameter values. In contrast, random

Action Potential Energy Efficiency

PLoS Computational Biology | www.ploscompbiol.org 14 July 2010 | Volume 6 | Issue 7 | e1000840



search, simulated annealing and algorithms based on differential

evolution yielded sub-optimal results.

We optimized the neuron models by scaling the peak

conductances and time constants, either jointly or separately,

subject to the constraints in Tables S3. In particular, we scaled the

time constants for fast sodium activation, inactivation, and the

delayed rectifier potassium activation variables. In those cases for

which sodium activation is assumed to be infinitely fast (MFS

and RHI models), only the two remaining time constants were

scaled.

Custom code was written in Wolfram Mathematica 7.0

(Wolfram Research Inc, USA) and Matlab 2009a (The Math-

Works Inc, USA) for performing and analyzing the simulations

and optimization. Standard optimization routines available in the

Optimization toolbox in Matlab 2009a were used to cross-check

results obtained in Mathematica. To study the dynamics both

quantitatively and qualitatively, numerical continuation code was

implemented using AUTO [34], MATCONT [39] or custom

code in Wolfram Mathematica 7.0 (Wolfram Research Inc, USA).

Calculation of energy and efficiency
Energy consumption in our model is defined as the amount of

Na+ ions consumed during an AP. The Na+/K+ pump hydrolyses

one ATP molecule for every three Na+ ions exported and two K+

ions imported from/to the cell [3]. We compute this charge in

response to a constant current injection. This is done by

integrating the area under the Na+ current curve (for a single

period), which defines the Na+ load of a single AP. Number of

ATP molecules used can be calculated by multiplying this number

by NA/(3.F), where NA is the Avagadro’s constant and F is the

Faraday’s constant.

Gating capacitance model
The original Hodgkin-Huxley model ignores the transient

change in capacitance caused due to charge displacement during

the activation (outward) and the inactivation (inward) of the

channel. The gating current becomes prominent during the rising

foot of the AP. In modeling this effect of transient capacitance, we

follow Crotty and Levy [23] and Sangrey et al. [40] and describe

the gating current as a voltage dependent capacitive current. The

total membrane capacitance is the sum of this voltage dependent

capacitance and the original voltage independent membrane

capacitance, C0 (0.88 mF cm22) [41]. The voltage dependent

capacitance has a maximum value of 1 nF mS21. In our analysis,

we have ignored the contribution of the gating charge due to

inactivation of the Na+ channel and the K+ channel. The

membrane voltage of the compartment is determined via the

following equation,

dv

dt
~

C
gating
Na v(t) _mm(t){INa{IK{IlzIDC

C0zC
gating
Na (1{m(t))

Supporting Information

Figure S1 Single action potentials with same shape can be

produced by different Na+ and K+ currents incurring different

energy costs. (A) The waveforms of two action potentials (red and

black) with similar height and width. (B) The Na+ (black, solid) and

K+ (black, dashed) currents producing action potential 1 (black)

waveform in A. The action potential has a Na+ load of

2244 nC cm22. (C) The Na+ (red, solid) and K+ (red, dashed)

currents producing action potential 2 (red) waveform in A. The

action potential has a Na+ load of 1275 nC cm22.

Found at: doi:10.1371/journal.pcbi.1000840.s001 (0.23 MB EPS)

Figure S2 Shorter action potentials consume less energy. (A)

Two action potentials from the squid giant axon model after

optimization constrained to the original height (grey, solid) and

constrained to a lower height than the original (black, dashed). (B)

The cumulative Na+ load of the action potential constrained to the

original height (grey, solid) and constrained to a lower height than

the original (black, dashed). (C) The Na+ (grey, dashed) and K+

(dark grey, solid) currents producing the shorter action potential.

(D) The amount of energy consumed by a single action potential

after optimization with four different height constraints.

Found at: doi:10.1371/journal.pcbi.1000840.s002 (0.22 MB EPS)

Figure S3 The effect of gating charge on the optimization of the

squid giant axon model. (A) Two action potential waveforms after

optimization without (black) or with (grey) the gating capacitance.

(B) The cumulative Na+ load during each action potential without

(black) or with (grey) the gating capacitance. (C) The underlying

Na+ (grey, dashed) and K+ (grey, solid) currents producing the

optimized action potential with gating capacitance.

Found at: doi:10.1371/journal.pcbi.1000840.s003 (0.21 MB EPS)

Figure S4 The effect of additional conductances on action

potential energy consumption after optimization. (A) Three action

potentials from the crab motor neuron (CA) model. The original

action potential (red), the action potential after optimization when

parameters of the A-type K+ voltage-gated channels were fixed

(black) and the action potential after optimization when param-

eters of the A-type K+ voltage-gated channels were also allowed to

vary (blue). (B) The three currents from the original crab motor

neuron (CA) model. (C) The three currents from the optimized

crab motor neuron (CA) model when parameters of A-type

currents were fixed. (D) The three currents from the optimized

crab motor neuron (CA) model when parameters of A-type

currents were allowed to vary.

Found at: doi:10.1371/journal.pcbi.1000840.s004 (0.33 MB EPS)

Figure S5 The overlap between Na+ and K+ currents are

reduced after optimization. (A) The Na+ (black, dashed) and K+

current (black, solid) of the crab motor neuron (CA) model before

optimization. (B) The Na+ (grey, dashed) and K+ current (grey,

solid) of the crab motor neuron (CA) model after optimization. (C)

The Na+ (black, dashed) and K+ current (black, solid) of the mouse

fast spiking neuron (MFS) model before optimization. (B) The Na+

(grey, dashed) and K+ current (grey, solid) of the mouse fast spiking

neuron (MFS) model after optimization.

Found at: doi:10.1371/journal.pcbi.1000840.s005 (0.21 MB EPS)

Table S1 Parameters of action potentials from the seven single

compartment models.

Found at: doi:10.1371/journal.pcbi.1000840.s006 (0.05 MB

DOC)

Table S2 Properties of action potential waveform of single

action potentials from the seven single compartment models, after

introduction of 65% error on peak conductance values of Na+, K+

(delayed-rectifier) and leak conductances.

Found at: doi:10.1371/journal.pcbi.1000840.s007 (0.03 MB

DOC)

Table S3 Optimal parameter set when all parameters of the Na+

and K+ channels are allowed to vary.

Found at: doi:10.1371/journal.pcbi.1000840.s008 (0.04 MB

DOC)
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Table S4 Comparison between original squid axon model (SA)

and the modified squid axon model (HHSFL) at 6.3uC.

Found at: doi:10.1371/journal.pcbi.1000840.s009 (0.03 MB

DOC)

Table S5 Resting and signaling costs from the seven single

compartment models.

Found at: doi:10.1371/journal.pcbi.1000840.s010 (0.03 MB

DOC)
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