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ABSTRACT.—Quantitative phylogenetic inference estimates the probability of observed character distributions 
given trees and rates.  Most available programs for doing this assume (tacitly or explicitly) that the sampled taxa 
are contemporaneous.  However, paleontologists usually sample taxa over a clade’s history.  Thus, we must esti-
mate the probability of observed character-state distributions over time given trees and rates.  When we include 
information about sampling intensity, then we really are estimating the probability of the observed record given 
trees and rates.  Some additional problems that should be issues for neontologists, but which are much more obvi-
ous concerns for paleontologists include: 1) ancestor-descendant relationships; 2) punctuated versus continuous 
morphological change; and, 3) the effects of extinction and speciation rates on prior probabilities of trees.  Future 
goals of paleosystematists include incorporating these and other “nuisance” parameters so that, ultimately, our 
tests of phylogeny are really tests of evolutionary histories.  

INTRODUCTION

THE ABILITY to accurately reconstruct phylogenies 
can greatly expand paleobiological research programs.  
However, although paleontological data presents 
unique challenges, only a few workers have developed 
methods accommodating these (e.g., Gingerich, 1976; 
Fisher, 2008).  We have particularly lagged in the de-
velopment of probabilistic methods of phylogenetic 
inference.  Such methods date back to the 1960’s (e.g., 
Edwards and Cavalli-Sforza, 1964) and methods based 
on statistical probability (i.e., maximum likelihood, and 
more recently Bayesian posterior probabilities) have 
become the most widely used among systematists.  
The reasons for this popularity include the ability to 
explicitly model evolutionary processes specific to the 
data being analyzed, some favorable statistical proper-
ties (e.g., Felsenstein, 1988; Hillis, 1995; Huelsenbeck, 
1995) and suitability for statistical hypothesis testing 
(e.g., Huelsenbeck and Rannala, 1997b).  All of these 
should appeal to paleobiologists as well.

Although early presentations of probabilistic 
methods do not assume characters of any particular data 
type (e.g., Felsenstein, 1973), the use of probabilistic 
methods has been restricted predominantly to mo-
lecular data.  This simply reflects the ease of applying 
such methods to molecular sequences: the data share 
not just the same number of possible states, but also 
the same possible states (e.g., A, G, C and T for DNA 
sequences).  This uniformity allows single models of 
character evolution to be applied to entire sequences 
or partitions thereof (e.g., first, second or third codon 
positions).  However, Lewis (2001) presents simple 
modifications of this approach for the analysis of 
characters with any number of states, which requires 
no assumptions about shared states among characters.  
As a result, some recent analyses of morphologic data 
use likelihood and Bayesian methods (e.g., Ayache and 
Near, 2009;  Glenner et al., 2004;  Wiens et al., 2005), 
including a handful of studies using fossil taxa (e.g., 
Snively et al., 2004; Pollitt et al., 2005; Müller and 
Reisz, 2006; Beck et al., 2008; Clarke and Middleton, 
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2008; Fröbisch and Schoch, 2009). 
Numerous works summarize the general meth-

odology and equations for calculating tree likelihoods 
(e.g., Swofford et al., 1996; Huelsenbeck and Rannala, 
1997a; Felsenstein, 2004; Galtier et al., 2005).  How-
ever, because probabilistic methods of phylogenetic 
inference are not yet commonly applied to fossil taxa, 
our first goal in this paper is to familiarize the reader 
with the general methods and basic calculations. We 
will show that, while these methods are currently ap-
plicable to fossils, they do not yet make full use of 
information provided in the fossil record.  Thus, our 
second goal is to identify potential modifications of 
existing methods of probabilistic inference to leverage 
the wealth of information available in the fossil record 
for more robust phylogenetic inference of fossil taxa.

PHYLOGENIES AND FOSSILS: SOME 
NECESSARY COMPONENTS

Important Terms and Concepts.—Probabilistic 
inference of phylogeny requires two components: a 
phylogeny and a model of character evolution.  These 
are then used to estimate the probability of the ob-
served character-states among the analyzed taxa (i.e., 
the character matrix).  The maximum likelihood (ML) 
inference methods choose trees maximizing this prob-
ability, whereas Bayesian methods effectively “weight” 
tree likelihoods by the prior probabilities of those trees 
(see Wang, this volume).  

We require fairly exact phylogenetic hypotheses 
to determine the probability of observed data.  The dis-
tinction between “cladogram” and “phylogeny” arises 
here.  Cladograms are very general statements about  
relationships.  Phylogenies are very specific state-
ments about relationships that, for any one cladogram, 
might differ on hypothesized amounts of change and/
or divergence times (see, e.g., Fig. 1).  We require the 
specific information unique to each phylogeny within 
a cladogram (e.g., amounts of evolution, ancestor-
descendant vs. sister-species relationships) to estimate 
the probability of our observations.  The cladogram 
itself has no likelihood unless we integrate over all 
possible phylogenies within that cladogram.  

Given any phylogeny, calculating probabilities of 
character-state distributions requires expectations about 
character change.  These expectations are derived from 
models of character evolution.  As we will emphasize, 

these models usually are flexible rather than invariant 
assumptions.  They even can be estimated as part of 
the hypothesis in analysis. Possible models that concern 
paleontologists include not just different rates among 
different characters, but different rates over phylogeny 
and/or time, and whether change is concentrated in 
specific events or distributed through time. 

Describing Phylogenies with Fossil Taxa.—Phy-
logeny has two components: a general topology (Ψ) de-
scribing which species are closest relatives, and ages (d) 
for each speciation event (cladogenetic or anagenetic) 
on that topology.  What distinguishes paleontological 
phylogenies from neontological phylogenies is that first 
appearance (FA) and last appearance (LA) data com-
bined with d (i.e., the set d for all nodes of Ψ) permit 
three fundamentally different exact relationships given 
any one Ψ (Fig. 1.1). Having d for node precede the 
FA the node’s oldest descendant (Fig. 1.2) is consistent 
with “bifurcating” cladogenesis (sensu Foote, 1996b).  
A d that occurs within the stratigraphic range of the 
node’s oldest descendant (Fig. 1.3) necessarily implies 
“budding” cladogenesis event in which an ancestor 
persists along with its descendant. Finally, a d that 
postdates the LA of the node’s oldest taxon  (Figure 1.4) 
is consistent with the older and younger taxa being part 
of an anagenetically evolving lineage (e.g., anagenetic 
speciation). (Note that d cannot be younger than the FA 
of the latest-appearing descendant of a node.)  

Each branch i of Ψ (Figure 1.1) will have two qua-
si-independent parameters: its sampled chronostrati-
graphic range (si) and unsampled duration implied 
by the phylogeny (ti, which equals a range extension 
sensu Smith 1988 or a ghost-lineage sensu Norell 1993) 
(see Fig. 1.2-1.4). Most models of character evolution 
require one or both of these parameters to calculate a 
phylogeny’s likelihood (see below). 

Note that ti is the unsampled duration of a taxon 
that necessarily is implied by the phylogeny. As a 
rule, ti always precedes si (Signor and Lipps 1982). 
Although the true dates extinction of most taxa also are 
after their LA, the phylogeny, provides no information 
about such extensions. The nearest exception to this is 
the anagenetic lineage depicted in Fig. 1.4: there, the 
unsampled duration separating Taxa C and D (t2) might 
belong to C, D or partially to both. However, this does 
not affect the calculated likelihoods: as we will show 
below, the calculated probabilities of character change 
over t2 encompass all possibilities. The constraint that 
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FIGURE 1.—The use of a topology Ψ, node dates and stratigraphic range data to specify phylogenies of fossil 
taxa. 1. A topology (e.g., cladogram; Ψ) depicting two sister taxa. Branches of the cladogram are labeled as ν1-3.  
2-4. Three different phylogenies consistent with Ψ.  s is the portion of each branch that is observed and t is the 
unobserved portion implicit to a particular phylogenetic hypothesis.  In 2, the divergence date of the node joining 
Taxon A and Taxon B (dAB) predates the first appearance (FA) of either Taxon A or B.  This relationship between 
dAB and the FA of all descendants of the node is consistent with bifurcating cladogenesis.  In 3, dAB between the 
FA and last appearance (LA) of Taxon A necessitates budding cladogenesis.  In 4, dAB between the LA of A and 
the FA of B is consistent with anagenesis.  Note that we consider “speciation” to encompass both models.

ti must precede si does bias tree-based analyses such 
as phylogenetic reconstructions of taxonomic richness 
(e.g., Foote, 1996c;Wagner, 2000c; Lane et al., 2005). 
However, this constraint does not bias the calculation 
of tree likelihoods, as there are no character data that 
bear on extensions subsequent to the LA.

If taxa have stratigraphic ranges, then the relation-
ship between d and the stratigraphic ranges of descen-
dant taxa determines s and t along those descendant 
branches (e.g., ν1 and ν2 in Fig. 1.1) and the branch 
immediately leading from the node to its ancestor (e.g., 
ν3, in Fig. 1.1). If all taxa descended from a node are 

sampled from only a single time slice and therefore 
have no stratigraphic ranges, then si=0, and ti will cor-
respond to the entire temporal duration of branch i. If 
stratigraphic data are available, then si and ti values for 
all branches of the tree can be determined in a postorder 
traversal of the tree (i.e., moving from the tips to the 
root) using the following rules: 

1) If the d precedes FA for all descendant, then ti is 
the difference between x and d, where x is one 
of two values.  If the descendant is a sampled 
taxon, then x is the FA of that taxon.  If the 
descendant is an internal node, then x is d of 
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that descendant node. If the branch leads to a 
terminal taxon, then s equals the stratigraphic 
range of that taxon (e.g., s1 in Fig. 1.2). If the 
descendant branch leads to an internal node, 
then the next higher node determines its s. For 
the branch leading from this node to its own 
ancestor (e.g., v3 in Fig. 1.1), s is zero, and t 
is the difference between the d values of this 
node and its ancestral node (e.g., t3 in Fig. 1.2).

2) If d is later than the FA of the oldest descen-
dant branch (Fig. 1.3 and 1.4), ti=0 for the 
branch leading to the oldest descendant. If 
the branch leads to a terminal taxon, then s is 
the difference between that taxon’s LA and d.  
Otherwise, s=d of the next highest node if this 
descendant branch is entirely sampled. In the 
latter case, s of the branch leading to this node 
from its ancestor becomes the segment of the 
stratigraphic range preceding d (e.g., s3 in Fig. 
1.3). The date of any node must be older than at 
least one of its descendants, so d must predate 
the FA of the younger descendant. The values 
of s and t for this branch are determined using 
the rules above. 

3) If d is later than the LA of a terminal taxon (e.g., 
Fig. 1.4), then s=t=0 for the branch leading to 
this oldest descendant. Now s for the branch 
leading to this node from its descendant will 
be the entire stratigraphic range of this termi-
nal taxon (e.g., s3 of Fig. 1.4). s and t for other 
descendants will be determined as above.

At this point, it is appropriate to make a brief 
note concerning taxa and coding practices.  At the 
species-level, our discussion equates taxa with unique 
morphologies.  At the species-level, this assumes a 
“morphospecies” concept, where a species is a unique 
combination of character states.  This concept is ap-
propriate for our purposes for two reasons.  First, it 
follows paleontological practice: fossil species almost 
inevitably are morphospecies as this really is the only 
criterion available to us.  Second, the morphospecies 
concept is neutral with regard to any pattern that pale-
ontologists might call “speciation.”  That is, it allows 
for bifurcation (Fig. 1.2), budding speciation (Fig. 1.3) 
and anagenetic speciation (Fig. 1.4).  Workers should 
code and analyze taxa in a manner that allows for any 
of these three possibilities, so they might be evaluated 

as part of the phylogenetic analysis.  For example, even 
if one suspects that morphospecies A and B are part of 
the same anagenetically changing lineage, then one still 
should code them separately, in order to compare the 
likelihood of this presumed evolutionary relationship 
to other possible hypotheses during the phylogenetic 
analysis (Wagner and Erwin, 1995).  These distinctions 
are important if we are worried about reconstructing 
evolutionary history rather than general phylogenetic 
relationships. We will return to how likelihood can 
distinguish these possibilities in more detail below. 

PHYLOGENY LIKELIHOOD: A SIMPLE 
EXAMPLE

Consider a four-taxon topology, Ψ=((A,B),(CD)).  
We will begin with phylogeny ψ1, for which all branch 
durations t=1.0 and all s=0.0  (Fig. 2).  (Note that branch 
duration is not the same as branch length common in 
molecular phylogenetics; see below.)  We will examine 
a single two-state (k=2) character, for which Taxon A 
shows state 0, while Taxa B, C and D all show state 1. 
We will assume a rate of character evolution (δ) that is 
constant on all branches of the tree, with δ=0.05 giving 
the expected changes per unit time. If we assume that 
change can happen at any time along a branch, then 
the probabilities of transition, P, along any branch are:

P=				                (1)
						                  

where pij gives the probability that a branch beginning 
with state i will end in state j (where j might equal i; 
Lewis, 2001).  Note that these give the probability of net 
stasis and net change along a branch and not the prob-
abilities of stasis or a single change along that branch 
(Felsenstein, 1981).  Thus, for our binary character, the 
diagonal is the summation of the Poisson probabilities 
of 0, 2, 4, etc., changes, all of which end up in staying 
in, or reversing to the original state.  The off–diagonal 
is the summation of the Poisson probabilities of 1, 3, 
5, etc., changes, all of which end up in a net change to 
the other state.

Substituting the given parameter values into 
Equation 1, we get:
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FIGURE 2.—The likelihoods of two four-taxon phylogenies for contemporaneous taxa given rate of change 
δ=0.05 and branch durations as figured. PA-D gives the probability of the observed states for each taxon given 
either possible ancestral hypothesis. PE-F give the probabilities of E (= node (AB)) and F (= node (CD) having 
either state 0 or 1 given either possible condition for the basal node (G). The vectors above the nodes give the 
marginal likelihoods of the alternative ancestral reconstructions.  The likelihood of the entire tree is the sum of 
the marginal likelihoods of the root node (Felsenstein, 1981).  See text for exact calculations.

	
               P=			            (1a).

Because this particular example has the same t 
for each branch, we can use the same P to determine 
the likelihoods conditioned on either state 0 or state 
1 being the ancestral condition at each node on the 
tree.  In all cases, this is simply the joint probability of 
going from that state to the two observed states. The 
likelihood that the ancestral state at the node linking 
A to B (hereafter, E) is 0 is the joint likelihood (i.e., 
the product of the probabilities) of net stasis along the 
branch to A (i.e., p00) and a net change from state 0 at 
E to state 1 in B (i.e., p01): 

L[E=0|A=0,B=1] = p00×p01 		            (2a)
		   = 0.952×0.048
		   = 0.045.

(Note that here and elsewhere, the final numbers 
reflect rounding error.)  Alternatively, the likelihood that 
the ancestral state at Node E is 1 is the joint likelihood 
of a net change in state along the branch to A and net 
stasis along the branch to B:

L[E=1|A=0,B=1] = p10×p11 
		   = 0.048×0.952
		   = 0.045.

The ancestral state at Node E is not known, so 
we want to know the likelihood given either possibility.  
Thus, the marginal likelihood of Node E is the sum of 
the conditional likelihoods calculated for all possible 
ancestral states at the node.
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L[E=(0,1)| A=0,B=1]  = 	 L[E=0| A=0,B=1] + 
		  L[E=1| A=0,B=1]                       (2b)

		  = 0.045 + 0.045
		  = 0.090.
Similarly, on the node linking C to D (hereafter, F):  

L[F=0|C=1,D=1] = p01×p01 
		   = 0.048 × 0.048
		   = 2.3×10-3

and

L[F=1| C=1,D=1] = p11×p11 
		    = 0.952×0.952
		    = 0.907

so
 

L[F=(0,1)| C=1,D=1] = L[F=0| C=1,D=1] + 
		  L[F=1| C=1,D=1]
		  = 2.3×10-3

 + 0.907
		  = 0.909

The fact that nodal conditions are unknown is 
very important as we descend the tree and estimate 
the likelihood of nodes linking other nodes (e.g., Node 
G). Now the conditional likelihood of Node G having 
state 0 is the sum of joint likelihoods of all four pos-
sible combinations of states at Nodes E and F. In other 
words, we estimate the probability of state 0 leading 
(ultimately) to the observed data through all possible 
paths. Thus,

L[G=0]	=	 [(p00 × L[E=0]) × (p00 × L[F=0])] +
		  [(p01 × L[E=1]) × (p00 × L[F=0])] +
		  [(p00 × L[E=0]) × (p01 × L[F=1])] +
	      [(p01 × L[E=1]) × (p01 × L[F=1])]   (2c)

These are all possible combinations of states for E 
and F, given that G has state 0, and therefore all of the 
possible evolutionary pathways leading to the observed 
character-states in taxa A, B, C and D.  Substituting 
the results of equations given above and rearranging 
slightly, the conditional likelihood of G=0 is:

L[G=0|data]  = ([0.952×0.045]+[0.048×0.045])×
	            ([0.952×2.3×10-3]×[0.048×0.907])

	         = 0.002. 

Repeating this for G=1, we get:

	
L[G=1|data]  = (p10×L[E=0]+p11×L[E=1])×
	            (p10×L[F=0]+p11×L[F=1])
	         = ([0.048×0.045]+[0.952×0.045])×
	            ([0.048×2.3×10-3]×[0.952×0.907])

	         = 0.039. 
Summing the condit ional  l ikel ihoods,  

L[ψ1,δ |data]=0.002+0.039=0.041, which is the margin-
al likelihood of both Node G, and the entire phylogeny.

THE EFFECT OF BRANCH DURATIONS 
ON PHYLOGENY LIKELIHOODS

The Effect of Unequal Branch Durations 
(t).—The phylogeny ψ1 represents a particular case 
of cladistic topology Ψ where t=1.0 for all branches.  
Consider instead ψ2 (Fig. 2.2) with the same topol-
ogy, but for which the branches leading to A and 
B both have durations t=1.5 and for which the 
branch leading to their ancestor (Node E) has t=0.5. 

Now, PE→A= 

	         

and PE→B=	             .  

Correspondingly, the conditional likelihoods of Node E 
given δ=0.05 now increase to L[E=0]=L[E=1]=0.065. 
In this case, the likelihood increases because we give 
the branches more time for the change(s) that must 
have occurred on at least one of them. Because we did 
not alter the durations of branches descending from 
Node F, the marginal likelihood of node F is unaf-
fected. The likelihood of the whole tree increases to 
(L[G=0]=0.003) + (L[G=1]=0.056) = 0.059.  Within 
any general (cladistic) topology, there will be one or a 
few phylogenies that maximize the probability of the 
character data at any given δ. 

The Effect of Sampling Taxa over Time.—With 
some exceptions (e.g., Drummond et al., 2006; Kim and 
Sanderson, 2008), neontological studies do not vary δ 
or t independently as we describe above. Instead, they 
vary “branch lengths,” i.e., the expected numbers of 
changes and thus a product of rate and time (i.e., δ × t).  
Whether branch lengths differ because of time or rate 
or whether the same branch lengths represent different 
combinations of time and rate generally is not important 
for relationships themselves: the distinction becomes 
important only if we are interested in divergence time.  
The vast majority of paleontological studies face a dif-
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FIGURE 3.—Calculating the likelihood of two four-taxon phylogenies with stratigraphic ranges. Probabilities of 
change and marginal likelihoods are given as in figure 1.  1. ψ3, a phylogeny in which no ancestors are sampled.  
2. ψ4, We assume that each taxon is known from throughout each chronostratigraphic unit rather than being known 
from only a portion of it.  Two tree likelihoods are given.  The first (upper) likelihood considers the probability of 
the data only given the unsampled regions (i.e., the dashed lines).  The second (lower) likelihood multiplies this 
by the probability of stasis between the first and last appearances of the sampled taxa.  Positioning B and C as 
ancestors in ψ4 means that they must retain the ancestral condition.  It also means that we ignore the probability 
of transition to state 0 for nodes E and F, as the hypothesis specifies that E=B and F=C.

ferent sort of variation in branch duration: taxa being 
sampled over time rather than from a single time-slice. 
We note above that this permits three basic types of 
inference.  Let us consider first another phylogeny, ψ3, 
consistent with Ψ (Fig. 3.1), in which the taxa have 
different stratigraphic ranges, but none are ancestral 
to each other (e.g., Fig. 1.2).  

A simplifying aspect of the examples in Figure 
2 is no longer true: the branch durations separating 
observed sister taxa from their last common ancestors 
are no longer equal.  Thus, PE→A≠P E→B and PF→C≠PF→D. 
An obvious effect of sister taxa having different branch 
durations is that they have different influences on the 
conditional likelihoods of ancestral states.  On ψ3 we 
see both increases and decreases in most likely ancestral 
character-states relative to what we had for ψ1.  For 
node E, states 0 and 1 are equally likely on ψ1 or ψ2.  

However, state 1 is much more likely than state 0 for E 
on ψ3.  This is because we now posit much more time 
for change along the branch leading to A than for the 
branch leading to B.  Those taxa closer in time to the 
most recent common ancestor are more likely to reflect 
the ancestral states (e.g., Donoghue et al., 1989).  For 
node F, state 1 is the most likely ancestral reconstruc-
tion on both ψ1 and ψ2, but we see a slight decrease 
in the likelihood of state 1 and a slight increase in the 
likelihood of state 0 for this node on ψ3. This reflects 
the increased evolutionary time separating the node 
from both descendants, which makes it slightly less 
probable that a state would show net stasis and slightly 
more probable that there would be two net changes.  

Another basic assumption in our calculations 
might seem to be paradoxical. On one hand, we assume 
that character change can occur at any time on branches 
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separating sampled taxa. On the other hand, we do not 
take into account the fact that all of the taxa in Figure 3 
have some large s over which no change accrued. That 
is, our calculations do not assess the probability of stasis 
given s and δ.  (We shall address the possibility that 
some of these taxa are simply morphospecies within an 
anagenetically evolving lineage below.)  Accounting for 
stasis over all s in the calculations affects the likelihood 
of any hypothesized δ and thus the likelihood of the 
overall hypothesized evolutionary history.  We do not 
use pii here because it corresponds to the probability 
of net stasis, which allows for reversals over some in-
terval of time.  Instead, we use the Poisson probability 
of zero observed changes given an expectation of (k-1)
δt changes:
					                 (3)

If there are gaps within a species range, however, 
then one could use pii from each gap to the next.  We 
present this likelihood as well as the likelihood given 
only unsampled lineages in Figure 3.1 and 3.2.

The Effect of Ancestor-Descendant Relation-
ships.—Another possibility introduced by sampling 
over time is the sampling of ancestor-descendant 
pairs. At the species-level, we can sample ancestor-
descendant pairs among contemporaneous taxa when 
evolution occurs under budding cladogenetic models 
(e.g., Taxa A and B in Fig. 3) and the ancestral species 
persists after the divergence of a daughter taxon.  Under 
this model, we might sample ancestral morphospecies 
among extant taxa, and many molecular studies suggest 
that this might be common (e.g., Funk and Omland, 
2003).  Fossil data, however, offer an additional pos-
sibility.  Because we can sample over time, we can 
sample ancestor-descendant morphospecies pairs from 
a single lineage (e.g., Fig. 1.4).  Thus, paleontologists 
might find ancestor-descendant pairs under any evolu-
tionary model, not simply the “budding” model.   We 
shall return to this topic in more detail below when 
we contrast the expectations of punctuated character 
change with those of continuous character change. 

Consider phylogeny ψ4 with the same cladistic 
topology and stratigraphic ranges as ψ3 (Fig. 3.1), but 
with dE and dF that require ancestor-descendant hy-
potheses (Fig. 3.2).  There are several points to stress.

  
First, ψ4 specifies PE→B = PF→C =               .  
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The marginal likelihoods now might seem confusing: 
even though the ancestral state must be 1, the marginal 
likelihoods of the ancestral states being 1 are less than 
1.0.  This is, of course, due to the fact that the likelihood 
reflects the probability of going from 1→0 (B→A) or 
from 1→1 (C→D), not the probability that the ancestral 
reconstructions are correct.  Moreover, the likelihood 
of the only alternative (state 0) is zero in both cases, 
which means that particular hypothesis must be false 
if the more general hypothesis is true.

Positing observed ancestral conditions means that 
PG→E and PG→F now are vectors rather than matrices.  
Note, however, that we do not calculate the likelihood 
of the root node as if it links only two observed taxa.  
Instead, it links two segments of phylogeny: thus we 
must multiply PG→E and PG→F by the marginal likeli-
hoods of those nodes to get the likelihoods of states 0 
and 1 for the root node.  Correspondingly, the likelihood 
of state 0 is very low.

Finally, note that the likelihood of ψ4 is lower than 
that of ψ3.  This is largely an effect of sampled versus 
unsampled ancestors.  Phylogenies with unsampled 
ancestors actually are a collection of phylogenies: for 
example, ψ1-3 each represent 23=8 distinct evolutionary 
histories based on the alternative ancestral reconstruc-
tions for nodes E, F & G (see Appendix).  Each of 
these alternatives contributes to the overall likelihood 
of the phylogeny when we sum the marginal likeli-
hoods. Positing sampled ancestors reduces the summed 
histories to only two (based on the basal node) for ψ4. 
Thus, adding hypothetical ancestors is akin to adding a 
parameter to a model (see Wang this volume; Hunt this 
volume):  unsampled ancestors provide the hypotheses 
with greater flexibility to predict the data.  Likelihood 
theory, information theory and graph theory all demand 
that the improvement in likelihood be substantial to 
justify this flexibility (Edwards, 1992; Alroy, 1995; see 
also Fisher, 1994; Smith, 1994).  However, this also is 
not a case where the simpler hypothesis is a special case 
of the more complicated hypothesis.  Thus, we cannot 
evaluate the significance of likelihood improvement 
using log-likelihood ratio tests (see, e.g., Goldman, 
1990; Wang, this volume).  It is possible that informa-
tion theory criteria (e.g., AIC; Burnham and Anderson, 
2002; Hunt this volume) could be used, but this requires 
further exploration, as the amount of simplification 
is dependent on numerous factors (see Appendix).  
Parametric bootstrapping, where the null hypothesis 
is used to parameterize simulations and determine the 
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expected improvement from incorrect test hypotheses 
(Huelsenbeck et al., 1996) might be required here.

This discussion above assumes that one is analyz-
ing species, but the basic principles apply to supraspe-
cific analyses.  Indeed, because the sampling of higher 
taxa typically is better than that of species, we expect 
to sample ancestral morphotypes at the supraspecific 
level more frequently than we sample those at the spe-
cies level (see, e.g., Foote, 1996b).  The major caveat 
here is that the stratigraphic range of, say, a genus often 
might not be not the stratigraphic range of the coded 
morphotype representing that genus.  For example, 
early representatives of genera often lack some of  
the diagnostic traits of the whole genus (see, e.g.,  
Brusatte, 2010).  Conversely, many genera include 
species that have one or more synapomorphies of 
a “daughter genus.” However, because they retain  
the primary diagnostic characters of the “ancestral 
genus,” they still are classified in that genus.  As a 
result, it often might be more difficult to ancestor- 
descendant hypotheses among genera when using  
only genera rather than species within genera.   

EFFECTS OF CHARACTER  
EVOLUTION MODELS

Statistical models versus biological models.—As 
noted above, we need character evolution models to 
calculate the probability of data. The diversity of cur-
rently available models for probabilistic inference and 
their use has been reviewed elsewhere (e.g., Galtier et 
al., 2005; Kelchner and Thomas, 2007), as have cau-
tions on their application (Gatesy, 2007). The model 
we have used so far is a Markov process in which the 
numbers of state changes follow a Poisson distribution 
(e.g., Galtier et al., 2005).  The Poisson model is only a 
convention: we can use any model of change that gives 
the probability of the observed distribution of character-
states among taxa (see below).  We also must emphasize 
that these statistical models used to describe patterns of 
evolutionary change typically are agnostic with respect 
to biological process models: that is, large numbers 
of biological processes will yield virtually identical 
distributions such as Poisson distributions. Statistical 
models used in probabilistic inference rarely preclude 
or specify particular biological processes.

 Nevertheless, our examples above assume that 
rates of change among states are equal (i.e., symmetri-
cal) and that δ is the same on all branches.  Empirical 

studies demonstrate that rates of change among states 
of a single character can be unequal (e.g., Sanderson, 
1993), and that rates can vary in different portions 
of clades (e.g., Wagner, 1997; Ruta et al., 2006).  In 
addition, rates might vary among characters (e.g., site-
to-site rate variation Yang, 1996).  In the subsequent 
sections, we shall outline how to accommodate these 
possibilities.  As these problems are not unique to 
paleontology, and as paleontologists themselves have 
contributed to general solutions, we will not go into 
these issues in the level of detail used above. 

Variation in Rates Among Characters.—In the 
examples above, we arbitrarily set δ=0.05.  Because 
the calculated likelihoods give L[ψi,δ|data], we will 
get a different likelihood when δ=0.05 than, say, when 
δ=0.06.  On such a small phylogeny, likelihoods usu-
ally increase continuously as rates do, asymptotically 
approaching 0.125: the value where all eight possible 
vectors for binary characters over four taxa are equally 
probable. Of course, most studies examine many more 
than 4-taxa.  Consider a 16-taxon phylogeny that is 
symmetrical: i.e., two clades of 8 taxa that both in-
clude two clades of four taxa identical to ψ1. When we 
look at numerous characters with different numbers 
of minimum changes (Fig. 4), then several important 
features emerge: 

1) characters with low minimum numbers of 
changes show peak likelihoods at low δ;

2)  characters with low minimum numbers of changes 
show higher peak likelihoods than do those char-
acters with high minimum numbers of changes;

3) as rates increase, we retain an asymp-
totic approach to likelihoods equal to the 
probability of a randomly generated bi-
nary vector, but with this likelihood now 
very much lower than the peak likelihoods.  

 
The log-likelihood of the 16-taxon tree for any 

single δ is the sum of the heights of these curves at that 
δ.  However, if we use separate δ for different characters 
(or sets of characters), we can substantially increase 
overall likelihood (e.g., Wagner, 2001). For example, 
the combination of δ1=0.04, δ2=0.12 and δ3=0.17 would 
increase the log-likelihood given these 22 characters 
by a factor greater than 15.  Given log-likelihood ratio 
tests, this is well worth adding two parameters.  (Note 
that log-likelihood ratio tests become inappropriate if 
we modify ψ to accommodate these new rates; Gold-
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man, 1990).   
Unfortunately, optimizing a separate value of 

δ for each character slows down computer analyses 
greatly and can easily lead to over-parameterization 
supporting unnecessary evolutionary hypotheses.  An 
alternative is to calculate the probability of the data 
using a range of rates, with the subsequent likelihood 
an average of these probabilities weighted by the prob-
ability of the rates themselves..  Systematists commonly 
use the gamma (Γ) distribution for this purpose (e.g., 
Yang, 1993, 1994, 1996). The Γ distribution has two 

parameters (shape parameter α and scale parameter β), 
but in practice β is constrained to equal α, which both 
reduces the distribution to a single parameter and sets 
the mean of the distribution to 1.0. 

For computational simplicity, workers typi-
cally use a discrete approximation of the Γ distribu-
tion (Yang, 1994) that divides the area beneath the 
distribution into a fixed number of equal partitions, 
each of which corresponds to a “rate class”. Thus, we 
can use the mid-point of each rate class (i.e., the points 
separating 12.5%, 37.5%, 62.5% and 87.5% of the total 

FIGURE 4.—1. Log-likelihoods of δ given numerous character vectors for a symmetrical 16-taxon phylogeny 
with t=1.0 for all internal branches.  (We ignore the effects of stasis within sampled taxa, but this will have a 
uniform effect on each character at any given δ).  “Changes” give the minimum number of changes possible for 
each character on this hypothetical tree.
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area from the end of the curve) as a scalar multiplier 
of δ, the “overall” rate. However, we do not assign 
individual characters to a particular rate class.  Instead, 
we calculate marginal likelihoods of the tree over all 
possible rate class assignments to all characters. 

Now return to our initial example with ψ1, where 
we arbitrarily used δ=0.05. The optimal parameter for 
the gamma distribution is typically estimated using all 
characters in the data matrix.  In our example, we calcu-
lated the likelihood of the tree for only a single charac-
ter, so, for simplicity, let us assume that other characters 
suggest a Γ distribution with α=β=1.0.  The midpoints 
of our rate classes of the Γ distribution are 0.134, 
0.470, 0.981 and 2.079.  We now calculate the likeli-
hood of ψ1 four times, with δ1=0.05×0.134=0.0067, 
δ2=0.05×0.470=0.0235, δ3=0.05×0.981=0.0491 and 
δ4=0.05×2.079=0.1040.  Inserting each δi into Equation 
2 above gives us likelihoods of 0.007, 0.0214, 0.041 
and 0.071 respectively.  Now, the likelihood of the tree, 

 
L[ψ1,δ=0.05,Γα=β=1.0 | data] = 

� 

(0.007 + 0.021 + 0.041 + 0.071)

4 . 

This example demonstrates the application of the Γ 
distribution to a single character, and these calculations 
would be repeated then for all other characters in the 
data matrix.

Because we set β=α, the Γ distribution has only 
one freely varying parameter.  This parameter essential-
ly describes the how characters are partitioned among 
the rate classes: as α increases, the difference between 
δ1 and δ4 decreases and thus the modeled variation in 
rates decreases. The value of α estimated for a set of 
characters is not dependent on the topology: it can be 
reliably estimated from an initial parsimony tree or 
any other starter tree (Yang, 1993).  Among-character 
rate variation also can be modeled with alternative 
statistical distributions such as the Dirichlet distribution 
(Huelsenbeck and Suchard, 2007) which can provide 
greater flexibility in the rate classes while using two 
parameters. Mixture modeling (e.g., Pagel, 1997, 1999) 
also can be used.  The point that bears emphasizing is 
that we can model considerable rate variation among 
characters with few parameters.

Variation in Transition Rate among States.—For 
some characters, some states might evolve more often 

than others. This posits an asymmetrical transition 
matrix for equation 1, where p01≠p10 and thus p00≠p11.  
“Dollo’s Law” (e.g., Goldberg and Igić, 2008) is an 
extreme version of this model where change is irre-
versible. Driven trends (sensu McShea, 1994), where 
we see biased gains/loses or “increase/decrease” along 
multistate characters, represent a more intermediate 
example.  Because of the macroevolutionary implica-
tions of this model, it has been well researched by both 
paleontologists and neontologists.  Numerous methods 
exist that basically employ asymmetrical transition 
matrices (e.g., Sanderson, 1993; Pagel, 1997), which 
have been applied to paleontological data (e.g., Wag-
ner, 2001).  Obviously, we cannot consider this for 
all characters easily.  However, several methods for 
detecting driven trends without phylogenetic models 
exist (e.g., McShea, 1994; Alroy, 2000; Wang, 2001).  
Workers should use these prior to phylogenetic analysis 
to identify likely candidates for biased change.

 
Variation in Rates over Phylogeny.—The exam-

ples above assume a constant rate of change throughout 
the tree.  Numerous paleontological and neontological 
studies indicate that rates vary across phylogeny.  This 
might represent secular shifts over time due to any 
number of factors (e.g., ecologic turnover, sudden 
climate change, etc.)  Alternatively, subgroups within 
a larger clade might show different characteristic rates 
due to differences in intrinsic constraints or ecologic 
restrictions (e.g., Wagner, 1997). Thus, even if there 
are general rates for characters, we do not wish to as-
sume these rates will be constant over time or across 
all branches of the phylogeny. 

Interest in dating nodes accurately has led 
molecular systematists to develop “relaxed clock” 
methods that allow for shifts in rates.  “Shift” methods 
assume that δ itself evolves, according to Brownian 
motion process (Thorne et al., 1998), Poisson process 
(Huelsenbeck et al., 2000) or other statistical processes 
(Sanderson, 2002). The assumption of rate heritability 
reduces the number of free parameters in the overall 
model and also lends itself conceptually to paleon-
tological studies testing for shifts in rates over time.  
Paleontologists have two advantages over neontologists 
here.  First, whereas neontologists must parse δ and t 
from branch lengths, we have much more exact data 
concerning t.  This comes not simply from first appear-
ances, but frequently also from dense sampling, which 
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can tightly constrain plausible divergence times (see 
below; Marshall this volume.)  Second, paleontologists 
can employ disparity analyses that can point to the need 
for shifting rates in advance of phylogenetic analyses 
(Foote, 1996a).  Thus, we often have other tests that 
can indicate such shifts prior to phylogenetic analysis.

Even if there are no secular changes in character 
evolution rates, then we still can imagine numerous 
processes that might elevate or deflate rates of character 
change from one branch to the next (i.e., “local rates”).  
Drummond et al. (2006) use log-normal distributions 
around “average” rates to model local rate variation.  
As with the Γ distribution for character rates, one can 
divide the lognormal distribution into equal area units, 
with the midpoint of each area used as a multiplier for 
the “base” δ.  The lognormal requires two parameters, 
the mean and a standard deviation term describing how 
many times the rate increases/decreases.  The mean for 
any rate is simply δ, which means that we really are 
dealing with only one parameter.  If we unite this with 
the Γ distribution described above, then we have four 
means based on one parameter (α from the Γ distribu-
tion).  Thus, we now need only two parameters, α and 
the “variance” from the lognormal distribution, to get 4 
lognormal rate distributions that model variation among 
characters and among branches.  

PUNCTUATED VERSUS  
CONTINUOUS CHANGE

The Effects of Punctuation on Expectations.—A 
very different type of rate variation over phylogeny 
is the possibility that character change is punctuated. 
Punctuated change is concentrated into particular 
events that might occur within lineages (Wright, 1931; 
Malmgren et al., 1983), during cladogenesis (Eldredge 
and Gould, 1972) or a combination of cladogenesis and 
anagenesis (e.g., Futuyma, 1987). Punctuated change as 
posited by ψ5 (Fig. 5) presents a challenge for Equation 
1: if dE=FAA, then t=0 for the branch leading to A.  Now, 
p01=0.0.  In other words, the instantaneous derivation 
of A from B is considered to be impossible!
Of course, the Poisson process that we have assumed 
in the prior examples really is a proxy for a discrete 
time process: the unit of evolutionary time in continu-
ous models of evolution is the generation, not absolute 
time (e.g., Fisher, 1930; Haldane, 1949). However, 
generations are so short on geologic/phylogenetic 

time scales that the difference between mathematical 
assumption and biological reality is trivial.  Although 
the difference is not trivial for the punctuated model, 
continuous statistical processes actually do a fair job 
of modeling discrete change.  For a single event, a bi-
nomial distribution is appropriate rather than a Poisson 
distribution.  However, when δ is low the probability 
of stasis for one branch (t=1) is nearly identical given 
either Poisson or binomial distributions: 

� 

e−δ  ≅ (1-δ).  A 
compound Poisson model, with a Poisson distribution 
of change over speciation events that themselves had a 
Poisson distribution over time, increases the differences 
only slightly: at δ=0.05, PE→A= 

� 

0 0.000

1 0.048 and 

PF→D=            under the compound Poisson, whereas 

PE→A=              and PF→D= 

� 

0 0.000

1 0.950
 under the binomial.   

Thus, the effects of different δ shown in Fig. 4 will 
quickly exceed the effects of the two different models.

If change is restricted to speciation events, then 
the total opportunity for character change will then 
be proportional to the number of speciation events. 
Unfortunately, this means we cannot know how many 
character-change opportunities actually happened along 
any branch: not all species are sampled from the fossil 
record, and it is common in phylogenetic analysis to 
include only a subset of those that are sampled.  On ψ5, 
this is most obvious for Taxon C, where three time units 
separate its first occurrence in the fossil record from its 
common ancestor with B.  However, we also should not 
assume just a single speciation event along the branches 
separating A from B or C from D: numerous speciation 
events might happen (geologically) instantaneously.  
In either case, we expect a Poisson distribution for the 
speciation events themselves (see, e.g., Bokma, 2008). 

Now character evolution is a compound model of 
binomial character change with Poisson distributions 
over either time or turnover events.  The probability 
distribution functions for net change under punctuated 
evolution now are:
							     
				  
				                             		
							     
					                (4).

where the first term gives the probability of net change 

� 

0 0.000

1 0.952
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FIGURE 5.—A four-taxon tree, ψ5, for taxa sampled over time with two ancestor-descendant pairs and punctuated 
morphological change.  We assume that speciation events (either budding cladogenetic as in B→A or anagenetic 
as in C→D) have a Poisson distribution with expectation λ per time unit.
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after no initial change given subsequent speciation 
events and the second term gives the probability of net 
stasis after initially changing to any one state.  Here, m 
is the number of speciation events, λ is the speciation 
rate, P[m≥1|λ,t] is the conditional probability of at least 
one such event, and δ and t are instantaneous rate and 
evolutionary time (continuous time or number of spe-
ciation events) as before. For a binary character, “net 
change” encompasses all odd number of changes, as 
even numbers of changes necessarily lead back to the 
original state.  Although we cannot sum to infinity, it 
is unnecessary to do so: Equation 4 quickly converges 

to 
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In other words, it is just the probability of net change/
stasis with evolutionary time now the expected number 
of events (with a minimum of one event). Thus, the 
very different assumptions about biological patterns 
underlying phylogeny have little effect on phylogeny 
likelihood, at least insofar as the.  

Model choice.—Numerous methods exist for esti-
mating turnover rates without a model phylogeny, both 
within clades and among different intervals (e.g., Foote, 
2001; Alroy, 2008; Liow and Nichols this volume). 
Indeed, our ability to independently estimate shifts in 
λ actually should allow paleontologists to recognize 
that local shifts in rates of character change actually 
reflect elevated speciation rates rather than (or in ad-
dition to) local elevations in δ.  There are taxonomic 
groups for which the fossil record is not sufficient to 
estimate turnover rates (see Foote and Raup, 1996).  
However, with poor fossil records, most (if not all) 
branches will be like the Taxon C’s branches on ψ5, and 
the expected change will reflect duration of the branch 

under either model.
We should not assume either continuous or 

punctuated change.  Instead, the likelihoods under the 
different models allow them to be evaluated during the 
course of phylogenetic inference.  If we recalculate the 
likelihoods of our three example trees (Table 1) under 
these different models, then we can see that the punc-
tuated model not only makes ψ5 possible, but it also 
triples the likelihood of ψ4 while leaving the likelihood 
of ψ3 almost unchanged.  If this pattern were repeated 
with additional characters and over more branches, 
then we very rapidly would reach the point where the 
punctuated model would be significantly more likely 
given log-likelihood ratio tests for numerous particular 
phylogenies in this example.  Yet again, probabilistic 
phylogenetic analysis informs us not only about rela-
tionships, but also about the evolutionary history of a 
clade.    

Supraspecific taxa.—Our associations between 
evolutionary models and phylogenetic patterns do not 
apply easily to supraspecific taxa.  Even there is con-
tinuous anagenetic change among species, anagenesis 
is an inappropriate model for change within a genus 
with 2+ contemporaneous lineages.  Moreover, the fact 
that multiple species share the suite of characters also 
indicates that there is some degree of stasis.  However, 
it does not follow from this that change between genera 
is “punctuated”: instead, it might happen over multiple 
species, unsampled and/or sampled and assigned to 
either genus.  Nevertheless, it is essentially assumed 
that change is between taxa rather than among taxa in 
this case.  Until one can conduct species-level analy-
ses, it probably is best to simply examine change over 
branches linking sampled taxa.

TABLE 1.  Likelihoods of the three example phylogenies under different likelihood models.  In all cases, δ=0.05.  
For the punctuated models, λ=0.50 and it is assumed that there is at least one opportunity for speciation on each 
branch.  Note that likelihoods for ψ3 are necessarily higher than for ψ4 or ψ5 because of the increased alternative 
pathways offered by unsampled ancestors in ψ3.

 
Phylogeny

Continuous,  
unsampled only

Continuous,  
sampled + unsampled

Punctuated,  
sampled + unsampled

ψ3 0.0826 0.0612 0.0725
ψ4 0.0191 0.0142 0.0453
ψ5 0.0000 0.0000 0.0386
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CHARACTER CODING:  
A BRIEF COMMENT

There are no universal protocols for defining 
characters and character-states.  However, some com-
mon practices that are currently suitable for parsimony-
based phylogenetic inference are not optimal for proba-
bilistic inference.  Specifically, highly homoplastic 
characters (those known or suspected to change fre-
quently among included taxa) and autapomorphies are 
useless or misleading for parsimony-based inference, 
and are therefore regularly excluded from phylogenetic 
data matrices. Yet, in the context of probabilistic infer-
ence, such characters improve parameter estimation for 
the previously described models of character evolution. 
While they might not unequivocally indicate shared 
ancestry, such characters are useful for rate estimation. 
Indeed, most parameterizations of the Γ distribution 
predict that there will be a substantial number of char-
acters that change at a high rate. Autapomorphies might 
accumulate along lineages with long t, but failure to 
include them could lead to artifactually low rate esti-
mates along such branches. Autapomorphies can also 
make some trees less likely than they do others (Lewis, 
2001).  This is particularly true for paleontological 
studies as autapomorphies can decrease the plausibility 
of particular ancestor-descendant hypotheses (Fisher, 
1994; Wagner, 1995). In order to test evolutionary 
histories properly, the inclusion autapomorphies (when 
they exist) and homoplastic character needs to become 
standard practice.

PHYLOGENY LIKELIHOOD GIVEN 
STRATIGRAPHIC DATA

Phylogenetic Predictions about the Fossil Re-
cord.—Phylogenetic hypotheses do not make predic-
tions only about distributions of character-states: they 
also make predictions about the stratigraphic distribu-
tions of taxa in the fossil record. When sampling is 
dense, then large gaps in a taxon’s stratigraphic range 
are improbable and hypotheses requiring such gaps 
have low likelihoods.  The ability to constrain plausible 
t and thus d in this way potentially adds great power 
to phylogenetic studies of fossil taxa. One of the most 
consequential advantages of a probabilistic approach 
to phylogenetic inference is that different forms of data 
(e.g., character-states and stratigraphic ranges) can be 

integrated using the common currency of probability, 
so long as the same phylogeny makes quantifiable 
predictions about them.

Numerous papers present methods exist for as-
sessing duration likelihoods given stratigraphic data 
(Huelsenbeck and Rannala, 1997a; Solow and Smith, 
1997; Wagner, 2000a; Wang and Everson, 2007). The 
methods are basically identical to each other in that 
L[duration | stratigraphic data] relates to P[0 finds| gap 
required by duration, θ] where θ is preservation rate.  
For example, if we use individual localities, then is 
(1-θ)g where g is the number of possible occurrences 
over a stratigraphic gap.  (See Marshall, this volume, 
for fuller discussion of such methods) 

Rates of preservation for testing gaps.—Even 
for groups with good fossil records, preservation can 
vary considerably among members of a clade. Wagner 
(2000a) recommends treating θ as an evolving pa-
rameter the way that some analyses mentioned above 
treat δ as an evolving parameter (e.g., Thorne et al., 
1998).  However, an analog to the local rates solution 
probably is more appropriate than this.  Consider a 
distribution of θ’s (Fig. 6, based on Ordovician-Silurian 
bellerophonts).  This example shows a strong lognormal 
distribution, where the variation likely represents dif-
ferences in abundances and geographic distributions 
(see, e.g., Buzas et al., 1982).  Given the considerable 
variation around the mean, we clearly cannot assume 
a single value of θ for all bellerophonts. Instead, we 
can use this lognormal distribution to put probabilities 
on different θ’s the way that character likelihood uses 
a Γ distribution to weight rates of character change by 
their probabilities.  Now the likelihood of a hypoth-
esized gap is:

	 L[duration | stratigraphic ranges] =   		
							     
					                (5).

By doing this, we allow the ancestral lineages to 
have any preservation rate, including rates lower than 
actually observed in the clade; however, we also weight 
those θ’s by empirically determined prior probabilities 
(see Wang this volume). 

Let us suppose further that our four-taxon clade 
has the following number of appropriate fossilifer-
ous localities in each time unit: 20 from Unit 2→1, 

� 

(1−θ)g × P[θ | distribution]( ) dθ
0

1

∫



204 	T he Paleontological Society Papers, Vol.16

40 from Unit 3→2, 30 from Unit 3→4, 30 from Unit 
4→5 and 20 from Unit 5→6.  We will further assume 
that localities are evenly distributed through the units 
so that a lineage present in half a unit (e.g., A in ψ3) 
might have been found in half of the localities in that 
unit.  Finally, suppose that the bellerophont θ distribu-
tion is appropriate for this clade.  The stratigraphic 
data entail large differences in the likelihoods of three 
alternative phylogenies (Table 2): ψ4 is over 20 times 
more likely than ψ3, and ψ5 is over 5 times more likely 
than ψ4.  We also see large differences in the overall 
likelihoods of the trees given both morphology and 
stratigraphy: lnL[ψ3| all data]=-9.52, lnL[ψ4| all data]=-
6.53 and L[ψ5| all data]=-4.99 (see Table 1 for the best 
morphologic likelihoods for each phylogeny).  Thus, 
the very different evolutionary histories perform very 
differently in their ability to predict not just the distri-
bution of character-states, but also the distribution of 
morphologies in the fossil record.

The example above uses a large database of oc-
currences.  Such data are unavailable for many taxa.  
However, methods exist for estimating per unit preser-
vation rates based on first and last appearance data (e.g., 
Foote, 1997).  Here again we expect that preservation 
rates will represent an average.  As occurrences typi-
cally follow a log-normal distribution (e.g., Alroy et 
al., 2008), the log-normal distribution documented for 
bellerophonts probably will be common.  We should 
use databases such as the Paleobiology Database to de-

FIGURE 6.—Preservation rates for Ordovician-Siluri-
an bellerophontoid gastropods.  Here, θ=occurrences/
possible occurrences where “possible occurrences” are 
all the localities from formations bearing bellerophonts 
within a stratigraphic bin and within a biogeographic 
unit.  The best fit lognormal has mean = 0.03 with a 
threefold increase/decrease in θ every standard devia-
tion.

Branch ψ3 ψ4 ψ5 L[ψ3|data] L[ψ4|data] L[ψ5|data]

A 70 15 0 0.2030 0.5691 1.0000
B 10 • • 0.6609 • •
(AB) 10 10 0 0.6609 0.6609 1.0000
C 40 • • 0.3266 • •
D 60 10 0 0.2345 0.6609 1.0000
(CD) 80 120 100 0.1774 0.1114 0.1389

L[ψ|stratigraphic data] 0.0012 0.0277 0.1389
L[ψ|character data] 0.0612 0.0453 0.0386

L[ψ|character+stratigraphic data] 7.34×10-5 0.0013 0.0054

TABLE 2.—Stratigraphic gaps implied by each branch of alternative phylogenies and their likelihoods.  The tree 
likelihoods given stratigraphic data alone are the products of these numbers.  “•” reflects species hypothesized to 
be ancestral to another sampled species.  Any gaps implied by those species are attributed to the node that they 
represent.
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termine the typical standard deviations accompanying 
average per-stage preservation rates and then estimate 
the probability of missing lineages as done above.  

Ancestor-Descendant Hypotheses Revisited.—It 
is important to note that likelihoods given character 
data and stratigraphic data have the opposite effects on 
ancestor-descendant hypotheses: whereas sister-species 
hypotheses increase likelihoods given character data, 
they decrease likelihood given stratigraphy.  This is 
simply because ancestor-descendant hypotheses almost 
always reduce stratigraphic gaps implied by the phy-
logeny.  However we have a similar effect concerning 
hypothesis complexity: whereas ancestor-descendant 
hypotheses simplify morphologic evolution by reduc-
ing unknown ancestral character-states, they complicate 
duration hypotheses by allowing separate origins for 
closely related species (see Wagner, 2000b; Wang and 
Everson, 2007).  Of the trees considered here, ψ3 re-
quires that both A+B and C+D share origination times 
whereas ψ4 and ψ5 allow asynchronous originations for 
A&B as well as C&D.

In this example, stratigraphic data favors punctu-
ated phylogenies, as these minimize the necessary time 
over which intermediate forms might have existed.  
This might appear to represent a bias.  However, with 
dense sampling of the fossil record, we expect to sample 
individual lineages multiple times (Foote, 1997).  If 
anagenetic speciation occurs within a lineage, then we 
expect to find 2+ morphospecies within that lineage, 
and we should frequently reconstruct patterns such as 
Taxa C-D in Figure 5. Conversely, with poor sampling, 
we will rarely sample individual lineages more than 
once.  In such cases, most taxa will be have “point 
occurrences” rather than stratigraphic ranges and add-
ing ancestor-descendant relationships (punctuated or 
otherwise) would have had little (if any) effect on the 
number of necessary gaps. Thus, it is more appropri-
ate to state that dense sampling creates the potential 
to recognize particular speciation patterns rather than 
biasing results towards suggesting them.  

Finally, the resolution of stratigraphic data will 
play a large role in our ability to distinguish modes 
of anagenetic change.  In our simple example, the 
stratigraphic range of each taxon is an entire chro-
nostratigraphic unit. Ideally, we would order localities 
by ordinating the faunas including the clade of interest 
(see Sadler this volume).  (Note that using ordinated 
horizons also alters the way we must calculate θ; e.g., 

Wagner, 2000a).  If we have a continuous analogues of 
the C-D pair in ψ5 (e.g., where there is a stratigraphic 
gap between LAC and FAD as in Fig. 1.4) will (probably) 
have with short ranges within their respective units.  
Continuous change now will predict morphologic 
change approximately as well as punctuated change 
without adding a “stasis” parameter (see above).  As the 
same stratigraphic gap will apply to both hypothesized 
modes, we typically will favor the continuous change 
model in this case.  

TREE PROBABILITIES

Basic concepts.—Bayesian inference of phylo-
genetic trees weights the likelihood of the tree by its 
prior probability (see Wang this volume). Two aspects 
of phylogenies have different probabilities given dif-
ferent evolutionary parameters: tree balance and the 
distribution of unsampled durations.  Tree balance de-
scribes how evenly numbers of descendants tend to be 
distributed between sister clades. Although tree balance 
is the by-product of speciation and extinction rates (λ 
and µ; e.g., Heard, 1996; Mooers and Heard, 1997), cur-
rent Bayesian phylogenetic algorithms assume uniform 
probabilities for tree shapes (e.g., Huelsenbeck et al., 
2001).  The second aspect is the distribution of branch 
durations (Rannala and Yang, 1996; Yang and Rannala, 
1997).  Here, algorithms use an exponential distribution 
for prior probabilities, which is the expectation of most 
speciation models (e.g., Raup, 1985; Nee et al., 1994). 

At any set of turnover rates, we expect very differ-
ent distributions of tree shapes and branch distributions 
for taxa sampled over time than for taxa sampled from 
a single time slice.  In particular, we expect paleonto-
logical trees to be more pectinate (i.e., linking a species 
and a clade instead of two clades) than neontological 
trees (Harcourt-Brown et al., 2001).  This reflects two 
factors.  One, we can sample short-lived, species-poor 
subclades that go extinct long before the rest of the 
clade.  Second, we can sample ancestors, which nec-
essarily represent a single lineage rather than a clade 
of any richness.  Anagenetic series do not simply limit 
tree shapes, but actually determine (portions) of shapes. 
If we sample an anagenetic series A→B→C→D, then 
the only possible topology for an anagenetic series is 
purely pectinate.  Thus, the probability of a pectinate 
tree-shape if there is only anagenesis is 1.0.  “Balanced” 
nodes (i.e., those linking at least two clades) can happen 
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only when there is cladogenesis.  Thus, the prior prob-
ability of tree shapes for fossil clades depends in part 
on rates of anagenesis relative to rates of cladogenesis.  

Sampling also alters the expectations for un-
sampled branch durations.  We still expect durations 
to have exponential distributions, but we also expect to 
sample taxa with long distributions.  Thus, unsampled 
ancestral lineages (or the unsampled portions of an-
cestral lineages) will reflect sampling rates as well as 
speciation rates: the exponential distribution now is the 
product of  (1-λ)(1-θ) rather than just (1-λ) (Fig. 7.1).  

The final tree shape issue is actually not unique 
to paleontology, but it has been much neglected by 
neontologists.  Under the budding cladogenesis model, 
ancestral taxa can give rise to any number of direct 
descendants.  This has two ramifications.  First, when 
extinction rates (µ) are close to speciation rates, then 
we expect most ancestors to have only one daughter 
taxon.  Here again, pectinate topologies will be favored 
(Fig 7.2).  However, we also expect as many as 25% of 
ancestors to have 3+ descendants.  This, in turn, leads 
to polytomies, i.e., multiple lineages stemming from a 
single node (Wagner and Erwin, 1995).  The frequency 
of polytomies of different sizes will be a product of 
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FIGURE 7.—Tree shape probabilities.  1.  Expected distributions of the durations of branches linking taxa.  Raw 
durations reflect origination rates (λ) only.  When we add preservation rate θ, then the expected distribution of 
unsampled branch durations decreases as θ/λ increases.  2.  Expected numbers of descendants per ancestral spe-
cies at different relative origination (λ) and extinction (µ) rates, given a budding model.  The expected number 
increases as λ/μ increases.  However, note that under other models of speciation, high numbers of descendants 
are impossible. 

the difference between λ and µ.  However, as rates of 
anagenesis increase, the probability of polytomies will 
decrease. 

PROSPECTUS

Although we have highlighted some potential 
modifications of existing approaches to calculate like-
lihoods of phylogenies, numerous other modifications 
can be made in the future. The models of character 
evolution are one example. Models of molecular evo-
lution have been continually refined over the past 40 
years.  We can continue to adapt some of these for 
morphologic data, especially those that pertain to gen-
eral rates of change. Furthermore, we expect empirical 
study of morphologic evolution in the fossil record will 
allow such models to be explicitly modified to address 
evolutionary phenomena that are only observable in the 
fossil record (e.g., punctuation and trends).

In this paper, we exclusively discuss new ap-
proaches to calculate the likelihood of phylogenies of 
fossil taxa. Likelihood is the sole optimality criterion 
for ML inference, and also contributes greatly to the 
posterior probability that characterizes Bayesian infer-
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ence. We anticipate the use of Bayesian inference to 
increase in the near future, and the methods described 
herein can be easily adapted for this use. Bayesian 
methods have some advantages over ML inference, 
particularly in their ability to “show” uncertainty, and 
the speed of algorithms to find optimal trees. Although 
we focus on phylogeny here, Bayesian analyses can use 
prior probabilities for any of the relevant parameters 
(e.g., Ψ, d, δ, etc.). We anticipate that continued empiri-
cal study of fossil taxa will inform our understanding 
of appropriate distributions of these prior probabilities, 
and allow such distributions to be tailored specifically 
to fossil taxa. 

Throughout this paper, we emphasize that phy-
logenetic inference in a vacuum is impossible, and 
that what we really must attempt is to infer the evo-
lutionary history of a clade that includes phylogenetic 
relationships.  To properly unravel relationships, we 
must simultaneously unravel how characters evolved.  
Data that bear on this include not just the characters 
themselves, but the stratigraphic distributions of taxa 
bearing those characters and even consideration of gen-
eral speciation and extinction rates.  This might make 
it seem that we are making phylogenetics much more 
assumption laden than desirable.  In fact, the opposite 
is true: by explicitly considering different evolutionary 
parameters, we reduce the chances of incorrect assump-
tions distorting any particular aspect of reconstructed 
evolutionary history.  

Goals for paleosystematists over the next decade 
should include: 

1) Adjusting existing phylogenetic methods to 	
accommodate our unique concerns stemming 
from sampling taxa over time instead of from 
a single time slice;

2) devising and refining tests of basic character 	
evolution parameters;

3) refining tests of ancestor-descendant vs.  
sister-species hypotheses; 

4) aggressively assessing the frequencies of ana-
genesis and budding cladogenesis in order to 
provide future workers with (semi) empirical 
prior probabilities of expected tree shapes.

A successful execution of this program will not 
only expand our knowledge of evolution, but also 
provide our neontological colleagues with valuable 
insights into general phylogenetic patterns that only 
we can provide.  
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APPENDIX I: GLOSSARY

Symbol Definition

Ψ A tree topology (i.e., a cladogram) indicating recency of common ancestry

ψ A phylogeny indicating recency of common ancestry and additional information about the types of relation-
ships and time separating them

δ The rate of character evolution along each branch of a phylogenetic tree
d The date of a node
s The sampled portion of a branch
t The unsampled portion of a branch implied by the phylogenetic tree
k The number of character states of a character
p

ij
The probability of beginning in state i and ending in state j after an interval of time

P A k x k matrix of pij

Γ The gamma distribution
α Shape parameter of the Γ distribution
β The “rate” parameter of the Γ distribution
λ The rate of taxonomic origination
µ The rate of taxonomic extinction
m The number of opportunities for change (e.g., speciation events under a punctuational model)
θ The rate of preservation
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APPENDIX II - THE EFFECT OF  
ANCESTOR-DESCENDANT  

HYPOTHESES ON LIKELIHOOD  
COMPLEXITY

Given any one cladistic topology Ψ, the likeli-
hood functions for trees with only sister-taxon hypoth-
eses (e.g., ψ3 in the text) are more complex than are the 
likelihood functions for trees with explicit ancestor-
descendant hypotheses (e.g., ψ4 in the text). Combining 
Equation 2 from the text, the likelihood for phylogenies 
such as ψ3 given a binary character is: 

L[ψ3|0111] ∝ ([pE00×{pA00×pB01}] × [pF00×{pC01×pD01}]) +
([pE01×{pA10×pB11}] × [pF00×{pC01×pD01}]) +
([pE00×{pA00×pB01}] × [pF01×{pC11×pD11}]) +

([pE01×{pA10×pB11}] × [pF01×{pC11×pD11}])
+ ([pE10×{pA00×pB01}] × [pF10×{pC01×pD01}]) +

([pE11×{pA10×pB11}] × [pF10×{pC01×pD01}]) +
([pE10×{pA00×pB01}] × [pF11×{pC11×pD11}]) +

([pE11×{pA10×pB11}] × [pF11×{pC11×pD11}])

where pXij gives the probability of change from state 
i to state j for branch X (see Equation 1 in the main 
text).  Note that the likelihood is proportional to this 
function because the complete function should include 
stasis within lineages (if it is observed), which will be 
a constant among all trees at any given rate of change.

Because the ancestors are unsampled, this equa-
tion allows ancestral taxa (E, F and G) to freely vary 
across either state 0 or state 1.  However, phylogenies 
such as tree 4 (ψ4) that posit sampled ancestors elimi-
nate several terms (in bold above).  Now, we assume 
that B=E and C=F.  As we observe the states for B and C 
(in both cases, 1), pE•0=pF•0=0.  All parts of the equation 
multiplied by either of these terms now are eliminated.  
Moreover, now pB11=pC11=1.0 because the phylogenies 
posit that it is known that these taxa began and ended 
with state 1. Those terms also can be removed.  This 
leaves us with a much simpler equation: 

L[ψ4|0111] ∝ ([pE01 × pA10] × [pF01 × pD11]) 
	 + ([pE11 × pA10] × [pF11 × pD11])

Another way to think of this is that phylogenies 
such as ψ3 unite eight possible evolutionary histories 
whereas phylogenies such as ψ4 unite only two possible 
evolutionary histories.  

A corollary of this is that the reduction on com-

plexity increases as the number of states increases.  
Consider the same two trees and the same distribution 
of character states, but now assume that there is a third 
state that we do not observe among these four taxa.  
Now, our likelihood function with only sister-taxa 
becomes:

L[ψ3|0111] ∝ ([pE00×{pA00×pB01}] × [pF00×{pC01×pD01}]) +
	 ([pE01×{pA10×pB11}] × [pF00×{pC01×pD01}]) +
	 ([pE02×{pA20×pB21}] × [pF00×{pC01×pD01}]) +
	 ([pE00×{pA00×pB01}] × [pF01×{pC11×pD11}]) +
	 ([pE01×{pA10×pB11}] × [pF01×{pC11×pD11}]) +
	 ([pE02×{pA20×pB21}] × [pF01×{pC11×pD11}]) +
	 ([pE00×{pA00×pB01}] × [pF02×{pC21×pD21}]) +
	 ([pE01×{pA10×pB11}] × [pF02×{pC21×pD21}]) +
	 ([pE02×{pA20×pB21}] × [pF02×{pC21×pD21}])
	 + ([pE10×{pA00×pB01}] × [pF10×{pC01×pD01}]) +
	 ([pE11×{pA10×pB11}] × [pF10×{pC01×pD01}]) +
	 ([pE12×{pA20×pB21}] × [pF10×{pC01×pD01}]) +
	 ([pE10×{pA00×pB01}] × [pF11×{pC11×pD11}]) +
	 ([pE11×{pA10×pB11}] × [pF11×{pC11×pD11}]) +
	 ([pE12×{pA20×pB21}] × [pF11×{pC11×pD11}]) +
	 ([pE10×{pA00×pB01}] × [pF12×{pC21×pD21}]) +
	 ([pE11×{pA10×pB11}] × [pF12×{pC21×pD21}]) +
	 ([pE12×{pA20×pB21}] × [pF12×{pC21×pD21}]) 
	 + ([pE20×{pA00×pB01}] × [pF20×{pC01×pD01}]) +
	 ([pE21×{pA10×pB11}] × [pF20×{pC01×pD01}]) +
	 ([pE22×{pA20×pB21}] × [pF20×{pC01×pD01}]) +
	 ([pE20×{pA00×pB01}] × [pF21×{pC11×pD11}]) +
	 ([pE21×{pA10×pB11}] × [pF21×{pC11×pD11}]) +
	 ([pE22×{pA20×pB21}] × [pF21×{pC11×pD11}]) +
	 ([pE20×{pA00×pB01}] × [pF22×{pC21×pD21}]) +
	 ([pE21×{pA10×pB11}] × [pF22×{pC21×pD21}]) +
	 ([pE22×{pA20×pB21}] × [pF22×{pC21×pD21}]). 

In contrast, the likelihood function for trees with 
two ancestor-descendant hypotheses adds only one 
more term:

	
L[ψ4|0111] ∝ ([pE01 × pA10] × [pF01 × pD11])

	 + ([pE11 × pA10] × [pF11 × pD11])
	 + ([pE21 × pA10] × [pF21 × pD11]).




