An Estimate of Eros's Porosity and Implications for Internal Structure

Sarah L. Wilkison and Mark S. Robinson
Department of Geological Sciences, Northwestern University, Evanston, Illinois 60208
E-mail: sarah@earth.nwu.edu

Peter C. Thomas and Joseph Veverka
Department of Astronomy, Cornell University, Ithaca, New York 14853

Timothy J. McCoy
Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560–0119

Scott L. Murchie and Louise M. Prockter
Applied Physics Laboratory, Laurel, Maryland 20723

and

Donald K. Yeomans
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Received December 14, 2000; revised July 25, 2001

Earth-based spectral measurements and NEAR Shoemaker magnetometer, X-ray, and near-infrared spectrometer data are all consistent with Eros having a bulk composition and mineralogy similar to ordinary chondrite meteorites (OC). By comparing the bulk density of 433 Eros (2.67 ± 0.03 g/cm³) with that of OCs (3.40 g/cm³), we estimate the total porosity of the asteroid to be 21–33%. Macro (or structural) porosity, best estimated to be ∼20%, is constrained to be between 6 and 33%. We conclude that Eros is a heavily fractured body, but we find no evidence that it was ever catastrophically disrupted and reaccumulated into a rubble pile.

Key Words: Eros; meteorites; surfaces, asteroids; interiors.

INTRODUCTION AND BACKGROUND

The Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft orbited 433 Eros from February 14, 2000 to February 12, 2001, collecting positional, image, altimetry, and spectral data through remote sensing experiments. Although NEAR Shoemaker has no instrumentation that allows for a direct measurement of the asteroid’s interior structure, the density and porosity of an asteroid can give first-order information regarding the structural makeup of an asteroid. Utilizing the available density and porosity data for meteorites (Consolmagno and Britt 1998, Flynn et al. 1999, Wilkison and Robinson 2000) and the bulk density of Eros obtained from NEAR Shoemaker measurements (Veverka et al. 2000, Yeomans et al. 2000), we estimate a range of porosity for Eros. Additionally, we briefly review relevant asteroid formation models and how asteroids might structurally evolve over time due to impacts, and we attempt to clarify terms previously used to describe the collisionally altered parent bodies (i.e., “rubble pile”). Finally, a comparison of the formational and structural models with the estimated porosity and morphologic observations of the surface allows us to infer the gross internal structure of 433 Eros.

PARENT BODY FORMATION MODELS

Several models of applicable (for 433 Eros) parent bodies have been proposed that describe the internal structure of an asteroid before any significant structural modification (due to impacts) has occurred. In this section we briefly review these previously proposed models: the undifferentiated model, the onion shell model, the heterogeneously heated model, the metamorphosed planetesimal model, and the differentiated model (Fig. 1, column 1).

The undifferentiated model proposes that an asteroid is composed of primitive undifferentiated chondritic material and as such would have a solid coherent interior lacking any layering, either in composition or in alteration state (e.g., Wetherill and Chapman 1988). The classic onion shell model proposes that large asteroids (perhaps >50 km radius depending on thermal diffusivity) are accreted cold and heated by either external...
FIG. 1. Potential parent body models for 433 Eros. Colors represent different ordinary chondrite petrologic types (yellow represents petrologic type 3, red represents petrologic type 4, blue represents type 5, and green represents type 6). The five modeled asteroids could evolve with collisional modification/disruption into the three structural models (fractured but coherent body, heavily fractured, and rubble pile). Shapes and sizes of fragments are not meant to be taken literally; this is a schematic representation. (A) The undifferentiated model, after Wetherill and Chapman (1988). The asteroid is composed of undifferentiated chondritic material (in this example the material is petrologic type 3). (B) The onion shell model, after Miyamoto et al. (1981). The chondritic parent body exhibits successive layers of petrologic types 3 through 6. (C) The heterogeneously heated model, as described in McCoy et al. (1990). The chondritic body experiences heterogeneous heating throughout that results in petrologic types being dispersed randomly through the parent body. (D) The metamorphosed planetesimal model, after Scott and Rajan (1981). Small, unconsolidated chondrite planetesimals accrete into a larger parent body. (E) The differentiated model, after Wetherill and Chapman (1988).
process of fragmenting and dispersing a body. Davis et al. (1989) define catastrophe fragmentation as a collision in which the largest resulting piece contains 50% or less of the initial target mass. Numerical hydrocode simulations of asteroid collisions propose that most collisionally evolved bodies larger than ~1 km are highly fragmented (Asphaug and Melosh 1993, Greenberg et al. 1994, 1996, Love and Ahrens 1996, Melosh and Ryan 1997).

What Is a “Rubble Pile” Asteroid?

The term “rubble pile” has been used to describe several different states among a spectrum of possible asteroidal structural evolution. Discussions of the possibility that asteroids may be composed of “a loose agglomeration of material held together gravitationally” dates back at least as far as Mariner 9 studies of Phobos and Deimos (cf. Veverka et al. 1974). This idea was expanded upon in reports from 1977 to 1979 (Chapman 1978, Davis et al. 1979, Hartmann 1979) and the first use of the term “rubble pile” appeared in Davis et al. (1979, p. 533).

Chapman (1978) suggested that the collision rates and energies in the asteroid belt are sufficient to fragment most asteroids; during significant collisions on larger asteroids, the body may just fragment (not disperse) and form a “pile of boulders” with no internal strength (Chapman 1978). Davis et al. (1979) reiterate the idea that larger asteroids are most likely internally fractured but gravitationally bound “rubble piles of megaregolith.” They also include some discussion of the type of target material (strong versus weak) and the outcomes that could occur with each from catastrophic and barely catastrophic impacts. Almost two decades later, Davis et al. (1996) made a modification of their original definition when discussing the asteroid Ida, suggesting that the few large coherent pieces of a rubble pile could be sufficiently in physical contact to transmit compressive shock waves, thus allowing such features as antipodal grooves.

Hartmann (1979) examined collisions between comparably sized bodies; the study quantified the relationship of the two bodies in terms of the mass, density, and energy of impact. One of the potential outcomes from such a collision (greater than 50 km in size) is complete disruption and subsequent reassembly into granular bodies that then lithify into breccias. This process of catastrophic dispersal (Hartmann 1979) is defined as the condition in which half the fragments are dispersed to infinity and the remaining half fall together again to make a brecciated body. Other collisional outcomes described in this study ranged from the objects rebounding from each other with little effect to complete dispersal of both asteroids.

Size and Shape of Rubble Piles

Farinella et al. (1982) suggested that asteroids with diameters between ~100 and 300 km could have been completely fragmented by energetic collisions and then reaccumulated into rubble piles. More recent studies based on smoothed particle hydrodynamics suggest that asteroids a few hundred meters in diameter could also be rubble piles (Love and Ahrens 1996) —a size much smaller than previous studies proposed. Homogeneous masses subjected to self-gravitational interactions are thought to take ellipsoidal equilibrium shapes (Chandrasekhar 1969, Farinella et al. 1981). Farinella et al. (1982) suggested that rubble piles sustain a shape that approximates the equilibrium figure of a fluid of similar density and spin rate. A stable shape for a body in hydrostatic or gravitational equilibrium is an ellipsoid (Chandrasekhar 1969, Farinella et al. 1981, Catullo et al. 1984, Zappala et al. 1984). Gravitationally reaccumulated fragments could have shapes that are approximately Maclaurin spheroids (moderate rotation rate) or Jacobi ellipsoids (fast rotation) (Farinella et al. 1981) depending on the largest fragment size and distribution of smaller pieces. A rubble pile consisting of a mixture of particles of very different sizes might have regions of substantially different porosities, although in general materials with poor particle size sorting have lower average porosities (Pettijohn 1957). Models of particles of randomly selected size and density can produce a wide range of offsets of the center of mass from the center of figure, and thus are not particularly diagnostic (results for Eros are discussed in the following).

Strength of Rubble Piles

Recent studies suggest that many smaller objects, including asteroids, may be held together by self-gravity, not by the tensile strength of the material. Such an asteroid would not be comparable to the strength-dominated laboratory targets from which many characteristics of asteroids have been estimated (Love and Ahrens 1996). According to models of asteroid collisions, craters can form in the “gravity scaling regime” on a target where gravity, not physical strength, controls crater size and growth (Veverka et al. 1974, Greenberg et al. 1994, 1996, Asphaug et al. 1996, Love and Ahrens 1996). Several large (19–33 km in diameter) craters were observed on 243 Mathilde, an asteroid that is itself only 53 km in diameter (Veverka et al. 1997). Stickney crater on Phobos is also thought to have formed in the gravity scaling regime (Asphaug and Melosh 1993, Love and Ahrens 1996). A target in this gravity regime must be weak or fragmented (Richardson et al. 1998), because a weak target dampens the propagation of shock waves (Asphaug 1998). Harris (1996) studied the rotation periods of 107 small (less than 10-km) asteroids and observed that none of these asteroids rotate faster than the theoretical breakup limit for a gravity-dominated object, suggesting that small asteroids could be rubble piles (lack tensile strength), since solid objects could be rotating at nearly any speed (Bottke et al. 1998). Pravec and Harris (2000) analyzed the distribution of asteroid spin rates and sizes, concluding that asteroids larger than a few hundred meters are mostly loosely bound, gravity-dominated aggregates with negligible tensile strength. In addition, models of the tidal disruption of gravitationally bound asteroids and comets indicate that these objects may have created the abundant crater chains found on the Earth and the Moon (Bottke et al. 1997).
Meteoritical Evidence of Rubble Piles

Meteoritical evidence indicates that disaggregated asteroidal material may not be rare as witnessed by the relatively common meteoritic breccias. Early petrologic studies (Binns 1967, Rubin et al. 1983) indicated that 62% of the LL chondrites, 25% of the H chondrites, and 10% of the L chondrites are breccias. A more recent study (Benoit et al. 2000) suggests slightly different percentages of meteoritic breccias: 41% of the LL, 29% of the L, and 22% of the H chondrites (percentages represent an average of each of the groups, LL, L, and H). Most of the LL breccias are genomict breccias (composed of LL clasts of different petrologic types), suggesting that the LL group has had a complex collisional history that may include episodes of parent body disruption and reassembly (Rubin et al. 1983). Evidence supporting breakup and reassembly includes the disparity between petrologic types and metallographic cooling rates in ordinary chondrites (e.g., Taylor et al. 1987) and the wide range of cooling rates observed in components of various meteoritic breccias (e.g., the aubrites, Okada et al. 1988).

Stoffler (1982) suggested that some amount (perhaps a small fraction) of heavily shocked rock would be created during the fragmentation, disruption, and reassembly of the parent body. However, Taylor et al. (1987) have suggested that the breakup and reassembly of an asteroid may not produce significantly shocked material at all, depending on the sizes and velocities of the colliding bodies. Examination of meteoritic material reveals that most meteorites are unshocked or only weakly shocked (shock stage 3; Scott et al. 1989, Stoffler et al. 1991), which concurs with the Taylor et al. (1987) conclusion that breakup and reassembly of a parent body may not produce much heavily shocked material.

Fragmental meteoritic breccias, thought to be debris derived from different lithologies, comprise 5% of the H, 22% of the L, and 23% of the LL chondrites (Rubin et al. 1983). Fragmental breccias lack solar flare particle tracks and solar wind gases and have thus been assumed to have not formed within the regolith of a parent body (Rubin et al. 1983). However, we point out that the regolith on Eros is typically one to tens of meters in thickness (locally it may exceed 100 meters) (Barnouin-Jha et al. 2000, Thomas et al. 2001, Zuber et al. 2000) and we do not know the efficiency with which portions of the regolith are lithified into breccias (and are thus protected from solar flare particles and solar wind gases). Additionally, the rate of gardening on asteroidal sized bodies is unknown and thus it is not clear if material buried tens or hundreds of meters down experiences any significant solar wind exposure during its residence time in the regolith. Clearly the upper loose portion of the regolith does not survive a journey to the Earth’s surface in a recognizable form.

In summary, the meteoritical evidence clearly shows that asteroids commonly produce heavily fragmented or brecciated material; however, all this material could have been produced in a regolith and there is no evidence demanding a rubble pile parent body.

IMPLICATIONS OF COLLISIONAL DISRUPTION/MODIFICATION

Earth-based and spacecraft imaging confirm that asteroids are heavily cratered and have thus experienced a significant degree of impact-induced fracturing. Certainly individual asteroids have suffered differing amounts of internal fracturing depending on their collisional histories. For the purpose of this study we propose three states of structural modification along the spectrum from a completely coherent to a totally disrupted and reaccreted asteroid (Fig. 1).

Coherent but fractured. The target body is mildly fractured in collisions but is still a coherent, strength-dominated body. If some fractures have passed completely through the asteroid, the fragments have not undergone any significant movement or rotation relative to the original structure of the asteroid. This increase in porosity (and decrease in bulk density) is an example of secondary porosity as defined by Fraser (1935).

Heavily fractured. The asteroid has been heavily fractured, possibly through several large collisions, and fragments have undergone small displacement/rotation (consistent with the Chapman (1978) and Davis et al. (1979) definition of a rubble pile). We infer that this structure would have more porosity that the coherent but fractured model, owing to an increase in the number of fractures and void space (macroporosity) between the displaced/rotated fragments.

Rubble pile. For the purposes of this paper we adopt the definition that a rubble pile is an asteroid that was reaccreted from the remnants of a disrupted parent body into a gravitationally bound granular body (i.e., consistent with descriptions in Hartmann (1979), Asphaug et al. (1998), and Wilson et al. (1999)). This definition implies little internal strength and a relatively high porosity as a result of the voids created by the reassembly of the dispersed fragments. The amount of porosity, as with terrestrial rocks, would depend upon the distribution of sizes and shapes of the particles and on the opportunities for mixing the smaller size fractions among the larger particle interstices (Pettijohn 1957).

In each of these three models the relative amount of fracturing increases, resulting in higher porosity. Two general types of porosity are discussed when describing asteroids and meteorites: microporosity and macroporosity (Consolmagno and Britt 1998, Flynn et al. 1999, Wilkison and Robinson 2000). Microporosity is the porosity inherent in a meteorite sample, on the same scale as the grain size, manifested as small cracks and voids. Macroporosity is the void porosity between (large) coherent pieces (such as between the pieces of a rubble pile) within an asteroid. These two generalized classifications of porosity represent endmembers; a continuum of porosity probably exists, but because of the lack of asteroid ground truth and for ease of discussion, we use these terms for clarity.

Tentative porosity ranges can be assigned to each of the three asteroid structural models from terrestrial and lunar analogs.
TABLE I
Porosities of Rocks

<table>
<thead>
<tr>
<th>Sample</th>
<th>Porosity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breccia</td>
<td>17.4</td>
<td>Horai and Winkler (1976)</td>
</tr>
<tr>
<td>Breccia</td>
<td>14.1</td>
<td>Horai and Winkler (1976)</td>
</tr>
<tr>
<td>Breccia</td>
<td>24</td>
<td>Horai and Winkler (1980)</td>
</tr>
<tr>
<td>Breccia</td>
<td>4.9</td>
<td>Fujii and Osako (1973)</td>
</tr>
<tr>
<td>Welded microbreccias</td>
<td>18.4–43.9</td>
<td>Chao et al. (1971)</td>
</tr>
<tr>
<td>Lunar regolith</td>
<td>46</td>
<td>Carrier et al. (1991)</td>
</tr>
<tr>
<td>Terrestrial impact samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coconino sandstone</td>
<td>24</td>
<td>Ahrens and Gregson (1964)</td>
</tr>
<tr>
<td>Lappajarvi breccias</td>
<td>up to 20</td>
<td>Kukkonen et al. (1992)</td>
</tr>
<tr>
<td>“Shocked sandstone”</td>
<td>up to 23</td>
<td>Short (1966)</td>
</tr>
<tr>
<td>Common rocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unconsolidated sand</td>
<td>38.7–44.8</td>
<td>Schopper (1982)</td>
</tr>
<tr>
<td>Nonindurated sand</td>
<td>33.8–51.3</td>
<td>c.f. Davis (1969)</td>
</tr>
<tr>
<td>Gravel</td>
<td>63.4</td>
<td>Cohen (1965)</td>
</tr>
<tr>
<td>Bunter sandstone</td>
<td>5.8–30.8</td>
<td>Schopper (1982)</td>
</tr>
<tr>
<td>Welded tuff</td>
<td>14.1</td>
<td>Keller (1960)</td>
</tr>
</tbody>
</table>

Finding a terrestrial or lunar analog for a rubble pile asteroid is admittedly problematic. Unconsolidated terrestrial sediments can have porosities of 20–50% or even over 60% (Table I). The particle size sorting is critical in determining the porosity, and for very fine terrestrial sediments, particle shapes, compaction, and mechanism of deposition affect porosity greatly. The best terrestrial analogs for rubble pile structures may be fresh rockfall or landslide deposits and mine dumps, as they would have minimal effects of fluvial addition or removal of fines that can change porosity. Measurement of such porosities, however, is notoriously difficult, and the analogy may not avoid the effects of 100-1000-fold difference in compressive stresses between terrestrial rubble pile deposits and small asteroids. Nonetheless, the analogies and geometry of packing fragments suggest that rubble piles could have porosities well in excess of 30%. Another potential analog for a rubble pile asteroid is the lunar regolith, which is composed of unconsolidated lithic fragments. An estimate of lunar regolith porosity in situ (for the top 0–60 cm) is 46 ± 2% (Carrier et al. 1991). Finally, modeling of the collisional breakup and gravitational assembly process predict porosities of ~40% for asteroids that have undergone breakup and reassembly (Wilson et al. 1999). However, subsequent settling and relictification may lower this value to the range of ~30%. We adopt >30% as the porosity for a rubble pile (as defined in this manuscript). Clearly these porosity boundaries are rough and will remain so until direct measures (such as seismic data) of a statistically significant population of asteroid interiors are obtained.

Implications for the Parent Body Models

We illustrate the evolution of the parent body models (undifferentiated coherent, onion shell, heterogeneously heated, metamorphosed planetesimal, and differentiated coherent) through time (Fig. 1, columns 2–4); each model and its resulting characteristics are classified according to the three modification/disruption models proposed (coherent but fractured, heavily fractured, and rubble pile). As demonstrated by Fig. 1, many of the resulting structural models are not easily distinguishable from each other. Even existing remote sensing data may not distinguish between the resulting structural models, let alone allow us to determine the unaltered parent body structure. We include this illustration to emphasize the importance of using the porosity estimate, along with existing remote sensing data, to infer the internal structure of an asteroid.

DISCUSSION

Composition

Telescopic spectral data indicated that Eros might be compositionally heterogeneous on a hemispheric level (Murchie and Pieters 1996). However, color and spectral measurements of Eros from the NEAR Shoemaker Multispectral Imager (MSI) and the near-infrared spectrometer (NIS) did not confirm this
result (Murchie et al. 2000, Murchie et al. 2001, Bell et al. 2001). NEAR Shoemaker X-ray/gamma-ray Spectrometer (XGRS) data indicate that Eros has an elemental composition (Fe, Mg, Ca, and Al, ratioed to Si) consistent with undifferentiated ordinary chondritic (H, L, or LL) meteoritic material (Trombka et al. 2000). NEAR Shoemaker NIS spectra and MSI color results are also consistent with an ordinary chondrite composition (Veverka et al. 2000, Murchie et al. 2001, Bell et al. 2001). Additionally, NEAR Shoemaker magnetometer results also show Eros to have a composition consistent with LL OCs (Acuna et al. 2000). Finally, the fact that Eros’s center of mass and center of figure are nearly coincident (as described in the next section) rule out large inhomogeneities in its internal density, which would be expected if Eros exhibited large internal compositional units (Thomas et al. 2001). These results allow us to compare the calculated density for Eros to that of OC meteorites.

Porosity

Consolmagno and Britt (1998) measured the microporosities of 15 ordinary chondrites and found them to range from 0 to 15%. Another study (Flynn et al. 1999) reports OC microporosities from 0 to 23% ($n = 27$). Unfortunately, the total number of well-documented OC microporosities is 42 (Fig. 2). The median porosity value of ordinary chondrites in each study was 6%, the average porosity of OCs 3.40 g/cm3 (Veverka et al. 2000, Yeomans et al. 2000), the estimate of Eros’s porosity starting with the average bulk density of OCs (row 1). Microporosities of the meteorite are assumed to be in the range 0–15% and the median is 6% porosity (row 2). Row 3 shows the calculated grain densities based on the previous assumptions (rows 1 and 2). The grain density is then compared with Eros’s bulk density of 2.67 g/cm3, resulting in the estimate of the total porosity of Eros (row 4). More assumptions are made about the microporosity of Eros (row 5), which leads to the calculation of Eros’s macroporosity (row 6). Note that we have chosen to use the average bulk density (3.40 g/cm3) of OCs in this estimation. If there were more porosity and density data available, a more rigorous approach would be to estimate the porosity of Eros using varying bulk densities and microporosities of OCs and varying microporosities of Eros.

![FIG. 2. Histograms of ordinary chondrite porosities from two datasets. Both studies overlap in the 0–15% range of porosity; both studies have median porosities of 6%. (A) From Consolmagno and Britt (1998). (B) From Flynn et al. (1999).](image)

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>Estimations of Eros’s Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density (OC) (g/cm3)</td>
<td>3.40 3.40 3.40 3.40 3.40</td>
</tr>
<tr>
<td>Microporosity (OC)</td>
<td>0% 0% 15% 15% 6%</td>
</tr>
<tr>
<td>Grain density (OC) (g/cm3)</td>
<td>3.40 3.40 4.00 4.00 3.62</td>
</tr>
<tr>
<td>Total porosity (Eros)</td>
<td>21% 21% 33% 33% 26%</td>
</tr>
<tr>
<td>Microporosity (Eros)</td>
<td>0% 15% 0% 15% 6%</td>
</tr>
<tr>
<td>Macroporosity (Eros)</td>
<td>21% 6% 33% 18% 20%</td>
</tr>
</tbody>
</table>

Notes. Numbers in italics represent calculations; numbers not italicized represent assumptions. Read down each column. Each column illustrates an estimation of Eros’s porosity starting with the average bulk density of OCs (row 1). Microporosities of the meteorite are assumed to be in the range 0–15% and the median is 6% porosity (row 2). Row 3 shows the calculated grain densities based on the previous assumptions (rows 1 and 2). The grain density is then compared with Eros’s bulk density of 2.67 g/cm3, resulting in the estimate of the total porosity of Eros (row 4). More assumptions are made about the microporosity of Eros (row 5), which leads to the calculation of Eros’s macroporosity (row 6). Note that we have chosen to use the average bulk density (3.40 g/cm3) of OCs in this estimation. If there were more porosity and density data available, a more rigorous approach would be to estimate the porosity of Eros using varying bulk densities and microporosities of OCs and varying microporosities of Eros.

We choose a more conservative measure of OC porosity, 0–15%, a range at which both studies (Consolmagno and Britt 1998, Flynn et al. 1999) overlap (see Fig. 2). Table II illustrates our estimates of the porosity of Eros using varying microporosities of OCs and varying microporosities of Eros. Using the range of porosity (0–15%) for OCs, the average bulk density of OCs, 3.40 g/cm3 (Wilkison and Robinson 2000), and the bulk density of Eros, 2.67 ± 0.03 g/cm3 (Veverka et al. 2000, Yeomans et al. 2000), we estimate the total porosity of Eros to be 21–33% (Wilkison and Robinson 2000). We infer that Eros’s macroporosity may be as high as 33% (0% microporosity, 33% total porosity) but must be greater than 6% (15% microporosity, 21% total porosity) (Table II). Using the median value of 6% porosity of OCs, the average bulk density of OCs, and the bulk density of Eros, we estimate the total porosity of Eros to be ∼26%; removing 6% microporosity from the asteroid would leave a macro- (or structural) porosity of ∼20% (Table II).

Modeling of the collisional breakup and gravitational assembly process predict porosities of ∼40% for asteroids that have undergone breakup and reassembly (Wilson et al. 1999). Variations in porosity within an object might be detected by a difference in the object’s gravity field from that of a completely homogeneous object. Assemblage of a rubble pile having a range of fragment sizes should exhibit variations in porosity, and hence local
density, within the object. However, NEAR Shoemaker gravity data indicate that Eros has a nearly uniform density (Yeomans et al. 2000, Zuber et al. 2000).

The tracking of the NEAR Shoemaker spacecraft has been accurate to well under 100 m (Yeomans et al. 2000), and this has allowed accurate comparisons of the center of mass with the center of figure. The center of mass offset from the center of figure for Eros is \(\sim 52\) m, or about 0.6\% of the object’s mean radius (Thomas et al. 2001). This offset can be simulated by a layer at high latitudes of approximately 250 m of material 30\% underdense relative to the rest of the asteroid, or by many other combinations of thickness and relative density. This example of a modestly different density layer only a few percent of the mean radius illustrates the generally homogeneous nature of Eros and is consistent with a layer of regolith on the surface.

Morphology

Structural continuity of an asteroid is suggested by the presence of grooves and ridges (Veverka et al. 1974, Thomas et al. 1979, 1992, 1994). Grooves are considered to be expressions of structural features—especially when such features are in preferred directions and orientations (Veverka et al. 1994). Based on observations of Phobos, two theories have been proposed as explanations for pitted grooves: either they indicate the collapse of loose material into fractures or they indicate the expulsion of material from fractures (Thomas et al. 1979, Horstmann and Melosh 1989). Gaspra has grooves that fall into two groups of orientations; the pattern of grooves and ridges observed indicates a global fabric that implies that Gaspra is a single, coherent object (Thomas et al. 1994). Sullivan et al. (1996) suggest that the

FIG. 3. Four examples of morphologic features found on Eros that suggest the asteroid has a global internal strength. (Upper left) Rahe Dorsum is a ridge with over 300 m (Cheng et al. 2001) of relief and it stretches for \(\sim 15\) km in length (Veverka et al. 2000). The steepest face of the ridge has a slope of greater than 60‘, indicating that is formed in competent material (well above the angle of repose of loose material, Cheng et al. 2001) (MET 131968549–131969115B). (Upper right) Prominent set of ridges “twist” (Veverka et al. 2000) consistent with an extensional stress environment in a competent material (MET 129525607–129525697). (Lower left) Square craters are known to form as a result of impact into a solid rock with a preexisting fracture pattern (Shoemaker 1963) such as those found on the western end (\(\sim 320\) W) of Eros (MET 132151511, 132151569). (Lower right) Much of Eros is patterned in a complex series of grooves and “fabric” interpreted to indicate a competent lithology beneath the regolith (Veverka et al. 2000). In this mosaic two longitudinal grooves exhibit aligned pits similar to those found on Phobos (MET 135343994–135345734).
grooves of Ida are internal fractures expressed in a surface layer of less coherent materials.

Structural features such as lineations have been observed on Eros (Veverka et al. 2000, Prockter et al. 2000, 2001 and include sinuous and linear depressions, topographic ridges, and alignment of sections of the terminator (Fig. 3) (Veverka et al. 2000). Evidence of preexisting fabric in smaller craters, which exhibit elongation in the direction of intersecting or adjacent lineaments, has also been observed (Prockter et al. 2000, 2001).

A prominent ridge system (Fig. 3; Rahe Dorsum) spans the northern hemisphere and geometrically defines a planar slice through the asteroid (Veverka et al. 2000, Prockter et al. 2001). This ridge crosscuts structures such as Himeros, indicating that it was created after Eros retained its current shape (Veverka et al. 2000). Rahe Dorsum has slopes well above the angle of repose (Cheng et al. 2001) and is continuous across more than a third of an Eros circumference, and it exhibits a morphology consistent with a compressive fault plane through a consolidated or coherent material. A set of parallel ridges on the opposite side of Eros, informally called the “twist,” constitutes a second set of prominent ridges. A global extent of the asteroid’s fabric is suggested by the alignment of Rahe Dorsum and the twist. These two features lie in one plane (within 400 m over a 15-km length), and Rahe Dorsum by itself defines the same planar feature. Because of their different morphology, these surface features probably represent different responses of a global fabric to impact erosion (the twist?) or stresses (Rahe Dorsum?), and they may have formed at different times. Veverka et al. (2000) suggested that the large variation in directions and patterns of the shorter lineations indicate that they were formed in many different events. Grooves crosscut the oldest craters on Eros, but younger craters crosscut some of the grooves (Veverka et al. 2000). These features all indicate that Eros possesses structural continuity and internal strength.

Observations of morphological features on Eros such as regions of high slopes, continuous grooves, steep continuous ridges, and fault planes suggest that the asteroid possesses global mechanical strength and is not strictly a gravitationally bound object (Thomas et al. 2001, Zuber et al. 2000). These structures indicate that Eros, unlike rubble pile models, possesses significant internal strength.

CONCLUSIONS

All available bulk compositional estimates for Eros suggest that it is an OC type body, thus allowing us to estimate its total porosity (21–33%) from measures of meteoritic material and Eros’s bulk density. Using the median value of microporosity for the meteorites, we estimate that Eros has a macroporosity of 20%. This value is consistent with impact breccias found on the Earth and Moon, indicating that Eros has suffered a high degree of impact-induced fracturing (eliminating the coherent yet fractured model). Is Eros a heavily fractured or rubble pile asteroid? The remaining circumstantial evidence leads us to believe that Eros is not a rubble pile (as defined here). First, the range of estimates for Eros’s macroporosity, while not conclusive, are lower than rubble pile models would suggest. Modeling of the collisional breakup and gravitational assembly process predicts porosities of ~40% for asteroids that have undergone breakup and reassembly (Wilson et al. 1999), and rubble pile analogs such as the lunar regolith and unconsolidated terrestrial sediments have porosities greater than 40% (Table I). Second, the apparent homogeneity in mass distribution within Eros (Thomas et al. 2001, Yeomans et al. 2000, Zuber et al. 2000) suggests an implausible continuity of density for a rubble pile. Finally, structural features on its surface show that it has a significant degree of internal strength. Thus we conclude that Eros is a heavily fractured asteroid.

REFERENCES

Catullo, V., V. Zappala, P. Farinella, and P. Paolicchi 1984. Analysis of the shape of an Eros circumference, and it exhibits a morphology consistent with a compressive fault plane through a consolidated or coherent material. A set of parallel ridges on the opposite side of Eros, informally called the “twist,” constitutes a second set of prominent ridges. A global extent of the asteroid’s fabric is suggested by the alignment of Rahe Dorsum and the twist. These two features lie in one plane (within 400 m over a 15-km length), and Rahe Dorsum by itself defines the same planar feature. Because of their different morphology, these surface features probably represent different responses of a global fabric to impact erosion (the twist?) or stresses (Rahe Dorsum?), and they may have formed at different times. Veverka et al. (2000) suggested that the large variation in directions and patterns of the shorter lineations indicate that they were formed in many different events. Grooves crosscut the oldest craters on Eros, but younger craters crosscut some of the grooves (Veverka et al. 2000). These features all indicate that Eros possesses structural continuity and internal strength.

Observations of morphological features on Eros such as regions of high slopes, continuous grooves, steep continuous ridges, and fault planes suggest that the asteroid possesses global mechanical strength and is not strictly a gravitationally bound object (Thomas et al. 2001, Zuber et al. 2000). These structures indicate that Eros, unlike rubble pile models, possesses significant internal strength.

CONCLUSIONS

All available bulk compositional estimates for Eros suggest that it is an OC type body, thus allowing us to estimate its total porosity (21–33%) from measures of meteoritic material and Eros’s bulk density. Using the median value of microporosity for the meteorites, we estimate that Eros has a macroporosity of 20%. This value is consistent with impact breccias found on the Earth and Moon, indicating that Eros has suffered a high degree of impact-induced fracturing (eliminating the coherent yet fractured model). Is Eros a heavily fractured or rubble pile asteroid?

