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Abstract—A Pulsed Neutron12 Gamma-ray System (PNGS) 
can be used to determine the subsurface planetary 
geochemistry on rover missions to Mars and other planetary 
bodies. These data can be used to unravel the history of 
formation of biogenic materials, characterize the climate, 
explore the geology and characterize the radiation 
environment. We have performed feasibility studies for a 
Pulsed Neutron/Gamma-ray System (PNGS) to operate on a 
Mars Science Laboratory (MSL) type rover. It has been 
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developed to meet the MSL rover mission constraints on 
mass and power limitations, temperature and radiation 
effects, and reliable operation for long periods of time. 
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1. INTRODUCTION 
 
The driving force behind the Mars Exploration Program is, 
ultimately, the search for evidence of past life on Mars.  To 
achieve this goal, the current emphasis of the orbital and rover 
missions is identification of aqueous environments in which 
living organisms could have thrived.  Our approach is to use 
geochemistry as a tool for understanding past Martian climate. 
We have performed feasibility studies for a Pulsed 
Neutron/Gamma-ray System (PNGS) suitable for use on a 
Mars rover that will measure subsurface geochemistry, density 
and stratification without the need for sample preparation, 
sample collection, or instrument deployment.  Most 
importantly, this system will provide subsurface geochemical 
information without the need for mass-and power-intensive 
drilling operations and provide this information throughout the 
course of a rover traverse.  The results based on the feasibility 
studies showed that the PNGS can provide insight into the past 
habitability of Mars by measuring H, C, and O, which record 
the history of water and carbon dioxide, and the biogenically 
important elements C, Ca, Mn, Cl, and P, which are required 
for life or concentrated by living organisms.  A PNGS can 
determine H as well as the geochemistry of the rocks in which 
H occurs, distinguishing between hydrated minerals and 
subsurface water ice. Finally a PNGS can be used to measure 
major rock forming elements O, Mg, Al, Si, S, Ca, and Cl, 
allowing us to distinguish igneous and sedimentary rocks, the 
processes from which they formed originally, and the 
subsequent influences of chemical weathering and impact.  
 

2. MARS EXPLORATION GOALS ADDRESSED BY 
PNGS 

 
NASA’s Mars Exploration Program is driven by the goals of 
understanding the biologic, climatic and geologic history of 
Mars, as well as preparing for future manned exploration.  The 
PNGS system we have designed addresses some of the most 
fundamental issues within these four areas.  First, life as we 
know it requires the presence of liquid water. In our search for 
past life on Mars, we must identify rocks and minerals 
deposited by water, which provide both evidence of 
environments amenable to past life and a record of the climate 
of Mars. These rocks and minerals are sedimentary in nature 
and can form either by the physical breakdown of the igneous 
rocks that dominate the surface of Mars (clastic sediments) or 
they can precipitate directly from water (chemical sediments), 
such as the sulfates and iron oxides identified by the 
Opportunity Rover in Meridiani Planum.  A PNGS system can 
accomplish this goal through a range of measurements.  
Increasing Si abundances (as expressed by Fe/Si vs. K/Si (Fig. 
1)) are a hallmark of clastic sedimentary rocks and record 
increasing abundances of the weathering-resistant mineral 
quartz.  In contrast, chemical sedimentary rocks are often 

enriched in elements that dissolve readily in seawater, such as 
chlorine.  
 
PNGS can be used to search for elements concentrated in 
minerals formed in biologically-active environments, 
including Mn-oxides (Mn), carbonates (Ca), sulfates (S) and 
salts (Cl). Concentrations of these elements, in excess of the 
nominal value in a landing site, would indicate areas of 
particular interest for biological prospecting. 

 
In the search for regions that might host biogenic life, finding 
subsurface water—whether in the form of groundwater or, 
more likely, ground ice—is a key investigation in Mars surface 
exploration missions. PNGS is ideally suited for this 
investigation, with the ability to measure, for example, H/Si and 
H/Fe ratios in short time spans. The data from both the gamma-
ray and neutron detector systems will be highly complementary 
in determining whether the H is in-ground ice or bound in 
hydrated minerals. 
 
In addition to playing a key role in the search for extant life, 
the possibility of analyzing mid-latitude ground ice has 
profound implications for understanding the climatic history 
of Mars. PNGS can provide key elemental ratios that 
determine not only the abundance of subsurface H, but also 
the geologic and mineralogic context in which it occurs. This 
capability to deduce whether ground ice actually occurs in the 
mid-latitudes of Mars is critical to deciphering the current and 
past climate history of Mars, and is a first-order priority in the 
geochemical exploration of Mars. 
 
PNGS aboard Martian rovers can provide a broad array of 
chemical information to address key geology issues.  The 
surface of Mars is dominated by igneous rocks thought to range 
from primitive basalts to evolved, Si-rich andesites.  The same 
elements that distinguish the maturity of sedimentary rocks can 
distinguish the extent of the evolution of igneous rocks on 
Mars.  This use of multi-element plots to distinguish rocks of 
different origins was successfully applied to data from the Near 
Earth Asteroid Rendezvous (NEAR) mission [8].  In contrast to 
the low spatial resolution provided by orbital measurements, a 
rover-based PNGS provides details of the vertical and spatial 
heterogeneity of landing sites. Mars is geologically complex at 
spatial scales ranging from the microscopic to the hemispheric 
for a range of elements and minerals.  Of greatest importance, 
the distribution of water plays a key role in deciphering the 
formation and modification of many primary rock types.  
These primary rock types are, in many places, obscured by 
regolith and the global dust that coats much of the planet. 
PNGS is particularly sensitive to Cl, which is heavily 
concentrated in the dust, providing a tool to identify those 
areas with the least global dust coverage.  If such areas prove 
to be enriched in H, they become particularly attractive targets 
for biological prospecting. The gamma-ray spectrometer 
component of PNGS is uniquely suited to the detection these 
of naturally radioactive elements. The decay of long-lived U, 
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K, and Th within rocks of all types contributes to the surface 
radiation environment. Evolved igneous lithologies, such as 
granites and andesites, contain enhanced abundances of these 
elements, providing another measure of the differentiation 
history of the Martian crust. 
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Figure 1 - The elemental ratios Fe/Si and K/Si distinguish terrestrial igneous (filled circles) and sedimentary (open squares) rocks 
and trace the extent of differentiation or mechanical weathering.  Igneous rocks trend to lower Fe/Si and higher K/Si values with 
increasing differentiation, while physical weathering of these rocks produces sedimentary rocks with low Fe/Si and K/Si values.  

Orbital geochemical data for Mars (solid diamonds) imply different igneous rock types on the surface. 
 
. 

3. THE PNGS METHOD 
 
Neutrons emitted by generators create gamma rays that can 
be separated by time-after-neutron-creation into three 
classes, 1) inelastic, 2) capture and 3) activation gamma 
rays. 
 
The inelastic gamma rays are generated by fast neutron-
nucleus inelastic interactions with the surrounding material. 
The inelastic gamma rays are emitted within 10-9 seconds of 
the parent neutron creation. C and O have very distinct 
inelastic gamma ray signatures. 

 
The capture gamma rays are generated after the fast 
neutrons have lost energy to become thermalized and then 
captured by nuclei in the surrounding material.  Nuclei that 
capture the thermal neutrons are usually in an excited state 
that promptly decays to the ground with emission of 
characteristic capture gamma rays.  The capture gamma rays 
come during a period of 10-9 to 10-3 seconds after neutron 
creation in the generator.  H, Cl, Si, Ca, S, Fe, Ti and Gd 
can be assayed by their capture gamma-ray signatures. 
 
The activation gamma rays come from radioactive nuclei 
that are created either by the Fast neutron or the Thermal 
neutron interactions. Activation gamma rays from these 
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short-lived radionuclides can be acquired after the neutron 
generator has been off for more than 10-3 seconds. Elements 
that can often be assayed from activation gamma rays are 
Al, Na, and Cu. 
 
Finally, the natural radioactive elements K, U, and Th can 
be measured during the period when the activation gamma 
rays are measured. 
 
Using a pulsed neutron generator, the gamma-ray 
measurements can be divided into three time periods during 
and in between the pulses: measurements made during the 
neutron pulse when the inelastic gamma rays dominate the 
spectrum; measurements made just after the pulse ends and 
for a period of time before the thermal neutrons have 
essentially died away when the capture gamma rays 
dominate the spectrum; and finally after the thermal flux has 
significantly diminished to the beginning of the next pulse 
when the activation, nature activity and background gamma 
rays dominate the spectrum. 

 
The epithermal and thermal neutron die away is measured 
as a function of time in between the neutron pulses. Time 
resolution on the order of microseconds is used. There are 
two time periods of interest, first when the epithermal 
neutrons dominate the spectrum and then when the thermal 
neutrons dominate the spectrum.  The slowing down times 
strongly depends on the hydrogen content of the sample. 
These times can range from tens to hundreds of 
microseconds. 
 
A number of factors must be considered in the design of an 
experiment using the PNGS approach. These include: both 
gamma-ray and neutron detectors, neutron generator 
geometry; the magnitude of the neutron flux and pulse 
width per pulse; pulse rate; neutron generator life time; 
shielding between the neutron generator and detectors if 
necessary; cosmic ray shielding for the gamma-ray detector; 
and finally minimizing the cosmic-ray primary and 
secondary activation of the materials near the measurement 
system. 
 
Cosmic rays can interact with the gamma-ray detectors to 
produce a significant background especially above ~3 MeV. 
Active shielding can be used to reduce this background 
component [9].  The detector also can be activated by 
cosmic-ray primary and secondary interactions, producing a 
background of internally emitted gamma rays.  This 
background component may be identified and eliminated 
with timing circuitry.  Cosmic rays interacting in the surface 
of the planet will produce neutrons by spallation 
interactions and gamma rays will be produced by inelastic 
scatter, and capture (both prompt and delayed processes). 
Epithermal, and thermal neutrons will be a continuous 
source of background for the PNGS measurement. Methods 
for dealing with these backgrounds will be discussed below.  
 

The geometric configuration has to be chosen so that the 
gamma ray and neutron detectors view a significant solid 
angle of the irradiated surface.  The generator source 
neutrons must be shielded or at least be a sufficient distance 
away to prevent neutrons from the generator saturating the 
gamma ray and neutron detectors. Furthermore, the neutron 
flux per pulse must be adjusted so that detector saturation 
will not occur for the given configuration and still produce 
gamma rays with neutron induced and scattered fluxes 
above the level produced by the cosmic ray induced fluxes. 
Finally the geometry must be chosen to fit the constraints of 
the rover vehicle mission and design. In the next section we 
describe such a design for the Mars Science Lander (MSL) 
mission. 
 
MSL mission power, weight and volume constraints are 
such that the neutron generator flight systems are limited to 
about 108 neutrons/sec. Pulse widths of 10’s of 
microseconds and 105 neutrons per pulse are needed in 
order to measure the inelastic gamma-ray flux during the 
pulse without saturating the detectors.  This then sets the 
neutrons/pulse and repetition rates for the experiment.  
Depending on the expected hydrogen content the timing 
widow for the prompt capture and activation/background 
windows can be set.  Again there will only be a few events 
per pulse that can be measured. At this rate the measured 
inelastic, prompt capture, activation/background gamma-ray 
fluxes, and neutron die away fluxes will be above the 
cosmic ray induced background.  Significantly higher fluxes 
per pulse and significantly lower pulse rates will greatly 
limit the effectiveness of a PNGS based experiment. 
 
A major source of background will be the excitation of the 
materials in the rover structure and the instrument itself.  
Care must be taken in selecting materials in the PNGS to 
minimize interferences with important surface elemental 
measurements.  The interference from the materials in the 
rover can only be controlled by proper placement of the 
PNGS on the rover although there is limited space available 
for instrument accommodation.  
 
Finally, the lifetime of operation of the neutron generator 
must be greater than a thousand hours without significant 
degradation of its operation. Such neutron generators are 
now available. [1].  
 

4.  PNGS DESIGN AND SENSITIVITY 
 
In order to demonstrate the feasibility of including a PNGS 
on a Mars rover mission, a detailed design study has been 
completed using the specifications and constraints imposed 
by the Mars Science Laboratory (MSL) program. The mass 
constraint was determined considering that the total mass 
available for scientific instrumentation was set at ~50 kg.  
Assuming that four other instruments may have to be 
accommodated, it was assumed that about 20% of the 
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allotment could be used for the PNGS system.  
Furthermore, the system would have to be designed to fit 
into the instrument bay of the MSL Rover. As a result of 
this study, it was found that the PNGS instrument could be 
constructed for the weight shown in Table 1a.  The power 
needed is detailed in Table 1.b, and with instrument power 
management, it can operate within mission constraints. 
Figure 2 shows a possible configuration for a PNGS aboard 
the MSL rover. The gamma ray and neutron detectors are 
50 cm from the neutron generator source and both the 
detectors and the generator are 75 cm above the surface. 
Mars geochemical models have been developed using 
information derived from Martian meteorite studies and 
results obtained from measurements made by the Pathfinder 
Sojourner mission [10].  Monte Carlo simulations of the 
PNGS operation and response have been carried out, and 
the results indicate that a PNGS experiment for subsurface 
geochemical exploration can be designed within the MSL 
mission constraints and achieve many of the mission’s 
major scientific objectives.  
 
 

 
 
Figure 2 – Possible Configuration of the PNGS Instrument 

on a Mars Science Laboratory Rover 
 
 
The PNGS detection sensitivity is different for each element 
of interest.  Calculated results were obtained using the 
Monte Carlo code (MCNPX [11]) with representative 
model soil and rock compositions.  The composition of the 
rover, while not known in any detail, is assumed to be made 
of materials that have the same elemental composition as 
those of interest on Mars (e.g., Al, Fe, C, H). Two model 
compositions were used: one for uniform soil [10] with 3% 
H2O, the other for a basaltic rock composition.  The 
assumed compositions are shown in Table 2.  Actual 
measurements on Mars would probably be some 
combination of rock and soil with some H2O concentration. 
One measure of sensitivity is the uncertainty that can be 
obtained for a given counting time.  The results are shown 
in Table 2 for an assumed counting time of 30 minutes.  For 
other counting times, the statistical uncertainties vary as the 
square root of the time.   Calculations for the PNGS were 

done with and without the rover contribution to the total 
gamma ray signal.  For the rover case, it was assumed that 
the rover contribution to the total signal could be measured 
or calculated independently and removed from the total 
gamma ray signal.  For comparison, the expected sensitivity 
for a gamma signal due only to galactic cosmic rays (GCR) 
without any rover contribution is also shown in Table 2.  
For natural radioactivity from K, Th, and U the calculations 
were done assuming the measurements were done without 
the PNGS and are shown in Table 2. 
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Table 1.a 

INSTUMENT SYSTEM WEIGHT 
(kg) 

  
Pulse Neutron 
Generator 

4,10 

  
Neutron Detector  3.52 
  
Gamma Ray Detector  3.15 
  
Total 10.77 

 
Estimated Weight for a Mars Science Laboratory System 

 
 

Table 1.b 
Component 
 

Avg. 
Power 
 

1 Main Electronics Box 
 

12.1 Watts 
 

1 Neutron Generator +
Electronics 
 

14.6 Watts 
 

1 Gamma Ray Detector 
 

0.75 Watt 
 

2 Neutron Detectors 
 

1.5 Watts 
 

1 Neutron Monitor 
 

 0.75 Watts
 

4 HVPS 
 

1.3   Watts 
 

Heaters 
 

5   Watts 
 

Instrument Total:   
 

35.9 Watts 
 

 
Estimated Power for a Mars Science Laboratory System 

Table 2 Sensitivity Calculations 

2.a Expected Uncertainties (%) for 30 Minutes Counting Time for Soil with 3% H2O 
      PNG Source*     
Element-       Soil  Without With Rover   GCR Source  
Mode  Composition  Rover  Removed  Without Rover 
H-capture      0.27%  21%  31%    48% 
O-inelastic      46.6%  0.6%  0.6%    14% 
C-inelastic      0.06%  4.7%  14%    >100% 
Si-inelastic      19.4%  0.9%  1.2%    5% 
Si-capture      19.4%  19%  27%    32% 
Fe-capture      15.6%  2.8%  3.5%    10% 
Cl-capture      0.53%  13%  19%    24% 
Mn-capture      0.4%   15%  22%    90% 
Ti-capture      0.66%  30%  44%    >100% 
Ca-capture      4.6%   48%  72%    >100% 
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S-capture      2.7%   59%  85%    >100%  
Mg-capture      5.1%   >100%  >100%    >100% 
 

2.b Expected Uncertainties (%) for 30 Minutes Counting Time for Basalt Rock 
      PNG Source* 
Element- Basalt   Without  With Rover  GCR Source 
Mode      Composition  Rover  Removed  Without Rover 
H-capture      0.0%  --       --    -- 
O-inelastic      43.5%  0.5%       0.6%   10% 
C-inelastic      0.0%  --       --    -- 
Si-inelastic      24.4%  0.6%       0.8%   11% 
Si-capture      24.4%  27%       38%   45% 
Fe-capture      6.8%   8%       12%   37% 
Cl-capture      0.0%   --        --    -- 
Mn-capture      0.4%   70%       >100%  >100% 
Ti-capture      0.1%   >100%       >100%  >100% 
Ca-capture      7.8%   65%       86%  > 100% 
S-capture      0.0%         --     
Mg-capture      4.5%   >100%       >100%  >100% 
 
*PNG Source characteristics: 105 neutrons per pulse, 103 pulses per second. 
 

2.c Expected Uncertainties (%) for 30 Minutes Counting Time for Natural Radioactivity 
   Soil with 3% H2O   Basalt Rock  
  Composition Uncertainty  Composition Uncertainty 
K40          0.5%         4%   0.3%  70% 
Th232          0.3 ppm         70%  0.6 ppm  35% 
U238          0.08 ppm        >100%   0.15 ppm 60% 
 

 

5. CONCLUSIONS 
 
PNGS can be used to determine the subsurface planetary 
geochemistry on rover missions to Mars and other planetary 
bodies. These data can be used to unravel the history of 
formation of biogenic materials, characterize the climate, 
explore the geology and characterize the radiation 
environment. With PNGS, measurements can be made of an 
array of geochemically diagnostic elements, with meter- 
scale spatial resolution down to depths as great as 20-30 cm. 
 No other instrument with this capability has ever flown on 
a landed or rover mission to any planetary body.  Our 
studies have shown that such a system can be flown on a 
rover of the type proposed for the Mars Science Laboratory 
within the power, weight, volume and lifetime constraints of 
such a mission.  
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