Detection of Silica-Rich Deposits on Mars
S. W. Squyres et al.
Science 320, 1063 (2008);
DOI: 10.1126/science.1155429

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of February 28, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/320/5879/1063.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2008/06/13/320.5879.1063.DC2.html
http://www.sciencemag.org/content/suppl/2008/05/21/320.5879.1063.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/320/5879/1063.full.html#related

This article cites 29 articles, 4 of which can be accessed free:
http://www.sciencemag.org/content/320/5879/1063.full.html#ref-list-1

This article has been cited by 34 article(s) on the ISI Web of Science

This article has been cited by 3 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/320/5879/1063.full.html#related-urls

This article appears in the following subject collections:
Planetary Science
http://www.sciencemag.org/cgi/collection/planet_sci
measured at 247 points on 90 individual trees from 16 synthetic batches (Fig. 4C). To extract the magnitude of the Burgers vector, a line can be fit to the data as plotted, with the slope representing b from Eq. 1 above. This can be more directly seen in a histogram of the calculated Burgers vectors (Fig. 4D). A Gaussian fit to these data yields the average magnitude of the screw component of the Burgers vector $b = 6 \pm 2 \AA$. Because the Burgers vector direction is confirmed to be [110] by TEM, a 6 Å screw component of the Burgers vector (the projection of b onto the dislocation line u [100]) is approximately equal to the lattice constant of PbS, $a = 5.94 \AA$. It is known that smallest b allowable is the shortest lattice translation vector in a material (23), in which the case of rock salt crystals is $\frac{1}{2}$[110], whose screw component is $\frac{1}{2}$[100] (half the lattice constant a). Given various sources of errors in this estimate (27, it is satisfying to see that no data were observed substantially below the theoretical minimal vector, and the average estimated b value of twice the minimal theoretical length is reasonable. Additionally, theory predicts that left-handed dislocation spirals lead to right-handed Eshelby twists and vice versa (23, 26); therefore, the equal probability of twist handedness implies equal probability of Burgers vector sense (sign).

The observation of Eshelby twist in these pine tree nanowires is a clear demonstration and validation of Eshelby’s theory on dislocations. The results also provide evidence for a catalyst-free nanowire growth mechanism driven by axial screw dislocations and imply that VLS and screw dislocation-driven nanowire growth can coexist. Because of the distinct morphology difference from the hyperbranched nanowires, it is unlikely that the dislocation is a result of cool-down or other postgrowth perturbation. Although some general discussions on the origins of dislocations exist (23, 30), an experimentally observed mechanistic understanding is currently lacking. We suggest that this dislocation-driven nanowire growth mechanism proposed for PbS trees is likely general to and is underappreciated in the synthesis of 1D nanostructures, particularly in cases where the growth mechanism is inconclusively explained and especially when free of catalysts. Besides the analogous PbSe for which we have found preliminary evidence of similar growth phenomena, the dislocation-driven nanowire growth mechanism is likely to occur in materials that are prone to have screw dislocations, such as SiC, GaN, ZnO, and CdS, both in vapor-phase growth and in solution-phase synthesis. However, we caution that postgrowth mechanical perturbation could work the dislocation out of the nanowires, and one might not be able to observe dislocations in the final nanowire products if samples are not handled properly.

References and Notes
11. Materials and methods are available as supporting material on Science Online.

Detection of Silica-Rich Deposits on Mars

Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.

Opaline silica deposits are an indicator of past aqueous activity. Some regions of Mars exhibit a thermal infrared spectral signature that has been interpreted to result from coatings of amorphous silica on rocks (1, 2), although this interpretation is not unique (3). Results from the Mars rover Opportunity have suggested that opaline silica could be present in sulfate-rich sedimentary rocks at Meridiani Planum (4). The rover Spirit recently investigated the Eastern Valley between Home Plate and the Mitchtelree/Low Ridge complex (Fig. 1) in Gusev crater. Here we describe the discovery of silica-rich deposits in the Eastern Valley and farther east near sulfate-rich soil deposits.

Home Plate consists of laminated—to–cross-bedded tephra that shows evidence for a volcanic explosive origin, including a bomb sag produced when an ejected ~4-cm mast fell into degradable ash deposits (5). Mitchtelree Ridge and Low Ridge, located east of Home Plate, are partially eroded synclinal structures that expose tephra deposits (including lapilli-stones) capped by a deposit of vesicular basalt boulders. Soils in the Inner Basin ~250 m to the north (Samra) and ~50 m to the east (Tyron) (Figs. 1 and 2) of Home Plate contain hydrated ferric sulfate deposits (6, 7). The mobility of ferric iron under apparently oxidizing conditions, leading to ferric sulfates and oxides, is suggestive of low pH con-
ditions (8–10), and both deposits are interpreted to have originated under hydrothermal, acid-sulfate conditions (6). Although hydrated ferric sulfates dominate these deposits, Alpha Particle X-ray Spectrometer (APXS) (11) data also indicate that the nonsulfate component is enriched in SiO₂ relative to nearby rocks and soils (6), and Miniature Thermal Emission Spectrometer (Mini-TES) (12) spectra show an absorption feature at ~475 cm⁻¹ that may be associated with amorphous silica.

The floor of the Eastern Valley exposes buff-colored, platy outcrops that we interpret on the basis of their composition, mineralogy, and finescale texture to be volcanic ash deposits altered under oxidizing acid-sulfate–dominated conditions. These outcrops are covered in places by light-toned elastics and are found in close association with outcrops that show a distinctive nodular appearance (Fig. 2).

Mini-TES thermal emission spectra acquired for an outcrop (Tyrone nodules in Fig. 1) near the Tyrone light-toned soil deposit and for light-toned nodular outcrops within the Eastern Valley (Fig. 2) exhibit the spectral signature associated with high silica contents (Fig. 3A). Although the outcrops are partially covered by windblown soil, the spectra contain a distinctive vibrational absorption feature at ~475 cm⁻¹, which is interpreted to result from the Si-O bending mode, and another at ~1110 cm⁻¹, which is interpreted to be the Si-O stretching mode of opaline silica (13). The spectra are distinct from those of quartz or cristobalite (13). Correcting for soil and dust contamination enhances the depths of these features (Fig. 3B).

The spectra include a prominent absorption near ~1260 cm⁻¹. This feature is atypical of laboratory spectra of opaline silica, which usually display only a shoulder in this location. Previous work has demonstrated that the depth of this feature is a function of the incidence angle, because the longitudinal optic mode dominates the transverse optic mode as the incidence angle increases (14). We confirmed this behavior with laboratory emission measurements for both synthetic amorphous silica and natural opaline silica samples (fig. S1). With increasing emission angle (where 0° is normal to the surface), the feature transitions from a shoulder to a prominent emissivity minimum. Because Mini-TES observations are obtained at emission angles ranging from 40° to nearly 90°, the spectra of opaline silica should display this distinctive feature.

During a drive on martian solar day (or "sol") 1148 (15), the rover’s inoperative right front wheel (16) excavated light-toned soil deposits (fig. S2). Mini-TES spectra for these deposits (Fig. 3A) show the spectral features associated with opaline silica, including a weak emissivity maximum near 1625 cm⁻¹ that results from the bending mode of bound water (17). In addition, a relatively broad and deep emissivity minimum centered at ~950 cm⁻¹ is present and is interpreted as a transparency feature that arises in fine-grained particulate material where multiple scattering accentuates an otherwise weak absorption (18). Panoramic Camera (PanCam) (19) near-infrared reflectance spectra of the light-toned, high-Si soil deposits and nodules also reveal a distinct absorption feature that is consistent with the presence of H₂O in hydrated minerals (20).

We used the Microscopic Imager (MI) (21), APXS, and Mössbauer Spectrometer (MB) (22) to investigate several rocks and soils in the Eastern Valley. One rock outcrop [Elizabeth Mahon (23), which coincides approximately with the
Clarita_Zaph4 Mini-TES target) had 72.4 weight percent (wt %) SiO₂ (table S1). Light-toned soils exposed by the rover’s right front wheel (Kenosha Comets and Lefty Ganote) (Fig. 2B and fig. S2) had SiO₂ concentrations of 90.1 and 74.6 wt %, respectively. Two rock samples (Innocent Bystander and Norma Luker) (Fig. 2B and fig. S3) with, respectively, 63.1 and 69.2 wt % SiO₂ were rock fragments several centimeters in size that were created by breaking an outcrop with the rover’s right front wheel. The high-silica measurements were made on the freshly broken surfaces, demonstrating that the silica is present within the rock to a depth of at least several centimeters. Microscopic Imager images of all outcrop targets show varying degrees of soil contamination, so these SiO₂ concentrations should be regarded as lower limits.

The APXS sampling depth is ~5 to 10 μm in rock for low–atomic number elements such as Si and 50 to 100 μm for higher–atomic number elements (11). This depth dependence can be used to investigate whether high-Si targets have a thin cover of soil. Compared with typical soils at the Spirit site, the light-toned soils are enriched in Si, Ti, Cr, and Zn (Fig. 4). Most other major elements, however, follow an exponential downward trend in relative abundance with rising element atomic number. This trend is a clear indicator that soil grains are mixed into the surface of the silicarich material. On the basis of MB measurements and the Mg/Al ratio in APXS data, we estimate that soil contaminates ~30% of the Kenosha Comets target. (A small quantity of an alteration product could also be present.) Removing the contaminants leads to an inferred composition of ~98 wt % SiO₂, ~1.5 wt % TiO₂, ~0.4 wt % Cr₂O₃, ~200 parts per million (ppm) Ni, and ~330 ppm Zn.

APXS data also show that this soil target is rich in Si to a depth of at least 300 μm by comparing the ratios of the Compton and Rayleigh scatter peaks of the primary excitation radiation for x-ray fluorescence. The cross sections responsible for these two peaks have different atomic-number dependencies (including a large dependency on oxygen), and they originate from depths of as much as 300 μm. The scatter ratios peak is nearly a factor of 2 different than it is for typical soils but is consistent with the scatter peak of a pure SiO₂ sample measured by the flight instrument during APXS instrument calibration (fig. S4).

Further evidence that the material is rich in SiO₂ to at least a few hundred micrometers is provided by nearly featureless Mössbauer spectra. The MB instrument samples to a few hundred micrometers (22) and only detects minerals that contain Fe. The material is therefore Fe-poor over at least this depth range.

The light-toned soils were mixed by the action of the rover wheels to a depth of a few centimeters, so the APXS and MB results imply that the soil is silica-rich to at least this depth. Additionally, because MI images show that they are dominated by grains much smaller than a few hundred micrometers in size, the APXS and MB data also demonstrate that these are not grains of typical martian soil coated with silica.

We interpret the silica-rich materials identified by Spirit to have formed under hydrothermal conditions, because they are found in close association with volcanic materials [e.g., Home Plate (5)] and, in some cases, are intimately mixed with ferric sulfates that are also probably of hydrothermal origin (6). Origin in a lacustrine evaporite setting is unlikely given the complete lack of evidence for standing or flowing surface water at the Spirit site (24).

On Earth, a range of processes can produce high concentrations of opaline silica in hydrothermal settings. These processes result from the high solubility of silica in aqueous systems under warm and alkaline conditions (25) but much lower solubility at low pH. At one extreme, abundant hot neutral-to-alkaline groundwaters dissolve silica from subsurface rocks and then precipitate it when they reach the surface and cool and evaporate, forming sinter deposits. At the other extreme, very low pH waters are formed by condensation of water vapor and acid gases, typically in volcanic settings and at low water/rock ratios. These acid condensates interact with precursor rock like basalt, leaching away most minerals but leaving the most insoluble constituents—notably silica—behind (26). As an intermediate case, hydrothermal sinter deposits can also form at pH 2 to 4 and high water/rock ratios (27).

The enrichment of Ti (and Cr) in the silica-rich materials discovered by Spirit may provide a constraint on their origin. Like silica, titanium dioxide is relatively insoluble at low pH. A straightforward explanation for our observations therefore is that acid-sulfate low pH waters dissolved basaltic precursor materials, concentrating the highly insoluble silica (probably as opal-A) and titanium dioxide (probably as anatase). Based on the composition of relatively unaltered basalts at Gusev,
titanomagnetite is the most likely precursor phase for the Ti.

Favoring a low pH origin is the similarity of silica-rich soils to other light-toned soil deposits within the Columbia Hills that are rich in hydrated sulfate salts, particularly ferric sulfates (6, 7). Not only is their geologic setting similar—highly concentrated light-toned deposits excavated by the rover’s wheels from just below the surface—but some of these sulfate-rich soils also contain a significant quantity (4 to 33%) of free silica (6). These observations may point toward a common origin, and as noted above, we interpret the hydrated ferric sulfate deposits to have formed under acid-sulfate conditions. Also, the compositional diversity of Si-rich materials observed by Spirit is consistent with formation by acid leaching of a variety of basaltic precursor materials, including those found in the Home Plate area (Fig. 5).

To remove nonvolatile components (e.g., Al, Fe, and Na) from the precursor rock, fluids—not vapors—are probably required. An unresolved issue is how far any fluids traveled before the most insoluble materials (SiO2 and TiO2) precipitated. If precipitation was local, at low water/rock ratios, the materials discovered by Spirit would most resemble the highly leached rocks and residual silica sometimes found in the vicinity of fumaroles (26, 28). If there was considerable transport away from the source rocks before precipitation, implying higher water/rock ratios, the deposits would be more akin to the hydrothermal sinter deposits found at hot springs.

The composition of the Si-rich deposits does not uniquely constrain the pH of the fluids involved in their formation. For example, at high pH it is possible to precipitate sinter deposits from alkali chloride brines. Such precipitates are high in silica, and the presence of chloride can allow for elevated Ti levels as TiCl4 or TiOCl2 and the coprecipitation of anatase (29, 30). Given the ample evidence for acid-sulfate processes elsewhere at Gusev, however, formation at low pH seems likely.

Hydrothermal conditions that produced high-purity opaline silica deposits on Mars could have led to locally habitable environments. Fumarolic environments and hot springs on Earth create habitable conditions for microbial life by conveying thermal waters, solutes, and volcanic gases to surface and near-surface environments (31, 32) under both alkaline (33) and acidic (31, 34) conditions. Any process that involves precipitation of silica from fluids can also provide a mechanism for preserving evidence of microbes (35). Whereas the silica-rich materials examined by Spirit are too small to be seen from orbit by current sensors, recent Compact Reconnaissance Imaging Spectrometer for Mars (36) observations of other regions on Mars may suggest the presence of more widespread and accessible hydrated and hydroxylated silica deposits elsewhere (37). Silica-rich deposits on Mars may be strong candidates for examination by future landed missions and as returned samples.

References and Notes
15. A martian solar day has a mean period of 24 hours, 39 min, and 35.244 s and is referred to as a “sol” to distinguish it from the shorter solar day on Earth. Spirit crossed from the Gusev plains to the Columbia Hills on the 157th sol after landing. Observations discussed in this paper were made over the period from sols 749 to 1288.
16. Spirit’s right front wheel drive actuator failed on sol 799. Since then, the rover has mainly driven backward.
Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars

Michael P. Lamb,* William E. Dietrich, Sarah M. Aciego, Donald J. DePaolo, Michael Manga

Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater seepage because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, \(^4\)He and \(^{36}\)C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

A central thrust in geomorphology and planetary science is to link diagnostic landscape morphologies to formation processes. A prominent example is the formation of amphitheater-headed canyons, in which the stubby appearance of valley heads, steep headwalls, and little landscape dissection upstream have long been interpreted to result from seepage erosion or groundwater sapping on Earth (1–4), Mars (5, 6), and now Titan (7). Theory (8), experiments (9), and field studies (10) have validated this hypothesis in unconsolidated sand, showing that valley heads are undermined and propagate upstream from seepage-induced erosion. This means that valleys can grow without precipitation-fed overland flow, which has profound implications for landscape evolution on Earth and the hydrologic cycle and habitability of Mars.

Despite widespread acceptance of the seepage-erosion hypothesis and its validation in sand, we lack an unambiguous example of an amphitheater-headed canyon formed by seepage erosion in bedrock because of overlapping features generated by rainfall runoff at most sites on Earth (11). Even the amphitheater-headed valleys of the Colorado Plateau and Hawaii, which are most often cited as classic examples of groundwater sapping in bedrock (2, 3), have been in question because of evidence for flash floods and plunge-pool erosion (11–13). To better evaluate the seepage-erosion hypothesis, we set out to study the erosion and transport processes within a bedrock canyon, Box Canyon, Idaho, USA, which has a steep amphitheater-shaped headwall, contains the 11th-largest spring in the United States, and lacks the landscape dissection and rainfall runoff upstream of its headwall that has made other sites controversial (Fig. 1A). Moreover, Box Canyon exhibits remarkable similarity in morphology and possibly lithology (basalt) with many Martian canyons (Fig. 1B) that have been attributed to seepage erosion (5, 6).

Box Canyon is located within the Snake River Plain, a broad and relatively flat basin in southern Idaho filled by sediments and volcanic flows that erupted over the course of ~15 million years to 2 thousand years ago (ka) (14). Several tributaries of the Snake River Canyon appear as stubby valleys that end abruptly in amphitheater heads, including Malad Gorge, Blind Canyon, and Box Canyon (Fig. 2), all of which have been attributed to seepage erosion (1, 4). Box Canyon is cut into the Sand Springs Basalt [also named the Basalt of Rocky Butte (15); see supporting online material (SOM) text] with an Ar-Ar eruption age of 95 ± 10 ka (16) and U-Th/He eruption ages that range from 86 +12 ka to 130 ± 12 ka (17), and this basalt filled an ancestral canyon of the Snake River (18).