Protracted speciation revitalizes the neutral theory of biodiversity

James Rosindell,1* Stephen J. Cornell,1 Stephen P. Hubbell2 and Rampal S. Etienne3
1Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
2Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 900954, USA
3Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Box 14, 9750 AA Haren, The Netherlands
*Correspondence: E-mail: james@rosindell.org

Abstract
Understanding the maintenance and origin of biodiversity is a formidable task, yet many ubiquitous ecological patterns are predicted by a surprisingly simple and widely studied neutral model that ignores functional differences between species. However, this model assumes that new species arise instantaneously as singletons and consequently makes unrealistic predictions about species lifetimes, speciation rates and number of rare species. Here, we resolve these anomalies – without compromising any of the original model’s existing achievements and retaining computational and analytical tractability – by modelling speciation as a gradual, protracted, process rather than an instantaneous event. Our model also makes new predictions about the diversity of ‘incipient’ species and rare species in the metacommunity. We show that it is both necessary and straightforward to incorporate protracted speciation in future studies of neutral models, and argue that non-neutral models should also model speciation as a gradual process rather than an instantaneous one.

Keywords
Incipient species, log-normal, log-series, neutral model, neutral theory, speciation, species abundance, species longevity.
often left-skewed log-normal distributions and there is some
debate regarding whether these are sampling artefacts or
phenomena that demand a biological explanation (Nee et al.

The classic neutral local community model reconciles the
log-series and log-normal models to some extent by
incorporating dispersal limitation that restricts the number
of rare species in the sampled local community (Hubbell
2001). However, this model only explains log-normal-like
SADs in the local community but not in the metacommunity
species pool, and still has the aforementioned problems
regarding speciation rates and species longevities.

In neutral theory, a log-series meta-community always
results from the assumption that new species arise instan-
taneously as singletons from a point mutation (point
speciation mechanisms have been proposed to resolve the
aforementioned difficulties with species lifetimes, speciation
rates and rare species (Hubbell 2001; Hubbell & Lake 2002;
Hubbell 2003; Allen & Savage 2007), but point mutation
speciation remains the only mode that provides compelling
fits to locally sampled species abundance data (Hubbell
2001; Etienne et al. 2007) (also see Haegeman & Etienne
2010 and Etienne & Haegeman 2010).

It is generally thought that the SAD on its own does not
contain sufficient information to distinguish between a large
number of competing models and this calls for biodiversity
models that predict more than just abundance distributions
(McGill et al. 2007). Fortunately, neutral theory makes many
testable predictions besides species abundances (Etienne
2007; Jabot & Chave 2009; Rosindell & Cornell 2009;
O’Dwyer & Green 2010), but to be a credible theory of
community ecology, a speciation mode is called for that
resolves the problems with speciation rates, species longevi-
ties and rare species without compromising the fit to SAD
data. In this paper, we propose such a speciation mode which
we call ‘protracted speciation’ and show that it does indeed
solve these problems and also makes new predictions. We
make empirical comparisons with metacommunity and local
community abundance data from tropical forest trees, corals
and reef fish and in all cases find support for protracted
speciation rather than point mutation speciation. As we will
show, protracted speciation leads to a new expression for
metacommunity abundance distributions which retains the
desirable properties of point mutation speciation and the log-
series but does not suffer from any of the aforementioned
problems associated with the classic neutral model.

PROTRACTED SPECIATION

The precise mechanisms behind speciation are complex and
hotly debated, but there is certainly a general agreement that
speciation is not simply a phenomenon lasting for a single
generation (Coyne & Orr 2004; Gavrilets 2004) as has been
assumed in all previous neutral models (Hubbell 2003; Allen
& Savage 2007; Etienne et al. 2007). Our model incorporates
this seemingly trivial but essential fact by no longer
interpreting point mutation as an instantaneous event but as
the initiation of a drawn-out (protracted) speciation process
that only produces a recognizable new species after a
transition period of \(\tau \) generations has elapsed (Schluter &
Weir 2007). We study a Moran model which means that
generations overlap. We use the convention that one ‘generation’ is defined as the average lifetime of an individual
as opposed to the alternative arising from a comparison with a
Wright–Fisher model (with non-overlapping generations), in
which case the generation length would be divided by a factor
of two. The transition period \(\tau \) in protracted speciation
implicitly captures the outcome of what in reality are complex,
ecological and genetic processes, which given enough time
lead to the birth of a new species (Schluter 2009).

The classic neutral model is a good model for lineage
branching (Hubbell 2003), but some alternative modes of
speciation violate this by selecting conspecific individuals at
random to form a novel species (Hubbell 2001, 2003; Allen
& Savage 2007). By contrast, protracted speciation main-
tains the original model’s relationship between lineage and
species identity, as the individuals that form a new species
are necessarily complete groups of closely related individuals
(Fig. 1). The model keeps track of relatives and the topology
of the resulting genealogy is unaffected by speciation. The
mode of speciation determines the species identities of
individuals on this genealogy and hence influences the
phylogeny (Fig. 1).

Protracted speciation can be analysed in practice by first
considering the point mutation mode of speciation, then
ignoring speciation events that occurred within the most
recent \(\tau \) generations. This is because any speciation process
which started during the last \(\tau \) generations will not be
complete at the present day, and will produce ‘incipient’
species which for the purposes of analysis are considered as
conspecific with their would-be sister species. Species
identities are therefore the same as if the recent specia-
tion–initiation event never took place. We do not ignore
speciation processes that finish during this period because
these must have started more than \(\tau \) generations before
present and are therefore captured by point mutation. By
considering the genealogy, it can be seen that this approach
is exact, does not require any further biological or
mathematical assumptions and enables the use of powerful
analytical techniques.

Protracted speciation is a seemingly subtle change to the
existing neutral models (Hubbell 2001, 2003; Allen & Savage
2007) but represents a major conceptual advance because it
singles out the crucial property of speciation: that it takes
time. We will show that many of the major problems with

© 2010 Blackwell Publishing Ltd/CNRS
Figure 1 A simple example genealogy for various possible modes of speciation with different colours denoting different species. The left panel shows the point mutation speciation case where new species arrive as singletons. The centre panel shows protracted speciation where instead of appearing instantaneously, new species gradually evolve over a period of time τ shown with the colour of one species gradually fading into the colour of the next. Individuals belonging to an ‘incipient’ species (e.g. shades of dark green) would not be recognized as being a novel species and are classified as natural variants of the parent species shown in solid black, after the transition time a new species (solid green) is clearly recognized. The far right panel shows peripheral isolate speciation, random fission speciation and the case where initial abundances are fixed but greater than one. In each case we show the phylogeny of good species just to the right of the genealogy. Splits in the phylogeny correspond to speciation events that have had time to complete.

The classic neutral model are solved with protracted speciation. We will argue that ignoring protracted speciation can easily lead to ecological misinterpretations, for example, regarding extinction rates and rare species in the meta-community.

SPECIATION RATE

Under protracted speciation, the speciation rate per individual, \(v \), is smaller than the speciation-initiation rate \(\mu \) because a lineage undergoing speciation may drift to extinction before speciation is complete. The probability of successful speciation is simply the probability of a single neutrally drifting lineage surviving for at least \(\tau \) generations, which is \(1/(1+\tau) \) (Box 1; Leigh 2007) and hence

\[
v = \frac{\mu}{1 + \tau}.
\]

Therefore, an important prediction of the protracted speciation model is that the speciation rate is smaller than the speciation-initiation rate by a factor of \(1+\tau \) (see Box 1), and the distribution of initial abundances (eqn 8) is displayed together with alternative modes in Fig. 2. One of the greatest strengths of the original neutral model is that it is based on mechanistic processes: births, deaths, etc. Likewise, in the new model the initial abundances of new species are derived as a consequence of births and deaths under protracted speciation. By contrast, other alternative speciation modes (Hubbell 2003; Allen & Savage 2007) simply assume a convenient ad hoc form for the distribution of initial abundances.

METACOMMUNITY DYNAMICS

Under the protracted speciation model, the expected number of species with abundance \(j \) in a large metacommunity (where any incipient species is lumped together with its parent species), is (see Box 1)

Box 1 Metacommunity abundance distribution

We use the formalism of probability generating functions to calculate the properties of the protracted speciation model. These can be derived by simply ignoring all of the mutations that have occurred in the most recent \(\tau \) generations in original point mutation speciation model. We first consider the point mutation speciation model with general speciation-initiation rate \(\mu \). If the metacommunity size \(M \) is large, the probability that a species has abundance \(j \) at time \(t \) in the point mutation speciation model satisfies the equation

\[
dP(j, t) = \frac{(j + 1)P(j + 1, t) + (j - 1)(1 - \mu)P(j - 1, t) - j(2 - \mu)P(j, t)}{t}
\]

(see eqns 1, 8 and 9 in Volkov et al. 2003 with \(M \rightarrow \infty \) and \(m=0 \)), where the time unit is one generation. Note that the same equation would also apply if \(P(j, t) \) denoted the number of species with abundance \(j \) to a given species has abundance \(j \). The probability generating function (PGF)

\[
\Theta(z, t) = \sum_{j=0}^{\infty} z^j P(j, t)
\]

satisfies the following equation, which can be obtained by multiplying eqn 6 by \(z^j \) and summing over \(j \):

\[
\frac{\partial \Theta(z, t)}{\partial t} = [1 - z][1 - (1 - \mu)z]\frac{\partial \Theta(z, t)}{\partial z}.
\]

The general solution to this equation, starting from the initial condition \(\Theta(z, 0) = \theta_0(z) \), is

\[
\Theta(z, t; \mu) = \begin{cases}
\theta_0 \left(\frac{1-z(1-\mu)-(1-z)^{\mu}}{1-(1-\mu)(1-\mu)(1-z)^{\mu}} \right), & \text{for } \mu > 0, \\
\theta_0 \left(\frac{t-z(t-1)}{t+z-1} \right), & \text{for } \mu = 0
\end{cases}
\]

© 2010 Blackwell Publishing Ltd/CNRS
Metacommunity abundance distribution

Denote by

$$\Theta^1(\tau) = \sum_{j=0}^{\infty} \zeta^j P^1(j, \tau)$$

the PGF of a species’ abundance distribution at time t starting from a single individual at time 0, which is obtained by setting $\Theta_0(j) = j$ in eqn 7. For the protracted speciation model, the PGF $\Theta_{initial}(\tau)$ of initial species abundance at the moment it becomes a ‘good’ species is determined by the descendants of a single individual after T generations of neutral drift (i.e. no further mutations), and can be obtained from $\Theta^1(\tau, t)$ by setting $t = \tau$ and $\mu = 0$ in eqn 7:

$$\Theta_{initial}(\tau) = \frac{\tau - \tau(\tau - 1)}{\tau + 1}$$

The probability that the lineage has survived up to time τ is

$$\sum_{j=1}^{\infty} P^1(j, \tau) = 1 - \Theta_{initial}(0) = \frac{1}{\tau + 1}$$

(Leigh 2007), while the initial abundance distribution conditional on the lineage surviving is obtained by expanding

$$\frac{\Theta_{initial}(\tau)}{1 - \Theta_{initial}(0)}$$

in powers of ζ:

$$P_{initial}(j|\text{survival}) = \frac{\zeta^{j-1}}{(\tau + 1)^j}$$

The average initial abundance is

$$\sum_{j=1}^{\infty} j P_{initial}(j|\text{survival}) = (1 + \tau).$$

In the point mutation speciation model, new species arise at a rate of μ/M, so the equilibrium number of species $\psi^1_{initial}$ with abundance j is given by

$$\psi^1_{initial} = f_M \mu \int_{-\infty}^{\infty} P^1(j, t - x) dx.$$

Define

$$\Theta^1_{eq}(\tau) = \sum_{j=1}^{\infty} \zeta^j \psi^1_{initial}$$

$$= f_M \mu \int_{0}^{\infty} \left[\Theta^1(\tau, t; \mu) - \Theta^1(0, t; \mu) \right] dt,$$

which by setting $\Theta_0(j) = j$ in eqn 7 and integrating yields

$$E[S(j)] = \frac{\theta}{j} \left(\left(\frac{1 - \mu}{1 + \tau \mu} \right)^j - \left(\frac{1}{1 + \tau} \right)^j \right)$$

where θ is Hubbell’s fundamental biodiversity number

$$\theta = \frac{\mu f_M}{1 - \mu} \approx \mu f_M$$

which now depends on the speciation-initiation rate μ rather than the speciation rate v. We use the term ‘difference log-series’ (DLS) to describe $E[S(j)]$ because it is the difference

$$\Theta^1_{eq}(\tau) = f_M \mu \int_{0}^{\infty} \frac{1 - \mu}{1 - \mu} \frac{1}{(1 + \tau \mu)} \frac{1}{1 + \tau} \frac{1}{1 + \tau}$$

which is the PGF for Fisher’s log-series. The PGF

$$\Theta^1_{eq}(\tau) = \sum_{j=1}^{\infty} \zeta^j \psi^1_{initial}$$

for the equilibrium distribution of abundances in the protracted speciation model is obtained by starting with the equilibrium distribution for the point mutation speciation model with speciation-initiation rate μ, then allowing T generations of neutral drift ($\mu = 0$), i.e. by setting $\Theta_0(j) = \Theta^1_{eq}(\tau)$ and $t = \tau$ in eqn 7:

$$\Theta^1_{eq}(\tau) = -f_M \mu \frac{1}{(1 - \mu)^2} \frac{1 + \tau}{1 + \tau} \frac{1}{1 + \tau}$$

which is the PGF of the difference log series (eqn 2). The term that is independent of ζ represents the species that have gone extinct in the period τ.

Species richness and lifetimes

The expected species richness is

$$E[S] = \sum_{j=1}^{\infty} \psi^1_{protract} = \Theta^1_{eq}(1) - \Theta^1_{eq}(0)$$

$$= f_M \mu \frac{1}{(1 - \mu)^2} \frac{1 + \tau}{1 + \tau} \frac{1}{1 + \tau}.$$

The average species lifetime L can be derived from the standard result of Ricklefs (2003)

$$L = \frac{\text{species richness}}{\text{speciation rate}},$$

yielding eqn 3.
between two log-series terms. The DLS is reminiscent of Preston’s (1981) ‘Diffenential’ distribution for species abundances; the main distinction being that Preston used the difference between two exponential functions without the prefactor of \(1/j\) that is present in the log-series, and offered no biological interpretation of its parameters.

When \(\tau = 0\), the DLS reduces to the standard log-series

\[
E[j(j)] = \frac{\theta}{j} (1 - \mu)^{j}
\]

of the original point mutation speciation model. When \(\tau\) is not zero, the log-series sill arises for sufficiently large \(j\) because the second term in eqn 2 decays much more rapidly than the first. The DLS therefore follows a log-series distribution at large abundances, but predicts few rare species like the log-normal. At intermediate abundances a negligible increase in the number of species can be seen, but this is too small to be visible in standard visual representations of the data (Fig. 3). For large values of \(\tau\) the distribution can appear qualitatively very similar to a log-normal (Fig. 3). The DLS can thus be used as a simple and mechanistically justifiable alternative to the log-series and log-normal metacommunity models. Although other neutral models have achieved something similar (Hubbell 2001; Etienne & Alonso 2005; Allen & Savage 2007), the DLS is the most parsimonious and captures the essence of speciation as a non-instantaneous process.

The terms in the DLS are determined by the speciation-initiation rate \(\mu\), and not by the speciation rate \(v\). This means that the protracted speciation model makes exactly the same predictions (except for the rarest species) as a point mutation speciation model with speciation rate \(\mu\). Neutral models have been criticized for requiring unrealistically high speciation rates (Ricklefs 2003; Rosindell & Cornell 2009) when fitted to data, but we can now interpret such studies as estimating \(\mu\) rather than the true speciation rate \(v\), which can be several orders of magnitude smaller than \(\mu\) (see eqn 1). We will show below that, likewise, it is \(\mu\) and not \(v\) that controls the SAD in the local community. We stress that the transition time \(\tau\) is an important component of the speciation process that influences the model’s predictions for rare species but not significantly for common species.

The DLS differs from the log-series at small \(j\) (Fig. 3). The degree to which this can be detected in empirical data will depend on the size of the metacommunity, the value of \(\tau\), how many individuals are sampled and the randomness of the sampling process (see Appendix S2). In the case of tropical forest trees, even the most extensive empirical studies of pooled abundance data only sample one in a million individuals from the metacommunity which can contain as many as \(10^{11}\) individuals (Hubbell et al. 2008). As we show in Fig. 3 even a very significant effect of protracted speciation cannot be detected in such a sparse sample.

Log-series data are thus consistent with protracted speciation; they arise in empirical data as a result of restricted sampling or restricted spatial scale.

SPECIES LONGEVITY

Neutral theory’s predictions for species longevity have been criticized for two reasons. First, under point mutation speciation the average species longevity \(L\) is proportional to \(|\log \mu|\) (Ricklefs 2003). This entails unreasonably short-lived species even for small speciation rates. In our new model, \(L\) is given by

\[
L = \left(\frac{1 + \tau}{1 - \mu}\right) \ln \left(\frac{1 + \tau \mu}{\mu + \tau \mu}\right) \approx -\tau \ln \tau \mu
\]

(see Box 1). The factor of \(\tau\) allows the species lifetimes to be much larger than in the point mutation speciation model.

Second, the classic neutral model predicts that the average age of a common species is incredibly long, being in the order of the population size (in generations) (Nee 2005; Ricklefs 2006). However, the average is not the most informative statistic because it does not sufficiently capture the possibility that at least some species may attain high abundance within reasonable time (which is all that is needed). A percentile (e.g. the median) is a much more relevant statistic. In Appendix S3 we show that the median lifetime of a species with high abundance \(j > 1/\mu\) is approximately \((1/\mu)\log(\mu)\). This need not be excessively long because of the weak logarithmic behaviour on \(j\), and because the speciation-initiation rate \(\mu\) is not required to be small under protracted speciation. Although this makes parameters more realistic, we suggest that further refinements of the model are probably necessary to completely resolve the problem of the age of common species (Allen & Savage 2007; Zhou & Zhang 2008).

METACOMMUNITY DATA COMPARISON

In some studies, species abundances are not supportive of the log-series and are instead fitted well by a log-normal (Gregory 2000; McGill 2003a; Connolly et al. 2005). This suggests that a protracted speciation model – which can produce log-normal-like metacommunity distributions – would be an improvement on the classic neutral model, which predicts too many rare species. We note, however, that in Connolly et al. (2005) the convincing log-normal abundance distributions are calculated using ‘cover’ and ‘biomass’ rather than individuals (or colonies in the case of coral). The appendix of the same work (Connolly et al. 2005) shows abundance plots using individuals which do not display a clear shortage of rare species.
Here, we fit neutral models with both protracted and point mutation speciation to metacommunity data for corals (Dornelas & Connolly 2008) and for reef fish (Connolly et al. 2005). We expect the protracted speciation model to improve the predictions for species lifetimes and speciation rates, but it will only improve on the fit to abundance data if the data represent a sufficiently large sample from the metacommunity. We sampled from a metacommunity of size \(J_M\), with speciation-initiation rate \(\mu\) and transition period of length \(\tau\). Although there are three parameters, it is already known that for \(\tau=0\) the resulting sampled distribution depends only on the compound parameter \(\theta=\mu/\lambda/(1-\mu)\). We show in Box 2, that the SAD for a random sample from a finite metacommunity is given by

\[
\frac{J!}{(J-j)!} \frac{\theta}{\Gamma(J+\beta)} \left[\frac{\Gamma(J+\beta-j)}{\Gamma(J+\beta)} - \frac{\Gamma(J+\beta)}{\Gamma(J+\beta)} \right]
\]

and thus depends only on two parameters, \(\theta\) and the rescaled transition time

\[
\tau' = \frac{1}{\beta} \approx \frac{\tau}{J_M}.
\]

As the exact sampling formula of Etienne & Alonso (2005) is computationally demanding, we use the approximate likelihood formula of Alonso & McKane (2004) and Volkov et al. (2005) to obtain the parameters that best fit the model. This formula is given by

\[
\mathcal{L} = \prod_j \frac{\mathcal{E}[S(j)/J]}{\mathcal{E}[S]} S_j^{\delta_j} \left(\mathcal{E}[S]/\mathcal{E}[S] \right)^{S_j}.
\]

(Alonso & McKane 2004). We used simplex optimization to find the parameters that maximize this likelihood \(\mathcal{L}\). For both fish and corals, we find that almost identical fits to the SADs can be obtained for any \(\tau'\) between 0 and \(10^{-3}\) but the true global optima are at \(\tau'=2.23\times10^{-5}\) for corals and \(\tau'=3.77\times10^{-5}\) for fish. In both data sets, when just considering species abundances, no significant difference can be seen between the global optimum fit and the \(\tau'=0\) fit (Fig. 4). This indicates that, although in theory the \(\tau' \neq 0\) fit must be better, in practice the species abundance data, despite an enormous sampling effort, do not have sufficient resolving power to distinguish between these possible values for \(\tau'\). The good fit of the difference log-series over this range of values of \(\tau'\) is the result of strong
sampling effects as demonstrated in Fig. 3. We note that the fit to reef fish data is not so good for the most common species, this could perhaps be due to the pooling of fish from different guilds, or due to the spatial structure of reef fish communities not being well captured by a spatially implicit model. As the value of \(\tau \) and hence the other predictions of the model will depend on metacommunity size, we show predictions for species lifetime (in generations) and speciation rate (per species per generation) as a function of metacommunity size in Fig. 4. For example, the point mutation case yields clearly unrealistic lifetimes of around 10 coral generations for all values of \(f_M \) (Ricklefs 2003), but the global optimum of \(\tau' = 2.23 \times 10^{-6} \) predicts coral species lifetimes of \(\approx 200 \) 000 generations and speciation rates of 4.5 species per species per million generations when the metacommunity is of size \(10^{10} \). Reef fish lifetimes and speciation rates take similar values to those of corals (Fig. 4). The new model consequently marginally improves on the fit of the existing model for species abundances but dramatically improves on its predictions of species lifetimes and speciation rates.

Local Community Dynamics

The original neutral model describes the dynamics of a ‘local community’ consisting of a dispersal-limited sample from the metacommunity source pool. In each time step, one individual in the local community dies and is then replaced with offspring from another individual in the local community with probability \((1-m) \) and with offspring from the metacommunity (immigration) with probability \(m \). The local community is sampled in a state of equilibrium between immigration and local extinction. Our model follows exactly the same convention except that the metacommunity abundance distribution is given by the new protracted speciation model. We demonstrate the distinction between the local community and metacommunity with simulation results (Fig. 5). The results show that very different metacommunities can produce almost identical local community distributions, again because the local community represents a very small sample from the metacommunity.

We compared the local community predicted by protracted speciation to empirical data using methods similar to those that were used for the metacommunity data. The approximate likelihood formula must be expanded to encompass dispersal limitation and the parameter \(m \) (see Box 2). There are now three parameters to be fitted: \(m \), \(\theta \) and \(\tau' \). We fitted SAD data for tropical forest trees on Barro Colorado Island (BCI) (Condit 1998; Hubbell et al. 1999, 2005) (Fig. 5) which contains 21 457 individuals. As for the metacommunity data, we again find almost exactly the same fit to the data for a range of values for \(\tau' \), but the global optimum is at \(\tau' = 8.15 \times 10^{-8} \). Although we do get a very similar value of \(\theta \) as under point mutation, we now have

\[
\theta = \frac{f_M \mu}{1 - \mu} \approx f_M \mu
\]

and not \(\theta = f_M \mu \); so, the parameter \(\theta \) should be reinterpreted in terms of speciation-initiation rate rather than speciation rate in all previous studies that used point mutation speciation. We show in Fig. 5 that values of \(\tau' \) consistent with the SAD data can provide dramatically improved predictions for species lifetimes and speciation rates, whereas the original point mutation model’s predictions cannot be considered as being even remotely credible (Ricklefs 2003) (Fig. 5).

‘Good’ Species and ‘Incipient’ Species

During the transition period of a lineage undergoing protracted speciation, the individuals of this lineage are interpreted as an ‘incipient species’ and appear conspecific with, but are slowly diverging from, their parent species. ‘Incipient species’ are observed during the transition time, they might be regarded as simply a natural variation in the population. The lineage forms a novel ‘good species’ only if it survives after the transition period has passed. We can calculate the expected richness of incipient species \(E[S] \), by identifying any species as incipient when their source mutation occurred within the last \(\tau \) generations. The number of incipient species is therefore the difference between the species richness of the old model and the new model (see Box 1):

\[
E[S] = \theta \ln \left(\frac{1}{\mu} \right) - \theta \ln \left(\frac{1 + \tau \mu}{\mu + \tau \mu} \right) \approx \theta \ln(\tau) \quad \text{(5)}
\]

This will be of comparable size to the expected number of ‘good species’, given by

\[
E[S] = \theta \ln \left(\frac{1 + \tau \mu}{\mu + \tau \mu} \right) \approx \theta \ln \left(\frac{1}{\tau \mu} \right),
\]

if \(\tau^2 = \mu^{-1} \). A more germane measure is the probability that a randomly sampled individual belongs to an incipient species, which is approximately equal to \(\mu \) (see Appendix S4). The study of incipient species provides a way to estimate \(\mu \) and further test the new predictions of our model. This suggests that any data on individuals whose species identity is uncertain would be extremely valuable for understanding the properties of an ecological community.

A further notable prediction of our model is that for every incipient species that becomes a good species, there are \(\tau \) incipient species that become extinct before the...
The expected number of species with abundance j in a sample of size J is given by (Etienne & Alonso 2005):

$$E[S(j)/J] = \frac{j!}{j!(J-j)!} \int_0^1 (\theta p (1-p))^{j-1} p e^{-\theta p} dp$$

where $\rho(p)$ is the species density for an infinite metacommunity,

$$(x)_y = \frac{\Gamma(x + y)}{\Gamma(x)}$$

denotes the Pochhammer notation, and I is the fundamental dispersal number which is related to the immigration probability by

$$I = \frac{m}{1 - m} (J - 1).$$

The species density for an infinite metacommunity can be computed by taking the appropriate limit of the metacommunity abundance distribution:

$$\rho(p) = \lim_{J_0 \to \infty} J_0 E[S(p/J_0)]$$

Equations 15 and 16, which are numerically computable, can be inserted in the approximate likelihood (eqn 4).

Thus, we have

$$E[S(j)/J] = \frac{j!}{j!(J-j)!} \int_0^1 (\theta p (1-p))^{j-1} \frac{\exp(-\theta p) - \exp(-\beta p)}{\theta p} dp$$

When there is no dispersal limitation, this expression reduces to

$$E[S(j)/J] = \int_0^1 \frac{j!}{j!(J-j)!} \frac{\theta}{(1-p)^{j-1}} \frac{\exp(-\theta p) - \exp(-\beta p)}{\theta p} dp$$

transition time has elapsed. This is analogous to the process of maturation for individuals: there may be many juveniles, but only very few survive to adulthood.

Some taxonomists use the time since divergence of pairs of lineages as a criterion for whether certain variants should be classed as ‘good’ species (Hubbell 2003). By setting τ according to this time, our model adopts this species concept in contrast to the original neutral model where diversity is fractal and infinitely divisible making any concept of species arbitrary (Hubbell 2001).

DISCUSSION

Introducing protracted speciation resolves serious difficulties with earlier neutral models, implying much more realistic numbers of rare species, speciation rates and species lifetimes (Ricklefs 2003) and helping to explain how abundant species can be young (Nee 2005; Ricklefs 2006). The DLS model for metacommunity abundances is a simple and testable metacommunity model that contains a combination of favourable properties from both the log-series and log-normal distributions. In contrast to previous attempts to address these problems (Hubbell 2003; Allen &
Figure 4 Top left panel: a fit to coral reef metacommunity data (shown in blue) using the standard point mutation model with $\theta=19.85$ (red) and protracted speciation model with $\theta=20.13$ and $\tau=2.23\times10^{-6}$ (green). These parameters represent the global optimum in parameter space calculated with eqn 4. The two black lines represent 1 SD on either side of the mean prediction under protracted speciation, produced by analysing 4 000 000 simulations of the model (using algorithms described in Appendix S1). It can clearly be seen that both models fit the abundance data equally well: we increased the thickness of the red line otherwise it would be completely hidden behind the green line. The top centre and top right panels show the species lifetimes (in generations) and speciation rates (per species per generation), respectively, and were plotted using the same parameter values as those used for the top left panel. The lower set of panels show the same results for a reef fish metacommunity sample for which the best fitting θ was 15.82 under point mutation (red) and $\theta=16.21$, $\tau=3.77\times10^{-5}$ under protracted speciation (green).

Savage 2007), our model remains tractable and retains the good fit to abundance data. Our model maintains the lineage structure of the original model but makes new testable predictions regarding incipient species and rare species. We argue that many of the criticisms previously wielded against neutral theory should have been aimed more specifically at the point mutation mode of speciation rather than the neutrality assumption. Our results therefore support the idea that, before we can fairly evaluate the utility of the neutrality assumption, we must first experiment with relaxing the auxiliary assumptions associated with the original neutral theory (Etienne 2007; Leigh 2007; Rosindell & Cornell 2009). Furthermore, our results suggest that other models involving ‘instantaneous’ speciation should be replaced with a form of protracted speciation to avoid unrealistic predictions. For example, the random fission mode of speciation can be made protracted in the same way as we did for the point mutation model.

For samples from both local communities and metacommunities, our results suggest that a spectrum of possible values for τ are consistent with the same fit to SAD data. We have shown that, in some cases, the parameter τ plays no significant role for SADs, which permits using existing techniques for parameter estimation but requires reinterpreting the parameters. If there is a very large sample of data, or if more than just species abundances are being considered, the protracted speciation model should be used.

Protracted speciation always makes reasonable predictions for species lifetimes and speciation rates. To the best of our knowledge, protracted speciation is the first alternative mode of speciation that has actually been shown to match the performance of point mutation for fitting empirical SADs because all other alternatives either remained untested or have performed worse. One of the advantages of neutral theory is that it can make testable predictions beyond those of SADs. We have shown in Fig. 5 that protracted speciation does make a dramatic improvement to the realism of such predictions. For further predictions of the theory, such as predictions of phylogeny, we expect that protracted speciation will once again have an important role to play.

A thorough investigation of the neutral model and its predictions really requires a fully spatially explicit model which can make spatially explicit predictions. Although this is beyond the scope of this paper, we note that protracted speciation is equally amenable to spatially explicit simulations as the original model. Coalescence techniques such as those recently developed for simulating infinitely large and complex spatial structures (Rosindell et al. 2008) can be straightforwardly adapted to the new framework but would be extremely complex or impossible to apply to the other alternatives to point mutation speciation (Hubbell 2001, 2003; Allen & Savage 2007; Etienne et al. 2007). Furthermore, our expressions for species lifetime, speciation rate
and metacommunity SADs will apply as approximations in any large spatially explicit model where all individuals have equal intrinsic chances of reproduction and death.

There are many possibilities for further research. (1) One could study the changes to the model expected from adopting a Wright–Fisher model rather than a Moran model (Blythe & McKane 2007). (2) While the DLS formula applies under the assumption of a large metacommunity, it would be very useful to have a formula that does not rely on this assumption, especially for analysing cases where the metacommunity may be relatively small in size. (3) A small point mutation speciation rate could be added to the model to represent the rare speciation events that can occasionally occur in a single generation, e.g. through polyploidy (Coyne & Orr 2004) or these events could be interpreted as long-distance dispersal events (Rosindell & Cornell 2009). (4) Predictions about subspecies could be made by introducing a second shorter transition time describing the time required to become recognized as a distinct subspecies rather than just an incipient species. (5) Although our equations go some way to explain how really common species can come to exist in a relatively short time, we do not believe that this particular problem is entirely solved but requires explicit incorporation of biogeography. For example, because the common ancestor of all trees found on BCI dates back to 150Ma (Kembel & Hubbell 2006), there are many biogeographical influences, such as dramatic fluctuations in the metacommunity size, that could affect all individuals in this guild equally but which have thus far been ignored in all neutral models. An interesting and novel future study is therefore to incorporate these fluctuations which may explain how species can quickly become common (Alonso et al. 2007).

Further implications of protracted speciation follow when considering the phylogeny. For example, some studies observe a slowdown in diversification near the present day, which is often attributed to the saturation of available niches (Barraclough & Nee 2001; Phillimore & Price 2008). Protracted speciation presents an alternative and entirely neutral explanation for the apparent slowdown: speciation processes having started but not yet finished. A stochastic distribution for \(\tau \) would cause a gradual slowdown in diversification (rather than the sudden jump to zero diversification rate caused by a fixed \(\tau \)). An instantaneous mode of speciation in a neutral model cannot explain the apparent slowdown in diversification. The phylogeny could also be used as a valuable additional resource, for example, pairs of sister species share a common ancestor 10 Ma on BCI (Kembel & Hubbell 2006); consequently speciation cannot possibly take longer than 10 Myr to complete, providing us with an (albeit generous) upper bound for \(\tau \).
In this paper we have presented a candidate for the successor to the unified neutral theory of biodiversity and biogeography – one that is tractable and straightforwardly absorbed into existing analytical and computational research but can also provide new and much more reasonable predictions and parameter estimates compared with the classic neutral model. The empirical data overwhelmingly support the use of protracted speciation over the point mutation speciation alternative. It is generally accepted that SADs alone can tell us little about the truth of a model, and thus neutral models should try to predict more than just species abundances in future. In these cases, protracted speciation should certainly be utilized as it is essential for obtaining credible results. Protracted speciation can straightforwardly be implemented as it can be fitted using similar methods to those developed for the original theory. We hope that models incorporating protracted speciation will act as stepping stones to improved models of biodiversity and closer links with population genetics.

ACKNOWLEDGEMENTS

To the best of our knowledge we have offset carbon emissions for this project arising from flights, high-performance computer use and lead author office space heating and lighting, we thank ‘The Clean Planet Trust’ registered charity 1112249 for their assistance with this. We are especially grateful to Bart Haegeman for crucial discussions about the derivation of the sampling formula. We thank David Alonso, Tim Benton, John Grahame, Luke Harmon, Patrick Jansen, Michael Kopp, Bill Kunin, Bert Leigh, Ben Miller, Han Off, George Perry, Albert Phillimore, Robert Ricklefs and Yan Wong for useful comments and discussion, also Bill Allombert, Rick Condit, Xavier Didelot, Frank Hindriks, Theo Kuipers and Jan-Willem Romeijn for their assistance and David Bellwood for the use of reef fish abundance data. We thank the EPSRC (grant EP/F043112/1) for funding JR, the NWO for funding RSE and The University of Leeds for hosting RSE as a visiting research fellow. The BCI forest dynamics research project was made possible by National Science Foundation grants to SPH, support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Celera Foundation, and through the hard work of over 100 people from 10 countries over the past two decades.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Simulating the model.

Appendix S2 Visibility of the effects of protracted speciation after sampling.

Appendix S3 Age of common species.

Appendix S4 Incipient species.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.