to capture prey that a mockingbird would steal in preference to eating the centipede itself. Only on those rare occasions when a mockingbird meets a large centipede does kleptoparasitism become a potentially profitable alternative to predation. Not only are large centipedes capable of capturing prey worth stealing, but they are also difficult to eat; mockingbirds can break off and eat the legs of large centipedes, but are seldom able to kill them.

4) Interaction with large centipedes may be risky. Though mockingbirds readily eat even very large centipedes that are dead, they are exceedingly cautious when attacking large living centipedes. In contrast, I saw Short-eared Owls (Asio flammeus) and Yellow-crowned Night-Herons (Nyctanassa violacea) eat large centipedes without hesitation. At least four banded mockingbirds in the Genovesa study area may have been killed by centipedes; I found their intact carcasses in the same kinds of crevices where I most often saw centipedes and where the incident described above took place. (Owls are the only other significant predator of mockingbirds on Genovesa and they usually dismember their kills.) Individual N. parvulus weigh roughly 50 g; the largest centipede I measured on Genovesa was roughly 30 cm long and weighed 23 g. Smaller Scolopendra centipedes in other regions can kill mice and small birds (Cloudsley-Thompson 1958) and Galápagos residents claim that Scolopendra galapagae can kill small dogs; they can also inflict a painful bite that produces severe swelling in humans (B. Barnett, pers. comm.). A mockingbird may risk its life if it interacts with a large centipede even if its goal is kleptoparasitism rather than predation.

I suggest that risk of injury or death, combined with rarity of encounters between mockingbirds and centipedes that are too large to eat, prevents kleptoparasitism of centipedes by Galápagos mockingbirds from becoming more common.

I thank Superintendent Miguel Cifuentes and the Galápagos National Park Service for permission to conduct this research. The Charles Darwin Research Station helped with logistics. Financial support was provided by the World Wildlife Fund-U.S., the Frank M. Chapman Memorial Fund, the University of Michigan, and a Natural Science and Engineering Research Council of Canada postgraduate scholarship. I carried out my research in conjunction with P. R. Grant’s studies of Galápagos land birds, and I thank him and his coworkers for advice and assistance during all phases of my project.

LITERATURE CITED


THE SYSTEMATIC STATUS OF CRANIOLEUCA FURCATA TACZANOWSKI (FURNARIIDAE)1

GARY R. GRAVES
Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA

Key words: Cranioleuca; furcata; spinetail; curtata; Andes; Taczanowski; Furnariidae.

Taczanowski (1882) described Cranioleuca furcata from two specimens collected by Sztolcman (=Stolzmann) at Chirimoto (1,646 m), Dpto. Amazonas, Peru. The validity of the species remained unquestioned for nearly 60 years, probably due in part to the relative inaccessibility of the type specimen and the lack of comparative material from the Andes. Without examining the type, Bond (1945) considered furcata to "probably be the immature" of the Ash-browed Spinetail (Cranioleuca curtata; Sclater 1869), which ranges from Colombia along the eastern slope of the Andes to central Bolivia (Parkes, unpubl.). Peters (1951) listed furcata as a species, but with a query, citing Bond’s opinion. Meyer de Schauensee (1966) gave furcata a full entry, but stated "from the description one would suspect this to be the young of curtata." Later, he (Meyer de Schauensee 1970) omitted any reference to C. furcata in his guide to South American birds.

Vaurie (1971, 1980) examined the single surviving co-type, in the Instytut Zoologiczny of Warsaw and concluded that furcata was a valid species. Following his examination of the Warsaw specimen, Vaurie (1971) identified three "ochraceous" immature specimens of Cranioleuca in the "abajo chaco," Rio Oyacachi (ca. 1,500–2,000 m) on the eastern slope of the Ecuadorian Andes. A third specimen identified by Vaurie as belonging to C. furcata was taken at Chaupé (1,860 m), Dpto. Cajamarca, northern Peru (AMNH 181344). These specimens had been included by Chapman (1924) in the type series of C. curtata "griseipennis" (=C. curtata cisandina). The Chaupé specimen was subsequently identified as C. curtata cisandina (Bond 1945).

Although Morony et al. (1975) adopted Vaurie’s (1980) ...
The specimens from Cordillera Azul and Vaurie's AMNH "furcata" are inseparable on the basis of qualitative or quantitative morphological characters; (2) they are sympatric in a narrow elevational range; and (3) their known ranges exhibit complete concordance over a large geographic area.

Because both cisandina and furcata were proposed simultaneously, either name could apply to the population currently known as C. c. cisandina. Therefore, as first reviser, I place Cranioleuca furcata Taczanowski 1882 in the synonymy of Cranioleuca curtata cisandina Taczanowski 1882.

Museum work was supported by a grant from the Frank M. Chapman Memorial Fund of the American Museum of Natural History and a Smithsonian Postdoctoral Fellowship. I thank the curators of the AMNH, USNM, and LSUMZ for permission to examine specimens. Storrs L. Olson, J. V. Remsen, Jr., and Kenneth C. Parkes made helpful comments on the manuscript.

LITERATURE CITED


CHAPMAN, F. M. 1924. Description of new genera and...


Meyer de Schauensee, R. 1966. The species of birds of South America. Livingston, Narberth, PA.


