Giant Camels from the Cenozoic of North America

JESSICA A. HARRISON
SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION

Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with *Smithsonian Contributions to Knowledge* in 1848 and continuing with the following active series:

- *Smithsonian Contributions to Anthropology*
- *Smithsonian Contributions to Astrophysics*
- *Smithsonian Contributions to Botany*
- *Smithsonian Contributions to the Earth Sciences*
- *Smithsonian Contributions to the Marine Sciences*
- *Smithsonian Contributions to Paleobiology*
- *Smithsonian Contributions to Zoology*
- *Smithsonian Folklife Studies*
- *Smithsonian Studies in Air and Space*
- *Smithsonian Studies in History and Technology*

In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world.

Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover.

Robert McC. Adams
Secretary
Smithsonian Institution
Giant Camels from the Cenozoic of North America

Jessica A. Harrison
ABSTRACT

Harrison, Jessica A. Giant Camels from the Cenozoic of North America. Smithsonian Contributions to Paleobiology, number 57, 29 pages, 17 figures, 1985.—Seven genera of giant camels occurred in North America during the interval from the late Clarendonian to the early Holocene. *Aepycamelus* was the first camel to achieve giant size and is the only one not in the subfamily Camelinae. *Blancocamelus* and *Camelops* are in the tribe Lamini, and the remaining giant camels *Megatylopus*, *Titanotylopus*, *Megacamelus*, *Gigantocamelus*, and *Camelus* are in the tribe Camelini. *Megacamelus* is a late Hemphillian giant camel most closely related to *Gigantocamelus*. *Titanotylopus* is reserved for the brachyodont form from the Irvingtonian of Nebraska, and *Gigantocamelus* is reinstated for the broad-chinned, Blancan form.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>1</td>
</tr>
<tr>
<td>Phylogenetic Relationships</td>
<td>1</td>
</tr>
<tr>
<td>Aepycamelus</td>
<td>4</td>
</tr>
<tr>
<td>Megatylopus</td>
<td>5</td>
</tr>
<tr>
<td>Titanotylopus</td>
<td>7</td>
</tr>
<tr>
<td>Gigantocamelus</td>
<td>8</td>
</tr>
<tr>
<td>Megacamelus</td>
<td>10</td>
</tr>
<tr>
<td>Megacamelus merriami, new combination</td>
<td>11</td>
</tr>
<tr>
<td>Camelus</td>
<td>21</td>
</tr>
<tr>
<td>Blancocamelus</td>
<td>23</td>
</tr>
<tr>
<td>Camelops</td>
<td>24</td>
</tr>
<tr>
<td>Summary</td>
<td>24</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>26</td>
</tr>
</tbody>
</table>
FRONTISPIECE.—Reconstruction of the head of *Megacamelus merriami*.
Giant Camels from the Cenozoic of North America

Jessica A. Harrison

Introduction

Throughout the later Cenozoic, camels often figure as an abundant and diverse element of any fauna in which they occur. Until the late Pleistocene, when the group fell on hard times, the Camelidae must be accounted one of the more successful ungulate families. As in many other herbivore families, the earliest members of the Camelidae were of small body size. However, a trend toward gigantism can be observed throughout the later Cenozoic, from the Clarendonian into the Holocene.

Descriptions of very large camels are almost as abundant in the literature as their remains in late Cenozoic faunas. The confusing taxonomic history of the giant camels is such that, for every specific identification, there are many more referrals to "camelid, large, gen. et sp. indet." The purpose of this paper is to provide a temporal, geographic, and systematic framework for the large, late Cenozoic camels.

ACKNOWLEDGMENTS.—I am grateful for the use of specimens from the Frick Collection, Department of Vertebrate Paleontology, American Museum of Natural History (F:AM), the University of California Museum of Paleontology (UCMP), the University of Nebraska State Museum (UNSM), and the University of Kansas Museum of Natural History (KUVP). I very much appreciate careful and constructive reviews by George Corner, Michael Voorhies, John Breyer, and Robert Emry. Drs. Corner and Voorhies were particularly generous in sharing with me their new information on Titanotylopus. The frontispiece was done by Robert Hynes.

Phylogenetic Relationships

The cladogram in Figure 1 summarizes relationships within the Camelinae. It is interesting to note that the trend toward gigantism is far more apparent in the Camelini than in the Lamini. All of the genera comprising the Camelini can be called giants, but only two of the Lamini, Camelops and Blancocamelus, achieve a formidable body size. Aepycamelus, the only noncameline genus, represents the camels' earliest experimentation with gigantism.

The characters appearing at nodes 1 through 35 in the cladogram are listed below. The composition and apomorphies of the Protolabidini are from Honey and Taylor (1978:419-420), whereas those of the Lamini and Camelini appeared in part in Harrison (1979:3-8). More detailed discussion of the characters may also be found in those papers.
Node 1. Aepycamelus shares with the Camelinae
 a. metastylid present on the lower molars

Node 2. Aepycamelus is distinguished by
 a. extremely elongate limbs
 b. extremely elongate cervical vertebrae
 c. metapodials longer than the basal length of the skull

Node 3. The Camelinae are united by
 a. weak buccinator fossa
 b. elongate rostrum

Node 4. The Protolabidini are united by
 a. narrow rostrum
 b. laterally expanded anterior nares

Node 5. Tanymyker is distinguished by
 a. closely appressed P^1 roots

Node 6. Protolabis and Michenia are derived relative to Tanymyker by
 a. the absence of elongate basioccipital tuberosities
 b. P^2 without strong, continuous lingual cingulum
 c. auditory bulla less inflated with medial plates more compressed
 d. moderate to strong buccinator fossa

Node 7. Protolabis is distinguished by
 a. hypsodont molars
 b. anteroposteriorly elongate M^3
 c. very weak to absent metastylid on lower molars
 d. ventrally produced mandibular angle with weak to strong lateral flare
 e. fused metapodials
 f. elongate proximal phalanx with distal articular surface anteriorly extended

Node 8. Michenia is derived relative to Protolabis in having
 a. short braincase
 b. weak P^3-C^1, small C^1
 c. shallow symphysis
 d. inflection of mandibular angle suppressed

Node 9. The Camelinae exclusive of the Protolabidini are united by
 a. metacarpal length exceeds metatarsal length
 b. metapodials completely fused
 c. P^1 absent

Node 10. Procamelus is the sister taxon to the remaining camelines.
 It retains several primitive characters but has almost completed the loss of P^2

FIGURE 1.—Relationships within the Camelinae.
Node 11. The Lamini share with the Camelini
 a. P1 absent
 b. P3 absent
 c. raised posterolateral edges on the proximal end of the proximal phalanx

Node 12. The Lamini are united by
 a. in cross section the anterior end of the nasals form a high, bilobed arch (Harrison, 1979, fig. 3)
 b. anteroexternal style (= llama buttress) present on lower molars

Node 13. Pliauchenia, Hemiauchenia, (?)Blancocamelus, Palaeolama, Lama, and Vicugna share
 a. reduced lacrimal vacuity
 b. shortened rostrum

Node 14. Pliauchenia is primitive in all known characters to the remaining Lamini.

Node 15. Hemiauchenia, (?)Blancocamelus, Palaeolama, Lama, and Vicugna are united by
 a. small P1
 b. small or absent P3

Node 16. Hemiauchenia and Blancocamelus share
 a. extremely elongated metapodials

Node 17. Hemiauchenia is distinguished by
 a. extremely elongated cervical vertebrae

Node 18. Blancocamelus is distinguished by
 a. great size

Node 19. Palaeolama, Lama, and Vicugna share
 a. P1 absent
 b. reduced maxillary fossa
 c. moderate to strong anteroexternal style on lower molars

Node 21. Lama and Vicugna are derived relative to Palaeolama in having
 a. P3 absent
 b. metacarpal length subequal to metatarsal length
 c. strong anteroexternal style on lower molars
 d. greatly reduced lacrimal vacuity
 e. extremely retracted nasals
 f. greatly reduced P4

Node 22. Lama is distinguished by
 a. callosities on the inner foreleg

Node 23. Vicugna is distinguished by
 a. hypsodont lower incisors

Node 24. Alforjas and Camelops are derived relative to other lamines in having
 a. moderately hypsodont to very hypsodont molars
 b. cheek teeth narrow in relation to length

Node 25. Alforjas is primitive in all known characters relative to Camelops

Node 26. Camelops is derived relative to Alforjas in having
 a. cheek teeth much more hypsodont
 b. P1 absent

Node 27. The Camelini are united by
 a. angular process on mandible enlarged and strongly inflected
 b. large postglenoid foramen
 c. long postglenoid process on skull with correspondingly large facet on mandibular condyle
 d. CI enlarged and rounded in cross section, especially in males
 e. ventrally flattened auditory bulla
 f. diastemal crest on mandible low and rounded
 g. reduced maxillary fossa
 h. thickened, heavy premaxilla

Node 28. Megatylopus and Titanotylopus share
 a. reduced P1
 b. reduced P3

Node 29. Megatylopus is distinguished by
 a. reduced P3
 b. cheek teeth higher crowned than Titanotylopus

Node 30. Titanotylopus is derived relative to Megatylopus in having
 a. P3 absent
 b. P3 more reduced than in Megatylopus
 c. larger body size than Megatylopus

Node 31. Megacamelus, Gigantocamelus, and Camelus share
 a. metapodials shorter in relation to basal length of the skull
 b. cheek teeth more hypsodont than Megatylopus or Titanotylopus

Node 32. Megacamelus and Gigantocamelus share
 a. spatulate lower incisors
 b. splayed Ci

Node 33. Megacamelus is primitive in all characters relative to Gigantocamelus except for
 a. P3 enlarged and caniniform

Node 34. Gigantocamelus is distinguished by
 a. short, blunt chin with a shortened ramal symphysis
 b. greater size than Megacamelus
 c. lower incisors arrayed almost transversely
 d. P3 absent or vestigial

Node 35. Camelus is distinguished by
 a. reduced paroccipital process
 b. metapodials subequal in length and shorter than the basal length of skull
 c. maxillary fossa reduced or absent
 d. zygomatic arch straight in lateral view
 e. retracted nasals
 f. center of suspensory ligament scar raised
Aepycamelus Macdonald, 1956

Aepycamelus is the geologically oldest of the giant camels, ranging from the Barstovian through the early Hemphillian and occurring through the southern and western United States (Figure 2). When Marsh (1894:274) described Procamelus altus from Oregon, he based it solely upon an isolated calcaneum. Cope (1894:869) took almost instant exception to the designation of such an undiagnostic element as a type specimen. Matthew (1901:429), under the impression that the type of P. altus was more extensive, described Alticamelus from northeastern Colorado and named A. altus the genotypic species. When he became aware of the indeterminate nature of the type of A. altus, Matthew renamed the Colorado material A. giraffinus (Matthew and Cook, 1909:402). Macdonald (1956:198) maintained that Alticamelus was a nomen vanum and proposed Aepycamelus as a replacement name, with A. giraffinus as the new genotypic species.

All of the species of Aepycamelus are noted for extremely elongate, slender limbs and cervical vertebrae. The teeth are quite brachydont, and the dental formula is I1-3C1P4M3. When present, I1,2 are reduced to stumps as in the type of A. giraffinus. P\textsubscript{3} is always present and less reduced than in Procamelus.

Matthew and Cook (1909:402) described Alticamelus procerus from the Snake Creek beds of Nebraska, and later Matthew (1924:187) described a second species, Alticamelus priscus, from the Sheep Creek beds. Matthew (1924:187) also referred material from Snake Creek to Alticamelus leptocolon described by him from the Pawnee Creek area of Colorado. Davidson (1923:399) described Alticamelus alexandrae from Barstow, California, but Macdonald (1949:190) referred this form to Hesperocamelus. Henshaw (1942:153) named a species from Tonopah, Nevada, Alticamelus? stocki. Macdonald (1956:199) described Aepycamelus bradyi from the Nightingale Road fauna, Truckee Formation, Nevada. Leidy (1886:12) described Auchenia major from Mixson, Florida; Leidy and Lucas (1896:53) later changed the name to Procamelus major. Although Simpson (1930:196) referred this material to Megatylopus major, it is more likely an advanced species of Aepycamelus (pers. comm., Beryl E. Taylor, 1973).

Aepycamelus bradyi is the largest of the species, followed by A. giraffinus. Aepycamelus procerus is smaller than A. giraffinus and has completely lost I1,2. Aepycamelus stocki is smaller than A. procerus but larger than A. leptocolon and retains I1,2. Aepycamelus priscus is the smallest of the lot. In A. bradyi and A. stocki the premolars are a bit more reduced than in the other species of Aepycamelus but are not so reduced as in Procamelus. Aepycamelus bradyi has as well an almost complete internal crescent on P3. Although such a project is not within the scope of this paper, it may be seen that the genus Aepycamelus, often difficult to distinguish from Procamelus, would benefit considerably from a revision.

A number of specimens have been referred simply to Aepycamelus. Hesse (1936:66) referred two partial jaws from Beaver Quarry, Oklahoma, to Alticamelus. Savage (1941:701) referred a series of metapodials and phalanges from the Optima fauna of Oklahoma, but the dimensions of these specimens are more characteristic of Hemiauchenia. Macdonald (1966:12) described an associated partial skeleton and jaws from the Camp Creek fauna of Nevada. Skinner, Skinner, and Gooris (1968:432) reported a partial radius-ulna of Aepycamelus from Turtle Butte, South Dakota. Webb (1969:147) referred two partial metapodials from Burge Quarry, Nebraska, to Aepycamelus sp. Patton (1969:149) referred limb elements from the Cold Spring fauna and the Lapara Creek fauna of Texas to Aepycamelus sp. Forsten (1970:48) referred an astragalus and some teeth from the Trail Creek fauna of Wyoming to Alticamelus; Cassiliano (1980:55) changed the reference to Aepycamelus sp. Galusha (1975:54) listed Aepycamelus cf. A. priscus in a preliminary faunal list from the Box Butte Formation of Nebraska.
Megatylopus Matthew and Cook, 1909

Type-Species.—*Pliauchenia gigas* Matthew and Cook, 1909:396.

Megatylopus is the geologically oldest of the giant Camelini. It ranges from the late Clarendonian into early Blancan throughout the western United States (Figure 3). *Megatylopus* was originally proposed as a subgenus of *Pliauchenia* and was later elevated to generic rank. The type provenience of *M. gigas*, the genotypic species, is the late Hemphillian ZX Bar fauna, Snake Creek Formation, Nebraska (Skinner, Skinner, and Gooris, 1977:360). *Megatylopus* shares with *Titanotylopus* a tendency to reduce the third and fourth premolars. Its teeth are higher crowned than those of *Titanotylopus*, but both genera are more brachyodont than *Megacamelus, Gigantocamelus*, and *Camelus*. The limbs of *Megatylopus*, particularly the metapodials, are not shortened in relation to the basal length of the skull.

Additional species of *Megatylopus* are *M. cochranii* (Hibbard and Riggs, 1949:854) from Keefe Canyon, Kansas, and *M. matthewi* (Webb,
1965:42) from the Coffee Ranch fauna of Texas. *Megatylopus cochrani* was originally described as *Pliauchenia cochrani* but was transferred to *Megatylopus* by Webb (1965:42). Although these workers have commented on the similarity of *M. cochrani* to *Camelops*, Corner and Voorhies (pers. comm., 1984) believe that *M. cochrani* may be more closely related to *Titanotylopus*. *Megatylopus matthewi* is distinguished from *M. gigas* by the complete internal crescent on P^3^, the greater reduction of P_3_, and a deeper maxillary fossa. In addition to other specimens of *M. matthewi*, Dalquest (1980:110) described five thoracic vertebrae preserved in articulation. Based on their structure, he proposed a large dorsal hump, pyramidal in profile rather than rounded. Table 1 lists additional occurrences of *Megatylopus*.

A fourth species of *Megatylopus*, *M. major*, was originally described by Leidy (1886:12) as *Auchenia major* and based upon an isolated astragalus from Mixson, Florida. Leidy and Lucas (1896:53) transferred the species to *Procamelus* and assigned to it a composite dentition, also from Mixson, which they believed had come from a single individual. Simpson (1930:196) changed the identification to *Megatylopus* major, noting that the species was nearly as large as *M. gigas*. He also distinguished *M. major* as having broader cheek teeth than *M. gigas* and a complete internal crescent on P^3_. Subsequent excavation
of the Mixson bone bed produced a much larger sample of this camel, currently housed in the Frick Collection of the Department of Vertebrate Paleontology, American Museum of Natural History. Skulls and mandibles bearing complete dentitions as well as diagnostically elongate metapodials and cervical vertebrae indicate that *M. major* should be transferred to *Aepycamelus major* (pers. comm., Beryl E. Taylor, 1973).

Titanotylopus Barbour and Schultz, 1934

Type-Species.—*Titanotylopus nebraskensis* Barbour and Schultz, 1934:291.

Barbour and Schultz (1934:291) described *Titanotylopus nebraskensis* based on a single mandible from a Pleistocene gravel pit near Red Cloud, Nebraska (Figure 4). Other than a proximal phalanx from another Pleistocene gravel pit, no more specimens have been referred to *T. nebraskensis*. Based upon this material, Webb (1965) and Breyer (1976) felt that the differences between *Gigantocamelus* and *Titanotylopus* warranted distinction only at the specific level. Corner and Voorhies (pers. comm., 1984) have since identified additional material, which is referable to *T. nebraskensis* and which they believe validates the generic independence of these two taxa. I agree with Corner and Voorhies that the name *Titanotylopus* should be applied to a single species, *T. nebraskensis*, as yet known only from early Irvingtonian localities in Nebraska.

The type mandible of *Titanotylopus* is very large, 662 mm long, with a dental formula of $I_3C_1P_2M_3$. The mandibular symphysis is long and extends well beyond the large canines. The non-spatulate incisors are arrayed in an arc. There is no indication of P1. P3 is broken, but its position is indicated by alveoli for its two roots. P4, like the molars, has sustained some breakage. All of the cheek teeth are quite brachydont.

In their study of *Gigantocamelus spatulus* from Keefe Canyon, Hibbard and Riggs (1949) classified as female those jaws with small C1 and no P1, whereas jaws classified as male had large C1, and P1 was present. Webb (1965:36) felt that the type of *T. nebraskensis* fell within the range of variation assigned to females and hence attached
little significance to the missing P_1. His synonymy of *Titanotylopus* and *Gigantocamelus* has been followed by most authors except Hibbard (Skinner et al., 1972:114). Considerations of P_1 aside, the highly derived chin and greater degree of hypsodonty in *G. spatulus* as well as the much shorter distance between C_1 and P_3 in *T. nebraskensis* must weigh heavily against the congenerity of these two species.

Gigantocamelus Barbour and Schultz, 1939

Type-Species. *Gigantocamelus fricki* Barbour and Schultz, 1939:17 (= *Pliauchenia spatula* Cope, 1893:70; = *Gigantocamelus spatulus* Meade, 1945:531; = *Titanotylopus spatulus* (Meade) fide Webb, 1965:36).

Gigantocamelus is known from Blancan localities throughout the central and western United States (Figure 5). The giant camel from the Blanco beds of Texas was first described as *Pliauchenia spatula* by Cope (1893:70). Barbour and Schultz (1939:17) subsequently described a large sample of giant camel from Lisco, Nebraska, as *Gigantocamelus fricki*. Meade (1945:531) recognized these camels as the same species and united them under the name *Gigantocamelus spatulus*. Hibbard and Riggs (1949:844) followed Meade when they described a third large sample of this giant camel from Keefe Canyon, Kansas.

Gigantocamelus is a much more hypsodont camel than *Titanotylopus*. Its chin is blunt with the ramal symphysis extending only a few centimeters beyond the large, splayed canines. The spatulate lower incisors are arrayed almost transversely. In *Titanotylopus* the chin is long, C_1 is large but not greatly splayed, and the nonspatulate incisors are arrayed in an arc. P_1 is present in *Gigantocamelus* and absent in *Titanotylopus*. As indicated in the preceding section, many workers have followed Webb (1965) and Breyer (1976)
in synonymizing *Gigantocamelus* and *Titanotylopus*. I believe that the above characters, in addition to the new data from Corner and Voorhies, support the generic validity of *Gigantocamelus*.

Several other workers have made reference to *Gigantocamelus* in one or more of its previous taxonomic incarnations. Dumble (1894:559), Wortman (1898:128), Gidley (1903:627), Matthew (1901:423; 1909:120), and Merriam (1917:435) noted the presence of *Pliauchenia spatula* at Mt. Blanco. Matthew (1899:75) listed material from Goodnight, Texas, as *P. spatula*, but this is more likely *Megatylopus*. From the Saw Rock fauna of Kansas, Hibbard (1953:407) referred a toe bone to *Gigantocamelus* cf. *G. spatula*. Although I have not seen this specimen, the measurements fall within the range of *Megacamelus*. If indeed the toe can be identified as *Gigantocamelus*, it would be the earliest occurrence of this genus. From the Gilliland fauna of Texas, Hibbard and Dalquest (1962:86) referred a distal radius, some distal metapodials, an astragalus, and three phalanges to *Gigantocamelus*, and later added a cervical vertebra and changed the identification to *Titanotylopus*, reflecting Webb's synonymy. Strain (1966:50) referred two distal metapodials from the Hudspeth fauna of Texas to *Gigantocamelus* sp. Semken (1966:164) referred a partial calcaneum from the Kentuck fauna of Kansas to *Gigantocamelus* sp. A number of foot and limb bones from the Grand View fauna of Idaho were referred to *Titanotylopus* sp. by Shotwell (1970:96). Hibbard (Skinner et al., 1972:114) referred some material from the Sand

\textbf{Megacamelus Frick, 1929}

\textbf{Type-Species.}—\textit{Pliauchenia merriami} Frick, 1921:358 (= \textit{Megacamelus merriami}, new combination).

\textit{Megacamelus} is presently known only from the late Hemphillian of the southwestern United States (Figure 6). Frick (1921:358) described \textit{Pliauchenia merriami} from Mt. Eden, California, and later (1929:107) named \textit{Megacamelus blicki} from Keams Canyon, Arizona. Study indicates that these camels are conspecific. The Mt. Eden camel is clearly not \textit{Pliauchenia} and although Webb (1965:36) referred it to \textit{Titanotylopus}, it does not belong to that genus for reasons discussed below. Therefore, a new taxonomic com-

Key
- \textit{M. merriami}, new combination
- 1 Mt. Eden, California
- 2 Keams Canyon, Arizona

Figure 6.—Geographic distribution of \textit{Megacamelus}.
combination, *Megacamelus merriami*, is proposed for the giant camels from Mt. Eden and Keams Canyon.

Megacamelus merriami (Frick, 1921), new combination

Figures 7–16

Pliauchenia merriami Frick, 1921:358.

Holotype.—UCMP 23483, anterior portion of the upper jaws bearing right and left I₃, C¹, P¹; anterior portion of the lower jaws bearing right I₂,3, C₁, P₁, partial P₃ and left I₂,3, C₁, P₁; distal humerus, proximal radius-ulna, distal radius-ulna, scaphoid, lunar, cuneiform, pisiform, distal tibia, astragalus, calcaneum, navicular, cuboid, ectocuneiform, proximal metatarsus, 2 distal metapodials, 6 proximal phalanges, 5 medial phalanges, 7 distal phalanges, and 8 sesamoids.

Referred Specimens.—From Mt. Eden, California: UCMP 23416, left P³; UCMP 23433, right partial upper molar; UCMP 23783, left I₂; UCMP 23790, right I₃; UCMP 23791, left I₃; UCMP 23435, left M₂(3); UCMP 23789, left M₁(3).

From Keams Canyon, Arizona (all of the following are F:AM numbers): skulls, 23201, 23202, 23202A, 23203, 23207; partial skulls, 23203A, 23203B, 23203C, 23204, 23205, 23205A, 23208, 23209, 104395; partial maxillae, 23206, 23210; mandibles, 23216, 23218, 23220, 23220, 23221, 23222, 23222, 23223, 23223, 23224, 23225, 23226, 23227, 23228, 23229, 23223A, 23224, 23240B; partial rami, 23224, 23317, 23320, 104274; incisors, 104329, 104330, 104333, 104334, 104335; canine, 104383; associated postcrania, 23312 (astragalus, calcaneum, tarsal fragments, and metatarsus); atlas, 104291, 104292, 104293, 104294, 104295; axis, 104284, 104299; cervical vertebrae, 104281, 104282, 104283, 104285, 104286, 104287, 104288, 104289, 104290, 104297, 104298; thoracic vertebrae, 104286, 104296, 104305; lumbar vertebrae, 104277, 104300, 104301, 104304; sacra, 104280, 104302; scapulae, 23245, 23246, 23247, 23248, 23249, 23250, 23251, 23275, 23276, 104278, 104279, 104408, 104607; humeri, 23254, 23255, 23256, 23257, 23258, 104405, 104406, 104407; radius-ulnae, 23260, 23261, 23261A, 23262, 23263, 23264, 23265, 23266, 23267, 23268, 23269, 23270, 104400, 104600; scaphoids, 104311, 104351, 104352, 104376, 104377, 104603; lunars, 104309, 104323, 104324, 104349, 104350, 104361; cuneiforms, 104325, 104332, 104389, 104605; pisiforms, 104312, 104345, 104356, 104370, 104371, 104372; trapezoids, 104316, 104341, 104359; magna, 104339, 104360, 104390; unciforms, 104307, 104308, 104342, 104343, 104344, 104346, 104364; metacarpis, 23277, 23278, 23279, 23280, 23281, 23282, 23283, 23284, 23285, 23301, 104401; pelvis, 104303, 104396; femora, 23290, 23291, 23292, 23293, 23294, 23295, 104403, 104404; patellae, 104358, 104394; tibiae, 23271, 23296, 23297, 104399; distal fibula, 104347, 104375; astragali, 104229, 104230, 104231, 104232, 104233, 104234, 104235, 104236, 104272, 104273, 104602; calcanea, 104237, 104238, 104239, 104240, 104601; naviculars, 104310, 104331, 104373, 104374; cuboids, 104306, 104336, 104353, 104354, 104355, 104362, 104363; ectocuneiforms, 104313, 104322, 104378, 104379, 104380, 104381, 104382, 104384, 104385, 104386, 104392, 104393; metatarsi, 23302, 23303, 23304, 23305, 23306, 23307, 23308, 23313; partial metapodials, 23314, 23316, 104326, 104327, 104328, 104397, 104398, 104402; sesamoids, 104315, 104317, 104318, 104319, 104320, 104321, 104337, 104338, 104348, 104357, 104365, 104366, 104367, 104368, 104369, 104387, 104388, 104606; proximal phalanges, 104241, 104242, 104243, 104244, 104245, 104246, 104247, 104248, 104249, 104250, 104251, 104252, 104253, 104254, 104255, 104256, 104257, 104258, 104259, 104260, 104261, 104262, 104263, 104265, 104266, 104267, 104268, 104269; median phalanges, 104210, 104211, 104212, 104213, 104214, 104215, 104216, 104217,
DESCRIPTION.—The extensive sample from Keams Canyon contains several fine skulls and mandibles as well as a wealth of postcrania (Figures 7–11). With one exception (F:AM 23312), none of the material is associated. The Keams Canyon camel compares well with that described by Frick (1921) from Mt. Eden. Both exhibit very large, caniniform I3, C', and P', a massive premaxilla, and heavy anterior ramus with large C1 and large, caniniform P1. The size and proportions of the postcrania from both localities are comparable.

The skull of M. merriami is long with a flattened dorsal profile and a deep, massive rostrum. The occipital crest is a broad fan that extends

TABLE 2.—Measurements (cm) of the skull and upper dentition of *Megacamelus merriami*, new combination, from Keams Canyon (O.R. = observed range, X = sample mean, s.d. = standard deviation).

<table>
<thead>
<tr>
<th>Element</th>
<th>No.</th>
<th>O.R.</th>
<th>X</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length from premaxilla to occipital crest</td>
<td>3</td>
<td>69.50–82.05</td>
<td>73.65</td>
<td></td>
</tr>
<tr>
<td>Length from premaxilla to occipital condyles</td>
<td>3</td>
<td>61.67–71.35</td>
<td>65.54</td>
<td></td>
</tr>
<tr>
<td>Width of muzzle across I3</td>
<td>3</td>
<td>6.68–8.25</td>
<td>7.68</td>
<td></td>
</tr>
<tr>
<td>Width of muzzle across C1</td>
<td>3</td>
<td>7.69–8.59</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td>Minimum width at postorbital constriction</td>
<td>4</td>
<td>6.71–9.65</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>Maximum width across zygomatic arches</td>
<td>2</td>
<td>26.40–27.24</td>
<td>26.87</td>
<td></td>
</tr>
<tr>
<td>Width of occipital condyles</td>
<td>7</td>
<td>9.25–11.55</td>
<td>10.14</td>
<td>0.76</td>
</tr>
<tr>
<td>Diastema P3-C1</td>
<td>2</td>
<td>2.10–2.30</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Diastema C1-P1</td>
<td>2</td>
<td>3.08–3.27</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Diastema P1-P3</td>
<td>3</td>
<td>7.10–8.83</td>
<td>7.81</td>
<td></td>
</tr>
<tr>
<td>I3 length</td>
<td>2</td>
<td>2.20–3.19</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>2</td>
<td>1.22–1.73</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>C1 length</td>
<td>3</td>
<td>2.88–3.46</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>3</td>
<td>1.82–2.33</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>P1 length</td>
<td>4</td>
<td>1.94–2.52</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>4</td>
<td>1.38–1.74</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>P3 length</td>
<td>6</td>
<td>1.84–3.05</td>
<td>2.62</td>
<td>0.44</td>
</tr>
<tr>
<td>width</td>
<td>7</td>
<td>1.88–2.03</td>
<td>1.95</td>
<td>0.06</td>
</tr>
<tr>
<td>P4 length</td>
<td>7</td>
<td>2.85–3.25</td>
<td>3.03</td>
<td>0.18</td>
</tr>
<tr>
<td>width</td>
<td>6</td>
<td>2.75–3.31</td>
<td>3.04</td>
<td>0.22</td>
</tr>
<tr>
<td>M1 length</td>
<td>6</td>
<td>4.30–4.75</td>
<td>4.54</td>
<td>0.15</td>
</tr>
<tr>
<td>width</td>
<td>6</td>
<td>3.80–4.45</td>
<td>4.11</td>
<td>0.27</td>
</tr>
<tr>
<td>M2 length</td>
<td>8</td>
<td>4.89–5.66</td>
<td>5.42</td>
<td>0.35</td>
</tr>
<tr>
<td>width</td>
<td>6</td>
<td>3.82–4.75</td>
<td>4.46</td>
<td>0.34</td>
</tr>
<tr>
<td>M3 length</td>
<td>6</td>
<td>5.40–6.13</td>
<td>5.69</td>
<td>0.28</td>
</tr>
<tr>
<td>width</td>
<td>6</td>
<td>3.86–4.39</td>
<td>4.20</td>
<td>0.19</td>
</tr>
<tr>
<td>I3-M3 length</td>
<td>3</td>
<td>37.77–41.10</td>
<td>39.06</td>
<td></td>
</tr>
<tr>
<td>P3-M3 length</td>
<td>5</td>
<td>18.96–20.03</td>
<td>19.41</td>
<td></td>
</tr>
<tr>
<td>dP2 length</td>
<td>2</td>
<td>1.39–1.50</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>2</td>
<td>0.42–0.82</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>dP3 length</td>
<td>3</td>
<td>3.29–3.60</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>3</td>
<td>2.45–2.65</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>dP4 length</td>
<td>3</td>
<td>3.72–4.15</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>width</td>
<td>3</td>
<td>3.00–3.20</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>dP2-M2 length</td>
<td>1</td>
<td>16.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dP3-M3 length</td>
<td>2</td>
<td>14.88–15.96</td>
<td>15.42</td>
<td></td>
</tr>
</tbody>
</table>

104218, 104219, 104220, 104221, 104222, 104223, 104224, 104225, 104270, 104604; distal phalanges, 104226, 104227, 104228, 104271, 104314, 104340, 104391.
Figure 7.—Megacamelus merriami, new combination, from Keams Canyon, Arizona, F:AM 23201, skull: 1, dorsal view; 2, occlusal view. (x ¼.)
Figure 8.—Macroceratodus merriami, new combination, from Kears Canyon, Arizona; 1, F.A.M. 29201, skull, lateral view; 2, 3, F.A.M. 293232, mandible, occlusal and lateral views. (X 1/3.)
FIGURE 9.—*Megacamelus merriami*, new combination, from Keams Canyon, Arizona, F:AM 23202, skull: 1, dorsal view; 2, occlusal view. (X ¼.)

well posterior to the occipital condyles. The sagittal crest is likewise well developed. The orbit is circular in outline followed by a strong postorbital bar. A triangular lacrimal vacuity is present in most of the Keams Canyon *M. merriami*, but it is a highly variable feature. In one specimen, F:AM 23202, it is present on the left side of the skull, but reduced to a slit on the right side (Figure 9). Another skull, F:AM 23202A, bears well-developed lacrimal vacuities on both sides (Figure 10). Although Meade (1945:531) reported the presence of a lacrimal vacuity in *M. spatulus* from Mt. Blanco, Hibbard and Riggs (1949:846) reported its absence and, moreover, suggested that the opening in the Mt. Blanco skulls could represent an artifact of preservation.

The upper dentition consists of I\(^3\), C\(^1\), P\(^1,3,4\), M\(^1-3\). I\(^3\) is always present and, as mentioned above, is large and caniniform. C\(^1\) is large and deviates slightly from a vertical orientation. Presumably, when Barbour and Schultz (1939:24) stated that the canines of the Keams Canyon
FIGURE 10.—Megacamelus merriami, new combination, from Keams Canyon, Arizona, F:AM 23202A, skull: 1, dorsal view; 2, occlusal view. (X ¼.) Note the large lacrimal vacuities.

camel were not enlarged, it was in comparison to the extreme development observed in Gigantocamelus spatulus and Titanotylopus nebraskensis. P¹ is caniniform and only slightly smaller than P³. P⁵ is large with an incomplete internal crescent. P⁴ is not much longer than P³ but much wider due to its complete internal crescent. Only the parastyle shows much development on P⁴, but a strong parastyle and mesostyle are present on each molar. The teeth are higher crowned than those of Megatylopus gigas or Titanotylopus nebraskensis.

The mandible is long and massive but still smaller than that of Gigantocamelus spatulus or Titanotylopus nebraskensis. The mandibular proportions of M. merriami agree well with those of G. spatulus; however, M. merriami does not display the degree of variation in the symphyseal
Table 4.—Measurements (cm) of the postcrania of *Megacamelus merriami*, new combination, from Keams Canyon (O.R. = observed range, \bar{X} = sample mean, s.d. = standard deviation).

<table>
<thead>
<tr>
<th>Element</th>
<th>No.</th>
<th>O.R.</th>
<th>\bar{X}</th>
<th>s.d.</th>
<th>Element</th>
<th>No.</th>
<th>O.R.</th>
<th>\bar{X}</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlas length of centrum</td>
<td>2</td>
<td>6.75–6.80</td>
<td>6.77</td>
<td></td>
<td>Tibia length</td>
<td>1</td>
<td>67.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>post. height</td>
<td>1</td>
<td>9.36</td>
<td></td>
<td></td>
<td>distal width</td>
<td>2</td>
<td>10.95–11.45</td>
<td>11.20</td>
<td></td>
</tr>
<tr>
<td>Scapula max length</td>
<td>2</td>
<td>61.53–64.06</td>
<td>62.79</td>
<td></td>
<td>Astragalus length (tibial to</td>
<td>7</td>
<td>8.19–8.98</td>
<td>8.57</td>
<td>0.34</td>
</tr>
<tr>
<td>max. width</td>
<td>1</td>
<td>38.35</td>
<td></td>
<td></td>
<td>tarsal surface)</td>
<td>7</td>
<td>8.85–9.80</td>
<td>9.47</td>
<td>0.30</td>
</tr>
<tr>
<td>glenoid fossa</td>
<td>3</td>
<td>9.37–10.56</td>
<td>9.87</td>
<td></td>
<td>medial</td>
<td>7</td>
<td>6.03–6.65</td>
<td>6.59</td>
<td>0.21</td>
</tr>
<tr>
<td>antero-post.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transverse</td>
<td>3</td>
<td>9.17–10.61</td>
<td>9.66</td>
<td></td>
<td>distal width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus length</td>
<td>1</td>
<td>53.27</td>
<td></td>
<td></td>
<td>Calcaneum length</td>
<td>4</td>
<td>17.68–19.56</td>
<td>18.64</td>
<td></td>
</tr>
<tr>
<td>dist. width across trochlea</td>
<td>5</td>
<td>10.60–11.70</td>
<td>11.14</td>
<td></td>
<td>max. antero-post.</td>
<td>4</td>
<td>7.21–8.30</td>
<td>7.90</td>
<td></td>
</tr>
<tr>
<td>Radius-ulna max length</td>
<td>4</td>
<td>72.65–85.70</td>
<td>80.33</td>
<td></td>
<td>Metatarsus length</td>
<td>5</td>
<td>48.37–50.58</td>
<td>49.44</td>
<td></td>
</tr>
<tr>
<td>articular length</td>
<td>4</td>
<td>66.03–75.50</td>
<td>71.22</td>
<td></td>
<td>proximal width</td>
<td>2</td>
<td>8.06–9.37</td>
<td>8.71</td>
<td></td>
</tr>
<tr>
<td>proximal width</td>
<td>6</td>
<td>10.19–11.52</td>
<td>10.87</td>
<td>0.43</td>
<td>distal width</td>
<td>4</td>
<td>10.01–10.75</td>
<td>10.35</td>
<td></td>
</tr>
<tr>
<td>dist. width</td>
<td>5</td>
<td>10.40–12.62</td>
<td>11.39</td>
<td></td>
<td>Proximal phalanx length</td>
<td>21</td>
<td>11.05–13.80</td>
<td>12.41</td>
<td>0.84</td>
</tr>
<tr>
<td>Metacarpus length</td>
<td>7</td>
<td>48.39–54.29</td>
<td>51.08</td>
<td>2.07</td>
<td>proximal width</td>
<td>21</td>
<td>4.55–5.73</td>
<td>5.08</td>
<td>0.35</td>
</tr>
<tr>
<td>proximal width</td>
<td>8</td>
<td>8.11–11.64</td>
<td>9.12</td>
<td>1.10</td>
<td>distal width</td>
<td>22</td>
<td>3.82–5.14</td>
<td>4.42</td>
<td>0.41</td>
</tr>
<tr>
<td>dist. width</td>
<td>7</td>
<td>11.38–12.30</td>
<td>11.88</td>
<td>0.33</td>
<td>Medial phalanx length</td>
<td>18</td>
<td>7.22–8.47</td>
<td>7.76</td>
<td>0.34</td>
</tr>
<tr>
<td>Femur length</td>
<td>1</td>
<td>60.89</td>
<td></td>
<td></td>
<td>proximal width</td>
<td>18</td>
<td>3.74–4.99</td>
<td>4.19</td>
<td>0.27</td>
</tr>
<tr>
<td>proximal width</td>
<td>1</td>
<td>16.07</td>
<td></td>
<td></td>
<td>distal width</td>
<td>17</td>
<td>3.26–4.21</td>
<td>3.79</td>
<td>0.25</td>
</tr>
<tr>
<td>dist. width</td>
<td>2</td>
<td>13.98–15.34</td>
<td>14.66</td>
<td></td>
<td>Distal phalanx length</td>
<td>6</td>
<td>3.16–4.16</td>
<td>3.71</td>
<td>0.34</td>
</tr>
<tr>
<td>width of patellar surface</td>
<td>3</td>
<td>5.07–5.79</td>
<td>5.46</td>
<td></td>
<td>proximal width</td>
<td>6</td>
<td>2.45–2.80</td>
<td>2.60</td>
<td>0.13</td>
</tr>
</tbody>
</table>

region observed in *G. spatulus* by Meade (1945:532) or Hibbard and Riggs (1949:847). Meade, in the Mt. Blanco sample, and Hibbard and Riggs, in the Keefe Canyon sample, found jaws with widely splayed and canines and transversely arrayed incisors as well as jaws with more vertically oriented canines and more conventionally arrayed incisors. Hibbard and Riggs (1949), Webb (1965), and Breyer (1976) have attributed such variation to sexual dimorphism. In the Keams Canyon sample the incisors are procumbent and arrayed in a more shallow arc than in *Titanotylopus*. The canines are very large, but only slightly splayed. No specimen displays the degree of canine flare and incisor-row bluntness characteristic of *G. spatulus* (Cope, 1893, pl. 21; Barbour and Schultz, 1939, fig. 9; Meade, 1945, pl. 54; Hibbard and Riggs, 1949, fig. 8). A groove is present between the median incisors on the ventral symphseal surface, as noted by Cope (1893:71) and Meade (1945:532). The lower dentition consists of I1–3, C1, P1,3,4, M1–3. The incisors have spatulate crowns that with much wear assume a more rounded, peg-
like appearance. The canines bear the strong anterointernal and posterior enamel ridges typical of *G. spatulus*. P1 is present in all specimens and usually well developed. An exception is F:AM 23218, one of the smallest individuals, in which P1 is correspondingly small. The cheek tooth series is quite similar to that of *M. spatulus*. Meade (1945:533) reports an anteroexternal style or “llama buttress” on M2,3 of one specimen and notes the presence of this feature in figures of *M. spatulus* from Lisco. No indication of a “llama buttress” is present in *M. merriami*.

The limbs and feet of *M. merriami*, especially the metapodials and phalanges, do not exhibit the shortening in relation to the basal length of the skull seen in *G. spatulus*. Hence, Barbour and
Schultz (1939:24) remarked that "the skeletal elements appear to be more massive in the Nebraska form" (= G. spatulus). The limbs of M. merriami are, however, shorter and stockier than those of Megatylopus.

DISCUSSION.—*Megacamelus merriami* is most closely related to *Gigantocamelus spatulus* but differs from it in the presence of the large, caniniform I₃, smaller size, less shortened limbs, and lower-crowned teeth. Breyer (1983:305) re-
FIGURE 13.—Megacamelus merriami, new combination, from Keams Canyon, Arizona: 1, 2, F:AM 23256, humerus, anterior and posterior views; 3, 4, F:AM 23262, radius-ulna, anterior and posterior views. (X 1/4.)
ferred the Keams Canyon material to *Titanotylopus nebraskensis* on the basis of the projection of the mandibular symphysis beyond the canines. This condition is primitive for camelines and hence not a valid criterion. Moreover, several characters such as the presence of P۱ in all specimens, greater degree of hypsodonty, and the greater distance between C۱ and P۳ preclude the referral of the Keams Canyon camel to *Titanotylopus*.

Camelus Linnaeus, 1758

Type-Species.—*Camelus dromedarius* Linnaeus, 1758:65.

Camelus is the smallest of the giant camels. The two extant species, *G. dromedarius* (monogibbose) and *C. bactrianus* (digibbose), range throughout most of the arid and semi-arid regions of the Old World. *Camelus bactrianus* is native to Chinese Turkestan and Mongolia, where small wild populations still exist (Walker, 1964:1374). Both *C. bactrianus* and *C. dromedarius* have been domesticated for several thousand years, and the original native range of the latter species can no longer be determined.

Camelus has an extensive fossil record in the Pleistocene of the Old World and has been found in association with human artifacts and remains (Gauthier-Pilters and Dagg, 1981:5). Camels migrated from North America via Beringea near the end of the Tertiary, probably during the late Ruscinian. *Camelus* (*Paracamelus*) Schlosser (1903) occurs in several late Pliocene localities in the People's Republic of China. As yet no fossil material of *Camelus* or *Paracamelus* has been recovered from North America.

Figure 14.—*Megacamelus merriami*, new combination, from Keams Canyon, Arizona: 1, 2, F:AM 104311, scaphoid, medial and lateral views; 3, 4, F:AM 104323, lunar, medial and lateral views; 5, 6, F:AM 104325, cuneiform, medial and lateral views; 7, 8, F:AM 104312, pisiform, medial and lateral views; 9, 10, F:AM 104359, trapezoid, posteromedial and anterolateral views; 11, 12, F:AM 104360, magnum, proximal and distal views; 13, 14, F:AM 104343, unciform, proximal and distal views; 15, 16, F:AM 23279, metacarpus, anterior and posterior views. (× ¼.)
FIGURE 15.—*Megacamelus merriami*, new combination, from Keams Canyon, Arizona: 1, 2, F.A.M 23293, femur, anterior and posterior views; 3, 4, F.A.M 23296, tibia, anterior and posterior views. (X ¼.)
Blancocamelus Dalquest, 1975

TYPE-SPECIES.— *Blancocamelus meadei* Dalquest, 1975:37.

This genus is represented solely by *B. meadei*, described by Dalquest (1975:37) from Mt. Blanco, Texas. Dalquest noted that although Meade (1945:538) was aware of the uniqueness of this camel, he mistakenly applied to it an unpublished name, *Leptotylopus percelsus*, from a 1924 manuscript of W.D. Matthew. As used by Meade, the name was a nomen nudum. The taxon to which Matthew had applied the name in manuscript was subsequently identified as *Tanupolama (= Hemiauchenia) blancoensis*. Thus, the genus was left without a valid name until Dalquest (1975) proposed *Blancocamelus meadei* for it.
Blancocamelus is known only from postcranial elements. Its limbs are exceedingly long, but quite slender, evoking mental images of a giant Hemiauchenia. Indeed, the posterior surface of the proximal phalanx presents an asymmetrical, W-shaped scar for the attachment of the suspensory ligament that is quite like that of Hemiauchenia (Breyer, 1976, fig. 2). Although Meade (1945) and Kürten and Anderson (1980:302) have speculated upon the possible affinities of Blancocamelus and the aepycamelines, I prefer for the present to group it with the lamines. With the exception of a possible occurrence in the Blancan Red Light fauna of Texas (Akersten, 1972:29), Blancocamelus is restricted to the type-locality (Figure 4).

Camelops Leidy, 1854

Type-Species.—Camelops kansanus Leidy, 1854:172.

Camelops is by far the best known of the lamines, giant or otherwise. It occurs from the late Blancan into the early Holocene in localities throughout the western United States (Kurtén and Anderson, 1980, fig. 15.4). Since its description by Leidy (1854:172), the genus Camelops has undergone a bewildering series of synonymies, referrals, and revisions. Much of this morass was clarified by Webb (1965), who followed Savage (1951) in recognizing five species: C. kansanus Leidy (1854:172), C. hesternus (Leidy, 1873:255), C. huerfanensis (Cragin, 1892: 258), C. sulcatus (Cope, 1893:84), and C. minidokae Hay (1927:93). These five species plus C. traviswhitei Mooser and Dalquest (1975:341) were recognized by Kürten and Anderson (1980).

Camelops, especially the later species, is very hypsodont with large lacrimal vacuities and marked maxillary fossae. The skull is long and does not display the rostral shortening characteristic of other lamines such as Hemiauchenia, Lama, and Vicugna. The mandible is long with a sharp diastemal crest and uninflected angular processes. The dental formula is I\(^3\) C\(^1\) P\(^3\) M\(^3\). In Camelops I\(^3\) and C\(^1\) are reduced, laterally compressed, and recurved rather than enlarged and rounded in cross section as in the giant camelines. P\(_1\)\(^2\),\(^3\) are lost and P\(_4\) are reduced. The molars are relatively narrow with external styles less strongly developed than in the camelines.

The limbs of Camelops are sturdy and the metapodials less slender than those of the other lamines. The area of attachment for the suspensory ligament on the posterior surface of the proximal phalanx is distinctive (Breyer, 1974, fig. 2B). Camelops hesternus, C. traviswhitei, and C. huerfanensis are the only species considered within the scope of giant camels. More detailed descriptions of Camelops are given in Savage (1951) and Webb (1965).

Summary

The trend toward gigantism in camelids is first evident in Aepycamelus in the late Clarendonian and continued throughout the rest of the Cenozoic (Figure 17). Eight camelid genera are treated as giant camels in this paper.

Megacamelus merriami, new combination, is proposed for the large, late Hemphillian camel from Mt. Eden and Keams Canyon. The giant camels from Mt. Blanco, Lisco, and Keefe Canyon are referred to Gigantocamelus spatulus. Titanotylopus is applied only to T. nebraskensis. Megatylopus major is transferred to Aepycamelus.

The Camelini were all very large camels, but
only two giants occur among the Lamini, *Camelops* (C. hesternus, C. traviswhitei, and C. huerfanensis) and *Blancocamelus* (if, indeed, this genus belongs in the Lamini and not the Aepycamelinæ). Most camels were considerably smaller. It is intriguing that, in spite of over 40 million years of evolution in North America, and regardless of body size, camels became extinct in their place of origin following successful emigration to South America and Asia.
Literature Cited

Akersten, W.A.

Barbour, E.H., and C.B. Schultz

Bennett, D.K.

Breyer, J.A.

Cassiliano, M.

Cook, H.J.

Cope, E.D.

Cragin, F.W.

Dalquest, W.W.

Dalquest, W.W., and O. Mooser

Davidson, P.

Dumble, E.T.

Eshelman, R.E.

Ferrusquia-Villafranca, I.

Forsten, A.

Frick, C.

MacFadden, B.J.

MacFadden, B.J., N.M. Johnson, and N.D. Opdyke

Marsh, O.C.

Martin, R.A., and J.C. Harksen

Matthew, W.D.

Matthew, W.D., and H.J. Cook

Meade, G.E.

Merriam, J.C.

Miller, W.E., and T. Downs

Savage, D.E.

Schlosser, M.

Schultz, G.E.

Semken, H.A., Jr.

Shotwell, J.A.

Simpson, G.G.

Skinner, M.F., S.M. Skinner, and R.J. Gooris
1968. Cenozoic Rocks and Faunas of Turtle Butte,

Strain, W.S.

Walker, E.P.

Webb, S.D.

Wortman, J.L.
Requirements for Smithsonian Series Publication

Manuscripts intended for series publication receive substantive review within their originating Smithsonian museums or offices and are submitted to the Smithsonian Institution Press with Form SI-36, which must show the approval of the appropriate authority designated by the sponsoring organizational unit. Requests for special treatment—use of color, foldouts, case-bound covers, etc.—require, on the same form, the added approval of the sponsoring authority.

Review of manuscripts and art by the Press for requirements of series format and style, completeness and clarity of copy, and arrangement of all material, as outlined below, will govern, within the judgment of the Press, acceptance or rejection of manuscripts and art.

Copy must be prepared on typewriter or word processor, double-spaced, on one side of standard white bond paper (not erasable), with 1 3/4" margins, submitted as ribbon copy (not carbon or xerox), in loose sheets (not stapled or bound), and accompanied by original art. Minimum acceptable length is 30 pages.

Front matter (preceding the text) should include: title page with only title and author and no other information; abstract page with author, title, series, etc., following the established format; table of contents with indents reflecting the hierarchy of heads in the paper; also, foreword and/or preface, if appropriate.

First page of text should carry the title and author at the top of the page; second page should have only the author's name and professional mailing address, to be used as an unnumbered footnote on the first page of printed text.

Center heads of whatever level should be typed with initial caps of major words, with extra space above and below the head, but with no other preparation (such as all caps or underline, except for the underline necessary for generic and specific epithets). Run-in paragraph heads should use period/dashes or colons as necessary.

Tabulations within text (lists of data, often in parallel columns) can be typed on the text page where they occur, but they should not contain rules or numbered table captions.

Formal tables (numbered, with captions, boxheads, stubs, rules) should be submitted as carefully typed, double-spaced copy separate from the text; they will be typeset unless otherwise requested. If camera-copy use is anticipated, do not draw rules on manuscript copy.

Taxonomic keys in natural history papers should use the aligned-couplet form for zoology and may use the multi-level indent form for botany. If cross referencing is required between key and text, do not include page references within the key, but number the keyed-out taxa, using the same numbers with their corresponding heads in the text.

Synonymy in zoology must use the short form (taxon, author, year:page), with full reference at the end of the paper under "Literature Cited." For botany, the long form (taxon, author, abbreviated journal or book title, volume, page, year, with no reference in "Literature Cited") is optional.

Text-reference system (author, year:page used within the text, with full citation in "Literature Cited" at the end of the text) must be used in place of bibliographic footnotes in all Contributions Series and is strongly recommended in the Studies Series: "(Jones, 1910:122)" or "...Jones (1910:122)." If bibliographic footnotes are required, use the short form (author, brief title, page) with the full citation in the bibliography.

Footnotes, when few in number, whether annotative or bibliographic, should be typed on separate sheets and inserted immediately after the text pages on which the references occur. Extensive notes must be gathered together and placed at the end of the text in a notes section.

Bibliography, depending upon use, is termed "Literature Cited," "References," or "Bibliography." Spell out titles of books, articles, journals, and monographic series. For book and article titles use sentence-style capitalization according to the rules of the language employed (exception: capitalize all major words in English). For journal and series titles, capitalize the initial word and all subsequent words except articles, conjunctions, and prepositions. Transliterate languages that use a non-Roman alphabet according to the Library of Congress system. Underline (for italics) titles of journals and series and titles of books that are not part of a series. Use the parentheses/colon system for volume(number):pagination: "(10(2):5-9)." For alignment and arrangement of elements, follow the format of recent publications in the series for which the manuscript is intended. Guidelines for preparing bibliography may be secured from Series Section, SI Press.

Legends for illustrations must be submitted at the end of the manuscript, with as many legends typed, double-spaced, to a page as convenient.

Illustrations must be submitted as original art (not copies) accompanying, but separate from, the manuscript. Guidelines for preparing art may be secured from Series Section, SI Press. All types of illustrations (photographs, line drawings, maps, etc.) may be intermixed throughout the printed text. They should be termed Figures and should be numbered consecutively as they will appear in the monograph. If several illustrations are treated as components of a single composite figure, they should be designated by lowercase italic letters on the illustration; also, in the legend and in text references the italic letters (underlined in copy) should be used: "Figure 9b." Illustrations that are intended to follow the printed text may be termed Plates, and any components should be similarly lettered and referenced: "Plate 9b." Keys to any symbols within an illustration should appear on the art rather than in the legend.

Some points of style: Do not use periods after such abbreviations as "mm, ft, USNM, NNE." Spell out numbers "one" through "nine" in expository text, but use digits in all other cases if possible. Use of the metric system of measurement is preferable; where use of the English system is unavoidable, supply metric equivalents in parentheses. Use the decimal system for precise measurements and relationships, common fractions for approximations. Use day/month/year sequence for dates: "9 April 1976." For months in tabular listings or data sections, use three-letter abbreviations with no periods: "Jan, Mar, Jun," etc. Omit space between initials of a personal name: "J.B. Jones." Arrive and paginate sequentially every sheet of manuscript in the following order: (1) title page, (2) abstract, (3) contents, (4) foreword and/or preface, (5) text, (6) appendices, (7) notes section, (8) glossary, (9) bibliography, (10) legends, (11) tables. Index copy may be submitted at page proof stage, but plans for an index should be indicated when manuscript is submitted.