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Abstract

Large mammalian herbivores (LMH) strongly influence plant communities, and these effects can propagate indirectly
throughout food webs. Most existing large-scale manipulations of LMH presence/absence consist of a single exclusion
treatment, and few are replicated across environmental gradients. Thus, important questions remain about the functional
roles of different LMH, and how these roles depend on abiotic context. In September 2008, we constructed a series of 1-ha
herbivore-exclusion plots across a 20-km rainfall gradient in central Kenya. Dubbed "UHURU" (Ungulate Herbivory Under
Rainfall Uncertainty), this experiment aims to illuminate the ecological effects of three size classes of LMH, and how rainfall
regimes shape the direction and magnitude of these effects. UHURU consists of four treatments: total-exclusion (all
ungulate herbivores), mesoherbivore-exclusion (LMH .120-cm tall), megaherbivore-exclusion (elephants and giraffes), and
unfenced open plots. Each treatment is replicated three times at three locations (‘‘sites’’) along the rainfall gradient: low
(440 mm/year), intermediate (580 mm/year), and high (640 mm/year). There was limited variation across sites in soil
attributes and LMH activity levels. Understory-plant cover was greater in plots without mesoherbivores, but did not respond
strongly to the exclusion of megaherbivores, or to the additional exclusion of dik-dik and warthog. Eleven of the thirteen
understory plant species that responded significantly to exclusion treatment were more common in exclusion plots than
open ones. Significant interactions between site and treatment on plant communities, although uncommon, suggested that
differences between treatments may be greater at sites with lower rainfall. Browsers reduced densities of several common
overstory species, along with growth rates of the three dominant Acacia species. Small-mammal densities were 2–3 times
greater in total-exclusion than in open plots at all sites. Although we expect patterns to become clearer with time, results
from 2008–2012 show that the effects of excluding successively smaller-bodied subsets of the LMH community are
generally non-additive for a given response variable, and inconsistent across response variables, indicating that the different
LMH size classes are not functionally redundant. Several response variables showed significant treatment-by-site
interactions, suggesting that the nature of plant-herbivore interactions can vary across restricted spatial scales.
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Introduction

Human activities have driven thousands of species extinct and

extirpated tens of thousands of populations [1–3]. The direct and

indirect ramifications of these extirpations for other species can be

profound, and the implications for community structure and

ecosystem functioning are difficult to anticipate. Our inability to

predict the ecological implications of species loss reflects a lack of

basic understanding about the functional roles of even large, well-

studied species.

This shortfall is compounded by the fact that the outcomes of

species interactions differ, in magnitude and even direction, as a

function of environmental context–which itself varies in space and

time [4–11]. Thus, experimental findings from different systems

often fail to align, and it remains difficult for researchers to

extrapolate beyond the restricted spatial and temporal scales at

which most experiments are conducted [12,13]. Resolving the

challenges posed by contingency has therefore been identified as a

central goal of ecology [4,10]. Doing so will require a variety of

strategies, including large-scale observational approaches and
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meta-analytic syntheses. However, it is also necessary to expand

the geographic and temporal scope of field experiments by

simultaneously imposing identical manipulations in locations that

differ along one or more key axes of environmental variation.

Among these key axes are precipitation regimes, which are

rapidly shifting with global climate change. Alteration of

precipitation regimes, the intensity of droughts, and the number

of extreme rainfall events are anticipated to have a profound

impact on terrestrial ecosystems [14], perhaps particularly so for

the ,40% of the terrestrial land surface [15] that is classified as

arid or semi-arid. For example, the quantity and temporal

distribution of rainfall events determine patterns of primary

productivity in grassland ecosystems [16], and variation in rainfall

can cause changes in species abundances, thus altering the

strength of density dependence and other regulatory processes

[17,18]. Likewise, drought may interact with temperature

increases to depress plant and animal populations [19].

African savannas have long fascinated scientists and the public

alike, and both rainfall and species interactions are essential in

maintaining the structure and function of these ecosystems. Most

conspicuously, the co-dominance of trees and grasses that defines

savannas is often unstable, existing in a non-equilibrial state that is

determined by the interplay of rainfall, fire, and large mammalian

herbivores (LMH, $5-kg) [20–23]. Due to their large body sizes,

long generation times, valuable meat and body parts, and capacity

to conflict with rural livelihoods, LMH are disproportionately

prone to anthropogenic population declines and extirpation

[24,25]. Such declines typically proceed in a size-biased fashion,

with bigger species disappearing first [24,26]. It is therefore

important to understand how savanna structure and function

respond to the loss of successively smaller size classes of LMH.

Prior studies have shown that changes in LMH abundance

(both in Africa and elsewhere) can strongly influence a wide range

of other taxa, community properties, and ecosystem processes.

Examples include direct and indirect effects on the productivity,

density, diversity, recruitment, reproduction, and individual traits

of plants (reviewed in [27–34]), as well as indirect effects on

populations and assemblages of insects, small mammals, and other

consumers (e.g., [35–44]). However, most experimental studies

have utilized an ‘‘all-or-none’’ approach of excluding entire LMH

guilds (but see [45–47]), leaving uncertainty about which species

are responsible for which effects. Moreover, the expense and

sampling effort involved in large-scale LMH manipulations is such

that very few studies have simultaneously applied identical

treatments in multiple locations along environmental gradients

(but see [48–50]). Meta-analyses and meta-experiments conducted

at continental or intercontinental scales have investigated the

generality of some of the aforementioned effects of LMH;

intriguingly, results suggest that the direction and magnitude of

effects are often contingent on local resource availability [51–53].

Yet such broad synthetic approaches have limitations, including

difficulties in mechanistic inference, biases arising from both study-

selection criteria and differences in the scale/methods of individual

studies, and a tendency to gloss over potentially important local

contingency by focusing on overall trends [10,54,55].

Hence, there is an important role for large-scale field

experiments that selectively disassemble LMH communities across

environmental gradients that are not confounded by dramatic

differences in other biotic and abiotic attributes. Such experiments

will enable us to identify the respective impacts on plants and

animals of different subsets of LMH communities; to evaluate

whether smaller herbivores can functionally compensate for the

loss of larger ones; to assess how resource availability mediates

these impacts; and to help develop a mechanistic understanding of

context dependence. The need for such studies was articulated in a

recent synthesis of consumer vs. resource control of producer

biomass [56], which urged ‘‘implementation, particularly in

terrestrial systems, of standardized, replicated field experiments

across a spatial network of sites that can serve as standardized tests

of trends revealed through meta-analysis.’’

In September 2008, we initiated a replicated large-herbivore

exclusion experiment, dubbed ‘‘UHURU’’ (Ungulate Herbivory

Under Rainfall Uncertainty). The overarching objectives of

UHURU are: to selectively exclude successively smaller-bodied

subsets of the LMH guild from 1-ha plots in a way that mimics

size-biased extinction and isolates the impacts of different groups

of LMH species; to replicate these plots at a spatial scale large

enough to encompass a biologically meaningful gradient in

rainfall, yet small enough that all sites share similar edaphic

characteristics and species drawn from the same regional pool; and

to test predictions about the independent and interactive effects of

LMH exclusion and rainfall variability on a broad range of

response variables.

Here we provide a thorough description of the experimental

design and initial conditions (thus laying the groundwork for future

contributions) and report results from the first 3.5 years of the

experiment (thus broadly characterizing the short-term responses

of savanna communities to altered herbivory regimes). Our work

was guided by the following hypotheses: (1) LMH suppress

densities of most plants and small mammals, but may facilitate

some plant species by reducing competitive dominance; (2)

mesoherbivores exert particularly strong effects because, collec-

tively, they are both abundant and functionally diverse in terms of

foraging mode (comprising grazers, browsers, and mixed feeders);

(3) suppressive effects of LMH on plant densities are strongest in

lower-rainfall sites because plants there are less able to tolerate

herbivory, whereas facilitative effects are strongest in high-rainfall

sites because the potential for competitive exclusion is greater.

Methods

Study Site and Experimental Design
Our research is conducted at the Mpala Research Centre, part

of a private conservancy in Laikipia County, central Kenya

(0u179N, 37u529 E, 1600-m elevation). All work was conducted

with permission from the Kenyan government (permit NCST/5/

002/R/656), the Director of Mpala Research Centre, and

IACUC protocol SKMBT-60112030515200 (University of Wyo-

ming). Mpala is located northwest of Mount Kenya and falls in its

rain shadow, leading to pronounced climatic variability at

relatively small spatial scales: from 2009–2011, mean annual

rainfall increased .45% over 20 km from north to south (Fig. 1).

The soils occurring across this gradient, characteristic of the

region, are infertile red sandy loams derived from metamorphic

basement rock [57]. The soils are classed as Alfisols (Typic

Haplustults) according to US Soil Taxonomy [58] and support a

discontinuous understory of grasses and forbs [59]. The overstory

is dominated by three species of Acacia (A. etbaica, A. brevispica, A.

mellifera). Fires are infrequent, limited by both the discontinuous

understory and active suppression of anthropogenic fires by land

managers since the mid-1900s [60,61]. Twenty-two species of

native large herbivores occur at Mpala, along with a diverse

carnivore community (Table S1).

The UHURU experiment consists of four herbivory treatments

that were randomly assigned to contiguous 1-ha (1006100 m)

plots (Fig. 1) [62]. ‘‘Total’’ excludes all herbivores larger than ,5-

kg mass and ,50-cm tall (but is accessible to hares and other small

mammals), using 2.4-m high fences consisting of 14 strands of

Interactive Effects of Herbivores and Rainfall
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electrified wire with a 1-m high chain-link barrier (10-cm mesh) at

ground level (Fig. S1a). ‘‘Meso’’ consists of 11 wires starting ,30-

cm above the ground, allowing access by LMH ,120 cm tall (dik-

dik Madoqua cavendishi and warthog Phacochoerus africanus), but

excluding all larger LMH species (Fig. S1b). ‘‘Mega’’ consists of

two wires 2-m above ground level, excluding only megaherbivores

(elephants Loxodonta africana and giraffes Giraffa camelopardalis; Fig.

S1c). ‘‘Open’’ plots are unfenced; a series of 1-m tall wooden posts

at 10-m intervals demarcates plot boundaries (Fig. S1d). On all

fences, a series of 1-m long wires at 2-m height extend horizontally

outward from the plots to deter elephants and giraffes that

approach the barriers (Fig. S1a-c). In January 2009, vertical

connecting wires were added to total- and mesoherbivore-

exclusion fences to prevent impala and zebra from passing

between the horizontal wires.

Three blocks (each containing one randomly assigned replicate

of each treatment) are located at each of three sites along the

rainfall gradient (‘‘Low’’, ‘‘Intermediate’’, and ‘‘High’’). The

experiment thus comprises a total of 36 1-ha plots: 4 plots/block

63 blocks/site63 sites. Collectively, these treatments allow us to

evaluate the effects of LMH species spanning three orders of

magnitude in body mass, from dik-dik (4–6 kg) to elephant (3000–

7000 kg). In each plot, we established a central 60660 m grid of

49 rebar stakes at 10-m intervals; this grid serves as the basis for

much of our sampling.

At Mpala, there is a single dominant LMH species (in terms of

biomass density) within each LMH size class distinguished by the

experiment [63]: dik-dik in the smallest group, impala (Aepyceros

melampus) in the intermediate group, and elephant in the largest

group. The estimated total energetic requirements of these three

species–derived from published Mpala-wide density estimates [63]

coupled with the metabolic-rate equations of Nagy et al. [64]–is

roughly equivalent (Fig. S2).

Each treatment in UHURU can be compared with the

unfenced Open plots to gauge the effects of all LMH up to a

certain size, or can be assessed relative to other treatments to

isolate the effects of a given LMH size class. For example, the

Mega vs. Open comparison isolates the largest size class (elephants

and giraffes); likewise, the only difference between Total and Meso

plots is the presence of the smallest size class (comprising dik-dik

and warthogs), and comparisons between these plots should largely

reflect the impacts of dik-dik (which are far more common than

warthog). The mesoherbivore category is the most heterogeneous,

comprising eight species known to occur in the plots. In order of

decreasing abundance, these are: impala, plains zebra (Equus

quagga), eland (Taurotragus oryx), Grevy’s zebra (E. grevyi), waterbuck

(Kobus defassa), buffalo (Syncerus caffer), oryx (Oryx beisa), and gerenuk

(Litocranius walleri). Of these, only the first four are common, and

impala are far more common than the rest [63]. Cattle and camels

are ranched at low densities on Mpala [46], but herders are asked

Figure 1. Terrain map of Mpala Research Centre showing north-south rainfall gradient and schematic of the experimental design.
Three blocks, each containing one 1006100-m replicate of each treatment, are situated at each circled location on the map; 20 km separates the
northern (low-rainfall) and southern (high-rainfall) sites. Red lines indicate dirt roads. (A) Total-exclusion plots exclude all large herbivores; (B)
mesoherbivore-exclusion plots exclude all herbivores larger than warthogs; (C) megaherbivore-exclusion plots exclude elephants and giraffes only;
(D) open plots are accessible to all species.
doi:10.1371/journal.pone.0055192.g001
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not to allow livestock within the plots, allowing us to focus on the

effects of wild herbivores.

Monitoring LMH Activity
Every three months, we conducted dung surveys to assess the

effectiveness of the experimental treatments and to provide an

index of LMH activity levels. In each plot, we established three

6065 m belt transects, parallel and spaced 30-m apart within the

central 60660 m grid. During surveys, two observers walked these

transects, counting all discrete dung piles and identifying the

species of origin [65]. Dung was crushed after identification to

prevent its being recounted in subsequent surveys. Because we

were unable to distinguish between the dung of plains and Grevy’s

zebras, we lumped these two species in analyses. Because

inferences about LMH activity levels could be biased by

differential dung-decomposition rates in wetter vs. drier locations,

we assessed decomposition rates of dik-dik, impala, and elephant

dung at each site within UHURU. In November 2011, we placed

10 fresh dung piles at 10-m intervals along a 100-m transect near

the experimental plots at each site. Dung piles were weighed prior

to placement, and observers noted the amount of understory cover

and sun exposure (both classified as none, partial, or full) where

placement occurred. Thirty days later, we collected and weighed

what remained of each dung pile.

To help produce a more comprehensive list of the LMH species

present in the plots, we supplemented these dung-count data with

periodic bouts of camera-trap sampling. Two infrared camera

traps (Reconyx RM45) were deployed in opposite corners of each

plot for two weeks at a time at two-month intervals during 2010–

2011 (camera settings: ‘‘medium/high’’ sensitivity, 3 pictures per

trigger, rapidfire interval, no delay period).

Abiotic Environment
Rainfall has been continuously monitored at each of the three

sites along the rainfall gradient. Starting in October 2008, rainfall

was measured using cylindrical drip gauges (All Weather Rain

Gauge, Productive Alternatives, Fergus Falls, MN). In June 2010,

we installed a single automated tipping-bucket rain gauge

(RainLogger, Rainwise Inc., Bar Harbor, ME) within one of the

Total-exclusion plots at each site. We installed a second tipping-

bucket gauge at each site in July 2011 and a third in April 2012.

Six of the tipping-bucket gauges were calibrated in August 2011,

with mean error for each gauge ranging from 20.4% to +5.3%.

Soils were classified by manually excavating a profile pit to

bedrock near the exclusion plots at each site. The profiles were

described according to USDA Soil Taxonomy [58]. Bulk density

was assessed by the excavation method [66], removing ,1 L of

soil and measuring the excavated volume of the plastic-lined hole

with water. Samples were taken by genetic horizon, air-dried, and

returned to the Smithsonian Tropical Research Institute in the

Republic of Panama for physical and chemical analyses. Soil pH

was determined using a glass electrode in both deionized water

and 0.01 M CaCl2 in a 1:2 soil-to-solution ratio, as well as in

0.1 M BaCl2 extracts at a 1:30 soil-to-solution ratio. Particle size

distribution was determined by the pipette method following

pretreatment to remove soluble salts, organic matter, and iron

oxides [67]. Total carbon and nitrogen were determined by

automated combustion and gas chromatography with thermal

conductivity detection using a Thermo Flash 1112 analyzer (CE

Elantech, Lakewood, NJ, USA). Total phosphorus was determined

by ignition (550uC, 1 h) and extraction in 1 M H2SO4 (16 h, 1:50

soil to solution ratio), with phosphate detection by automated

neutralization and molybdate colorimetry on a Lachat Quikchem

8500 (Hach Ltd, Loveland, CO, USA). Exchangeable cations were

determined by extraction in 0.1 M BaCl2 (2 h, 1:30 soil to solution

ratio), with detection by inductively-coupled plasma optical-

emission spectrometry on an Optima 7300 DV (Perkin-Elmer

Ltd, Shelton, CT, USA) [68]. Total exchangeable bases (TEB)

were calculated as the sum of Ca, K, Mg, and Na; effective cation

exchange capacity (ECEC) was calculated as the sum of Al, Ca,

Fe, K, Mg, Mn, and Na; base saturation was calculated as (TEB 4

ECEC) 6 100.

Various properties of surface soils were measured within the

exclosures in each year from 2009–2011. In February 2009, we

collected 20-cm deep soil cores at 12 evenly spaced locations

around the periphery of the central 60660 m grid in each plot. All

samples from each plot were thoroughly mixed, subsampled, and

sent to the World Agroforestry Centre (ICRAF) in Nairobi for

analysis (pH, exchangeable Ca, Mg, K, and P, and total percent C

and N). In June 2010, we collected 20-cm deep soil cores from the

four corners of the central 60660 m grid in Open and Total plots

only. Each of these four samples was individually sealed in a

Whirl-Pak bag (Nasco, Fort Atkinson, WI), frozen, and delivered

within 96 h to Crop Nutritional Services (Nairobi, Kenya) for

analysis of NO3, NH4, and percent sand, clay, and silt. In January

2012, we again collected 20-cm cores from the four corners of the

central 60660 m grid in open and total-exclusion plots. Samples

were dried (65uC for 72 hours), homogenized and sieved through

2-mm mesh, and sent to Brookside Laboratories (New Knoxville,

OH) for analysis of pH, organic matter (derived from loss on

ignition), percent sand, silt, and clay, and extractable Al, B, Ca,

Cu, Fe, K, Mg, Mn, Na, P, S, and Zn. Total percent C and N

were also analyzed from the same samples at Stanford University’s

Environmental Measurements (EM-I) facility.

Finally, in September-October 2012, we measured soil-infiltra-

tion capacity in each plot, following standardized methods of the

Land Degradation Surveillance Framework [69]. Briefly, a single

20-cm diameter infiltration ring was hammered into bare soil at

the center of each plot. We pre-wetted the soil and then repeatedly

filled the ring with water to a level of ,160 mm over 130 min (at

5-min intervals for the first 30 min, 10-min intervals for the next

60 min, and 20-min intervals for the final 40 min, for a total of 14

successive fillings), recording the beginning and end water level for

each time interval. Infiltration rates (mm/min) were recorded for

each interval, and mean infiltration rates were calculated for each

plot using (a) data from all 14 fillings and (b) data from only the

final 5 fillings.

Proxies for Primary Productivity
Due to spatial heterogeneity in the understory vegetation at our

study sites [59], it is difficult to estimate primary production using

standard grassland approaches such as the moveable-cage method

[70]. We therefore report two proxies for primary productivity.

First, we delineated two 868 m areas (comprising 64 1-m2 cells)

within total-exclusion plots at each of the three sites along the

rainfall gradient; we selected areas haphazardly, subject to their

having continuous understory vegetation and no trees. In January

2012, corresponding to peak biomass following a high-rainfall

year, we collected, dried, and weighed all standing vegetation

biomass and litter from each grid cell. We calculated the average

biomass of the 64 cells in each 868 m, yielding two measurements

at each site.

Second, we calculated the Normalized Difference Vegetation

Index (NDVI) for each plot using a Quickbird satellite image

collected in November 2009 (following the short rains); NDVI was

calculated for each pixel, and we recorded the maximum,

minimum, and mean NDVI values of all pixels within each plot.

Interactive Effects of Herbivores and Rainfall
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Understory Plant Community
Grasses and forbs were surveyed twice annually in all plots in

February/March (dry season) and October (short rains). A 1-m2

quadrat was placed immediately to the north of each stake in the

central 60660 m grid, and a 0.25-m2 quadrat was placed within it;

species presence/absence was recorded within both quadrats. We

then centered a 10-pin point frame within the smaller quadrat and

recorded the total number of vegetation pin hits for each species,

as well as the number of bare-ground hits. Prior work in both this

system [71] and others (e.g., [72]) shows that number of pin hits is

strongly correlated with understory biomass. Individuals were

identified to species (or to genus+morphospecies) with the aid of

field guides and published species lists [73–75]; these identities are

provisional pending ongoing taxonomic work and DNA barcod-

ing. We calculated observed species richness, asymptotic species

richness (Chao2 estimator), and Shannon diversity and evenness of

understory plants for each plot in each survey.

Overstory Plant Community
Once per year, we censused all shrubs, trees, and tall succulents

within the central 60660 m grid in each plot. This 3600-m2 area

is subdivided into 10610-m cells, which were exhaustively

searched by 2–4 observers. Individuals were identified to species

using field guides [76,77] and binned in one of five height classes

(#1 m, 1–2 m, 2–3 m, 3–4 m, $4 m). Here we present data from

the 2012 survey only, since we did not expect the overstory

community to respond immediately to herbivore exclusion.

To assess woody-plant growth rates and other individual-level

parameters, we tagged 10 individuals in each plot (or all

individuals if ,10 occurred in a plot) of five common woody

species in January 2009: the three dominant acacias (A. etbaica, A.

mellifera, and A. brevispica), Croton dichogamus (Euphorbiaceae), and

Balanites aegyptiaca (Zygophyllaceae). We also tagged all individuals

$1-m tall of a sixth species, A. drepanolobium, which is dominant on

nearby black-cotton soils (Vertisols), but rare on sandier soils and

restricted to our southern (high-rainfall) sites. Tagged individuals

were resurveyed in February of each year. We recorded the

following data: height (in cm), canopy area (in cm2, estimated as an

ellipse based on the length of the longest axis and its perpendic-

ular), and basal circumference (in cm, 15 cm from ground level).

We also recorded the number of stems at ground level and any

occurrence of elephant damage, and we visually estimated the

number of fruits, flowers, and floral buds. Here, we report only

total vertical and lateral (canopy) growth over the three-year

interval 2009–2012.

Small-mammal Community
Since May 2009, we have trapped small mammals at two-

month intervals in all total-exclusion and open plots (only). In each

trapping session, a folding Sherman live-trap was set for four

consecutive nights at each of the 49 stakes in the central 60660 m

grid of each plot. Traps were baited with peanut butter and oats,

set in the evening, and checked in the morning.

Initial species identifications based on field characters were

revised following examination of cranial morphology and DNA

barcodes of small mammals collected outside of UHURU as part

of a different study (CO1-5P locus; sequencing done at the

University of Guelph). Based on field measurements and DNA

barcodes, we retroactively corrected the initial classifications of all

live-trapped taxa (except for the 2–4 Mus spp. and several Crocidura

spp., which we cannot reliably distinguish in the field; these species

are therefore recorded and analyzed only at the genus level). All of

the misidentifications involved the classification of Taterillus

harringtoni as Gerbilliscus robustus. We now distinguish these two

species based on the following characteristics: (1) mature G. robustus

exceed 60 g total mass; (2) all G. robustus have hindfoot lengths

.34 mm; and (3) G. robustus lacks a tufted tail. Each live-trapped

individual was marked for identification with a Monel fingerling

eartag in each ear, except for Acomys, Crocidura, and Mus spp.,

which are too delicate; these species were instead marked with red

marker for individual identification within sampling bouts.

Weight, sex, age, and reproductive condition were recorded at

the time of capture. Here, we report small-mammal densities as

the minimum number known alive (MNKA) of the whole

community [18], scaled to an area of 1 ha.

Statistical Analysis
Descriptive statistics are presented as means 61 SEM. Unless

otherwise specified, we analyzed experimental results using mixed-

model analyses of variance (mmANOVA) with site (n = 3),

treatment (n = 4 or 2, because some responses were measured

only in Open and Total plots), and the treatment*site interaction

as fixed effects, and with block (n = 9) as a random effect. We

adopted a conservative statistical approach: in comparisons

involving plot-level data, plot-wide means were the units of

analysis. Moreover, in most cases where measurements were

repeated in multiple years or seasons, we averaged across surveys

to produce a synthetic view of the first several years of the

experiment (for understory-plant analyses, we also conducted

separate analyses for each of the seven surveys conducted from

2008–2011). Most analyses, therefore, had a total of 18 or 36 data

points, each corresponding to the average value (over however

many sampling locations and intervals) of one plot. Non-normal

data were transformed as indicated in the text; this included all

dung-count and most understory pin-hit data (which were square-

root transformed), as well as dung-decomposition data (for which

percent change in weight was arcsine square-root transformed).

Although data for some understory plant species remained

significantly non-normal (Sharpiro-Wilk W test) even after

transformation, we nonetheless proceeded with parametric anal-

ysis because ANOVA with balanced designs is usually robust to

moderate deviations from normality [78,79]. When a fixed effect

with more than two levels was statistically significant (P#0.05), we

examined pairwise differences using Tukey’s Honestly Significant

Difference (HSD) post-hoc tests. These analyses were conducted in

JMP 9.0.2 (SAS, Cary, NC). We did not adjust alpha for the

multiple comparisons of soil attributes and understory plants,

because we believed that standard corrections increased the

probability of Type II error to unacceptable levels. Instead, we

present the results of our otherwise conservative analyses with the

aim of identifying biologically meaningful trends for further

investigation, and we interpret marginally significant results with

due caution.

We used Kruskal’s non-metric multidimensional scaling (MDS)

to analyze the compositional similarity of surface soils and plant

communities. These analyses were conducted using the isoMDS

function in the MASS package in R. For surface-soil MDS

analyses, we used data on 18 physical and chemical attributes from

samples collected in 2012, along with NO3 and NH4 data from

2010 (open and total-exclusion plots only: see Table S2). For the

understory-plant community, we used the total number of pin hits

of each plant species in each plot, along with the number of bare-

ground pin hits, averaged over the seven surveys from 2008–2012.

For the overstory plant community, we used the density of each

species in each plot in the 2012 census. We quantitatively tested

the compositional similarity of soils and plant communities in R

using the adonis function of the vegan package, which conducts

permutational MANOVA (perMANOVA) using distance matri-
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ces; we specified models with site, treatment, and their interaction

as factors, and with 100,000 permutations per test. Rank-

abundance curves for under- and overstory plant communities

were constructed in R using the rankabundance function in the

BiodiversityR package.

For analyses of LMH dung counts, we were concerned with (a)

confirming the effectiveness of the experimental barriers (i.e.,

ensuring that species’ dung was not present in plots from which

those species are supposed to be absent, and conversely that

barriers do not have unintended negative effects on the activity of

non-target species) and (b) looking for variation in activity levels of

different species across the three sites along the rainfall gradient.

We first summed dung counts within each plot for each survey and

averaged across all surveys to obtain a mean dung density for each

species in each plot. We then assessed exclosure effectiveness as the

percent reduction of dung deposition. To address variation in

activity levels across sites, we used mmANOVA (as specified

above) for each species, omitting plots from which that species was

supposed to be excluded. Any significant effects of treatment in

these models (not applicable for megaherbivores, which are

present only in open plots) indicates unintended effects of the

experimental barriers (i.e., altered activity levels of a given species

in treatments not designed to manipulate that species); significant

effects of site in these models reflect variation in activity levels

across the rainfall gradient.

Results

Large-mammal Community
As of March 2012, 13 native LMH species, along with two

domestic species and 14 carnivores, had been recorded in the plots

(Table S1). Dung surveys showed that the experimental treatments

were highly effective. No species’ dung was found in appreciable

quantity in plots from which that species was excluded (Fig. 2); for

the eight most common LMH, exclosure effectiveness ranged from

92% (for elephants) to 99% (for warthog and dik-dik; mean

effectiveness for all LMH species = 96%). After controlling for the

intended effects of the experimental treatments on dung density,

the square-root-transformed data suggested unintended effects of

the fences for only two LMH species (i.e., differences in activity

levels among treatments that did not target those species; see

Methods: Statistical Analysis). Warthog dung density was signif-

icantly greater in mesoherbivore-exclusion than megaherbivore-

exclusion plots (HSD, P,0.01), neither of which differed

significantly from open plots (P$0.1); the significant treatment*site

interaction (F4,12 = 3.5, P = 0.04) indicates that this effect was

greatest at the low-rainfall site, and likely the result of a warthog

that temporarily inhabited one of the mesoherbivore-exclusion

plots (JRG and RMP, pers. obs.). Buffalo dung density was slightly

but significantly greater in open plots than megaherbivore-

exclusion plots (F1,6 = 8.1, P = 0.03). This apparent reduction of

buffalo activity in Mega relative to Open plots might actually

reflect the activity of cattle, whose dung is difficult to distinguish

from that of buffalo. Although herders are asked to keep cattle out

of the plots, camera traps have recorded cattle within seven of the

plots; such accidents may be more common in Open plots than in

Mega plots, where the 2-m high fences offer a starker visual

reminder to herdsmen than do the 1-m high posts surrounding

Open plots. In any event, total dung deposition by buffalo/cattle is

the lowest of all species (Fig. 2), and we do not believe that

infrequent cattle incursions substantively affect our results.

Only two species showed significant variation in dung density

across sites. Impala dung density was significantly greater in the

low-rainfall site than in the intermediate- and high-rainfall sites

(site: F2,6 = 15.0, P = 0.005; HSD, both pairwise P#0.03). Zebra

dung density was greater in the low-rainfall site than the

intermediate-rainfall site (site: F2,6 = 6.1, P = 0.04; HSD,

P = 0.03), neither of which differed significantly from the high-

rainfall site. Dung-decomposition rates were analyzed using

ANOVA with species, site, and their interaction as categorical

factors, and with understory cover and sun exposure as ordinal

effects. Rates differed among the three dominant LMH species

tested (F2,77 = 21.5, P,0.0001; HSD, all pairwise P#0.01). Mean

percent decrease in weight of fresh dung over 30 d was greatest for

dik-dik (88.860.03%, 12 of 30 piles disappeared completely),

intermediate for impala (71.760.03%, 6 of 30 piles disappeared),

and least for elephants (5560.04%, 2 of 12 piles disappeared).

Understory cover did not significantly affect decomposition rates

(F2,77 = 0.54, P = 0.59), but sun exposure did (F2,77 = 4.37,

P = 0.016), with significantly slower decomposition rates in full

sun than beneath tree canopies (HSD, P,0.03). Decomposition

rates did not differ significantly across sites (F2,77 = 0.71, P = 0.49)

or show significant species*site interactions (F4,77 = 1.36, P = 0.25).

We therefore conclude that our use of dung counts as an index of

LMH activity levels is not likely to be biased by differential decay

rates across sites.

Carnivores of all sizes (including lions, leopards, hyenas, wild

dogs, and jackals) have been recorded in all treatments except

total-exclusion, and leopards have been sighted repeatedly in total-

exclusion plots, suggesting that the experimental barriers are more

permeable to predators than to herbivores and that results are

unlikely to be driven by predator exclusion.

Abiotic Environment
Following a drought in 2009, total annual rainfall at our high-

rainfall sites was considerably greater in 2010 (710 mm) and 2011

(840 mm) than the 13-year average from a nearby rain gauge

(641 mm). Across the three experimental sites, annual rainfall

patterns since October 2008 have been consistent with expecta-

tions–greatest in the southern site, intermediate in the central site,

and lowest in the northern site (Fig. 3a)–despite considerable

month-to-month variability (Fig. 3b). The distribution of precip-

itation events across sites was more even: in the 629 days between

Figure 2. Patterns of dung deposition by the eight most
common LMH species, arranged in order of increasing body
mass. Data are the mean number of dung groups per plot across eight
surveys from April 2009 to November 2011.
doi:10.1371/journal.pone.0055192.g002
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11 June 2010 (when we installed automated rain loggers) and 26

February 2012, the number of days with rainfall events was 152,

145, and 170 in the low-, intermediate-, and high-rainfall sites,

respectively.

Soils are Alfisols in US Soil Taxonomy, with clay-enriched

subsoils (argillic horizons) of high base saturation (,100% in all

profiles studied) (Fig. S3). The ustic moisture regime classifies them

as Ustults, and in the absence of other diagnostic features (notably

a kandic horizon) the soils at all exclosure sites classify as Typic

Haplustalfs. This agrees with a previous soil-mapping exercise in

the region [57], which classified soils developed on metamorphic

basement rocks as Typic Haplustalfs or Typic Ustropepts (the

latter no longer exist in Soil Taxonomy). Given the absence of

information on moisture status at depth in this profile we did not

consider the aridic/udic designations. We therefore consider our

classifications to be preliminary and open to change in light of

further analysis or new information (for example, on seasonal

variation in subsoil moisture). Details of the soil profiles are

provided in the Supporting Information.

There is little evidence of clay movement (e.g., clay films), but

clay depletion in the upper horizons and enrichment at depth

supports the designation of the subsoils as argillic. In the low- and

intermediate-rainfall sites, the subsoils are extremely gravelly, with

.90% gneiss fragments and bedrock at 0.86–1.34 m. The soils

appear to be degraded through a legacy of overgrazing,

particularly in the intermediate- and low-rainfall sites, with

compacted surface horizons showing platy structure and extreme

excavation resistance. This may impede root growth, but there are

many fine and very-fine roots in the subsoil of all profiles. The

presence of fine roots at depth is presumably because exchange-

able base cation concentrations are highest in the subsoils, and

indicates that analysis of surface soil alone may not adequately

characterize nutrient status. All profiles have low aluminum

saturation (#2%) and low concentrations of organic matter

(,1%). The profile at the intermediate-rainfall site has a

moderately acid surface soil (pH 5.8 in water), whereas the other

profiles are slightly acid at the surface (pH 6.3–6.4). However, the

high-rainfall site profile becomes strongly alkaline in the subsoil

(up to pH 8.7 in water).

Several factors indicate a difference in the high-rainfall site

profile compared to the low- and intermediate-rainfall site profiles.

In particular, the high-rainfall site profile has (a) an absence of

strong compaction/excavation resistance in the surface horizons,

(b) an alkaline subsoil, and (c) much greater concentrations of

exchangeable base cations and a higher effective cation exchange

capacity throughout the profile. Based on the proximity of the

high-rainfall (southern) exclosures to the phonolite scarp face,

above which soils are clay-rich Vertisols with alkaline subsoils

containing carbonate nodules, it seems likely that the area around

these exclosures has received considerable input of material from

the escarpment, either during the original emplacement of the

phonolite lava flows, or subsequently via runoff or dust deposition.

(This may in turn explain the presence of Acacia drepanolobium at the

high-rainfall site; this species dominates the tree community on the

plateau Vertisols.).

Surface soils collected in 2009, five months into the experiment,

had significantly lower mean pH in the intermediate-rainfall site

than in the high- or low-rainfall sites (Table 1; see also raw data in

Table S2). Concentrations of exchangeable Ca, Mg, K, extract-

able NO3, NH4, and P, and total percent N and C did not differ

across sites (all P.0.09), and no soil attribute differed significantly

by treatment or showed a significant treatment*site interaction (all

P.0.07).

Surface soils collected from total-exclusion and open plots in

2010 did not differ significantly across any of the fixed effects for

any of the variables measured (NO3, NH4, percent sand, silt, and

clay; all P.0.1). Inspection of the data, however, revealed that one

block in the intermediate-rainfall site had a disproportionately

high clay:sand ratio (Fig. S4a).

This outlying value was confirmed in analyses of surface soils

collected in 2012. In that year, mean clay content was significantly

greater in the intermediate-rainfall site (30.163.0%) than in the

low-rainfall site (18.160.8%; F2,6 = 5.1, P = 0.05; HSD P = 0.04;

Table 1). The effect of site was also significant in the mmANOVA

for percent sand content (F2,6 = 5.3, P = 0.05), with higher values

in the low-rainfall site than the other two sites (HSD, P = 0.06 and

0.08 for comparisons between low-rainfall sites and intermediate-

and high-rainfall sites, respectively; Table 1). Finally, percent silt

was significantly greater in the high-rainfall site (19.561.4%) than

either the intermediate- (14.460.9) or low-rainfall (13.460.6) sites

(F2,6 = 11.4, P = 0.009; HSD, both P#0.02; Table 1). Plots did not

cluster strongly by site or treatment when the 2012 soil data were

analyzed using MDS (Fig. S4b), although the effect of site (alone)

was significant in the corresponding perMANOVA analysis

(F2,12 = 3.9, P = 0.01; treatment: F1,12 = 0.7, P = 0.52; site*treat-

ment: F2,12 = 1.6, P = 0.20), reflecting differences between the

high- and intermediate-rainfall sites.

The 2012 data corroborated the 2009 result of lower pH in the

intermediate-rainfall site (mean of 2009 and 2012 measurements:

5.2460.11) relative to low- (5.9960.09) and high-rainfall

(6.1960.05) sites. Several additional surface-soil properties differed

significantly across sites and/or treatments in the 2012 samples

(Table 1, Table S2). Only two soil attributes differed significantly

Figure 3. Mean monthly rainfall (A) within years and (B) across
years at each of the three sites. The asterisks next to years 2008 and
2012 in the top panel indicate that data were available only for 3 and 5
months, respectively.
doi:10.1371/journal.pone.0055192.g003
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across treatments: calcium concentrations and percent silt were

both greater in total-exclusion than in open plots (13566130 vs.

1146691 mg/kg for Ca; 16.7061.49 vs. 14.8360.81 for percent

silt), but these significant main effects of treatment were driven by

the high-rainfall site (treatment*site interactions in Table 1).

Mean infiltration rates varied little across sites, whether we used

data from all 14 ring fillings (1.67–2.38 mm/min from high to low

rainfall, respectively) or from only the last five (1.40–2.02 mm/

min, respectively). Variation was even less across treatments

(ranging from 1.72–2.17 and 1.52–1.82 mm/min, for all 14 fillings

and for the last five, respectively). Neither site, treatment, nor their

interaction were statistically significant predictors of infiltration

rates in mmANOVA, regardless of how the data were truncated.

Proxies for Primary Productivity
Mean understory biomass density within total-exclusion plots

increased from low- (512649 g/m2) to intermediate- (722620 g/

m2) to high-rainfall (12046104 g/m2) sites as a function of

squared rainfall over the six months prior to harvesting (r = 0.92,

F1,4 = 21.5, P,0.01; Fig. 4a). In the one-way comparison across

sites (whole-model F2,3 = 27.7, P = 0.01), high-rainfall sites had

greater biomass density than intermediate- and low-rainfall sites

(HSD, P = 0.03 and 0.01, respectively); the latter two did not differ

significantly from each other (HSD, P = 0.2).

Mean NDVI likewise differed across sites (F2,18 = 9.2,

P = 0.015), again being greater in high-rainfall sites (0.3360.01)

than in either low- (0.2560.02; HSD P = 0.056) or intermediate-

rainfall sites (0.2260.01; HSD P = 0.01), which again did not differ

significantly from each other. Mean NDVI also differed across

treatments (F3,18 = 5.8, P = 0.006), being significantly greater in

total- and mesoherbivore-exclusion plots (0.2960.02 and

0.2860.02, respectively) than in open plots (0.2460.02; HSD

P,0.035), and marginally greater in total- than in megaherbivore-

exclusion plots (0.2660.02; HSD P = 0.066). The minimum

(Fig. 4b), maximum, and mean NDVI values for each plot were

all positively correlated with rainfall-squared over the six months

prior to the collection of the Quickbird imagery (r = 0.45–0.69, all

F1,34$8.6, all P#0.006).

Understory Vegetation
When we averaged data for each plot across the seven

understory surveys from 2008–2011, the mean number of bare-

Table 1. Surface-soil attributes showing significant variation across treatments and/or sites.

HSD, Treatment HSD, Site

Attribute Year measured Treatment P Total Open Site P High Int. Low Treat6Site

pH 2009 0.07 – – 0.001 A B A 0.50

pH 2012 0.73 – – 0.003 A B A 0.59

% Sand 2012 0.40 – – 0.05 A A A 0.13

% Clay 2012 0.96 – – 0.05 A,B A B 0.61

% Silt 2012 0.01 A B 0.009 A B B 0.004

Ca (ppm) 2012 0.007 A B 0.18 – – – 0.015

S (ppm) 2012 0.84 – – 0.04 B A A,B 0.21

K (ppm) 2012 0.23 – – 0.36 – – – 0.0004

Al (ppm) 2012 0.86 – – 0.0009 B A C 0.93

Notes: Degrees of freedom in 2009 = 3,18 for treatment; 2,6 for site; and 6,18 for treatment*site. In 2010 and 2012, df = 1,6 and 2,6 for treatment and site, respectively,
and 2,6 for treatment*site. Levels of treatment and site that do not share the same letter were significantly different in Tukey’s HSD post-hoc tests; the level with the
highest mean is represented by letter A, the next highest by letter B, etc.
doi:10.1371/journal.pone.0055192.t001

Figure 4. Relationship between two metrics of productivity and
rainfall in the six months prior to productivity measurement.
(A) Mean peak understory biomass (grasses and forbs) in two 64-m2

grids located within total-exclusion plots at each site. (B) Mean NDVI in
each plot, calculated from Quickbird satellite imagery. Rainfall was
squared in regression analyses to better fit the data.
doi:10.1371/journal.pone.0055192.g004
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ground pin hits decreased from intermediate-rainfall (72% of pin

drops) to low-rainfall (53%) to high-rainfall sites (41%; F2,6 = 8.4,

P = 0.02; intermediate significantly greater than high sites, HSD

P = 0.015), and was greater on average in open and megaherbi-

vore-exclusion plots (61% and 65% respectively) than in

mesoherbivore- and total-exclusion plots (50% and 45% respec-

tively; treatment: F3,18 = 5.3, P = 0.009; HSD P = 0.01 and 0.055

for the Mega-Total and Open-Total comparisons, respectively)

(Fig. 5a). When each survey was analyzed independently, site

effects were significant in all surveys but the first; the typical

pattern was for bare-ground pin hits to be significantly more

frequent in the intermediate- than the high-rainfall site, with

middling values at the low-rainfall site. Treatment effects on the

frequency of bare ground were significant only in the four surveys

conducted in 2009 and 2011 (and thus were not driven by season),

with the rank ordering of treatments in these comparisons being

Mega $ Open $ Meso $ Total.

Overall understory density (sum of total vegetation pin hits per

plot, averaged across seven surveys) was significantly greater in

high- than in intermediate-rainfall sites (1.360.1 vs. 0.660.15 hits

per pin; HSD, P = 0.04), and in total- and mesoherbivore-

exclusion plots (1.360.1 and 1.160.2 hits per pin, respectively)

relative to megaherbivore-exclusion and open plots (0.660.1 and

0.760.1, respectively; HSD, pairwise P,0.03; Fig. 5b). The

significant treatment*site term in this model (F6,18 = 2.7, P = 0.046)

reflects a disproportionately large difference between total- and

mesoherbivore-exclusion plots at the intermediate-rainfall site

(Fig. 5b). When we analyzed each survey separately (square-root

transformed data), the effect of site was significant in four of the

seven surveys (February 2009, October 2010, February 2011, and

October 2011). In three of these, understory density was

significantly greater in the high-rainfall site than the intermedi-

ate-rainfall site, neither of which differed significantly from the

low-rainfall site; in the fourth (February 2011), understory density

was greater in the high-rainfall site than both low- and

intermediate-rainfall sites. In terms of treatment, understory

density was always greatest in Total plots and second-greatest in

Meso plots; the difference between these two treatments was

statistically significant in only one of the surveys (October 2009, at

the tail end of a yearlong drought; HSD, P = 0.003). Open and

Mega plots, which together had the lowest understory densities,

were statistically indistinguishable from each other in all surveys.

The most frequent pattern (obtained in four of the surveys) was for

Total plots to have significantly greater understory density than

Open and Mega plots, with no significant differences between

Meso plots and any of the other treatments (HSD pairwise

comparisons).

Rank-abundance curves showed that understory communities

were dominated by the same three grass species at each site:

Pennisetum stramineum, Cynodon plectostachyus, and C. dactylon (collec-

tively accounting for 55%, 51%, and 50% of total pin hits at low-,

intermediate-, and high-rainfall sites, respectively; Fig. S5). Of the

10 most abundant species at each site, six grasses were shared

across all sites (the three above, plus Microchloa kunthii, Eragrostis

tenuifolia, and Aristida sp.).

When we analyzed pin-hit data for individual species (averaged

across seven surveys and square-root transformed), the treatment

effect was significant for 13 species (Table 2), including the three

numerically dominant species. These species were least common

in either Open or Mega plots in all but one case (Heteropogon

contortus, lowest in Total, although this effect was pronounced only

at the high-rainfall site), and were most common in either Total or

Meso plots in all but two cases (Cyperus sp. and H. contortus, highest

in Open). The effect of site was significant for 27 species; 10 of

these were most common in the low-rainfall site, two in the

intermediate-rainfall site, and 15 in the high-rainfall site (Table

S3). Twenty-three species showed no significant effects of

treatment, site, or their interaction. An additional 58 species for

which we recorded ,100 pin hits (corresponding to ,0.081%

cover) were deemed too rare to justify a statistical comparison.

The impact of herbivory differed significantly across sites for

only four understory species (see treatment*site interaction in

Tables 2 and S3). Three of these were suppressed by LMH, but

only at low-rainfall (Plectranthus sp. and Sida sp.) or intermediate-

rainfall sites (Cenchrus ciliaris). The fourth species, Heteropogon

contortus, was apparently facilitated by LMH (as noted above),

but only at the high-rainfall site.

Asymptotic species richness (Chao2, calculated for each survey

and then averaged across all surveys) was greater in the high-

rainfall site (50.561.9 species/plot) than in the intermediate-

(39.562.0; F2,6 = 31.4, P = 0.0007; HSD, P = 0.008) and low-

rainfall sites (43.962.6; HSD, P = 0.068), with no significant

difference between low- and intermediate-rainfall sites; the effect

of treatment was non-significant (F3,18 = 1.96, P = 0.16). When

understory species richness was analyzed for each survey

independently, site effects typically followed the same pattern

described above, and the treatment effect was significant only in

the second survey (February 2009; F3,17 = 4.8, P = 0.01), when

species richness was greater in total-exclusion plots (48.263.9

species/plot) than in both megaherbivore-exclusion and open plots

(37.164.0 and 34.263.6, respectively; HSD, P = 0.04 and 0.01,

Figure 5. Trends in (A) extent of bare ground and (B) total
understory vegetation pin hits across sites and treatments.
Data are out of 490 total pin drops per plot per survey.
doi:10.1371/journal.pone.0055192.g005
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respectively). The treatment*site interaction for species richness

was not significant in any survey.

Similarly, understory Shannon diversity (averaged across all

surveys) was 23% greater in high- than intermediate-rainfall sites

(F2,6 = 6.56, P = 0.03; HSD, P = 0.027), with no significant effect of

treatment (F3,18 = 0.3, P = 0.8). The same patterns in diversity were

observed consistently when each survey was analyzed indepen-

dently. In contrast, Shannon evenness (averaged across all surveys)

did not show significant effects of site (F2,6 = 0.4, P = 0.68), but did

appear to differ across treatments (F3,18 = 2.93, P = 0.06): open

plots had the greatest evenness and total-exclusion plots the lowest,

and this contrast approached statistical significance (HSD,

P = 0.06). However, when evenness was analyzed for each survey

separately, this same pattern was only observed in February 2010

(treatment: F3,18 = 4.0, P = 0.02; HSD contrast of open vs. total-

exclusion plot, P = 0.03).

Community similarity of all 36 plots showed no strong

clustering in understory species composition by site, treatment,

or block within site (MDS, Fig. 6a), although intermediate-rainfall

sites tended to be distinct, and the Meso and Total plots in one

block of the high-rainfall site were outliers. The corresponding

perMANOVA analysis indicated significant differences in com-

munity similarity across both sites (F2,24 = 8.1, P,0.0001) and

treatments (F3,24 = 2.6, P = 0.008), with no significant interaction

term (F2,24 = 1.2, P = 0.2).

Overstory Vegetation
Overall overstory density in 2012 (total stems of all species,

square-root transformed) increased with increasing rainfall (site:

F2,6 = 23.1, P = 0.0015) and was significantly greater in the high-

rainfall site (20936243 individuals/ha) than the intermediate

(12606219 individuals/ha; HSD, P = 0.008) and low-rainfall sites

(923691 individuals/ha; HSD, P = 0.001). There was no signif-

icant main effect of treatment on overall overstory density across

treatments (F3,18 = 1.5, P = 0.25), although a significant treat-

ment*site interaction (F6,18 = 2.7, P = 0.045) suggested that woody

density was greater in Total plots than other treatments at low-

and intermediate-rainfall sites only. We analyzed densities

separately (square-root transformed data) for the seven common

woody species that occurred at all sites. Three of these showed

significant effects of treatment. Acacia etbaica densities were greater

in Mega than in Open plots (treatment: F3,18 = 3.5, P = 0.037;

HSD P = 0.03), but only at the high-rainfall site (in part because

this species is rare at the low-rainfall site; interaction: F6,18 = 4.3,

P = 0.007). Acacia mellifera densities were significantly greater in

Total plots (treatment: F3,18 = 6.0, P = 0.005) than in Meso (HSD,

P = 0.02) and Open plots (HSD, P = 0.004). Finally, Balanites

aegyptiaca densities were significantly greater in Total than in Open

plots (treatment: F3,18 = 4.2, P = 0.02; HSD P = 0.016). Acacia

brevispica, Croton dichogamus, Grewia sp., and Boscia angustifolia, did not

differ significantly across treatments (all P.0.07).

We recorded at least 27 overstory species in 2012, and their

densities differed across sites (Fig. S6). Four species (A. brevispica, A.

mellifera, A. etbaica, and Croton dichogamus) were among the seven

most-abundant taxa at every site; A. brevispica was first- or second-

most abundant at all sites, and A. etbaica was the most abundant

species at the intermediate- and high-rainfall sites. Community

similarity of overstory vegetation was driven by site, with

considerable overlap between intermediate- and high-rainfall sites

and no overlap between low-rainfall sites and the other two

(Fig. 6b), due in part to the relative rarity of A. etbaica at the low-

rainfall site and to two succulent Euphorbia species that were

common at the low-rainfall site and absent from the others (Fig.

S6). Analysis with perMANOVA corroborated the strong dissim-

ilarity in composition across sites (F2,24 = 16.74, P,0.0001), with

no significant effects of treatment (F3,24 = 1.2, P = 0.26) or

treatment*site (F6,24 = 1.3, P = 0.17).

Table 2. Understory plant species showing significant variation across treatments.

HSD,
Treatment HSD, Site

Species

Overall
percent
cover

Overall rank
abundance

Treat-
ment P Total Meso Mega Open Site P High Int. Low Treat6Site

Cynodon plectostachyus 18.8 1 0.0034 A A,B B B 0.0088 A B A 0.70

Pennisetum stramineum 16.5 2 0.028 A A,B A,B B 0.35 – – – 0.06

Cynodon dactylon 14.7 3 0.01 A A,B B B 0.75 – – – 0.10

Plectranthus sp. ‘‘small’’ 2.0 9 0.01 A A,B A,B B 0.02 A,B A B 0.003

Brachiaria leersioides 1.8 10 0.03 A,B A A,B B 0.002 B B A 0.27

Commelina sp. 1.2 13 0.009 A A,B A,B B 0.047 A A A 0.13

Indigofera sp. ‘‘small’’ 0.90 15 0.004 A A,B B B 0.40 – – – 0.19

Cenchrus ciliaris 0.61 23 0.035 A,B A B A,B 0.07 – – – 0.04

Ipomoea biflora (syn. sinensis) 0.42 27 0.0001 A B C B,C 0.0035 A B A,B 0.11

Cyperus sp. 0.38 30 0.018 A,B A,B B A 0.0025 A B A 0.06

Heteropogon contortus 0.30 33 0.05 A A A A 0.04 A B A,B 0.01

Solanum campylacanthum 0.27 38 0.04 A,B A A,B B 0.38 – – – 0.18

Helichrysum glumaceum 0.17 47 0.02 A A A A 0.27 – – – 0.37

Notes: Degrees of freedom = 3,18 for treatment; 2,18 for site; and 6,18 for treatment*site. Levels of treatment and site that do not share the same letter were
significantly different in Tukey’s HSD post-hoc tests; the level with the highest mean is represented by letter A, the next highest by letter B, etc. Percent cover is the
number of pin hits for each species divided by the total number of pin drops (123,480) in the experiment to date. Data for Indigofera sp. ‘‘small’’ are from only the most
recent three surveys, as opposed to seven surveys for other species. Results for the remaining understory plant species are shown in Table S3.
doi:10.1371/journal.pone.0055192.t002
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Both height and canopy growth of A. brevispica were significantly

greater in all three exclusion treatments than in open plots

(Fig. 7a,b; F3,18 = 12.1, P = 0.0001 for height; F3,18 = 11.0,

P = 0.0002 for canopy area; HSD, P,0.005 for all pairwise

comparisons involving open plots). A significant treatment*site

interaction in the model for A. brevispica height growth (F6,18 = 4.3,

P = 0.008) reflected the lack of significant treatment effects at the

intermediate-rainfall site (Fig. 7a). Mean A. mellifera growth rates

increased with each successive reduction in the LMH community

(Fig. 7c,d), suggesting that browsers across the body-size spectrum

influence growth rates in this species; however, the relative impact

of different LMH groups varied across sites, especially for height

growth (treatment*site F6,18 = 2.53, P = 0.059). For both A.

brevispica and A. mellifera, mean height-growth rates were signifi-

cantly greater in the high-rainfall site than the intermediate-

rainfall site, but site did not affect canopy growth rates for either

species. For A. etbaica, height growth (only) was greater in total-

exclusion than in open plots (HSD, P = 0.01; Fig. 7e), with

middling (and virtually identical) values in mega- and mesoherbi-

vore-exclusion plots, and with no significant site or treatment*site

effects. Mean height growth of Balanites aegyptiaca was greater in the

three exclusion plots (range: 0.39–0.53 m) than open plots

(20.36 m), but statistical power was low because this species

occurred in only 22 of 36 plots (treatment: F3,8.5 = 3.1, P = 0.087).

Croton dichogamus growth rates were also lowest on average in open

plots, but not significantly so.

Small-mammal Community
From May 2009 to November 2011, we recorded 1789 unique

individuals of at least 16 species of small mammals in 56,448 trap-

nights over 16 sampling bouts (Table S1). Small-mammal

communities were dominated by five taxa–Gerbilliscus robustus,

Mus spp., Aethomys hindei, Acomys kempi, and Saccostomus mearnsi–

collectively accounting for .80% of captured individuals. Two

taxa (G. robustus and Mus spp.) were nearly ubiquitous, being

recorded from at least one plot in every site in 15 of the 16

sampling bouts. Three taxa (Acomys percivali, Dendromus sp., and

Grammomys dolichurus) have been captured only once to date. Mean

MNKA densities (all species combined, averaged for each plot

over all sampling bouts) differed significantly across sites (Fig. 8;

F2,6 = 51.1, P = 0.0002), being roughly three-times greater in high-

rainfall sites (44.469.3 individuals/ha) than intermediate

(14.563.2; HSD, P = 0.0004) or low-rainfall sites (11.462.6;

HSD, P = 0.0002); the latter two sites did not differ significantly

(HSD, P = 0.6). Overall, mean densities in Total plots (32.567.2)

were nearly triple those in Open plots (11.662.5; F1,6 = 42.9,

P = 0.0006). Finally, there was a significant treatment*site inter-

action (F2,6 = 7.4, P = 0.02), with significantly greater densities in

high-rainfall exclusion plots than in any other site-treatment

combination (Fig. 8; HSD, all pairwise P,0.004).

Discussion

Validity of the Experimental Design
Our results show that the UHURU treatments function as

intended. The three exclosure treatments reduced dung deposition

of targeted herbivore species by ,96% overall. Moreover, the

actual impact of incursions within these treatments is likely less

than the dung-count failure rate implies. On the infrequent

occasions when impala and zebra have breached the mesoherbi-

vore and total-exclusion plots, our observations indicate that they

do not feed, but rather pace the perimeter of the fence until they

escape or are released. Juvenile elephants occasionally stray

beneath the megaherbivore-exclusion fences while the herd feeds

nearby, but these individuals are small and they do not stray far

from the group. Finally, heavy rains sometimes carry dung pellets

of giraffe, antelope, and zebra into adjoining plots, contributing to

an overestimate of treatment failure rate.

As mentioned above, the elevated dung deposition of warthogs

in Meso relative to Mega plots (Fig. 2) likely resulted from the

temporary residence of a warthog in one of the low-rainfall Meso

plots; we suspect that this result was idiosyncratic and will not

persist. As noted in the Results, the apparent reduction of buffalo

dung in Mega relative to Open plots might actually reflect the

activity of cattle, whose dung is difficult to distinguish from that of

buffalo.

Effects of site on dung density were significant for only two

species, impala and zebra, and indicated that activity of both

species was greatest at the low-rainfall site. This is surprising in

light of the expectation [52,80] that local herbivore abundance

should be positively correlated with rainfall and primary produc-

tivity. At our sites, human activity increases along the rainfall

gradient from low to high, so the site effects for impala and zebra

might in part reflect avoidance of people. The absence of a more

general correlation is encouraging, although the apparently

greater activity levels of two common mesoherbivores at one site

Figure 6. Non-metric multidimensional scaling plots illustrating patterns of community similarity across sites and treatments for
(A) understory and (B) overstory plants.
doi:10.1371/journal.pone.0055192.g006
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suggests the need to intensify LMH monitoring as the experiment

proceeds, so that we can account statistically for any biases if

necessary.

Rainfall, the second major factor in our experimental design,

also followed the anticipated pattern over the first three full years

of the study (Fig. 3). Not surprisingly, there is variation in the

magnitude of the monthly and yearly differences in water input

across sites. However, the data suggest that differences in rainfall

across sites are primarily a function of the quantity of rainfall per

event, rather than the frequency of rainfall events, which is similar

at all sites.

Most soil attributes did not differ significantly across sites or

treatments. All three sites were classified as Typic Haplustalfs

(Alfisols). This generally supports one assumption of our experi-

mental design–that comparisons of LMH effects across sites will

not be heavily influenced by abiotic variables other than rainfall.

Collectively, analyses of surface soils collected in 2009 and 2010

revealed significant variation across sites in only one soil attribute

(pH). In 2012, the intermediate-rainfall sites had the lowest

surface-soil pH (as observed in 2009) and the highest % clay,

sulfur, and aluminum contents (but see soil-profile data).

Nevertheless, points did not cluster strongly by site in MDS (Fig.

S4b). The only apparent cluster in that graph comprised the high-

rainfall total-exclusion plots, which is consistent with the significant

treatment*site interactions for silt, calcium, and potassium

concentrations (Table 1), all of which had disproportionately high

values in the high-rainfall total-exclusion plots. The reason for the

pronounced effects of exclusion on these three variables at high-

rainfall sites is not yet known, and neither is the cause of

discrepancies in the results for soil texture in samples taken in 2010

and 2012 (which were collected using slightly different strategies

and analyzed by different labs). Future sampling using standard-

ized methods will reveal whether these results are persistent.

There is a potentially important caveat to our conclusion that

soil composition is generally similar across sites. The inter-annual

mean surface-soil pH of 5.24 found at intermediate-rainfall sites is

considered strongly acidic [81], whereas those the low- and high-

rainfall sites are considered only moderately-to-slightly acidic.

Aluminum toxicity can be a problem in acidic soils [82], and the

threshold pH above which Al becomes insoluble in many soils is

approximately 5.2 [83]. It is therefore noteworthy that Al

concentrations were also significantly greater at intermediate-

rainfall when measured in 2012. However, Al saturation was

extremely low to depth in the three profile pits (#2%), so it seems

unlikely that Al toxicity contributed to the lower-than-expected

peak-biomass and NDVI measurements in the intermediate-

rainfall site (Fig. 4), or to other differences in plant community

composition in that site relative to the other two (Figs. 5, 7;

Tables 2, S2). Likewise, P deficiency, another problem associated

with acidic soils, is unlikely given the relatively high Mehlich-

extractable (plant-available) P concentrations in surface soils.

Surface horizons at the central and northern sites appear to

become extremely hard during dry periods, which can impede

root growth or kill existing roots, although fine roots were

abundant to bedrock in all profiles studied. Nonetheless, potential

edaphic constraints on plant growth warrant further investigation.

Another important assumption of our design is that variation in

rainfall across sites translates into measurable differences in

primary productivity, since we expect productivity (rather than

rainfall per se) to modulate the direct and indirect effects of LMH.

Figure 7. Rate of growth in height (A, C, E) and canopy breadth (B, D) for the three dominant Acacia species across sites and
treatments.
doi:10.1371/journal.pone.0055192.g007
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Both field- and satellite-derived proxies for productivity increased

across sites as a function of recent rainfall (Fig. 4) and were greatest

overall in the high-rainfall site. Neither proxy, however, differed

significantly between intermediate- and low-rainfall sites, despite

the fact that total precipitation in the intermediate-rainfall site was

closer to that in the high-rainfall site than the low-rainfall site

(Fig. 3). We have already discussed soil pH as a possible factor

limiting production at the intermediate-rainfall site. Another factor

might be a legacy of intensive cattle grazing at this site prior to

2007 (Mike Littlewood, Mpala Ranch, personal communication).

This site currently has extensive areas of hard, bare soil with high

surface clay content, which appear resistant to colonization by

plants. These features might contribute to high runoff rates and a

decoupling of landscape-scale production from rainfall. Our

measurements of infiltration capacity did not reveal any consistent

differences across sites; however, these trials were only performed

at one location within each plot (equating to 12 locations within

each site). Increased spatial and temporal replication of these

measurements will help to elucidate the lower-than-expected

production:rainfall ratio in the intermediate-rainfall site, as will an

evaluation of the potential effects of soil acidity. Likewise, it will be

helpful to refine and increase the spatiotemporal replication of our

productivity measurements, given the spatial heterogeneity of

vegetation cover and the difficulty of accurately measuring

primary productivity at large scales.

Effects of Herbivory and Environmental Context on
Response Variables

Not surprisingly, understory density was greatest (and coverage

of bare ground was least) in plots accessible to the fewest LMH

species. In general, the treatments segregated into two groups:

high understory density in total- and mesoherbivore-exclusion

plots and low density in open and megaherbivore-exclusion plots.

Open and Mega plots were never significantly different, and Meso

and Total plots differed in only one of seven surveys. This suggests

that mesoherbivores strongly regulate total understory density,

that warthogs and dik-dik have considerably weaker effects, and

that megaherbivores have no detectable effect (in this case,

elephants, since giraffes rarely browse the understory [84]). The

mesoherbivore size class is the most species rich, comprising eight

species recorded in our plots, and also the most functionally

diverse, ranging from strict grazers (zebra, buffalo) to strict

browsers (gerenuk). Moreover, impala are abundant at our sites

and consume a broad range of both grasses and forbs [85–87], and

dung counts suggest that they are particularly active at the low-

rainfall site, where strong effects of mesoherbivore-exclusion were

observed (Fig. 5). All of these factors likely contributed to the

pronounced effects of mesoherbivore exclusion, although the

limited impact of dik-dik, warthog, and elephants is still

noteworthy.

Almost all of the individual understory species that differed

significantly across treatments were most abundant in total- or

mesoherbivore-exclusion plots (Table 2). If competition were a

major limiting force (or if overcompensation by plants following

herbivory were a frequent occurrence), then we might expect some

species to be more abundant in open and megaherbivore-

exclusion plots than in total and mesoherbivore exclosures (where

overall understory densities were higher). However, this pattern

was observed for only one species, Heteropogon contortus. It is

possible, though, that more species will show this pattern in the

future, following a longer history of exclusion.

The observed trends in understory abundance across sites–with

15 species most common at high-rainfall sites, 10 at low-rainfall

sites, and only two at intermediate-rainfall sites–are consistent with

a plant species pool containing both mesic- and xeric-adapted

species. Understory species richness and diversity were both

greatest in high-rainfall sites and did not differ significantly across

treatments, perhaps due to the relatively short duration of the

experiment to date. In contrast, community evenness did not differ

significantly across sites, but was greater in open than in total-

exclusion plots, suggesting that the proportional representation of

competitively dominant plant species increases in the absence of

LMH. In time, this discrepancy in evenness may lead to treatment

effects in species richness via competitive exclusion; that we did not

observe such effects in the present dataset may reflect a

combination of low statistical power and limited effect sizes after

only three years of the experiment. Theory predicts that

competitive exclusion following LMH exclusion should be most

likely in resource-rich areas (our high-rainfall site) [53]. Continued

monitoring should enable us to test this prediction.

Trends in woody-stem density paralleled trends in rainfall across

sites, as expected. The lack of significant treatment effects on

overall woody density is perhaps not surprising after only 3.5 years:

seedling and sapling recruitment in savannas tends to be

Figure 8. Temporal dynamics in the minimum number known
alive of all small mammals in total-exclusion (filled markers)
and open plots (open markers) at (A) low-rainfall, (B)
intermediate-rainfall, and (C) high-rainfall sites.
doi:10.1371/journal.pone.0055192.g008
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infrequent and episodic [43,88,89], and density responses might

take more time to materialize. However, the significant effects of

exclusion on three of the most common overstory species

corroborate previous work showing that LMH (and megaherbi-

vores in particular) regulate shrub dynamics in this system [60],

and suggest that treatment effects on total stem density are likely to

materialize eventually.

Acacia brevispica growth rates were regulated by megaherbivores

(Fig. 7a,b). The absence of a significant megaherbivore effect on

height at the intermediate-rainfall site (Fig. 7a) could be caused by

either low abundance or differential diet selection of elephants at

that site, or by an interaction between herbivory and soil

attributes. We consider the latter most likely: our dung counts

do not suggest consistent differences in elephant activity across

sites, and megaherbivore exclusion did reduce A. brevispica canopy

growth (Fig. 7b)–as well as the height and canopy growth of other

acacias (Fig. 7c-e)–at the intermediate-rainfall site.

Herbivores of all size classes contributed to the suppression of

growth in A. mellifera and A. etbaica. For A. mellifera, effects were

dominated by mega- and mesoherbivores at low-rainfall sites, by

dik-dik at intermediate-rainfall sites, and by megaherbivores at

high-rainfall sites (Fig. 7c,d). Growth data for A. etbaica suggested

the importance of dik-diks at low- and high-rainfall sites and

megaherbivores at intermediate- and high-rainfall sites (Fig. 7e).

Again, we suspect that for the most part, the observed differences

in the relative influence of different LMH across sites are not

caused by simple differences in relative abundance. Impala was the

only browsing species whose dung density differed consistently

across sites; this might partially explain the strong effects of

mesoherbivore exclusion on A. mellifera growth at low-rainfall sites,

but it does not explain the patterns (or lack thereof) observed for

other woody species. We do note, however, that most of our

permanently tagged trees are relatively large, with interquartile

ranges for height varying from 1.62–2.30 m (Croton dichogamus) to

2.9–4.3 m (Balanites aegyptiaca). It seems likely that the effect of

smaller browsers (dik-dik and impala) will be most pronounced for

trees ,2-m tall, with the impact of megaherbivores increasing

beyond the 2-m threshold. We are therefore expanding the

number of tagged trees in our dataset to allow a test of this

prediction.

Across taxa, significant site*treatment interaction terms were

uncommon. This may be explained in part by the conservative

statistical approach adopted here (for the sake of providing a broad

overview), which afforded limited power to detect such effects. We

expected that increases in plant species’ abundance in exclosures

(i.e., the suppressive effect of herbivory) would be most

pronounced in low-rainfall sites [40], whereas any decreases in

abundance within exclosures (e.g., resulting from overcompensa-

tion or intensified competition between plant species) would be

strongest in high-rainfall sites [53]. This is what we observed for

each of the understory plant species (n = 4, or 7% of the total) that

displayed significant site*treatment interactions. Likewise, increas-

es in total understory and overstory plant densities within total-

exclusion plots were most pronounced at low- and intermediate-

rainfall sites. Small mammal densities, however, showed the

opposite pattern (greatest increase in exclusion plots at the high-

rainfall site), and the interactive effects on tree growth rates were

variable. Thus, while context-dependent variability in the direct

and indirect effects of LMH is clearly evident across the range of

environmental conditions encompassed by UHURU, an integrat-

ed mechanistic explanation of this contingency remains a primary

objective of our ongoing research.

Supporting Information

Figure S1 Size-selective large-herbivore barriers uti-
lized in the UHURU experiment. (A) Total exclusion; (B)

intersection of total and mesoherbivore exclusion, the latter of

which lacks a chain-link barrier at ground level; (C) megaherbivore

exclusion, with wire at 2-m above ground level, allowing access to

all herbivores smaller than elephant and giraffe; (D) open, which

lacks fencing and has wooden posts at 10-m intervals to delineate

plot boundaries. (Mohamud Mohamed has given written informed

consent, as outlined in the PLOS consent form, to publication of

his photograph.)

(TIF)

Figure S2 Estimated biomass densities (left Y-axis) and
metabolic loads (right Y-axis) for the three dominant
large herbivores in each size class targeted by the
UHURU experiment. Biomass densities are taken from

published estimates by Augustine (reference [55] in the main

text). Metabolic load estimates are derived from biomass data

using Nagy et al.’s allometric equations for field metabolic rates

(reference [56] in the main text). Both estimates apply to the

Mpala Conservancy as a whole, rather than to the experimental

sites specifically.

(TIF)

Figure S3 Soil profiles at the three UHURU exclosure sites: (A)

low-rainfall (north); (B) intermediate-rainfall (central); (C) high-

rainfall (south). Details of soil profiles are provided in the main text

and Text S1.

(TIF)

Figure S4 Surface-soil composition. (A) Relationship be-

tween percent clay and percent sand for each of the three

experimental blocks at each site, showing outlying value in one

block of the intermediate-rainfall site. (B) Non-metric multidimen-

sional scaling plot showing compositional similarity of soils in each

open and total-exclusion plot. This MDS analysis is based on 20

physical and chemical attributes, all of which were from 2012

samples except NO3 and NH4 (2010 data) and percent sand, silt,

and clay (average of 2010 and 2012 data).

(TIF)

Figure S5 Rank-abundance curves for understory
plants at each site. Curves were computed by summing the

number of pin hits within each plot for each survey, averaging for

each plot across the seven understory surveys conducted from

2008 to 2011, and then pooling the data for all plots within each

site. Species codes for the six most abundant taxa at each site are

as follows: Cd – Cynodon dactylon; Cp – Cynodon plectostachyus; Ps –

Pennisetum stramineum; Esp – Enteropogon sp.; Plsp – Plectranthus sp.

‘‘small’’; Et – Eragrostis tenuifolia; Mk – Microchloa kunthii; Csp –

Cymbopogon sp.; Bl – Brachiaria leersioides; T – Tragus sp.

(TIF)

Figure S6 Rank-abundance curves for overstory plants
at each site. Curves were computed by pooling data from all

plots within each site for the 2012 woody-plant census. Species

codes for the seven most abundant taxa at each site are as follows:

Ae – Acacia etbaica; Ab – Acacia brevispica; Eh – Euphorbia heterospina;

Am – Acacia mellifera; Cd – Croton dichogamus; En – Euphorbia nyikae; G

– Grewia sp.; T – Teclea sp.; R – Rhus sp.; C – Commiphora sp.; An –

Acacia nilotica; L – Lycium sp.

(TIF)

Table S1 Mammal species known to occur at Mpala
Research Centre, specifying those that have been
observed (via direct observation or camera trapping)
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within at least one of the 36 UHURU plots between
September 2008 and May 2012.
(DOCX)

Table S2 Raw surface-soil data for open and total-
exclusion plots at each site, 2009–2012. Means and standard

deviations are derived from the three replicate plots of each

treatment at each site. See main text for methodological details.

(DOCX)

Table S3 Understory plant species for which no signif-
icant treatment effects were detected in linear mixed-
model analyses with site, treatment, and their interac-
tion as fixed effects, and with block as random effect
(species showing significant treatment effects are listed
in Table 2 of the main text). Effects of site were significant for

twenty species, which are listed first. Tukey’s HSD post-hoc

analyses were used to compare pin-hit frequencies at high-,

intermediate-, and low-rainfall sites. Sites that do not share the

same letter across these columns were significantly different

(P#0.05); the site with the highest frequency of a given species is

always given the label ‘‘A’’. Twenty-three species showed no

significant effects of treatment, site, or their interaction. We did

not analyze an additional 58 species for which we recorded fewer

than 100 total pin hits (out of 123,480 total pins dropped in the

course of seven surveys spanning 2008 to 2011). Species names

preceded by superscript numerals were not initially not recognized

as distinct and are therefore lumped in earlier surveys: 1 two

Aristida spp., provisionally labeled ‘‘common’’ and ‘‘rare’’, first

distinguished in the fifth survey (October 2010); 2 two Barleria

species, B. acanthoides and B. ramulosa, first distinguished in the

seventh survey (October 2011); 3 Hibiscus meyeri, formerly labeled

Hibiscus sp., first identified in the seventh survey; 4 two Indigofera

species, provisionally labeled ‘‘big’’ and ‘‘small’’, first distinguished

in the fifth survey; 5 two Justicia species, provisionally labeled

‘‘white’’ and ‘‘pink’’, first distinguished in the fifth survey; 6 two

Melhania species, M. velutina and M. ovata, first distinguished in the

seventh survey. Data for these species are thus drawn from one or

from the average of three surveys.

(DOCX)

Text S1 Detailed descriptions of soil profiles at each site.

(DOCX)
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