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Abstract Species distribution models (SDMs) are often used
in conservation planning, but their utility can be improved by
assessing the relationships between environmental and species
response variables.We constructed SDMs for 30 stream fishes
of Maryland, USA, using watershed attributes as environmen-
tal variables and presence/absence as species responses.
SDMs showed substantial agreement between observed and
predicted values for 17 species.Most important variables were

natural attributes (e.g., ecoregion, watershed area, latitude/
longitude); land cover (e.g., %impervious, %row crop) was
important for three species. Focused analyses on four repre-
sentative species (central stoneroller, creek chub, largemouth
bass, and white sucker) showed the probability of presence of
each species increased non-linearly with watershed area. For
these species, SDMs built to predict absent, low, and high
densities were similar to presence/absence predictions but
provided probable locations of high densities (e.g., proba-
bility of high-density creek chub decreased rapidly with
watershed area). We applied SDMs to predict suitability of
watersheds within the study area for each species. Maps of
suitability and the environmental and species response rela-
tionships can help develop better management plans.
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1 Introduction

Conserving and protecting populations and ecosystems has
been a main focus of ecological research for the past 30 years.
This interest has increased dramatically partly in response to the
reported loss of global biodiversity [1, 2] and the homogeniza-
tion of major taxonomic groups across the landscape [3, 4].
These problems are largely driven by altered or degraded
ecosystem conditions caused by land use practices [5–8]. Con-
servation efforts would be greatly aided by large-scale predic-
tions of species distributions (i.e., species distribution models
[9–11]) that account for such anthropogenic stressors.

Conserving fish assemblages of small streams is particu-
larly important because many streams are impaired [12, 13]
and fish assemblage integrity decreases with increasing
anthropogenic stress [14–16]. However, a generalized con-
servation plan is likely to be ineffective because the species
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in a fish assemblage have differing life history strategies,
habitat requirements, and sensitivities to stressors [17–19].
Having a distribution model for each species of interest
should yield more effective conservation plans.

There are many techniques to construct species distribu-
tion models (SDMs, [9, 20]), including: generalized linear
models, generalized additive models, Generic Algorithm for
Rule-Set Predictions, Classification and Regression Trees,
and Maximum Entropy. Many of these methods have been
used to predict species distributions of fishes (e.g., [21–23]),
usually by predicting suitable habitats. Recent reviews suggest
that SDMs can be improved by integrating species–environ-
ment relationships and incorporating more ecological theory
into SDM construction (e.g., [9, 24]). These improvements
could yield better models for stream fish conservation (for
example, see [25]).

Here, we present SDMs for 30 common species of fish
from streams in the Chesapeake Bay watershed area of
Maryland, USA. Our overall goal was to predict suitable
habitat from watershed attributes and present these data as
habitat suitability maps for all 30 species. For each species,
we used the conditional random forests machine-learning
algorithm (cRF, [26, 27]) to build an SDM that predicts the
probability of presence from environmental variables. The
explanatory variables includedwatershed indicators of anthro-
pogenic stress (e.g., % impervious cover or % row crop cover)
and natural watershed attributes (e.g., % sand in soil, ecore-
gion, latitude, or longitude). We evaluated relationships be-
tween species presence and environmental variables using the
variable importance and partial dependence plots from each
cRF model (see [26, 28]). For four example species, we also
built cRF SDMs that predicted the probabilities of three
density categories (absent, low density, high density) rather
than presence/absence.

2 Materials and Methods

2.1 Study Sites

We studied the 23,408 km2 portion of Maryland within the
Chesapeake Bay basin in the Mid-Atlantic region of the US
(Online resource 1). The study area intersects six level III
ecoregions including: Central Appalachians, Ridge and
Valley, Blue Ridge, Northern Piedmont, Southeastern Plains,
and Middle Atlantic Coastal Plains [29]. The climate ranges
from cold with hot summers in the mountainous western area
to temperate with hot summers towards the southeast [30].
The vegetation ranges from Northern hardwood forests in the
highlands to oak, hickory, pine, and southern mixed forests of
the Coastal Plains [29]. The Appalachian, Ridge and Valley,
and Blue Ridge ecoregions are underlain mainly by folded and
faulted sedimentary rocks; the Piedmont ecoregion is

underlain by crystalline igneous and metamorphic rocks; and
the Plains ecoregions are underlain by unconsolidated sedi-
ments [31]. There are cold, higher-gradient streams in the
Central Appalachians and Ridge and Valley and lower-
gradient, naturally acidic streams in the Coastal Plains ([32]).

2.2 Data Sets

Data on fish presence/absence and density came from the
Maryland Biological Stream Survey (MBSS, [33]. The MBSS
is an ongoing survey of first- to fourth-order streams (as shown
on 1:100,000 US Geological Survey [USGS] maps). MBSS
uses a probabilistic sampling design stratified by major water-
shed [34]. We used fish data collected from 1994–2004 at sites
with watershed areas <200 km2 that were in the Chesapeake
Bay watershed and had a least one fish species collected. We
used only the first record for sites that were sampled more than
once. Of the 2,181 samples, 1,460 satisfied these conditions.
There were 81 total fish species in the data set, and we selected
30 of the more widely distributed (collected in >250 sites)
species for our analyses (Online resource 2). The 30 species
come from 11 families and have a range of ecological char-
acteristics and sensitivities to stressors (Online resource 2).
For each species, we converted raw abundance scores to
presence/absence.

We used watershed variables that influence stream condi-
tions [5, 26, 35] to build models predicting the presence/
absence of each species at each sampling point. We summa-
rized each watershed attribute by using the ArcGIS geograph-
ic information system (ESRI, Redlands, CA, USA) to intersect
watershed boundaries [36] with land cover, human popula-
tion, and elevation data.We calculated the percentages of each
watershed covered by impervious surface, tree cover, row-
crop agriculture, pasture, and extractive cover (e.g., mines)
using the 2001 National Land Cover Data [37]. Land cover
did not change much between 1992 and 2001 in most of the
watersheds (see Online resource 3), so we did not attempt to
model the effects of land cover change in this analysis.

We used the Zonal Statistics (++) function in Hawth’s
Analysis Tools for ArcGIS [38] to calculate average water-
shed slope and elevation from a digital elevation model
(DEM, 1:250,000 scale, 30 m, http://edc2.usgs.gov/geodata/
index.php) and average annual precipitation for each water-
shed from a publicly available data set [39]. We calculated the
drainage density (in kilometers per square kilometer) for each
watershed by dividing the total stream length by watershed
area. The average percentage of sand in soils within a water-
shed was calculated using STASGO soil data [40]. The per-
centage of calcareous bedrock came from a geological map
[41] and descriptions classifying rock types as calcareous or
non-calcareous [42]. Slope and elevation were highly corre-
lated with longitude (both r>0.80), so they were removed
from model development.
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2.3 Presence/Absence Models

We used a random subsample (n01162) of the MBSS
sites as a training data set for development of the models,
and we used the remaining sites (n0298) as an indepen-
dent data set for model evaluation. We used the same
training and evaluation sites for every species model. All
statistical analyses were conducted using the R statistical
software [43]. We developed models to predict fish pres-
ence or absence for each of the 30 species; but for clarity
and conciseness, we focus on results for a set of four
example species (central stoneroller, creek chub, large-
mouth bass, and the white sucker), which represented
many of the ecological characteristics and tolerances of
all 30 species (Online resource 2).

We used an ensemble tree approach to model the rela-
tionship between the presence/absence of each species and
the watershed predictors. Ensemble trees are based on re-
cursive decision trees algorithms. In a decision tree analysis,
a covariate is selected from all exploratory variables and a
split point value of that covariate is estimated that separates
the response values into two groups. Each group is further
separated into subgroups by new explanatory variables and
split points. The recursive splitting procedure is stopped
when a predefined stopping criterion is reached. The accu-
racy and the predictive ability of single tree models can be
improved by using ensembles of many trees (forests; [28].
In a typical ensemble tree approach, bootstrap samples are
drawn with replacement from the original data set, and
observations not included in a bootstrap sample are named
out-of-bag observations. For each bootstrap sample, a very
large tree is generated and used to classify the out-of-bag
observations. The final predicted class of each observation
is the class most often assigned to it across all the bootstrap
samples. Inferences about the strengths of relationships be-
tween predictor and response variables can be drawn from
variable importance plots, which are derived for each pre-
dictor variable by randomly permuting the values of the
variable for the out-of-bag observations. For more detailed
descriptions of decision trees and ensemble tree methods,
see References [28, 44–46].

We used the cRF [27] implementation of the ensemble
approach to analyze relationships between fish presence/
absence and watershed attribute predictors. cRF models
are based on conditional inference trees, a method that uses
classical statistical tests [47] to select split points. Splits are
based on the minimum p value among all tests of indepen-
dence between the response variable and each explanatory
variable. We evaluated the strengths of species–environment
relationships using variable importance and partial depen-
dence plots from the cRF models [28].

Model performance for each species was evaluated with
five accuracy measures calculated from the independent

evaluation data set (R package PresenceAbsence [48]).
The five measures were the Proportion Correctly Classi-
fied (PCC), the Kappa statistic, sensitivity, specificity, and
the area under the receiver operating curve (AUC). Both
PCC and Kappa are calculated from model confusion
matrices, which are tables contrasting predicted vs. ob-
served classifications. Kappa adjusts PCC for agreement
due to chance alone, and Kappa ranges from −1 to 1 with
increasing positive values indicating stronger agreement
between the predicted and observed values [49]. We used
the Kappa ranges reported by Landis and Koch [49] to
infer strength of agreement—Kappa<0.00 poor, 0.00–0.20
slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 sub-
stantial, and 0.81–1.00 almost perfect agreement. Sensitiv-
ity is the proportion of observed presences correctly
predicted, while specificity is the proportion of observed
absences correctly predicted. AUC evaluates the sensitiv-
ity and specificity of the model; values range from 0 to 1
with values >0.5 indicating model performance better than
chance alone [50].

We applied the calibrated and tested model for each fish
species, to predict the probability of presence/absence in the
10,806 small (upslope drainage area <200 km2) stream
reaches in the Maryland portion of the Chesapeake Bay
watershed. The stream reaches and associated watersheds
were taken from the 1:100 K National Hydrology Dataset
plus (NHDplus; [51]) after eliminating tidal reaches adja-
cent to the Chesapeake Bay. We calculated watershed attrib-
utes using the methods above for the entire watershed
draining to the downstream end of a reach. The predictions
were summarized with watershed maps shaded by the pre-
dicted probability of presence.

2.4 Density Category Models

We also applied the cRF models to predict fish density for
the set of four example species. We categorized densities
into 3 bins: no individuals collected (0, Absent), Low
Density, and High Density. The low density category
was<0.05 individuals per square meter for the central
stoneroller (n0135) and white sucker (n0337), <0.10 for
creek chub (n0390), and<0.01 for largemouth bass (n0172).
Sites above these thresholds were high-density (n0103,
266, 247, and 172 for central stoneroller, white sucker,
creek chub, and largemouth bass, respectively). Model
accuracy was evaluated using the same accuracy statistics
for the presence/absence approach; however, we used a
weighted kappa statistic [52], vcd function [53], and calcu-
lated AUC using the ordROC function in the nonbinROC R
package [54] to address the ordinal structure of the binned
densities. Sensitivity and specificity for binned analyses
were calculated comparing each density category to remaining
categories [55].
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3 Results

3.1 Presence/Absence Models

All models correctly classified over 75%s of the sites for
each species (mean PCC00.88, SE00.01) and performed
better than chance alone (all AUCs>0.50, Table 1). The
model for bluegill performed worst (76% correctly classi-
fied) and the model for the eastern mudminnow performed
best (97% correctly classified). However, the kappa statistic
averaged across the models for all 30 species suggested a
moderate strength of agreement between observed and pre-
dicted values (mean kappa00.59, SE00.03, Table 1). Values
of kappa ranged from 0.13 (slight agreement, Blue Ridge
sculpin) to 0.93 (almost perfect agreement, eastern mudmin-
now). The model sensitivity (true presences) and specificity
(true absences) values indicated that a lower kappa statistic

in Table 1 was often due to weak ability to predict species
presence. For example, the model for Blue Ridge sculpin
had the lowest kappa statistic (0.13) and the lowest sensi-
tivity (0.08) but the highest specificity (1.00). This model
poorly predicted presences but predicted absences perfectly.
The model for eastern blacknose dace had the highest sen-
sitivity (0.97) but the lowest specificity (0.73); it predicted
presence better than absence. Kappa for this model was
0.74, indicating a substantial strength of agreement with
the observations.

Comparing the accuracy measures with the confusion ma-
trix provides additional information on model performance.
We present confusion matrices for four example species:
central stoneroller, creek chub, largemouth bass, and white
sucker (Online resource 4). The model for the central stone-
roller predicted presence moderately well (error rate00.32)
and absence extremely well (error rate00.04), resulting in a

Table 1 Accuracy measures for
models predicting presence/
absence of fish species

These measures were calculated
for the independent data set not
used in model calibration

PCC proportion correctly
classified, AUC area under
the receiver operating
characteristic curve

Common name PCC Kappa Sensitivity Specificity AUC

American eel 0.84 0.67 0.88 0.81 0.94

Pirate perch 0.96 0.82 0.88 0.97 0.99

White sucker 0.83 0.66 0.85 0.82 0.93

Creek chubsucker 0.87 0.59 0.62 0.94 0.93

Northern hog sucker 0.90 0.59 0.57 0.96 0.95

Redbreast sunfish 0.82 0.47 0.56 0.90 0.86

Green sunfish 0.86 0.35 0.26 0.99 0.82

Pumpkinseed 0.83 0.55 0.62 0.91 0.84

Bluegill 0.76 0.51 0.68 0.82 0.83

Largemouth bass 0.80 0.37 0.34 0.96 0.84

Blue ridge sculpin 0.89 0.13 0.08 1.00 0.84

Potomac sculpin 0.93 0.67 0.57 0.99 0.96

Central stoneroller 0.92 0.68 0.68 0.96 0.96

Rosyside dace 0.85 0.66 0.73 0.91 0.92

Cutlip minnow 0.89 0.63 0.55 0.99 0.96

Common shiner 0.90 0.64 0.61 0.97 0.96

Golden shiner 0.89 0.41 0.32 0.99 0.90

Swallowtail shiner 0.90 0.51 0.45 0.97 0.93

Bluntnose minnow 0.94 0.76 0.77 0.97 0.96

Eastern blacknose dace 0.90 0.74 0.97 0.73 0.95

Longnose dace 0.89 0.77 0.86 0.91 0.96

Creek chub 0.85 0.69 0.95 0.75 0.93

Fallfish 0.88 0.47 0.38 0.98 0.90

Redfin pickerel 0.91 0.63 0.61 0.96 0.96

Yellow bullhead 0.89 0.28 0.21 0.98 0.87

Margined madtom 0.91 0.65 0.62 0.97 0.93

Fantail darter 0.92 0.69 0.64 0.98 0.98

Tessellated darter 0.86 0.71 0.91 0.82 0.95

Least brook lamprey 0.87 0.40 0.42 0.94 0.91

Eastern mudminnow 0.97 0.93 0.96 0.97 0.99

Mean (standard error) 0.88 (0.01) 0.59 (0.03) 0.62 (0.04) 0.93 (0.01) 0.92 (0.01)
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sensitivity of 0.68 and a specificity of 0.96. The kappa statistic
was 0.68 (substantial agreement). The model for the creek
chub predicted presence (error rate00.05) better than absence
(error rate00.25) resulting in a higher value of sensitivity
(0.95) than specificity (0.75) and a kappa statistic of 0.69
(substantial agreement). The confusion matrix for largemouth
bass showed that the model predicted presence poorly (error
rate00.66) but absence very well (error rate00.04) resulting
in a very low sensitivity (0.34) and high specificity (0.96) and
a kappa of 0.37 (fair agreement). The model for the white
sucker predicted presence and absence equally well (error
rates00.15, 0.18, respectively) resulting in similar sensitivity
(0.85) and specificity (0.82) and a kappa of 0.66 (substantial
agreement, Online resource 4).

Models for all of the species were influenced most by
natural landscape features (Table 2). Ecoregion was among
the four most important variables for models of 27 of the 30
species; drainage density and watershed area for 19 species;
and latitude, longitude, and percent sand in soils in for 13,
15, and 14 of the species, respectively. Anthropogenic land
cover variables were among the four most important varia-
bles for only three species: percent impervious for the red-
breast sunfish and swallowtail shiner and percent pasture for
the rosyside dace. For the central stoneroller, the top seven
variables were natural attributes of watersheds while five of
the land cover measures were the least important variables
(Table 2, Online resource 5a). For the creek chub, the five
most important variables were natural attributes (Ecoreg,
PerSand, Lat, Long, Precip), followed by three land use
variables (PerCrop, PerPast, PerImp; Table 2, Online resource
5b). Similarly, the top four variables for the largemouth bass
model were natural attributes (WSArea, DrnDns, Ecoreg,
Lat), followed by PerCrop, PerTree, and PerImp (Table 2,
Online resource 5c). For the white sucker model, the six most
important variables were natural attributes, which were fol-
lowed by five of the six land cover variables (Table 2, Online
resource 5d). The relationships between explanatory and re-
sponse variables from cRF models can be visualized using
partial dependence plots. As an example, we show these plots
for watershed area for each of the four example species—the
probability of presence increased sharply with watershed area,
but decreased again above ∼60 km2 for the central stoneroller
and creek chub (Fig. 1).

We predicted the probability of presence for each of the
30 species in every small, nontidal stream reach in the
Chesapeake Bay portion of Maryland, and we present maps
of the results for the example species (Fig. 2). Maps for all
30 species are included in Online resource 6. The impor-
tance of Ecoregion is evident in the maps for central stone-
roller, creek chub, and white sucker, which all have low
probabilities of presence in the Southeastern Plains and
Middle Atlantic Coastal Plains ecoregions (Fig. 2). The
central stoneroller and largemouth bass had fewer areas of

a high probability of presence than the creek chub (Fig. 2b)
and white sucker (Fig. 2d).

3.2 Density Category Models

The density category models correctly classified between
63% (creek chub) and 85% (central stoneroller) of the
observations (Table 3). There was substantial agreement
between model predictions and observed data for the central
stoneroller, creek chub, and white sucker (all Kappas be-
tween 0.61 and 0.80) and slight agreement for the large-
mouth bass model (Kappa00.18). The model for the central
stoneroller showed strong ability to classify true absences
(sensitivity for absent class01.00) but low specificity for the
absence category (0.51). Low sensitivity statistics for
both the low (0.24) and high (0.47) density bins indi-
cate a weak ability to predict these density categories
(Table 3). The creek chub model accurately predicted
absence (sensitivity00.81) and discriminated absent from the
two density categories (specificity00.89). This model pre-
dicted the low-density category better than the high-density
category (Table 3). The cRF model for the largemouth bass
predicted absence well (sensitivity01.00) but both density
categories weakly (absent specificity00.16, indicating a high
misclassification of both density categories as absent). The
white sucker model accurately predicted absence from the
two density categories (absent sensitivity00.89, specificity0
0.81); and predicted the low- and high-density categories sim-
ilarly (low-density sensitivity00.54, high-density sensitivity0
0.56, Table 3).

The density predictions for the four fish species were
again most influenced by natural watershed attributes
(Fig. 3). Watershed area, ecoregion, and drainage density
were most important for the central stoneroller (Fig 3a);
ecoregion, percent sand in soils, and latitude were most
important for the creek chub (Fig. 3b); and ecoregion, water-
shed area, and drainage density were most important for the
white sucker (Fig. 3d). Important variables for the largemouth
bass model included percent row crop cover as the third most
important variable after watershed area and drainage density
(Fig. 3c). For creek chub, the probabilities of absence and low
density increased rapidly with watershed area, and the proba-
bility of high creek chub density decreased with watershed
area up to ∼40 km2 (Fig. 4).

We applied the cRFmodel to predict the probabilities of the
absent, low-density, and high-density categories for every
small, nontidal stream reach in the Chesapeake Bay portion
of Maryland. We present results for high-density populations
(Fig. 5). Only a relatively few watersheds in the N. Piedmont
were predicted with moderate probability (e.g., 0.20–0.60) to
have high densities of central stoneroller (Fig. 5a). Creek chub
were predicted to be in high densities in N. Piedmont and
western mountainous regions (Fig. 5b); white sucker were
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Fig. 1 Example partial
dependence plots for watershed
area from the presence/absence
models for four example
species

Fig. 2 Habitat suitability based on presence/absence predictions for four example species in all small, nontidal reaches in the study area (Online
resource 1). The insets show enlarged views of the results near Baltimore, Maryland
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predicted to be in high density in watersheds in theN. Piedmont
(Fig. 5d). The largemouth bass was weakly predicted (0.20–
0.40) to be in high densities in the upper Eastern Shores region
of Maryland (Fig. 5c). Effects of impervious surface were
evident in the creek chub predictions because few high densi-
ties were predicted within Baltimore city (inset Fig. 5b).

4 Discussion

We constructed species distribution models (SDMs) for 30
species of freshwater fishes that inhabit streams of Maryland,

USA. The models showed substantial agreement between
observed and predicted values for 17 of the 30 species. The
most important variables for all species were natural water-
shed attributes, such as ecoregion, watershed area, latitude,
and longitude. Land cover variables (e.g., percent impervious,
percent row crop, or percent pasture) were highly important
variables for only three species (redbreast sunfish, swallowtail
shiner, and rosyside dace). This does not mean that land cover
is unimportant for the other species. Instead, the random forest
analyses identified a hierarchy of factors governing stream
fishes. Large-scale natural biogeographic patterns (e.g., ecor-
egion) and system size were the most important factors

Table 3 Accuracy measures for
density category models of four
example species

These measures were calculated
for the independent data set not
used in model calibration

PCC0proportion correctly
classified, AUC0area under the
receiver operating
characteristic curve

Common name PCC Kappa Abundance class Sensitivity Specificity AUC

Central stoneroller 0.85 0.65 0 1.00 0.51 0.93

0-0.05 0.24 0.98

>0.05 0.47 0.99

Creek chub

0.63 0.65 0 0.81 0.89 0.79

0-0.1 0.76 0.78

>0.1 0.48 0.93

Largemouth bass

0.77 0.18 0 1.00 0.16 0.83

0-0.01 0.14 0.99

>0.01 0.05 1.00

White sucker 0.60 0.67 0 0.89 0.81 0.79

0-0.05 0.54 0.86

>0.05 0.56 0.90

Fig. 3 Variable importance
plots from the density category
models for four example
species; a central stoneroller,
b creek chub, c largemouth
bass, d white sucker. Variables
with higher values of mean
decrease in accuracy are more
important. The variable
abbreviations are in Table 2
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structuring fish distributions across regions. Land use factors
played a role in structuring fish distributions within regions
only after partitioning out the effects of position and system
size, indicating a need to incorporate spatial and size compo-
nents into regional fish management plans.

4.1 Importance of Watershed Attributes

The minor role of anthropogenic land cover variables in our
models reflects the strong effects of natural watershed attrib-
utes on the fish assemblage across our study area. Stream size
(represented here by watershed area) strongly influences
stream fish assemblages [56–60], and watershed area was
important in all our models. Ecoregion, latitude, and longitude
all are related and indicate a strong location effect on the fish
species. Location has been reported to strongly affect fish
assemblages [60–62], probably because environmental

similarity and dispersal decline with distance between sites
[63]. Sand content in soils was important in many of the
SDMs and is related to ecoregion. Soils of the Southeastern
Plains andMid Atlantic Coastal Plains ecoregions have higher
sand contents than soils of the Piedmont or Highland ecor-
egions. Higher soil sand content often leads to higher sand in
streams, which can stress many non-Coastal Plain fish species
[64–66].

The importance of watershed size for many species may
be due to species-specific preference for smaller systems
(i.e., headwater species). For example, creek chub and cen-
tral stoneroller prefer smaller systems [67, 68], which may
explain the reduction in probability of presence for these
two species at an area of ∼60 km2. The lack of a reduction in
probability of presence for the other two species may be due
to omission of streams larger than fourth order from the
stream survey—extending the data set to include larger
systems (up to rivers) may reveal similar patterns in the
other fishes.

The initial, rapid increase in the probability of presence
with watershed area up to ∼10 km2 for all four focal species
may be due to our focus on systems with <200 km2 in
drainage area. Streams with <10 km2 in drainage area were
small (mean width02.4 m) and headwaters positioned far up
the stream network (e.g., mean distance to mainstem tribu-
tary >500 km2020.9 km). Such streams are likely controlled
by stochastic processes and disconnected from source pop-
ulations [69, 70], both of which may limit fish colonization.
Moreover, available habitat for many species is likely less in
such small systems.

The secondary role of anthropogenic land cover in our
models does not imply that land use is unimportant. The
cRF models first partitioned each species data set by values
of controlling natural variables (see above), but then further
separated the sites using land cover variables, like percent
impervious cover. Natural attributes seem to drive regional
differences in stream fish distribution, while land use affects
patterns within regions. Clearly SDMs must consider natural
attributes as well as land use to achieve high accuracy for
regional analyses.

Lower importance of impervious surface in the models
warrants further investigation, because impervious surfaces
have drastic effects on stream ecosystems [71] and overall
fish assemblage structure and integrity [15]. Three of the
focal species (central stoneroller, creek chub, and white
sucker) utilize mineral substrates during spawning [72],
which is likely affected by altered flow regimes associated
with impervious surfaces. Moreover, the herbivorous central
stoneroller may lose algal resources in stream beds altered
by impervious surface. Largemouth bass is a non-native
fish, and the invasion and persistence of non-native species
are often linked to habitat disturbances associated with
landscape alterations such as urbanization [73]. Thus, the

Fig. 4 Example partial dependence plots for watershed area from the
density category model for creek chub

Species Distribution Models of Freshwater Stream Fishes in Maryland 9



potential for effects of impervious surface on fishes is
strong. However, our models show a lower importance of
impervious surface, indicating that natural factors (e.g.,
stochasticity, dispersal constraints, lack of available habitat;
see above) are more influential on fish presence/absence in
small streams than anthropogenic factors, especially at re-
gional scales such as Maryland. Often effects of impervious
cover on fishes are identified through indirect effects on
stream habitat—incorporation of these measures (e.g., local
habitat) may elucidate an intermediate effect of impervious
surface on fish populations.

4.2 Presence/Absence vs. Density Category Models

SDMs can be created from presence/absence, density cate-
gories, or raw abundance data. We showed that SDMs con-
structed using presence/absence or density categories gave
qualitatively similar results for two of the four example
species (creek chub and white sucker), but the density
categories provide more information than just presence/
absence and may help identify potential conservation sites
with high density populations. Of course, field verification
of the sites would be needed, but the models can help target
the field efforts.

An important caveat with the binned density approach is
that creation of bins reduces model accuracy. Adding catego-
ries creates additional misclassification possibilities; therefore,
creating too many bins would reduce model performance.
The number of density categories must balance informa-
tion gained from adding categories against the reduction in
model performance.

5 Conclusions

Species distribution models are important conservation and
management tools. The models can reliably predict areas suit-
able for species occupation, and the species responses to
particular environmental variables can suggest management
options. Presence/absence and categorical density approaches
can both provide information to help target conservation pro-
grams, mainly by suggesting sites for in-depth field surveys,
especially for rare, threatened, or endangered species. SDMs
could also be used to suggest stream reaches that are likely to
support high densities of non-native species. These streams can
be targeted by conservation biologists to search for the more
altered habitats suitable for non-natives and potentially miti-
gate anthropogenic impacts leading to habitat degradation.

Fig. 5 Habitat suitability for high-density populations from density category predictions for four example species in all small nontidal reaches in
the study area (Online resource 1). The insets show enlarged views of the results near Baltimore, Maryland

10 K.O. Maloney et al.
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