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ABSTRACT: We analyzed an ensemble of watershed models that predict flow, nitrogen, and phosphorus dis-
charges. The models differed in scope and complexity and used different input data, but all had been applied
to evaluate human impacts on discharges to the Patuxent River or to the Chesapeake Bay. We compared
predictions to observations of average annual, annual time series, and monthly discharge leaving three
basins. No model consistently matched observed discharges better than the others, and predictions differed
as much as 150% for every basin. Models that agreed best with the observations in one basin often were
among the worst models for another material or basin. Combining model predictions into a model average
improved overall reliability in matching observations, and the range of predictions helped describe uncer-
tainty. The model average was not the closest to the observed discharge for every material, basin, and time
frame, but the model average had the highest Nash—Sutcliffe performance across all combinations. Consis-
tently poor performance in predicting phosphorus loads suggests that none of the models capture major con-
trols. Differences among model predictions came from differences in model structures, input data, and the
time period considered, and also to errors in the observed discharge. Ensemble watershed modeling helped
identify research needs and quantify the uncertainties that should be considered when using the models in
management decisions.
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INTRODUCTION

We analyzed an ensemble of watershed models
that can all predict water, nitrogen, and phosphorus
discharges to the Patuxent River, which is a subestu-
ary of the Chesapeake Bay and the sixth largest trib-
utary to the Bay. Watershed models are essential
tools for linking nonpoint sources with surface water
pollution and for predicting the effects of manage-
ment efforts on water quality (Miller et al., 2004). In
the Patuxent, the larger Chesapeake Bay, and many
other estuaries worldwide, efforts to reduce
watershed nutrient discharges and restore degraded
estuaries rely on watershed models to plan manage-
ment actions and to help enforce water quality regu-
lations (Boesch, 2002; Smith et al., 2006; USEPA,
2010a; NRC, 2011).

Despite their critical role in management pro-
grams, watershed models often perform poorly
because of imperfect knowledge of hydrological pro-
cesses, biogeochemical processes, and human activi-
ties (Radcliffe et al., 2009). The resulting uncertainty
in model predictions is difficult to quantify and inter-
pret, and that can undermine scientific and public
confidence in model predictions (Radcliffe et al.,
2009). In addition, most applications rely on a single
model, and this provides no opportunity to evaluate
the structural uncertainty inherent in choosing the
conceptual and mathematical underpinnings of the
model.

Analyzing a set of two or more models of a
watershed (ensemble modeling) can help objectively
evaluate model skill and the uncertainty in model
predictions (Beven, 2007). Ensemble modeling is
especially appropriate for environmental systems in
which dynamic processes operate over a range of tem-
poral and spatial scales (Clark, 2007). Each model
represents a different set of hypotheses describing
the dominant landscape processes affecting
watershed discharge. Comparing models contrasts
different hypotheses about system drivers (Bloschl,
2006) and helps to identify how models can be refined
and improved (e.g., McIntyre et al., 2005; Dezetter
et al., 2008). The multi-model approach has gained
widespread acceptance in other disciplines, including
financial forecasting, socioeconomics, weather and cli-
mate, and wildlife management (e.g., Givens, 1999;
Koop and Tole, 2004; Gneiting and Raftery, 2005;
Phillips and Gleckler, 2006). Initial applications in
watershed modeling reported that multi-model syn-
theses provide better estimates and a stronger basis
for informing watershed management decisions than
a single model (Vrugt and Robinson, 2007; Hsu et al.,
2009; Huisman et al., 2009), but ensemble watershed
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modeling has not been used much outside of the
European Union, possibly because of the higher cost
of implementing multiple models and the reluctance
of the watershed modeling community to embrace
uncertainty analyses (Pappenberger and Beven,
2006).

The predictions from a set of models can also be
combined into a model average, which can work bet-
ter than relying on a single “best” model for support-
ing management decisions, especially when there is
not enough information to identify the best model or
when the data do not favor a particular model
(Kadane and Lazar, 2004). Because of the reluctance
to examine multiple models, the applications of model
averaging in watershed analysis have also been lim-
ited (Vrugt and Robinson, 2007), but would likely
advance knowledge of terrestrial hydrologic processes
(Sivakumar, 2008) and improve model accuracy
(Duan et al., 2007). The range of predictions for a
defined endpoint provides an initial quantitative esti-
mate of the overall uncertainty in the system pro-
cesses.

In our study of Patuxent watershed models, we
evaluated the abilities of the models to predict
observed water and nutrient discharge data (model
skill) and to estimate quantities that are important
for management decisions, but not measured. Instead
of seeking a best model, we focused on how an ensem-
ble of models and model averaging can improve pre-
dictions of watershed discharges, help quantify model
uncertainty, and increase understanding of terres-
trial-aquatic linkages and the impacts of human
activities on aquatic ecosystems.

We analyzed the watershed models as they were
published because the models were not amenable to
further standardization and because the published
results have already been used to draw scientific
inferences and to guide management decisions. Our
analysis differed from a common approach to rigorous
model comparison, which reruns a set of similar mod-
els with standardized inputs and calibration data, and
then compares results for the same outputs and time
periods (Breuer et al., 2009). Such an effort focuses on
quantifying how model structure affects model output
with everything else controlled. This approach is very
discerning from a modeling perspective. It is not
always feasible, it ignores important differences aris-
ing from user choices and constraints during model
implementation, and it may not reveal the full con-
trast among models that is needed to understand
their management implications. As we analyzed the
models as published, some of the differences among
models that we report are due to differences in input
data, calibration data, or time period considered
rather than to differences in model structure.
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METHODS

Overview

We identified six watershed models that had been
applied to the Patuxent River watershed or that
predicted loads from the Patuxent watershed as a
part of modeling the larger Chesapeake Bay basin.
The models were published in peer reviewed litera-
ture or actively used in land use planning. Three
models had more than one published version, so alto-
gether there were 10 implementations of the six mod-
els (Table 1). The scope and complexity of the models
vary widely, but all the models are intended to quan-
tify how natural factors and anthropogenic stressors
influence total nitrogen (TN) and total phosphorus
(TP) discharges from the watershed.

We compared model predicted outputs for selected
endpoints, where “endpoint” refers to the estimated
discharge for a combination of material, basin, and
time frame. There were three output materials
(water, TN, and TP), four prediction basins (Laurel,
Western Branch, Bowie, and the entire Patuxent
watershed), and three time frames (average annual,
annual time series, and monthly time series). We

examined the average annual predictions because
some of the models predict only average annual loads
and because management decisions are often based
on annual average loads to factor out the effects of
extreme weather or other unusual events that may
affect a single year. We also examined predictions of
annual and monthly time series loads to quantify
how the models perform in representing temporal
variability in water and nutrient discharges. The
analysis of monthly time series generally confirmed
to the lessons learned from the annual time series, so
the descriptions of the monthly analysis is reported
only in the Supporting Information.

Two sets of endpoints had no measurements avail-
able to evaluate model performance: predictions of
average annual and annual time series discharges
from the entire Patuxent watershed and the pre-
dicted proportions of nonpoint TN and TP discharges
allocated to agriculture and to developed land for all
four watersheds. Making predictions for unmeasured
endpoints is a major objective of watershed modeling,
and these two endpoints are good examples of unmea-
sured endpoints that environmental decision makers
need to estimate. Understanding the impact of the
Patuxent watershed on the Patuxent and Chesapeake
estuaries demands estimates of the total nutrient

TABLE 1. Ten Implementations of Six Watershed Models.

General
Model Abbreviation Year* Description References
Models predicting average annual
TN and TP

Maryland Department of MDP90 1990 Export coefficient model MOP (1993, 1995); Maryland
Planning Assessment MDP97 1997 Department of Planning (MDP),
and Accounting System Maryland Department of the

Environment (MDE), and
Maryland Department of
Natural Resources (DNR) (2007);
Tassone et al. (1998)

USGS SPAtially Referenced SPARROWS7 1987 Nonlinear Smith et al. (1997),
Regressions On SPARROW92 1992 statistical model Preston and Brakebill (1999)
Watershed attributes SPARROW97 1997

Models producing time series
predictions of flow and nutrients

Smithsonian Environmental SERC 1997-1999 Linear statistical Jordan et al. (2003),

Research Center model Weller et al. (2003)
statistical model

Smithsonian Environmental SERCLM 1984-1999 Spatially lumped Liu and Weller (2008),
Research Center simulation model Liu et al. (2008)

Integrated Landscape Model

Chesapeake Bay Program CBP4 1984-2000 Spatially lumped Donigian et al. (1994),
Hydrologic Simulation Program CBP5 1984-2000 simulation model Linker et al. (2000)

Patuxent Landscape Model PLM 1986-1993 Spatially distributed Costanza et al. (2002)

simulation model

*For MDP and SPARROW, year refers to the date of the geographic and load data used to predict average annual loads. For the other mod-
els, the range of years represents the period over which the time series of flow and nutrient discharges were simulated.
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loads from the watershed, and developing strategies
for reducing nutrient loads demands information on
where the loads originate within the watershed. For
every endpoint considered, we present the model
average prediction, calculated as the simple average
of estimates from the models capable of predicting
that endpoint. We estimated the skill of the model
average as if it were another model in the ensemble.
The following provides more detailed descriptions
of the study area, the streamflow and nutrient data,
the models themselves, and the methods of analysis.

Study Area

The 2,300 km? Patuxent River watershed is
entirely in Maryland, U.S., mainly in the Coastal
Plain physiographic province (72%) with the remin-
der in the Piedmont (Figure 1). The upper watershed
is located between the cities of Washington, D.C. and
Baltimore, Maryland. The 2001 National Land Cover
Database (Homer et al., 2004, 2007) indicated that
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FIGURE 1. The Patuxent River Watershed near the Cities of
Washington, D.C. and Baltimore, Maryland. Three U.S. Geological
Survey monitoring stations (dots) provided measured water, TN,
and TP loads for testing model predictions for the associated water-
sheds (thick lines). The fall line separates the region into the Pied-
mont and Coastal Plain physiographic provinces. The inset shows
the Patuxent watershed (black) within the Chesapeake Bay
watershed (thicker line) and the mid-Atlantic states (thinner lines).

JAWRA

17% of the watershed area was developed, 11% was
cropland, 24% was grassland, and 46% was forest.
Two reservoirs in the northern part of the watershed
are managed for flood control and drinking water
supply. From 1997 to 1999, 150 million cubic meters
(Mm?) of water (about 9% of the 1,664 Mm? freshwa-
ter flow to the estuary) was withdrawn for water sup-
ply purposes (Jordan et al., 2003), but a roughly
equal amount (142 Mm?®) was returned to the river
network in the discharges from 8 major
(>500,000 gallons/day) and 17 minor wastewater
treatment facilities (Jordan et al., 2003; Weller et al.,
2003).

Streamflow and Nutrient Measurements

To test the models, we used measurements of
water flow, nitrogen loads, and phosphorus loads for
three U.S. Geological Survey (USGS) gauging sites
(Figure 1) with continuous flow data and routinely
measured TN and TP concentrations (Langland et al.,
1995; Darrell et al., 1998; Michael Langland, USGS,
August 24, 2009, personal communication; Langland
et al., 1999; USGS, 2011a). We used the available
measurements for 1984-2000 from three basins:
Laurel (gauge 01592500, 342 km? basin area), Wes-
tern Branch (01594526, 232 km?), and Bowie
(01594440, 907 km?). The Laurel basin is in the Pied-
mont physiographic province and contains the two
water supply reservoirs, and the Western branch
basin is in the Coastal Plain. The Bowie basin is 70%
Piedmont and includes the Laurel basin (Weller
et al., 2003). The USGS applied the ESTIMATOR
model (Cohn et al., 1989) to estimate monthly annual,
and average annual nutrient loads from continuous
discharge data and nutrient concentrations in water
quality samples. For the Laurel and Bowie basins,
the USGS also provided 95% prediction intervals for
the annual and monthly nutrient load estimates
produced using ESTIMATOR.

Watershed Models

This section provides brief descriptions of the six
watershed models in our ensemble, along with refer-
ences to more detailed information. The models are
presented in rough order of increasing complexity: an
uncalibrated export coefficient model, two statistical
models, two spatially lumped simulation models, and
a spatially distributed simulation model. All the mod-
els estimate point source contributions from wastewa-
ter treatment plants from discharge monitoring
reports or from permitted discharges when monitor-
ing reports are not available.
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Maryland Department of Planning Assess-
ment and Accounting. The Maryland Department
of Planning (MDP) model is an export-coefficient
model for the state of Maryland (MOP, 1993, 1995;
MDP, 2007; Tassone et al., 1998). Export coefficient
models assume a constant TN or TP yield (kg per ha
per year, the “export coefficient”) for each land use
class and estimate watershed load by summing the
products of land use area and export coefficient across
all land use classes. The MDP model has been used
throughout Maryland to assist local town and county
planners in developing growth strategies that mini-
mize impacts to surface water bodies. The export coef-
ficients were derived from the Chesapeake Bay
Program’s HSPF Model, Version 4 (CBP4) (described
below) for each land use in the Department of Plan-
ning multi-year land use database and adjusted by the
average amount of impervious surface area associated
with different developed land densities. The model
does not predict water discharge, and the model was
not calibrated to match observed TN or TP loads.
There are two implementations, one for 1990 and one
for 1997. Land use areas for 1997 were estimated
using linear interpolation over time between the 1990
and 2002 land use maps (MDP, 2003a,b; U.S. Depart-
ment of Commerce and U.S. Census Bureau, 2005).

Smithsonian Environmental Research Cen-
ter. The core of the Smithsonian Environmental
Research Center (SERC) model of the Patuxent
watershed is a set of statistical models fit to measured
water discharge and N and P concentrations collected
weekly for 2 years from 22 study watersheds in the
Patuxent River and adjacent Rhode River basins
between July 1997 and August 1999 (Jordan et al.,
2003; Weller et al., 2003). Annual rainfall was below
average in the first year and above average in the sec-
ond (Jordan et al., 2003). The statistical models pre-
dicted discharge and nonpoint source nutrient
concentrations from proportions of cropland and devel-
oped land, physiographic province, and time (Jordan
et al., 2003; Weller et al., 2003). Landsat-derived land
cover estimates (EPA-EMAP, 1994) were lumped to
three categories (cropland, developed land, and other
land) for use in the models. The Patuxent watershed
was divided into 23 sections, and the fitted models
were applied to the land cover and physiographic
province data to predict weekly water discharge and
weekly average nutrient concentrations leaving each
section. Weekly nonpoint source material discharges
were calculated by multiplying the weekly flow and
average weekly concentration predictions. The effects
of point sources and reservoir management were
included by assimilating data on monitored discharges
from two reservoirs and from wastewater treatment
plants. The SERC model was applied to explore the
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effects of land use change and future development on
watershed discharges (Weller et al., 2003). The SERC
model has also been linked to an estuarine water qual-
ity model (CE-QUAL-W2) to explore the effects of
weather, watershed characteristics, and alternate
land use scenarios on estuarine water quality and bio-
logical responses (Breitburg et al., 2003; Lung and
Bai, 2003; Lung and Nice, 2007).

SPAtially Referenced  Regressions on
Watershed Attributes. The USGS developed a set
of nonlinear regressions called SPAtially Referenced
Regressions On Watershed attributes (SPARROW) to
relate observed TN and TP loads to spatially explicit
nutrient sources reduced by losses to land-surface
and in stream processes (Smith et al., 1997; Preston
and Brakebill, 1999). The nutrient sources include
atmospheric deposition, urban land area, fertilizer
application, livestock production, and point sources.
The model statistically fit directly to TN and TP loads
observed at points throughout the stream network,
and does not estimate water discharge. The nonlinear
regression procedure fits source coefficients for each
nutrient source and delivery coefficients that relate
nutrient losses to watershed characteristics, such as
slope, soil permeability, stream density, and wetland
area. Stream nutrient removal is represented as an
exponential decay function of stream length and dis-
charge volume. SPARROW models have been devel-
oped for several U.S. basins and analyzed to quantify
nutrient sources, to estimate nutrients lost in river
transport, to estimate nutrient delivery to estuaries,
and to develop regulatory limits for implementing
total maximum daily load (TMDL) regulations (see
http://water.usgs.gov/nawqa/sparrow/).

We analyzed results from three versions of SPAR-
ROW models developed for the Chesapeake Bay
watershed. Nutrient loads for the first version (SPAR-
ROWS87) were estimated from 1950 to 1995 concentra-
tion and daily flow measurements from 109
Chesapeake watershed sites (79 for TN and 84 for
TP), including 6 sites in the Patuxent watershed
(Brakebill and Preston, 2003). The loads were normal-
ized (Smith et al., 1997) for 1987, the year for which
input data were assembled (Preston and Brakebill,
1999). Land cover in 1 km pixels was mapped by inte-
grating three data sets (U.S. Environmental Protec-
tion Agency Environmental Monitoring and
Assessment Program [EPA-EMAP] [1994], National
Oceanographic and Atmospheric Administration
Coastal Change and Analysis Program [NOAA-CCAP]
[2006], and USGS Geographic Information Retrieval
and Analysis System [GIRAS] [Gutierrez-Magness
et al., 1997]). Stream networks were modified from the
River Reach File 1 to derive hydrologic units (RF1,
1:500,000 scale) (Alexander et al., 1999).
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For the second version (SPARROW92), water qual-
ity data for 1950 to 1995 came from 132 sites (103
for TN and 121 for TP), including 6 sites, in the
Patuxent watershed. Data were normalized (Smith
et al., 1997) for 1992 (SPARROW Version 2.0) (Brake-
bill et al., 2001; Brakebill and Preston, 2003). Land
cover came from integrating two data sets (EPA-
EMAP [1994] and the 1990 National Land Cover
Data [NLCD] [Vogelmann et al.,, 2001]), and the
watershed network came from the National Hydrog-
raphy Data (NHD), 1:100,000 scale (USGS, 1999).

For the third version (SPARROW97), 1950 to 2000
load estimates from 125 sites (87 for TN and 103 for
TP), including 6 Patuxent sites, were normalized
(Smith et al., 1997) for 1997 inputs (SPARROW Ver-
sion 3.0) (Brakebill and Preston, 1999, 2004). Land
cover data from the circa 1990 NLCD (Vogelmann
et al., 2001) were updated to 1997 using a change
detection process based on spectral change between
individual Landsat images. The watershed network
was based on the stream network used in SPAR-
ROW92, with minor modifications, such as the addi-
tion of major reservoirs.

Smithsonian Environmental Research Center
Landscape. Smithsonian Environmental Research
Center Landscape (SERCLM) is a modular simula-
tion model of the Patuxent watershed that was
developed to generalize the analysis and application
of the SERC model (described above) beyond the 2-
year time domain and Patuxent only spatial domain
of the SERC model. The SERCLM model includes
three sub-components (Liu and Weller, 2008; Liu
et al., 2008). First, the TOPMODEL rainfall-runoff
model (Beven and Kirby, 1979) is applied to estimate
daily water discharge from 210 watersheds compos-
ing the Patuxent basin. TOPMODEL was manually
calibrated to match observed flow at SERC and
USGS monitoring stations (described previously).
Second, two statistical models predict TN and TP
concentrations from the proportions of cropland and
developed land, physiographic province, time of the
year, and water discharge estimated using TOP-
MODEL. The TN and TP models were fit to the
water quality data set (Jordan et al., 2003) described
above. Finally, a stream routing model (Liu and Wel-
ler, 2008) combines the predicted discharges from
the 210 watersheds with monitored data on reservoir
and point source discharges, and then routes water
and nutrients to the estuary while also accounting
for nutrient uptake during transport. The stream
routing parameters were calibrated manually (Liu
and Weller, 2008; Liu et al., 2008) to achieve the
best match of streamflow, TN, and TP concentrations
from SERC and USGS monitoring stations (described
earlier).
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Chesapeake Bay Program Model. The Chesa-
peake Bay Program (CBP) model of the Chesapeake
Bay watershed is an adaptation of the Hydrologic
Simulation Program — Fortran (HSPF) (Bicknell et al.,
2001), which was derived from the Stanford Watershed
Model (Crawford and Linsley, 1966). HSPF uses a
mass-balance approach to solve a linked set of equa-
tions representing natural and anthropogenic mecha-
nisms that control nutrient transport and delivery to
streams (USGS, 2011b). For the Chesapeake Bay appli-
cation, the hydrologic simulation model is linked to a
regional atmospheric deposition model (Linker et al.,
1996, 2000, 2008). Four increasingly refined versions
have been released since 1994. Each version offered a
more detailed segmentation, longer simulation period,
and increasingly detailed representation of land use
and best management practices (BMPs). The model
was developed to quantify nutrient loads and their
sources and to estimate load reductions from improved
management practices. Model analyses of the impacts
from alternative land management scenarios have
helped to guide federal and state policy development,
and loading estimates from CBP4 are used by regional,
county, and municipal land managers to estimate load-
ing rates associated with different land use types (e.g.,
the MDP model).

CBP4 simulates hourly sediment and nutrient dis-
charge for a period of 17 years (1984-2000) in 94 model
segments with an average size of 1,900 km?. Land use
and land cover data were derived from satellite imag-
ery (EPA-EMAP, 1994) and ancillary data and consoli-
dated into nine land use classes: pervious and
impervious urban areas; mixed developed land; high
till and low till croplands; livestock feeding areas; hay
fields; pasture; and forest. Additional input data
included fertilizer and manure applications, point
source discharges, septic system densities, atmo-
spheric deposition, and BMP reduction factors. The
model was calibrated to 1984-1997 flow and TN and
TP concentration data from 20 monitoring stations in
the Chesapeake watershed, including the Bowie sta-
tion in the Patuxent watershed (described above).
Data from the Bowie station, dominated the calibra-
tion of model parameters for the Patuxent watershed.

The Chesapeake Bay Program’s HSPF Model, Ver-
sion 5 (CBP5) is the current model version (USEPA,
2010a). It divides the Chesapeake Bay watershed into
nearly 1,000 sub-units with an average size of
171 km?. The model simulates discharges over a 21-
year period (1984-2005), but we analyzed outputs for
17 years (1984-2000). The CBP5 expands the land
use classification to 24 categories and incorporates
annual land use change. The base land use data was
derived from a combination of 2000 land cover data
developed by the University of Maryland’s Regional
Earth Science Applications Center (RESAC) (Goetz
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et al., 2004), the 1992 NLCD (Vogelmann et al.,
2001), agricultural census data (http://www.agcensus.
usda.gov/), and road network overlays (Tele Atlas,
2004). The model was calibrated to 1984-1995 flow
and TN and TP concentration data from 296 stream
monitoring stations in the Chesapeake watershed
and nearby areas in Maryland and Virginia. Data
from the same stations, but for the years 1995-2005
were used for model validation. There were seven sta-
tions in the Patuxent (including the three USGS sites
described above) that dominated parameter estimates
for the Patuxent watershed. The model has been
applied to guide regulations to implement the Chesa-
peake Bay TMDL (USEPA, 2010c¢).

Patuxent Landscape. The Patuxent Landscape
Model (PLM) is a spatially distributed simulation
model for the Patuxent watershed that calculates daily
hydrologic discharge and nutrient loads to streams
(Costanza et al., 2002). PLM was developed to evaluate
how human settlements and agricultural practices
affect hydrology, plant productivity, and nutrient
cycling; and the model was applied to different scenar-
ios of land use change to help guide regional manage-
ment decisions. Hydrological, ecological, and
biogeochemical processes are simulated in each grid
cell using a set of Structural Thinking Experimental
Learning Laboratory with Animation (STELLA) (http:/
www.iseesystems.com) modules from the Library of
Hydroecological Modules (LHEM) (http:/www.lik-
bez.com/LHEM/) (Voinov et al., 2004). The grid cells
were linked within a Spatial Modeling Environment
(Maxwell and Costanza, 1997) that used spatial data
(land use, soil properties, climate, and nutrient input)
to integrate the grid cell dynamics into regional-surface
and groundwater hydrology and nutrient transport
simulations (Voinov et al., 1999, 2007). For the Patux-
ent River application, the watershed was segmented
into 2,352 one km? grid cells. Land use and land use
change were derived from MDP data for the years 1985
and 1990, modified using agricultural census data
(http://www.agcensus.usda.gov/), and consolidated into
five classes: forest, agriculture, rural, residential, and
urban. Each land use type was modeled using equa-
tions and parameters describing the local biogeochemi-
cal dynamics. The parameters were calibrated to flow
and nitrogen concentrations collected at the USGS
Bowie gauge station between January 1986, and
December 1993 (Voinov et al., 2004).

Land Type Inputs
Nine different land use or land cover data sets were

used in the 10 model implementations. We summarized
the differences in land types among the models to
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provide background information needed to interpret
differences among model load predictions. To describe
the dominant land uses in the four study watersheds,
we tabulated the average and ranges across the nine
data sets for the percentages of four land types (crop-
land, grassland, developed land, and forest land) in
each watershed. To document the differences in land
cover percentages among models, we tabulated the per-
centages of the same land types used in the 10 model
implementations for the entire Patuxent watershed.

Comparing Model Estimates to Observed Loads

Average Annual Loads. Every model implemen-
tation could predict some or all the average annual
endpoints for flow, TN, and TP discharges from the
three monitored watersheds (Table 2). The MDP and
SPARROW implementations predict annual average
TN and TP loads directly. The other models predict
loads through time, but over different ranges of years
(Table 1). Averaging across all the available years
from each model produced annual average predictions
for the time series models. The number of years
available ranged from 2 (SERC) to 17 (CBP). The
average annual predictions were tabulated and plot-
ted against the observed annual averages from the
1984 to 2000 USGS monitoring data (above), and the
range of predictions among models was reported as
an initial characterization of uncertainty. We also
tabulated the difference between each average annual
prediction and the annual average observed values.
We calculated the percent difference:

% difference = 100 (1#), (1)

where P is a predicted flux and O is the corresponding
observed flux. For each endpoint, the models were also
ranked in order of increasing absolute value of the per-
cent difference from the data with model rank 1
assigned to the model with the lowest such difference.

TABLE 2. Numbers of Models Predicting Average Annual Material
Fluxes Leaving Three Basins Monitored by USGS Sampling

Stations.
Basin
Material L B w
Flow 4 5 3
TN 9 10 8
TP 9 9 8

Notes: Letters indicate basins: L (Laurel), B (Bowie), and W
(Western Branch). Tables 8, 9, and 10 indicate the specific models
associated with any number in the table.
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TABLE 3. Numbers of Models Predicting Annual Time Series
Material Fluxes Leaving Three Basins Monitored by USGS

TABLE 4. Numbers of Models Predicting Average Annual or
Annual Time Series Material Fluxes from the Entire Patuxent

Sampling Stations. Basin.
Basin Material Average Annual Annual Time Series
Material L B w Flow 4 4
TN 9 4
Flow 4 4 3 TP 9 4
TN 5 5 -
TP 5 4 Note: Table 14 indicates the specific models associated with any

Notes: Letters indicate basins: L (Laurel), B (Bowie), and W (Wes-
tern Branch). Tables 11, 12, and 13 indicate the specific models
associated with any number in the table. Annual time series nutri-
ent data were not available for Western Branch (-).

Annual Time Series. The two SERC models, the
two CBP models, and PLM could provide annual time
series predictions (Table 3). The annual predictions
from each implementation were plotted against
annual observed values for the same years. For the
nitrogen and phosphorus plots, we included the 95%
confidence limits for the observed load. We plotted
the confidence limits along the model prediction axis
to reveal how the differences between model predic-
tions and observations compare to the confidence lim-
its on the observed loads. We summarized the
difference from the observed value for each model
and endpoint by applying Equation (1) in each year,
then recording the average and range of percentage
difference across years. We also calculated the Nash—
Sutcliffe (NS) coefficient of model performance (Nash
and Sutcliffe, 1970):

NS=1-2+ (2)
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where O; is the observed discharge (of water, TN, or
TP) in year i, P; is the modeled discharge, O is the
mean observed discharge, and n is the number years.
A NS value of 1 indicates a perfect fit, a value of 0
indicates that the model is predicting no better than
the average of the observations (Nash and Sutcliffe,
1970). Negative values indicate the model is perform-
ing worse than using the average of the observations.
We used the NS values to rank the model performance
for each endpoint, assigning rank 1 to the model with
the NS closest to one (e.g., Gordon et al. 2004).

Estimating Total Loads to the Estuary
We tabulated average annual predictions of flow,

TN, and TP discharge from the entire Patuxent
watershed (Table 4), and we plotted the annual time
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number in the table.

series of predicted flow, TN, and TP discharges together
with annual precipitation amounts (http:/ches.
communitymodeling.org/models/CBPhase5/datalibrary/
meteorological-data.php). We also tabulated the
molar ratios of N and P discharged to the estuary.
This ratio is often used to draw inferences about
which nutrient is more limiting to aquatic production
(Redfield, 1958; Glibert et al., 2006).

Allocating Loads to Land Types

We compared how the models attributed the non-
point source nutrient loads to developed land, agricul-
ture, and other land types (Table 5). For the MDP
model, we estimated the total nutrient loads from
developed land by adding the loads from residential,
urban, commercial, industrial, transportation, and
utility lands, and we estimated the total nutrient
loads from agriculture by summing loads from row
crops, pasture, orchards, and confined feeding lots.
For the SERC models, statistical model coefficients
for cropland and developed land and the areas of the
two land covers were used to isolate crop land and
developed loads, with the remaining nonpoint source
load attributed to other land. For the CBP models,
we summed the nutrient loads from agricultural
areas (including conventional-till, conservation-till,
hay fields, pasture, and confined animal operations)
to estimate the agricultural contributions; and we
summed the loads from low-, medium-, and high-
intensity developed land and developed open space to
estimate the total contributions from developed lands.
The SPARROW models attributed nonpoint loads to

TABLE 5. Numbers of Models that Could Allocate Nitrogen and
Phosphorus Loads to Land Cover Types for Four Basins.

Basin
Material L B W P
TN 9 9 8 8
TP 9 9 8 8

Notes: Letters indicate basins: L (Laurel), B (Bowie), W (Western
Branch), and P (entire Patuxent).
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fertilizer inputs, manure inputs, developed land area,
and atmospheric deposition inputs; however, atmo-
spheric deposition was integrated into the nutrient
contributions from the different land types in
the MDP, SERC, and CBP models. To make the
SPARROW estimates more consistent with the other
models, we apportioned its estimated loads from
atmospheric deposition to agriculture, developed land,
and other land using the proportions of these three
categories in the land cover data. The agricultural
load from SPARROW then included part of the atmo-
spheric deposition load plus the loads attributed to
fertilizer and manure, whereas the total nonpoint
source load from developed land included the load
attributed to developed land area plus the portion of
the atmospheric deposition load that could be attrib-
uted to atmospheric deposition on developed land. It
was not possible to attribute loads to agriculture and
developed land with the PLM model because the
model does not track the origins of the delivered
nutrient loads.

RESULTS

Land Type Inputs

Land type proportions for the entire Patuxent
basin differed considerably among the sources of land
data used by the models (Tables 6 and 7). The pro-
portion of developed land ranged from 11 to 37%,

and the cropland proportion ranged from 9 to 31%.
We summed row crop, grassland (called pasture in
some data sets), and animal feeding areas (repre-
sented only in some data sets) to estimate agricul-
tural area. The resulting agricultural areas ranged
from 15 to 36% of the basin. Forest (43-62% of the
basin) and all other land (barren areas and wetlands,
0-2% of the basin) were more similar among the land
data sets.

The estimated proportions of cropland and devel-
oped land also differed widely among the land data
sets for each of the three monitored watersheds
(Table 7). Despite those differences, all the data sets
consistently identify the Laurel basin as the most
agricultural of the four watersheds (average of 26%
cropland and 14% developed) and the Western
Branch as the most developed (average 13% cropland
and 33% developed, Table 7).

Comparing Model Estimates to Observed Loads

Average Annual Loads. Predictions differed
widely among models for all the average annual end-
points (Figure 2; Table 8). Streamflow predictions
from the SERC and CBP models were more accurate
for Western Branch (maximum absolute difference
from observed flow of 11% or less, Table 9) than at
Bowie and Laurel (up to 26-61% absolute difference
from observed, respectively). The models tended to
overestimate observed annual average flows for the
Western Branch watershed, where there was a
higher proportion of developed land and no reservoirs

TABLE 6. Land Cover or Land Use Percentages for the Entire Patuxent Basin as Used in 10 Model Implementations.

Implementation Crop Grass Developed Forest Year Data Source
MDP90 25 4 20 46 1990 MDP (2003a,b)
MDP97 24 3 27 43 1997 MDP (2003a,b)
SPARROWS7 12 7 37 44 1990 Geographic Information Retrieval and Analysis System
(GIRAS) (Gutierrez-Magness et al., 1997); EPA-EMAP (1994);
1992 NLCD (Vogelman et al., 2001)
SPARROW92 - - - - 1992 EPA-EMAP (1994), 1992 NLCD (Vogelmann et al., 2001)
SPARROW 97 - - - - 1997 1990 NLCD (Vogelmann et al., 2001); Landsat image change
detection (Brakebill and Preston, 2004)
CBP4 12 7 37 44 1990 EPA-EMAP (1994); NOAA-CCAP (2006); USGS GIRAS
(Gutierrez-Magness et al., 1997)
SERC 10 28 12 49 1990 EPA-EMAP (1994)
SERCLM 10 28 12 49 1990 EPA-EMAP (1994)
PLM 31 5 11 51 1973 MDP (2003a)
25 4 20 46 1990 MDP (2003a,b)
24 3 27 43 1997 MDP (2003a,b)
CBP5 13 11 18 57 1984 1990 NLCD (Vogelmann et al., 2001); 2000 RESAC
9 7 22 62 2000 Land cover (Goetz et al., 2004); Agricultural Census

Data (http://www.agcensus.usda.gov)

Notes: Land cover numbers for the SPARROW 1992 and 1997 implementations were not included in the SPARROW publications (-). For all
the data sets, the land not occupied by cropland, grassland, developed land, or forest was less than 3% of basin area.
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TABLE 7. Means and Ranges (in parentheses) of Land Type
Percentages Across Nine Land Use or Land Cover Datasets Used
in 10 Model Implementations.

Basin Crop Grass Developed Forest

Laurel 26 (11-47) 15 (7-40) 14 (3-24) 44 (34-62)
Bowie 17 (8-32)  10(5-30) 28 (16-43) 43 (36-56)
Western Branch 13 (3-23) 10 (2-33) 33 (22-45) 42 (36-50)
Entire Patuxent 18 (9-31) 9(3-28) 22(11-37) 50 (43-62)

Notes: Table 6 provides citations and details on how the 10 model
implementations represented the entire Patuxent basin. The MDP
analysis did not separate cropland and grassland, so the crop-
land + grassland sum for each model is shown for comparison to
MDP. Land not occupied by cropland, grassland, developed land, or
forest was always <3% of every basin. The cropland means and
ranges summarize three land data sets for Western Branch and
four data sets for the other basins. For the other land types, seven
land data sets are summarized for Western Branch and eight for
the other basins.

or point source contributions. For Laurel and Bowie,
the models tended to underestimate streamflow. The
SERCLM model best predicted flow at Laurel and
Bowie, whereas CBP5 best predicted flow at Western
Branch (Table 10), but both of these models also
made relatively poor predictions for other basins. The
SERC statistical model did not provide the best esti-
mates for any endpoint, but consistently provided
reasonable flow estimates (5-26% absolute difference
from observed flow) for all three watersheds. The
CBP4 model more significantly overestimated flow for
Laurel and Bowie than did the other models, possibly
because it did not account for water removed from
the two reservoirs.

Predicted average annual TN loads were less accu-
rate than flow predictions, with differences from
observed TN ranging between —83 and 42%. Underes-
timates were more common for Laurel and Western
Branch, the two smaller basins, than for Bowie
(Table 9). With the exception of the SERC model, the
export coefficient and statistical models predicted TN
loads more accurately than the simulation models.
For example, the MDP90 and MDP97 models best
predicted TN loads at Laurel and Western Branch,
and the SPARROW97 version best predicted average
annual loads at Bowie. Although the SERC model
provided accurate flow predictions, it underestimated
TN loads by more than the other models, possibly
because its 2-year time frame (August 1997-July
1999) provides a poor representation of average
annual conditions (see Discussion).

As in the flow comparison, models that predicted
well for one watershed often predicted poorly for oth-
ers. For example, the MDP90 model predictions were
closest to the observed values at Western Branch,
but were poor at Bowie (rank 7.5 out of 11). The
SPARROW97 model predictions most closely matched
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FIGURE 2. Annual Average Predictions from 10 Model Implemen-
tations vs. Measured Long-Term Average Annual Discharges of
Water, TN, and TP. Model predictions (Table 8) are shown with
small dots, and the model average prediction is shown with an
asterisk. Predictions would equal observations along the solid diag-
onal line.

the observed annual average TN load at Bowie, but
provided the poorest estimate at Western Branch.
Model performance in predicting observed TP loads
was generally poorer than for TN, and the range of TP
predictions among models was wider. Predictions for
Laurel generally were more than 100% greater than
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TABLE 8. Average Annual TN and TP Discharges from Three Monitored Watersheds Predicted by
10 Model Implementations and Measured.

Flow Mm®/yr TN Mg N/yr TP Mg P/yr

Implementation L w B L w B L w B

MDP90 - - - 284 193 711 21.8 13.8 50.1
MDP97 - - - 314 209 787 23.9 14.3 55.0
SPARROWS7 - - - 342 126 1,075 9.8 5.8 41.4
SPARROW92 - - - 236 105 1,193 75 7.8 31.7
SPARROW97 - - - 202 79 839 3.9 6.1 28.6
SERC 54.8 92.4 315 124 125 659 5.6 31.4 69.1
SERCLM 72.7 98.3 349 135 119 980 10.0 36.5 101.4
CBP4 119 - 430 51.4 - 899 185 - 72.3
CBP5 49.5 88.5 316 125 129 643 4.0 15.6 48.0
PLM - - 299 - - 942 - - -

Model average 73.9 93.2 342 202 136 873 11.7 16.4 55.3
Observed 73.7 88.3 339 308 188 842 4.6 23.0 59.3

Notes: Letters indicate basins: L (Laurel), B (Bowie), and W (Western Branch). The MDP and SPARROW models did not predict flow, and
some models did not predict TN and TP for all basins (—). Observed data are means for the years 1984-2000.

TABLE 9. Percent Difference from USGS Observed Discharges (Equation 1) for Average Annual Model Predictions.

Flow TN TP

Model L w B L w B L w B

MDP90 - - - -8 2 -16 374 -40 -16
MDP97 - - - 2 11 -7 420 -38 -7
SPARROWS87 - - - 11 -33 28 114 -75 -30
SPARROW92 - - -23 -44 42 63 —-66 —47
SPARROW97 - - - -34 -58 0 -16 -73 -52
SERC -26 5 -7 -60 -33 -22 22 36 17
SERCLM -1 11 3 -56 -37 16 117 59 71
CBP4 61 - 27 -83 - 7 302 - 22
CBP5 -33 1 -7 -59 -31 -24 -14 -32 -19
PLM — - -12 — - 12 - - -
Model average 0 6 1 -34 -28 4 154 -29 -7
Notes: Negative values indicate underpredictions; positive values indicate overprediction. Letters indicate basins: L (Laurel), B (Bowie), and

W (Western Branch). Some models did not predict some endpoints (-).

the USGS observed loads, possibly because the models
did not adequately account for P retention by the reser-
voirs. Only SPARROW97 and CBP5 were within 15%
of the observed load. In contrast, the models tended to
underestimate TP loads to Western Branch and Bowie.
As with flow and TN, the highest ranked models dif-
fered among basins. At Laurel and Western Branch,
the CBP5 model best matched the observed annual
average TP load, whereas the MDP97 model best pre-
dicted TP loads observed at Western Branch and
Bowie. The best performing TP models for a basin were
not the models that were best for flow or TN.

In summary, the average annual analysis revealed
several key patterns. No model consistently excelled
across the materials and watersheds considered, and
the models that best matched the observations at one
endpoint were often among the worst models for
another endpoint. Model skill in predicting the
observed data was best for flow, intermediate for TN,
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and poor for TP. There was no relationship between
how well the simulations predicted flow and how well
they predicted TN or TP loads. The export coefficient
and statistical models (MDP, SPARROW, and SERC)
were generally better predictors of TN loads than the
simulation models (SERCLM, CBP, and PLM). All the
models were poor predictors of TP loads. For all mate-
rials, models were closest to the observations at Bowie
(the largest basin) and most different from the obser-
vations at Laurel (the smallest basin), suggesting that
model performance improved with watershed size.

Annual Time Series. The analysis of annual
time series endpoints (Table 3) supported the findings
from the average annual analysis. Model performance
again differed among materials and locations
(Figure 3; Tables 11-13). For example, SERCLM best
predicted flow at the Laurel outlet (NS = 0.9), but was
the least accurate at Western Branch (NS = —-8.2). The

JAWRA



Boomer, WELLER, JorDAN, LINKER, Liu, REILLY, SHENK, AND Voinov

TABLE 10. Ranked Performance of Models for Average Annual Predictions Based on the Absolute Value of Percent
Difference from USGS Observed Discharges (Table 9).

Flow TN TP
Model L W B Mean Rank L w B Mean Rank L W B Mean Rank  Overall Rank
MDP90 - - - - 2 1 6.5 3.2 9 5 3 5.7 4.4
MDP97 - - - - 1 2 3.5 2.2 10 4 1.5 5.2 3.7
SPARROWS7 - - - - 3 5. 10 6.2 5 9 7 7 6.6
SPARROW92 - - - 4 8 11 7.7 4 7 8 6.3 7.0
SPARROW97 - - - - 55 9 1 5.2 2 8 9 6.3 5.8
SERC 3 2 3.5 2.8 9 5. 8 7.5 3 3 4 3.3 4.6
SERCLM 2 4 2 2.7 7 7 6.5 6.8 6 6 10 7.3 5.6
CBP4 5 - 6 5.5 10 - 3.5 6.8 8 - 6 7 6.4
CBP5 4 1 3.5 2.8 8 4 9 7 1 2 5 2.7 4.2
PLM - - 5 5 - - 5 5 - - - - 5.0
Model average 1 3 1 1.7 55 3 2 3.5 7 1 1.5 3.2 2.8

Notes: Letters indicate basins: L (Laurel), B (Bowie), and W (Western Branch). Some models did not predict some endpoints (-).
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FIGURE 3. Annual Time Series Predictions from Five Model Implementations vs. Measured Annual Discharges of Water, TN, and TP. Pre-
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TABLE 11. Percent Differences from USGS Observed Discharges (Equation 1) for Annual Time Series Predictions.

Flow TN TP
Model Years L w B L B L B
SERC 2 15 (14 to 16) 17 (16 to 19) 8 (7 to 10) 20 (15 to 25) 20 (19 to 21) 141 (-33 to 315) 126 (116 to 135)
SERCLM 16 3 (2 to 6) 21 (-9 to 56) 6(-8t019) -15(-49to19) 22 (-13 to 68) 177 (45 to 468) 79 (-8 to 186)
CBP4 17 126 (6 to 397) - 34 (-12 to 72) -54 (-85to 12) 34 (-1to 76) 166 (37 to 455) 46 (-22 to 165)
CBP5 17 -52(-99to -11) 6 (-10to 31) —10(-60to 2) -39 (=99 to 22) —17 (-62 to 1) 9 (-98 to 137) —-13 (-81 to 31)
PLM 7 -1(-1to-1) - 18 (-9 to 48) -

Model average 17 26 (—25 to 106) 14 (-19 to 36)

8 (=11 to 19) -19 (-61 to 96)

13 (-24 to 53) 146 (-11 to 287) 32 (=37 to 95)

Notes: The percent difference from observed discharges was calculated for every model in every year. For each model and material, the table
presents the mean and range (in parentheses) of those differences across years. Some models did not predict some endpoints ().

TABLE 12. Nash-Sutcliffe Coefficients for Annual Time Series Predictions.

Flow TN TP
Model Years L w B L B L B
SERC 2 0.90 -8.22 -0.36 0.81 -1.32 -35.70 -185
SERCLM 16 1.00 -0.17 0.90 0.91 -0.11 —44.00 -1.39
CBP4 17 -0.89 - -0.47 -0.40 -0.65 -6.61 0.25
CBP5 17 0.30 0.77 0.67 0.51 -0.17 -1.43 -0.26
PLM 7 - - 1.00 - -1.19 - -
Model average 17 0.85 0.40 0.86 0.69 0.55 -10.68 0.23

Notes: Letters indicate basins: L (Laurel), B (Bowie), and W (Western Branch). TN and TP flux measurements were not available for
Western Branch; PLM predicted only flow and TN at Bowie; and CBP4 did not predict fluxes for Western Branch (-).

TABLE 13. Ranked Model Performance for Annual Time Series Predictions Based on Nash-Sutcliffe Coefficients (Table 12).

Flow TN TP
Model Years L w B Mean Rank L B Mean Rank L B Mean Rank Overall Rank
SERC 2 2 3 2 2.3 2 2 2.0 4 5 4.5 2.9
SERCLM 16 1 4 3 2.7 1 3 2.0 5 4 4.5 3.0
CBP4 17 5 - 6 5.5 5 6 5.5 2 1 1.5 4.2
CBP5 17 4 1 5 3.3 4 4 4.0 1 3 2.0 3.1
PLM 7 - - 1 1.0 - 5 5.0 - - - 3.0
Model average 17 3 2 4 3.0 3 1 2.0 3 2 2.5 2.6

Notes: Models with NS coefficients closest to 1 were ranked highest (see text). Letters indicate basins: L (Laurel), B (Bowie), and W (Western

Branch).

CBP5 best predicted flow at Western Branch
(NS = 0.77), but provided relatively poor predictions at
Laurel (NS =0.3). TN loads predictions were again
less accurate and more different among models than
flow predictions. The SERC and SERCLM models per-
formed well in predicting annual TN loads (NS > 0.8)
at Laurel, but all the models performed poorly in pre-
dicting annual TN loads at Bowie (NS < 0).

The ranges of differences between the TP load pre-
dictions and observations were again higher than those
for TN. At Laurel, TP loads were generally overesti-
mated, and all the models had years with predictions
>100% of the observed annual loads (Table 11). Differ-
ences between observations and the model predictions
were smaller for the larger Bowie watershed. The NS
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coefficients (Table 12) indicate that none of the models
are good predictors of TP loads. NS values were below 0
for all but one TP endpoint, indicating the models were
less reliable than using the average observed loads as a
predictor. The CBP4 model had a positive coefficient
(NS = 0.25) at Bowie, but the value (NS = 0.25) was
still below the threshold of good performance (.e.,
NS > 0.5) (Moriasi et al., 2007). The SERC and SERC-
LM models tended to overestimate observed TP loads
by more than 100% because of the measured TP loads
used to fit the SERC models were higher than the
USGS TP observations (see Discussion).

For both TN and TP, most model predictions fell
outside the 95% confidence limits for the observed
loads (Figure 3) produced using the ESTIMATOR
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model (Cohn et al., 1989), suggesting that the differ-
ences between model predictions and observations
are statistically significant. A few model predictions
fell within the 95% confidence limits of the observa-
tions, but such agreement was again not consistent
among materials and locations for any model.

In summary, the analysis of annual time series
predictions supported the key patterns identified in
the analysis of average annual endpoints: no model
consistently excelled across the endpoints, model skill
was highest for flow, intermediate for TN, and poor
for TP; and skill in predicting one material seemed
unrelated to the skill in predicting the others. In
addition, models that performed well in predicting an
average annual endpoint were not necessarily among
the best models for predicting the annual time series
for the same material and basin. In some cases, this
may partly reflect the limited number of years avail-
able to estimate the annual average (see Discussion).

Performance of the Model Average. We com-
pared the performance of the model average to the indi-
vidual models for every endpoint. For many of
endpoints considered above, at least one model provided
a better estimate than the model average, but across all
the endpoints, the model average performed more con-
sistently and more reliably than any single model (Fig-
ures 2 and 3, Tables 8-13). The model average had the
best overall rank across all the average annual and
annual time series endpoints (Tables 10 and 13). The
model average worked well partly because each individ-
ual model performed poorly for some endpoints. For
example, the annual average TN load predicted by
SPARROW97 was most similar to the observed long-
term average at Bowie, but least similar at Western
Branch. The MDP90 TN predictions agreed closely with
the long-term data at Laurel and Western Branch, but
not at Bowie. Model performances also varied among
response variables. For example, the MDP97 model
effectively predicted long-term TN loads but not TP
loads; and the reverse was true for CBP5. The model
average did perform poorly for particular endpoints
where a single, very poorly performing model dominated
the average (as when the CBP4 model greatly overesti-
mated annual average flow at Laurel) or where all the
models either over- or under-predicted the observations
(e.g., annual TP loads at Laurel). The model average
performed better for the annual time series endpoints
(and monthly time series endpoints, Supporting Infor-
mation) than for the average annual endpoints.

Total Loads to the Estuary

Across the model set, predicted average annual
flow from the entire watershed to the Patuxent
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estuary ranged between 840 and 9,100 Mm?/yr, and
the model average flow was 2,900 Mm?/yr (Table
14). Predicted average annual TN loads to the su-
bestuary ranged between 1,400 and 2,900 Mg N/yr.
Estimates from the SERCLM and CBP5 models
were remarkably similar (1,750 Mg N/yr), whereas
estimates from MDP, SPARROW92, and CBP4
were consistently higher than the other models.
The model average was 2,115 Mg N/yr. Predicted
average annual TP loads ranged between 60 and
340 Mg P/yr, and the model average was
191 Mg P/yr.

The molar ratio of TN to TP in the average annual
discharge ranged from 11 to 78, with a model average
of 24 (Table 14). The ratio for the two SERC models
was 11, which is less than the Redfield ratio of 16
(Redfield, 1958; Glibert et al., 2006), suggesting a pos-
sible excess of phosphorus over nitrogen relative to
the needs of phytoplankton. The other seven model
implementations had TN:TP ratios above 16, suggest-
ing a relative excess of nitrogen in watershed dis-
charges to the estuary. The SPARROW92
implementation had the most extreme TN to TP ratio
(78, Table 14).

Annual time series predictions of flow, TN, and TP
increased directly with annual precipitation, but the
response to precipitation differed among models (Fig-
ure 4). Absolute and relative differences among the
model predictions were greater during wetter years.
CBP4 estimates of flow were consistently higher and
increased more with additional precipitation than did
flow estimates from the SERCLM or CBP5 models,
which were consistently similar throughout the study
period. Between 1984 and 2000, flow estimates from
the SERCLM, CBP4, and CBP5 models ranged
between 500 to 1,500 Mm?/yr, 5000 to
16,000 Mm?/yr, and 850 to 2,700 Mm?/yr, respec-
tively. All three models predicted their highest
annual discharge during the wettest year (1996), but
they did not all predict the lowest annual flow during

TABLE 14. Predicted Average Annual Flow,
Total Nitrogen Load, and Phosphorus Load to the Patuxent
Estuary and Atomic N to P Ratios.

Years Flow
Model Averaged (Mm®/yr) Mg N/yr Mg P/yr N:P
MDP90 - - 2,624 186 31
MDP97 - - 2,860 198 32
SPARROW92 - - 2,755 78 78
SPARROW97 - — 1,428 64 49
SERC 2 858 1,568 311 11
SERCLM 16 848 1,749 338 11
CBP4 17 9,076 2,185 189 26
CBP5 17 867 1,751 167 23
Model Average - 2,912 2,115 191 24
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FIGURE 4. Annual Precipitation and Annual Time Series Predictions of Water, TN, and TP from the
Entire Patuxent Watershed. The dashed line connects the model average predictions.

the driest year (1991). Among years, the model aver-
age annual P load ranged between 2,400 and
6,700 Mm?®/yr.

Patterns in the predicted annual time series nutri-
ent loads were similar to the patterns in the pre-
dicted annual flow. For TN, the SERCLM and CBP5
models consistently predicted lower loads (range:
1,100-2,600 and 1,400-2,600 Mg N/yr, respectively)
than the CBP4 (range: 1,200-4,800 Mg N/yr). The
model average ranged between 1,400 and
2,800 Mg N/yr. For TP, the SERC and SERCLM
models predicted higher annual loads (range: 85-540
and 175-560 Mg P/yr, respectively) than the CBP4
and CBP5 models (75-460 and 110-270 Mg P/yr,
respectively), probably because of differences in the
underlying measurements used for model calibration
(see Discussion). The model average ranged between
135 and 365 Mg P/yr.
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Allocating Loads to Land Types

The attribution of nonpoint source (NPS) annual
average TN loads to agriculture and to developed
land differed among models (Tables 5, 15, and 16). In
the Laurel watershed, all models identified agricul-
ture as the majority TN source (range 51-95% of NPS
load). The SERCLM model predicted the highest agri-
cultural contribution despite using the lowest esti-
mated proportion of agricultural land area, indicating
that the differences among models in source alloca-
tion reflect more than just the differences in land
type proportions. In the other three watersheds, some
models attributed the majority of the TN load to agri-
culture, whereas other models attributed the majority
to developed land. For Bowie, the SPARROW and
SERC models attributed more nitrogen to agriculture,
whereas the MDP and CBP models attributed more
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TABLE 15. Model Average and Range Among Models (in parentheses) for the Percentages of Predicted Average Annual TN and TP
Discharges Allocated to Cropland and Developed Land in Four Watersheds.

TN TP
Basin Cropland Developed Land Cropland Developed Land
Laurel 72 (51 to 95) 12 (1 to 24) 64 (40 to 91) 12 (3 to 17)
Bowie 46 (23 to 69) 39 (17 to 59) 35 (21 to 51) 48 (34 to 59)
Western Branch 47 (18 to 62) 37 (17 to 56) 47 (19 to 81) 38 (17 to 67)
Entire Patuxent 49 (27 to 72) 35 (18 to 54) 47 (23 to 75) 35 (12 to 48)

TABLE 16. Percentages of Predicted Average Annual TN and TP
Discharges from the Bowie Basin Allocated to Cropland and
Developed Land by Nine Model Implementations.

TN TP
Developed Developed
Model Agriculture Land Agriculture Land
MDP90 37 50 51 46
MDP97 31 58 44 54
SPARROWS87 63 27 30 37
SPARROW92 56 40 27 55
SPARROW97 71 25 26 52
SERC 49 36 46 44
SERCLM 66 27 50 34
CBP4 25 54 21 52
CBP5 32 50 30 56
Model 48 41 36 48
average

to developed land. For all four watersheds, the model
average contribution from agriculture was larger
than the model average contribution from developed
land.

The allocation of NPS TP loads differed even more
among the models than did the TN allocations. For
the Laurel basin, the agricultural contribution to
NPS TP loads ranged from 40 to 91% among models,
and all models estimated that developed land contrib-
uted a much smaller fraction (<17%) of the NPS TP
load. For Bowie, the MDP90, SERC, and SERCLM
models predicted that more TP came from agriculture
than developed land, whereas the MDP97, SPARROW,
and CBP models predicted the reverse. For three
basins, the model average indicated that agriculture
contributed more TP than developed land, but the
developed land contribution at Bowie was higher
than the agricultural contribution.

DISCUSSION

Our ensemble analysis of watershed models yielded
insights that could not have been revealed by exam-
ining a single model. We found that none of the
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individual models was consistently best in matching
observed loads across the set of endpoints that we
examined. Instead, the model average prediction was
the most consistently reliable predictor, and the range
of predictions among models provided a first order
estimate of uncertainty. For nutrients, the range
among model predictions was much larger than the
confidence limits for the observed loads, suggesting
that the uncertainties in modeling are much larger
than the uncertainties in load measurement. In some
cases, consensus among the models would justify con-
fidence in the model predictions and the underlying
knowledge, but other analyses revealed large differ-
ences among the models. Those differences suggest
areas where more research is needed to provide better
data or better understanding of watershed processes.
These insights from ensemble modeling support the
importance of considering multiple models and the
need to adaptively manage land use practices to pro-
tect water resources. The following sections provide
more details on each of these findings.

There Is No “Best” Model

No single model consistently outperformed the other
models across the endpoints for which we compared
predictions to observations. The models that most clo-
sely matched the data for one endpoint often were
among the worst models for another endpoint
(Tables 10 and 13, Figures 2, 3, and 4). Such an out-
come is not inevitable, and some ensemble analyses
could identify a model that is generally superior to the
alternatives across particular sets of predictions. How-
ever, our finding of “no best model” matches the experi-
ence of a more intensive watershed model comparison
implemented across the European Union (Bormann
et al., 2007, 2009; Breuer and Huisman, 2009; Breuer
et al., 2009; Huisman et al., 2009; Viney et al., 2009).

The Range of Predictions Helps Quantify Model
Uncertainty

The range among models in an ensemble provides a
first order estimate of model uncertainty for predicting
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an endpoint, thus helping to objectively assess confi-
dence in model predictions (Beven, 2007; Clark, 2007).
As the range accounts for differences among models, it
reflects uncertainty in the model structure (Tobias
and Li, 2004). In our model set, the SERC and SPAR-
ROW models were statistical models that could
provide predictions with confidence limits, but the
loading coefficient (MDP) and simulation models
(SERCLM, CBP, and PLM) provided no estimates of
prediction uncertainty. Indeed, most watershed simu-
lation models do not provide uncertainty estimates
(Pappenberger and Beven, 2006). The uncertainty
range from ensemble modeling can help describe pre-
diction uncertainty while research continues on better
methods to quantify uncertainty in complex simula-
tion models. There has been some success in quantify-
ing prediction uncertainty in simple watershed models
(e.g., Alexander et al., 2002). Increases in computer
power and ongoing research in uncertainty analysis
methods may eventually enable more complete uncer-
tainty analyses of more complex simulation models,
like the CBP or PLM models in our ensemble, but such
analyses of individual models cannot capture uncer-
tainty in the underlying model structure.

The Model Average Is the Most Consistent Predictor

Averaging across the model ensemble provided
more reliable predictions across the set of endpoints
than any single model. Unlike any of the individual
models, the model average estimates generally were
within the top 10% across all endpoints and always
within the top 50% of the ranked performances of
individual models (Tables 10 and 13). The model
average was not always the closest to the observed
data for every endpoint, so it should not be enshrined
as a “best” model (see previous section). However,
when data are not available to test model predictions,
the model average is likely to be a better estimate
than any single model. Other studies have also
reported that the model average is more consistently
reliable than a single model (Breuer and Huisman,
2009; Viney et al., 2009).

We used the simple average of model predictions
in our investigations of model averaging, but model
averaging is most successful when it incorporates
penalties for model complexity, considers uncertain-
ties of model predictions, and weights models by past
performance (i.e., Bayesian model averaging) (Kadane
and Lazar, 2004; Tobias and Li, 2004). These mea-
sures minimize the influence of poor or overly compli-
cated models. Bayesian model averaging has gained
widespread application in financial forecasting and
socioeconomics (e.g., Wright, 2008; Tobias and Li,
2004), weather (e.g., Koop and Tole, 2004; Gneiting
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and Raftery, 2005), and more recently, in hydrology
(e.g., Gourley and Vieux, 2005). We could not apply
penalties for model complexity, because we did not
have measures of model complexity and uncertainty
(see above) for most of the models in our ensemble.
Better methods quantifying model complexity and
uncertainty for large simulation models (see above)
would enhance the interpretation of individual mod-
els and the power of multi-model approaches like
model averaging.

Consistencies and Differences Among Models

Nutrient Source Areas. Our ensemble analysis
found some patterns of agreement among the models.
Despite the differences in land data and nutrient gen-
erating activities considered, all the models indicate
that agricultural lands release more N and P per unit
area than do developed lands. Empirical watershed
studies have also reported higher rates of nutrient
release from croplands than from developed lands
(Beaulac and Reckhow, 1982; Jordan et al., 1997a,b,
2003; Liu et al., 2000).

Watershed models often are analyzed to identify
the source areas for nutrient discharges. In our com-
parison, the models allocated different fractions of
the nutrient loads to agriculture and to developed
land. In some watersheds, some models identified
agriculture as the dominant source area, whereas
other models identified developed land as the more
important source (Tables 15 and 16). Other model
comparisons also have reported widely different parti-
tioning among nutrient sources for different models
(Valiela et al., 2002; Jordan et al., 2003; Weller et al.,
2003). The differences are important because the esti-
mates could affect how management efforts are tar-
geted to the two land types (Valiela et al., 2002).
Together, the models we studied indicate that agri-
culture and developed land both contribute substan-
tially to nutrient loads, and both land types should
be managed to improve water quality.

Watershed Estuary Linkages. Watershed mod-
els have been linked to estuarine models to help
understand and manage the impacts of human activ-
ity and management efforts on estuarine water qual-
ity and living resources (e.g., Cerco, 1995; Brandt
and Mason, 2003; Lung and Nice, 2007). These efforts
often estimate the atomic ratio of nitrogen and phos-
phorus in estuarine inputs and compare that esti-
mate to the Redfield ratio 16, which represents the
average atomic ratio of N to P in phytoplankton (Red-
field, 1958; Glibert et al., 2006). TN to TP ratios
greater than 16 may mean that N is abundant rela-
tive to P, so that P is the nutrient more limiting to
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phytoplankton production. TN to TP ratios less than
16 imply the reverse, that N supply is more limiting
to primary production.

The predicted TN to TP ratio varies widely among
the models (Table 14), ranging from 78 (SPAR-
ROW92) to 11 (SERC and SERCLM). Only the two
SERC models suggest N limitation by predicting
ratios below 16. The other six model implementa-
tions, all predict TN to TP ratios greater than 16,
suggesting that P is the more limiting nutrient. Infer-
ences based on TN to TP ratios are not conclusive
because phytoplankton respond to dissolved inorganic
nutrient concentrations (not total concentrations),
and because much of the TP in watershed discharges
is attached to particles that may become buried in
sediment and remain unavailable to phytoplankton
(Hartzell et al., 2010). The wide range of predicted
TN to TP ratios does indicate that knowledge of the
linkage between watershed discharges and estuarine
nutrient limitation remains uncertain. Relying on a
single watershed model would limit our understand-
ing of that uncertainty, whereas using multiple mod-
els can improve our confidence in the overall model
predictions.

Relative Predictably of Flow, TN Load, and
TP Load. There were consistent patterns across
models in the relative uncertainties of predictions for
different materials. For all the models that had pub-
lished calibration results, the performance of the cali-
brated model was better for water discharge than for
TN load and worst for TP load (Linker et al., 2000;
Costanza et al., 2002; Weller et al., 2003; Liu et al.,
2008). Our ensemble analysis confirmed those pat-
terns. For all three time frames that we considered
(average annual, annual time series, and monthly),
performance metrics were best for flow, intermediate
for TN, and worst for TP; and the ranges of estimates
among models were narrowest for flow, intermediate
for TN, and widest for TP (Tables 8 and 11, Fig-
ures 2, 3, and 4, Supporting Information). Nutrients
are harder to predict than flow partly because nutri-
ent release, transport, and removal are all strongly
driven by factors that are temporally episodic and
spatially heterogeneous, making them hard to repre-
sent with deterministic models.

Controls of Phosphorus Delivery. The poor
performance and high uncertainty in predicting TP
loads suggests that the models do not capture the
dominant watershed processes controlling the trans-
port and delivery of phosphorus. The P in streams is
mostly associated with sediments (Jordan et al.,
1997a,b), so effectively modeling P loads requires a
good representation of sediment generation and
transport. Most watershed models assume that
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hillslope erosion is the proximal source of sediment
(and associated particulate P) in stream loads,
although empirical tests have demonstrated that
hillslope erosion models are poor predictors of sus-
pended sediment loads (Boomer et al., 2008; Wilkin-
son et al., 2009) and that other processes likely
control sediment generation and transport (de Vente
and Poesen, 2005). Important processes identified in
field studies include: gully erosion (Wells et al., 2009),
seepage erosion (Fox and Wilson, 2010), stream bank
erosion (e.g., Walter and Merritts, 2008; Devereux
et al., 2010; Mukundan et al., 2010), in-stream ero-
sion and deposition (Dearing and Jones, 2003), and
floodplain deposition (e.g., Noe and Hupp, 2009).
Models that move beyond hillslope erosion to account
for more of these processes (Prosser et al., 2001; Wil-
kinson et al., 2009) may provide more accurate and
precise TP predictions. Application of inorganic fertil-
izer or manure can also promote soil P saturation
and increase delivery of dissolved P to streams (Sta-
ver and Brinsfield, 2001). The poor performance of
most watershed models in predicting P loads suggests
a critical need for field and modeling research to
understand the relative importance of different sedi-
ment and phosphorus transport processes.

Errors in Model Implementation. Our indepen-
dent review of output from each model also helped
identify and correct many errors and inconsistencies
in the model implementations. For every model, we
found errors in the model output caused by over-
sights in running the model or in summarizing its
output for analysis. These included errors in data
entry, database queries, or unit conversions. The mis-
takes were not evident when examining a single
model, but became clear when predictions from
several models were compared.

Sources of Differences Among Models

Land Use or Land Cover Data. Some of the dif-
ferences among models in load predictions came from
large and systematic differences among the land type
data sets used to drive different models (Tables 6 and
7). Clearly, there are fundamental differences in land
classification that yield differences in the proportions
of cropland and developed land among model inputs.
These are the land types responsible for most non-
point TN and TP, so the differences in their propor-
tions are likely an important source of differences in
modeled TN and TP discharges. Some of the differ-
ences among the data sets arose from processing land
type maps to provide model input. The SERC, SERC-
LM, and PLM models used published data without
any modifications. The SPARROW and CBP input
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data were synthesized from several land cover maps
combined with county agricultural census data and
counts of septic systems. The modified data sets had
higher proportions of developed land and less crop-
land than the unmodified land cover maps. The MDP
data sets, which were interpreted from aerial photog-
raphy, also had higher percentages of developed land
than the unmodified data sets derived from satellite
imagery, such as the EPA-EMAP (1994) data
(Table 6). The differences remind us that land type
data do not come from simple, direct measurements,
but are instead derived from interpreting aerial pho-
tography or from applying classification models to
remotely sensed data.

The dates of the land data sets range from 1973 to
2000 (Table 6); so some of the differences among
them come also from land wuse change. Most
watershed models use information from a single land
use or land cover data set. Even many models that
include detailed representation of temporal responses
to precipitation and temperature still assume that
land use remains constant through time. In our
model set, only the CBP5 and PLM models incorpo-
rated information on land use change to dynamically
account for its effects in multi-year simulations (but
the estimated temporal changes in land use propor-
tions are similar in magnitude to the differences in
proportions among data sets for similar dates;
Table 6). Given the important effects of land types on
water and nutrient discharges, more models need to
account for land changes, especially in applications
over multi-year periods.

More research is needed to classify land use and
land cover more accurately and consistently, to quan-
tify the uncertainty in those classifications, and to
propagate those uncertainties through watershed
models to measure how they affect the uncertainty of
predicted loads. The current uncertainties in land
characterization confound our interpretation of pre-
dicted nutrient source allocations or impacts from
alternative land use management scenarios (Huisman
et al., 2009). Recent progress in refining land classifi-
cation models with ancillary data (e.g., Pyke, 2010; P.
Claggett, USGS, unpublished data) may provide more
reliable land type data for the Chesapeake Bay region.

Stream Measurements of Nutrient Loads. Dis-
parities in measured loads also contributed to differ-
ences among model predictions. In particular, the
SERC model was a poor predictor of the USGS
observed TP loads (Table 12), despite the model’s
strong calibration results (Jordan et al., 2003; Weller
et al., 2003). This discovery led us to compare the
USGS streamflow and nutrient load data with
the independent SERC measurements used to
calibrate the SERC and SERCLM models. Nutrient
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loads reported by the USGS are derived from a log-
linear regression model that estimates nutrient loads
from measured nutrient concentrations, measured
streamflow, and a function of time that represents
seasonality and possible linear trends (Cohn et al.,
1992). The USGS measured nutrient concentrations
during periodic short sampling events using a spa-
tially integrated approach in which samples were col-
lected across the stream width and depth and then
composited. Streamflow was monitored continuously.
The SERC data came from automated samplers,
which measured stream depth continuously and col-
lected weekly flow-weighted composite samples for
nutrient analysis (Jordan et al., 1997c), a method
which has been reported to provide direct and accu-
rate estimates of loads (Stone et al., 2000; Harmel
et al., 2006). Weekly mean flow rates and flow-
weighted mean concentrations were multiplied to
estimate weekly loads for the sampling period
between August 1997 and July 1999.

A comparison of SERC and USGS monthly
observed TN loads revealed that many of the SERC
measurements fell outside the 95% prediction inter-
val for the USGS observations provided using ESTI-
MATOR (Cohn et al., 1989), but there was still a
strong correlation (R? = 0.90) and data were grouped
symmetrically around the 1:1 line (Figure 5). How-
ever, the observed TP loads were less strongly corre-
lated (R? = 0.71) and the USGS and SERC loads were
systematically different. The geometric mean slope
(appropriate when two variables are both measured
with error) (Sprent and Dolby, 1980) of SERC TP us.
USGS TP is 1.97, indicating that SERC-measured TP
discharges are roughly twice the USGS-measured TP
discharges. The relationship also explains why the
SERC and SERCLM models (which were calibrated
with the SERC measurements) made predictions that
were strongly correlated with, but systematically
greater than the USGS measurements (see Figure 3).
If the SERC TP measurements are correct, then
models calibrated with the USGS TP measurements
would significantly underestimate TP loads. The
ESTIMATOR modeling approach applied using USGS
to estimate TP loads from flow and concentration
data may underestimate loads during high flow peri-
ods. Further research comparing volume-integrated
composite sampling using ESTIMATOR modeling and
quantifying the uncertainties in both types of mea-
surements would help identify the most accurate way
to measure TP loads.

Time Period Considered. Differences in the
modeled time period also contributed to differences
among model predictions. The clearest example of
possible confusion arises in evaluating the perfor-
mance of the SERC model. This simple statistical
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FIGURE 5. Comparison of USGS and Smithsonian Environmental Research Center (SERC) Observations of Monthly Nutrient Discharges
from the Bowie Watershed. The SERC and USGS measurements would be equal along the diagonal line. The dotted lines are the 95% confi-
dence limits for the USGS estimates of observed loads. The confidence limits are plotted against the vertical axis to show how differences
between the SERC and USGS observations compare to the 95% confidence limits of the USGS loads.

model was calibrated using extensive empirical infor-
mation from the Patuxent, so it is not surprising
that it is among the best models for annual time ser-
ies predictions of flow, TN, and TP (Table 13). Given
its good performance for annual time series predic-
tions, its much poorer performance for average
annual predictions seems surprising. However, the
explanation is simple. The two years predicted using
the SERC model (August 1997-July 1999) are not
typical and provide a poor estimate of average
annual loads. This problem does not arise for the
other models because they were designed to predict
the annual average (MDP or SPARROW) or because
they estimate the annual average from much longer
annual time series (7-17 years, PLM, CBP, and
SERCLM). In general, simulation periods need to be
long enough to capture climatic variation, especially
when calculating the long-term mean discharges
most often used in applying watershed models to
management questions.

Comparing Models as Published

We were not able to compare our models using
exactly the same inputs and outputs. The models, we
compared could not be fully standardized because
they took very different approaches to modeling
nutrient discharges from watersheds. For example,
the models use fundamentally different kinds of
information on land types and nutrient sources
(Tables 6 and 7), and some models attribute nutrients
directly to particular activities, such as fertilizer or
manure application rather than using land type as a
surrogate (Preston and Brakebill, 1999). Across the
model ensemble, the land type data sets are not com-
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mensurate (see Weller et al., 2003), so each model
must be run with the land data for which it was
developed. It would be wrong to apply a model cali-
brated with one type of land data to predict nutrient
loads for watersheds described with a different source
of land data (Weller et al., 2003). The different
choices of land data or nutrient generating activities
to consider represent different ideas of how to repre-
sent nutrient sources, and the choices are essentially
elements of model structure that cannot be elimi-
nated. Similarly, we could not compare model outputs
for exactly the same time periods. Some models
(MDP, SPARROW) made only average annual predic-
tions, not estimates for specific years. The SERC sta-
tistical model can only produce estimates during the
years of its underlying empirical data (August 1997
through July 1999) and cannot make predictions for
other years.

Our analysis, then, did not focus strictly on differ-
ences due to mathematical structure. Instead, we
compared the predictions as published and as inter-
preted for management implications. This approach
does demand some care in interpretation, such as the
caution noted previously about annual average
results based on different ranges of years, particu-
larly, the short 2-year range of the SERC model.
However, despite the limitations, comparing models
as published is necessary and useful. All the models
have been analyzed to make published inferences
about the sources and magnitudes of nutrient loads,
and some of the model predictions have been used to
guide management decisions. We need to understand
where the models agree and disagree, regardless of
whether differences arise from mathematical struc-
ture or from differences in input data or time period
considered. Considering all these differences provides
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the most complete information on uncertainty and
confidence that the accumulated knowledge of all the
models together can provide.

Multiple Models in Watershed Management

We must emphasize that the models we compared
were designed for different purposes, had very differ-
ent structures, and considered different geographic
extents. Some of our models were for the Patuxent
only (SERC, SERCLM, and PLM), one applied to the
state of Maryland (MDP), and two modeled the entire
Chesapeake Bay watershed (SPARROW and CBP),
an area roughly 70 times larger than the Patuxent
watershed. It is not surprising that empirical models
customized for the Patuxent sometimes performed
better in matching measured Patuxent discharges
than did simulation models calibrated for the entire
Chesapeake Bay watershed.

The CBP models have capabilities that none of the
other models can provide, and those capabilities
reflect its unique role in regional planning, decision
making, and environmental regulation. The CBP
models have been linked to a model of nutrient depo-
sition from the atmosphere and to a model of estua-
rine circulation and ecological processes in the Bay.
The combined modeling system estimates the maxi-
mum watershed nutrient loads that still support le-
gally acceptable water quality in the Bay (the
Chesapeake Bay TMDL, see USEPA, 2010b). The
CBP model has been applied to partition the neces-
sary watershed load reductions to states and local
governments. The model accounts for a broad array
of nutrient sources and watershed management
actions, and it can predict the nutrient load reduc-
tions that might be achieved by different manage-
ment alternatives. For these reasons, the CBP model
is central to past and ongoing management and regu-
lation in the Chesapeake Bay, and none of the other
models in our ensemble could replace it in the regula-
tory process.

The existence of a dominant and very capable
model, however, does not mean that a single model is
sufficient and other models should be ignored. Our
ensemble analysis demonstrates that there is much
to be learned from comparing models, even for a sys-
tem in which model development and application has
focused strongly on a dominant model. Examining
the range of estimates for common endpoints pro-
vided a way to quantify uncertainty in the model pre-
dictions, and averaging across all models generated
more reliable estimates of flow and nutrient dis-
charge than selecting and relying on any single
model. Comparing the models also helped identify
and correct problems and revealed gaps in scientific
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knowledge that require further research. Further-
more, considering a single model and not presenting
its uncertainties can damage credibility if imple-
mented strategies fail to meet the predicted outcomes
(Breuer et al., 2009). Ensemble modeling provides a
robust, transparent mechanism for building public
credibility (Leamer, 1983; Layton and Lee, 2006).

The Patuxent is a much studied watershed (see
review in Weller et al., 2003), so our ensemble analy-
sis benefited from having published results available
from many modeling programs. This reduced the cost
of our analysis, overcoming one of the main limits on
applying multiple models in watershed management
(Pappenberger and Beven, 2006). However, analyzing
the models as published also limited our ability to
quantitatively attribute the differences among model
predictions to the possible causes: differences in
model structure, differences in the input data, or dif-
ferences in the time period considered. Developing
and sharing more standardized input data would
improve ensemble modeling and its ability to inform
science and management.

An ongoing program of ensemble modeling cannot
be sustained by a single research group, but instead
requires long-term funding and support of collabora-
tive research (Jakeman et al., 2006). In the Chesa-
peake Bay region, recent reports have called for
adopting a multiple model approach to watershed
management (Friedrichs et al., 2011; STAC, 2011),
and the proposal to create a Chesapeake Bay model-
ing laboratory (NRC, 2011; STAC, 2011) could pro-
vide the collaborative environment needed to support
effective applications of multiple modeling.

Adaptive Management

The uncertainty documented by the large ranges
among model predictions is definitely not an excuse
for forgoing or delaying watershed management
actions. The proper response to uncertainty is
adaptive management (Boesch, 2002; Stankey et al.,
2005; Williams et al., 2007), not inaction. In the case of
the Chesapeake Bay, the legal mandate to address
impairments is clear (USEPA, 2010c), major sources of
nutrients are well known, and management actions
that can reduce those sources have been identified.
Proceeding through successive adaptive management
cycles provides an effective way to move forward and
address impairments in the face of uncertainties like
those evident in our model comparison. As discussed
above, using multiple models helps reinforce confi-
dence in some model predictions and helps identify
where additional monitoring or research is needed to
reduce uncertainty and increase confidence. With
these advantages, using multiple models can improve
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the outcomes of adaptive management more efficiently
over time than relying on a single model (Williams
et al., 2007).

SUPPORTING INFORMATION

Additional results of our modeling analysis can be
found in the online version of this article.

Data S1. Monthly Time Series Analysis. Methods.
Results.

Figure S1. Time series predictions of monthly
water, TN, and TP discharges from the Bowie basin
vs. measured monthly discharges.

Please note: Neither AWRA nor Wiley-Blackwell is
responsible for the content or functionality of any
supporting materials supplied by the authors. Any
queries (other than missing material) should be direc-
ted to the corresponding author for the article.
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USING MULTIPLE WATERSHED MODELS
TO PREDICT WATER, NITROGEN, AND PHOSPHORUS DISCHARGES

TO THE PATUXENT ESTUARY

Kathleen M.B. Boomer, Donald E. Weller, Thomas E. Jordan,

Lewis Linker, Zhi-Jun Liu, James Reilly, Gary Shenk, and Alexey A, A. Voinov

Respectively, Ecologist, Senior Ecologist, and Senior Ecologist, Smithsonian Environmental
Research Center, 647 Contees Wharf Road, Edgewater, Maryland 21037-0028; Modeling
Coordinator, U. S. Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD
21403; Associate Professor, Department of Geography, University of North Carolina,
Greensboro, NC 27402-6170; Planner, Maryland Department of Planning, Baltimore, MD 21201
[Reilly now at Reilly Consulting, Lafayette Hill, PA 19444]; Integrated Analysis Coordinator, U.
S. Environmental Protection Agency Chesapeake Bay Program, Annapolis, MD 21403; and
Associate Professor, The Gund Institute for Ecological Economics, University of Vermont,
Burlington, Vermont 05405 [Voinov now at International Institute for Geo-information Science
and Earth Observation, P.O. Box 6, 7500 AA Enschede, The Netherlands] (E-Mail/Boomer:
boomerk@si.edu).

Monthly Time Series.
Methods. We summarized monthly time series predictions of Bowie discharges for the
SERC, CBP, and PLM implementations. We plotted monthly discharge estimates against
observed values and calculated Nash-Sutcliffe values of model performance (Eq. 2, but with i

indexing months rather than years).

Results
Results. Five models could predict monthly loads at Bowie. The best model again varied by

constituent (Figure S1), and the patterns of model performance were different from the average

annual and annual time series patterns. The PLM model best predicted flow (NS = 1), although
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all models (except CBP4, which overestimated monthly flow) produced good predictions (NS >
0.8). In contrast, the PLM was least reliable (NS = -0.58) for predicting monthly TN loads, and
the SERC statistical model best predicted TN loads (NS = 0.82). For TP, the CBP4 and CBP5
models performed best compared to the other models, though only slightly better than simply
using the mean observed TP (NS =0.07 and 0.09, respectively). The models generally over-
predicted monthly TP, especially during high discharge months. In particular, the SERC model
consistently over-predicted TP loads (NS = -3.62), but the predictions were strongly correlated
with USGS observed TP loads (R? = 0.92). The systematically higher monthly TP load estimates
from the SERC and SERCLM models can be traced to a difference in TP measurements used to

calibrate the SERC models and the USGS TP measurements (see Discussion).
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FIGURE S1. Time series predictions of monthly water, TN, and TP discharges from the Bowie
basin versus measured monthly discharges. The numbers are Nash-Sutcliffe (NS) performance
coefficients. Predictions would equal observations along the diagonal line. The dotted lines on
the TN and TP plots are the 95% confidence limits for the USGS estimates of observed loads.
The confidence limits are plotted along the vertical axis to show how differences between model
predictions and observed loads compare to the 95% confidence limit of the observed loads.
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