Responses of Two Coral Reef Toadfishes (Batrachoididae) to the Demise of Their Primary Prey, the Sea Urchin Diadema antillarum

Author(s): D. Ross Robertson

Reviewed work(s):


Published by: American Society of Ichthyologists and Herpetologists (ASIH)

Stable URL: http://www.jstor.org/stable/1445655


Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Society of Ichthyologists and Herpetologists (ASIH) is collaborating with JSTOR to digitize, preserve and extend access to Copeia.
Responses of Two Coral Reef Toadfishes (Batrachoididae) to the Demise of Their Primary Prey, the Sea Urchin Diadema antillarum

D. Ross Robertson

In 1983–84 the sea urchin Diadema antillarum, which was abundant on coral reefs throughout the Caribbean, suffered a mass mortality. Its densities decreased by about 95% throughout most of its range. In Panama, prior to that mortality event, two reef toadfishes, Amphichthys cryptocentrus and Sanopus barbatus fed almost exclusively on Diadema. Two and a half years after that event the abundance of at least one toadfish appears to be at the pre-event level and both species are actively breeding. After the event these "specialist" fishes changed their diets in different ways. The diet of A. cryptocentrus has become generalized and now includes a broad range of mobile benthic invertebrates (crabs, hermit crabs, gastropods, octopods, echinoids). The diet of S. barbatus now consists primarily of fishes, but also includes a few mobile benthic invertebrates. The ability of Diadema predators to maintain their populations at high levels may reduce the potential for Diadema populations to recover.

UNTIL recently the sea urchin Diadema antillarum was an abundant and ecologically influential organism on Caribbean coral reefs (see references cited in Lessios et al., 1984a, 1984b). Many reef fishes included this urchin in their diets and it constituted the major item eaten by several species at sites in the eastern Caribbean (Randall, 1967). In Jan.-May 1983 populations of Diadema on the Caribbean coast of Panama suffered a rapid mass mortality, which subsequently affected the species throughout most of its geographic range (Lessios, et al., 1984a, 1984b; Hughes et al., 1985). In San Blas the mortality reduced Diadema populations by

© 1987 by the American Society of Ichthyologists and Herpetologists
Fig. 1. Patch reefs of San Blas Point. Solid lines define emergent reefs, dashed lines define submerged reefs. Substrate between reefs consists of sand, mainly covered with macroalgae and seagrasses.

95% (Lessios et al., 1984a) and those populations did not recover in the subsequent 3 yr (H. A. Lessios, pers. comm.).

Prior to the mortality event two species of San Blas toadfishes (Batrachoididae), Amphichthys cryptocentrus and Sanopus barbatus, fed almost exclusively on D. antillarum (Hoffman and Robertson, 1983). Here I describe the responses of those fishes to the abrupt loss of their primary prey.

Methods

Study area.—Data were collected at the same site in the Archipielago de San Blas (Fig. 1) both before (Hoffman and Robertson, 1983) and after the Diadema mortality.

Gut content analyses.—The mortality affected San Blas populations of D. antillarum in April–May 1983 (Lessios et al., 1984a, 1984b). Information on the toadfishes’ diets was collected during 1977 and 1981 (Hoffman and Robertson [1983]) and Sept. 1983–Jan. 1986. Specimens were collected from shallow reefs immediately to the east of Punta de San Blas (Fig. 1) in both cases.

Hoffman and Robertson (1983) found that both species were most likely to have fresh material in their guts in the morning. Consequently the 1984–86 series of specimens were collected in the morning. Fishes were collected with Quinnaldine anaesthetic and dissected within 1 h of capture. All identifiable material in the guts was recorded and measured.

Reproductive activity.—The degree of activity of the ovaries of females collected for gut analyses was recorded. Ripe ovaries are readily recognizable since both species produce eggs about 5 mm in diameter. Hoffman and Robertson (1983) found males of A. cryptocentrus with aggregations of small juveniles (2–3 cm long) in their burrows and searches were made for such juveniles in the shelters of both species during the 1984–86 series of collections.

Population change in A. cryptocentrus.—Amphichthys cryptocentrus was by far the more abundant of the two toadfishes before the Diadema mortality (Hoffman and Robertson, 1983). During a 6 mo period in 1978 a series of censuses was made of the A. cryptocentrus population...
in one 0.225 ha area immediately to the west of Smithsoniantupo (Fig.1). Since May 1983, when the Diadema mortality was in progress, this same area has been censused at approximately monthly intervals. No estimate was made of the population density of S. barbatus before or after the mortality event.

RESULTS

Gut analyses.—Amphichthys cryptocentrus.— Prior to the Diadema die-off that urchin represented almost the entire gut contents of A. cryptocentrus (Table 1). In terms of numerical abundance, the main items present in A. cryptocentrus after the mortality were crabs, gastropods, and hermit crabs. However, when prey size also is taken into account, a larger variety of prey contributed substantially to the biomass of the diet of that toadfish. Individuals of the three most abundant prey groups (gastropods, hermit crabs, and crabs) typically were considerably smaller than individuals of two less abundant prey groups (octopods and echinoids) (Table 1). Thus all five of these prey types are important components of the new diet of A. cryptocentrus.

Table 1. Gut Contents of Amphichthys cryptocentrus Before and After Diadema Mortality.

<table>
<thead>
<tr>
<th>Item</th>
<th>Before*</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion of</td>
<td>Proportion of</td>
</tr>
<tr>
<td></td>
<td>fish with items</td>
<td>items in total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gut contents</td>
</tr>
<tr>
<td>Echinoids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diadema</td>
<td>.80</td>
<td>.03</td>
</tr>
<tr>
<td>Echinometra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Euridaris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crabs</td>
<td>.06</td>
<td>.20</td>
</tr>
<tr>
<td>Gastropods</td>
<td>.06</td>
<td>.20</td>
</tr>
<tr>
<td>Hermit crabs</td>
<td>.00</td>
<td>.06</td>
</tr>
<tr>
<td>Octopods</td>
<td>.00</td>
<td>.15</td>
</tr>
<tr>
<td>Scallops</td>
<td>.00</td>
<td>.05</td>
</tr>
<tr>
<td>Lobster</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>Fishes</td>
<td>.00</td>
<td>.03</td>
</tr>
<tr>
<td>Empty</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>N</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Sizea of items (cm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data from Hoffman and Robertson (1983).

Table 2. Gut Contents of Sanopus barbatus Before and After the Diadema Mortality.

<table>
<thead>
<tr>
<th>Item</th>
<th>Before*</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion of</td>
<td>Proportion of</td>
</tr>
<tr>
<td></td>
<td>fish with items</td>
<td>items in total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gut contents</td>
</tr>
<tr>
<td>Diadema</td>
<td>.92</td>
<td>.00</td>
</tr>
<tr>
<td>Fishes</td>
<td>.00</td>
<td>.44</td>
</tr>
<tr>
<td>Shrimps</td>
<td>.00</td>
<td>.11</td>
</tr>
<tr>
<td>Scallops</td>
<td>.00</td>
<td>.06</td>
</tr>
<tr>
<td>Hermit crabs</td>
<td>.00</td>
<td>.06</td>
</tr>
<tr>
<td>Crabs</td>
<td>.00</td>
<td>.06</td>
</tr>
<tr>
<td>Gastropods</td>
<td>.00</td>
<td>.06</td>
</tr>
<tr>
<td>Empty</td>
<td>.08</td>
<td>.28</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Sizea of items (cm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data from Hoffman and Robertson (1983).

b See Table 1.
Sanopus barbatus.—Before the Diadema mortality that urchin was the only item found in the guts of S. barbatus (Table 2). Fishes were not only the most abundant item present in the guts of S. barbatus after the mortality but were also considerably larger (10–15 cm long) than the other items found (two hermit crabs in 1.2 cm shells, a 2 cm scallop and two shrimps 2–5 cm long). The only recognizable fish was a goatfish (Mullidae).

Most toadfishes are cryptically colored and shaped fishes that normally lie motionless on the bottom (Collette and Russo, 1981; Collette, 1983) or in shelters or burrows. Among those that eat fishes no special adaptations for prey capture have been described and most species probably simply sit and wait for fish that have not noticed them to come within striking range. However, S. barbatus has distinctive behaviors that may constitute a prey-capture mechanism aimed specifically at fishes. A distinctive feature of S. barbatus, which has a cryptic, mottled coloration, is the presence of 1–3 eyeliike spots on its tail (Collette, 1983). In San Blas I found individuals of this species in small caves or under coral overhangs at the coral-sand interface around the edges of reefs. When I encountered these fish in the early morning they often were lying exposed on a sandy bottom 0.5–1 m outside their shelters. In that situation the anterior 40% of the fish was very pale and blended in with the substrate while the posterior 60% was considerably darker than normal and the “eye” spots on the partly folded tail fin were quite prominent. The slender dark tail was curled laterally forwards and positioned near the head. On several occasions when I first noticed the fish I mistook the tail for the front half of a moray eel that was extended from a hole in the substrate. Reef fishes often are attracted by, and closely approach and follow moray eels that are moving about on a reef in daylight (pers. obs.). The resemblance of S. barbatus tail to a moray may be mimetic and serve to attract prey fishes to within striking distance of the toadfish’s camouflaged head.

Reproductive activity.—Among 35 A. cryptocentrus collected I found four males with juveniles in their burrows and five females with ripe or nearly ripe eggs. I also found three male S. barbatus with recently hatched fry in their holes. In the area in which the A. cryptocentrus population was monitored I counted up to four large (10–15 cm total length) solitary juveniles during 1985, and frequently saw similar sized individuals at other localities. In addition, while collecting S. barbatus I encountered large juveniles of that species.

Abundances of toadfishes.—At the time of the Diadema mortality the A. cryptocentrus population was about one third lower than it had been 5 yr previously. For the remainder of 1983 it was about half the 1978 level, and by the end of 1985 it increased to the same as the 1978 level (Fig. 2). Some of the variation in numbers encountered during the post-mortality censuses probably is due to movements of A. cryptocentrus in and out of the monitored area (Hoffman and Robertson, 1983). When collecting A. cryptocentrus for gut analyses I encountered similar densities in other patches of the same habitat type in different parts of the study area.

Sanopus barbatus was relatively uncommon both before and 2.5 yr after the Diadema mortality, but was not noticeably rarer during the second data collection period.

Discussion

The two Panamanian toadfishes responded in different ways to the abrupt loss of the prey on which they had fed almost exclusively. Amphichthys. cryptocentrus switched to a generalized diet that incorporated most major types of mobile benthic invertebrates. Its new diet resembles that of other Caribbean toadfishes (Collette, 1974, 1983; Collette and Russo, 1983). Sanopus barbatus, on the other hand, switched primarily to fishes. If I am correct in suggesting that S. barbatus is employing mimetic behaviors that function specifically for capturing fishes, then that toadfish’s prior concentration on Diadema probably represented opportunistic use of a superabundant and readily accessible food
source that was easier to exploit than were fish-
es.

The only published data of which I am aware that considers how consumers of Diadema re-
sponded to the mass mortality is that of Reinthal et al. (1984). These authors showed that, in Be-
lize, the triggerfish Balistes vetula was successfully feeding on a variety of benthic invertebrates 1–
2 mo after the mortality event. However, since those authors had no data on that species’ diet at
that site prior to the mortality event it is not clear whether B. vetula’s diet actually changed.

The available data indicate that if the near elimination of the two Panamanian toadfishes
primary food source had any deleterious effect on them it was slight and temporary. First, both
species have continued to breed and both have subadult recruits entering their populations.
Second, although the size of the monitored pop-
ulation of A. cryptocentrus was lower at the time of
the mortality than previously, that reduction is not likely to have reflected mortality due to
starvation. Since adults of that species are fairly
large (up to 25 cm standard length, and 950
grams), and are very sedentary, it seems unlikely
that their metabolic requirements would be suf-
ciently high for them to die-off as abruptly as
Diadema did. Consequently the A. cryptocentrus
population probably was low before the Dia-
dema mortality could have had any effect on it.
Even if the Diadema mortality was responsible
for part of the lowered level of A. cryptocentrus
population shortly after the mortality, that
toadfish population subsequently returned to
the pre-mortality (1978) level. This occurred in
the absence of any noticeable increase in the
Diadema population in the study area since the
1983 mortality event (H. A. Lessios, pers.

One other reef fish that consumes Diadema,
B. vetula, also appears not to have been adverse-
ly affected by the Diadema mortality in Panama.
Although B. vetula has been uncommon on the
shallow nearshore reefs of the study area for
the past decade, in early 1985 there was a mass
arrival of its pelagic juveniles onto those reefs.
This influx of juveniles, which occurred on reefs
along over 200 km of the Panama coast, was
about 100 times greater than influxes noted
during any of the preceding 6 yr (D. R. Rob-
ertson, unpubl. data).

The ability of some of Diadema’s predators,
particularly ones that might be regarded as food
specialists, to switch their diets and successfully
withstand an abrupt, drastic, and persistent re-
duction in the population of their prey may have
profound, long term effects on the ecology of
Caribbean coral reefs. If such predators can ex-
sert sufficient pressure on the reduced Diadema
populations, they may substantially retard pop-
ulation growth of that prey.

Diet switching by the San Blas toadfishes dem-
onstrates that dietary specialization by coral reef
fishes can represent opportunistic use of an
abundant resource and that one must be cau-
tious when interpreting narrow diets. Further,
the results presented here show that one cannot
readily predict the responses of consumers to
major changes in the abundance of prey, i.e.,
whether they can change their diets and, if so,
how they would do so. One might expect ob-
ligate dietary specialization to be unlikely when
other members of a family or genus of fishes
have different diets, especially generalized diets,
and predict that diet switching by A. cryptocen-
trus and S. barbatus was likely because other Ca-
ribbean batrachoidids have generalized diets.
However, such is not necessarily the case. Mem-
bers of the family Chaetodontidae use a variety
of planktonic and benthic foods, including hard
corals (Anderson et al., 1981). Some exclusively
corallivorous chaetodontids evidently are obli-
gate diet specialists, since drastic reductions in
the abundance of hard corals do lead to rapid
reductions in the abundance of some (but not all)
of those fishes (Williams, 1986). However, “specialist” corallivores do not necessarily re-
spond in this manner. On eastern Pacific coral
reefs in Panama the tetraodontid Arothron me-
leagris is an abundant fish that feeds almost ex-
clusively on hard corals (Glynn et al., 1972).
Although populations of these corals recently
were reduced by 70–95% the density of A. me-
leagris has not declined and its feeding remains
concentrated on corals (Glynn, 1985). It seems
likely that A. meleagris could switch its diet, since
elsewhere in the eastern Pacific it consumes
foods other than corals (H. Guzman, pers.
comm., 1986). One can only speculate at what
point, in terms of the abundance of the prey,
such switching might occur and whether such a
switch would be deleterious to A. meleagris.
Although A. meleagris is common on Panama-
nian reefs its impact on reef growth is slight
(Glynn et al., 1972; Glynn, 1985) and it seems
unlikely that the recovery of the prey popula-
tion will be affected by either a failure of this
consumer to rapidly change it’s diet or to switch
and maintain itself on other foods. Clearly, the
nature of predator-prey relationships that in-

This content downloaded by the authorized user from 192.168.72.233 on Tue, 27 Nov 2012 15:23:23 PM
All use subject to JSTOR Terms and Conditions
volve coral reef fishes are not readily predictable.

Acknowledgments

This research was supported by the Smithsonian Tropical Research Institute. The people of Kuna Yala and the Government of the Republic of Panama permitted work in San Blas. G. Helfman, H. A. Lessios and E. Weil made useful comments on the manuscript.

Literature Cited


D. R. R. Smithsonian Tropical Research Institute, APO Miami, Florida 34002-0011 or Apartado 2072, Balboa, Republic of Panama. Accepted 9 Dec. 1986.