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INTRODUCTION

 Of the many lessons that can be learned from the 
protracted Punctuated Equilibrium debates, two seem 
particularly lasting. First, paleontology is often data-
limited. The debate initially focused much attention 
on the rather few cases that met the minimum require-
ments to assess evolutionary mode within fossil lin-
eages: numerous samples, good age control, and care-
fully measured morphology. Controversy motivated 
many more studies documenting evolutionary changes 
in species-level lineages, and we now have a pool of 
relevant studies that is much larger (Levinton, 2001; 
Gould, 2002; Hunt, 2007), but still unfortunately thin 
for many taxa and depositional environments. 
 A second lesson, obvious even in the midst of the 
controversy, is that different scientists can draw radi-
cally incompatible conclusions from the same set of 
observations (Gould and Eldredge, 1977; Gingerich, 
1985). Indeed, a subtext to much of the disagreement 
about fossils was the interplay between theory and ob-

servation, and how the former frames perception of 
the latter (Eldredge and Gould, 1972; Fortey, 1988). It 
was recognized early on that battling verbal descrip-
tions would not resolve these confl icts, and in response 
a variety of statistical methods were developed (Raup, 
1977; Bookstein, 1987; Bookstein, 1988; Gingerich, 
1993; Roopnarine et al., 1999; Roopnarine, 2001). 
These methods employed as a null model a random 
walk, which is a simple model in which trait increases 
and decreases are equiprobable. The effect of these 
developments was to inject much-needed quantitative 
rigor into discussions that were previously focused 
mostly on visual impressions.
 As useful as these approaches are, there are some 
limitations inherent to treating the random walk as a 
null model. Simulation studies showed that these tests 
can have very low statistical power, and therefore fail-
ing to reject the null of a random walk—by far the 
most common outcome of these analyses—provides 
little information about the nature of evolutionary 
changes (Roopnarine et al., 1999; Sheets and Mitch-
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ell, 2001; Hannisdal, 2006). Moreover, what was most 
urgently needed was the ability to measure statistical 
support for plausible alternative interpretations, but 
this is not easily implemented in the null hypothesis-
testing framework.
 In this paper, I advocate a particular approach for 
guiding the interpretation of evolutionary change in 
fossil lineages. The key to this approach is that it in-
sists that all candidate evolutionary explanations be 
represented as concrete statistical models, which are 
then evaluated using the standard machinery of like-
lihood-based inference. A great many practical and 
theoretical benefi ts follow from this simple starting 
point. The structure of this argument will be as fol-
lows. First, I start with an overview of this analytical 
framework and then address a few aspects of its im-
plementation. Then, I will attempt to demonstrate the 
value of this analytical approach by using it to explore 
several outstanding issues in evolutionary paleobiol-
ogy. In the fi nal section, I briefl y consider some of the 
most promising avenues for future work.

FROM VERBAL TO STATISTICAL MODELS

 Since Raup’s pioneering papers (Raup, 1977; 
Raup and Crick, 1981), scientists examining evolu-
tion within fossil lineages have mostly considered 
three canonical modes of evolution: directional evo-
lution, random walks and stasis. Of these, however, 
only the random walk was defi ned explicitly. Support 
for the other modes was discerned from long-term 
evolutionary divergences that were either too great or 
too limited to be explained by a random walk. These 
departures from a random walk were attributed to di-
rectionality and stasis, respectively (Raup and Crick, 
1981; Bookstein, 1987; Gingerich, 1993; Roopnarine, 
2001), but these two modes were never fi t and com-
pared in their own right.
 Over the past few years, I have developed a statis-
tical framework with which these and other kinds of 
evolutionary dynamics can be represented as statisti-
cal models, each of which can be fi t to real paleon-
tological data and compared to one another on equal 
footing (Hunt, 2006). The fi rst step in this procedure is 
to represent modes of change as fully statistical mod-
els. It is most convenient to start with a general ver-
sion of the random walk (the general random walk of 

Hunt, 2006). This model occurs in discrete time incre-
ments, during each of which an evolutionary change 
is drawn at random from a distribution of evolutionary 
transitions or “steps.” The long-term dynamics of this 
model can be shown to depend only on the mean (μs) 
and variance (σ2

s) of this step distribution. The former 
determines the directionality of the sequence; on aver-
age, positive μs values generate increasing trends, and 
negative values generate decreasing trends. Increasing 
the step variance results in a greater range in the evo-
lutionary increments and correspondingly more vola-
tile evolutionary changes (Hunt, 2006). 
 This model provides the basis for understanding 
both directional evolution and random walks. Direc-
tional evolution results whenever the mean of the step 
distribution is not zero, although subtle trends can 
be obscured by the variability in evolutionary steps. 
Random walks are a special case of this more general 
model for sequences lacking directionality (μs = 0). 
The paleontological literature refl ects some inconsis-
tency about what to call these two models. The model 
referred to here as directional evolution has elsewhere 
been termed a biased, directional or general random 
walk. Of these, the term “directional random walk” 
is perhaps the clearest since it includes this model’s 
most salient feature (directionality) while indicat-
ing its underlying similarity to random walks (there 
are other approaches for modeling directionality that 
are not random walk-like, e.g., Sheets and Mitchell, 
2001). The term random walk is standard, although 
it is sometimes modifi ed as unbiased or symmetric to 
indicate its lack of directionality. It is also worth not-
ing that in the phylogenetic methods literature, these 
models are usually referenced by their continuous 
time approximations: Brownian motion (or diffusion) 
for the unbiased random walk, and Brownian motion 
with a trend for directional evolution. This diversity of 
terminology has unfortunately obscured the concep-
tual commonality of these models across and within 
disciplines.
 Several different approaches have been used to 
model stasis (e.g., Roopnarine, 2001). I follow Sheets 
and Mitchell (2001) in modeling stasis as normally 
distributed variation (with variance ω) around a stable 
phenotypic optimum (θ). This model is simple and 
analytically tractable, and it produces trait trajecto-
ries that conform well to recent qualitative accounts 
of stasis (Gould, 2002; Eldredge et al., 2005). Stasis 
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and random walks, while both lacking directionality, 
differ importantly in that total amount of evolutionary 
change does not increase with time under stasis. Ran-
dom walks, by contrast, show increasing evolution-
ary divergences over time; they drift in morphospace, 
whereas lineages experiencing stasis fl uctuate around 
a fi xed point.
 The above information allows the forward simula-
tion of evolutionary sequences, but is not suffi cient for 
the inverse problem of fi tting the models, which re-
quires an understanding of what these models predict 
for real evolutionary divergences. At present, there are 
two available parameterizations for these models, each 
of which employs paleontological data somewhat dif-
ferently. The fi rst considers morphological differences 
in each ancestor – descendant (AD) pair of popula-
tions as separate observations (Hunt, 2006), while the 
second simultaneously weighs the joint distribution of 
trait values across all sampled populations (Hunt et al., 
2008). The statistical models described above make 
predictions as to how these different kinds of data 
should be distributed. Considering separate AD differ-
ences (the fi rst parameterization), these are expected 

to be normally distributed with means and variances 
that are functions of model parameters and elapsed 
time (Table 1). Considering all trait means jointly (the 
second parameterization), an entire sequence of trait 
means can be considered a single draw from a multi-
variate normal distribution with a vector of means and 
covariance matrix that are also functions of the model 
parameters and the age model (Table 1; note that, in 
this parameterization, the directional and random walk 
models require an additional parameter, X0, equiva-
lent to the intercept or root parameter in comparative 
methods, that represents the trait mean at the start of 
the sequence). In either case, the density function of 
the normal or multivariate normal distribution allows 
computation of the log-likelihood of observed data, 
and the best fi tting parameter set can be estimated by 
searching numerically through the space of possible 
parameter values and choosing those that maximize 
the likelihood of producing the observed data (Hunt, 
2006; Hunt et al., 2008).
 While log-likelihoods provide a natural measure 
of how well data fi t models, they are not as well suited 
for choosing among models because log-likelihoods 

AD parameterization Joint Parameterization
Mean AD
difference

Variance AD difference Joint Means Joint Covariance Matrix

E[ΔX] = μstAD Var[ΔX] =σ s
2tAD + εA + εD

E[Xi] = X0 + μsti Var[Xi] =σ s
2ti + εi

Cov[Xi,X j ] =σ s
2 ⋅min(ti, t j )

E[ΔX] = 0 Var[ΔX] =σ s
2tAD + εA + εD

E[Xi] = X0 Var[Xi] =σ s
2ti + εi

Cov[Xi,X j ] =σ s
2 ⋅min(ti, t j )

E[ΔX] = θ − XA Var[ΔX] =ω + εD E[Xi] = θ Var[Xi] =ω + εi

Cov[Xi,X j ] = 0

Directional
evolution
Random
walk

Stasis

Model

Table 1—Mathematical basis for fi tting three evolutionary models (directional evolution, random walk, and sta-
sis) to empirical paleontological sequences.  Two different parameterizations of the problem are possible: one 
uses the phenotypic differences between ancestor – descendant (AD) pairs of populations, the other considers 
the distribution of all sample means jointly (Joint).  For all models, the expected difference between ancestor 
and descendant is normally distributed with means and variances that are functions of model parameters and 
elapsed time.  Under the joint approach, each sequence of trait means can be treated as a single draw from a mul-
tivariate normal distribution with a vector of means and covariance matrix given below.  Model parameters: μs, 
mean of the step distribution; σ2

s, variance of the step distribution; θ, phenotypic optimum; ω, variance around 
optimum; X0, estimated trait mean at the start of the sequence.  AD abbreviations: tAD, time elapsed between an-
cestor and descendant; XA, phenotypic mean of ancestral populations; εA, εD, sampling variances of the ancestor 
and descendant populations.  Joint abbreviations: ti, tj, time elapsed from the start of the sequence to the ith and 
jth populations; εi, sampling variance of the ith population; min, minimum; E[x], expected (mean) value of x; ∆X, 
the difference between ancestor and descendant populations (XD – XA).  
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generally increase with model complexity. Models 
with more tunable knobs (parameters) have an unfair 
advantage over simpler ones, and it is therefore nec-
essary to balance model fi t against model complex-
ity. One common metric for doing so is the Akaike 
Information Criterion (AIC), which is defi ned as AIC 
= 2(log-likelihood) + 2(# model parameters) (Akaike, 
1974). Lower AIC scores indicate higher model sup-
port; this metric refl ects the amount of information 
lost in approximating reality with a model. In practice, 
it is usually better to use a version of the AIC with a 
bias correction for small sample sizes called the AICC 
(Anderson et al., 2000). Relative model supports for a 
set of candidate models are conveniently summarized 
using Akaike weights, which result from a simple 
transformation of AIC or AICC scores such that total 
support sums to unity across the models considered 
(Anderson et al., 2000). The outputs from these cal-
culations are a series of weights that indicate the pro-
portion of total empirical support each model receives 
(e.g., models A, B and C may receive, respectively, 
80%, 15% and 5% of the evidential support). 
 All the analyses described in this paper can be 
performed with functions provided in the R package 
paleoTS (Hunt, 2008b), which is publicly available at 
the Comprehensive R Archive Network (CRAN, see 
http://www.r-project.org/). This package is most easily 
downloaded and installed from within R in the usual 
way for CRAN packages; see software documentation 
for details. R is a free and cross-platform environment 
for statistical computing, graphics and programming 
(R Development Core Team, 2008).

ANALYTICAL ISSUES

Sampling Error is Surprisingly Large
In practice, analyses of trait sequences almost always 
treat sample means as if they were known without er-
ror. Of course they are not—all fi nite samples entail 
error in estimating mean values, and this sampling 
variance has a predictable magnitude equal to within-
sample variance divided by the number of measured 
individuals (Sokal and Rohlf, 1995). In many fossil 
lineages, measurable individuals are scarce and mor-
phological differences subtle, and thus sampling error 
may sometimes be quite large. Sampling error can be 
accommodated quite naturally in the expected evolu-

tionary changes over time (Table 1), and it has been 
shown that this approach can accurately estimate evo-
lutionary parameters even when data are noisy (Hunt, 
2006). To my knowledge, all other methods so far pro-
posed ignore this unavoidable fact that paleontologi-
cal samples are fi nite. 
 It is conceivable that sampling error is generally 
unimportant although there are indications otherwise 
(Kinnison and Hendry, 2001; Hunt, 2006). The cru-
cial factor is the magnitude of sampling error relative 
to true evolutionary differences among fossil popu-
lations. This latter quantity—true evolutionary vari-
ance—can be estimated as the variance parameter (ω) 
of the stasis model (this holds regardless of the under-
lying mode of evolution). One simple way to assess 
the importance of sampling error is to compare this 
estimate of true evolutionary variance to the total ob-
served variance of sample means. If sampling error is 
important, estimates of ω will be much less than the 
variance among sample means taken at face value.
 Judging from the sample of 251 empirical fossil 
sequences analyzed previously (Hunt, 2007), sam-
pling error is quite often substantial (Fig. 1). On aver-
age, about 44% of the variation in trait means is attrib-
utable to sampling error, and it is perhaps surprisingly 
common for this proportion to be very close to 100% 
(Fig. 1). Ignoring sampling error causes one to overes-
timate morphological divergence by mistaking noise 
for true evolutionary differences. This will bias pa-
rameter estimates (Hunt, 2006) and has the potential 
to infl uence statistical inference (see below). Mun-
dane though it may be, sampling error is nevertheless 
practically important and should be accounted for in 
analyzing evolutionary sequences.

Model Selection Performance
Hunt (2006) presented simulations showing that the 
AD approach can provide good estimates of model pa-
rameters, even with noisy and incomplete fossil data. 
The performance of these methods in terms of model 
selection has been less explored, and previous results 
suggest that some models may be easier to detect ana-
lytically than others (Sheets and Mitchell, 2001; Han-
nisdal, 2006). In particular, the stasis model, because 
it is mathematically similar to sampling error (i.e., 
both produce uncorrelated Gaussian variation), may 
be both easier to detect and unduly favored in noisy 
sequences. In this section, I present some simulations 
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that explore the performance of AIC-based model se-
lection criteria under three evolutionary scenarios: a 
moderate directional trend, an unbiased random walk, 
and stasis.
 These simulations were designed to investigate the 
relative performance of the two available parameter-
izations (AD and joint) for a range of sequence lengths 
and magnitudes of sampling error. There is an enor-
mous range of evolutionary scenarios one could con-
sider and this investigation provides only preliminary 
guidance for a few empirically reasonable situations. 
Across all simulations, within-sample phenotypic vari-
ance and the elapsed time between each sampled pop-
ulations were set to unity. Absolute values for these do 
not matter because statistical inference is insensitive 
to changing units of both time and morphology (Hunt, 
2006). Simulations were run at two different levels of 
sampling error—relatively low (n = 50 observations 
per sample), and relatively high (n = 5 observations 
per sample). 
 The fi rst scenario investigated is that of a mod-
est directional trend (Fig. 2, left column). The mean 
step was chosen to produce, over the entire sequence, 
a net increase of two units of within-population stan-

Proportion of Trait Variance in Empirical
 Fossil Sequences due to Sampling Error
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weaker trends. The step variance was set so that 99% 
of simulated sequences would show net increase over 
time; if the step variance is too large, volatility in steps 
will swamp directionality. The second scenario is that 
of an unbiased random walk (Fig. 2, center column), 
with the step variance chosen such that the standard 
deviation of trait means at the end of the sequence was 
equal to twice the within-sample phenotypic standard 
deviations. The fi nal scenario considered is that of 
evolutionary stasis, with the evolutionary variance (ω) 
set equal to the within-sample phenotypic variance 
(Fig. 2, right column). These particular scenarios were 
investigated in detail because they produce evolution-
ary sequences with realistically moderate evolution-
ary divergence—generally larger than sampling error, 
but not overwhelmingly so. 
 Model selection performance under these three 
scenarios is summarized in Figure 2. I will focus here 
on three main results. First, while both parameteriza-
tions generally perform similarly, the joint parameter-
ization is better able to correctly identify directional 
trends. This advantage increases with sequence length, 
and is most pronounced when sampling error is high 
(Fig. 2). High sampling error obscures the point-to-
point differences employed by the AD parameteriza-
tion, rendering this approach less effective for time-
series that are long and noisy. Sampling error does 
not accumulate, however, and so noise has less effect 
when considering the distribution of all sample means 
jointly. Second, sampling noise generally increases 
the support for the stasis model, and lessens support 
for the directional change and random walk models 
(Fig. 2). This is the expected effect because stasis and 
sampling noise have the same mathematical form. 
Third, stasis is relatively easy to correctly identify, 
particularly in sequences that are not short. This fi nd-
ing is consistent with some previous simulation results 
(Sheets and Mitchell, 2001; Hannisdal, 2006). 
 While the joint parameterization is better able to 
detect trends in noisy data, there are several respects 
in which the AD approach is superior. First, the joint 
estimation approach occasionally encounters compu-
tational diffi culties. Calculating log-likelihoods for 
this approach requires inverting a covariance matrix 
that may be singular. This does not seem to be very 
common—it occurred in fewer than ten of the 251 se-

Figure 1—Sampling error in empirical fossil sequenc-
es.  Histogram shows for 251 fossil time-series, the 
proportion of observed variance in trait means that is 
attributable to sampling error.  Sampling error is often 
large—on average, nearly half of all variation in trait 
means observed in fossil sequences is noise.
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quences analyzed above. Nevertheless, the joint ap-
proach may fail for some data sets, or at least require 
modifi cation to work in some circumstances. Second, 
these simulations indicate that the parameter estimates 
for the step variance parameter in the directional evo-
lution model may be biased towards values that are 

too low, especially for time-series with high sampling 
error (results not shown). Third and fi nally, the AD 
approach is analytically simpler, and more easily ex-
tendible to allow for punctuations, covariates and oth-
er biologically interesting models (see below). Thus, 
both approaches have their strengths. Which is most 
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suitable will depend on the nature of the data and the 
goals of each particular study.

EVOLUTIONARY INSIGHTS

Relative Importance of Evolutionary Modes
Even the most partisan voices involved in the Punctu-
ated Equilibrium debate acknowledged that no evolu-
tionary mode was universal. Accordingly, the central 
issue of this debate concerned the relative frequency 
of stasis versus gradual change. Reviews of the pub-
lished paleontological literature, however, reached 
dramatically different conclusions about the domi-
nance of stasis and gradual change (Gingerich, 1985; 
Erwin and Anstey, 1995; Jackson and Cheetham, 
1999; Levinton, 2001; Gould, 2002), mostly because 
different authors held incompatible interpretations for 
the same fossil sequences. 
 One avenue to resolve these disagreements is to 
apply each of the three canonical modes of evolution—
stasis, directional change, and random walks—to all 
available empirical data sets and summarize support 
for these three models. Scouring the paleontological 
literature produced a set of 53 lineages for which the 
requisite data were published to allow these statistical 
models to be fi t (trait means, variances, and sample 
sizes, along with an age estimate for each sample in an 
evolutionary sequence). Some excellent and relevant 
studies could not be included because the original ref-
erences did not publish summary statistics at the level 
of individual samples or stratigraphic levels (e.g., 
Jackson and Cheetham, 1994; Gingerich and Gunnell, 
1995). Of the 53 included lineages, most were mea-
sured for multiple morphological traits for a total of 
251 evolutionary sequences (Hunt, 2007). Of these, 
only 13 (5%) were best fi t by the directional evolution 
model, and the remaining split approximately equally 
between random walks and stasis. Similar levels of 

support are indicated by the median Akaike weights 
for each mode (Table 2), suggesting that directional 
evolution is rarely observed in fossil sequences. This 
result, which was obtained using the AD parameter-
ization of these models, also holds when the joint pa-
rameterization is used instead (Table 2). As might be 
expected from the simulation results presented above, 
directional evolution garners slightly more support 
under the joint approach, but it is still infrequent. Even 
this relatively low incidence of directional evolution is 
almost certainly an overestimate because paleontolo-
gists have focused greater attention on lineages and 
traits with prior evidence of gradual change (Gould, 
2002). Incidentally, stasis in its strictest sense of no 
true evolutionary change (ω = 0) is not very common; 
only about 9% of analyzed sequences (23/251) are 
consistent with true constancy of form.
 While the rarity of directional evolution confi rms 
one key claim of the Punctuated Equilibrium model, it 
is noteworthy that random walks are at least as com-
mon as evolutionary stasis (Hunt, 2007)(Table 2). 
Qualitatively, fossil sequences seem to meander (ran-
dom walk) at least as often as they show fl uctuations 
around a relatively stable mean (stasis). In retrospect, 
it seems that at least some of the disagreements about 
the relative frequency of stasis and gradual change 
stemmed from differences in how patterns similar to a 
random walk were classifi ed. To proponents of Punc-
tuated Equilibrium, their lack of strong directionality 
rendered these sequences examples of stasis; to its 
critics, such meandering paths were a kind of gradual 
change. Neither lumping seems desirable because ran-
dom walks and stasis are actually distinct, and a fair 
accounting of the relative importance of different evo-
lutionary modes should refl ect this fact. 
 These three evolutionary modes correspond to 
identifi able patterns in trait trajectories. How these 
patterns relate to process is a complex issue because 
each mode is consistent with a multitude of microevo-

Table 2—Statistical support, measured as median Akaike weight, for three canonical modes of evolution.  Re-
sults are shown separately for the ancestor-descendant (AD) and joint parameterizations.
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lutionary scenarios (for recent attempts at inferring 
process from pattern, see Polly, 2004; Estes and Ar-
nold, 2007). For example, populations evolving under 
neutral genetic drift will show trait trajectories that are 
random walks (Lande, 1976; Turelli et al., 1988), but 
so will populations experiencing randomly fl uctuating 
directional selection and those tracking an adaptive 
optimum that meanders over time. In general, it will be 
diffi cult to translate from pattern to microevolutionary 
process, but I will discuss below a specifi c example in 
which the signal of adaptive evolution is apparent in 
an exceptionally information-rich fossil sequence. 

Tempo and Mode Decomposed
The foregoing sections follow current usage in label-
ing as “modes” qualitatively different kinds of evolu-
tionary patterns. This usage descends from Simpson 
(1944), who separated how fast evolutionary transi-
tions occurred (tempo) from the nature or mode of the 
change. Although the three modes commonly consid-
ered today differ from Simpson’s suite of speciational, 
phyletic, and quantum modes (Simpson, 1944), the 
distinction between tempo and mode remains useful.
 The fundamental differences between stasis, ran-
dom walks, and directional change are not in the mag-
nitude or pace of evolutionary divergences, but rather 
in how constituent evolutionary changes are deployed 
in a sequence. With directional evolution, changes in 
the same direction are stacked together, generating 
persistent trends. For random walks, evolutionary in-
crements are stacked with no preference for one direc-
tion over another, and the resulting evolutionary tra-
jectories show increasing but meandering divergence 
over time. Stasis, by contrast, results when evolution-
ary increments are stacked antagonistically such that 
divergences in one direction are preferentially fol-
lowed by opposing changes so that populations do not 
wander far from a fi xed point. 
 Within each of these modes, the evolutionary tem-
po can vary. Random walks, for example, can be faster 
or slower depending on the magnitude of the underly-
ing step variance. Similarly, evolutionary fl uctuations 
under stasis can be small or large, depending on the 
value of the variance parameter (ω). Thus, different 
models correspond to modes of change, with certain 
parameters of these models governing the tempo of 
change within that mode. These tempo-controlling pa-
rameters are potentially useful as a means to measure 

evolutionary rates. Particularly promising in this re-
gard is the random walk model, which has just a single 
parameter—the step variance—that determines the 
pace of evolutionary change.
 Using the estimated step variance of the random 
walk as a measure of evolutionary rate has a number 
of advantages over traditionally defi ned rates such as 
darwins or haldanes (Haldane, 1949; Gingerich, 1993; 
Gingerich, 2001). Notably, the step variance: allows 
for evolutionary reversals; it is estimated in a way that 
accounts for sampling error; and, at least for true unbi-
ased random walks, its inference is unaffected by the 
time scale over which it is observed (Hunt, 2006). In 
addition, Lynch’s (1990) rate metric derived for purely 
neutral evolution is essentially a scaled version of the 
step variance. When time is measured in organismal 
generations, Lynch’s metric is equal to the estimated 
step variance standardized by within-sample pheno-
typic variance. Therefore, the step variance even has 
a convenient benchmark—the neutral expectation—
for judging what constitutes fast or slow evolution-
ary change. Although parameters related to the step 
variance are increasingly used to measure phenotypic 
rates of evolution for phylogenetically related popula-
tions (Martins, 1994; O’Meara et al., 2006), they are 
seldom applied to fossil data. 
 This recommendation to use the step variance pa-
rameter as a rate metric is in confl ict with Bookstein’s 
(1987) argument that rates of evolution are undefi ned 
for random walks. However, this claim is true only 
in the technical sense that, as discrete time models, 
the derivative of a random walk is undefi ned. How-
ever, if differentiability is the sole relevant criterion, 
evolutionary rates never exist because they ultimate-
ly change only with the origin or demise of discrete 
generations or individuals. A broader and more useful 
defi nition of evolutionary rate would encompass any 
model parameter that relates phenotypic divergence to 
elapsed time (see also Foote, 1991). 

Punctuations, and When they are Justifi ed
Some of the most intractable disagreements during the 
Punctuated Equilibrium battles concerned the distinc-
tion between gradual and punctuated change (Gould 
and Eldredge, 1977; Gingerich, 1985). Punctuations 
are quite easy to fi nd when looked for, but it is dif-
fi cult to be sure that hypotheses of pulsed change are 
truly warranted (Fortey, 1988). Although tests were 
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developed to detect rate heterogeneity in evolutionary 
sequences (Charlesworth, 1984; Kitchell et al., 1987), 
these were seldom applied, and in any case of some-
what limited usefulness because all reasonable models 
predict some heterogeneity in point-to-point rates of 
change.
 The key to gaining traction on this issue is to rec-
ognize that the fundamental claim of punctuational hy-
potheses is not that rates vary, but rather that evolution 
is not homogenous. Punctuations are thought to arise 
when the normal operation of stasis is temporarily sus-
pended, allowing for a period of elevated change that 
differs qualitatively from stasis. Therefore, this claim 
should be tested by comparing support for this kind of 
non-uniform dynamic to that for models in which evo-
lution operates by the same evolutionary rules through 
the entire sequence, as for example, in a random walk 
(Hunt, 2008a).
 Punctuational explanations posit that evolution-
ary sequences can be divided into segments, each of 
which has its own set of evolutionary rules. In prac-
tice, each segment can be fi t as described above as 
if it were a complete sequence, and the divisions be-
tween segments can be determined by choosing the 
shift point or points that maximize the log-likelihood 
of the model (Hunt, 2008a). Punctuations can appear 
differently depending on their rapidity relative to the 
temporal resolution of samples; here I will focus only 
on punctuations that are so fast that intermediate mor-

phologies are not observed. This kind of punctuation 
can be modeled as two separate intervals of stasis, 
each with its own evolutionary optimum (θ1 and θ2; 
Fig. 3.1). The magnitude of the pulsed phenotypic 
change is simply the difference between the two opti-
ma. Assuming separate evolutionary variance param-
eters in each segment, this model has fi ve parameters: 
two phenotypic optima, each with its own variance 
parameter, and a parameter that determines the timing 
of the shift from one segment to the other (Fig. 3.1). 
AICC scores can be used to decide if the log-likeli-
hood advantage of this model more than compensates 
for its additional complexity, relative to uniform evo-
lutionary models. Note that only the general form of 
the model is decided a priori (e.g., one punctuation or 
two punctuations); the actual values of the phenotypic 
optima and the timing of shifts between stasis regimes 
are free parameters of the model that are estimated by 
maximizing the likelihood of the observed sequence.
 Although a complete discussion of this class 
of models is presented elsewhere (Hunt, 2008a), a 
brief example should suffi ce to make the general ap-
proach clear. Chiba (1996) documented a sequence 
of evolutionary changes in a suite of shell characters 
of Mandarina chichijimana, a land snail endemic to 
the Chichijima Islands in the western Pacifi c Ocean. 
Radiocarbon dating of shells collected from stratifi ed 
Quaternary deposits produced a precise and fi nely re-
solved age model; the mean elapsed duration between 
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adjacent samples was less than three thousand years. 
Chiba argued that several of the traits changed in a 
discontinuous or punctuated manner, including the 
number of whorls in the shell (Fig. 3.2). Evolution in 
some other traits, such as overall shell width, seemed 
more smoothly continuous (Figure 3.3).
 To assess these interpretations, I fi t to these two 
traits the standard suite of uniform models (directional 
change, random walk, stasis), and compared their fi t to 
a model that posited a single, punctuated change. The 
results corroborate Chiba’s interpretations. The model 
of a single punctuated change accounts for the evolu-
tion of whorl number far better than any of the uniform 
models (Table 3). In contrast, the model of a uniform 
random walk is best supported for shell width, with 
the punctuational model accounting for less than 10% 
of total model support (Table 3). 
 It may be noted that, although Punctuated Equi-
librium posits that punctuations are associated with 
lineage splitting events, the above example concerns a 
putative punctuation occurring within an unbranched 
lineage. This is a fair refl ection of the paleontologi-
cal literature. The claim that morphological jumps co-
incide with cladogenesis was based on the perceived 
consequences of allopatric speciation model, not on 
any direct reading of the fossil record (Eldredge and 
Gould, 1972). Because there are very few examples 
for which lineage splitting is thought to be captured 
in the fossil record (Gingerich, 1985), most discus-
sion about punctuations has focused on examples like 

Chiba’s that document within-lineage evolutionary 
changes (Gould and Eldredge, 1977; Gould, 2002). If 
a splitting event is documented directly, however, it 
would be straightforward to test the Punctuated Equi-
librium claim by fi tting a model in which the pace of 
evolutionary change increased during cladogenesis, 
and testing the fi t of this model versus one in which 
phenotypic evolution during splitting followed the 
same rules as those operative within lineages.

Natural Selection in Fossil Sequences
Inferring process from pattern is famously diffi cult, 
and fossil data offer few exceptions to this rule. Pale-
ontologists have generally attributed patterns of direc-
tional evolution to the action of natural selection (e.g., 
Bell et al., 2006). While it is diffi cult to imagine trends 
in fossil lineages arising without the intervention of 
natural selection, the relationship between patterns of 
long-term divergence and microevolutionary scenar-
ios can be complex, with multiple processes capable 
of producing the same macroscopic pattern (Raup and 
Crick, 1981; Hansen and Martins, 1996). Given this 
situation, it is worth asking the question: What should 
a simple bout of adaptive evolution look like in the 
fossil record?
 While this question is a good place to start, it is 
not precise enough to answer because adaptive evolu-
tion can take different forms. If we accept that long-
term evolutionary trajectories are best considered in 
the context of adaptive landscapes (Simpson, 1944; 

Table 3—Performance of uniform and punctuated evolutionary models for two shell measurements in Man-
darina chichijimana (Chiba, 1996).  Punctuated evolution is strongly supported for whorl counts, but uniform 
models, especially the random walk, are favored for shell width.
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Arnold et al., 2001; Estes and Arnold, 2007), it is 
possible to focus on one plausible and tractable adap-
tive scenario: the evolution of populations climbing 
from suboptimal phenotypes to a nearby peak in the 
adaptive landscape. This is the expected dynamic for 
a population that invades an environment with some-
what different selective conditions than its ancestral 
habitat, or for a population residing in an environment 
that changes suddenly.
 The expected evolutionary dynamic in this sce-
nario is not a simple directional trend, but instead an 
exponential approach to the new phenotypic optimum 
(Fig. 4). Change is initially strongly directional, but 
this directionality tapers rapidly as the new optimum 
is approached, after which evolutionary stasis ensues. 
The statistical properties of this model were described 
by Lande (1976; see also Hansen and Martins, 1996; 
Hansen, 1997), and it has four key parameters: the ini-
tial phenotype, the optimal phenotype, the strength of 
selection (which determines the rapidity with which 
the optimum is approached), and the step variance 
(Lande, 1976; Hansen, 1997; Hunt et al., 2008). This 
model, which is sometimes referred to as an Ornstein-
Uhlenbeck process, can be fi t to fossil sequences via 

maximum likelihood just like the standard modes of 
change, and its success can be gauged in the normal 
way using AICC scores (Hunt et al., 2008).
 This approach was applied to what is probably 
the most promising example yet described for detect-
ing natural selection in a fossil lineage: Bell et al.’s 
(2006) study tracking skeletal armor reduction in a 
stickleback lineage from Miocene lake sediments. In 
this study, Bell and colleagues documented a tapering 
decrease in three skeletal traits, including the number 
of dorsal spines (Fig. 4). These authors applied several 
methods to test if evolutionary changes had been too 
rapid or too directional to result from neutral drift, but 
none of these tests revealed compelling evidence for 
the action of natural selection. These negative results 
are noteworthy because (i) the temporal resolution of 
250 years—determined by counting yearly varves—is 
exceptionally fi ne for fossil studies, and (ii) consider-
able circumstantial evidence for natural selection ex-
ists, including the observation that skeletal reduction 
is common in modern stickleback that invade lakes 
with few predatory fi shes (as was apparently the case 
in the paleo-lake studied). 
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 Rather than attempting to reject a null model of 
a random walk, a better approach would entail fi tting 
random walk and adaptive models, and then compar-
ing their relative empirical support. When this is done, 
the adaptive model decisively outperforms the random 
walk model (the expected form under neutral genetic 
drift) for all three traits analyzed (Hunt et al., 2008; 
Fig. 4 shows the model fi t for dorsal spine counts). 
The adaptive model accounts for over 99% of the 
Akaike weight, and thus there is strong statistical evi-
dence that natural selection has shaped the evolution 
of these traits, despite the non-signifi cant results from 
traditional tests (Hunt et al., 2008). 
 These results demonstrate that, at least under fa-
vorable circumstances, it is possible to document 
natural selection in fossil lineages. It is unclear how 
often this kind of inference will be possible because 
this case study benefi ted from several exceptionally 
favorable circumstances. Temporal resolution was 
excellent, and the evolutionary changes were slow 
enough to occur over several thousand years. While 
this is a geologically rapid change, much faster in-
stances of adaptive evolution are known from extant 
populations, including other cases of skeletal reduc-
tion in sticklebacks (Bell et al., 2004). Finally, this 
study benefi ts from a fortunate window of observa-
tion, which happens to include the invasion of a pa-
leo-lake by this particular stickleback lineage (Bell et 
al., 2006). Adaptive adjustments are expected to oc-
cur quickly upon a population’s encounter with novel 
selective conditions, and thus it may be particularly 
fortuitous to sample the initial stages of an invasion. 
Thus, while it is possible to infer the action of natural 
selection in fossil lineages, the requisite depositional 
and biological conditions may be rather uncommon. 
Regardless, success in detecting adaptive evolution in 
the fossil record requires that we are actually looking 
for its proper signature.

FUTURE DIRECTIONS

 The approach described here is not so much a 
method as it is a general approach that may be applied 
to evaluate almost any kind of hypothesis about the 
nature of phenotypic changes within lineages. In this 
paper, I described several different applications using 
this approach, but there is still ample room to expand 

the range of evolutionary models considered beyond 
those discussed here. One natural extension of this 
approach would be to incorporate putatively causal 
factors into evolutionary models. The resulting class 
of models could be used to assess, for example, the 
effects of climate or productivity on body size evolu-
tion (Schmidt et al., 2004; Hunt and Roy, 2006; Finkel 
et al., 2007; Novack-Gottshall, 2008), and compare 
the success of these models to those that lack covari-
ates. Another potentially fruitful class of models to 
explore are those Alroy (2000) refers to as “structured 
state space models.” These models are characterized 
by having dynamics that vary with the phenotypic 
values of the lineage, allowing for the possibility of 
phenotypic values that attract or repulse evolutionary 
trajectories. The stasis model is a simple example of 
this kind of model—the optimum is essentially a very 
strong attractor—but a whole range of potentially in-
teresting models has yet to be considered.
 A second area that could use analytical develop-
ment is the effect of uncertain chronologies in infer-
ring evolutionary models. These effects are likely to 
be strongly data and model-dependent, and simula-
tions may help explore the sensitivity of analyses 
to these kinds of effects (Hunt, 2006; Hunt, 2008a). 
Some recent work (Hannisdal, 2007) has taken the ap-
proach of integrating stratigraphic and evolutionary 
inferences into a single framework. This approach, 
though demanding of computational effort and data 
quantity, offers a very elegant means of accommodat-
ing age model uncertainty. 
 A fi nal area I would point to as profi table for future 
work is comparing evolutionary patterns within fossil 
lineages to similar analyses performed with phyloge-
netically related populations. This area actually does 
not require much in the way of theory development; 
for the most part, the models applied in comparative 
studies are the same as those described in this paper. In 
particular, the random walk model is dominantly used 
to explore trait evolution (Felsenstein, 1985; Martins, 
1999; Garland and Ives, 2000), although studies that 
employ directional (Pagel, 2002), adaptive (Hansen, 
1997; Butler and King, 2004) and other models (e.g., 
Pagel, 1999) are increasingly common. Yet at pres-
ent, two complementary data sets about phenotypic 
divergence—fossils and phylogenies—employ almost 
entirely non-overlapping sets of methods. If we are 
to ever reconcile these two views of evolution, it will 
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begin with analytical approaches able to evaluate dis-
parate kinds of evidence in comparable terms.
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