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Summary

1. Seed and pollen dispersal is often directionally biased, because of the inherent directionality of

wind and many other dispersal vectors. Nevertheless, the vast majority of studies of seed and pollen

dispersal fit isotropic dispersal kernels to data, implicitly assuming that dispersal is equally likely in

all directions.

2. Here, we offer a flexible method for stochastic modelling of directional dispersal data. We show

how anisotropic models can be constructed by combining standard dispersal functions with ‘dis-

torted-distance functions’ that transform the circular contour lines of any isotropic dispersal kernel

into non-circular shapes. Many existing anisotropic phenomenological models of seed and pollen

dispersal are special cases of our framework.

3. We present functional forms for the specific case of elliptic distorted-distance functions, under

which contour lines of the seed shadow become non-concentric, nested ellipses, and show howmod-

els using these functions can be constructed and parameterized. R-code is provided.

4. We applied the elliptic anisotropic models to characterize seed dispersal in the wind-dispersed

Neotropical tree Luehea seemannii (Malvaceae) on Barro Colorado Island, Panama. We used

inverse modelling to fit alternative models to data of seed rain into seed traps, the locations of seed

traps and adult trees, and tree size.

5. Our anisotropic model performed considerably better than commonly applied isotropic models,

revealing that seed dispersal of L. seemannii was strongly directional. The best-fitting model com-

bined a 3-parameter elliptic distorted-distance function that captured the strong directional biases

with a 1-parameter exponential dispersal kernel, a 1-parameter negative binomial probability distri-

bution describing the clumping of seed rain and a 1-parameter function relating tree fecundity to

tree diameter.

6. The framework presented in this paper enables more flexible and accurate modelling of direc-

tional dispersal data. It is applicable not only to studies of seed dispersal, but also to a wide range of

other problems in which large numbers of particles disperse from one or more point sources.

Key-words: anisotropic model, dispersal kernel, inverse modelling, Luehea seemannii,

Matrushka property, pollen dispersal, ray-convex set, seed dispersal, seed shadow, stochastic

model

Introduction

Dispersal is one of the central themes of modern plant biology,

and patterns of seed and pollen dispersal are important to the

ecology, biogeography and genetic structure of plant popula-

tions and communities (Nathan & Muller-Landau 2000;

Trakhtenbrot et al. 2005). Despite its fundamental impor-

tance, seed and pollen dispersal remains poorly understood,

mainly because they are difficult to quantify. Dispersing seeds

and pollen grains are notoriously hard to follow, and dispersed

seeds (or pollen) can be unambiguously linked to source plants

only in exceptional situations (Wang & Smith 2002), e.g. when*Correspondence author. E-mail: bram.vanputten@wur.nl
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there is only one source within dispersal range or when genetic

markers identify a sole possible source (Robledo-Arnuncio &

Garcia 2007, Jones & Muller-Landau 2008). A second major

challenge is the appropriate mathematical description of

observed dispersal patterns in terms of dispersal kernels – the

probability distributions of distances and directions of

dispersal (Cousens,Dytham&Law 2008).

Mathematical description has been particularly challenging

because dispersal of seeds, of other plant propagules and of

pollen is often directional. For example dispersion patterns

generated bywind are strongly biased by prevailingwind direc-

tions (Tackenberg 2003; Wagner et al. 2004), whereas disper-

sion patterns generated by animal seed dispersers and

pollinators often have directional components as a result of the

configuration of the landscape and the non-randomness of ani-

mal behaviour (Levine & Murrell 2003; Contreras Sánchez,

Greene & Quesada 2011). This directionality is important to

plant populations and communities. Directional bias funda-

mentally reduces the degree to which dispersal spreads seeds

(or pollen) around in space, as seeds from the same source end

up closer together than they would under non-directional

dispersal (Wright et al. 2008), and thus reduces the benefits of

dispersal, specifically the benefits related to reduced kin

competition and bet hedging over environmental heterogeneity

(Levin et al. 2003). Despite the ubiquity and importance of

directional dispersal, most mathematical descriptions of

dispersal have focused exclusively on dispersal distances,

ignoring direction by applying isotropic models. This can lead

to serious overestimation of dispersal distances in some

directions and underestimation in others, and calls for models

incorporating directionality (Contreras Sánchez, Greene &

Quesada 2011).

Though most studies of dispersal use isotropic kernels,

anisotropic kernels have been used to describe seed and pollen

dispersal in a dozen publications (including Prat 1995;

Burczyk, Adams & Shimizu 1996; Tufto, Engen & Hindar

1997; Bullock & Clarke 2000; Staelens et al. 2003; Tackenberg

2003; Wagner et al. 2004; Soons et al. 2005; Kuparinen 2006;

Austerlitz et al. 2007; Skarpaas & Shea 2007; Soubeyrand

et al. 2007; Soons & Bullock 2008; Soubeyrand, Enjalbert &

Sache 2008; Soubeyrand et al. 2009; Wälder, Näther &

Wagner 2009; Savage et al. 2011; Skarpaas et al. 2011). Some

of these publications, as well as others, have introduced

mechanistic and quasi-mechanistic models with directional

effects (Okubo & Levin 1989; Nathan, Safriel & Noy-Meir

2001; Stockmarr 2002; Klein et al. 2003; Katul et al. 2005;

Nathan et al. 2011). However, the anisotropic phenomeno-

logical models developed to date have limited flexibility. Exist-

ingmodels describe directionality in specific kernels and do not

allow for directionality to be incorporated with other dispersal

distance distributions.

Here, we present a general framework that makes it possible

to develop anisotropic versions of any dispersal kernel. Under

this framework, an anisotropic kernel is a combination of two

functions: a dispersal distance distribution that may relate to a

traditional isotropic dispersal kernel, and a ‘distorted-distance’

function that accounts for directional biases. Our framework

enables the construction of an endless variety of anisotropic

dispersal kernels, because any dispersal distance distribution

can be combinedwith any kind of distorted-distance functions.

We first present the general framework. We then provide

functional forms for one class of distorted-distance functions,

the elliptic distorted-distance model. Next, we apply elliptic

distorted-distance models to fit seed dispersal distances in a

wind-dispersal Neotropical tree on Barro Colorado Island

(BCI), Panama, through inverse modelling. Finally, we discuss

the results, compare our approach with previous work on

anisotropic dispersal, give recommendations and outline

potential applications in fields other than seed dispersal. In the

Appendices, we provide relevant proofs, methodological

details andR-code for fitting and simulating ourmodels.

A general framework for modelling directional
dispersal

Seed shadows under any isotropic model with arbitrary

dispersal kernel function d can be characterized by concentric

circular contour lines of seed density around the seed source

(Clark et al. 1999). Our framework for anisotropic dispersal is

to ‘distort’ these contours into one (or more) directions into

which dispersal is biased, e.g. as a result of the prevailing wind

direction(s) at the time(s) seeds are released. Such distortions

can be quite complex and reflect multiple effects (Fig. 1). The

result, characterized by non-concentric contour lines, is an

anisotropic model, accounting for directional effects in seed

dispersal.

Consider the simplest case of seed dispersal away from a

single point source, tree ‘A’, located in ðx_; y_Þ of a rectangular

X–Y plane. Our anisotropic model for the final location of a

seed dispersed randomly from this point has probability

density function (pdf) p, the 2D dispersal kernel’, and con-

sists of two sub-models. The first is a deterministic model rdist
that describes the so-called distorted distance rdist(x, y) to tree

A for each location (x, y) in the plane around the tree, the ‘dis-

torted-distance mapping’. The second is a stochastic model

that describes the probability distribution of distorted dis-

tances for a seed dispersed from tree A, in the form of a (one-

dimensional) pdf d, the ‘distorted-distance distribution’. The
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Fig. 1. A hypothetical seed shadow resulting from seed dispersal by

wind blowing from multiple directions, described with the modelling

framework presented in the main text; the contour lines show seed

densities. The corresponding distorted-distance function is given in

Appendix B.
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parameters of functions d and rdist can be estimated from field

data.

The two-dimensional dispersal kernel p is a function of loca-

tion (x, y) only through its distorted distance rdist(x, y) to tree

A, so that locations with equal distorted distances to the tree

have equal probability density: p(x1, y1) = p(x2, y2) if rdist
(x1, y1) = rdist(x2, y2). As a consequence, contour lines of rdist
and p coincide, although their respective values on a contour

will of course differ. The distorted-distance mapping rdist
specifically and fully describes the directional component,

whereas the distorted-distance distribution d specifies the

probability that a seed lands at distorted distance rdist from the

seed source, yet itself contains no information about how

distances are distorted.

A variety of isotropic dispersal kernel functions have been

successfully fit to field data (e.g. Clark et al. 2005). In isotropic

modelling, where dispersal is assumed equally likely is all direc-

tions, the contour lines of the two-dimensional dispersal kernel

p take the form of concentric circles centred at the tree source.

We can think of this two-dimensional dispersal kernel as

reflecting the combination of an (undistorted) Euclidean dis-

tancemapping

rEuclðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x

_Þ2 þ ðy� y
_Þ2

q

with an (undistorted) distance distribution d. Our

anisotropic model can incorporate the same mathematical

functions d in the form of distorted-distance distributions,

and combine these with a distorted-distance mapping rdist
in place of the Euclidean distance function. The resulting

distorted distances rdist(x, y) can have contour lines that

are distorted rings (e.g. an ellipse) or even indented ⁄
outdented ovals (e.g. Fig. 1).

Under our framework, there are two general ways in which

dispersal kernels can be directionally distorted. First, the

distorted distance in one direction can be different from the

distorted distance in another direction – that is, the contour

lines take some form other than circles centred at the source

location. In the simplest case, these contours are ellipses shar-

ing the same centre and are characterized by a direction and a

degree of eccentricity. Secondly, the centre of the distribution

of dispersed seeds (the point at which the effective distance is

zero) can be shifted away from the source. This shift is captured

by a shift vector, D = (Dx, Dy), consisting of a shift Dx in

the X-direction and a shift Dy in the Y-direction. The

resulting (unique) imaginary source centre x
_�
; y
_�

� �
¼

ðx_ þ Dx; y
_þ DyÞ has the property that rdist x

_�
; y
_�

� �
¼ 0. The

shift vector can equivalently be characterized in polar coor-

dinates, by its magnitude d and its angle h with the positive

X-axis. Note that both types of distortion lead to differences

in the proportions of seeds going in different directions from

the source, in addition to changing the distribution of dis-

tances travelled by seeds going in different directions.

Although an endless variety of possible rdist functions can be

specified, we will impose several (in many applications natural)

restrictions. First, the contour lines of rdist must have a single

unique imaginary source centre. Secondly, the contour lines of

rdist should have a so-called ray-convex interior so that the

straight line connecting the imaginary source centre ðx_�; y_�Þ
with an arbitrary point on a contour line never crosses that

contour line in any point (Olieman & van Putten 2010).

Thirdly, contour lines should expand continuously with

r = rdist, starting from the imaginary source centre, implying

that they fully enclose each other. We say that a distorted-dis-

tance mapping that meets the three abovementioned condi-

tions has the ‘Matrushka property.’ A mathematical

formulation of this property is given inAppendixA.

Even distorted-distance mappings that produce indented

and outdented contour lines can satisfy the Matrushka prop-

erty (e.g. Fig. 1). Such distorted-distance functions could arise

if for example seed dispersal is depressed in a certain direction

because the influence of an obstacle. Examples of ray-convex

(but not convex) seed shadows are given in Wagner et al.

(2004; fig. 10); Soubeyrand et al. (2007; figs. 4–7) and in this

paper (Figs 1 and 2a). Although the Matrushka property

implies that points within a contour line have lower distorted

distances than points on that contour line, it remains possible

that the two-dimensional dispersal kernel, and thus the seed

shadow, is higher on contour lines of higher distorted distance

(e.g., Staelens et al. 2003 fig. 3; Wagner et al. 2004 fig. 6;

Cousens, Dytham&Law 2008 figs 5.1, 5.3, and 5.18).
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Fig. 2. Contour lines of three seed shadows, generated with distorted-

distance models, that correspond with three existing anisotropic phe-

nomenological models: (a) Tufto, Engen & Hindar (1997), formula

19 with k0 = 0.05, h0 = 0 and j = 10; (b)Wagner et al. (2004), for-

mulas 11 and 12 with k = 1, u = )p and v = )1; (c) Staelens et al.
(2003), formula 5 with c0 = 1, c1 = 0.5 and hd = )p ⁄ 2.
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We call a distorted-distance mapping ‘non-concentric’ if the

interiors of the ovals representing the contour lines do not have

the same barycentre (centre of mass). These functions may

‘drift’ in a certain direction, i.e. the direction into which the

barycentres move as ovals expand. Figures 2a–c all show a

drift in the direction of the positive X-axis. The full elliptic dis-

tortion model described in the next section is another example

of a distorted distance exhibiting a drift. A distorted distance is

called ‘concentric’ if all contour line ovals have a common

barycentre, i.e. no drift.

Directional seed dispersal kernels generated by this frame-

work can be compared in terms of their mean ovals and their

quantile ovals, which are the 2D planar counterparts of the 1D

mean and the 1D quantile dispersal distances. The mean oval

OEd is defined as the oval for which each point is the mean of

seed dispersal distance in the ray starting from the imaginary

source centre in the direction of that point. Similarly, the med-

ian oval Omed is defined as the oval for which each point is the

(1D) median of the seed dispersal in the ray starting from the

imaginary source centre into the direction of that point. Note

that it thus contains 50% of the modelled seed deposition.

Although the latter property is shared with many other ovals

in the plane, the median oval is unique in the sense that it is an

oval contour line having this property. Quantile ovals can be

defined similarly, i.e. the p-quantile oval is the (unique) contour

line having the property that its interior contains p · 100% of

the modelled seed deposition, leaving (1 ) p) · 100% outside

the oval (0 £ p < 1). If the kernel is monotone, decreasing

with the distorted distance, then the area within the p-quantile

oval is the (unique) smallest area in the plane having the latter

property. Formal definitions of 2D mean and 2D quantile

ovals andmethods for calculating them, as well as formulas for

the calculation of the 1D mean and 1D median of the

Euclidean distance to the (original) seed source, are given in

AppendixA.

The elliptic distorted-distance model

Here, we present a relatively simple yet flexible distorted-dis-

tance model that produces elliptic contour lines (concentric or

non-concentric). The full version of this model has five scalar

parameters: Dx, Dy, w, b and c (Table 1). The ‘shift’ vector

D = (Dx, Dy) describes the displacement of the imaginary

source centre from the source. The rotation parameter w
()p < w £ p) describes the angle of the common axis of the

expanding elliptic contour lines with the positive X-axis

(Fig. 3). The coherency parameter b (b > 0) determines the

eccentricity of the elliptic contour lines: the higher b, the more

the contours lines are flattened along that common axis (com-

pare Fig. 4a–c). Finally, the drift parameter c (c ‡ 0) pulls the

ellipses into the positive direction along the common axis

(Fig. 3): the higher c, the higher the directional effect (compare

Fig. 4a,d,g). Reduced versions of the model utilize subsets of

these parameters (Table 1). The most reduced version models

isotropic dispersal.

For convenience, we first define the coordinates of the imagi-

nary source centre as x
_�
; y
_�

� �
¼ ðx_ þ Dx; y

_þ DyÞ. Then, the
distorted-distancemapping for the full elliptic distortionmodel

is

rELLdist;b;c;w;Dx;Dy
ðx; yÞ ¼ fELLb;c

�
ðx� x

_�Þ coswþ ðy� y
_�Þ sinw;

ðx� x
_�Þ sinw� ðy� y

_�Þ coswÞ
�
;

where

(proof in Appendix B). Contour lines in the full elliptic

distortion model are non-concentric ellipses and the ellip-

tic distortion distance fulfils the Matrushka property

(proof in Appendix C). The ellipses are a generalization

of ellipses applied in a geophysical context (Wheeler

1984).

The value of the two-dimensional dispersal kernel p(x, y) for

each location (x, y) in the plane is a function of its distorted dis-

tance r = rdist(x, y) and the value d(r) of the distorted-distance

distribution. In the full elliptic distortion model, the two-

dimensional dispersal kernel pELL is expressed in terms of the

distorted-distance distribution d as

pELLðx; yÞ ¼ pELLb;c;w;Dx;Dy
ðx; yÞ

¼ XELL

rELLdist ðx; yÞ
dðrELLdist ðx; yÞÞ;

eqn 1

where

XELL ¼ 1

2pb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1

p
(proof in Appendix D). The special case in which ellipses

are circles has b = 1, c = 0 and w undefined. Equation 1

then reduces to pðx; yÞ ¼ ð1=2prdistðx; yÞÞ dðrdistðx; yÞÞ in

which

rdistðx; yÞ ¼ rEuclðx� x
_�
; y� y

_�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x

_�Þ2 þ ðy� y
_�Þ2

q
is the Euclidean distance to the imaginary source centre.

The elliptic distortionmodel can be generalized into amulti-

modalmodel in two different ways. First, amultimode general-

ization can be constructed as a mixture of a finite number of

full elliptic distortion models pointing in different directions,

fELLb;c ðx;yÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2þ1ð Þ x2

b2
þ2cx

b

� �
þ c2þ1ð Þ y2þ2c2ð Þ�2c x

b
þc

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2þ1Þ x

b
þc

� �2

þy2þ1
" #vuut

vuuut
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with a common imaginary source centre (identical Dx and Dy).

This construction is similar to the one proposed in Savage

et al. (2011). Alternatively, a multimodal model can be gener-

ated by substituting appropriate functions of x and y respec-

tively into the elliptic distorted-distance function, leading to

(non-elliptic) extensions of the elliptic model, including multi-

mode distorted distances. Appendix B concludes with one such

example (the one shown in Fig. 1).

Model choice and parameter estimation

Dispersal kernels can be estimated from empirical data on the

distributions of dispersed seeds (Eulerian methods) or on the

trajectories of dispersing seeds (Lagrangian methods) (Bull-

ock, Shea & Skarpaas 2006). The Eulerian approach is more

common and typically involves counting the numbers of seeds

in seed traps in different positions relative to one or more seed

sources. Estimation of seed dispersal kernels from such data

requires also specifying a probability distribution for

observed seed number as a function of expected seed number

(an error distribution), which in the simplest case is the Pois-

son distribution (e.g., Ribbens, Silander & Pacala 1994). In

addition, when the numbers of seeds dispersing from each

seed source are not known, one must also fit a model for seed

production. Thus in practice, the complete model will often

include four sub-models: (1) distorted-distance mapping, (2)

distorted-distance distribution, (3) seed production and (4)

error distribution.

In practice, parameter estimation is often based on seed dis-

tribution data from scenarios with multiple seed sources, such

as seed rain captured by seed traps that are scattered through

a forest with many reproductive trees. For an arbitrary loca-

tion (x, y) in the field, the distorted distance rdist,i to source i is

a function of the distance to that source and parameters bi, ci,
wi, Dx,i, Dy,i for that source as outlined above. The two-dimen-

sional dispersal kernel pi of source i depends on these dis-

torted-distance parameters and on the form and parameters

of the distorted-distance distribution di, which can vary

among trees (Fig. 5). Clearly, model complexity can be

greatly reduced if one or more parameters are assumed equal

for all sources. Parameter reduction can also be achieved by

relating parameters to other measured attributes of sources.

For example fecundity may be proportional to plant size, and

the shift may be proportional to plant height. For the elliptic

model in particular, the number of parameters can be further

reduced in many practical situations by assuming that the

Table 1. Parameters in the elliptic distorted-distancemodel, their names, effects and possible reduction

Parameter Range Name Effect Reduction

w (psi) )p < w £ p
(radians)*

Rotation

angle

Rotates the seed shadow around the

imaginary source centre x
_�
; y
_�

� �
over angle w

Undetermined when b = 1 and

c = 0 (isotropy around the

imaginary source centre)

b (beta) b > 0 Coherency Flattens the contour lines along their

common axis

b = 1 (requires c = 0) means

contour lines are circular

c (gamma) c ‡ 0 Drift Pulls the centres of contour lines into

the positive direction of the common

axis (set by w)

c = 0 means all contour lines have

the same centre

D = (Dx, Dy)†

(delta)

)¥ < Dx < ¥,

)¥ < Dy < ¥
Shift Translates the seed shadow to the

imaginary source centre x
_�
; y
_�

� �
where the distorted distance equals

zero

Dy = Dx tan(w) sets the shift angle

equal to the rotation angle

D = (0, 0) means that the imaginary

source centre is at the source

*Note that w = 0 points to East, and w = )p ⁄ 2 points to South.

†Alternatively, in polar coordinates, D = (d, h), with length d ‡ 0 and angle )p < h £ p. The accompanying reduction is h = w, forcing
the shift angle to be the same as the rotation angle.
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Fig. 3. Contour lines of the hypothetical seed

shadow of a single tree produced by the full

elliptic distortion model, including rotation

and shift in different directions (a) or in the

same direction (b). In both cases, the shift

vector is D = (2, 5), the tree is located in ()2,
)5) and the imaginary source centre is

located at ðx_�; y_�Þ ¼ ð0 ; 0Þ. The model

shown has coherence b = 2, drift c = 1.5

and rotation w = p ⁄ 6 (a) or rotation

w = arctan(5 ⁄ 2) (b).
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rotation and shift are in the same direction (Fig. 2). This is a

sensible restriction in many cases, as when prevailing winds

shift and stretch the seed distributions of all trees into a single

direction.

We briefly mention here the risk of over-parameterisation.

For example when c = 0 and b = 1, distorted-distance con-

tour lines reduce to circles around the imaginary source centre,

and thus the rotation parameter w is undetermined (all values

result in the same distorted-distancemapping). Similarly, when

c = 0, the exact same contour lines can be obtained by chang-

ing eccentricity b to 1 ⁄b and simultaneously increasing or

decreasing the rotation by p ⁄2 (Fig. 4a,c). In cases like these,

additional parameter reductions or constraints are needed.

Application to a wind-dispersed tree

We fitted our anisotropic elliptic models to data for the

wind-dispersed canopy tree Luehea seemannii (Malvaceae) in

tropical moist forest on BCI, Panama (Leigh 1999). We used

diameters and locations of all L. seemannii ‡ 200 mm DBH

(Diameter at Breast Height) in the 2005 censuses of a 50-ha

ForestDynamics Plot (FDP) in the centre of the island (Condit

1998) plus a 10-ha buffer area directly to the north of the FDP,

totalling 60 ha (600 · 1000 m). Seed distribution data were

numbers of mature L. seemannii seeds captured by 200 litter

traps, each 0Æ5 m2 in area, in the FDP during 2004–2010

(7 years) (Fig. 6; for details, seeMuller-Landau et al. 2008).

We fitted alternative seed shadows using inverse modelling,

calculating expected seed rain into each trap by summing

expected seed rain from all source trees on the plot (Appendix

E; Ribbens, Silander & Pacala 1994; Jones & Muller-Landau

2008).We assumed that all trees had the same two-dimensional

dispersal kernel, and fitted 12 alternative models for this

kernel, representing all combinations of four distorted (or

undistorted)-distance mappings and three distorted (or

undistorted)-distance distributions. The four elliptic distorted-

x
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Fig. 5. Contour lines of the hypothetical seed shadows of two trees

when parameters of the elliptic distortion model differ between the

trees. Parameter values for the first tree are ðx_�1; y
_�
1Þ ¼ ð�10 ; 15Þ,

w1 = )p ⁄ 4, c1 = 3, b1 = 1; for the second tree, they are

ðx_�2; y
_�
2Þ ¼ ð�2 ; �5Þ, w2 = p ⁄ 6, c2 = 1Æ5, b2 = 1. This situation

could arise if the two trees released seeds at different times, under

different wind conditions.
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from top to bottom, and increases the degree to which the ellipse centres move into the rotation direction. In all cases, the imaginary source centre

is at (0, 0) and the rotation parameter is 0.
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distance models were (1) the full 5-parameter elliptic model

(parameters w, b, c, Dx, Dy); (2) the 4-parameter constrained

shiftmodel in which the rotation is in the direction of the shift

[free parameters w, b, c, Dx with Dy = Dx tan (w)]; (3) the
3-parameter no shift model (free parameters w, b, c with

Dx = 0, Dy = 0) and (4) the 0-parameter isotropic model

(with Dx = 0, Dy = 0, b = 1, c = 0 and no role for w). The
three different distorted-distance distributions were the

(1-parameter) Exponential, the 1-parameter Weibull and

the 1-parameter Student’s 2DT (Table 2). We assumed the

fecundity of tree i,uiwas related to its diameter, zi, asui ¼ az2i ,
and we thus fit a single fecundity parameter, a. We assumed

that observed values followed a negative binomial distribution

around the expected, with clumping parameter j taking lower

values when clumping is greater (Clark, Macklin & Wood

1998).

For each model, we numerically searched for the parameter

values that maximized the likelihood of the observed seed trap

data using the Nelder–Mead downhill simplex method (Nelder

& Mead 1965; R Development Core Team 2011). We com-

pared model performance using Akaike’s (1974) Information

Criterion (AIC). Finally, we simulated 100 seed trap datasets

for this population using the best-fit model and parameters,

ran our fitting procedure for these simulated datasets and

quantified the bias and precision of the resulting parameter

estimates. The full R-code for the fits and the simulation are

given inAppendices R and S respectively.

Results

The anisotropic models all provided better fits than the corre-

sponding isotropic models (Table 3). The best-fitting model

combined an exponential dispersal kernel functionwith the ‘no

shift’ elliptic distorted-distance function. The contour lines of

expected seed rain (Fig. 7a) show pronounced directionality.

The mean and median dispersal distances predicted by the

60
0 

m

1000 m

Fig. 6.Map of the study area on Barro Colorado Island, Panama,

showing the locations of reproductive Luehea seemannii trees (aster-

isks) and of the seed traps (squares). Symbols of seed traps are scaled

by the number of L. seemannii seeds they captured [specifically, to

log10(seed number + 1)].

Table 3. Alternative models of seed dispersal in the wind-dispersed treeLuehea seemannii (Malvaceae) on Barro Colorado Island, Panama, fitted

to data of seed rain into seed traps and the spatial distribution of seed traps and adult trees using inverse modelling

DAIC

No. of

pars

Distorted-distance

model Distribution

Distance

k
Rotation

w
Coherency

b
Drift

c
Shift in X

Dx

Shift in Y

Dy

Fecundity*

a
Clumping

j

0 6 No shift Exponential 23Æ3 )0Æ453 1Æ049 0Æ938 0 0 2Æ22 0Æ991
1Æ403 8 Full Exponential 23Æ3 )0Æ416 1Æ120 0Æ876 0Æ370 1Æ997 2Æ20 1Æ004
1Æ712 7 Constrained shift Exponential 23Æ1 )0Æ454 1Æ041 0Æ951 0Æ354 )0Æ173 2Æ23 0Æ996
27Æ24 6 No shift 2DT 2202 )0Æ387 0Æ752 1Æ038 0 0 1Æ95 0Æ881
27Æ58 7 Constrained shift 2DT 2196 )0Æ390 0Æ706 1Æ177 1Æ754 )0Æ721 1Æ95 0Æ891
28Æ23 8 Full 2DT 2201 )0Æ262 0Æ825 0Æ925)4Æ212 5Æ134 1Æ92 0Æ883
67Æ07 6 No shift Weibull 29Æ5 )0Æ645 2Æ576 0Æ420 0 0 2Æ01 0Æ719
68Æ17 7 Constrained shift Weibull 28Æ9 )0Æ643 2Æ709 0Æ402)0Æ894 0Æ670 1Æ97 0Æ758
69Æ28 8 Full Weibull 28Æ5 )0Æ641 2Æ770 0Æ399 1Æ150 1Æ926 1Æ95 0Æ763
103Æ8 3 Isotropic Exponential 32Æ7 1 0 0 0 2Æ30 0Æ642
114Æ3 3 Isotropic 2DT 2670 1 0 0 0 2Æ18 0Æ616
143Æ7 3 Isotropic Weibull 55Æ8 1 0 0 0 2Æ13 0Æ549

The models are combinations of four elliptic distortion functions, with different levels of reduction, and three distorted distance distribu-

tions. Models are ranked by DAIC, the difference in Akaike Information Criterion from the best-fit model. Parameter values that are

italicized were constrained to that value.

*The estimated fecundity of a tree is this parameter times the square of its diameter in millimetre.

Table 2. Functional forms of the distorted-distance distributions

(probability density functions for the distribution of distorted

distances) fitted to the seed dispersal data in the case study

Distribution Functional form

Exponential dðrÞ ¼ 1

k
e�r=k

1-parameter Weibull* dðrÞ ¼ 2r

k2
e�r

2=k2

1-parameter Student’s 2DT† dðrÞ ¼ 4r

kð1þ ðr2=kÞÞ2

Note that when combined with Euclidean distance mappings,

these are (undistorted) distance distributions, i.e. one-dimensional

dispersal kernels. All functions have a single parameter k > 0,

with increasing values of this parameter associated with increas-

ing dispersal distances, and are defined only for r ‡ 0.

*With shape parameter set equal to 2.

†With degrees of freedom parameter set to 2; this is equivalent to

the kernel defined in Clark et al. (1999) equation 8 when p = 2.
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best-fitting isotropic kernel were 32Æ7 and 22Æ7 m respectively.

The estimated mean dispersal distance in the best-fitting aniso-

tropic model ranged from 11Æ5 to 55Æ4 m depending on the

direction, with an overall mean of 24Æ1 m (Fig. 7b), whereas

the median ranged from 8Æ3 to 38Æ1 depending on direction,

with an overall value of 16Æ8 m. Thus, the distorted mean and

median dispersal distance varied greatly with direction

(Fig 7a,b). All anisotropic models found that seeds going east-

southeast travelled the longest distances (Fig. 7a,b).

The directional variation in dispersal distances under the

best-fit anisotropic model is evident in the contrast between the

directional maximum and directional minimum dispersal dis-

tance as a function of quantile, with this range encompassing

wide variation around the quantile distances of the isotropic

model (Fig. 7c). The probability distribution of Euclidean dis-

tances travelled in all directions combined under the best-fit

anisotropic model was nonetheless quite similar to that for the

isotropic model, as evident from the similarity in distances as a

function of quantile (Fig. 7d). Themain difference between the

distributions was in the tail, which in the anisotropic case is fat-

ter because of the relatively higher probability of long-distance

seed dispersal into the preferred direction.Methods for quanti-

fying directional variability in the elliptic distortion model are

provided in Appendix F.

Fits to the simulated datasets recovered the true parameter

values very well (Table 4). Mean bias did not exceed 12% of

the true parameter value and root mean squared errors did not

exceed 36%of the true parameter value for the distance, coher-

ency, drift, fecundity and clumping parameters. In the case of

the rotation parameterw, proportionality calculations are non-
sensical, and the mean bias was 0Æ02 radians. In all cases, the

95% confidence intervals of the fitted parameters included the

true values.

Discussion

Wehave outlined a flexible framework for stochasticmodelling

of directional dispersal data, in which standard dispersal func-

tions are combined with ‘distorted-distance functions’ that

transform the circular contour lines of any isotropic dispersal

kernel into non-circular shapes reflecting directional biases.

Application to a field problem – estimating seed dispersal in

the wind-dispersed Neotropical forest tree L. seemannii –

demonstrated that anisotropic models can be fit to a typical

dataset. Our model effectively detected anisotropy in this

species’ seed shadow, fitted an appropriate distance distortion

and estimated directionality that was consistent with wind

dispersal. Our estimate of the median dispersal distance of

L. seemannii averaged over directions (16Æ8 m) closelymatched

the estimate of Muller-Landau et al. (2008; median = 17 m),

despite methodological differences, and are just slightly higher

than those inDalling et al. (2002;median = 8.2 m).

We introduced 2D analogues for the commonly used 1D

versions of mean, median and p-quantiles of the dispersal

distribution. The 1D and 2D versions are useful to address dif-

ferent questions. The 1D versions address the question of how

far seeds (or pollen and the like) are dispersed from the source.

The 2D versions provide insight into the underlying process

and, in particular, into the variability in dispersal distributions

in different directions from the imaginary source centre.

COMPARISON TO OTHER APPROACHES

Three general approaches for mathematically capturing direc-

tionality in phenomenological models of dispersal have previ-

ously been published. The simplest approach assumes that the

dispersal kernel is bivariate normal (Austerlitz et al. 2007).

Because such distributions necessarily have concentric ellipti-
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Fig. 7. Characteristics of the best-fit seed dispersal model for the trop-

ical forest tree Luehea seemannii (Malvaceae) on Barro Colorado

Island, estimated from tree location and seed trap data through

inverse modelling. (a) Contour lines of the expected seed rain (abso-

lute seed density per m2) according to the best-fit (and anisotropic)

model for a hypothetical tree of DBH = 500 mm. The vector shows

the prevailing direction, ESE. (b) Mean (dashed lines) and median

(solid lines) dispersal distance from the source centre for different

directions for the anisotropic model (black lines) compared to the

best-fitting isotropic model (grey lines). (c) The maximum (dotted

line) and minimum (solid line) distances travelled at a given quantile

for the anisotropic model, when maxima and minima are taken over

directions, compared with the distance for the same quantile under

the isotropic model (dashed line). (d) The Euclidean distance at a

given quantile when all directions are combined under the anisotropic

model (solid line) vs. the isotropic model (dashed line).
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cal contour lines for given probabilities of seed arrival (e.g.,

Hogg, McKean & Craig 2012), these models are special cases

of our elliptic distortionmodel, without shift or drift. A second

approach has been to use a direction-dependent intensity func-

tion (Wälder, Näther & Wagner 2009). This approach pro-

duces shifted concentric ellipses and again is a special case of

our elliptic model, with shift but without drift. The third and

final general approach uses the Von Mises distribution or a

related distribution, a common tool in circular statistics (Bats-

chelet 1981). Here, the kernel function contains a radially

dependent component, usually a translated sine function, to

account for directional effects. Tufto, Engen & Hindar (1997),

Staelens et al. (2003) and Wagner et al. (2004) for example all

apply a (generalized) Von Mises distribution, but differ in the

way the distribution enters the formulas. All these phenomeno-

logical models are special cases of our general framework (see

Appendix G for ad hoc proofs regarding the models in Tufto,

Engen & Hindar (1997), Staelens et al. (2003) and Wagner

et al. (2004); see also Fig. 2).

Our approach of combining a distorted-distance mapping

with a 1D probability density function for distorted distance

has parallels with the framework proposed by Schurr, Steinitz

& Nathan (2008) for handling ‘path effects’. Path effects of

environments encountered by dispersing seeds (or pollen) can

slow or speed dispersal at different distances in different direc-

tions around a given source, and thus effectively distort dis-

tances in a manner similar to our approach. Schurr, Steinitz &

Nathan (2008) describe path effects using the notion of a

‘movement space’; distances in this movement space parallel

our notion of ‘distorted distance’, and the mapping to move-

ment space parallel our distorted-distance mapping. Schurr,

Steinitz & Nathan (2008) specifically consider the simplified

case in which path effects ‘depend only on the environments

crossed by the straight line extending from the source to the

deposition site’, a restriction that means that all of their ‘move-

ment distance’ functions satisfy our ‘Matrushka property’ for

distorted-distance mappings. Thus, the model formulated by

Schurr, Steinitz & Nathan (2008) can be considered a special

case of our framework. Our framework is more general in that

it does not specify a particular mechanism as responsible for

distorting distances, and thus encompasses not only path

effects but also effects such as those of the distribution of wind

speed and direction, effects that may be uniform across the

landscape.

Our modelling framework has several advantages. First,

directional effects can be fully accounted for in rdist, so that

function d deals exclusively with the non-directional effects,

and all parameters are distinctly directional or non-directional.

Secondly, modelling is very flexible as many functions d and

rdist are possible and can be independently combined. Contour

lines, including their shape, can be ‘estimated’ from field data,

and an appropriate distorted distance could be defined or

adapted accordingly. Previous phenomenological models have

less flexibility and cannot accommodate as wide a range of pos-

sible distributions. In practice, this means that our model

framework will often produce superior fits to data. This is illus-

trated by our application, in which our model fitted the seed

distribution data substantially better than did themodels given

by Austerlitz et al. (2007) and Wälder, Näther & Wagner

(2009), because of our inclusion of drift parameter c.

Conclusion

We have described a method for converting any isotropic dis-

persal kernel into an anisotropic dispersal kernel, and demon-

strated how such kernels can be fit to empirical data.

Anisotropic kernels constructed in this framework fitted data

on a wind-dispersed tree species far better than did isotropic

models. Application of this model should increase accuracy

and precision in estimates of dispersal distances, enable estima-

tion of the direction of movement and thus allow better

description and prediction of the dispersal and distribution of

seeds and other particles.

Ourmethod is suited for awide variety of situations inwhich

particles disperse away from point sources, particularly where

this dispersal is passive, involving wind or water. The quantity

of interest can be discrete, such as the number of particles, as

well as continuous, e.g. a concentration. Examples include the

dispersal of coral gametes in oceans, roots in soil, volcanic ash

in air and wind dispersed pollution deposition from single or

multiple point sources. The notions of tree, fecundity, etc., can

be easily translated into the relevant terminology. Expression

of models in these various areas using a common statistical

framework would facilitate exchange of models between appli-

Table 4. Fit statistics for 100 simulated datasets with the same form as the empirical dataset (R-code inAppendices S andR)

Statistic

Distance

k
Rotation

w
Coherency

b
Drift

c
Fecundity

a
Clumping

j

Generating parameter value 23Æ30 )0Æ45 1Æ05 0Æ94 2Æ22 0Æ99
Mean estimated value 25Æ62 )0Æ43 1Æ02 1Æ05 2Æ13 1Æ01
Median estimated value 24Æ52 )0Æ44 1Æ00 0Æ99 2Æ12 0Æ98
95% CI estimated value 19Æ97, 48Æ21 )0Æ57, )0Æ27 0Æ53, 1Æ68 0Æ60, 1Æ88 1Æ83, 2Æ43 0Æ76, 1Æ45
Root mean squared error 6Æ00 0Æ07 0Æ28 0Æ34 0Æ18 0Æ16
Mean bias 2Æ32 0Æ02 )0Æ03 0Æ11 )0Æ09 0Æ02
Mean proportional bias 0Æ10 NA )0Æ03 0Æ12 )0Æ04 0Æ02
95% CI proportional bias )0Æ14, 1Æ07 NA )0Æ50, 0Æ60 )0Æ36, 1Æ00 )0Æ18, 0Æ09 )0Æ24, 0Æ46

The generating model, the exponential, had a lower Akaike Information Criterion score than any competing kernel model in all simula-

tions.
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cations, and recombination of functional forms to best fit

observed distributions.
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