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SUMMARY

We introduce two new variance estimation procedures that use non-overlapping and overlapping blocks,
respectively. The non-overlapping blocks estimator can be viewed as the limit of the thinned block
bootstrap estimator recently proposed in Guan & Loh (2007), by letting the number of thinned processes
and bootstrap samples therein both increase to infinity. The non-overlapping blocks estimator can be
obtained quickly since it does not require any thinning or bootstrap steps, and it is more stable. The
overlapping blocks estimator further improves the performance of the non-overlapping blocks with a
modest increase in computation time. A simulation study demonstrates the superiority of the proposed
estimators over the thinned block bootstrap estimator.

Some key words: Block variance estimator; Inhomogeneous spatial point process; Thinning.

1. INTRODUCTION

Let N be a two-dimensional spatial point process that is observed on a domain of interest D ⊂ R
2. For

a Borel set B ⊂ R
2, let |B| denote the Lebesgue measure of B, and let N (B) denote the number of events

of N in B. Let λ(s) and λ(s1, s2) denote the first- and second-order intensity functions (Diggle, 2003, p.
43) of N , defined respectively as

λ(s) = lim
|ds|→0

E{N (ds)}
|ds| , λ2(s1, s2) = lim

|ds1|,|ds2|→0

E{N (ds1)N (ds2)}
|ds1||ds2| ,

where ds is an infinitesimal region containing s. We will focus on a flexible class of spatial point processes
called second-order intensity reweighted stationary processes (Baddeley et al., 2000). We assume that
λ(s1, s2) = λ(s1)λ(s2)g(s1 − s2) for some function g(·), where g(·) is called the pair correlation function
(Møller & Waagepetersen, 2004, p. 31). In the special case in which λ(s) = λ for some constant λ > 0 for
all s ∈ R

2, the process is further said to be second-order stationary.
It is often of interest in practice to model the first-order intensity function of the process in terms of

some observed covariates. For example, in the data example given in § 4, we are interested in modelling
the first-order intensity function of the point process generating the locations of 3604 Beilschmiedia
pendula trees by using two topographical variables, elevation and elevation gradient. Such a study can
yield valuable biological insight into how these two variables affect the spatial distribution of the trees.
For this, we assume that λ(·) can be written as a parametric function of the covariates, where the function
is completely determined by a p × 1 vector of unknown regression parameters, β. We thus rewrite λ(·) as
λ(·; β). Our main goal is to estimate and make inference about β.

To estimate β, the following Poisson-based loglikelihood function (Schoenberg, 2005) is often used:

U (β) = 1

|D|
∑

x∈D∩N

log λ(x ; β) − 1

|D|
∫

D
λ(s; β) ds, (1)
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where
∑

x∈D∩N means summation over all events of N that are in D. Let β̂ be the maximizer of (1).
Schoenberg (2005) showed that β̂ is consistent for β for a wide class of spatial-temporal point process
models, even if the process is not Poisson. Waagepetersen (2007) and Guan & Loh (2007) established
asymptotic normality for β̂ for a class of inhomogeneous Neyman–Scott processes and a class of mixing
point processes, respectively.

To make inference about β, the variance of β̂ needs to be estimated. Let Dn be a sequence of domains
that approach R

2 in all directions as n increases, let β̂n and β0 be the estimated and the true parameter
vectors, respectively and let λ(i)(·; β) be the i th partial derivative of λ(·; β) with respect to β. Guan & Loh
(2007) showed that, under suitable conditions,

�n = |Dn|cov(β̂n)� |Dn|(An)−1 Bn(An)−1,

where

An =
∫

Dn

λ(1)(s; β0)
{
λ(1)(s; β0)

}T

λ(s; β0)
ds, (2)

Bn = An +
∫ ∫

Dn

λ(1)(u; β0)
{
λ(1)(v; β0)

}T{g(u − v) − 1}du dv. (3)

From (2), it can be seen that An depends only on the first-order intensity function, and thus can be
calculated easily once it has been estimated. However, from (3) it can be seen that Bn depends also on
the pair correlation function. Often a parametric model for the pair correlation function is first fitted by
using, say, a minimum contrast estimation procedure (Møller & Waagepetersen, 2004, pp. 182–3), and the
estimated pair correlation function is then inserted into (3) in order to estimate Bn . To avoid a parametric
assumption about the pair correlation function, which can be restrictive in some applications, Guan & Loh
(2007) proposed a thinned block bootstrap estimator for Bn . Their procedure involves repeatedly thinning
the original point process and then bootstrapping each thinned realization of the process. The thinned block
bootstrap procedure assumes that the process is second-order intensity reweighted stationary, but does not
require any specific parametric form for the pair correlation function. A drawback of this procedure is that
it can be very time-consuming because of the repeated thinning and bootstrap steps. The goal of this paper
is to propose two alternative variance estimation procedures that can be performed much more quickly.

2. BACKGROUND ON THE THINNED BLOCK BOOTSTRAP PROCEDURE

The thinned block bootstrap procedure makes use of the fact that any second-order intensity reweighted
stationary process can be thinned to be second-order stationary by application of proper thinning weights.
For example, Guan & Loh (2007) considered the thinned process

�n = {
x : x ∈ N , pr(x is retained) = min

s∈Dn

λ(s; β0)/λ(x ; β0)
}

. (4)

Clearly �n is second-order stationary on Dn since its first- and second-order intensity functions can be
written respectively as

λn = min
s∈Dn

λ(s; β0), λ2,n(s1, s2) = (λn)2g(s1 − s2).

For each thinned process, �n , Guan & Loh (2007) defined the statistic

Sn =
∑

x∈�n∩Dn

λ(1)(x ; β0).

Since �n is second-order stationary, it follows that

cov(Sn) = λn

∫
Dn

λ(1)(s; β0)
{
λ(1)(s; β0)

}T
ds + (λn)2(Bn − An), (5)
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where An and Bn are given in (2) and (3), respectively. To estimate Bn , it is sufficient to estimate the
covariance matrix of Sn . For this, Guan & Loh (2007) proposed the following block bootstrap algorithm.

Step 1. Obtain a thinned realization of the process as in (4) with β0 replaced by β̂n .

Step 2. Divide Dn into kn non-overlapping sub-blocks, Di
ln

(i = 1, . . . , kn), where ln signifies the size
of each sub-block. For each Di

ln
, let ci denote the ‘centre’ of the sub-block. For each thinned process,

resample B times with replacement kn sub-blocks from Di
ln

(i = 1, . . . , kn). For the bth collection of the
resampled random sub-blocks, let Jb be the set of kn random indices sampled from {1, . . . , kn} that are
associated with the selected sub-blocks. Define

Sb
n =

kn∑
i=1

∑
x∈�n∩D

Jb (i)
l(n)

λ(1)
(
x − cJb(i) + ci ; β̂n

)
,

where the second summation is over all events in sub-block D Jb(i)
ln

translated into sub-block Di
ln

. Obtain
the sample covariance matrix for Sb

n (b = 1, . . . , B).

Step 3. Repeat Steps 1 and 2 M times and use the average of the resulting sample covariance matrices
as the estimate for the covariance matrix given in (5).

Let ˆcov(Sn) be the estimator obtained from the above algorithm. Then (5) implies the following estimator
for Bn:

B̂n = ˆcov(Sn)/λ̂2
n −

∫
Dn

λ(1)(s; β̂n)
{
λ(1)(s; β̂n)

}T
ds/λ̂n + Ân, (6)

where

λ̂n = min
s∈Dn

λ(s; β̂n), Ân =
∫

Dn

λ(1)(s; β̂n)
{
λ(1)(s; β̂n)

}T

λ(s; β̂n)
ds.

3. THE PROPOSED VARIANCE ESTIMATION PROCEDURES

3·1. The algorithms

Throughout this section, let λ(·) and λ(1)(·) denote λ(·; β̂n) and λ(1)(·; β̂n), respectively. Let �m
n denote

the mth thinned realization of the process. For a fixed M and if B → ∞, some simple calculations show
that ˆcov(Sn) converges to

cov
(

Sb
n

∣∣ �n ∩ Dn

) = 1

kn M

M∑
m=1

kn∑
i=1

kn∑
j=1

∑
x∈D j

ln
∩�m

n

∑
y∈D j

ln
∩�m

n

λ(1)(x − c j + ci )
{
λ(1)(y − c j + ci )

}T

− 1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑
x∈D

j1
ln

∩�m
n

∑
y∈D

j2
ln

∩�m
n

λ(1)(x − c j1 + ci )
{
λ(1)(y − c j2 + ci )

}T
.

If M → ∞, this further converges to

E
{

cov
(

Sb
n

∣∣ �n ∩ Dn

) | N
} = λ2

n V̂n,1 − λ2
n V̂n,2 + λn V̂n,3 − λn V̂n,3/kn, (7)

where

V̂n,1 = 1

kn

kn∑
i=1

kn∑
j=1

∑∑
x∈D j

ln
∩N ,y∈D j

ln
∩N

x � y

λ(1)(x − c j + ci )
{
λ(1)(y − c j + ci )

}T

λ(x)λ(y)
, (8)
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V̂n,2 = 1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑ ∑
x∈D

j1
ln

∩N ,y∈D
j2
ln

∩N
x � y

λ(1)(x − c j1 + ci )
{
λ(1)(y − c j2 + ci )

}T

λ(x)λ(y)
, (9)

V̂n,3 = 1

kn

kn∑
i=1

kn∑
j=1

∑
x∈D j

ln
∩N

λ(1)(x − c j + ci )
{
λ(1)(x − c j + ci )

}T

λ(x)
. (10)

Note that E(V̂n,3) �
∫

Dn
λ(1)(s){λ(1)(s)}Tds if β̂n �β0. In view of (6)–(10), it is natural to consider the

following estimator for Bn:

B̂n = V̂n,1 − V̂n,2 + Ân, (11)

where V̂n,1 and V̂n,2 are defined as in (8) and (9), respectively. The term −λn V̂n,3/kn in (7) is not included
in (11) since it is ignorable because kn → ∞. The quantities V̂n,1 and V̂n,2 can be calculated directly
without any thinning or bootstrapping steps, so that significant computational gains can be achieved; see
Appendix 1 for the computational details. Furthermore, the new estimator can be regarded as the limiting
version of the thinned block bootstrap estimator as both B and M increase to infinity. It is therefore
reasonable to expect (11) to be more stable than any thinned block bootstrap estimator based on a fixed B
and/or M .

From (8) and (9), it can be seen that V̂n,1 and V̂n,2 are both defined in terms of the point process N observed
on the non-overlapping blocks Di

ln
(i = 1, . . . , kn). A direct extension of the above procedure is to use

overlapping blocks. For this, let Dln be the sub-block centred at the origin and let D∗
n = {s : Dln + s ⊂ Dn}.

Define Ds
ln

= Dln + s. The new versions of (8) and (9) based on overlapping blocks are given as follows:

V̂n,1 = 1

|D∗
n |

kn∑
i=1

∫
D∗

n

∑ ∑
x∈Ds

ln
∩N ,y∈Ds

ln
∩N

x � y

λ(1)(x − c j + ci )
{
λ(1)(y − c j + ci )

}T

λ(x)λ(y)
ds, (12)

V̂n,2 = 1

|D∗
n |

kn∑
i=1

∫
D∗

n

∫
D∗

n

∑∑
x∈Du

ln
∩N ,y∈Dv

ln
∩N

x � y

λ(1)(x − u + ci )
{
λ(1)(y − v + ci )

}T

λ(x)λ(y)
du dv. (13)

Compared to (8) and (9), (12) and (13) use more information from the data. Intuitively, we would expect
them to be more stable than their counterparts, (8) and (9), which are both based on non-overlapping
blocks. Indeed, overlapping blocks have been found to yield improved variance estimators for block
bootstrap (Künsch, 1989). A similar result is anticipated in the current setting.

To calculate (12) and (13), we need to approximate the integral terms involved. One obvious approach
is to ‘tile’ the region D∗

n by a grid consisting of k∗
n ‘small’ cells, and then approximate the integrals by the

corresponding Riemann sums (Politis & Sherman, 2001). This leads to the following estimators for V̂n,1

and V̂n,2:

V̂n,1 = 1

k∗
n

kn∑
i=1

k∗
n∑

j=1

∑ ∑
x∈D j

ln
∩N ,y∈D j

ln
∩N

x � y

λ(1)(x − c j + ci )
{
λ(1)(y − c j + ci )

}T

λ(x)λ(y)
, (14)

V̂n,2 = 1

(k∗
n )2

kn∑
i=1

k∗
n∑

j1=1

k∗
n∑

j2=1

∑ ∑
x∈D

j1
ln

∩N ,y∈D
j2
ln

∩N
x � y

λ(1)(x − c j1 + ci )
{
λ(1)(y − c j2 + ci )

}T

λ(x)λ(y)
. (15)

Note that (8) and (9) can be viewed as special cases of (14) and (15) with k∗
n = kn .
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3·2. Theoretical justification

Let V̂n = V̂n,1 − V̂n,2, where V̂n,1 and V̂n,2 are given as in (8) and (9) in the non-overlapping case or (12)
and (13) in the overlapping case. We would like to show that V̂n converges to

Vn = Bn − An =
kn∑

i=1

kn∑
j=1

∫
Di

ln

∫
D j

ln

λ(1)(u; β0)λ(1)(v; β0){g(u − v) − 1}du dv.

To show this, assume that, for all β in a small neighbourhood of β0,

λ(s; β) > 0, λ(i)(s; β) < ∞ (i = 1, 2). (16)

In addition, conditions on the cumulant density function of the process are needed. Define the kth-order
cumulant density functions of N as

Qk(s1, . . . , sk) = lim
|dsi |→0

cum{N (ds1), . . . , N (dsk)}
|ds1| · · · |dsk | (i = 1, . . . , k),

where cum(Y1, . . . , Yk) is the coefficient of i k t1 · · · tk in the Taylor series expansion of
log[E{exp(i

∑k
j=1 Y j t j )}] about the origin (Brillinger, 1975, p. 19) and Yi (i = 1, . . . , k) are random

variables. The cumulant density functions are useful tools for describing the dependence between events
of the process, where close-to-zero values of the cumulant density functions often indicate near indepen-
dence. In the extreme case of complete independence, i.e. when N is Poisson, Qk(s1, . . . , sk) = 0 if at
least two of s1, . . . , sk are different. In terms of the cumulant density functions, assume that

sup
s1

∫
· · ·

∫
|Qk(s1, . . . , sk)|ds2 . . . dsk < ∞ (k = 2, 3, 4). (17)

Condition (17) is a fairly weak condition. It holds for a broad class of inhomogeneous models including,
but not limited to, the log-Gaussian Cox process (Møller et al., 1998), the inhomogeneous Neyman–
Scott process (Waagepetersen, 2007) and any inhomogeneous process that is obtained by thinning a
homogeneous process satisfying this condition. The following theorem, proved in Appendix 2, establishes
the consistency of V̂n .

THEOREM 1. Assume that (16) and (17) hold. If |Dln | = o(|Dn|1/2) and |Dn|1/2(β̂n − β0) = Op(1), then
(V̂n − Vn)/|Dn| → 0 in mean square.

The condition on the convergence rate of β̂n to β0 is a standard assumption and holds under conditions
given in Guan & Loh (2007). The condition on the sub-block size is undesirable. However, a further
relaxation of this condition appears to be difficult. It may not be reasonable after all to set the sub-block
size to be of order larger than or equal to |Dn|1/2 given that |Dn|1/2(β̂n − β0) = Op(1). Finally, although
we are focusing on estimating the variance of β̂n in this paper, the proposed methods can be applied
to estimate the variance of any statistic taking the form

∑
x∈N∩Dn

Z (x ; β0). This can be done simply by

replacing λ(1)(·) with Z (·)λ(·) in the definitions of V̂n .

4. NUMERICAL STUDIES

4·1. A simulation study

To illustrate the superior performance of the proposed methods over the thinned block bootstrap ap-
proach, we simulated realizations from an inhomogeneous Neyman–Scott process model on a unit square.
The first-order intensity function of the process was λ(s) = α + β X (s), where α = 7·02, β = 2 and X (s)
was the same covariate process as used in Guan & Loh (2007). For each simulation, we first simulated a
homogeneous Poisson process as the parent process, where the intensity of the process was κ = 50. For
each parent, we then generated a Poisson number of offspring. The position of each offspring relative to
its parent was determined by a radially symmetric Gaussian random variable (Diggle, 2003, p. 66) with
standard deviation ω = 0·02 or 0·04, which represent relatively strong and weak clustering, respectively.
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Table 1. Bias, standard deviation and computation time, in hours of cpu time, for 1000 simulations for
the various variance estimators using non-overlapping blocks, overlapping blocks and the thinned block
bootstrap. The target parameter is the standard deviation of β̂, which is 0·8708 for ω = 0·02 and 0·8025

for ω = 0·04

OB TBB (B = 499) TBB (B = 999)
ω NOB k∗

n = 64 k∗
n = 144 M = 5 M = 20 M = 5 M = 20

Bias 0·02 −0·1233 −0·1193 −0·1209 −0·1271 −0·1264 −0·1286 −0·1273
0·04 −0·1648 −0·1652 −0·1671 −0·1711 −0·1699 −0·1709 −0·1700

SD 0·02 0·1310 0·1197 0·1193 0·1340 0·1330 0·1339 0·1326
0·04 0·1216 0·1114 0·1124 0·1256 0·1229 0·1241 0·1228

Time 0·02 0·0117 0·2076 0·8745 0·8041 2·9513 1·4951 5·7367
0·04 0·0118 0·2237 0·9487 0·8203 2·9655 1·5096 5·7571

OB, overlapping blocks method; NOB, non-overlapping blocks method; TBB, thinned block bootstrap method; SD,
standard deviation.

One thousand realizations of the process were simulated for each ω value. For each realization, the
thinned block bootstrap estimator and the proposed methods were all applied. For the thinned block
bootstrap estimator, we took B = 499, 999 and M = 5, 20. For all estimators, the sub-block size was
0·25 × 0·25, which led to kn = 16 non-overlapping blocks. For the estimator based on overlapping blocks,
k∗

n = 64, 144, where k∗
n was the number of small cells used to calculate (14) and (15).

Table 1 shows the bias, standard deviation and computation time for each estimator. For all estimators,
there is a negative bias. The bias for ω = 0·04 is larger, probably because the range of dependence is larger
in this case. The non-overlapping blocks and overlapping blocks methods appear to be less biased than the
thinned block bootstrap method, because of the removal of the term −λn V̂n,3/kn in (11). For the thinned
block bootstrap method, the standard deviation generally decreases with M , or B, for a fixed B, or M . The
effect of B is not very significant in this example, probably because both B values being considered here
are much larger than the number of blocks to be resampled from. As expected, all the standard deviations
for the thinned block bootstrap method are larger than their counterparts for the non-overlapping blocks
method. For the overlapping blocks method, the standard deviations are significantly smaller than those
for the non-overlapping blocks method. However, the number of overlapping blocks does not need to be
very big to achieve most of the benefit. In terms of computation time, the non-overlapping blocks method
is the most computationally efficient. Its computation time for 1000 simulations is only about 1/18 of that
for the overlapping blocks method when k∗

n = 64, and about 1/70 of the smallest computation time for
the thinned block bootstrap method, which occurs when M = 5 and B = 499. The computation time for
the overlapping blocks method quickly increases for k∗

n = 144. Even in this case, it is only slightly larger
than the smallest computation time for the thinned block bootstrap method. The latter increases roughly
in proportion to M and B.

4·2. Beilschmiedia pendula data

These data contain locations of 3604 Beilschmiedia pendula trees in a 1000 metre by 500 metre plot in
the Barro Colorado Island. Measurements on elevation and elevation gradient in the plot are also available.
Waagepetersen (2007) and Guan & Loh (2007) analyzed the same data and both used the first-order
intensity function model

λ(s) = exp{β0 + β1 E(s) + β2G(s)},

where E(s) and G(s) are the elevation and elevation gradient at s, respectively. By maximizing (1),
Waagepetersen (2007) obtained the estimates β̂1 = 0·02 and β̂2 = 5·84. To estimate the standard errors
of β̂1 and β̂2, he used a plug-in method that assumes a parametric model for the pair correlation function.
Guan & Loh (2007) estimated the standard errors by using the thinned block bootstrap method without
requiring a parametric model for the pair correlation function.
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We applied our proposed procedures to estimate the standard errors of β̂1 and β̂2. We used 200 metre
by 100 metre sub-blocks for both the non-overlapping and overlapping methods. The non-overlapping
method yielded the estimates 0·0173 for β̂1 and 2·1659 for β̂2, and the overlapping blocks method with
k∗

n = 225 yielded the estimates 0·0164 for β̂1 and 2·1544 for β̂2. Similar results were obtained for the latter
with other k∗

n values, and therefore we do not report them here. Our estimates are very similar to those of
Guan & Loh (2007) and are slightly smaller than those of Waagepetersen (2007). On the basis of a 5%
level of significance, we thus conclude that β2 is significant but β1 is not. Biologically, this implies that
Beilschmiedia pendula prefers to live on slopes but does not favour either high or low elevations. The same
conclusion was obtained in the previous analyses. The strengths of our methods are their relative ease of
implementation, as compared to the computationally intensive thinned block bootstrap method, and their
flexibility in not assuming a parametric model for the pair correlation function, as required by the plug-in
approach.

APPENDIX 1

Computational details

For V̂n,1 given in (14), V̂n,1 = V̂ a
n,1 − V̂ b

n,1, where

V̂ a
n,1 = 1

k∗
n

kn∑
i=1

k∗
n∑

j=1

⎧⎪⎨
⎪⎩

∑
x∈D j

ln
∩N

λ(1)(x − c j + ci )

λ(x)

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

∑
x∈D j

ln
∩N

λ(1)(x − c j + ci )

λ(x)

⎫⎪⎬
⎪⎭

T

,

V̂ b
n,1 = 1

k∗
n

kn∑
i=1

k∗
n∑

j=1

∑
x∈D j

ln
∩N

λ(1)(x − c j + ci )
{
λ(1)(x − c j + ci )

}T

λ(x)2
.

For V̂n,2 given in (15), V̂n,2 = V̂ a
n,2 − V̂ b

n,2, where

V̂ a
n,2 = 1

(k∗
n )2

kn∑
i=1

⎧⎪⎨
⎪⎩

k∗
n∑

j=1

∑
x∈D j

ln
∩N

λ(1)(x − c j1 + ci )

λ(x)

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

k∗
n∑

j=1

∑
x∈D j

ln
∩N

λ(1)(x − c j1 + ci )

λ(x)

⎫⎪⎬
⎪⎭

T

,

V̂ b
n,2 = 1

(k∗
n )2

kn∑
i=1

k∗
n∑

j1=1

k∗
n∑

j2=1

∑
x∈D

j1
ln

∩D
j2
ln

∩N

λ(1)(x − c j1 + ci )
{
λ(1)(x − c j2 + ci )

}T

λ(x)2
.

Formulae for V̂n,1 and V̂n,2 in the non-overlapping case correspond to k∗
n = kn .

APPENDIX 2

Proof of Theorem 1

Direct application of Taylor series expansion shows that it is sufficient to prove the theorem for β̂n = β0.
Here we outline the proof only for the overlapping blocks estimator. The proof in the non-overlapping
case follows trivially. We therefore consider the case in which V̂n,1 and V̂n,2 are given by (14) and (15),
respectively, since they, not (12) and (13), are used in practice. First note that

E(V̂n) =
kn∑

i=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v){g(u − v) − 1}du dv

− 1

(k∗
n )2

kn∑
i=1

k∗
n∑

j1=1

k∗
n∑

j2=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v)
{

g
(
u − v + c j1 − c j2

) − 1
}

du dv. (A1)
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Therefore,

E(V̂n) − Vn = −
kn∑

i=1

∑
j � i

∫
Di

ln

∫
D j

ln

λ(1)(u)λ(1)(v){g(u − v) − 1}du dv

− 1

(k∗
n )2

kn∑
i=1

k∗
n∑

j1=1

k∗
n∑

j2=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v)
{

g(u − v + c j1 − c j2 ) − 1
}

du dv. (A2)

Equation (A1) is of order o(|Dn|), from the proof of Theorem 2 of Guan & Loh (2007). Equation (A2) is
also of order o(|Dn|), because of (16) and (17) and the fact that, for each fixed j1, the number of overlapping
blocks that are within a distance ln of D j1

ln
is of order o(k∗

n/kn).

For the variance of V̂n , some elementary algebra shows that the variance is bounded by the following
terms:

Ck2
n

(k∗
n )2

k∗
n∑

j1=1

k∗
n∑

j2=1

∫
D

j1
ln

∩D
j2
ln

∫
D

j1
ln

∩D
j2
ln

g(x1 − x2)dx1dx2,

Ck2
n

(k∗
n )2

k∗
n∑

j1=1

k∗
n∑

j2=1

∫
D

j1
ln

∩D
j2
ln

∫
D

j1
ln

∫
D

j2
ln

| Q3(x1, x2, x3) + 2Q2(x1, x2) + Q2(x2, x3) | dx1dx2dx3,

Ck2
n

(k∗
n )2

k∗
n∑

j1=1

k∗
n∑

j2=1

∫
D

j1
ln

∫
D

j1
ln

∫
D

j2
ln

∫
D

j2
ln

|Q3(x1, x2, x3) | dx1dx2dx3dx4,

Ck2
n

(k∗
n )2

k∗
n∑

j1=1

k∗
n∑

j2=1

{∫
D

j1
ln

∫
D

j2
ln

|Q2(x1, x2) | dx1dx2

}2

.

All the above terms are of order |Dn|2/kn because of (16) and (17) and the fact that, for each fixed j1, the
number of overlapping blocks that are within a distance ln of D j1

ln
is of order o(k∗

n/kn). �
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