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Associations between lycopsid and herbivorous arthropods are rare in the fossil record and equally sparse among
the three surviving lineages of Lycopodiaceae, Selaginellaceae and Isoëtaceae. However, from theMiddle–Upper
TriassicMadygen Formation of southwestern Kyrgyzstan, we describe thefirst association between an isoetalean
host, Isoetites (a quillwort), and a pattern of elliptical egg insertion scars that altered the host's live plant tissues.
This ovipositional damage, in some cases deployed in a stereotypical zigzag pattern, was most likely caused by
small damselfly-like insects from the extinct suborder Archizygoptera of the order Odonatoptera (dragonflies).
If this identification is correct, it indicates considerable behavioral stasis of dragonflies extending deep into the
Mesozoic. Our detection of lycopsid ovipositional damage adds to the list of major plant hosts from the
preangiospermous Mesozoic that were resources for host use by egg-laying dragonflies, particularly horsetails,
ferns, and seed plants that included conifers, peltasperms, corystosperms, ginkgophytes, bennettitaleans and
probably cycads.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Lycopsids are one of the oldest vascular plant lineages and were
present among the earliest terrestrial ecosystems of the Early Devonian
(Kenrick and Crane, 1997). Later in the Paleozoic, lycopsids became a
significant and diverse component in a range of wetland environments
(DiMichele and Phillips, 1985). Although their early presence is
represented by several extinct basal clades, one early derivative group
were the diverse Lepidodendrales, typically constructed as pole-like
trees with limited woody tissues, whose uppermost reaches bore
dichotomous branching limbs with scaly, needle-like leaves. The
Lepidodendraleswere especially prominent in equatorial environments,
particularly swamps and marshes from the Middle Pennsylvanian of
Euramerica to the Late Permian of Cathaysia (DiMichele and Phillips,
1985). By the end of the Permian, the Lepidodendrales were extinct,
although another lineage, the Triassic Pleuromeiales attained similar
arborescent growth forms as the earlier Lepidodendrales, but were
more limited in stature and developed a new, cormose rooting structure
(Retallack, 1975). Modern lycopsids had their origins during the

Paleozoic and early representatives coexisted with other typical wet-
land taxa from Pennsylvanian deposits (Taylor et al., 2009). Modern
lycopsids are significantly scaled down compared to their Paleozoic
forbearers, but are recognizable by their occurrence in humid environ-
ments or in arid environments with life-history traits to avoid desicca-
tion. There are three principal lineages of modern lycopsids: the
Lycopodiaceae (clubmosses, groundpines), the Isoëtaceae (quillworts),
the subject of our discovery discussed below, and the Selaginellaceae
(resurrection plants, spikemosses). All presently are herbaceous and
commonly have prostrate growth forms (Pryer et al., 2004).

1.1. The fossil and modern record of lycopsid–arthropod associations

Of the major land-plant groups, lycopsids arguably provide the least
evidence for arthropod detritivory, especially when they were promi-
nent during the late Paleozoic (Labandeira et al., 1997). In addition,
fossil (and modern) lycopsids are one of the least herbivorized of
land-plant groups when examined for the diversity and intensity of
associations with arthropods (Gerson, 1979; Labandeira, 2002a). The
earliest evidence in the fossil record for consumption of lycopods
comes from the Early Devonian Rhynie Chert of Scotland, in which
primitive lycopsid spores occur in the coprolites of early micro-
arthropods (Kevan et al., 1975; Habgood et al., 2004), with ingestion
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probably favoring detritivory over herbivory (Labandeira, 2007). From
the younger Calciferous Sandstone Series, also from Scotland but of
Early Mississippian age, Scott (1977) illustrated from a small coprolite
a spore type very reminiscent of a lycopsid. However, it was from youn-
ger, Early Pennsylvanian sediments of the Yorkshire Coal Measures that
Scott (1977) reported the lycopsid spores Lycospora, Densosporites,
cf. Crassispora, and ?Cristatisporites in numerous, small arthropodan
coprolites that could be attributable to detritivory or herbivory. During
the Middle Pennsylvanian in Euramerican wetland habitats there is
evidence that the large, ground-dwelling myriapod, Arthropleura, con-
sumed plant litter, including xylary tracheids identified as lycopsid in
origin (Rolfe and Ingham, 1967), probably representing a detritivorous
diet in habitats laden with fallen bark, tree stumps and other plant
litter (Rolfe, 1985). By contrast, an arboreal herbivorous association is
represented by a diaphanopterodean nymph, probably a species of
Prochoroptera, with unaltered, entire, lycopsid spores as gut contents
(Kukalová-Peck, 1987), possibly representing a major dietary mode
for some palaeodictyopteroid taxa. The most pervasive Paleozoic
lycopsid–arthropod association, however, is the detritivory represented
in the stems and leaf cushions (Lepidophloios, Diaphorodendron) and
cones (Lepidocarpon) of several dominant lycopsid taxa from coal-ball
bearing basins occurring in wetland environments throughout the
Pennsylvanian of eastern North America (Labandeira et al., 1997). In
all of these reports, there are no records of distinctive, frequently robust
lycopsid cuticles (Hübers et al., 2011) in arthropod guts or as coprolitic
contents. Additionally, there are no published lycopod–arthropod asso-
ciational records after the Paleozoic, a consequence largely attributable
to demise of plant communities that harbored large amounts of lycopsid
biomass, and their replacement during the Triassic bymore diminutive,
less abundant, and especially better defended taxa that have persisted
to the Holocene (Berenbaum and Siegler, 1991; Popper and Fry, 2004;
Markham et al., 2006; Holtum et al., 2007; Setyawan, 2011).

Modern examples of herbivory may provide a sense of the types of
lycopsid–arthropod associations that were present during theMesozo-
ic and Cenozoic.Many of these associations (Gerson, 1979;Mound et al.,
1994) probably evolved from arthropods whose immediate ancestral
hosts were angiosperms, but subsequently and recently colonized
lycopsids. Of the three principal lineages of extant Lycopsida, over-
whelmingly the most extensively herbivorized is the Selaginellaceae,
probably a consequence of their greater ecological and biogeographical
breadth and several-fold greater species diversity than either the
Lycopodiaceae or Isoëtaceae. For the Selaginellaceae, represented only
by Selaginella, there are several rare records of external foliage feeding
caused by lepidopteran larvae, including the Panamanian Euptychia
westwoodi and Costa Rican E. jesia and E. mollis, nymphalid butterflies
(Singer et al., 1971; DeVries, 1987); Philippine Ragadia luzonia and
Acrophtalmia artemis, also nymphalid butterflies (Fukuda, 1983); and
the larvae of a Bornean species of Callopistria, an obligately fern-
feeding nocutid moth (Holloway, 1989). Selaginella also is externally
consumed by adult Haaniella echinata, a walking stick (Phasmatodea:
Phasmatidae) (Blüthgen et al., 2006); larvae and adults of the
scorpionfly Boreus reductus (Mecoptera: Boreidae) (Penny, 1977); and
the small wasp Encarsia sueloderi (Hymenoptera: Aphelinidae), a para-
sitoid of the similarly Selaginella-feeding, piercing-and-suckingwhitefly
Aleurotulus pteridophytae (Hemiptera: Aleyrodidae) (Mound et al.,
1994) perhaps a case of a herbivore parasitoid later colonizing the
plant host of its former larval host. Other piercing-and-sucking
insects occurring on Selaginella are the scale insect Phenacococcus solani
(Hemiptera: Pseudococcidae) (McKenzie, 1967); and the thrips,
Echinothrips selaginellae (Thysanoptera: Thripidae) (Mound et al.,
1994). Last, there are two unidentified gallers that occur on Selaginella,
a gall midge from Indonesia (Diptera: Cecidomyiidae) (Strasburger,
1873; Docters van Leeuwen, 1938); and a gall wasp from India
(Hymenoptera: Cynipidae) (Bera et al., 1994; De and Bera, 1995).
Barton (2005) provides a global listing of arthropod herbivores on
Selaginella.

The Lycopodiaceae and Isoëtaceae are more rarely attacked by
insects. For the Lycopodiaceae, Lycopodium is attacked in Hawai'i by
the pith-boring larvae of Scoparia lycopodiae, a member of the lepidop-
teran Pyralidae (pyralid moths) (Swezey, 1910); and Huperzia is con-
sumed in Japan by the leaf-mining larvae of Temnosira czurhini, a
member of the dipteran Pallopteridae (flutter-wing flies) (Kato,
2002). The Isoëtaceae occur in wet environments, and their spores
may be dispersed by annelids (Duthie, 1929) and insects. The minimal-
ist leaf tissues of Isoëtes are consumed by generalist external herbivores
such as the limnephilid Limnephilus of the Trichoptera (Cronin et al.,
1998). And lastly, Lieftinck (1949) reported exuviae of the coenagrionid
dragonfly Ischnura isoetes, attached to Isoëtes near the water's surface in
peat-bog swamps of north-central Indonesian New Guinea.

1.2. A brief fossil history of oviposition (Table 1)

The earliest record of ovipositional damage on fossil plants is from
the Late Pennsylvanian sphenopsid Calamites cistii (Béthoux et al.,
2004). During the Pennsylvanian and Permian, and until the expan-
sion of sphenopsids during the early Mesozoic, conifer stems and
especially seed-fern foliage were the preferred plant substrates for
the Odonatoptera, Palaeodictyopteroidea, Orthoptera, and perhaps
basal holometabolous clades with prominent, external ovipositors
such as the aptly named sawflies of the Hymenoptera (Labandeira,
2006a; Vasilenko and Rasnitsyn, 2007). These mostly Paleozoic clades
bore laterally compressed ovipositors, often ridged and with marginal
serrations, that were modified for slicing into plant tissues in laying
eggs (Sharov, 1968; Carpenter, 1971; Kukalová-Peck, 1972; Naito
and Huang, 1988; Labandeira, 2006a; Prevec et al., 2009). Throughout
the Triassic and Jurassic, a variety of pteridophytes and seed plants of
aquatic and wetland habitats were used as substrates principally by
the Odonatoptera, as the Palaeodictyopteroidea and other Paleozoic
ovipositing clades became extinct around the Permian–Triassic
boundary. The major ovipositional plant substrates during the earlier
Mesozoic were sphenopsids (Roselt, 1954; Kräusel, 1958; Weber,
1968; Geyer and Kelber, 1987; Kelber, 1988; Labandeira, 2006a), prob-
able cycads (Kelber, 1988; Grauvogel-Stamm and Kelber, 1996),
voltzialean conifers (Labandeira, 2006a; Gnaedinger et al., 2007), prob-
able pinaceous conifers (Vasilenko, 2005), peltasperms (Vassilenko,
2011), corystosperms (Labandeira, 2008, personal observation),
ginkgophytes (van Konijnenburg-van Cittert and Schmeißner, 1999;
Vasilenko, 2005), and bennettitaleans (Pott et al., 2008). From the
Early Cretaceous until the Miocene almost all plant hosts with oviposi-
tional damage were angiosperms (Table 1), although numerous
nonangiospermous substrates are used for oviposition today such as
conifers (Codella and Raffa, 2002) and cycads (Donaldson, 2008).

Our extensive review of the literature reveals no evidence of ovipo-
sition on fossil lycopsids. Moreover, there are no fossil records for any
type of herbivory on lycopsids; the only evidence of arthropod damage
to lycopsids corresponds to mite detritivory from Pennsylvanian age
coal-swamp forests (Labandeira et al., 1997). In this paper we
report the first case of oviposition on lycopsids. Ovipositional scars of
endophytically inserted eggs were found on the leaf surfaces of the
herbaceous lycopsids Isoetites madygensis and I. sixteliae from the
Middle–Late Triassic Madygen Formation of Kyrgyzstan. Based on com-
parisons of ovipositional scar features of fossil and recent dragonflies, it
is likely that the eggs were laid by a member of the Archizygoptera, an
extinct suborder of dragonflies (order Odonatoptera) that included
major Paleozoic taxa (Nel et al., 2012). This interpretation is supported
by the occurrence of several fossil forms of the Odonatoptera–
Archizygoptera (Table 2) in the Madygen fossil biota. This unique
discovery represents new information for understanding the plant–
insect associational complexity of this exceptional Triassic ecosystem,
recognized as one of themost spectacularMesozoic Lagerstättenworld-
wide. This ecosystemmay eventually represent the greatest abundance
and diversity of animal and plant taxa and their associations for any
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place during the Middle–Late Triassic interval (e.g., Sharov, 1970;
Dobruskina, 1995; Voigt et al., 2006; Shcherbakov, 2008; Sues and
Fraser, 2010; Moisan et al., 2011). However, the early Late Triassic
Molteno Formation currently has the greatest documented plant and
associational diversity of any documented approximately coeval
Lagerstätte, excepting insects (Anderson et al., 1999; Anderson and
Anderson, 2003; Labandeira, 2006a, 2006b).

2. Geological setting, material and methods

The specimenswere collected from theMadygen fossil site, situated
about 50 km to the west of Batken, in the northern foothills of the

Turkestan Mountains in southwestern Kyrgyzstan, Central Asia
(Fig. 1). The Madygen lake system represents an upland, intramontane
basin (Voigt et al., 2006), and is one of the very few truly continental
Triassic deposits in Central Asia. The Madygen Formation consists of a
ca. 580 m thick succession of complexly interbedded conglomerates,
sandstones and siltstones representing deposits of alluvial fans, alluvial
plains and freshwater lakes. The specimens of Isoetites madygensis and
I. sixteliae that exhibit evidence of oviposition come from lacustrine
deposits in the lowermost part of the Brown-Grey Member (T5), de-
scribed by Dobruskina (1995). The specimens are housed in the paleon-
tological collection of the Geologisches Institut, Technische Universität
Bergakademie Freiberg, Germany (FG).

Table 1
A compilation of evidence for oviposition in the fossil record.

Host plants Locality/occurrence Age References

Angiosperm leaves Ribesalbes, Castellón, Spain Early Miocene Peñalver and Delclòs (2004)
Angiosperm leaves Randecker Maar/Grube Messel, Germany Early Miocene/Middle Miocene Hellmund and Hellmund (1996a,b)
Angiosperm leaves Randecker Maar/Berzdorf/Bad

Salzhausen, Germany
Early Miocene/Middle Miocene Hellmund and Hellmund (2002c)

Angiosperm leaves Voselberg, Bad Salzhausen, Germany Middle Miocene Goeppert (1841); Hellmund and Hellmund (2002a)
Cedrela (angiosperm) Palo Pintado and San José formations,

Argentina
Middle and Upper Miocene Horn et al. (2011)

Angiosperm leaves Hammerunterwiesenthal, Germany Early Oligocene Hellmund and Hellmund (1998)
Angiosperm leaf Seifhennersdorf, Germany Middle Oligocene Hellmund and Hellmund (1996b)
Angiosperm leaves Rott, Siebengebirge, Germany Late Oligocene Hellmund and Hellmund (1991, 1993)
Angiosperm leaves Rott, Siebengebirge, Germany Late Oligocene Wappler (2010); Petrulevičius et al. (2011)
Angiosperm leaf Sourdough, Wyoming, USA Early Eocene Wilf (2008)
Angiosperm leaves Laguna del Hunco/Río Pichileufú,

Argentina
Early Eocene/Middle Eocene Sarzetti et al. (2009)

Angiosperm leaf Grube Messel, Germany Middle Eocene Schaarschmidt (1988)
Alnus Republic, Washington, USA Middle Eocene Lewis and Carroll (1991); Lewis (1992)
Angiosperm leaf Benton County, Mississippi, USA Middle Eocene Johnston (1993)
Angiosperm leaves and Ginkgo MacAbee, British Columbia, Canada Middle Eocene Labandeira (2002b)
Angiosperm leaf Mücheln (Geiseltal), Germany Middle Eocene Hellmund and Hellmund (2002b)
Angiosperm leaves Bohemia, Czech Republic Late Cretaceous Hellmund and Hellmund (1996a)
Quereuxia (aquatic angiosperm) Udurchukan locality, Amur Region,

Russia
Late Cretaceous Vasilenko (2008)

Phyllopteroides laevis (Osmundaceae) Chunakhal, Rajmahal Basin, India Early Cretaceous Banerji (2004)
Acaciaephyllum Makhtesh Ramon, Negev, Israel Early Cretaceous (Albian) Krassilov et al. (2007, 2008); Krassilov and Shuklina

(2008)
Pityophyllum and Ginkgoites Chernovskie Kopi, Chita Region, Russia Late Jurassic–Early Cretaceous Vasilenko (2005)
Equisetites foveolatus Sassendorf, Germany Liassic (Early Jurassic) Kräusel (1958)
Schmeissneria microstachys and
Podozamites distans

Franconia, Germany Early Jurassic van Konijnenburg-van Cittert and Schmeißner (1999)

Neocalamites exornatus Bayreuth, Germany Rhaetian–Liassic Weber (1968)
Equisetites platyodon Neuewelt, Switzerland late Middle Triassic (Ladinian),

Lettenkohle
Heer (1877)

Equisetites foveolatus Bedheim, Germany Lower Keuper (Ladinian) Roselt (1954); Kelber (1988)
Equisetites arenaceus Franconia, Germany Lower Keuper (Ladinian) Kelber (1988); Geyer and Kelber (1987); Kelber and

Geyer (1989);
Grauvogel-Stamm and Kelber (1996); Kelber and
Hansch (1996)

Taeniopteris angustifolia Franconia, Germany/Alsace, France Lower Keuper (Ladinian)/
Middle Lettenkohle

Kelber (1988); Grauvogel-Stamm and Kelber (1996)

Nilssoniopteris angustior and N. haidingeri Lunz, Austria Carnian Pott et al. (2008)
Podozamites distans Pålsjö, Scania, Sweden Late Triassic (Rhaetian) Nathorst (1876, 1878)
Heidiphyllum elongatum La Ternera Formation, Chile Late Triassic Gnaedinger et al. (2007)
Equisetum nuwejaareensis and
Heidiphyllum elongatum

Molteno Formation, Karoo Basin, South
Africa

Late Triassic Labandeira (2006a)

Horsetail stems (?Equisetites) Chinle Fromation, Arizona, USA Late Triassic Ash (2005)
Dictyophyllum bremerense Southeast Queensland, Australia Middle–Late Triassic Webb (1982)
Glossopteris bucklandensis/Taeniopteris
parvilocus

Stony Creek/Wivenhoe Hill, Australia Late Permian/Middle Triassic McLoughlin (2011)

Phyllotheca Belmont, New South Wales, Australia Late Permian Beattie (2007)
Glossopterid leaves KwaZulu-Natal, South Africa Late Permian Prevec et al. (2009)
Glossopteris leaves Wapadsberg Pass, South Africa Late Permian Prevec et al. (2010)
Pursongia (Peltaspermales) Isady, Vologda Region, Russia Late Permian Vassilenko (2011)
Glossopteris cf. ampla La Golondrina, Santa Cruz, Argentina Middle–Late Permian Cariglino and Gutiérrez (2011)
Leaves of Glossopteris and Noeggerathiopsis Raniganj Coalfield, India Early–Middle Permian Srivastava (1987); Srivastava and Agnihotri (2011);

Shah (2004)
Gangamopteris obovata Morro do Papaléo Mine, Brazil Early Permian Adami-Rodrigues et al. (2004); De Souza-Pinheiro et

al. (2012)
Sphenopsid stems Sachsen, Germany Pennsylvanian Geinitz (1855)
Calamites cistii Graissessac Basin, Hérault, France Late Pennsylvanian Béthoux et al. (2004)
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3. Results

The Ladinian–Carnian Madygen Formation contains a diverse and
rich assemblage of fossil lycopsids, including endemic subarborescent
and herbaceous forms (Moisan, 2012). Of this assemblage, two spec-
imens belong to the herbaceous lycopsid taxa Isoetites madygensis and

Isoetites sixteliae (Isoëtaceae), and show unequivocal evidence of
ovipositional scars on their leaf surfaces. The leaves of both Isoetites
host species are very elongate and lanceolate; have a midvein; and
numerous intervening, parallel, miniscule surface striae. The species
are distinguishable by the type of leaf margin, which is serrated in
I. sixteliae and entire in I. madygensis.

3.1. Ovipositional scars on Isoetites madygensis (Fig. 2A–E)

The specimen FG 596/X/1009 represents a leaf fragment, 5 cm
long by 6 mm wide, of the lycopsid I. madygensis, which exhibits
thirty-five ovipositional scars on the leaf surface (Fig. 2A). The ovipo-
sitional scars are elliptical to fusiform (spindle-shaped), longitudinally
elongated, and faithfully oriented parallel to but avoiding the midvein
(Fig. 2B–E). The ovipositional scars are between 1.0 and 1.2 mm
long and 0.35–0.45 mmwide, and are arranged in longitudinal parallel
rows (Fig. 2A, D). The scars are separated longitudinally by 0.6–1.2 mm
and horizontally by 0.3–0.5 mm. Although the ovipositional scars are
mostly solitary, a few adjacent scars overlap slightly on their ends
(Fig. 2C–E).

3.2. Ovipositional scars on Isoetites sixteliae (Fig. 3A–F)

A leaf fragment of I. sixteliae (specimen FG 596/X/675), 3.7 cm
long by 5 mm wide, contains approximately 13–14 ovipositional
scars (Fig. 3A). The ovipositional scars are between 0.9 and 1.4 mm
long by 0.4–0.8 mm wide, longitudinally elliptical to slightly fusiform
(Fig. 3B–F). The pattern of ovipositional scars is almost exclusively
positioned in a solitary manner, although in some portions of the
leaf surface they are more or less aggregated (Fig. 3B). However, it
is not possible to distinguish with clarity whether any ovipositional
scars are partially overlapping as in I. madygensis.

4. Discussion

Our discovery of dragonfly-induced ovipositional damage on
Isoetites at Madygen can be contextualized by four considerations that
provide a better understanding of our find. First, what is the relation-
ship, if any, of the Isoetites damage to other types of ovipositional

Table 2
Taxonomic diversity and wing size of the fossil dragonflies from the Madygen Forma-
tion (after Pritykina, 1981; Nel et al., 2001, 2002, 2005). Taxonomy is given after the
original descriptions of species. Those species representatives of which characterized
by small wing length (up to 3 cm) are typed in bold.

Species Family Wing length
(in cm)

Triadotypus sogdianus Pritykina, 1981 Triadotypidae >8.2
Triadophlebia madygenica Pritykina, 1981 Triadophlebiidae 7.4
Triadophlebia distincta Pritykina, 1981 Triadophlebiidae >4.5
Triadophlebia minuta Pritykina, 1981 Triadophlebiidae >2.6
Triadophlebia magna Pritykina, 1981 Triadophlebiidae c. 12–13
Triadophlebia honesta Pritykina, 1981 Triadophlebiidae >6.5
Triadophlebia modica Pritykina, 1981 Triadophlebiidae >2.7
Neritophlebia elegans Pritykina, 1981 Triadophlebiidae 7.2
Neritophlebia vicina Pritykina, 1981 Triadophlebiidae >7.1
Neritophlebia longa Pritykina, 1981 Triadophlebiidae 12–12.5
Cladophlebia parvula Pritykina, 1981 Triadophlebiidae 2.6
Cladophlebia brevis Pritykina, 1981 Triadophlebiidae 2.2
Paurophlebia lepida Pritykina, 1981 Triadophlebiidae 2.6–2.9
Paurophlebia angusta Pritykina, 1981 Triadophlebiidae 2.6–2.8
Nonymophlebia venosa Pritykina, 1981 Triadophlebiidae 3.9–4.3
Mitophlebia enormis Pritykina, 1981 Mitophlebiidae 4.3
Zygophlebia ramosa Pritykina, 1981 Zygophlebiidae 3.9–4.2
Zygophlebiella curta Pritykina, 1981 Zygophlebiidae >4.0
Myxophlebia mixta Pritykina, 1981 Zygophlebiidae 5.7
Cyrtophlebia sinuosa Pritykina, 1981 Zygophlebiidae >2.3
Xamenophlebia ornata Pritykina, 1981 Xamenophlebiidae >3.7
Kennedya carpenteri Pritykina, 1981 Kennedyidae 2.9–3.1
Kennedya gracilis Pritykina, 1981 Kennedyidae 2.4
Terskeja paula Pritykina, 1981 Protomyrmeleontidae 1.2–1.4
Terskeja pumilio Pritykina, 1981 Protomyrmeleontidae 1.2
Terskeja tenuis Pritykina, 1981 Protomyrmeleontidae 1.9
Ferganagrion kirghiziensis Nel et al. 2005 Protomyrmeleontidae >1.8
Batkenia pusilla Pritykina, 1981 Batkeniidae >0.8–1.5
Triassolestodes asiaticus Pritykina, 1981 Triassolestidae 3
Triassoneura primitiva Pritykina, 1981 ?Triassolestidae >1.5

Fig. 1. Map showing exposures of the Madygen Formation in southwestern Kyrgyzstan and neighboring countries in Central Asia. The polylobate areas in white represent geopolitical
enclaves within Kyrgyzstan:TJ: Tajikistan; UZ: Uzbekistan.

9P. Moisan et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 344–345 (2012) 6–15



Author's personal copy

associations in the fossil record? Second, how does the Isoetites oviposi-
tional damage comparewith analogousmodern damage? Third, can the
fossil record of Odonata at Madygen or modern related associations
provide any clues to the identity of the culprit? And fourth, what is
the broader importance of the Isoetites and other insect damage at
Madygen to the evolution of plant host and plant–arthropod associa-
tional diversity in deep time?

4.1. Ovipositional and other damage in the fossil record attributed to
Odonata

Fossil records of insect oviposition from the Late Pennsylvanian to
early Miocene are relatively abundant (Table 1). Evidence for the earli-
est occurrence of oviposition during theMiddle Pennsylvanian has been
found in sphenopsids (Béthoux et al., 2004); later Paleozoic associations
involve principally seed plants such as the glossopterids Glossopteris

and Gangamopteris in Gondwana (Srivastava, 1987; Adami-Rodrigues
et al., 2004; Prevec et al., 2009, 2010; Cariglino and Gutiérrez, 2011;
Srivastava and Agnihotri, 2011; De Souza-Pinheiro et al., 2012). In
these cases, ovipositional scars are elongated and oval in shape, often
with an encircling rim of raised callus tissue, and typically oriented paral-
lel to the long axis of the stem in sphenopsids or midrib in glossopterid
leaves. Beattie (2007) described small, circular and clusteredovipositional
scars on sphenopsid vegetation. One exception to this pattern is oviposi-
tional scars on a leaf of the peltaspermalean seed fern, Pursongia, as the
ovipositional scars are deployed in transverse rows (Vassilenko, 2011),
an arrangement typically not seen until much later in the fossil record
(Sarzetti et al., 2009). For the Mesozoic, ovipositional damage has been
recorded from numerous Mesozoic localities worldwide, demonstrating
that almost all of the dominant plant lineages were used presumably by
odonatans as a substrate for oviposition, including sphenopsids, ferns, co-
nifers, bennettitaleans, ginkgoaleans and angiosperms (Table 1). Pott et

Fig. 2. Ovipositional scars on an Isoetites madygensis leaf from the Middle–Late Triassic Madygen Formation, Kyrgyzstan. Specimen FG 596/X/1009. A. Portion of the leaf showing an
endophytic ovipositional scar arranged parallel to the midvein. Scale bar=5 mm. Square brackets indicate the regularly patterned scars, which are redrawn in Fig. 4. B. Detail of
solitary and elliptical scars on the leaf surface. Scale bar=500 μm. C–E. Details of endophytic elliptical to fusiform scars, including forms that are solitary or overlapping at their
ends. Scale bars=1 mm.
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al. (2008) described from the Carnian of Austria two types of oviposition
in foliage of the bennettitalean Nilssoniopteris, the first consisting of oval
scars arranged in circles, and the second comprised of lenticular scars ori-
ented parallel to the lateral veins and perpendicular to the rachis. The ar-
cuate ovipositional patterns found on bennettitalean foliage are rare for
the Mesozoic, and principally do not reappear until the Late Cretaceous
in aquatic angiosperms (Vasilenko, 2008). The most common oviposi-
tional pattern, at least during the early Mesozoic, corresponds to ellipti-
cal and oval scars arranged in linear rows along longitudinal axes of
leaves. In this regard there is remarkable similarity of the ovipositional
scars described in Equisetites arenaceus from Ladinian localities in Cen-
tral Europe (Kelber, 1988; Grauvogel-Stamm and Kelber, 1996; Kelber
andHansch, 1996)with those documented herein for both Isoetites spe-
cies. This similarity extends to the arrangement of the scars in linear,
longitudinal rows along the leaf edge, scar shape, the end-to-end over-
lap of adjacent scars. Grauvogel-Stamm and Kelber (1996) attributed
these scars to endophytically inserted eggs by the Odonatoptera. Ac-
cordingly, modern species of Odonata have two ovipositional strategies
to lay eggs (Corbet, 1999). In exophytic oviposition, the eggs are
completely visible and normally clustered and on the surface, while in
endophytic oviposition the eggs are solitary (Vasilenko, 2005), normal-
ly long and cylindrical in shape, and they are inserted directly into plant
tissuewhere they are completely or partially hidden. It is the latter type
of oviposition that typifies the Madygen ovipositional damage on
lycopsid tissues.

4.2. Ovipositional behavior in recent Odonata

Recent Odonata are subdivided into three groups, the Zygoptera
(damselflies), Anisoptera (dragonflies) and Anisozygoptera. Odonatan
naiads occupy a wide spectrum of aquatic habitats ranging from fast
flowing, slowly moving or standing fresh water, to bogs and brackish
water (Corbet, 1980). Most zygopteran naiads have affinities for plants
and occur among submerged plants in the water column. However,
certain forest-dwelling zygopterans develop in phytotelmata such as
water-containing leaf bases, bromeliads and tree holes (Machado,
1977; Hadrys et al., 2005). By contrast, anisopteran naiads inhabit
diverse habitats, frequently living epibenthically among silt and plant
debris at the bottom of ponds and lakes or as burrowers into bottom

sediments. The degree of plant association of anisopteran naiads is
variable across naiad instars, a pattern that occurs in the Aeshnidae.
Some anisopteran naiads, such as the Petaluridae and some Aeshnidae,
are semiterrestrial, inhabiting burrows or leaf litter.

The Odonata fundamentally have two types of egg-laying strategies
(Corbet, 1980). In endophytic oviposition, the females penetrate a live
plant substrate in an iterative manner, using a well-developed, slicing
ovipositor and sequentially inserting an egg into each laceration. The
eggs are inserted into living or dead plant tissues, and above or below
water level. This strategy occurs in the Zygoptera, Anisozygoptera and
the anisopteran Aeshnidae. Alternatively, themajority of other Odonata
lay eggs exophytically, upon or above thewater surface, and on a variety
of substrates, including the surfaces of live and dead aquatic plants,
plant debris, rocks or the ground. Females with exophytic behavior
lack a well-developed ovipositor and produce ovoid to rounded eggs
whereas those with an endophytic behavior have prominent, slicing
ovipositors and bear eggs of elliptical-elongate shapes.

Recent Odonata lay their eggs on pleustophytes (free-floating
plants), hydrophytes (adapted to subaquatic environments), and ter-
restrial plants nearwater bodies. Several Odonata are generalists, laying
their eggs on floating plants as well as other plants (Matushkina and
Gorb, 2002a). For example, the generalist zygopteran Lestes lays eggs
in narrow, vertical stems,flower stalks, and hydrophyte leaves, typically
horsetails (Equisetum) and a wide variety of aquatic monocots, includ-
ing Carex, Butomus, Glyceria, Juncus, Phalaris, Scirpus and Typha
(Matushkina and Gorb, 2002a). Conversely, other odonatans show a
clear ovipositional host-plant preference (Bick and Bick, 1970;
Martens, 1992, 1993, 1994; Wildermuth, 1993; Grunert, 1995). For ex-
ample, Schoor (1990) reported that Aeshna viridis oviposits exclusively
on the floating plant Stratiotes alloides (Hydrocharitaceae) and that
Coenagrion mercuriale almost exclusively oviposits on Siella erecta
(Apiaceae). Evidence indicates that ovipositional preference is deter-
mined by visual appearance, location, architecture, and chemical signa-
tures of the host plants (Martens, 1992; Grunert, 1995;Matushkina and
Gorb, 2002b).

Odonatan eggs are inserted in host tissues leaving characteristic
rows that form spirals, concentric circles, zigzags or straight lines. In
some damselflies, the pattern of oviposition is strongly dependent on
substrate features, and consequently variability is present, exemplified

Fig. 3. Ovipositional scars on an Isoetites sixteliae leaf from the Middle–Late Triassic Madygen Formation, Kyrgyzstan. Specimen FG 596/X/675. A. Portion of the leaf showing the
position of presumed underlying endophytic eggs (arrows), arranged parallel to the midvein. Scale bar=2.5 mm. B–C. Several oval to fusiform ovipositional scars vary in size, prob-
ably due to differential preservation of the material. Scale bar=1 mm. D–F. Details of endophytic ovipositional scars on the leaf surface. Scale bars=500 μm.
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by the calopterygid Phaon iridipennis (Miller and Miller, 1988). Other
species show a distinctive ovipositional pattern with minimal variabili-
ty (Hellmund and Hellmund, 1991; Matushkina and Gorb, 2000).
Inserted odonatan eggs resulting in rectilinear patterns of scars are con-
sidered stereotypical for the zygopteran genera Lestes and Chalcolestes
(Lestidae) (Matushkina and Gorb, 2000, 2002b), consisting of a simple,
linear row of ovipositional lacerations, arranged in parallel fashion and
separated from each other by c. 2.4 mm gap (Matushkina, 2007). A
complex linear pattern was described for Lestes sponsa and Chalcolestes
parvidens, which consists of a row of 2–8 ovipositional scars per set and
separated from each other by a 1.1–1.4 mm wide space (Matushkina,
2007). Representatives of several other zygopteran clades, such as the
Calopterygidae, Platycnemididae, Coenagrionidae, the lestid genus
Sympecma, the anisozygopteran Epiophlebia and some anisopteran Aes-
hnidae, insert their eggs in distinctive zigzag-like sets (Hellmund and
Hellmund, 2002a; Matushkina, 2007). Usually, the scars in zigzag pat-
tern are arranged in linear rows and consist of several egg rows,
which are slightly crescentic, semicircular, or parallel (a broad zigzag
pattern). The pattern of some sets is formed by a single scar in the
angle of the zigzag, with the set appearing to contain two parallel
lines (the double row) of scars. Such a positioning of egg insertions is
described as a simple zigzag-pattern and was described for Calopteryx
splendens (Lindeboom, 1996), Platycnemis latipes (Heymer, 1966) and
an unidentified aeshnid species (Matushkina, 2007). This pattern also
can be discerned in Late Jurassic to Early Cretaceous Paleoovoidus rectus
damage on a leaf of the conifer Pityophyllum sp. (Vasilenko, 2005) and
herein as scars on the lycopsid Isoetites madygensis. In recent Odonata,
distances between adjacent scars in zigzag clutches vary from 0.6 to
1.1 mm (Matushkina, 2007), which is identical to those of the fossil
oviposition scars described herein for I. madygensis and I. sixteliae.
The length of recent odonatan endophytic eggs varies from 0.8 mm
(in zygopteran Coenagrionidae), to 1.9 mm(in anisopteran Aeshnidae).
However, in some of themost gracile representatives of the zygopteran
family Protoneuridae, eggs are likely even smaller. The fossil oviposition
scars described here in herbaceous lycopsids are almost identical in
length and shape to the endophytic eggs of some recent dragonflies.
This assessment of size and shape takes into account that distinct,
gall-like reaction rims, often as bulbous callus tissue, can form around

an inserted egg and scar, affecting the ovipositional scar size through
enlargement and, for fossils, suggesting that some ovipositional scars
could have been created by relatively small dragonflies.

4.3. Odonata ovipositional damage at Madygen and circumscription of
the culprit

Since the first expedition investigating the Triassic Madygen Forma-
tion, more than 16,000 insect specimens have been collected, and
assigned to twenty orders, approximately one hundred families, and
in excess of five hundred species. The Triassic Madygen localities repre-
sent the most diverse and rich insect fauna during the Mesozoic
(see Shcherbakov, 2008). Aquatic and amphibiotic insects such as the
Odonata were not as dominant in the Madygen biota as compared
to terrestrial Coleoptera, Blattodea, and homopterous Hemiptera
(Shcherbakov, 2008). Among entirely amphibiotic orders, the fossil
record of Odonata was the most diverse and abundant, represented by
well-preserved isolated wings of about one hundred specimens distrib-
uted across ten families and thirty species, with many endemic forms
(Table 2) (Pritykina, 1981; Nel et al., 2001, 2002, 2005; Shcherbakov,
2008, but see Nel et al., 1999). The fossil record of Odonata from the
Madygen Formation consists primarily of well-preserved wings of
protozygopteran insects (Pritykina, 1981; Nel et al., 2001, 2002,
2005; Shcherbakov, 2008). Based on the most recent taxonomic re-
evaluation of the order Odonatoptera proposed byNel et al. (2012), fos-
sil dragonflies from Madygen are part of the extinct suborder
Archizygoptera Handlirsch 1908. They were mainly represented by
gracile, damselfly-like insects with petiolate wings (Nel et al., 2012),
which are associated with relatively small egg sizes, such as the fossils
described here. Moreover, some ovipositional scars on the leaves of
Isoetites madygensis (Fig. 2A) and I. sixteliae (Fig. 3A, B) exhibit a typical,
simple zigzag-pattern indicating the striking antiquity of this oviposi-
tional behavior in dragonflies (Fig. 4). Nevertheless, little is known
about ovipositor structure in the Archizygoptera, indicating that a
more complete and better preserved body-fossil record of this clade
would provide needed data to better associated insect damage patterns
with a known culprit lineage.

Fig. 4. Photographs (left) and related diagrammatic drawings (right) of the fossil ovipositional scars on an Isoetites madygensis leaf (A, B) and of regularly arranged eggs in a clutch of
recent Odonatoptera (C) representing an unidentified member of the Anisoptera–Aeshnidae (after Matushkina, 2007).
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4.4. The broader significance of Madygen plant–arthropod associations

Based on mostly preliminary data from the past 25 years from the
Middle Permian to Late Triassic interval of the Karoo Basin in South
Africa (Labandeira, 2006a; Anderson et al., 2007; Prevec et al.,
2009), the Late Triassic of Arizona (Walker, 1938; Ash, 1997, 1999),
and the Late Permian to Late Triassic of Western Europe (Kelber,
1988; Kelber and Geyer, 1989; Goth and Wilde, 1992; Grauvogel-
Stamm and Kelber, 1996), there appears to be a two-phased recovery
of ecosystems after the ecological crises at the end of the Permian.
Based mostly on early floral and plant–arthropod associational data
from the Karoo Basin, there initially was a modest diversification of
an almost entirely different suite of major plant lineages following
the end-Permian aftermath (Labandeira, 2006a; Prevec et al., 2009,
2010), including isoetalean lycopods. This initial lag of diversifying
major plant lineages probably commenced in the Early Triassic, accel-
erated during the Middle Triassic, and was completed by or at the
beginning of the Late Triassic (Anderson et al., 1999; Anderson and
Anderson, 2003). Importantly, this primary lag of plant–host lineages
was followed by a second, longer lag of more intense herbivory that
modestly colonized newly emerging plant lineages during the Middle
Triassic, associations which increased in intensity, diversity and spe-
cialization during the early Late Triassic (Labandeira, 2006a, 2006b;
personal observation). The unique dragonfly-Isoetites ovipositional
association and co-preservation of the body fossils of these groups
at Madygen (Shcherbakov, 2008) are examples of this increasing
level of associations and constitute the beginning of the third phase
of plant–arthropod associations in the fossil record (Labandeira,
2006b).

5. Conclusions

From this documentation of dragonfly oviposition on two species of
the lycopsid Isoetites from the late Middle to Upper Triassic Madygen
deposit of Kyrgyzstan, and an assessment of the fossil and modern
lycopsid–arthropod associations, we present five conclusions.

1. Evidence from fossil and modern plant–insect associations indicate
that lycopsids have been the least herbivorized major vascular
plant group in time and space.

2. A distinctive oviposition pattern has been identified on two lycopsid
plant hosts, the quillworts Isoetites madygensis and Isoetites sixteliae
(Isoëtaceae) from the Middle–Late Triassic of Madygen, in south-
western Kyrgyzstan.

3. Based on stereotypical zigzag oviposition patterns made by several
extant dragonfly lineages that strongly resemble the Madygen dam-
age pattern and the presence of gracile damselfly-like insect fossils at
Madygen, we conclude that the culprit likelywas amember of any of
the ten families of the Archizygoptera occurring at Madygen.

4. Oviposition on Mesozoic lycopsid taxa is not exceptional, as almost
every major vascular plant group – lycopods, horsetails, ferns
and seed plants – was a target for ovipositing insects, particularly
dragonflies.

5. At least some ovipositional behavior is complex and particularly
conservative, indicating that modern, stereotypical ovipositional
patterns may extend minimally to the early Mesozoic.
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