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Abstract Transect count data form the basis of many
butterfly and other insect monitoring programs worldwide.

A clear understanding of the limitations of such datasets,

including the potential for biases in the statistical methods
used to analyze them, is therefore crucial. The classical

Zonneveld model (CZ) can extract estimates of a suite of

demographic parameters from transect count datasets, and
has also been used in theoretical analyses of protandry and

reproductive asynchrony. The CZ relies on strong

assumptions about the emergence and death processes
underlying observed transect count datasets. Though rea-

sonable as a starting place, a growing body of empirical

evidence suggests these assumptions will, in many cases,
not hold. Here, I explore how violations of these assump-

tions bias CZ-based estimates of two key population

parameters: total population size and mean individual life-
span. To do this, I generalize the Zonneveld model by

relaxing the symmetrical emergence distribution and con-

stant death rate assumptions such that the generalized
models contain the CZ as a special case. Using the gen-

eralized models as data generating processes, I then show
that the CZ is able to closely mimic the shape of the

abundance time course produced by either variant of the

generalized model under a wide range of conditions, but
produces highly biased estimates of population size and

mean lifespan in doing so. My analysis therefore

demonstrates both that the CZ is not robust to violations of
its emergence and death assumptions, and that a good

observed fit to transect count data does not mean these

assumptions are satisfied.

Keywords Butterflies ! Insect count analyzer !
Monitoring ! Phenology ! Transect count data ! Zonneveld
model

Introduction

Butterflies are one of the most intensively studied taxa

world-wide and are valuable indicators of biodiversity (Sisk

et al. 1994), ecosystem health (Bouyer et al. 2007), and
impacts of climate change (Parmesan and Yohe 2003;

Parmesan 2007). As a result, efforts to systematically

monitor butterfly populations have increased dramatically
in recent decades (Thomas 2005; van Swaay et al. 2008).

The bulk of these monitoring programs are based on tran-

sect counts of adult butterflies repeated at intervals
throughout the flight season (Pollard 1977; Thomas 2005).

The accumulating stockpile of transect count datasets rep-
resents a tremendous resource for understanding butterfly

phenology (Roy and Sparks 2000; Parmesan 2007) and for

detecting trends in population status over time(Roy et al.
2001; Warren et al. 2001; Crone et al. 2007). Most statis-

tical methods for analyzing these datasets have focused on

estimating an index of population abundance (Pollard 1977;
Pollard and Yates 1993; Rothery and Roy 2001), but the

sheer volume of such datasets warrants a deeper exploration

of the potential for transect count data to reveal finer details
about butterfly demography and phenology.

Building on earlier work by Manly (1974), Zonneveld

(1991) modeled the adult butterfly abundance time series
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produced by transect count surveys as a function of the

emergence of new adults into the population and loss due
to death. He coupled this basic emergence and death model

with a simple Poisson sampling error assumption to yield a

maximum likelihood approach to estimating the size, death
rate, and emergence parameters of a focal population from

observed transect count data. A number of studies have

explored the statistical behavior of the Zonneveld model
(Mattoni et al. 2001; Gross et al. 2007; Haddad et al.

2008), and the freely available INsect Count Analyzer
(INCA, http://www.urbanwildlands.org/INCA/) makes the

method accessible to a broad audience. Zonneveld’s

method is appealing because it potentially allows a suite of
biologically meaningful demographic parameters, includ-

ing an index of population size, to be estimated from

simple transect count data. Elaborations of this basic model
have also been used in theoretical studies of protandry and

reproductive asynchrony (Zonneveld and Metz 1991;

Zonneveld 1992, 1996a, b; Calabrese and Fagan 2004;
Calabrese et al. 2008; Fagan et al. 2010).

Zonneveld’s approach necessarily relies on strong

assumptions about the functional forms of the emergence
and death processes. His assumptions of logistically dis-

tributed (symmetrical) emergence events and exponentially

distributed lifespans (constant death rate) strike a nice bal-
ance between biological realism and mathematical tracta-

bility, and are likely to be broadly applicable. However, it

seems unlikely that these assumptions will always hold. For
example, several butterfly phenology studies demonstrate

emergence patterns that can be strongly right or left skewed

(Brakefield 1982; Iwasa et al. 1983; Sims and Shapiro 1983;
Xue et al. 1997). Other studies, often relying on effort

intensive mark–recapture methods, have shown evidence of

non-constant death rates over time (Schtickzelle et al. 2002;
Auckland et al. 2004), an increasing death rate with number

of matings (Kawagoe et al. 2001), or a death rate that

increases with individual age (Brakefield 1982; Lederhouse
1983; Ban et al. 1990; Cushman et al. 1994; Zheng et al.

2007). The effects of these types of violations of the emer-

gence and death assumptions of the classical Zonneveld
model (CZ) on the bias in population size and mean lifespan

estimates have not been studied.

Here, I quantify how CZ-based parameter estimates of
population size and mean lifespan degrade as the model’s

emergence and lifespan assumptions are violated to

increasing degrees. To do this, I first generalize the Zon-
neveld model to incorporate more flexible assumptions

about the emergence and death processes. I then use the

emergence-generalized and lifespan-generalized Zonne-
veld models (hereafter EZ and LZ, respectively) as tools to

explore how CZ-based parameter estimates respond to

violations of these two core assumptions. It is important
to note that the goal of this paper is not to perform a

side-by-side comparison of the CZ, EZ, and LZ on the

same data. The generalized models each contain an addi-
tional parameter that will be very difficult to estimate from

transect count data, and thus they will be of little practical

use for data analysis. I will address this issue in greater
depth in the discussion. Instead, the EZ and LZ are con-

sidered data generating processes that allow the effects of

asymmetric emergence distributions (EZ) and non-constant
death rates (LZ) on the quality of CZ-based parameter

estimates to be directly assessed.
To facilitate my analysis, I describe an alternative

derivation of the CZ that leads to a novel technique for

rapidly fitting the CZ directly to both of the generalized
models. This technique allows a thorough exploration of

the behavior of the CZ across a wide range of emergence

and lifespan distribution shapes. Focusing on empirically
based scenarios, I demonstrate that: (1) the CZ can very

often closely approximate the generalized models even

when emergence distributions are highly asymmetric
(EZ) or when the death rate varies substantially over time

(LZ), and (2) doing so results in consistently and often

strongly biased CZ-based estimates of mean lifespan and
total population size. These findings therefore suggest

that the CZ is not robust to violations of its emergence

and death rate assumptions, and that using it in situations
where these assumptions do not hold can lead to severely

biased parameter estimates. More insidiously, these

results imply that a good observed fit of the CZ to a
dataset cannot be taken as evidence that its underlying

assumptions are met.

Methods

The generalized Zonneveld model

Assuming no net change in the population due to immi-
gration or emigration, the within-season dynamics of adult

population size can be written as

dx

dt
¼ NfEðtÞ %MðtÞx ð1Þ

where t is time, x is the adult population size at time t, N is

the total number of adults that emerge during the flight

period (hereafter, population size), fE(t) is a probability
density function (PDF) specifying the emergence schedule,

and M(t) is the average mortality rate in the population at

time t. Zonneveld chose the classical logistic distribution
for fE(t) and a constant death rate, a, for M(t). For

consistency, I have designed my notation such that in the

special case of the CZ it is identical to Zonneveld’s (1991)
notation. Here, I extend his model in two ways. First, I

generalize the emergence component by specifying a three
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parameter generalized logistic distribution (Wu et al. 2000)

for the emergence distribution, with PDF

fEðt; l; b; dÞ ¼
deðt%lÞ=b

b 1þ eðt%lÞ=bð Þdþ1
ð2Þ

where l is the location parameter, b is the scale parameter,

and d is a shape parameter affecting the skewness of the

distribution. The classical logistic distribution is recovered
when d = 1, the distribution is (slightly) left-skewed for

d[ 1, and is right-skewed for d\ 1 (Fig. 1).

The second generalization is to allow an individual’s
mortality rate to depend on its age (senescence) such that

lifespans have a Weibull distribution. The Weibull distri-

bution is a standard tool in survival analysis and is widely
used to model age-dependent individual death or failure

rates (Johnson et al. 1994). As it contains the exponential

as a special case, it provides a natural way to generalize the
lifespan assumptions of the Zonneveld model. The Weibull

lifespan distribution has PDF (Johnson et al. 1994)

fLðl; q; aÞ ¼ qa alð Þq%1e% alð Þq

where q is a shape parameter and a is a scale parameter.

When q = 1 the Weibull reduces to the exponential life-
span distribution implied by the constant death rate, a, in
the CZ (Fig. 1). For q[ 1, an individual’s death rate

increases with its age while q\ 1 implies a death rate that
decreases with age (Fig. 1).

Equation (1) incorporates the loss of individuals from

the active adult population as a (potentially) time varying
death rate, and I now derive a time-dependent death rate

function that produces Weibull-distributed lifespans. The

hazard and survivorship functions of the Weibull distri-
bution are required to do this. The hazard function, which

specifies the relationship between death rate and individual
age, a, is given by Evans et al. (2000)

Hða; q; aÞ ¼ qaqaq%1:

The Weibull survivorship function gives the probability of

an individual surviving to age a and is written (Evans et al.

2000)

Sða; q; aÞ ¼ e% aað Þq :

The probability of an individual being a days old on day

t of the season is fE(t - a; l, b, d) S(a; q, a). Normalizing

this quantity such that, for any time t, the integral over all
values of a is one, the time-dependent age distribution is

(Zonneveld 1992; Calabrese et al. 2008)

fAða; t;H;UÞ ¼ fEðt % a;HÞSða;UÞR t
%1fEðy;HÞSðt % y;UÞdy

where H ¼ fl; b; dg; and U ¼ fq; ag are parameter

vectors related to emergence and lifespan, respectively.
The time-dependent age distribution, together with the

Weibull hazard function, can now be used to obtain the

average death rate in the population at any time t:

Mðt;H;UÞ ¼
Z t

%1

Hðt % a;UÞfAðt % a; t;H;UÞda: ð3Þ

Notice that the average death rate depends on both the

parameters of the lifespan distribution, U; as well as those
of the emergence distribution, H: Substituting Eqs. (2) and
(3) into Eq. (1), I obtain the generalized Zonneveld model,

which can be solved numerically subject to initial condition

lim
t!%1

xðtÞ ¼ 0

to yield x(t), the time course in abundance.
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Fig. 1 The generalized logistic emergence distribution (a) and
Weibull lifespan distribution (b). The generalized logistic reduces
to the classical logistic when d = 1, is slightly left skewed for d[ 1,
and can have pronounced right skew for d\ 1 (a). For all three
curves in a, l = 0 and b = 1. The Weibull distribution simplifies to
the exponential when q = 1, has an interior mode and shorter right
tail when q[ 1, and has a longer right tail when q\ 1 (b). The q[ 1
case corresponds to senescence, where the death rate increases with
an individual’s age. For all three scenarios in b, a = 0.2. The Weibull
distribution is also capable of producing a slightly left skewed shape
for q large (not shown)
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For tractability, I consider three special cases of the fully

generalized model: (1) the CZ model (d = 1 and q = 1);
(2) the emergence-generalized Zonneveld model (EZ,

d = 1, q = 1); and (3) the lifespan-generalized Zonneveld

model (LZ, d = 1, q = 1). The subscripts cz, ez, and lz
are used to denote that a quantity comes from the classical

Zonneveld model, the emergence-generalized model, or the

lifespan-generalized model, respectively. For example,
xez(t) refers to the abundance time course from the emer-

gence-generalized model. I use the subscript gz to denote a
quantity that could come from either the EZ or the LZ.

Fitting the CZ to the data generating processes

The generalized models each relax one of the CZ’s

assumptions (emergence or death). Varying the additional
shape parameter of each generalized model (d or q) away
from one thus represents an increasing degree to which the

more restrictive corresponding assumption in the CZ is
violated. Fitting the CZ to each generalized model under

these conditions will then demonstrate how the assumption

that has been relaxed affects: (1) the CZ’s ability to fit an
abundance time course generated by the generalized

model, and (2) the quality of parameter estimates the CZ

produces in accommodating a time course of that shape. I
am particularly interested here in the how biased the esti-

mates of population size and mean lifespan become when

the CZ is fit to abundance time courses produced by the
generalized models, and am not focusing on sampling error

assumptions, small sample size performance, or issues of

observability (for those aspects of the CZ, see Gross et al.
2007; Haddad et al. 2008).

To assess the performance of a statistical procedure, one

would typically draw many random samples from a data
generating process (here the EZ or LZ) with known

parameters, fit the focal model (here the CZ) to each

realization thus obtained, average the estimated parameters
across realizations, and compare those averages to the

‘‘true’’ parameter values that generated the data. Fitting the

CZ to transect count data via maximum likelihood involves
a numerical search algorithm that repeatedly evaluates a

computationally expensive likelihood function (Zonneveld

1991). It is therefore a slow process, and the number of
separate fits that would be required to adequately assess the

robustness of the CZ to violations of its emergence and

death assumptions is prohibitively large. To work around
this issue, I develop an alternative technique that allows the

CZ to be fit directly to the data generating model (the EZ or

LZ) without having to go through the intermediate steps of
generating many random datasets, fitting the CZ to each,

and then averaging across realizations. Though non-stan-

dard, this approach is extremely efficient and allows a very
broad range of EZ and LZ scenarios to be considered.

To develop a method to rapidly fit the CZ to the gen-

eralized models, I exploit an alternative view of these
models. The area under the curve of the CZ is N/a (Zon-

neveld 1991), where I have assumed perfect observability

(see Gross et al. 2007, for an exploration of the issue of
observability in the CZ). More generally, when the death

rate is not constant, the area under the curve of a Zonne-

veld-type model is Nhli; where hli is the mean lifespan. In
the CZ and EZ, hli ¼ 1=a: For the LZ presented here, the

area under the curve is

AUClz ¼
NCð1þ 1=qÞ

a
ð4Þ

where Cð'Þ is the Gamma function. Equation (4) reduces to

N/a when q = 1. By multiplying x(t) by the reciprocal of
the area under the curve, any Zonneveld-type model can be

made to integrate to one across its domain, and thus behave

like a PDF. In Appendix A, I show that the abundance time
course of the normalized form of the CZ (EZ) can be

derived as the distribution of the sum of exponential and

logistic (generalized logistic) random variables.
In Appendix B, I use this alternative view to obtain

analytical expressions for the first three cumulants (jð1Þ ¼
mean; jð2Þ ¼ variance; and jð3Þ ¼ third central moment) of

the abundance time courses of the normalized CZ and the
normalized EZ as functions of their parameters. The

cumulants of the CZ can then be used to obtain the fol-

lowing estimators of its parameters via the method of
moments (Clark 2007) (Appendix C):

l̂cz ¼ jð1Þgz % jð3Þgz

2

 !1=3

b̂cz ¼
ffiffiffi
3

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð2Þgz % jð3Þgz

2

 !2=3
vuut

âcz ¼
2

jð3Þgz

 !1=3

: ð5Þ

As the population size, N, does not affect the shape of the
abundance time course, it does not enter into the moment

estimators. Given âcz; the corresponding population size

estimate can be calculated by forcing the area under the
curve of the fitted CZ to equal that of the variant of the

generalized model to which it is fit:

N̂cz ¼ Ngzhlgziâcz:

As analytical expressions for the cumulants of the EZ are

also tractable (Appendix C), it is possible to solve directly
for the parameters that allow the CZ to most closely mimic

the EZ by substituting the expressions for the cumulants of

the EZ into the right hand side of Eqs. (5) yielding Eqs.
(14). The cumulants of the LZ can easily be obtained by
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numerical integration, and these values can then be

substituted into Eqs. (5) to get the best-fitting CZ param-

eters (Appendix C).
The moment estimators provide a rapid way to obtain,

for any choice of parameters of a more complicated gen-

eralized model, the corresponding set of CZ parameters
that provide the best fit to it. Due to its efficiency, this

approach facilitates a thorough exploration of the behavior

of the CZ’s mean lifespan and population size estimates
over a very broad range of conditions in the data generating

processes. Notice that the moment estimators are used here
merely as a computational device to facilitate my analysis.

They are not an alternative to the maximum likelihood

approach described by Zonneveld (1991) and implemented
in INCA for estimating CZ parameters from real transect

count data.

Empirically based scenarios

Each scenario I consider features a base set of parameter
values (N, a, l, and b) for the data generating process (EZ
or LZ). The additional shape parameter each generalized

model introduces is set to one initially, in which case both
generalized models reduce to the CZ. Fitting the CZ to

either the EZ or LZ in this situation simply returns the base

parameter set as the models are identical. I then system-
atically varied the value of either d (EZ) or q (LZ) away

from one in both directions, fit the CZ at every step using

the moment estimators, and calculated the percent error in
the CZ estimates of mean lifespan and population size

relative to the true values of these quantities in the data

generating process. This allowed me to quantify how the
percent error in the CZ estimates of N and hli changed as a

function of the additional shape parameter of each data

generating process, and thus as a function of increasing
violations of the CZ’s emergence or lifespan assumptions.

To base my analysis on biologically reasonable parameter

values, I used two published sets of empirically estimated
values of the parameters N, a, l, and b for the butterflies

Coenonympha pamphilus and Aricia agestis (Zonneveld

1991), as base parameter sets for the data generating pro-
cesses. The two scenarios represent broadly different esti-

mated population sizes (N̂) and mean lifespans (¼ 1=â).
As the method of moments approach I used to fit the CZ

to the data generating processes is non-standard, I used

INCA to spot check the percent error results with compu-
tationally intensive (slow) large-sample maximum likeli-

hood fits of the CZ to each variant of the generalized model

for particular values of d and q (Appendix D). To deter-
mine if the quality of the fit of the CZ could be used to

judge if its assumptions were met, I also examined the

ability of the CZ to mimic the shape of the generalized

models across the ranges of d and q considered in the

percent error analysis. Finally, I searched over a much
broader range of parameter values to identify abundance

time course shapes produced by the EZ and LZ that the CZ

was not able to mimic.

Results

For both empirical scenarios the percent error in CZ esti-
mates of N and hli increased rapidly as either d (EZ) or q
(LZ) were varied away from unity (Fig. 2). The error could

reach several hundred percent above (positive) or below
(negative) the true value of the parameter being estimated.

The results for the bias inN and hli incurred by fitting the CZ
to the LZ were very similar for both parameter sets (Fig. 2b,
d), whereas they differed sharply between the two scenarios

when EZ was the data generating process (Fig. 2a, c).

The difference between the two EZ-based scenarios is
due to the left skewness the generalized logistic emergence

distribution introduces into the abundance time course. For

the A. agestis scenario in Fig. 2c, the death rate is high
(a = 0.362), lifespans are short, and the abundance time

course has only a small amount of right skewness (see

Fig. 1c in Zonneveld 1991). When d is increased above one
in the EZ, the emergence distribution becomes left skewed

and when d = 1.579, this left skewness exactly cancels out

the right skewness due to the lifespan distribution, and the
abundance time course is symmetrical. For d values

exceeding this threshold, any attempt to fit the CZ to the

EZ, either by the method of moments or by maximum
likelihood, will fail because the CZ cannot produce a left-

skewed abundance time course. Though the Weibull life-

span distribution is also technically capable of introducing
a small amount of left skewness into the abundance time

course (for q large), it was not an issue across the range of

parameter values explored here.
Figure 2 demonstrates that fitting the CZ either of the

generalized models when its underlying assumptions are

violated produces strongly biased estimates of population
size and mean lifespan. However, the inherent flexibility of

the CZ still allows it to closely mimic most of the abun-

dance time course shapes the EZ and LZ are capable of
producing (Fig. 3). All four fits shown in Fig. 3 occur

in situations that yield large percent errors in both N and hli
estimates (Fig. 2), and are typical of the ability of the CZ to
closely approximate either of the generalized models. This

indicates that a good fit to an observed abundance time

course does not mean that underlying model assumptions
are met, and may yield heavily biased parameter estimates.

The CZ either completely fails to fit the generalized

models or provides a very poor fit in two distinct situations
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(Fig. 4). The first was mentioned above and occurs when

there is left skewness in the abundance time course (Fig. 4a).
In this case the CZ fit is not possible because it is not capable

of producing a left-skewed abundance time course and there

is no information from which the death rate, a, can be esti-
mated. The second situation occurs in the LZ, when the

individual-level mortality rate is very low until an individual

is quite old and then accelerates sharply thereafter. This
results in an abundance time course with broad ‘‘shoulders’’

and a large plateau that the CZ simply cannot mimic
(Fig. 4b). Of the two, the case of left skewness (or at least too

little right skewness) is the more likely to occur in real data.

In all other situations, the CZ was able to closely approxi-
mate the shape of either generalized model, indicating that

relying on goodness of fit as an indication of model appro-

priateness may be dangerous with the CZ.

Discussion

Here, I have defined a nested family of models by general-

izing the CZ to accommodate an asymmetrical emergence

distribution and an age-dependent death rate that leads to

Weibull distributed lifespans. I have then used the emer-
gence-generalized (EZ) and lifespan-generalized (LZ)

models as data generating processes to explore the CZ’s

ability to approximate abundance time courses that deviate
from its assumptions, and to quantify the bias in population

size andmean lifespan estimates incurred by doing so. These

analyses demonstrate that the CZ is remarkably flexible and
can mimic a wide range of abundance time course shapes.

The cost of this flexibility is that the CZ is sensitive to vio-
lations of both its emergence and death rate assumptions and

is capable of producing highly biased estimates of key

population parameters when its assumptions are not met.
The fact that the model can still fit well even when it yields

massively biased parameter estimates means that a good fit

to an observed transect count dataset cannot be taken as
evidence that the model’s assumptions hold.

A more subtle message that emerges is that the CZ is

pushing the limits of the information content of transect
count data. One could envision fitting the CZ, EZ, LZ and

the fully generalized model (d = 1, q = 1) to the same

transect count data via maximum likelihood and using
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Fig. 2 The percent error between estimated mean lifespan and true
mean lifespan (dashed curves) and estimated population size and true
population (solid curves) when the CZ is fitted to the EZ (a, c) or the LZ
(b, d). The true values of the target parameters are those that are used in
the generalized model serving as the data generating process. a, b The
C. pamphilus scenario with base parameter set: N = 769, l = 15.9,
b = 5.52, and a = 0.126. c, d The A. agestis base parameter set with
N = 162, l = 10.2, b = 2.93, and a = 0.362. The vertical dotted
line in c occurs at d& 1.579 and is the point at which the EZ time course

for that scenario becomes symmetrical. For d values exceeding this
threshold, the EZ time course is left skewed and the moment estimators
fail because the CZ cannot produce a left-skewed shape. The triangles
on the x-axis of each panel indicate the points for which the fits of
the CZ to the corresponding generalized model are shown in Fig. 3.
The points along the percent error curves are the large sample
(asymptotic) maximum likelihood results for that parameter combina-
tion (Appendix D), demonstrating that the moment-estimator based
results are reasonable
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model selection techniques to identify the most parsimo-
nious variant. Such an approach could, in principle, be used

to infer the functional forms of the emergence distribution

and death rate function. Unfortunately, the ability of the CZ
to closely approximate the more complicated models,

coupled with its smaller parameter count, strongly suggests

that it would consistently win such model comparisons
even when it is the ‘‘wrong’’ model. I have made pre-

liminary attempts to fit the EZ and LZ to transect count

data via maximum likelihood, but was not able to get these
models to reliably converge. This again suggests that the

information content of transect count data is limited and

that the new parameters that define the EZ and LZ are not
consistently identifiable from such datasets.

In addition to providing a useful computational device,

the moment estimators developed here shed light on the
way the CZ uses the information in transect count time

series. The location of the time series along the time axis

provides information about both the mean emergence
date, l and the death rate, a. The width of the abundance

time course provides information about the scale parameter

of the emergence distribution, b, and a. The skewness of
the time course (and not just the right tail) provides direct

information about a. Finally, the height of the abundance

time course informs the population size index, N.
The only source of skewness in the CZ is the expo-

nential lifespan distribution. Both the EZ and LZ intro-

duce additional features that can also affect the skewness
of the abundance time courses they produce. The effect

these additional features have on the skewness is the

source of the bias in the CZ estimates. Any feature that
accentuates the right skewness of the abundance time

course will lead to overestimates of hli and underesti-

mates of N. Conversely, any feature that decreases the
right skewness of the time course would cause the CZ to

underestimate hli and overestimate N. The biases in these

two parameters go in opposite directions because once the
mean lifespan is determined by the shape of the time

course, the population size must compensate such that the

area under the curve is conserved. This inverse relation-
ship between the two parameters can be clearly seen in

Fig. 2 and has been noted before (Mattoni et al. 2001;

Haddad et al. 2008).
The estimation of any features added to the CZ, such as

skewed emergence distributions or non-constant death

rates, would rely on finer and finer details of the shape of
the time course. For example, in the moment framework

described here, estimation of d (EZ) or q (LZ) would

involve the kurtosis of the time course. Such fine details
would be extremely difficult to resolve from noisy transect

count time series. It is important to note that the maximum

likelihood approach typically used to fit the CZ does not
use the moments of the abundance time course, but instead

uses the shape of the entire time course. Still, the idea that

finer and finer details of that shape would be required to
identify additional model features is general and points

back to the idea that the CZ is at the limit of the infor-

mation transect counts can provide.
As many butterfly monitoring programs mainly collect

transect count data, the potential for bias in CZ-based
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parameter estimates is especially troubling because it is not

currently possible to use such data to assess the validity of

model assumptions. While these results are somewhat
discouraging, it is important to know the limitations of

available data sources and analytical techniques. The

constant death rate/exponential lifespan assumption is
widely employed in insect population biology, and is likely

to be a reasonable assumption in many cases (Zonneveld

1991). This is particularly so for populations that experi-
ence very strong, constant external mortality. Similarly,

assuming a symmetrical emergence distribution is a rea-

sonable staring place. These assumptions are, however,
rarely tested explicitly and the consequences of serious

violations of them for inferential procedures are rarely

explored. My results indicate that, at least for CZ-based

parameter estimation, more caution is warranted. When
these assumptions are met, the CZ has been shown to

produce reasonable parameter estimates under some con-

ditions (Mattoni et al. 2001; Gross et al. 2007; Haddad
et al. 2008). The problem is that it will be difficult to know

from transect counts alone when the CZ’s emergence and

death assumptions are satisfied and when they are not.
The analysis of transect count data has focused primarily

on developing an index of abundance that can be used to
detect population trends over time (Pollard 1977; Pollard

and Yates 1993; Rothery and Roy 2001). In contrast, mark

recapture studies are currently considered the ‘‘gold stan-
dard’’ for estimating butterfly demographic parameters, but

are widely acknowledged as being too effort intensive for

large-scale monitoring programs (Gross et al. 2007; Had-
dad et al. 2008). Zonnevelds (1991) approach represents an

attempt to extract some of the information provided by a

full mark–recapture study from simple transect count data.
The limitations of the CZ demonstrated in this and other

studies suggest that, while sometimes appropriate, it will

not consistently be able to estimate demographic parame-
ters from transect count data alone (Mattoni et al. 2001;

Gross et al. 2007; Haddad et al. 2008). Both Gross et al.

(2007) and Haddad et al. (2008) have suggested a tiered
approach, where count datasets are, at some sites and in

some years, combined with limited mark–recapture studies.

Another possibility might be to augment transect counts
with more detailed observational information, perhaps

wing-wear-based estimates of population age structure

throughout the flight period, to allow better estimates of
population parameters or more detailed models to be fit.

The generalized models presented here should also find

use beyond their roles in probing the limits of count-based
inference. Theoretical analyses of reproductive phenology

focusing on protandry/protogyny and reproductive asyn-

chrony, many of which are based on variations of the CZ
(Zonneveld and Metz 1991; Zonneveld 1992, 1996a, b;

Calabrese and Fagan 2004; Calabrese et al. 2008; Fagan

et al. 2010), could directly leverage the machinery devel-
oped here. The results of such studies would depend pri-

marily on the shapes of the abundance time courses, and

not on the specific assumptions generating them. While I
have shown that the CZ can generate a wide range of

shapes, some occur only at biologically implausible

parameter values (hence the bias in its estimates when
assumptions are not met). Theoretical studies focusing on

biologically reasonable scenarios could therefore employ

generalizations of the CZ to explore, and justify, how a
wider range of time course shapes affects individual

reproductive success, population-level growth rates, and

the optimality of alternative phenological strategies.
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Appendix A: Alternative derivation of the EZ and CZ

The normalized abundance time course for the CZ, denoted
_xczðtÞ; follows from Eq. (2) and the third (unlabeled)
equation in Zonneveld (1991) and is written

_xczðtÞ ¼ ae%aðt%lÞ
Zeðt%lÞ=b

0

rab

ð1þ rÞ2
dr: ð6Þ

Equation (6) integrates to unity on t 2 ð%1;1Þ:
Now I show that the normalized abundance time course

of the EZ can be derived as the sum of a generalized
logistic random variable and an exponential random vari-

able. As the classical logistic is a special case of the gen-

eralized logistic, this implies that the CZ can be derived as
the sum of logistic and exponential random variables. For

convenience I use slightly different notation here than in

the main text, and so begin by defining the PDFs of these
distributions. Let U have an exponential distribution with

PDF

fUðuÞ ¼
ae%au u( 0
0 u\0

"

where a is the rate parameter. Let V have a generalized

logistic distribution with PDF

fVðvÞ ¼
deðv%lÞ=b

b 1þ eðv%lÞ=bð Þdþ1

where l is the location parameter, b is the scale parameter,
and d is the shape parameter.

The PDF of the sum T = U ? V can be written as the

convolution of fU(u) and fV(v) (Casella and Berger 2002)

fTðtÞ ¼
Z1

0

fUðwÞfVðt % wÞdw ð7Þ

where the lower limit of integration follows from the fact
that fU(u) = 0 for u\ 0. Substituting the exponential and

generalized logistic densities into the convolution integral,

I have

fTðtÞ ¼
Z1

0

ae%aw deðt%w%lÞ=b

b 1þ eðt%w%lÞ=bð Þdþ1
dw: ð8Þ

Next, let

r ¼ eðt%w%lÞ=b; ð9Þ

then

dr ¼ % eðt%w%lÞ=b

b
dw

dw ¼ % bdr
r

:

Rewriting Eq. (8) in terms of r and dr, I obtain

fTðtÞ ¼ %ad
Z0

eðt%lÞ=b

e%aw 1

ð1þ rÞdþ1
dr: ð10Þ

I then rearrange Eq. (9) to obtain

w ¼ t % l% bLnðrÞ

and substitute this result into the exponential term in Eq.

(10) yielding

e%a½t%l%bLnðrÞ* ¼ e%aðt%lÞeabLnðrÞ ¼ e%aðt%lÞrab

which leads to

fTðtÞ ¼ %ade%aðt%lÞ
Z0

eðt%lÞ=b

rab

ð1þ rÞdþ1
dr:

Finally, reversing the limits of integration, I obtain the PDF

of the sum of an exponential and generalized logistic in the
same form as the normalized Zonneveld model:

fTðtÞ ¼ ade%aðt%lÞ
Zeðt%lÞ=b

0

rab

ð1þ rÞdþ1
dr: ð11Þ

As the integral above is the incomplete Beta function, Eq.

(11) can be written

fTðtÞ ¼ ade%aðt%lÞBzð1þ ab; d% abÞ

where z = e(t - l) / b / (1 ? e(t - l) / b).
When d = 1 the generalized logistic reduces to the

classical (symmetrical) logistic distribution and fT(t) sim-
plifies to

fTðtÞ ¼ ae%aðt%lÞ
Zeðt%lÞ=b

0

rab

ð1þ rÞ2
dr

¼ ae%aðt%lÞBzð1þ ab; 1% abÞ

which is the normalized abundance time course of the

classical Zonneveld model, Eq. (6).

Appendix B: Cumulants of the EZ and CZ

The cumulants of the distribution of the sum of two random
variables are simply the sums of the cumulants of the
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component distributions. The first three cumulants (the

mean, the variance, and the third central moment) of the
normalized EZ model can thus be obtained from

the cumulants of the generalized logistic emergence (Wu

et al. 2000) and exponential lifespan (Evans et al. 2000)
distributions, yielding

jð1Þez ¼ l% b½cþ wðdÞ* þ 1

a

jð2Þez ¼ b2
p2

6
þ wð1ÞðdÞ

# $
þ 1

a2

jð3Þez ¼ b3½wð2Þð1Þ % wð2ÞðdÞ* þ 2

a3
ð12Þ

where c & 0.577216 is Euler’s constant, w(•) is the

digamma function, and w(i)(•) is the polygamma function

of order i. For the normalized CZ, these expressions
simplify to

jð1Þcz ¼ lþ 1

a

jð2Þcz ¼ b2p2

3
þ 1

a2

jð3Þcz ¼ 2

a3
: ð13Þ

Appendix C: Moments estimators

The method of moments is one approach to parameter

estimation and can be more convenient to work with than
maximum likelihood (Clark 2007). Solving Eqs. (13) for

the three parameters (l, b, and a) of the normalized CZ

produces the moment estimators given in the main text as
Eqs. (5).

When fitting the CZ to the EZ, it is possible to solve

directly for the moment estimators of the CZ in terms of
the parameters of the EZ by substituting Eqs. (12) into the

right hand side of Eqs. (5), yielding

l̂cz¼lezþ
1

aez
%bez cþwðdezÞ½ *% 1

a3ez
%
b3ez
2

wð2ÞðdezÞþ2fð3Þ
h i !1=3

b̂cz¼
ffiffiffi
3

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2ez
þb2ez

p2

6
þwð1ÞðdezÞ

# $
% 1

a3ez
%
b3ez
2

wð2ÞðdezÞþ2fð3Þ
h i !2=3

vuut

âcz¼
1

a3ez
þ
b3ez
2

wð2Þð1Þ%wð2ÞðdezÞ
h i !%1=3

ð14Þ

where fð'Þ is the Riemann zeta function.
The non-exponential lifespan distribution of the nor-

malized LZ means it cannot be derived as the sum of the

emergence and lifespan distributions, so closed-form
expressions for its cumulants are not available. Instead, the

first three cumulants of the normalized LZ can, for any

given parameter set, be calculated numerically as

jð1Þlz ¼
Z1

%1

t _xlzðtÞdt

jð2Þlz ¼
Z1

%1

ðt % jð1Þlz Þ2 _xlzðtÞdt

jð3Þlz ¼
Z1

%1

ðt % jð1Þlz Þ3 _xlzðtÞdt ð15Þ

and these values can then be substituted into the moment

estimators to obtain the parameters of the CZ that produce

the best fit to the LZ. These numerical integrations are
much quicker to calculate than randomly generating data-

sets from the LZ and fitting the CZ to it via the maximum

likelihood approach described in the next section.

Appendix D: Large sample maximum likelihood
estimation

The moment estimators in the main text allow the CZ to be
fit directly to the generalized models without (for a given

set of parameters) first generating many random transect

count datasets from the focal generalized model, fitting the
CZ to each realization, and then averaging the CZ’s

parameter estimates over the realizations. The moment

approach is computationally efficient and it allows me to
directly assess the ability of the CZ to approximate

the shapes the generalized models can produce. As the

moments of each generalized model that are used to fit the
CZ are the ‘‘true values’’ of these quantities and not esti-

mates of them calculated from a random sample, it is an

asymptotic approach in the sense that it is what would be
obtained as sample size became infinitely large. The

method of moments often produces similar (or in some

cases exactly the same) estimators as the more standard
method of maximum likelihood (Clark 2007), but can be

more biased and less reliable than maximum likelihood

(Bolker 2008). To check the moment-based results, I
therefore use a large sample maximum likelihood approach

that approximates the asymptotic situation represented by
the moment estimators. This approach is too computa-

tionally intensive to be feasible to thoroughly explore a

broad range of parameter space, but does provide a way to
spot check the moment-based results.

For a given set of generalized model parameters, I cal-

culated the time course in abundance xgz(t) as described in
the main text. For each day t for which xgz(t)[ 0.005, I

randomly drew an observed count from a Poisson distri-

bution with mean xgz(t). This procedure was repeated 50
times for each parameter set yielding 50 random datasets
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for that parameter set with complete coverage of the flight

season. I used INCA 1.53 (http://www.urbanwildlands.org/
INCA/) to fit the CZ to each of these random datasets via

maximum likelihood. For each parameter of interest (i.e., N
and hli), I then calculated its average across the 50 random
datasets and used this value as the ‘‘asymptotic’’ maximum

likelihood estimate of that parameter. Finally, I calculated

the percent error between the asymptotic MLE of that
parameter and its true value. The asymptotic MLE results

are plotted as points along the percent error curves in Fig. 2.
The two methods agree closely in all cases, indicating that

the moment estimators produce reasonable results.
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