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TEST FOR SIMULTANEOUS DIVERGENCE USING APPROXIMATE 
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Abstract.—Comparative phylogeographic studies often reveal disparate levels of sequence divergence between lineages 
spanning a common geographic barrier, leading to the conclusion that isolation was nonsynchronous. However, only 
rarely do researchers account for the expected variance associated with ancestral coalescence and among-taxon variation 
in demographic history. We introduce a flexible approximate Bayesian computational (ABC) framework that can test 
for simultaneous divergence (TSD) using a hierarchical model that incorporates idiosyncratic differences in demo- 
graphic history across taxon pairs. The method is tested across a range of conditions and is shown to be accurate 
even with single-locus mitochondrial DNA (mtDNA) data. We apply this method to a landmark dataset of putative 
simultaneous vicariance, eight geminate echinoid taxon pairs thought to have been split by the Isthmus of Panama 
3.1 million years ago. The ABC posterior estimates are not consistent with a history of simultaneous vicariance given 
these data. Subsequent ABC estimates under a constrained model that assumes two divergence times across the eight 
taxon pairs suggests simultaneous divergence 3.1 million years ago in seven of the taxon pairs and a more recent 
divergence in the remaining taxon pair. These ABC estimates on the simultaneous divergence of the seven taxon pairs 
correspond to a DNA substitution rate of approximately 1.59% per lineage per million years at the mtDNA cytochrome 
oxidase I gene. This ABC framework can easily be modified to analyze single taxon-pair datasets and/or be expanded 
to include multiple loci, migration, recombination, and other idiosyncratic demographic histories. The flexible aspect 
of ABC and its built-in evaluation of estimator bias and statistical power has the potential to greatly enhance statistical 
rigor in phylogeographic studies. 
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The division of freely mixing populations into geographic et al. 2002; Graham et al. 2004; Carstens et al. 2005). Given 
isolates can have profound influences on population history, the importance of divergence-time estimates in comparative 
population genetic architecture, and the potential for speci- phylogeographic studies, rigorous methods that incorporate 
ation (Mayr 1954; Avise et al. 1998; Coyne and Orr 2004; the coalescent variation among and within lineages are need- 
Gavrilets 2004). Therefore, it is no surprise that the timing ed to prevent misleading inferences about community history 
of divergence has been a critical parameter in population (Arbogast et al. 2002). 
genetics, phylogenetics, and evolutionary biology (Arbogast Previous studies have generally found an elevated amount 
et al. 2002; Thome and Kishino 2002; Hey and Nielsen 2004). of variation in the pairwise genetic divergences between sis- 
Similarly, divergence time estimates have assumed great im- ter taxa that are hypothesized to have arisen simultaneously 
portance in community ecology and biogeography, because from the same emergent biogeographical barrier. This vari- 
of their potential for testing deterministic and stochastic mod- ation is usually concluded to have arisen from variance in 
els of community composition, range delineation, and the mutation rates, divergence times, or unobserved extinctions, 
effect of climatic changes on speciation and extinction pat- without considering a null model that incorporates intrinsic 
terns (Cunningham and Collins  1998; Moritz et al. 2000; sources of variance (Knowlton and Weigt 1998; Schneider 
Hubbell 2001; Ricklefs 2003). et al   1998; Lessios et al. 2001; Marko 2002). Given a null 

Estimating divergence times across different taxon pairs model derived from coalescent theory (Tajima 1983), we 
that span the same historical barrier to gene flow is of central should expect a great deal of variation in genetic divergence 
importance in the emerging field of comparative phylogeog- among sister pairs that diverged at the same time and ex- 
raphy (Bermmgham and Montz 1998; Avise 2000; Arbogast ^ence equal mutation rates. Such variation is expected giv- 
and Kenagy 2001). For example, tests of alternative models en the variance in the time of the mitochondrial most recent 
of speciation across sister taxon pairs rely on estimates of common ancestor (TMRCA; see Fig. 1) and the variance in 
population divergence times, which can in turn be used to t t • „ . _ ..      , ^... r r .        ° '       , . ... mutations  given  a  Poisson  mutational  process  (Gillespie 
test alternative climate-driven and ecologically deterministic lrvo^   ^ ,   ,   .    ,„„,   ., .        ,        , „      .. ^...   TT. , 

._ ......        J   , ,    ,TT      „ 1984; Takahata 1986; Edwards and Beerh 2000; Hickerson 
community diversification and distribution models (Hugall .   „„„„N   „,       „ .   . . .    .   „ J D et al. 2003). Therefore, comparative phylogeographic infer- 

ences should be based on models that account for such sourc- 
,„ ., r.   „■       ^    , ^. .„   ,        „     „, . , ,       es of variance while being flexible enough to incorporate z Present address: Section of Evolution and Ecology, One Shields ° ° r 

Avenue,   University   of   California,   Davis,   California   95616;     biological differences among taxa that affect the data, such 
E-mail: mhickerson@ucdavis.edu. as ancestral population size differences. Although tools exist 
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FIG. 1. Depiction of the multiple taxon-pair divergence model used for the approximate Bayesian computation estimates. (A) The time 
to the mitochondrial DNA genealogically most recent common ancestor (TMRCA). (B) Parameters in the multiple taxon-pair divergence 
model. (C) Example of a simulated four-taxon-pair comparative phylogeographic dataset where parameters in (B) are drawn from uniform 
priors (see Table 1). 

for the analysis of a single taxon splitting into daughter pop- 
ulations (Wakeley and Hey 1997; Nielsen and Wakeley 2001; 
Hey and Nielsen 2004), they are not designed to simulta- 
neously test hypotheses involving multiple taxa with variable 
demographic parameters. Furthermore, such methods prohib- 
it rapid diagnosis of accuracy, bias, and sensitivity with in- 
dependent simulations. 

Here we develop an approximate Bayesian computation 
(ABC) framework that estimates parameters characterizing 
multiple phylogeographic datasets in a single analysis, with 
the specific aim of quantifying the probability of simulta- 
neous divergence. Approximate likelihood and approximate 
Bayesian methods are an attractive option for such data, be- 
cause their flexible simulation-based approach allows com- 
plex comparative biogeographic hypotheses to be tested with- 
out having to explicitly express and calculate the likelihood 
of the model. Therefore, there are no particular constraints 
on incorporating the complexity of a priori idiosyncratic bi- 
ological realism into the model when using approximate 
methods (Beaumont et al. 2002; Beaumont 2004), although 
the lack of analytical expressions can also be a disadvantage 
if explicit transparency of the model is lost. A second im- 

portant benefit of ABC is that the estimator's bias, model 
sensitivity, and statistical power can be obtained using in- 
dependent simulations at a computational cost that is orders 
of magnitude less than those of likelihood/Bayesian methods 
using Markov chain-Monte Carlo (MCMC; Excoffier et al. 
2005). ABC methods have been developed for testing hy- 
potheses related to single-taxon demographic histories (Es- 
toup et al. 2004; Tallmon et al. 2004; Excoffier et al. 2005), 
and phylogenetic questions (Plagnol and Tavare 2002). Until 
now, these approaches have not been applied to multiple taxa 
that span the same putative biogeographic barrier. 

After describing and testing the ABC framework, we use 
it to test for simultaneous divergence (TSD) in eight genera 
of tropical echinoids that span the Isthmus of Panama. This 
barrier to marine species is thought to have arisen approxi- 
mately 3.1 million years ago (Coates et al. 1992). Jordan 
(1908) coined the term "geminate species" for sister species 
separated by the same barrier. Past comparative phylogeo- 
graphic studies involving the isthmus have usually found 
elevated variation in mitochondrial divergences among sister 
taxon pairs that were thought to have been simultaneously 
split by this barrier (Bermingham et al. 1997; Marko 2002), 
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most often leading to conclusions involving ecologically de- 
terministic divergence (Knowlton and Weigt 1998) or ad- 
mixture subsequent to the main split in a subset of taxa (Les- 
sios et al. 2001). The methodology introduced in this study 
will better quantify such comparative phylogeographic in- 
ferences (Bermingham and Moritz 1998; Knowles and Mad- 
dison 2002) and thereby better inform questions related to 
community ecology, speciation, phylogenetics, biogeogra- 
phy, and historical ecology. 

MATERIALS AND METHODS 

Hierarchical Approximate Bayesian Computation 

The simulation-based summary statistic approach of ap- 
proximate likelihood or Bayesian methods allow for greater 
model flexibility and relax the need for calculating the like- 
lihood expression (Fu and Li 1997; Weiss and von Haeseler 
1998; Pritchard et al. 1999; Beaumont et al. 2002; Plagnol 
and Tavare 2002; Beaumont and Rannala 2004). Although 
approximate methods sacrifice a degree of model transpar- 
ency afforded by the analytical expressions of the likelihood 
function and also lose some of the information content from 
the data by using summary statistics, the complexity inherent 
in comparative phylogeographic models make approximate 
methods particularly attractive. Instead of explicitly calcu- 
lating the likelihood function, or using MCMC or importance 
sampling, ABC methods obtain estimates by simulating data 
and their summary statistics under the model in order to 
sample from the posterior distribution. Comparative phylo- 
geographic models are inherently parameter rich and there- 
fore we make use of a hierarchical Bayesian model in our 
implementation of ABC. This facilitates testing comparative 
phylogeographic hypotheses by allowing estimation of 
across-taxon-pair parameters (i.e., hyperparameters) and es- 
timation or incorporation of uncertainty in within taxon-pair 
parameters. Our hyperparameters describe differences in di- 
vergence times across taxon pairs, while our within-taxon- 
pair parameters include the vector of actual divergence times 
as well as other important demographic parameters that can 
differ across taxon pairs (e.g., population sizes). 

To this end, we extend the ABC method to estimate the 
variability in divergence times across taxon pairs by simu- 
lating observations from this joint posterior distribution un- 
der a hierarchical model (Beaumont et al. 2002; Gelman et 
al. 2004). This meta-analysis is accomplished by imple- 
menting a hierarchical Bayesian model in which the distri- 
butions of within-taxon-pair parameters (0) are conditional 
on hyperparameters (4>) that describe the comparative phy- 
logeographic dataset (multiple taxon pairs). For example, di- 
vergence times (0) can freely vary across a set of taxon pairs 
conditional on a set of hyperparameters (cf>) that are drawn 
from their hyperprior distribution. These hyperparameters 
could be the number of divergence times across the set of 
taxon pairs as well as the mean and variance in these diver- 
gence times. 

Although we could estimate every divergence time sepa- 
rately, use of a hierarchical model allows us to set up a clear 
hypothesis test from posterior distributions of hyperpara- 
meters. Furthermore, the borrowing strength gained from us- 
ing a hierarchical model makes hypothesis testing and pa- 

rameter estimation more efficient. By pooling information 
across taxon pairs without assuming they evolved under iden- 
tical sets of parameter values, this borrowing strength results 
in reducing the standard error of each within-taxon-pair pa- 
rameter estimate while also obtaining estimates of hyper- 
parameters (James and Stein 1960; Gelman et al. 1995; Beau- 
mont and Rannala 2004). In this case, we estimate the hy- 
perparameters while allowing the demographic differences 
among taxon pairs to be treated as nuisance parameters that 
incorporate uncertainty (i.e., uninformative prior distribu- 
tions of within-taxon-pair parameters). 

Under this implementation of ABC, data are generated 
from a hierarchical model M determined by the joint param- 
eter set 4> and 0 (consisting of both hyperparameters and 
within-taxon-pair parameters). These have a joint prior dis- 
tribution P(4>)P(<1> | cf>) = /(4>, 0), and the data are summa- 
rized in a summary statistic vector D. The joint posterior 
distribution is then/(((), 0 | D) a P{§, 0)f(D | <$>, 0) (Gelman 
et al. 2004), which is the conditional density that can be 
calculated by first estimating the joint density P(D, 4>, 0) 
and dividing by an estimate of the marginal density P(D) in 
the limit of D being its observed value (D*). Our method for 
generating random observations from the joint posterior 
/(4>„ 0, | D,) uses a rejection/acceptance algorithm (Fu and 
Li 1997; Weiss and von Haeseler 1998; Plagnol and Tavare 
2002) followed by a weighted local rejection step (Beaumont 
et al. 2002; Tallmon et al. 2004; Excoffier et al. 2005). This 
is based on the idea that the parameter sets for which ||D; — 
D*|| is small comprise an approximate posterior random sample. 

In practice, the ABC approach involves three steps detailed 
in Beaumont et al. (2002) and Figure 2. First, a dataset equal 
in size to the observed dataset (same number of individuals 
and base pairs) is repeatedly simulated by randomly drawing 
parameters from prior distributions (defined in Table 1). The 
second step involves comparing the simulated data to the 
observed data using summary statistics and accepting an ar- 
bitrary proportion of simulated datasets and their correspond- 
ing parameters, those that are closest to the observed datasets 
with respect to Euclidian distance. The third step involves 
estimating the hyperparameters by performing local weighted 
linear regression on the accepted summary statistics and their 
corresponding parameters. 

Explicitly, we randomly draw the joint parameter set 
(<f>„ 0y) from the joint prior distribution/(cf), 0) specified by 
hierarchical model M to simulate the data and calculate a 
summary statistic vector D The summary statistics within 
vector D are scaled to have unit variance and the simulations 
are repeated K times. Each simulated D, is compared to the 
observed D* and the joint posterior distribution is obtained 
from the proportion of simulations that yielded summary sta- 
tistics closest to the observed D*. Our method samples this 
joint posterior distribution using a two-step process: rejection 
and weighted local regression on the accepted values. In the 
first step, a set of simulated parameters and their associated 
summary statistic vector D, are accepted when the Euclidian 
distance ||D, — D*|| = d is <e, where e is an arbitrary critical 
value. Each value of e controls the tolerance, which is the 
proportion of values closest to D* that are accepted. In the 
second step, each accepted parameter set is given a weight 
between zero and one that declines quadratically as ||D; — 



2438 MICHAEL J. HICKERSON ET AL. 

Draw hyper- 
parameters from 
hyper-prior per 
Vtaxon-pairs 

Start 

A. 

I 
*/■ -VJ 

Tj = v, v>y 

o 
Q. 

"O   fe m $ 
■S   Q- «   >. 
3  J= 
E a> 

■^ -C (0 *- 

=* E 
II   o 
* - 

•   05 

i. g 
i- m 
■l-o 

Draw within taxon-pair 
parameters from priors 
per taxon pair 

0/ = T,,8,,(6a)/,(8b)/,W/, 

(8'a)/, (8'b),-, (%'a)/, (%'b)/ 

(Draw T- from matrix T- = {f?,...,^/},- 
with replacement)   ' 

Simulate data 
per taxon-pair 

Coalescent/finite 
sites model 

' 
to 

Q. 
c 
o 
X 
£ 

II " 

r « 
: -a 

■li a 

«IJ. r. 
7' 7 

Record hyper-parameter values, <}) • 

Calculate and record  (j) ■= O,-, E(x) • 

Calculate and record summary statistic vector, D; 

I 
Accept Dy   if  |Dy- D*|< S 

D" = observed; tolerance is proportion of K that is accepted 

T 
Weigh accepted (|) and (J) 
values from 0 to 1 based 
on Euclidian distance 

between D • and D 

I 
Adjust accepted (j) and (() 
values using local regression 

■*• 

Joint posterior 
sample of 

0 (V) 

$      (O, EM) 

to 
3 
c 

o 
3 

!° 
> o o 
(D 

73 

3J 
(0 
ro' o 

u 
m 
« 

3 
a 
5" 
3 

FIG. 2.    Flow chart representing the generalized approximate Bayesian computation procedure for comparative phylogeographic inference 
for Y taxon pairs. See Table 1 for definition of parameters. 

D*|| approaches s. In this case, a weight of one is assigned 
when ||D, — D*|| = 0 and a weight of zero is assigned when 
||D; — D*|| = s. Given that d = ||D; — D*|| for a chosen e, 
these weights are assigned using the Epanechnikov kernel 
function Ke(d), 

r.(d) 
cs 

0 

'[1   -  (d/s)2] d < e 
d > e, (1) 

where c is a normalizing constant. Subsequently, weighted 
linear regression is used to adjust each accepted parameter 
value following the methods of Beaumont et al. (2002) and 

Tallmon et al. (2004), such that these adjusted parameter 
values are assumed to be random samples from the joint 
posterior distribution /(4>, 0 | D). The accuracy of obtaining 
this joint posterior by approximate means depends on how 
strongly the chosen summary statistic vector D is a function 
of the parameters cf> and 0. We investigate two factors that 
could affect the bias of the estimator. This includes tolerance 
(determined by e), and the number of summary statistics 
within the data vector D. An overall schematic of our im- 
plementation of the ABC approach for comparative phylo- 
geographic inference is depicted in Figure 2. 
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TABLE 1. Parameters and their prior distributions. Hyperparameters (4>) are randomly drawn once per Y taxon pairs. Within-taxon 
parameters (<£>) are randomly drawn once per z'th taxon pair. Hyperparameters ft and E(T) (4>) are calculated once per Y taxon pairs. The 
per generation per gene DNA mutation rate (u,) is uniform across all taxa. Each divergence time is scaled by u,, such that dividing by 
u, yields the divergence time (f) in generations. Because ft and E(T) are essentially properties of the Y divergence times within TY, they 
are not true hyperparameters and are therefore delineated as <f>. 

Hyperparameters (<J>) Description Prior distribution 

<]> 

T=  {*i, — . M 

TY =  (T,,---, TF} 

E(T) 

ft 

Within-taxon 
parameters (0) 

the per gene per generation mutation rate 

number of possible divergence times across Y taxon 
pairs 

matrix of I|J possible divergence times (t) among Y tax- 
on pairs 

matrix of Y divergence times among Y taxon pairs 

the mean T across Y taxon pairs calculated from T1; •••, 
Ty taxon pairs; in units of |x, such that T = 10.0 
would be 10.0/u, in generations 

Var(T)/E("r), the variance of T, divided by the mean of T 
across Y taxon pairs calculated from TJ, •••, Tr; in 
units of |o./29 AVE, where 2QAVE is a constant deter- 
mined by the parametric expected value of 9 

assumed to be uniform if estimating diver- 
gence time 

discrete uniform (1,10 

each t within T drawn from uniform 
Kyn'max) 

each T within TY randomly drawn with re- 
placement from T matrix 

determined by Tmax, *\>, Y 

determined by Tmax, W, Y 

T;,   I 

\,-,Y 

(8,),W 
(8„)„ i 
(8A)„ ' 

= 1,- 
= 1,- 

!   =    1," 

■,Y 
■.Y 
■,Y 

(8'J„ 
(8'&)„ 

i   =   1,- 
i   =   1,- 

(T'J„ i   =   1,- 
i   =   1,- 

each (Ah) taxon pair's divergence time drawn randomly 
(with replacement) from tp divergence times within 
matrix T = [t1, —, t^} 

total population mutation parameter of each taxon pair, 
where 0; = 2Nt[L 

population mutation parameters for daughter 
populations a and b, i = 1,■■■,!', 9,- = (9a + 8&), 

population mutation parameter for the ancestral popula- 
tion size of the z'th taxon pair 

coefficient of population bottleneck magnitude 
in daughter populations a and b at beginning of popu- 
lation bottleneck (T'B and T'b before the present) 

length of time between beginning of bottleneck 
in daughter populations a and b and the present time 

uniform (0, Tmax) 

uniform (0.5 9ma<r) 

(8a)j = uniform (0.0, 6,) 
(8&), = uniform (0.0, 8, | (8»), 
uniform (0.01, (QA)max) 

uniform (0.01, 9;) 

uniform (0.0, T,) 

(8J,) 

Hierarchical Model of Divergence Across Taxon Pairs 

Our comparative phylogeographic model is a hierarchical 
Bayesian model consisting of jointly distributed within-tax- 
on-pair parameters and hyperparameters (4>) describing the 
distribution of divergence times. This involves Y ancestral 
populations that each split into a taxon pair at times TY = 
{T, . . . , Ty} in the past. The primary hyperparameter is, ^P 
the number of different possible divergence times across Y 
taxon pairs and is drawn from the discrete uniform distri- 
bution (1, Y). After randomly drawing #, each of the ^P 
divergence times T = [t, . . . , tv] are randomly assigned 
values from a continuous uniform prior distribution 
(0, Tmax), the maximum possible divergence time. Then, each 
of the Y taxon pairs randomly chooses with replacement from 
the {t, . . . , tv} divergence times. In addition to using ^P for 
estimating the degree of variability in T across Y taxon pairs, 
we make use of two other hyperparameters including E(T), 

the mean divergence time across TY, and Cl = Var(T)/E("r), 
the ratio of the variance to the mean of divergence times 
across TY. Because E(T) and D, are not explicitly drawn from 
the hyperprior but instead are calculated from TY after # and 
T = [t, . . . ,tv] are drawn, we denote E(T) and ft as (J> instead 
of 4>. Although this is some abuse of notation, E(T) and ft 
can be estimated as hyperparameters and their hyperprior 

distributions can be explicitly characterized via simulation 
(Fig. 3). 

The divergence times T are scaled by the per gene per 
generation mutation rate, u,, such that T = fu,, where t is the 
divergence time in generations. Our estimates are based on 
the assumption that u, is constant across taxa, with the dif- 
ferences among taxa being parameterized by the composite 
population mutation parameter, 6 = 2N\L (where TV is the 
female effective population size given mtDNA data). Given 
nuclear data, 6 = 4A^u. and N would be the diploid effective 
population size. 

In addition to Y divergence times, our hierarchical model 
incorporates other lower-level parameters describing other 
aspects of the Y demographic histories. These are treated as 
nuisance parameters and are allowed to freely vary among Y 
taxon pairs by using continuous prior distributions (Table 1). 
The 6 of each taxon pair is drawn from a uniform prior 
distribution, such that the rth taxon pair's 6, is independently 
drawn from a uniform distribution bounded by (0.05 Qmax) 
and the two 6 values for each pair of respective daughter 
population, (6a), and (6&),, are drawn from uniform distri- 
butions bounded by (0.010, 1.00,) conditional on (0a), = 0 
— (B&),. The z'th taxon pair's ancestral mutation parameter 
(0A)„ is independent of the corresponding 0, and is drawn 
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FIG. 3. Prior (dashed lines) and posterior (solid lines) distributions 
of E(T) (A) and ft (B). The degree of uniformity in T across r taxon 
pairs is characterized by ft, the ratio between variance and mean 
of T. The prior distributions are not analytically characterized but 
rather are empirically derived from simulating the model K = 
500,000 times given ¥ = 8 taxon pairs and T,„M = 200.0. 

from the uniform distribution (0.05, 6mat). In practice, this 
uniform prior for 6 spans all of the empirical estimates of 6 
from the comparative phylogeographic dataset using either 
Tajima's (1983) or Watterson's (1975) estimator of 6. While 
E(T) is calculated from the scaled divergence times {T, . . . , 
TF}, Cl is calculated from divergence times scaled by u./0Av-£, 
where QAVE is a constant determined by the parametric ex- 
pected value of 6 given its prior distribution, (0.05, 6max). 

To allow for demographic expansion, we use an exponen- 
tial bottleneck model specified by the duration of each bot- 
tleneck in the i'th pair of each ancestor's two descendent 
daughter populations from the time of each bottleneck's be- 
ginning to the present, (T„),- and (T£); (Fig. 1). Exponential 
growth occurs from the beginning of each bottleneck, where 
the size of the daughter populations a and b are free param- 
eters (8g), and (6£); at the beginning of the bottleneck phase. 
Each exponential phase continues for the duration of the bot- 
tleneck, where (6*), and (6&), grow to be sizes (6J, and (6&), 
(Fig. 1). These four bottleneck parameters are drawn from 

uniform distributions specified in Table 1. We assume that 
evolution follows the coalescent under the Wright-Fisher and 
finite sites models. In our analysis, we used an HKY model 
of DNA evolution, which is robust and commonly used for 
mfDNA regions (Hasegawa et al. 1985), but one could use 
most other models of DNA sequence evolution that best fit 
the data (Cunningham et al. 1998). 

Summary Statistics 

For ABC to work well, it is best to use summary statistics 
showing a strong correspondence with parameter values. 
Pairwise Euclidian distances between the summary statistics 
generated under identical parameter values should be mini- 
mized. To implement ABC, the summary statistic vector D 
consists of a specified number of summary statistics that are 
collected from all taxon pairs in a comparative phylogeo- 
graphic dataset. The vector D includes summary statistics 
that have been demonstrated to contain relevant information 
for testing simultaneous vicariance across taxon pairs (Hick- 
erson et al. 2006). Briefly, TT is the average number of pair- 
wise differences among all sequences within a single phy- 
logeographic dataset (a single taxon pair), whereas irw and 
TTb are the average number of pairwise differences partitioned 
within and between each taxon pair, respectively (Tajima 
1983; Takahata and Nei 1985). The number of segregating 
sites normalized for sample size is Qw (Watterson 1975), and 
Var(Tr — Qw) is the denominator of Tajima's D (Tajima 1989, 
eq. 38). These summary statistics in total make up the com- 
ponents of two composite summary statistics that are posi- 
tively correlated with divergence time, irnet and Tajima's D 
(Hickerson et al. 2006). Nei and Li's corrected nucleotide 
divergence is the difference Tib — TTW = -unet (Nei and Li 
1979). Tajima's D (Tajima 1989) is a function of TT, 6W, and 
Var(iT — Qw) and has been demonstrated to have the least 
amount of correlation with these other summary statistics 
with respect to divergence time (Hickerson et al. 2006). 

The vector D is made up of a two-dimensional array where 
the number of columns correspond to the classes of summary 
statistics and the number of rows correspond to the number 
of taxon pairs (Y) per comparative phylogeographic dataset. 
We use up to four classes of summary statistics including TT, 

Tinet, Qw, and Var(ir - 6W). Given these four classes of sum- 
mary statistics collected per taxon pair and Y taxon pairs, the 
summary statistic vector 

D 

(iWi    TTJ     (Qw)l    Var(iT - Qw)i 

i^nedr    ^Y    <$W)Y    Var(Tr - 6w)j 

(2) 

would include AY summary statistics. One of the underlying 
principles of ABC is to calculate D consistently (empirical 
and simulated data). Following this, we must choose a way 
of ordering the rows within D consistently across all datasets. 
Because ABC will work most efficiently when there is a high 
correlation between Acf) and AD, where A is Euclidian dis- 
tance, ordering by sample size (number of individuals per 
taxon pair) would have resulted in an inefficient ABC esti- 
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TABLE 2.    Taxon pairs thought to have arisen from ancestral species splitting into descendent Pacific-Atlantic pairs. Values in parentheses 
are the number of COI sequences used from each taxon. 

Genus Pacific taxon Atlantic taxon 

Diadema 
Arbacia 
Echinometra 
Eucidaris 
Lytechinus 
Tripneustes 
Astropyga 
Meoma 

mexicanum (13) 
spatuligera (16) 
vanbrunti (14) 
galapagensis (14) 
semituburculatus (5) 
depressus-gratilla (164) 
pulvinata (4) 
ventricosa grandis (4) 

antillarum b (2) 
lixula (74) 
lucunter (43) 
clavata-tribuloides (58) 
variegatus-williamsi (82) 
ventricosus(Western Atlantic) (48) 
magnified (2) 
ventricosa (4) 

mator. For example, the distribution of nnet across the Yrows 
in D would be random under M> = 1 such that AD among 
datasets simulated under ^F = 1 would be similar to AD 
between these simultaneous divergence datasets and those 
datasets simulated under # > 1 because these latter datasets 
would also yield a random distribution of TTnet across the Y 
rows in D if ordering was done by sample size. 

Instead of ordering by sample size, we increase the effi- 
ciency of the ABC procedure by ordering rows 1 though Y 
within each column by the ascending values of each taxon 
pair's net divergence (irnet), the metric that is strongly cor- 
related with divergence time (Takahata and Nei 1985; Hick- 
erson et al. 2006). For example, each row within D would 
contain summary statistics collected from the same taxon 
pair, and (Qw)i within D would be from the taxon pair with 
the lowest Tinet and (8^)y would be from the taxon pair with 
the highest Tinet. This ordering is based on the exchangeability 
of the Y rows within D, (Dj, . . . , Dy). If T, and D, are invariant 
to the permutations of the indexes (1, . . . , Y) and each taxon 
pair's sample size is unrelated to the expectation of its T or 
D, there is exchangeability in our model (Gelman et al. 2004). 

Simulations 

To estimate D, and E(T), we generated K simulated datasets 
to sample from the joint prior distribution/(cf), 0) under the 
model M of population divergence. The proportion (toler- 
ance) of K values accepted as samples of the joint posterior 
distribution /(4>, 0 | D) is set by using a particular value 
of s. 

Three C programs (msprior, msDQH, and msStatsVector) 
were glued together by a Perl shell (which we call msBayes) 
to: (1) sample from the joint prior /(4>, 0); (2) generate the 
finite sites DNA sequence data; and (3) calculate the summary 
statistic vector D. The second of these three programs 
(msDQH) was a modified version of Hudson's (2002) coa- 
lescent simulator (ms) that produced data according to an 
arbitrary finite sites model and arbitrary population history, 
and the third program (msStatsVector) was a modified version 
of Hudson's sumstats (Hudson 2002). The parameter esti- 
mates by ABC regression and the corresponding joint pos- 
terior surfaces were calculated using the density estimation 
method implemented in the R statistical package (Loader 
1996; R Development Core Team 2004) with a script kindly 
provided by M. Beaumont. Because Cl and E(T) are bounded 
by zero, accepted values can end up having adjusted values 
outside parameter space (negative) during the regression step. 
Therefore, we transform negative values to zero before re- 

porting and summarizing the posterior densities. In general, 
the regression step is achieved in under a minute, while sim- 
ulating 500,000 draws from the joint prior takes approxi- 
mately 5 h per taxon pair on a Linux computer (4-GB RAM, 
2-GHz dual processor). All code and scripts are available 
from the first author upon request. 

Empirical Application 

We estimated D, from a mtDNA dataset of eight genera of 
tropical echinoids (Table 2). Each of the eight genera contains 
geminate taxon pairs and thereby consists of Atlantic and 
Pacific taxa that were possibly descended from an ancestral 
population split by the rise of the Isthmus of Panama ap- 
proximately 3.1 million years ago (Mayr 1954; Chesher 1972; 
Coates et al. 1992). These eight geminate taxon pairs include 
taxa in the genera Eucidaris (Lessios et al. 1999), Diadema 
(Lessios et al. 2001), Echinometra (McCartney et al. 2000), 
Tripneustes (Lessios et al. 2003), Lytechinus (Zigler and Les- 
sios 2004), Arbacia (Lessios et al. 2001), Astropyga, and 
Meoma (K. S. Zigler and H. A. Lessios, unpubl. data). These 
data consist of DNA fragments 632-639 bases long from the 
cytochrome oxidase I (COI) gene collected from multiple 
individuals per taxon pair. Although these eight divergences 
geographically correspond to the rise of the Isthmus of Pan- 
ama, some of the descendent sister taxa subsequently split 
into new species within either ocean after the isthmian sep- 
aration. 

To be conservative, we jointly estimated Cl and E(T) across 
the eight echinoid taxon pairs using two independent repli- 
cates of K = 500,000 draws from the joint prior distribution 
and repeated this using three different upper bounds for the 
prior of QA (40.0, 20.0, and 10.0) because of 0A's strong 
expected affect on ancestral coalescence. Specific prior val- 
ues are listed in Table 1 with the upper bounds for 0 and T 

being Qmax = 40.0, and tmax = 200.0. The uniform priors for 
0 and 0A encompass estimates of 0 based on Tajima's (1989) 
and Watterson's (1975) estimate of this parameter in the echi- 
noid data in which the maximum empirical values of IT and 
Qw were 31.73 and 28.03, respectively, per taxon pair and 
13.04 and 12.30, respectively, per daughter population. We 
report joint posterior estimates based on a summary statistic 
vector D that included the 32 summary statistics (TTnet, IT, QW, 

and Varfir — Qw] per taxon pair) and a tolerance of 0.002 
thereby yielding estimates based on 1000 draws from the 
joint posterior given K = 500,000 simulated draws from the 
joint prior. Additionally, we report estimates based on K = 
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FIG. 4. Panels (A-H) each plot 1000 true values of ft or E(T) against their approximate Bayesian computation (ABC) estimates. Each 
true parameter value is randomly drawn from the hyperprior distribution. Panels (A-D) depict ABC estimates of ft, whereas panels (E- 
H) depict ABC estimates of E(T). Results using simple rejection sampling are depicted in panels (A), (B), (E), and (F), and results using 
rejection sampling plus local regression are depicted in panels (C), (D), (G), and (H). All estimates are based on a tolerance of 0.002 
and K = 500,000 draws from the hyperprior. Estimates in panels (A), (C), (E), and (G) are obtained using one summary statistic per 
taxon pair (D = irBCt from each taxon pair), and the estimates in panels (B), (D), (F), and (H) are obtained using four summary statistics 
per taxon pair (D = {ir, Tznel, Qw, Var(TT - Qw)}). 

800,000 draws from the joint prior (1600 draws from the 
joint posterior). 

Performance of Estimator 

To evaluate the performance of our estimator, we used our 
ABC technique on six sets of 1000 pseudo-observed (sim- 
ulated) datasets. Each set of 1000 pseudo-observed datasets 
was simulated under different fixed values of Cl and E(T), 

and an ABC estimate of Cl and E(T) was obtained from each 
pseudo-observed dataset. Every simulated dataset consisted 
of eight taxon pairs that were identical to the eight echinoid 
datasets with respect to numbers of base pairs (632-639) and 
numbers of individuals within each taxon pair (Table 2). 
Within-taxon-pair parameters of the pseudo-observed data- 
sets were fixed across all simulations and were initially set 

to a single random draw from the per taxon pair priors (Table 
2). The summary statistics were identically computed in all 
simulated datasets and then used as pseudo-observed sum- 
mary statistics from which the ABC estimates of ft and E(T) 

are obtained. While drawing from the joint prior K = 500,000 
times by simulation can take about 5 h per taxon pair (4-GB 
RAM, 2-GHz dual processor), the estimation step takes sec- 
onds to minutes. Therefore, by reusing the K = 500,000 draws 
from the joint prior, 1000 ABC estimates from each set of 
1000 simulated datasets can be completed with relatively 
little computational cost (Excofher et al. 2005). 

We quantified performance by reporting how accurate and/ 
or biased the ABC estimator is given the fixed true values 
of ft and E(T). Over each set of 1000 datasets, we report the 
median estimates, mean estimates, and 95% coverage (pro- 
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portion of times the true value is within the equal-tailed 95% 
credibility intervals around the point estimate). We explored 
the performance given two tolerances (0.002 and 0.01 of 
accepted values) and two different sets of summary statistics 
within vector D (D = 8{iT„ef} and D = 32{iTnef, IT, 8^, Var(iT 
— Qw)})- Each estimate was based on the same K = 500,000 
draws from the joint prior. To gauge a more general evalu- 
ation of the estimator, we also estimated ft and E(T) on 1000 
datasets simulated from parameter sets randomly drawn from 
the joint prior distribution. 

To further assess our ABC method, we compared its per- 
formance to the performance of the MCMC method employed 
by isolation with migration (IM; Hey and Nielsen 2004), 
which is designed to estimate a divergence time between two 
populations. To be consistent between these two methods, 
we scaled down our ABC method to estimate a single di- 
vergence time between a single pair of populations given a 
single mtDNA locus of 639 base pairs evolving under the 
HKY model of evolution. For this comparison, we obtained 
three independent estimates given the same simulated dataset 
for both the ABC and MCMC methods (IM), where the sim- 
ulated taxon pair has 72 individuals (58 and 14, respectively, 

from the two descendent populations). Each of the three in- 
dependent ABC estimates of divergence time was from an 
independent K = 2,000,000 draws from the prior and cor- 
responding 4000 draws from the posterior (tolerance = 
0.002). For IM, each of the three independent estimates of 
the divergence time involved running the program with the 
prior for migration set to zero. We used IM with 10 MCMC 
coupled chains with a burn-in time of 500,000 steps, and we 
adjusted the heating values so that the initial update rates for 
divergence time were >40% and that swap rates between 
adjacent chains were at least 80%. 

RESULTS 

Performance of Estimator 

We found our ABC method to successfully estimate E(T) 

with notable accuracy and little bias across all of the param- 
eter space and conditions we explored, while success in es- 
timating ft improved as E(T) became older (see Fig. 4; Table 
2). For both E(T) and ft, the 95% coverage values were com- 
monly as large as 100% such that the true values of ft were 
within the 95% credibility intervals 100% of the time. The 
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FIG. 5. Panels (A-C) depict three independent approximate Bayesian computation estimates of T given a single taxon-pair dataset that 
were simulated with a divergence time of T = 24.0. Panels (D-F) are three independent isolation with migration (IM) estimates of T 
given the same simulated dataset. The true value of T is represented by a gray line. The simulated dataset consisted of 72 individuals 
with 58 and 14 individuals, respectively, in each population, and it consisted of a single haploid mitochondrial DNA locus of 639 base 
pairs. 

exception to this was estimating ft when E(T) was recent 
(2.0) and ft = 0.2 (history B), indicating that distinguishing 
between variable and simultaneous divergence histories will 
be most challenging for this recent time scale given single- 
locus data. Although our tests of estimator performance could 
have been heavily dependent on the fixed values of within- 
taxon-pair parameters we used (0 and QA), we found similar 
performance when the per taxon parameters were random 

draws from the prior across all pseudo-observed datasets (not 
shown). 

Tolerance and number of summary statistics within vector 
D were found to only slightly affect estimates under the con- 
ditions we explored. Although estimates of ft were more 
biased when using the larger summary statistic vector (D = 
32), doing so often led to higher coverage than when using 
the smaller summary statistic vector that only contained rnnet 
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FIG. 6. Six independent joint posterior probability densities for E(T) and Cl using the approximate Bayesian computation estimator, with 
a tolerance of 0.002, four summary statistics per taxon pair in vector D (iTnct, ir, Qw, Var(ir — Qw)), Tmax = 10.0, and six independent K 
= 500,000 draws from the prior. The uniform prior for 9A was bounded by 0.01 and 10.0 (in A and B), by 0.01 and 20.0 (C and D), 
and by 0.01 and 40.0 (E and F). 

from each taxon pair. Although a tolerance of 0.002 yields 
only 1000 accepted values (given K = 500,000 draws from 
the joint prior) and thereby could have resulted in substantial 
noise in the regression fit given 32 summary statistics, our 
simulation study suggests that 1000 values are sufficient for 
accurate estimates as well as for characterizing the posterior 
density using distributional summaries and density estimates 
(Beaumont et al. 2002). Although estimator performance 
could have potentially improved from using >500,000 draws 
from the joint prior, convergence is likely to be close because 

replicate estimates based on separate K = 500,000 draws 
from the joint prior resulted in nearly identical estimates. In 
empirical applications of our ABC method, it would be pru- 
dent to base conclusions on multiple estimates based on rep- 
licate draws from the prior and base final estimates using the 
number of draws from the prior that are computationally 
feasible. 

The comparison between our ABC method and the MCMC 
method of Hey and Nielsen (2004; IM) was generally con- 
sistent when making the independent estimates of a single 
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divergence time for a single simulated taxon pair given sin- 
gle-locus mtDNA data. Although estimates from both meth- 
ods were generally close to the true value of divergence time 
(T = 24.0; Fig. 5), the ABC posterior estimates obtained with 
much lower CPU cost. Each ABC estimate took 20 h, whereas 
the MCMC estimates each took 120 h with the same Linux 
computer (4-GB RAM, 2-GHz dual processor). In reality, 
each ABC estimate was completed in 5 h of real time by 
simulating the prior on parallel computers with subsequent 
concatenations. 

Divergence in Transisthmian Echinoids 

Estimates of fi and M* do not strongly support a history of 
simultaneous divergence in all eight echinoid taxon pairs. 
The estimates of Cl were robust to differences in the upper 
bound of the prior for 6A and replicates of K = 500,000 draws 
from the joint prior (Fig. 6). Additionally, the conclusion 
supporting variable divergence held when making estimates 
of tl and # from K = 800,000 draws from the joint prior 
(Figs. 7A,C). The estimate of E(T) defined by the mode of 
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TABLE 3. Performance of approximate Bayesian computation (ABC) estimators of Cl and E(T) given data from eight taxon pairs simulated 
1000 times under fixed histories A through F. Estimation procedure was repeated using two different summary statistic vectors (D = 
lY,{-TTnet} and D = 4Y,{-nnet, IT, QW, Var(ir — Ojy)} and two tolerance levels (0.002 and 0.01). Each ABC estimate was based on K = 
500,000 observations drawn from the joint prior distribution, /(4>,<i)). Each simulated dataset consists of eight taxon pairs matching the 
eight echinoid datasets with respect to numbers of base pairs (632-639) and numbers of individuals. Coverage refers to the proportion 
of times the true value is within the equal-tailed 95% credibility intervals around the posterior mode estimate. Histories B, D, and F are 
variable T histories and have the following fixed divergence times: history B, TY = {0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 6.4, 6.4}; history D, TY 
= {8.0, 8.0, 29.4, 29.4, 29.4, 29.4, 29.4, 29.4}; and history F, 7> = {51.0, 51.0, 51.0, 51.0, 51.0, 51.0, 84.0, 84.0}. The per taxon 
parameters for 6 and 6A are as follows: 6 = {5.2, 9.6, 14.0, 18.4, 22.4, 26.4, 31.6, 36.0}; and 9A = {4.6, 2.4, 3.5, 9.0, 7.9, 6.8, 1.3, 
5.7}. 

Mean Median Mean Median 
Tolerance D True a estimate O estimate H 95% coverage True E(T) estimate E(T) estimate E(T) 95% coverage 

History A 
0.002 4Y 0.00 0.02 0.00 1.00 2.00 2.27 2.25 0.87 
0.002 \Y 0.00 0.02 0.00 1.00 2.00 2.26 2.07 0.88 
0.01 4Y 0.00 0.04 0.00 1.00 2.00 2.47 2.67 0.87 
0.01 \Y 0.00 0.02 0.00 1.00 2.00 2.44 2.03 0.87 

History B 
0.002 4Y 0.20 0.05 0.04 0.11 2.00 1.22 1.68 0.89 
0.002 \Y 0.20 0.03 0.01 0.16 2.00 1.25 1.46 0.87 
0.01 4Y 0.20 0.09 0.07 0.82 2.00 2.29 2.44 0.87 
0.01 \Y 0.20 0.04 0.03 0.82 2.00 2.47 2.28 0.87 

History C 
0.002 4Y 0.00 0.05 0.02 1.00 24.00 24.41 24.46 0.97 
0.002 \Y 0.00 0.02 0.00 1.00 24.00 24.09 24.23 0.98 
0.01 4Y 0.00 0.05 0.02 1.00 24.00 24.69 24.64 0.99 
0.01 \Y 0.00 0.03 0.01 1.00 24.00 23.81 24.86 0.99 

History D 
0.002 4Y 0.20 0.28 0.27 0.99 24.00 25.01 24.82 0.99 
0.002 \Y 0.20 0.21 0.21 0.95 24.00 25.09 24.88 0.99 
0.01 4Y 0.20 0.30 0.29 0.99 24.00 24.05 24.53 1.00 
0.01 \Y 0.20 0.23 0.21 1.00 24.00 24.05 24.43 0.99 

History E 
0.002 4Y 0.00 0.06 0.01 1.00 59.20 60.22 59.80 1.00 
0.002 \Y 0.00 0.01 0.00 1.00 59.20 59.09 59.23 1.00 
0.01 4Y 0.00 0.07 0.01 1.00 59.20 61.42 6169 1.00 
0.01 \Y 0.00 0.03 0.01 1.00 59.20 59.47 59.47 1.00 

History F 
0.002 4Y 0.18 0.34 0.27 1.00 59.20 60.61 59.46 1.00 
0.002 \Y 0.18 0.20 0.16 1.00 59.20 59.81 59.20 1.00 
0.01 4Y 0.18 036 0.34 1.00 59.20 61.64 60.03 1.00 
0.01 \Y 0.18 033 0.28 1.00 59.20 59.80 59.48 1.00 

the joint posterior ranged from 22.3 to 24.9 and the estimate 
of Cl ranged from 0.14 to 0.27. 

Hypothesis Testing 

Although our simulation study demonstrates the ABC es- 
timator of Cl to be well suited for distinguishing variable 
divergence from simultaneous divergence (Table 2), the ABC 
framework also allows a posteriori hypothesis tests. The pos- 
terior density mode estimates of Cl do not strongly support 
an equal T history for the geminate echinoids of Panama, yet 
the posterior does cover values of Cl < 0.05 (Fig. 6). To 
further evaluate a history of simultaneous vicariance, we use 
two hypothesis test procedures. First, we use the Bayes factor; 
second, we use a frequentist procedure by simulating histories 
of simultaneous divergence and calculating the probability 
of rejecting simultaneous divergence (Type I error). 

The use of Bayes factors provides an alternative to the 
classical hypothesis testing, and by specifying an equal T 

history and a variable T history as two competing models 

(MX] and MKl), we can the Bayes factor B(\{, k2) to compare 
these models by averaging the posterior probabilities over 
the parameters (Kass and Raftery 1995). Given that/(MXl) is 
the prior probability of the model specifying an equal T his- 
tory and f(MK2) is the prior probability of the model specifying 
a variable T history, then the Bayes factor comparing these 
two models is 

B(\i, W 
/(MM|D)//(MJD) 

/(M„)//(M.)     ' (3) 

where f(MXl | D) and/(MX21 D) are the posterior probabilities 
of these two models given a summary statistic vector D. To 
calculate a Bayes factor, we must specify exactly how these 
two models are defined given our paramerization. We there- 
fore delineate the two models using an arbritary threshold 
for Cl, and define MKl to be specified by draws from the 
posterior of Cl that are below this threshold and MK2 specified 
by draws from the posterior of Cl higher than this threshold. 
Using this approach, support for a variable divergence model 
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(24.1). The 1000 simulated variable T histories (gray bars) were simulated given the means of both estimates for E(T) and ft. For this 
second variable divergence history, the eight divergence times were TY = {8.0, 8.0, 29.4, 29.4, 29.4, 29.4, 29.4, 29.4). 

(Mk2) was strong (B[ku X2] < 0.10) if using ft = 0.01 as a 
threshold and weak (SfX^ k2] > 1.0) if using ft = 0.1 as a 
threshold (Jeffreys 1961), and this was relatively insensitive 
to prior for QA or particular replicate (Table 3). Because even 
ft = 0.02 is consistent with marked discordance in T, we 
consider the threshold of 0.01 as signifying strong support 
for temporal discordance to be most relevant. 

To assess the probability of making a Type I error (falsely 
rejecting an equal T history) given our empirical estimates 
of ft, we made 1000 estimates of ft on 1000 datasets sim- 
ulated with ft fixed at 0.0 and E(T) fixed to the average of 
our empirical estimates (24.3). Only 5.5% of these 1000 mode 
estimates were ft > 0.1, while 62% were ft > 0.01 (Fig. 8). 
In these 1000 simulated datasets, the average proportion of 
accepted points greater than ft = 0.1 was 0.11%, whereas 
this ranged from 0.89% to 0.95% in the empirical estimates. 
Although the average proportion of accepted points greater 
than ft = 0.01 and 0.05 reached 0.56% and 0.25% respec- 
tively, these were also much higher in the empirical estimates, 
which ranged from 0.91% to 1.00%. 

TABLE 4. Bayesian factors comparing hypotheses of simultaneous 
and variable divergence histories under three different thresholds 
of ft to delineate these two hypotheses. Data are from the eight sea 
urchin taxon pairs. 

Prior for ancestral QA 

Threshold Uniform Uniform Uniform 
of n (0.01,10.0) (0.01,20.0) (0.01,40.0) 

0.01 0.05 0.04 0.03 
0.11 0.07 0.13 

0.05 0.21 0.18 0.18 
0.29 0.21 0.29 

0.10 0.73 0.68 0.57 
0.60 0.74 0.81 

To further determine confidence in our empirical estimates, 
we also simulated the data 1000 times by fixing both ft and 
E(T) to their average estimate (0.21 and 24.3, respectively). 
This allowed us to investigate the power in rejecting an equal 
T history if the real history matches our empirical estimate 
of ft. To this end, we estimated ft from these 1000 datasets 
and recorded the proportion of estimates that were greater 
than our chosen thresholds of ft (0.01 and 0.1). Although 
fixed values of ft and E(T) could be consistent with many 
different sets of eight values of T and # (the number of 
divergence times), we chose to simulate under the simplest 
history where ^ = 2 and the divergence time vector TY = 
{8.0, 8.0, 29.4, 29.4, 29.4, 29.4, 29.4, 29.4}. The distribution 
of ft estimates given data simulated under this variable T 

history was markedly different than the distribution of ft 
estimates given data simulated under the simultaneous T his- 
tory (Fig. 8). Although only 73.2% of the mode estimates of 
ft were greater than 0.1, 99.7% of the estimates of ft were 
greater than 0.01. If we were to use 0.01 as a criterion for 
rejecting a simultaneous T history, than there would be a 
nearly perfect statistical power in rejecting this history given 
the simulated variable T history (ft = 0.21; E[T] = 24.3). 

DISCUSSION 

It is encouraging that our ABC method can obtain fairly 
reasonable estimates of ft and therefore be able to distinguish 
variable and simultaneous divergence histories given single- 
locus mtDNA data. In spite of using a complex and param- 
eter-rich model that allows demography to vary across taxon 
pairs, and in spite of reducing the data to a mere four summary 
statistics per taxon pair, our simulation study demonstrates 
that our ABC estimates can distinguish simultaneous diver- 
gence from variable divergence histories with only 500,000 



TEST FOR SIMULTANEOUS DIVERGENCE 2449 

0.16 

0.14 

0.12 

0.1 

j: 0.08 

0.06 

0.04 

0.02 

0 

/ 

BU 0_ — - 
__. —-EChinometra 

„   v.   irirmeiXSles 
t,ucuiartsr 

Lgiechinus 

"o      0 
XZiropygam    ArFacia 

0,^0 Diadema 
Meoma 

95% 
Quantiles 

Expected 

O   Observed 

1        2        3        4        5        6        7        8 
8 Echinoid-pairs ranked by Jt   . 

FIG. 9. The eight ranked values of pairwise net nucleotide divergence (ir„et) observed in eight echinoid sister taxon pairs thought to 
have arisen through allopatric isolation when the Isthmus of Panama emerged approximately 3.1 million years ago. The expected values 
are the mean values determined by simulating the data 10,000 times under a simultaneous vicariance history with E(T) fixed at 24.1. 
The dashed lines delineates the upper and lower 95% credibility boundaries of these ranked irnet values. The data were simulated using 
the taxon pairings and sample sizes in Table 2A. 

draws from the joint prior and only 1000 approximate draws 
from the joint posterior (tolerance = 0.002). However, the 
simulations also suggest that this is more difficult when the 
average divergence time is recent (Table 4). This is not un- 
expected given that ancestral coalescent variance has a pro- 
portionally larger affect on the total genetic divergence when 
divergence times are more recent (Edwards and Beerli 2000; 
Arbogast et al. 2002). Although the simulation testing we 
present might be beyond the scope of most empirical studies, 
such studies can and should be expected to conduct an overall 
test of estimator bias, as we report in Figure 4, especially 
given that doing so is computationally inexpensive. 

Perhaps the demonstrated accuracy of our XI estimator is 
counter-intuitive given that a simultaneous (M>, fi) = 
(1, 0.0) history yielding data with high variance in irnet across 
taxon pairs can be accommodated by large QA values. Al- 
though these parameter sets of large QA values can be drawn 
from a uniform prior conditional on the hyperprior being ^P 
= 1, a larger proportion of draws from the hyperprior con- 
ditional on Tp = 2 will have sets of T1S T2, and QA values that 
accommodate this same observed high variance in ir„e/. In 
this simple case, the posterior would likely favor a ^P = 2 
history over a ^P = 1 history and this would emerge from 
the corresponding Bayes factor. The degree to which this 
posterior supports a *P = 2 history given this observed high 
variance in Tinet across taxon pairs depends on the upper 
bound for the uniform prior for QA. This is illustrated in the 
extreme case of this uniform for QA being (0.0, 0.001). Here, 
no portion of the posterior would correspond to ^P = 1 be- 
cause the lack of ancestral coalescence would force T to be 
about equal to the TMRCA and therefore the high variability 
in TTnet is only accommodated by histories where NP > 1. 

The choice of the prior for QA should be informed by ge- 
ology and ecology and from the intrapopulation genetic data. 
By examining the ranges in observed pairwise differences 
within populations, TTH„ one can get an idea of a plausible 

range in 0A. For example, if the maximum value of TTW is 8.3, 
then it could be reasonable to use 10.0 as the upper bound 
for 0A. If geological information suggests that an emerging 
barrier to gene flow bisected the range of all ancestral pop- 
ulations, then it would be reasonable to use 20.0 as this upper 
bound of this prior for QA instead of 10.0. However, as we 
demonstrate in this study, it is best to gauge robustness by 
using a range of priors for this parameter. 

Although our ABC estimator performed well under a wide 
range of conditions, there are some parameter combinations 
and conditions (such as variable mutation rates) that will 
make such inferences inherently difficult without also col- 
lecting many unlinked nuclear loci (Felsenstein 2006; Hick- 
erson et al. 2006). Investigating all possible conditions that 
could influence the estimator performance is beyond the 
scope of this study, yet there were some conditions that 
proved to hinder the estimator's performance. This included 
using other subsets of summary statistics within D, other 
tolerances (0.1 and 0.0002), as well as other ordering schemes 
for the summary statistics within D (not shown). A fuller 
investigation of estimator bias and model sensitivity will be 
presented in a future study. In the empirical application of 
this ABC method, a hypothesis of simultaneous vicariance 
in the natural experiment of transisthmian echinoids is not 
well supported. How do we interpret this result in light of 
biology, population genetics, and geology? Our independent 
estimates of Cl were all well over 0.1 (Fig. 6), and the ^P 
estimates were =2.0 (Fig. 7C), and therefore most consistent 
with a history of more than one divergence time (or mutation 
rate). Although the main isthmus closure is thought to have 
occurred 3.1 million years ago (Coates et al. 1992), subse- 
quent admixture could have occurred in a subset of the genera 
if sea levels rose sufficiently to breach the isthmus dramat- 
ically approximately 2 million years ago (Cronin and Dowsett 
1996). 

To investigate the disparity in divergence times, we first 
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simulated the data under a simultaneous vicariance history 
constrained by the mean empirical estimate of E(T) = 24.1, 
which was demonstrated to be accurately estimated under 
most divergence times (Table 2). When comparing the ob- 
served ranked values of irnet to the expected (mean) ranked 
values of iTnet under the history of simultaneous divergence, 
one of the taxon pairs (Diadema) falls outside the 95% cred- 
ibility intervals, whereas the other taxon pairs are within the 
values expected under simultaneous divergence (see Fig. 9). 
If we obtain ABC estimates on these seven genera (excluding 
Diadema), the posterior estimates of Cl and E(T) become 0.0 
and 31.42, respectively (Fig. 7B), and the posterior estimate 

of becomes 1.12 (Fig. 7D). However, this approach is heu- 
ristic and somewhat biased from the estimate of E(T) being 
conditional on the full model of unconstrained #. 

To investigate the disparity in divergence times more for- 
mally, we take advantage of the flexibility of ABC by sim- 
ulating the hyperprior conditional on there being two diver- 
gence times across the eight taxon pairs (^P = 2; K = 
500,000). In so doing, we obtained ABC estimates (tolerance 
= 0.002) on four additional hyperparameters: T,, the recent 
divergence time; T2, the more ancient divergence time; ^, 
the number of taxon pairs diverging at T: ; and ^P2> the number 
of taxon pairs diverging at T2. These additional estimates 



TEST FOR SIMULTANEOUS DIVERGENCE 2451 

conditional on ^P = 2 were highly consistent with Diadema 
diverging more recently (Fig. 10). The two divergence times 
Tt and T2 were 14.6 and 31.8, respectively, with the highest 
posterior support for only one urchin taxon pair diverging at 
T: and the rest diverging at T2. This result is strongly con- 
sistent with a history of simultaneous divergence in seven of 
the eight taxon pairs (Figs. 7, 8). Given the older estimate 
for these seven taxon pairs, an assumed simultaneous rise of 
the land bridge 3.1 million years ago, and generation time 
of 2 years (Lessios 1979), the mtDNA COI substitution rate 
would be approximately 1.59% per million years (divergence 
rate of 3.17% per million years), an estimate consistent with 
other estimates of this commonly used locus (DeSalle et al. 
1987; Hickerson et al. 2003). 

Two different divergence times is a result congruent with 
previous conclusions from these echinoid data (Lessios et al. 
2001). Lessios et al. speculated that the disparity in genetic 
divergences were the result of two separate isolation events. 
Isozyme data in Diadema also show an order of magnitude 
less divergence than the other genera (Lessios 1979), sug- 
gesting that total isolation in Diadema populations occurred 
later than in the other echinoid genera. This could possibly 
be due to high sea level stands that may have occurred 2 
million years ago and thereby provided an opportunity for 
Atlantic-Pacific gene flow subsequent to the rise in the Isth- 
mus of Panama 3.1 million years ago in this species (Cronin 
and Dowsett 1996). Although Diadema lies outside the 95% 
credibility intervals under the constrained history of E(T) = 
24.1 and M* = 1 (Fig. 9), Meoma has nearly the same Trnet. 
However, by only removing Diadema we yield an estimate 
of Cl = 0.0 (Figs. 7C, D). Perhaps the small sample size of 
Meoma could explain how we cannot fully reject the hy- 
pothesis that Meoma was separated 3.1 million years ago. 

Conclusion 

The ABC method we introduce here provides a means for 
quantitative treatment of comparative phylogeographic da- 
tasets. The TSD procedure we demonstrate allows the sta- 
tistical assessment of disparity in genetic divergences be- 
tween members of species pairs that span a biogeographic 
barrier in common and thereby brings the study of compar- 
ative phylogeography further into the realm of statistical phy- 
logeography (Bermingham and Moritz 1998; Knowles and 
Maddison 2002). Most important, the simple and flexible 
ABC framework that we present here demonstrates that com- 
plex comparative phylogeographic hypotheses can be ro- 
bustly tested by estimating the hyper parameters that char- 
acterize the degree of uniformity among taxa. A second im- 
portant feature that distinguishes this approach is that we can 
verify these estimates with simulations under many different 
conditions without excessive additional computational cost 
(Excoffier et al. 2005). Although we show that there is some 
uncertainty and bias with respect to testing for simultaneous 
vicariance, collecting more data from nuclear loci should 
increase statistical power in making such inferences (Felsen- 
stein 2006; Hickerson et al. 2006) as well as better inform 
researchers on the genomic nature of divergence and repro- 
ductive isolation (Fitzpatrick 2002). Further development of 
this flexible simulation-based method will allow incorpora- 

tion of more parameters (i.e., migration and recombination) 
and thereby allow testing of even more complicated com- 
parative phylogeographic hypotheses that are implicitly rep- 
resented by specific prior distributions and/or models. Ulti- 
mately, comparative phylogeographic data will be integrated 
within a framework that can incorporate various informa- 
tional sources (Arbogast and Kenagy 2001; Hugall et al. 
2002), and the hierarchical ABC framework we demonstrate 
here is well suited for this endeavor (Beaumont and Rannala 
2004). 
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