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Abstract. Species–area relationships (SARs) characterize the spatial distribution of
species diversity in community ecology, but the biological mechanisms underlying the SARs
have not been fully explored. Here, we examined the roles of dispersal limitation and habitat
heterogeneity in shaping SARs in two large-scale forest plots. One is a 24-ha subtropical forest
in Gutianshan National Nature Reserve, China. The other is a 50-ha tropical rain forest in
Barro Colorado Island, Panama. Spatial point pattern models were applied to investigate the
contributions of dispersal and habitat heterogeneity and their interactions to the formation of
the SARs in the two sites. The results showed that, although dispersal and habitat
heterogeneity each could significantly contribute to the SARs, each alone was insufficient to
explain the SARs. Their joint effects sufficiently explained the real SARs, suggesting that
heterogeneous habitat and dispersal limitation are two predominant mechanisms for
maintaining the spatial distributions of the species in these two forests. These results add to
our understanding of the ecological processes underlying the spatial variation of SARs in
natural forest communities.

Key words: Barro Colorado Island, Panama; dispersal limitation; Gutianshan National Nature Reserve,
China; heterogeneous habitat; point pattern modeling; Poisson processes; species–area relationship (SAR);
subtropical forest; Thomas processes; tropical forest.

INTRODUCTION

A species–area relationship (SAR) describes how the

number of species changes with the size of the sampling

area (Gleason 1922, Connor and McCoy 1979). This

relationship has been studied for more than one hundred

years, and its importance has long been appreciated in

biogeography, community ecology, and conservation

biology (de Candolle 1855, Sugihara 1980, Higgs 1981,

He and Legendre 1996, 2002, Desmet and Cowling 2004,

Thomas et al. 2004). However, current understanding of

SARs mainly comes from empirical data fitting by

various statistical and ad hoc models (e.g., exponential

and power curves; Tjørve 2003), and the processes that

produce the SARs are still not fully understood

(McGuinness 1984, Storch et al. 2007).

Conventionally, three principle hypotheses have been

proposed to account for SARs. The random placement

hypothesis proposes that nothing other than a random

placement of species and individuals in an area is

responsible for the shape of SARs, thus leaving no room

for habitat differences and other ecological processes for

explaining species richness (Arrhenius 1921, Coleman

1981). On the contrary, the habitat diversity hypothesis

attributes the increase of species to the addition of new

habitats when the size of sampling area increases

(Williams 1964). Meanwhile, the equilibrium theory

assumes that the number of species in an island is a

result of dynamic equilibrium between the effect of

immigration and extinction (Preston 1960, 1962, Mac-

Arthur and Wilson 1963, 1967).

The recently developed neutral theory of macro-

ecology introduces speciation and dispersal limitation

into the mechanisms for interpreting species diversity

and SARs (Hubbell 2001). It has been shown that

dispersal limitation is a key process generating species–

area curves (Hubbell 1999). Different dispersal kernels

(e.g., narrow vs. fat tails) can generate SARs varying

from log-log linear to triphasic shape (Hubbell 2001,

Chave et al. 2002). Rosindell and Cornell (2007) showed

a triphasic SARs with a log-log linear central phase in an

infinite landscape.

It has been well recognized that each of the above

hypotheses can be applied to explain the observed
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species–area curve in some kinds of communities

(Connor and McCoy 1979). These hypotheses empha-

size roles of different ecological and evolutionary

processes (Gotelli and Graves 1996), but the method

for quantitatively assessing the contributions of individ-

ual processes remains to be explored. This has been a

major challenge to the study of the SARs and a source

of controversies.

In this study, we address this challenge using the

recently developed spatial statistics methods (Waagepe-

tersen 2007, Waagepetersen and Guan 2009). The spatial

statistical models can be used to analyze spatial

distribution of individuals through either single process

or multiple processes (Stoyan 2000, Cottenie 2005), thus

allowing for assessing the additive effects of different

generating mechanisms. Because the new methods do

not require the unrealistic assumptions of stationary and

isotropic spatial distribution (Baddeley and Turner

2005), more accurate estimates of the joint effects of

dispersal and habitat heterogeneity can be obtained

(John et al. 2007).

Our interest here is to investigate the individual effects

of random placement, dispersal limitation, habitat

heterogeneity, and their joint effects on the formation

of the SARs. We start by testing the effect of the random

placement model and then examine more complex

spatial models by including the processes of dispersal

limitation and habitat heterogeneity. Specifically, four

models were assessed: (1) the homogeneous Poisson

process for examining the effect of a pure random

process; (2) the heterogeneous Poisson process for

examining the effect of habitat heterogeneity; (3) the

Poisson cluster process for examining dispersal limita-

tion. Hereafter, this process is called homogenous

Thomas model based on previous studies (Plotkin et

al. 2000, Seidler and Plotkin 2006, John et al. 2007); and

(4) the heterogeneous Thomas model for examining the

joint effects of dispersal and habitat heterogeneity.

These different spatial models were applied to generate

SARs at different spatial scales and the results obtained

from each of the above four models were compared

across scales. Inferences on the effect of each of these

models on SARs were then drawn from comparing the

goodness of fit of the models.

MATERIALS AND METHODS

Subtropical and tropical forest community data sets

Two different types of tree communities were chosen

to examine the mechanisms generating the SARs. The
first data is a 24-ha stem-mapped subtropical forest plot,

located in Gutianshan National Nature Reserve, west-

ern Zhejiang Province, China (Table 1, hereafter called
Gutian plot). Detailed descriptions of the climate,

geology, flora, and fauna in the Gutian plot can be

found in Zhu et al. (2008) and Legendre et al. (2009).
The Gutian plot was stem mapped in 2005. There are in

total 140 676 stems (dbh � 1 cm) belonging to 159

species. The second data is the widely known 50-ha
Forest Dynamics Plot of Barro Colorado Island (BCI),

Panama (Table 1). Detailed descriptions of the climate,

geology, flora, and fauna of BCI can be found in Croat
(1978), Leigh et al. (1982), and Gentry (1990). The BCI

data we used is the sixth census data collected in 2005.

The climate and community composition of the two
plots are summarized in Table 1. Because the accuracy

of spatial pattern modeling relies on reasonable mini-

mum population size (Baddeley and Turner 2005), rare
species with fewer than 50 individuals were not included

in all analyses.

In order to quantify the effect of habitat heterogeneity

on the SARs of Gutian and BCI plots, we included four
topographical variables, the tree density per quadrat,

and 12 soil nutrient elements and pH value in the soil in

our analysis. Specifically, the topographic variables are
mean elevation, mean convexity, mean aspect, and mean

slope in each 4 3 4 m quadrat (Harms et al. 2001,

Valencia et al. 2004). Similarly, based on the original
BCI soil data, we generated the maps of 4 3 4 m2 scale

for the concentrations of nutrient elements including Zn,

Al, B, Ca, Fe, K, Cu, Mg, Mn, N, P, and N
(mineralization) and pH value in the soil using geo-

statistical methods. The total tree density in each 4 3 4

m2 quadrat was used as a comprehensive bioenviron-
mental index for analysis.

Testing the effects of random placement, dispersal

limitation, and habitat heterogeneity on SARs

Four distinct processes with a progressive increase in

complexity were used to explain the SARs in the two

TABLE 1. A comparison of the two forest plots (Gutianshan, China, and Barro Colorado Island, Panama [BCI]).

Characteristic Gutian plot Barro Colorado Island

Plot location 2981001900–2981704100 N,
11880305000–11881101200 E

98904.500–989020.700 N,
79851018.600–79851019.100 W

Community type subtropical forest,
old-growth evergreen,
broad-leaved

tropical forest,
old-growth, rain,
semi-deciduous plants

Plot setting-up year 2005 1980
Plot size (ha) 24 50
Mean annual temperature 15.38C 278C
Mean annual precipitation (mm) 1964 2600
Species richness (number of species with dbh �1 cm) 159 301
Number of individuals 140 676 229 049
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plots. The first is a homogeneous Poisson process where

the spatial location of a given point (tree) is independent

of any other trees. This process only has one parameter,

a, the average tree density per unit area for each species

(Table 2, Appendix).

The second model is a heterogeneous Poisson process

where the density of each tree species in each quadrat is

associated with the environmental factors in the

quadrat. Compared with the homogeneous Poisson

process, heterogeneous Poisson process has additional

parameters, bj ( j ¼ 1, 2, . . .), for describing the

correlations between the tree density and habitat

conditions (Table 2, Appendix). This process can be

used to examine the effects of the interaction between

tree density and habitat factors (e.g., topography and

soil nutrient properties) on the SARs.

The third model is a homogeneous Thomas process

where the aggregative distribution of offspring due to

dispersal limitation is considered, distinct from the

previous two processes. Homogeneous Thomas process

is a cluster process, which is formed by the distribution

of parent trees generated by a Poisson process (j),
together with the distribution of a random number of

offspring around each parent tree. Here, the number of

offspring for a parent is also assumed to be a Poisson

distribution (l), and the locations of the offspring of

each parent are assumed to be independent and

isotropically normally distributed around the parent

tree, with mean being zero and standard deviation d
(Table 2, Appendix).

The fourth model is a heterogeneous Thomas process

where the relation between the density of each tree

species and the environmental factors in each quadrat is

considered in addition to the three parameters in the

homogeneous Thomas process (Table 2, Appendix).

Thus, the joint effects of dispersal limitation and habitat

heterogeneity are included.

In our analysis, parameters in each of the above four

processes were estimated using Waagepetersen and

Guan’s two-step approach (Waagepetersen and Guan

2009; Appendix). The maximum likelihood method,

Eq. A.4 in the Appendix, was used to estimate the

environmental (habitat heterogeneous) parameters. The

minimum contrast method, Eq. A.5 in the Appendix,

was used to estimate the dispersal related parameters. In

the heterogeneous models with soil nutrient variables,

we calculated principal components (PCs) from 13 soil

variables and used only the first three components

(condensed variables, explained 80.2% of total variance

in soil nutrient variables) together with four other

topographic parameters and the tree density per quadrat

for analysis. This approach was also used by John et al.

(2007) and can help to minimize the possibility of over-

fitting the models. To compare different models,

Akaike’s information criterion (AIC) was calculated to

assess the gain in explanatory power due to the addition

of more parameters. Since the parameters were estimat-

ed through two-step approach, our AIC calculations

were based on the sum of residuals and the number of

parameters used in different processes (Webster and

Mcbratney 1989; Appendix).

For each of the four processes, we used the

parameterized processes to simulate spatial distribution

of each species, and then overlaid each species distribu-

tion generated by the simulations to recover a commu-

nity that was estimated from the actual community. A

species–area curve was then constructed by randomly

throwing quadrats onto one simulated community,

similar to the method used in previous studies (Dungan

et al. 2002, Manly 2006). Finally, the predicted SARs of

each model were calculated by averaging the SARs on

100 simulated communities and a 95% confidence

interval (CI) was constructed for each predicted SARs.

The observed (true) SARs from the original data of

Gutian and BCI plots were compared against the

predicted SARs. The model is considered adequate if

the observed SARs fall within the 95% CI of each

predicted SARs, otherwise, the model is rejected. For

illustration, we presented the observed and four

simulated spatial distribution maps of Cupania seeman-

nii (Triana & Planch.) in the BCI plot. The nearest

neighbor distance function G(r) was also calculated for

those different distributions to evaluate the goodness of

fit of each model (Ripley 1988, Møller and Waagepe-

tersen 2004). All calculations were conducted using the

program R package ‘‘spatstat’’ and the main codes for

analyses were included in the Supplement.

RESULTS

Homogeneous Poisson process

Our results showed that the SARs produced by the

homogeneous Poisson process significantly overestimat-

ed species diversity at most scales in both Gutian and

BCI plots (Fig. 1, cyan lines). In each plot, the observed

SAR was distributed outside the range of 95% CI

generated by the homogeneous Poisson process. Fig.

1B, D, F clearly show the discrepancies between the

predicted and observed SARs at different scales. The

AICs of homogeneous Poisson process models were the

highest in the two plots. These significant differences

TABLE 2. Four different processes and their parameters used
for testing species–area relationships (SARs) pattern at
different spatial scales in Gutian and BCI plots.

Processes Parameters

Homogeneous Poisson a
Heterogeneous Poisson a, bj ( j ¼ 1, 2, . . .)
Homogeneous Thomas j, l, d
Heterogeneous Thomas j, l, d, a, bj ( j ¼ 1, 2, . . .)

Note: Parameters are: a, the tree density per unit area; j, the
density of parent trees per unit area; l, the expected number of
offspring trees per parent tree; d, the standard deviation for the
location distribution of the offspring for a given parent, which
is assumed to be independently and isotropically normally
distributed for the spatial distances between a parent and its
offspring; and bj, the log linear regression coefficients of the tree
density on the jth environmental factor in the focal quadrat.
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indicated that the random placement model is not

adequate for explaining the SARs for Gutian and BCI

plots. This is because species in both plots are not

randomly distributed. For example, results in Fig. 2A, E

show that the homogeneous Poisson process fails to

describe spatial distribution of C. seemannii in the BCI

plot. This result strongly suggests that nonrandom

processes should be invoked to explain the SARs for

the two forests.

Note that the seemingly ‘‘good’’ estimates of the SARs

near the two ends of the SARs curve, i.e., near 0 and 24

ha in the Gutian plot (or near 0 and 50 ha in the BCI

plot), were an artifact. If the results were magnified at

very small scales, the SARs driven by the homogeneous

Poisson process significantly overestimated species

richness at most small scales (Fig. 1). The artifact arises

from the fact that the total richness is fixed at the large

spatial scale regardless what models are used. Thus, with

the sampling area approaching the total plot, the

predicted species richness is forced to converge to the

total species richness. This was also true in the following

analyses with different processes.

Heterogeneous Poisson process

Compared with the results of the homogeneous

Poisson process, a better predicted SAR was obtained

using the heterogeneous Poisson process (green lines in

Fig. 1). The AICs of the heterogeneous Poisson process

model were smaller than those of the homogeneous

Poisson process model in the two plots (Table 3).

However, the SAR predicted using the heterogeneous

Poisson process still significantly overestimated species

richness at most scales, especially when some important

heterogeneity habitats (e.g., topography and soil nutri-

ents) were not included (green lines in the middle of Fig.

1). The green lines in middle of Fig. 1, generated by the

heterogeneous Poisson process, included four topo-

graphic parameters (elevation, slope, aspect, and con-

vex) and the total tree density indices. These green lines

were significantly different from those generated by the

homogeneous Poisson process at most large spatial

scales. The difference in species richness at each spatial

scale and the difference in the AICs between the

homogeneous and heterogeneous processes indicated

that topography and the total tree density were

important for explaining the SARs.

Soil nutrients and pH value are important factors

which can change the SAR pattern. The inclusion of five

aboveground habitat factors (four topography variables

plus the number of trees in each quadrat) and three main

PCA components from 13 soil parameters with the BCI

plot data, substantially improved the prediction of the

SARs (green lines at the bottom of Fig. 1). Fig. 2B

shows the spatial distribution of C. seemannii in the BCI

plot predicted from the heterogeneous Poisson process.

The inclusion of the effects of local soil nutrient

properties produced the clustered distribution that was

closer to the real situation (Fig. 2E). However, there is

still noticeable overestimation in species richness at most

spatial scales even when information of 17 habitat

variables was considered in the BCI plot. This overes-

timation is largely due to the underestimation of

aggregation of species. Fig. 3 exactly shows that

heterogeneous Poisson model underpredicts the aggre-

gation of the spatial distribution of C. seemannii in the

BCI plot. These results indicated that random placement

and habitat heterogeneity together were still insufficient

to explain the SARs.

Homogeneous Thomas process

Our results showed that the homogeneous Thomas

process fitted the SARs better than the homogeneous

Poisson process, with smaller AICs (Table 3). This

suggests that dispersal limitation could be an important

factor in affecting the SARs. The homogeneous Thomas

process predicted aggregated distribution of species. For

example, Fig. 2C shows the distribution of C. seemannii

in the BCI plot predicted from the homogeneous

Thomas process.

In contrast to the overestimation with the homoge-

neous Poisson process, the homogeneous Thomas model

underestimates species richness at intermediate spatial

scales (blue lines in Fig. 1). The homogeneous Thomas

process in general overpredicts the degree of aggregation

that causes the underestimation of the SARs (Fig. 3).

The underestimations at the scale of 0.015–6.000 ha in

the Gutian plot or at 0.04–6.00 ha in the BCI plot

indicated that the sole dispersal process was not

sufficient to explain species distribution pattern. This

suggested that other aggregation processes, such as the

heterogeneous habitats, could affect the SARs as well.

The presence of other aggregation processes could bring

above biased estimation of the clustering intensity of

each species.

Heterogeneous Thomas process

The last model was the heterogeneous Thomas

process which significantly improved the explanation

of the SARs in both plots. No significant differences

were observed between the predicted and observed

SARs at most sampling scales, except a very slight

underestimation at the scale of 0.04–2.2 ha for the BCI

plot (red lines in Fig. 1C–F), and at the scale of 0.02–

0.18 ha for the Gutian plot (red lines in Fig. 1A, B). The

heterogeneous Thomas process models had the lowest

AIC (Table 3). Apparently, the heterogeneous Thomas

process is the best-fitted process among the four

processes studied here.

Fig. 2D shows the spatial distribution of C. seemannii

predicted using the heterogeneous Thomas process in

the BCI plot. Differences in spatial patterns of C.

seemannii (Fig. 2) and nearest neighbor distance curves

(Fig. 3) again show heterogeneous Thomas process is the

best process of the four studied here. The same

qualitative results were also observed in most of other

species (not shown here). These results explicitly
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demonstrated that the joint effects of habitat heteroge-

neity and dispersal limitation determine the SARs in

both Gutian and BCI plots.

DISCUSSION

Using different types of spatial point pattern models,

we demonstrated that the joint effects of dispersal

limitation and heterogeneous habitats could explain the

pattern of SARs in both Gutian and BCI forest plots.

Compared with the significant effects of dispersal

limitation or habitat heterogeneity, their joint effects

increase the predictive power of the SARs in forest

communities (Table 3). These results are consistent with

the previous studies observed from seed trapping

FIG. 1. The observed (black dots) and predicted species–area curves for the two data sets (A, C, E) and their differences (B, D,
F). (A, B) Gutian plot (China) without soil data, (C,D) Barro Colorado Island (BCI; Panama) plot without soil data, (E, F) BCI
plot with soil data. In each figure, the cyan line is the species–area curve predicted from the homogeneous Poisson process, the
green line is the prediction of the heterogeneous Poisson process, the blue line is the prediction of the homogeneous Thomas
process, and the red line is that of the heterogeneous Thomas process. The differences between results with soil data and results
without soil data by the same analysis method reflect the potential impact of soil nutrients and soil pH values on species–area
relationships. The vertical bars indicate the 95% confidential intervals.
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experiments and environmental association tests (Levine

and Murrel 2003, John et al. 2007). Although the

importance of dispersal limitation and habitat hetero-

geneity in explaining species diversity have been

separately stressed in forest or other communities

(Boecklen 1986, Hart and Horwitz 1991, Plotkin et al.

2000, Condit et al. 2002, Clark et al. 2004, Wiegand et

al. 2007), our results highlight the significance of their

joint effects in determining the SARs. This result has not

been emphasized in lowland rain forest in Panama (BCI)

although effects of dispersal limitation have been

reported (Condit et al. 2002, Seidler and Plotkin 2006).

Although the random placement hypothesis explains

the SARs quite well in some communities, it often

overestimates species richness in other cases (Ryti 1984,

FIG. 2. The natural distribution of Cupania seemannii (Triana & Planch.) in the BCI plot and its distribution predicted from
four different processes. (A) Distribution predicted by the homogeneous Poisson process, with parameter â ¼ 0.0026. (B)
Distribution predicted by the heterogeneous Poisson process, with parameters â¼17.2541, b̂1¼�4.1274 for elevation, b̂2¼�0.1113
for slope, b̂3¼ 0.0261 for aspect, b̂4¼ 0.4145 for convex, b̂5¼ 1.6390 for tree density, b̂6¼ 0.2057 for the first component of soil
nutrients, b̂7¼ 0.2057 for the second component of soil nutrients and pH value, and b̂8¼�1.6736 for the third component of soil
nutrients and pH value. (C) Distribution predicted by the homogeneous Thomas process, with parameters j¼ 0.0005, l¼ 4.8786,
and d¼5.8189. (D) Distribution predicted by heterogeneous Thomas process, with parameters j¼0.0003, l¼40.7715, d¼17.0692,
and the same b̂j ( j¼ 1, . . . , 8) as those in panel (C). (E) Natural distribution of Cupania seemannii.

TABLE 3. A comparison of Akaike’s information criterion
(AIC) among the four spatial process models.

Plot

Poisson Thomas

Homo-
geneous

Hetero-
geneous

Homo-
geneous

Hetero-
geneous

Gutian 235.5 217.6 178.8 91.7
BCI 251.4 246.2�, 239.5� 187.2 164.5�, 150.1�

Note: AICs were calculated according to the sum of residuals
and the number of parameters used in different processes (see
Appendix). The differences between results with soil data and
results without soil data by the same analysis method reflect the
potential impact of soil nutrients and soil pH values on species–
area relationships.

� Without soil data.
� With soil data.
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Gotelli and Graves 1996, Poltkin et al. 2000, He et al.

2002), similar to the results of our homogeneous Poisson

process models. Ryti (1984) suggested that overestima-

tion of richness by this process might be caused by

habitat heterogeneity and dispersal limitation. Habitat

heterogeneity and dispersal limitation could cause the

assumption of random spatial distribution of individuals

and species invalid. Habitat diversity hypothesis as-

sumes that species diversity is controlled by the

availability of different habitat types (Williams 1964).

However, our results from the heterogeneous Poisson

models and other habitat-associated tests suggest that

habitat heterogeneity is an important but not sufficient

process in affecting spatial species diversity. Dispersal

limitation is likely to be another important factor that

changes the SARs (Levine and Murrel 2003). Theoret-

ical and empirical studies both showed that species

diversity depended on the strength of dispersal limita-

tion (Hubbell et al. 1999, Chave et al. 2000, Levine and

Murrel 2003, Rosindell and Cornell 2007). Our results

from the Thomas process model confirmed it and

further indicated that dispersal limitation was not the

sole main force in changing the SARs. In summary, the

dispersal limitation hypothesis and habitat diversity

hypothesis only emphasize different individual process

but not the joint processes. Heterogeneous Thomas

process used in this study fills the gap in this area.

The results of our study suggest that the mechanisms

for maintaining species diversity in forest community

could be distinct from those of other types of

communities, such as forest bird (Boecklen 1986) and

herbivore communities (Rigby and Lawton 1981) where

habitat heterogeneity is considered as the dominant

process. An important feature of forest community is

that seed dispersal first sets the template for tree

distribution. This template is subject to the effects of

local environments through a variety of forms of

environmental filtering. Although the real dynamics of

forest communities may be more complicated, dispersal

and environmental filtering are perhaps the two most

fundamental steps to determine spatial distribution of

species and our study supports this hypothesis. Further

inquiries on the effects of different types of processes,

such as density-dependent selection and interspecific

competition, could be interesting in predicting SARs,

and more sophisticated analyses are needed. Our study

shows the effectiveness of the spatial point process for

describing species distribution. This is consistent to the

finding of He and Legendre (2002) who have shown that

spatial distribution of species is one of the two primary

factors that directly determine the shape of SARs, and

the other factor is abundance. The contribution of any

other factors to SARs is through their indirect effects on

the spatial distribution and the abundance of species.

The advantage of the point pattern modeling method

used in this study is that it can incorporate both

dispersal and heterogeneous habitats into the point

pattern models (Stoyan 2000, Cottenie 2005, John et al.

2007). This method relaxes two unrealistic assumptions

(stationarity and isotropy) that are required in tradi-

tional statistical analysis (Baddeley and Turner 2005),

and hence can more accurately estimate the effects of

dispersal and habitat heterogeneity. However, we also

noticed some limitations in the present modeling

FIG. 3. The relative nearest-neighbor distance (r) function G(r) (the observed G function minus that for a completely random
point process) for Cupania seemannii in the BCI plot and the theoretical G(r)’s for the fitted homogeneous Poisson, heterogeneous
Poisson, homogeneous Thomas, and heterogeneous Thomas processes.
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framework. For instance, the spatial statistics cannot

evaluate the processes in a manner analogous to the

methods of variance partitioning (Dungan et al. 2002,

Baddeley et al. 2005), owing to the fact that there is no

natural generalization of the conditional intensity of a

temporal process given the ‘‘past’’ or ‘‘history’’ up to

time t (Ripley 1988, Møller and Waagepetersen 2004).

This begs for the development of more advanced spatial

models for modeling species distributions.
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APPENDIX

Main algorithms for the four spatial point models and the steps for estimating parameters used in addressing the joint effects of
habitat heterogeneity and dispersal limitation on the species–area relationships (SARs), and calculations of AIC (Ecological
Archives E090-217-A1).

SUPPLEMENT

R program code for estimating parameters of spatial point models and generating the expected SARs for each model (Ecological
Archives E090-217-S1).
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