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Introduction

Worldwide, there are over , species of fi shes, which comprise more 
than  percent of all vertebrate species. Over , of these are marine for 
all or part of their lives, and fi shes live in all parts of the world’s oceans (Nel-
son ). “Fishes” represents a paraphyletic group that includes hagfi shes 
(Myxini), lampreys (Petromyzontida), coelacanths, and lungfi shes (Sarcop-
terygii), as well as the better known and much more diverse cartilaginous 
fi shes (Chondrichthyes) and more recently evolved ray- fi nned fi shes (Ac-
tinopterygii). They exhibit a considerable diversity of modes of reproduc-
tion, life cycles, and capacities for dispersal. The vast majority of marine 
ray- fi nned fi shes have relatively small pelagic eggs and/or a pelagic larval 
phase, which, because it is spent in the water column away from adult habi-
tat, enhances their capacity for dispersal and expansion of their geographic 
ranges (Leis and McCormick ). Cartilaginous fi shes, in contrast, have 
large, benthic, or internally brooded eggs and lack a pelagic larval stage. 
However, their dispersal capabilities likely are enhanced by the large body 
size and mobility of adults, and these characteristics may have produced the 
large ranges many exhibit. The ancient origins of such species may also have 
given them more time than has been available to many recently derived 
teleost species to expand their ranges (Pyle ; Robertson, Grove, and 
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McCosker ). These fundamental diff erences in life histories of higher-
 level taxa can have important implications for distributional patterns and 
macroecology on both local and regional scales.

In marine environments, in contrast to terrestrial and freshwater envi-
ronments, physical barriers to dispersal are thought to be weak and oft en 
absent (Briggs ). Coverage of most of the earth’s surface by water, the 
continuity of such habitat over large distances, persistent transoceanic cur-
rents, intermittent large- scale oceanographic events (such as those due to 
the El Niño phenomenon) that produce extremes of variation in current 
fl ows, and the presence of pelagic larval stages should combine to increase 
dispersal potential, and produce high levels of gene fl ow and broad ranges 
for many species (Lessios and Robertson ). This combination of char-
acteristics is likely to result in very diff erent macroecological patterns among 
marine fi shes compared to those observed in both terrestrial and fresh water 
species.

In this chapter, we briefl y review current knowledge about patterns in the 
distribution and diversity of marine fi sh species in the context of the enor-
mous spatial and temporal variation that results from oceanographic vari-
ability. We also discuss processes commonly implicated in controlling the 
distribution and regional diversity of marine fi shes. This review necessar-
ily depends on our current understanding of species- level diversity. Broader 
study of the genetics of putative species, especially widespread coral reef spe-
cies (e.g., Muss et al. ) and open- ocean species (e.g., Miya and Nishida 
) may reveal signifi cantly greater cryptic species diversity. In addition, 
recent analysis indicates no decline in the rate of morphospecies descriptions 
of tropical shore- fi shes in recent decades (Zapata and Robertson ). This 
review is also necessarily couched within the prevailing concept of species. 
Broader application of a phylogenetic species concept, recently advocated 
for coral- reef fi shes (Gill ), would result in an increase in overall spe-
cies diversity and a concomitant decrease in average species range (Agapow 
et al. ). Nonetheless, the predominant macroecological patterns for ma-
rine fi shes discussed in this chapter are not expected to change signifi cantly 
if that reorganization of the species concept were applied.

Global Patterns in Species Richness
Latitudinal Gradients
Latitudinal gradients in species richness represent the most widely argued 
about macroecological pattern relating to the large- scale spatial distributions of 
organisms (Willig, Kaufman, and Stevens ). In general, biological diver-
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sity increases from polar to equatorial latitudes, a trend documented in a large 
array of terrestrial and marine taxa (e.g., Stehli, McAlester, and Newell ; 
Roy et al. ; Rex et al. , ; Gaston and Blackburn ; Macpherson 
; Hillebrand ; see also Valentine; and McClain et al., Roy and Wit-
man, this volume). Although some exceptions exist that are associated with 
depth or habitat characteristics (e.g., Clarke ; Rohde ; Gray ), this 
gradient is one of the most predominant macroecological patterns known.

This latitudinal pattern of a peak of richness at the equator also holds for 
many assemblages of marine fi shes (fi gs. . and .), including not only pe-
lagic and benthic species on each side of the Atlantic (Macpherson ), 
but also tropical reef- fi shes in the Indo- Pacifi c (Connolly, Bellwood, and 
Hughes ; Mora et al. ). In the Indo- Pacifi c, a convex diversity pat-
tern with latitude holds for tropical reef fi shes (and corals) (Connolly, Bell-
wood, and Hughes ; Mora et al. ; Bellwood et al. ; fi gure ., 
panel B). However, the extent to which the central peak results from overlap 
of widely distributed species rather than a concentration of local endemics 
with narrow ranges remains unclear (see Hughes, Bellwood, and Connolly 
a and Mora et al. , for opposing views).

The tropical eastern Pacifi c is a biogeographically discrete region with a 
high level of endemism: about  percent of the resident coastal fi shes are 
regional endemics (Robertson and Allen ; Zapata and Robertson ). 
Mora and Robertson (a) found that the richness of endemic coastal 
fi shes living on the continental shore has a generally bell- shaped latitudinal 
distribution that peaks in the center of that region (fi g. ., panel B). Broadly 

Figure 5.1 Longitudinal and latitudinal variation in the species- richness of reef fi shes 
(n = ,) in the Indo- Pacifi c. Dotted lines represent the  percent of the values obtained 
from the randomizations (mid- domain model, reproduced with permission from Connolly, 
Bellwood, and Hughes ).
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Figure 5.2 Latitudinal species richness gradients from (A) the Western and Eastern Atlantic 
fi shes (solid line: coastal; dashed line: shelf- slope; dotted line: abyssal) and (B) Tropical East-
ern Pacifi c shore- fi shes (data from Macpherson, , and Mora and Robertson, a).

distributed species are largely responsible for that convex curve. Narrow-
 range species contribute the two small departures from that convexity, as 
they are concentrated in the two sections of the coast (Panama/ Costa Rica 
and the Gulf of California) that have relatively large areas of habitat, an 
abundance of near- shore islands, and high habitat diversity.

In contrast to shore fi shes, species assemblages in other habits, such as the 
continental slope and abyss, show a more homogeneous distribution of spe-
cies richness with respect to latitude (Merrett and Haedrich ; Macpher-
son ; fi g. ., panel A). Departures from the general shallow- water pat-
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tern can also occur at fi ner scales, within biogeographically discrete regions; 
for example, in the tropical eastern Pacifi c, species richness of endemic 
shorefi shes peaks at about ° N and declines not only northward but also 
southward, toward the equator (Mora and Robertson a; fi g. ., panel 
B). Further latitudinal patterns of species richness of coastal benthic species 
are strongly infl uenced by major local hydrographic features. These include 
large upwelling areas, such as those off  Benguela (Mas et al. ), and the 
Sahara coast (Binet ), and the points at which equator- bound cold tem-
perate currents turn westward away from the equator in the eastern Pacifi c 
(Mora and Robertson a). Marked declines in richness of many groups 
are associated with such features. For example, the freshwater and sediment 
outfl ow from the Amazon and nearby Orinoco rivers largely eliminate reef 
development and shallow coastal habitat for reef fi shes along ~, km of 
the equatorial coast of south America (Collette and Rutzler ), which 
provides a signifi cant barrier to dispersal of reef organisms and probably is 
responsible for most of the endemism found in southern Brazilian coastal 
habitats (Joyeux et al. ; Rocha ). Consequently, in this part of the 
Atlantic Ocean, richness of coastal fi shes does not peak on the equator itself, 
but well to the north of it in the Caribbean Sea, between – ° N (Macpher-
son ; fi g. ., panel A). Pelagic fi shes are usually widely distributed, and 
few large faunal regions based on the distributions of these fi shes have been 
defi ned (Briggs ). In general, these regions follow large- scale circulation 
patterns and discontinuities in oceanographic characteristics and hence are 
not infl uenced by river outfl ows and coastal upwellings (Longhurst ; 
Briggs ). In the Atlantic Ocean, there are strong poleward decreases 
in species richness among pelagic species at around °N and °S (Angel 
; Macpherson ). These faunal breakpoints coincide with well de-
fi ned transition zones between biogeochemically distinct oceanic provinces 
(see Longhurst et al. ).

While the fi sh faunas of temperate and polar seas generally are compara-
tively low in total diversity, those faunas tend to be dominated by clades that 
have undergone signifi cant radiations (Briggs ). Conspicuous examples 
among fi shes in the North Pacifi c include the scorpaenoids (e.g., Sebastes 
rockfi shes and related genera; Love, Yaklovich, and Thorsteinson ) and 
cottoids (Bolin ). Consequently, coastal fi sh communities in the NE 
temperate Pacifi c are dominated by acanthopterygian fi shes from both tem-
perately and tropically derived lineages (Hobson ). Similarly, the South-
ern Ocean fi sh fauna is characterized by an overall low diversity and a high 
percentage of endemics with two striking radiations, those of nototheniids 
on the continental shelf and of liparids on the continental slope (Andria-
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shev , ; Gon and Heemstra ; Miller ; Eastman and Clarke 
; Clarke and Johnston ). Although the diversity of Antarctic fi shes 
is relatively low, that is not the case for other benthic taxa in the same waters. 
For groups such as fi lter feeders (e.g., sponges, bryozoans), Antarctic diver-
sity is similar to that described for tropical areas (Brey et al. ). Frequent 
fl uctuations in habitat availability originating from fl uctuations in the extent 
of the continental ice sheet, together with the eff ects of the long- term cool-
ing of sea water (Clarke and Crame ) may have been the main causes 
of the absence of many teleost families (through extinction) and the diff er-
ences in the latitudinal clines in species richness between groups (Clarke 
and  Johnston ). Thatje, Hillenbrand, and Larter () suggest that dif-
ferences in species richness between taxa can also be related to the extreme 
conditions faced by pelagic early life- history stages, which limited the ca-
pacity for recolonization by many species (e.g., teleost fi shes and decapods) 
aft er the isolation of Antarctica ca.  million years ago, resulting in the loss 
of major taxonomic groups.

Latitudinal gradients are observed in the trophic structure of fi sh assem-
blages as well as in species richness. There are sharp declines in the abun-
dance of herbivorous fi shes with increasing latitude (Harmelin- Vivien ; 
Floeter et al. ). In general, tropical fi sh assemblages show a larger trophic 
spectrum, characterized by increased use of low- quality food resources, 
that is, algae, sponges, cnidarians (Hobson ). This may be associated 
to higher water temperatures facilitating digestive processes of low- caloric 
diets (Ebeling and Hixon ). More recently, Frank, Petrie, and Schack-
ell (), using data from exploited ecosystems, found pronounced geo-
graphical variation in the type of trophic forcing (top- down or bottom- up) 
that was related to species richness and temperature. Their results suggest 
that this relationship has a strong infl uence on resilience to fi shing, with 
cold and species- poor ecosystems with top- down control succumbing more 
readily (and recovering more slowly) than species- rich ecosystems from 
warmer areas, which normally experience fl uctuating levels of top- down 
and  bottom- up control.

While the general latitudinal gradient in species richness is well estab-
lished (Gaston and Blackburn ; Willig, Kaufman, and Stevens ; 
Hillebrand ), more than thirty hypotheses that attempt to explain the 
pattern have been proposed (Rohde ). No single causal mechanism has 
proven suffi  cient to explain the overall pattern across a range of terrestrial 
and marine faunas and fl oras, although geographic area, productivity, ambi-
ent energy supply, Rapoport- rescue, the rates of speciation and extinction, 
and geometric constraints have been those most widely considered (Rohde 
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; Willig, Kaufman, and Stevens ). Some studies have found that 
habitat area does not explain the latitudinal pattern in benthic fi sh species 
richness on a large spatial scale (Rohde ; Roy et al. ; Macpherson 
), while others working with diff erent systems have reported habitat-
 area eff ects (e.g., for Indo- Pacifi c reef- fi shes see Hughes et al. b; Bell-
wood et al. , and for tropical eastern Pacifi c shore- fi shes see Mora and 
Robertson a).

In Atlantic fi shes, signifi cant correlations exist between some environ-
mental factors that represent proxies of energy input (sea surface tempera-
ture, nitrates and chlorophyll) and species richness of fi shes, not only of pe-
lagic and shallow- water benthic species, but also of species living at greater 
depths (Macpherson ). Because these variables provide indirect mea-
sures of energy input (Rohde ; Fraser and Currie ), those results 
support the view that the level of energy entering ecosystems (from solar 
energy and/or oceanographic events), and the way that this energy is used, 
plays an important role in determining the latitudinal distribution of fi sh 
diversity. However, Mora and Robertson’s (a) assessment of potential 
eff ects of various major potential determinants of the latitudinal diversity 
gradient of coastal fi shes within a single tropical biogeographic region (the 
tropical eastern Pacifi c) produced diff erent results. Their analysis identifi ed 
the mid- domain eff ect (MDE), which predicts such a distribution when the 
species ranges are randomly placed within a bounded geographical domain 
(e.g., Colwell and Lees ) as the major determinant of the distribution of 
broad- range species and habitat abundance and diversity as the main deter-
minant for narrow- range species. They found no eff ects of energy supply (as 
indicated by temperature and primary production) or environmental vari-
ability, on the fauna as a whole or any of its components that they consid-
ered. However, the use of mid- domain and other null- models in biogeo-
graphic analyses remains controversial and there is no consensus about what 
really constitutes an appropriate null model for such assessments (Zapata, 
Gaston, and Chown ). Recent analyses have included eff ects of envi-
ronmental gradients as well as domain boundaries (Connolly ). For ex-
ample, Bellwood et al. () demonstrated that the MDE and habitat area 
are both predictor variables of reef- fi sh species richness in the Indo- Pacifi c. 
These studies highlight the need for the testing of various hypotheses to-
gether, in order to take into account eff ects of colinearity among predictive 
variables (e.g., temperature covaries with the mid- domain eff ect), and for 
the use of techniques that cope with statistical eff ects of spatial autocorrela-
tion within variables (see Mora and Robertson a).

Thus marine biogeography, and biogeography in general, still lacks an 
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adequate general predictive theory of latitudinal gradients in species rich-
ness (Gaston and Blackburn ; Willig, Kaufman, and Stevens , but 
see Allen, Brown and Gillooly  and Gillooly et al. , for a thermo-
dynamic hypothesis for the species diversity gradient). Diff erences in the 
latitudinal patterns in species richness observed in Atlantic pelagic versus 
benthic fi shes and in the relationship of each to diff erent environmental fac-
tors indicate that a unique predictor of these gradients is unlikely (Macpher-
son ) and that gradients will be governed by diff erent processes in dif-
ferent environments and parts of the world, as will gradients of diff erent 
components of a single fauna. Indeed, Mora and Robertson (a) found 
quite diff erent predictors of latitudinal patterns of species richness for tropi-
cal eastern Pacifi c shore- fi shes with large and small geographic ranges. They 
pointed out that the so- called “Tropical Indo- Pacifi c” actually consists of a 
group of distinct subregions, with diff erent processes likely infl uencing dis-
tributional patterns within each of those.

Longitudinal Patterns

Strong longitudinal variation in species richness is also evident both at the 
general level (Gaston and Blackburn ), and among tropical marine 
shore- fi shes in particular (Briggs ; Bellwood and Hughes ; Con-
nolly et al. ; Mora et al. ). The Indo- Australian Area (IAA) at the 
junction of the Pacifi c and Indian oceans has by far the greatest diversity of 
fi shes of any part of the world (Briggs ; Randall ; Connolly, Bell-
wood, and Hughes ; Mora et al. ). In descending order of species 
richness, other global centers of diversity of tropical coastal fi shes are the 
Greater Caribbean (within the tropical western Atlantic), the tropical east-
ern Pacifi c and the tropical eastern Atlantic (Briggs ).

Within the Indo- Pacifi c, species richness of reef- fi sh assemblages de-
clines strongly with distance from the global hotspot of diversity in the IAA 
(Connolly, Bellwood, and Hughes ; Mora et al. ; fi g. ., panel A), 
which is centered on the Philippine Islands (Carpenter and Springer ). 
Two major processes contribute to this pattern. First, there are faunal losses 
due to reduction in habitat diversity that refl ects the absence of continental 
habitats (e.g., estuaries, mangroves, large areas of shoreline infl uenced by 
river runoff ), as one moves eastward onto the Pacifi c plate, where oceanic 
islands constitute the only habitat available (Randall ). Second, there 
is a decrease in species diversity within numerous lineages of coastal fi shes 
(Springer ; Findley and Findley ; Allen , ) that does not 
simply refl ect declining habitat diversity. Much has been written concern-
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ing this latter pattern (e.g., Briggs , , ; Randall ; Bellwood 
and Hughes ; Mora et al. ; Connolly, Bellwood, and Hughes ). 
Prominent hypotheses that attempt to account for the longitudinal diversity 
gradients in coastal fi shes of the Indo- Pacifi c include the following. (a) Ef-
fects of habitat area: The amount of shelf area available to support a diver-
sity of species declines as one moves from the center of diversity (Bellwood 
and Hughes ; Bellwood et al. ). (b) Environmental stability: The 
relative environmental stability of the IAA, especially with regard to envi-
ronmental changes associated with Pleistocene glaciation events, has facili-
tated species survival relative to other regions that were more adversely af-
fected, such as the Greater Caribbean (Chenoweth et al. ). (c) Increased 
potential for allopatric speciation: The geographic complexity of the Indo-
 Australian area, coupled with repeated cycles of exposure and submergence 
of land barriers during eustatic sea- level fl uctuations, has facilitated allopat-
ric speciation most in the IAA (Springer ; Springer and Williams ; 
Carpenter and Springer ). (d) Dispersal from a center of origin: Centers 
of high diversity, such as the IAA, have traditionally been thought to be the 
centers of origin for most extant species for a particular region (Briggs , 
, ). Some phylogenetic and genetic evidence supports the notion of 
such a pattern (Briggs ) and the view that colonization of the Pacifi c oc-
curs mostly in an easterly direction (Lavery et al. ). Mora et al. () 
argue that the decline in species richness from the center of diversity can be 
accounted for by variation in dispersal ability (as mediated by pelagic larval 
duration) outwards from a center of origin. (e) Center of accumulation: Ef-
fects of westward geostrophic fl ow in major ocean currents on the largest-
 scale directionality of dispersal of pelagic propagules may produce accumu-
lations of species at the western boundaries of both the Pacifi c and Indian 
oceans basins, the IAA and E Africa, respectively (Jokiel and Marinelli ; 
Connolly, Bellwood, and Hughes ).

It seems likely that more than one, and quite possibly all, of these fac-
tors have played a role in building and maintaining the extraordinary diver-
sity of fi shes (and other organisms) at the junction of the Indian and Pacifi c 
oceans in the center of the Indo- Pacifi c. Historical biogeographic analyses 
that employ genetic techniques to identify the sites of origin and patterns 
of subsequent spread of taxa throughout the tropics should help resolve is-
sues that are raised by (but cannot be resolved by) description and correla-
tion alone (e.g., Palumbi ; Bernardi et al. ; Robertson, Grove, and 
McCosker ).

The Indian and Pacifi c oceans both have the greatest concentrations of 
reef- fi sh diversity on their western boundaries (Connolly, Bellwood, and 
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Hughes ). A similar pattern exists among shorefi shes in the Atlantic 
basin, where diversity is greater on the western than eastern side (Briggs 
). This pattern is consistent with most of the hypotheses described pre-
viously. In contrast, relatively few analyses of the distribution of diversity 
within the center of diversity in the Atlantic—the Greater Caribbean—are 
available (e.g., Robins ). Recently Smith, Carpenter, and Waller () 
found, for a subset of the ichthyofauna, the highest diversity in two areas: 
(a) the Florida peninsula, and northern Cuba, and (b) the northern coast 
of South America. Thus, in longitudinal terms, diversity within the Greater 
Caribbean shows no evidence of a western- boundary concentration that 
could refl ect the action of an accumulation process, despite the existence 
of a large- scale circulation pattern that might be expected to produce such 
a boundary eff ect. The predominant large- scale circulation pattern in the 
Greater Caribbean is thought to facilitate dispersal and gene fl ow through-
out that region (e.g., Shulman and Bermingham ). However, there are 
counter- examples to panmixia within the Greater Caribbean, in which deep 
genetic breaks both occur over very short distances and show little corre-
spondence to circulation patterns (Carlin, Robertson, and Bowen ; Tay-
lor and Hellberg ; Rocha et al. a). Planes () provides similar 
examples in the central Pacifi c.

The tropical eastern Pacifi c (TEP) exhibits a very diff erent diversity pat-
tern to that of the tropical Indo- Pacifi c and tropical Atlantic. The shore- fi sh 
fauna of that region, with ~, species, has a very high level of endemism: 
about  percent of the resident species and  percent of the genera occur 
nowhere else. Rates of endemism in equivalent sized areas in the Indo- Pacifi c 
are much lower (Connolly, Bellwood, and Hughes ; Mora et al. ), 
and the level of endemism in the Greater Caribbean, the sister biogeographic 
region of the tropical eastern Pacifi c, is only about one third that in the TEP 
(see Smith, Carpenter, and Waller  for Caribbean data). The TEP has a 
long history of both isolation from the central Pacifi c (Grigg and Hey ) 
and close association with the Greater Caribbean. The latter connection was 
broken only relatively recently (~ mya—see Coates and Obando ) by 
the fi nal closure of the Isthmus of Panama. As a result, the coastal fi sh fau-
nas of those two regions have strong taxonomic affi  nities: about  percent 
of the genera in the tropical eastern Pacifi c are shared with, and only with, 
the tropical western Atlantic (Rosenblatt ). The neotropics have a re-
markable abundance of blennioid fi shes, several families of which make 
major contributions to both faunas and occur primarily in the new world 
(Rosenblatt ; Robertson ). The eastern Pacifi c barrier (EPB), the 
world’s widest deep- water barrier (,– , km), has isolated the TEP 
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from the central Indo- Pacifi c for ~ my (Grigg and Hey ). Normal cur-
rents across the barrier are suffi  ciently slow that transit times probably are 
beyond the larval durations of most species (Briggs ; Leis ). Conse-
quently, demersal shore- fi shes that have migrated eastward across the EPB 
constitute only  percent of the tropical eastern Pacifi c fauna. In contrast, 
almost all of the eastern Pacifi c epipelagic fi shes and  percent of its in-
shore pelagic fi shes have successfully crossed the EPB (Robertson, Grove, 
and McCosker ). Among the demersal fi shes, the transpacifi c migrants 
tend to be concentrated on the oceanic islands in the eastern Pacifi c, which 
have habitats similar to the islands from which they originated in the central 
Pacifi c. More than any other tropical region, the TEP is aff ected by oceano-
graphic eff ects of El Niño events. While it is thought that greatly increased 
eastward current fl ow across the EPB during such events enhances eastward 
migration (e.g., Richmond ), there is little direct evidence to support 
that view (Robertson, Grove, and McCosker ). During El Niño events, 
however, there are temporary range expansions by shore- fi shes both within 
the TEP and beyond the normal latitudinal bounds of that region (Lea and 
Rosenblatt ; Victor et al. ; Robertson, Grove, and McCosker ; 
Mora and Robertson b).

Patterns of Variation in Species Range Sizes

The geographic area occupied by a fi sh species depends not only on its bio-
logical characteristics, such as habitat preferences, dispersal capabilities of 
larvae and adults, and interactions with competitors and predators, but also 
on the processes of speciation, extinction, and range fragmentation as a result 
of vicariant events (Briggs ; Connolly, Bellwood, and Hughes ).

HABITATS Not surprisingly, range size tends generally to be larger in pelagic 
and deep- sea fi shes than in benthic and shallow- water species (Merret and 
Haedrich ; Macpherson ; fi g. .). Mora and Robertson (b) ex-
amined the distributions of range sizes among four groups of shorefi shes en-
demic to the tropical eastern Pacifi c (fi g. .). Insular species have the small-
est ranges, and species with small ranges are predominantly island forms. 
The range- size frequency distribution of continental species is bimodal, with 
most species having moderate to large ranges. Those authors argue that this 
pattern refl ects a combination of (a) the paucity of existing barriers to dis-
persal on the continental shore, (b) a lack of intermittent barriers that appear 
and disappear with changing sea levels (i.e., like those that have repeatedly 
fragmented ranges in the Indo- Australian Area), and (c) the fact that those 
continental barriers aff ect primarily reef- fi shes, which represent only  



Figure 5.3 Frequency distributions of latitudinal range sizes for Western Atlantic coastal 
(–  m depth), abyssal (>, m depth) and pelagic fi shes (recorded in the water column). 
Range in degrees of latitude (see also Macpherson ).

Figure 5.4 Frequency distributions (Y- axis, 
number of species) of latitudinal range sizes 
(X- axis, range size in degrees of latitude) three 
ecological groups of Tropical Eastern Pacifi c 
shore- fi shes, plus Indo- Pacifi c reef fi shes for 
comparison with the eastern Pacifi c reef fi shes. 
(reproduced with permission from Mora and 
Robertson,  B).



134 ENRIQUE MACPHERSON, PHILIP A. HASTINGS, AND D. ROSS ROBERTSON

 percent of the fauna. They found that, among continental species, range size 
decreases in the following hierarchy: pelagic species (continuous habitat) > 
benthic species living on soft  bottoms (continuous habitat) > benthic species 
living on reefs (moderately discontinuous habitat) > species restricted to the 
oceanic islands (highly discontinuous habitat). They concluded that adult 
dispersal ability has the strongest eff ects on range size, and that isolation by 
open ocean barriers has stronger eff ects than isolation by habitat disconti-
nuities on the continental shore. They also noted possible eff ects of varia-
tion in the geographic complexity of regions and the occurrence of intra-
 regional barriers on the structure of range- size frequency distributions in 
shore- fi shes in diff erent parts of the Atlantic and Indo- Central Pacifi c.

BARRIERS Large- scale oceanographic discontinuities are generally respon-
sible for producing diff erent pelagic biogeographic provinces in the open 
oceans (Longhurst ). Such discontinuities evidently also represent a 
major factor limiting the distributions of coastal as well as pelagic fi shes, 
because the range limits of both oft en coincide with such oceanographic 
breakpoints (Ekman ; Briggs ; Zezina ; Macpherson ; Mora 
and Robertson a). However, diff erent types of species do not necessar-
ily exhibit the same patterns of geographic structure, probably as a result 
of diff erent patterns of colonization and dispersal capabilities and diff erent 
ecological requirements. The frequency of occurrence on both sides of the 
eastern Pacifi c Barrier is much higher for oceanic pelagic species than for 
shore- fi shes, and transbarrier species constitute a much greater percent-
age of the TEP fauna of pelagics than is the case for shorefi shes (Robert-
son, Grove, and McCosker ). Other barriers include recently developed 
permanent land barriers, such as the central American isthmus, which fi -
nally severed longstanding connections between the tropical biotas of the 
west Atlantic and eastern Pacifi c some  mya (e.g., Coates and Obando 
). They also include eustatically variable land barriers such as those 
in the Indo- Australian Area (Springer ; Springer and Williams ; 
Carpenter and Springer ). Major oceanographic processes also act as 
barriers (e.g., upwelling areas, river discharges, principal currents, ocean-
ographic fronts), and pronounced discontinuities in the temperature, salin-
ity, and productivity characteristics of water masses. In the Atlantic Ocean, 
the boundaries of ranges of pelagic fi shes tend to coincide with transition 
zones between oceanic domains that have distinct biogeochemical proper-
ties and plankton communities, domains that were described by Longhurst 
et al. () and Longhurst (). The distributions of range end- points in 
benthic taxa are mainly infl uenced by the Sahara and Benguela upwellings 
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in the eastern Atlantic, and by the boundaries of Labrador and Falkland cur-
rents and the Amazon/ Orinoco river discharge in the western Atlantic. The 
zones on each side of these boundaries display marked diff erences in spe-
cies richness. Furthermore, numerous species tend to become rarer toward 
their distributional limits, near these boundaries (Brown ; Macpher-
son ; Brown, Stevens, and Kaufman ). Rocha et al. () showed 
how variation in the degree of genetic connectivity between the Caribbean 
and Brazilian populations of three members of a single genus is related to 
diff erences in habitat preferences that aff ect their ability to live within the 
, km wide Amazon barrier. The actions of such marine boundaries are 
also depth dependent because the eff ect of the oceanographic events mark-
ing biogeographic boundaries on the shelf and slope extends only as deep as 
the broad slope/ rise. Consequently such boundaries are poorly defi ned on 
broad abyssal plain areas (Gordon and Duncan ; Haedrich and Merrett 
; Macpherson ).

In the eastern Pacifi c, distributions of coastal species are strongly aff ected 
by pole- to- pole temperature gradients (Hubbs ), with notable break-
points occurring where cold equator- bound currents turn westward and de-
fi ne the northern and southern limits of the centrally located tropical east-
ern Pacifi c (Briggs ; Hastings ; Mora and Robertson b). Within 
the tropical part of the eastern Pacifi c the distribution of shallow coastal reef 
fi shes is limited by eff ects of two large (–  km wide) “gaps” in the con-
tinental shore that lack reefs and consist entirely of sand and mud shorelines 
(Hastings ; Mora and Robertson b).

ISL ANDS AND SE AMOUNTS The few oceanic islands of the tropical Atlantic 
are widely scattered and support faunas that exhibit reduced species diver-
sity, high levels of endemism, and other eff ects of isolation, including those 
due to greatly reduced habitat diversity (Briggs ; Robertson ). Con-
sidering that these islands vary in age and distance from adjacent coasts, 
comparative studies of their faunas can reveal considerable information 
about general patterns of evolution and distribution (Briggs ). Robert-
son () analyzed the endemic shore- fi sh faunas of small, highly isolated 
tropical islands in the eastern Pacifi c and central Atlantic to assess whether 
they have unusual biological characteristics. He found that they have no par-
ticular characteristics in terms of body size, general dispersal capabilities, or 
taxonomic composition and concluded that shore- fi shes in general are ca-
pable of maintaining persistent endemic populations on such islands if they 
can disperse to them.

The recent and continuing accumulation of genetic data on the shore-



136 ENRIQUE MACPHERSON, PHILIP A. HASTINGS, AND D. ROSS ROBERTSON

 fi sh faunas of those islands is providing insights into the origins and ages 
of island species and the extent of ongoing connections between island and 
mainland faunas (see Bernardi et al. ; Muss et al. ; Bowen et al. ; 
Rocha et al. ; Carlin, Robertson, and Bowen ; Rocha et al. a, b; 
Robertson et al. ). Such work should eventually lead to a greatly en-
hanced appreciation of general patterns and processes governing the struc-
ture of island faunas and the extent to which they interact with mainland 
faunas, as well as the action of islands as stepping stones for transoceanic 
migration.

Seamounts tend to be dominated by species inhabiting neighboring areas 
(Rogers ). However, seamount faunas also show high levels of ende-
mism (Wilson and Kaufmann ; Parin, Mironov, and Nesis ), and ex-
hibit previously unsuspected high diversity (Richer de Forges, Koslow, and 
Poore ). Although there are few studies of seamount fi sh communities, 
results from various invertebrate groups indicate that seamounts likely are 
sites with high rates of speciation, as a result of reproductive and genetic iso-
lation resulting from their geographic isolation both from other seamounts 
and continental shelf areas, and from hydrographic conditions that trap lar-
vae that originated on a seamount and promote self- recruitment and sus-
taining local populations (Parker and Tunnicliff e ).

DEEP SE A There has been considerable improvement in our knowledge of 
the deep fi sh fauna in the last few decades. While those fi ndings have pro-
vided some useful insights, logistical diffi  culties are such that the biota of the 
deep seas (>, m) remains much more poorly known than that of shallower 
marine habitats (Haedrich ; Merret and Haedrich ). Diff erences in 
deep- sea community structure are thought to be associated with variation 
in productivity and levels of seasonal organic enrichment from sinking phy-
todetritus (Merret and Haedrich ; Rex, Stuart, and Coyne ). De-
spite their apparent isolation from immediate surface events, environmental 
changes associated with climatic fl uctuations can also have signifi cant af-
fects on community structure in deep- sea habitats (Ruhl and Smith ). 
Deep pelagic species oft en associated with particular water masses, and, as a 
consequence, species composition and/or abundances oft en change rapidly 
along fronts between water masses (e.g., Backus, Craddock, and Shores ; 
Figueroa, Díaz de Astarloa, and Martos ). Among such fi shes species di-
versity tends to be highest in mixing areas where species from neighboring 
water masses co- occur (e.g., Beamish et al. ).

The deep sea has unusual physico- chemical activity not found in shallow 
environments that has unique eff ects on associated biological communities. 
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Both hot and cold deep- sea hydrothermal vents, which are small, relatively 
short- lived and scattered, support unusual fi sh communities that are based 
on chemoautotrophic primary production (Van Dover ). There appears 
to be some interchange among these fi sh communities separated by long dis-
tances (ca.  km), associated with high dispersal capabilities (Hashimoto 
et al., ), although the degree of local endemism is also high (Tunnicliff e 
; Tunnicliff e and Fowler ). Mechanisms of colonization by vent or-
ganisms remain largely unknown for most of the mid- ocean ridge systems, 
although recent studies indicate that dispersal of invertebrate larvae occurs 
via deep- ocean currents (Van Dover et al. ).

The greatest diversity of such fi shes occurs at mid- depths, near , m 
for demersal species (Rex et al. ; Haedrich ). However, depth trends 
in diversity vary geographically and among fi sh groups. At Porcupine Sea-
bight (N Atlantic), for example, species richness peaks around , m and 
falls away steadily to the , m level, where it increases again (Haedrich 
and Merret ). Diversity in the NE Pacifi c is also bimodal, with peaks at 
–  m and ,– , m (Pearcy, Stein, and Carney ). Like the 
deep- sea benthic fi shes, the greatest diversity of deep- sea pelagic fi shes oc-
curs at mid depths (Ebeling ; Haedrich ).

Although some demersal deep- sea fi shes are widely distributed, many 
species appear to have small ranges (Haedrich and Merret , ). As 
a consequence, similarities in demersal fi sh faunas between diff erent areas 
within the deep sea usually are low (Haedrich ; Merret and Haedrich 
). For example, the composition of deep- sea fi sh faunas in the N Atlan-
tic and N Pacifi c are quite diff erent, with < percent of species being shared 
(Haedrich and Merret ; Pearcy, Stein, and Carney ). The deep- sea 
fi sh fauna of SE Australia is more similar to that of the N Atlantic than that 
of the N Pacifi c (Koslow, Bulman, and Lyle ). While many pelagic deep-
 sea fi shes are thought to have broad distributions encompassing one or more 
ocean basins (Haedrich ), detailed morphological analyses (e.g., Gibbs 
) and recent genetic studies have revealed previously unrecognized 
cryptic diversity (e.g., Miya and Nishida ) calling this assumption into 
question.

R APOPORT’S RULE The eff ect of latitude on species’ range- size, known as 
Rapoport’s rule, has been examined for many diff erent groups since Stevens 
() fi rst discerned the tendency for range size to increase with latitude 
(Gaston, Blackburn, and Spicer ; Rohde ; Gaston and Blackburn 
). Rapoport’s rule is based on the rationale that greater environmen-
tal variation at higher latitudes selects for broad tolerance (and hence large 
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ranges) species, which can also live at less variable lower latitudes, where 
reduced variability also promotes the evolution of narrow tolerance (small 
range) species (Stevens ). Distributions of Atlantic fi shes suggest that 
Rapoport’s rule does hold, as species with distributions that reach latitudes 
nearest the poles do have the broadest ranges; however, this trend is relatively 
weak, suggesting that this rule is not the primary factor responsible for lati-
tudinal patterns in range size (Macpherson ; see the following). Other 
studies (Rohde, Heap, and Heap ; Rohde and Heap ) indicate that 
Pacifi c fi shes do not follow Rapoport’s rule on a broad scale, though such a 
relationship may exist on a smaller scale. Mora and Robertson (a) found 
that latitudinal patterns of variation in range- size among regionally endemic 
tropical eastern Pacifi c shorefi shes are consistent with Rapoport’s Rule (fi g. 
.). However, they concluded that those patterns arise simply as corollaries 
of the mid- domain eff ect, which is the major determinant of the latitudinal 
distribution of species richness within that region. They also found opposite 
latitudinal patterns of variation in range size depending on whether average 
range- size in a latitudinal band was measured using either (a) the mean size 
of the ranges of all species present in that band (the original method of mea-
surement—see Stevens ), or (b) the mean size of the ranges whose mid-
 points occur in that band (an alternative method developed by Rhode et al. 
 to cope with a lack of statistical independence among measurements 
produced by the former method).

Many authors (e.g., Roy, Jablonski, and Valentine ; Gaston and 
Blackburn ) have considered various mechanisms that might explain 
latitudinal gradients in range size: climatic variability, area size, extinction 
rate, competition, and biogeographic boundaries. Pole- to- pole studies of 
latitudinal patterns in range size examine patterns that span multiple bio-
geographic provinces. Hence these largest- possible- scale latitudinal gradi-
ents may refl ect the distinct environmental diff erences that separate adja-
cent provinces (e.g., temperature, salinity, and productivity), while there is 
greater constancy of environmental conditions within a given biogeographic 
province (Rutherford, D’Hondt, and Prell ). Consequently, the location 
of these oceanographic boundaries, the environmental conditions at the 
boundaries, and the ability of species to cross them may be the main factors 
that account for such largest- scale latitudinal gradients in range size (Roy, 
Jablonski, and Valentine ; Macpherson ; but see Mora and Robert-
son a).

L ARVAL DISPERSAL There is no clear relationship between range- size and 
larval dispersal capabilities among either tropical reef or temperate shore-
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 fi shes, at least as measured by variation in the length of the pelagic larval life 
(e.g., Victor and Wellington ; Lester and Ruttenberg ; but see Mora 
et al. ). This suggests that range size is not set by a single mechanism, 
such as the length of the larval life. However, dispersal potential of such 
fi shes may be infl uenced not only by larval durations, but also by whether 
larvae are restricted to nearshore habitats or range further off shore, and by 
their spawning characteristics (e.g., benthic or pelagic eggs, season of plank-
tonic life; Shanks and Eckert ; Macpherson and Raventos ). Recent 
climate changes have aff ected the distributional pattern of numerous tropi-
cal and temperate marine fi shes (e.g., Rocha et al. b), to the extent that, 
in some cases, the position of a species’ center of distribution has been sig-
nifi cantly modifi ed (Stenseth et al. ; Walther et al. ; Genner et al. 
). It would be useful to analyze not only larval dispersal capabilities but 

Figure 5.5 Rapoport’s rule. A– B. Trends in mean range- size of teleost fi shes from the Indo-
 Pacifi c. C– D. The same for the shorefi shes of the Tropical Eastern Pacifi c. A and C: Mid- point 
method, using the midpoint of each species’ latitudinal range as a single value, thus yielding a 
set of independent data points. B and D: Steven’s method, where the mean distribution ranges 
of the species present in each ° bin are calculated, and latitude is regressed on the mean range 
in each bin. Bars in fi gs. A– B are standard deviations; dotted lines in fi gs. C– D are the  per-
cent confi dence limits of the mean range size distributions generated by the mid- domain 
model. Equator marked by a vertical line. (A– B reproduced with permission from Rohde and 
Heap , and C– D from Mora and Robertson  A).
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various other biological characteristics of such species, in order to better 
understand processes that facilitate such patterns of colonization and range 
modifi cation.

DEPTH Geographic range size- frequency distributions vary strongly in re-
lation to depth. In general, coastal species have smaller geographic ranges 
than species inhabiting the continental slope or abyssal plains (Briggs ; 
Stevens ; Macpherson ). Furthermore, there is a tendency for depth 
range to increase with depth of occurrence (e.g., Ekman ; Pineda ; 
Stevens ; Haedrich ; Merrett and Haedrich ; Smith and Brown 
). These depth- range distributions of species are the bases for the rec-
ognition of depth provinces, the boundaries of which tend to lie around the 
edge of the continental shelf ( m depth), the upper continental slope 
(–  , m) and the abyssal domain (>, m; Haedrich ; Merrett 
and Haedrich ; Macpherson ). However, separations between these 
depth provinces are less evident than those between latitudinal provinces. 
This is not surprising given that processes regulating the latitudinal distri-
butions of species are unlikely to be the same as those regulating depth dis-
tributions (Macpherson ). The depth- domain boundaries tend to be 
related to a suite of oceanographic parameters, including discontinuities 
in temperature, discontinuities in productivity, sedimentary features, and 
hydro dynamics (Gordon and Duncan ; Haedrich and Merrett ). 
The extent of species depth ranges changes with latitude, because environ-
mental conditions tend to be more uniform over depth at higher latitudes 
(Stevens ; Zezina ; Longhurst ). As a consequence, the depth-
 range frequency distributions of species are right- skewed near the equator, 
where most species have small depth ranges, and left - skewed near the poles, 
where most species have large depth ranges.

CLIMATE AND CHANGES IN DISTRIBUTION Sporadic shift s in the distribu-
tions of fi sh species have frequently been documented. In the tropical east-
ern Pacifi c two types of range- changes occur during El Niño events, when a 
surge of heated water moves eastward across the Eastern Pacifi c Barrier. The 
eff ects of that surge extend beyond the usual northern and southern limits of 
the region, which are defi ned by the westward turning points of cold equator-
 bound currents. First, many tropical species extend their ranges temporarily 
into adjacent temperate areas (northward extensions: Hubbs ; Lea and 
Rosenblatt ; southward extensions: Chirichigno and Velez ). Sec-
ond, among species restricted entirely to the tropical eastern Pacifi c there 
are temporary range expansions within that area (Victor et al. ). A num-
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ber of recent shift s in species ranges and changes in community structure in 
temperate areas have been attributed to climatic changes in both the north 
Pacifi c (e.g., Fields et al. ; McFarlane, King, and Beamish ; Zhang 
et al. ; Brooks, Schmitt, and Holbrook ; Beamish et al. ) and 
the north Atlantic and its sub- basins (e.g., Francour et al. ; Genner et al. 
). Invasion of the tropical Atlantic by reef fi shes has been linked to such 
environmental variation, with such changes providing insight into the ef-
fects of ongoing global climate change (Rocha et al. b). Implications of 
global warming for tropical reef fi shes have only begun to be explored (see 
Mora and Ospina ; Rocha et al. a). In addition, the aff ects of climate 
change on even the remotest abyssal communities may be signifi cant but re-
main poorly understood (Ruhl and Smith ).

Body Size Distributions

Many biological characteristics of species are related to, and oft en depen-
dent on, body size (Peters ). Consequently, the distribution of body sizes 
of the species inhabiting an area has the potential to provide insights into 
mechanisms that determine the species composition of fi sh assemblages. 
Species’ body- size distributions are mostly right- skewed (most species are 
small) in terrestrial animal communities, although skewness can change 
with geographical scale: from right- skewed at large scales to a variety of dif-
ferent shapes at local or regional scales (see Gaston and Blackburn ; 
Roy et al. ).

Body size is also related to metabolic rate, and large species consume 
more energy than small species, although they require less energy per gram 
of body weight (Peters ). The relationship between body size and abun-
dance is one aspect of macroecology that has been assessed in numerous ter-
restrial organisms (e.g., Gaston and Blackburn ), but poorly studied in 
marine fi shes. However, body size is a poor predictor of species abundance 
for SW Atlantic fi shes (Macpherson ), as well as for Indo- Pacifi c reef 
fi shes (Munday and Jones ; fi g. .). Furthermore, body- size and density 
relationships are diff erent for smallest and largest size classes, probably asso-
ciated with diff erent patterns of resource acquisition (Ackerman, Bellwood, 
and Brown ). Biomass/ size spectra (i.e., the biomass density of organ-
isms belonging to diff erent size classes—see Cyr, Peters, and Downing ) 
have been commonly employed in aquatic studies, to compare the structure 
of diff erent nonfi sh communities (e.g., phyto- and zooplankton: Sheldon, 
Prakash, and Sutcliff e ; Rodriguez et al. ) and assess possible eff ects 
of system productivity on that size- spectral structure (Sprules and Munawar 
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). Diff erences in the slopes of biomass/ size spectra have been found to 
be associated with productivity: higher slope values tend to occur in areas of 
high productivity. That is, whereas high productivity areas have greater con-
centrations of biomass in smaller species (which have high turnover rates), 
in oligotrophic areas biomass is distributed more evenly among the diff erent 
size classes, or may even be skewed toward the larger size classes (Sprules 
and Munawar ). There are few similar studies of body size distribu-
tions among fi sh communities (e.g., Merrett and Haedrich ; Munday 
and Jones ; Ackerman, Bellwood, and Brown ). As with the plank-
ton, indications are that, among those fi shes, there is greater biomass of large 
organisms in the more oligotrophic abyssal zone compared to the upwell-
ing areas on the continental shelf, where the opposite relationship prevails 
(Macpherson and Gordoa ). Furthermore, interesting patterns of varia-
tion in the diversity of large oceanic predators have recently been identifi ed, 
with diversity being highest at intermediate latitudes (– °N and S), as 
well as near reefs, shelf breaks, and seamounts that can enhance local pro-
ductivity and food supply (Worm, Lotze, and Myers ).

Figure 5.6 Body size distributions (upper panel) and body size versus abundance of each 
species (lower panel) of reef fi shes from Hawaii and the Australian Great Barrier Reef (repro-
duced with permission from Munday and Jones ).
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Unfortunately, industrial fi sheries have produced signifi cant disturbances 
to the relationship between size and abundance in many marine fi sh com-
munities (Jennings and Kaiser ), as well as in life- history parameters 
and population characteristics such as average body size (Tittensor et al., this 
volume). These relationships may be more strongly altered in the deep sea 
(>, m), an area virtually unknown, where new fi shing technologies 
can have devastating consequences (Roberts ). Hence, future studies of 
natural size- distribution patterns among marine fi shes would only be pos-
sible for unexploited communities in extremely large protected areas that 
have been established for a suffi  ciently long time that the ecosystem has re-
covered to an approximation of its original state (Marquet, Navarrete, and 
Castilla ; Jackson ), However, in some cases, highly disturbed ma-
rine communities may become irretrievably altered by settling into new stable 
states that are very diff erent from the predisturbance condition (Knowlton 
). Recently, fi sh body- size spectra and predator/ prey body- mass ratios 
have been used to predict the original (pre- fi shing) fi sh abundance and size-
 structure in the intensively fi shed North Sea. The results of that work sug-
gest that the long- term depletion of large fi shes through exploitation exceeds 
the level of depletion indicated by many short- term studies (Jennings and 
Blanchard ).

Conclusions

The availability of data on macroecological trends and processes in marine 
fi shes is much as it is in other groups of marine organisms, with many large 
gaps (McClain et al., this volume; Santelices et al., this volume). Although 
the latitudinal and longitudinal distributions of species richness of fi shes 
and invertebrates are largely concordant (e.g., Smith, Carpenter, and Waller 
), species richness of some important nonfi sh groups, such as marine 
macroalgae, shows quite diff erent latitudinal trends to that among marine 
fi shes (Kerswell ; Santelices et al., this volume). Even so, it is likely that 
some mechanisms have similar infl uences on richness and range- size pat-
terns among macroalgae, corals, and reef fi shes. For example, distributions 
of diversity peaks in all three groups are consistent with predictions of accu-
mulation patterns brought about by dispersal on large- scale ocean- current 
systems (Connolly, Bellwood, and Hughes ; Kerswell ). These stud-
ies provide new perspectives of drivers of observed diversity patterns. Fur-
ther, rather than simply explaining declines in richness from the center by 
invoking processes that enhance richness in the center, Connolly, Bellwood, 
and Hughes () examined those declines from the perspective of how 
environmental factors produce disproportionate changes in the centers and 
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endpoints of species distributions. They concluded that the distributions 
 (directions and positions) of major ocean currents within both the Indian 
and Pacifi c basins explained much of both longitudinal and latitudinal pat-
terns in corals and reef fi shes. However, while mechanisms such as this are 
relevant to explaining patterns within ocean basins, for between- basin dif-
ferences we must examine quite diff erent processes. At that scale, major dif-
ferences in historical processes become of primary importance (Briggs ; 
Rex et al. ). The global center of tropical marine diversity in the IAA at 
the western edge of the Pacifi c has been much more stable, and thus ame-
nable to tropical organisms through evolutionary time than has the dis-
tinctly less diverse tropical west Atlantic, which was strongly infl uenced by 
repeated ice ages and is known to have suff ered major extinction events of 
benthic taxa during the Pleistocene (Budd, Johnson, and Semann ).

The existence of similar spatial trends in diversity across a range of tax-
onomically distant groups of organisms that have very diff erent larval and 
adult dispersal capabilities, that inhabit depth zones from the coastal zone 
down to the abyssal zone, and that include both pelagic and benthic forms, 
indicates that there are some general causal mechanisms that contribute to 
global macroecological gradients and patterns. That said, unfortunately, 
suffi  cient complexity has emerged from studies of macroecological patterns 
among marine fi shes, other marine taxa, and terrestrial organisms over the 
last decade that biogeographers recognize that they are a long way from 
being able to claim we actually understand those causal mechanisms (Gas-
ton and Blackburn ).
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