
Chapter 3 

Essentials of Standardization and 

Quantification 

Introduction 

Throughout this book, we emphasize the need 
for standardization of techniques across and 
within studies. Our rationale reflects the ratio- 
nale for the book in general; if a primary goal of 
field inventories and monitoring studies is to 
provide comparative data for analyses of 
biodiversity and examination of population 
trends, local extinctions, and the impact of 
human activities on amphibian populations, then 
studies must use standard techniques. The im- 
portance of standardization cannot be over- 
emphasized, because studies using different 
techniques are often simply not comparable, 
even at the simplest levels. Thus, if one field 
researcher uses visual encounter techniques to 

derive a species richness list for an anuran breed- 
ing area, and another researcher later uses aural 
transects, it is impossible to determine whether 
any differences in the species listed reflect real 
changes in species composition, different sam- 
pling biases of the two techniques, or both. If 
both studies used the same technique, either vi- 
sual surveys or aural transects, any changes in 
the list over time could be attributed to a real 
change in species composition. Even so, certain 
species certainly would be missed (semifossorial 
leaf-litter species by visual surveys and voice- 
less ones by the aural transects). Obviously, the 
best approach in this case would be for both 
techniques to be used in both studies; we always 
advocate using a combination of techniques to 
survey a habitat as completely as possible. 
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In preparation for this volume, we attempted 
to review all known techniques for the inventory 
and monitoring of amphibians. Here, we endorse 
and describe 10 techniques, and we encourage 
their use. These techniques may not be equally 
effective under all conditions, but it is our col- 
lective opinion that they represent the field sam- 
pling strategies that can best be standardized 
over the widest range of conditions. 

A number of techniques are described and 
recommended for inventory and monitoring, be- 
cause amphibians occupy a variety of habitats. 
The biphasic life cycle of most amphibians also 
means that different techniques are needed to 
sample larvae and adults. Several methods may 
be needed to sample an assemblage of amphibi- 
ans, but methods must be consistent among 
study areas and across years. 

Study questions 

The approach used depends on the questions 
being asked. Thus, the purpose of a study should 
be clearly stated before the study begins. If the 
purpose is to compile a list of species for a 
poorly studied area, then an inventory is appro- 
priate. If comparisons of species abundance 
among areas or across years are desired, then 
more-detailed monitoring methods must be 
used. 

An inventory is a study of a specific area (for 
example, a national park or a defined geographic 
region) to determine the number of species of 
amphibians present (species richness). Invento- 
ries produce presence-absence data for species. 
Inventories are most often conducted (1) in areas 
in which little work has been done previously, 
and for which an enumeration of species rich- 
ness will provide a baseline for biodiversity 
analyses, (2) across areas or habitats in which 
geographic or ecological distributions of single 
species need to be established or verified, and 
(3) in regions in which point comparisons over 
time can document changes in species distribu- 
tion (presence or absence) and habitat use. 

Monitoring is used to determine species com- 
position and abundance (numbers of individuals 
per species) at one or more sites through time. 
Because all taxa in all habitats cannot be moni- 
tored with equal success, investigators most 
often target a specific type of habitat or an indi- 
vidual species or group of species for study. 

Sampling considerations 

Scale 

Just as it is crucial to focus on the questions 
being asked, it also is important to define the 
sampling design and methods of analysis well 
before the field program begins. This maximizes 
the utility of the information gathered in the 
field, the comparability of that information with 
information from other studies, and the extent to 
which the data can be used to answer the ques- 
tions being posed. Design considerations (dis- 
cussed in Chapter 4) are as important for a 
one-day survey to produce a list of species for 
one locality as they are for a multiyear study of 
species abundances across a range of habitats. 

Two extremely important points that should 
always be addressed are (1) the goal of the study 
(i.e., why the study is being done) and (2) the 
geographic scale over which the results will ulti- 
mately apply. These factors define the spatial 
scale of the sampling program that will follow. 
For example, if one were interested in a com- 
plete enumeration of the breeding population of 
the toad Melanophryniscus moreirae in one 
pond in Itatiaia National Park in Brazil, a sam- 
pling strategy that counts every individual from 
that pond should be used, not a randomized sam- 
pling design. However, if the goal were to com- 
pile species abundance information for all 
amphibians in Itatiaia Park, one might divide the 
park into ecologically relevant habitat types and 
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randomly sample within them. Finally, if the 
goal were to compare species abundances 
throughout the Serra da Mantiqueira of Brazil, 
one might divide the mountain range into ele- 
vational zones and randomly sample one-hectare 
plots within each zone. All of these approaches, 
if properly used, would provide quantitative re- 
sults comparable with other identically designed 
studies. Which approach is most appropriate, 
however, depends on the goal of the comparison. 
Thus, in the first case, the data could be used to 
track the absolute abundance of M. moreirae in 
that pond over time; they could not be used to 
track abundance among ponds (because there is 
no sampling among ponds). In the second exam- 
ple, inferences could be made about the amphib- 
ian fauna of Itatiaia over time or space, although 
information on any given species might be rela- 
tively poor. Similarly, in the final example, a 
point sample for comparisons of changes in am- 
phibian diversity over one mountain range 
would have been established, although informa- 
tion on the amphibians of Itatiaia or on the spe- 
cies M. moreirae might not be available, if the 
randomized samples missed Itatiaia and the small 
area where M. moreirae occurs within the park. 

Randomization and Bias 

Studies of biodiversity can yield insights at three 
levels. At one level, species' presences are docu- 
mented to produce a list for the study area. At 
another level, abundances and distributions of 
individual species in time and space are deter- 
mined. At a third level, general patterns of diver- 
sity derived from the data, and processes that 
account for these patterns are deduced. Compar- 
isons can be made at all three levels. 

Whether two investigators estimate biodiver- 
sity of different areas or of the same area at 
different times, interpretations of the results 
hinge on a few fundamental elements of sam- 
pling procedure. The question or hypothesis to 
be pursued determines the general boundaries 

for sampling, but the sampling protocol within 
those boundaries must be selected. Because en- 
vironments are never truly homogeneous, differ- 
ent sampling protocols can give substantially 
different results. In particular, if sampling points 
are not distributed randomly through the area of 
interest, then analyses of the resulting samples 
are likely to underestimate or overestimate 
biodiversity. Environmental heterogeneity can 
effectively be removed (1) by recognizing the 
variation, subsampling within different types of 
habitat, and then comparing resulting estimates 
among the habitat types (this procedure is called 
blocking or stratified sampling in statistics) or 
(2) by ignoring the heterogeneity and sampling 
randomly without regard to habitat type. In ei- 
ther case, distributing samples randomly in the 
study area is an excellent way to minimize the 
problem of sampling bias, both for internal com- 
parisons within a study and for comparisons 
across studies. Chapter 4 provides an in-depth 
discussion of random sampling. 

Replication and Assumptions 

Replication is another major component of study 
design. It is important for two reasons. First, 
replication provides a basis for confidence in the 
estimates obtained, because the bounds within 
which a population estimate falls can then be 
determined with appropriate statistical tech- 
niques. Second, replication minimizes the ef- 
fects of localized factors that can obscure the 
study-site-wide variables of interest. 

Sampling programs should be designed such 
that resulting data can be subjected to objective 
statistical testing. Thus, it is important to under- 
stand the assumptions of the sampling program 
and to attempt to satisfy the assumptions im- 
posed by particular statistical tests. Two basic 
assumptions for most statistical procedures in 
this book are (1) that sampling is randomized 
and (2) that observations are independent. These 
assumptions present real problems for some of 
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the techniques described in this book, but reli- 
able statistical inferences can be expected only 
when the assumptions are reasonably approxi- 
mated. If sample sizes are reasonably large and 
samples are obtained randomly, then statistical 
tests can be used to determine whether observed 
differences between sampled areas are due to 
chance alone (the null case) or reflect significant 
differences attributable to biological factors (see 
Chapter 4). 

Reporting data 

The primary data that emerge when most of the 
techniques discussed in this book are used are 
species richness and abundance information. 

Frequently these basic results are summarized 
and reported as "simpler" summary statistics, 
such as a diversity index for a given habitat or 
species assemblage; such indices can make 
cross-study comparisons difficult or impossible. 
The proper use and interpretation of diversity 
indices are complex and controversial topics that 
are discussed in Chapter 9. However, all diver- 
sity indices must be derived from accurate, 
statistically sound species abundance infor- 
mation, and presentation of those data is the 
most important contribution a field survey can 
make to biodiversity issues. We strongly encour- 
age authors to make such data available for 
cross-study comparisons by including them in 
journal articles or depositing them in an accessi- 
ble repository. 



Chapter 4 

Research Design for Quantitative 

Amphibian Studies 

Lee-Ann C. Hayek 

Introduction 

Research on biological diversity includes de- 
scription of phenomena observed in the field, as 
well as controlled and objective investigation of 
these phenomena and the relationships among 
them. Basic to such research is the generation of 
hypotheses and the formulation of plans for test- 
ing them. In this chapter I discuss procedures 
necessary to develop such plans. 

It is impossible to carry out research or evalu- 
ate research literature in today's environment 
without understanding probabilistic and statisti- 
cal aspects of research. Toward this end, I con- 
sider some general conditions basic to the proper 
application of statistical techniques. I do not list 
specific assumptions or tests appropriate for par- 

ticular sampling techniques. Rather, I acquaint 
the reader with the circumstances under which 
certain probabilistic approaches can best be 
used. I also provide an overview of the connec- 
tion between the biological reality being tested 
or examined and the conditions under which 
results meaningful for its evaluation can be 
obtained. 

Project design 

The Research Question 

A scientific research question is one that asks 
about the relationship between two or more fac- 
tors or variables (e.g., species, environmental 
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conditions) within a defined context. The ques- 
tion should be precise and limited and asked in 
definitive, quantitative terms. It must contain the 
basis of and clear implications for testing. An 
example would be, "Does the number of am- 
phibian species increase with an increase in rain- 
fall in rain forest habitats in western Amazonia?" 
Generalized or metaphysical questions, such as, 
"Does good weather affect catchability of 
frogs?" will not suffice. 

Generally, research questions are formulated 
in terms of concepts and constructs. A concept is 
an abstraction or idea of a universal term that is 
developed by generalization from many individ- 
ual cases. For example, the concept of "frog" is 
not derived from the characteristics of one spec- 
imen of Rana ingeri but is a generalized idea of 
the collection of characteristics that make up the 
nature of all frogs. A construct is an abstraction 
of an unobservable, postulated phenomenon 
(e.g., aggressiveness, dominance behavior, terri- 
toriality, conformity), the idea for whose exis- 
tence is synthesized from specialized cases of 
behavioral observations. It is an impression of 
the behavior of the object of study. 

FOCUS OF THE RESEARCH QUESTION 

The question, once defined, should be applied to 
a specific group. In this context, the population 
is the set of all possible observations of the same 
kind that can be obtained. The sample, in con- 
trast, is all the observations actually made, or all 
the data obtained. One population, therefore, can 
give rise to many different samples. The core of 
statistics is to determine the extent to which gen- 
eralizations pertaining to the population can be 
developed from the sample obtained during 
fieldwork. Often, observational or sampling 
studies can be improved by more clearly speci- 
fying the population and ensuring that the sam- 
ples are representative of that population. 

It is necessary to distinguish between two 
types of populations in a statistical sense. The 
target population includes those individuals to 

which the researcher would like to generalize 
the results of her/his study. The available popu- 
lation is the actual group of individual amphibi- 
ans that the investigator can reach for 
participation in the study; it is the group of po- 
tential subjects from which the sample is drawn. 
For example, the investigator may wish to gen- 
eralize about all the species of Ambystoma in the 
United States (in terms of the concepts of rich- 
ness or diversity); these species then would con- 
stitute the target population. The study plan, 
however, may call for sampling these salaman- 
ders only along a series of transects in the south- 
eastern United States or in Virginia. The 
Ambystoma species occupying the area sampled 
constitute the available population. When the 
target and available populations are not the 
same, potential inferences are weakened. When- 
ever possible, these two populations should 
coincide. 

DEFINITION 

A definition is a set of terms or characteristics 
used to delimit the essential qualities or nature of 
a particular variable, procedure, or phenomenon. 
Definition plays a vital role in scientific in- 
quiry—especially in formulating research ques- 
tions—by setting out the specific conditions 
under which an observation constitutes a partic- 
ular type of information and by identifying the 
actual and inferential targets of the research. The 
terms used in a scientific research question must 
be clear and precise. Imprecision is one reason 
that contradiction and confusion exist in studies 
of species associations and diversity. The 
following rules should be used in formulating 
definitions: 

1. A definition should give the essence or na- 
ture of the thing defined and not its acci- 
dental properties. By means of a definition, 
one attempts to show how the object or indi- 
vidual belongs to a group or general clas- 
sification. A definition also delimits how the 
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object or individual differs from all others in 
that group, which is, of course, the com- 
monly accepted basis for biological system- 
atic classification. 

2. A definition should identify the specific cat- 
egory into which the thing falls and the dif- 
ferentia, as well. A frog is not defined as an 
animal that jumps, because many other ani- 
mals also jump. An amphibian that jumps 
narrows the field but is not specific enough 
for study purposes. The importance of this 
rule cannot be overstated. Without a way to 
eliminate extraneous factors from a study de- 
sign, one cannot construct valid inferences. 

3. A definition should be concise but inclusive. 
4. A definition should not be based on syn- 

onyms. The vagueness that characterizes 
spoken language has no place in science. 
Rather, the individualized concept or con- 
struct must be coupled with an objectively 
measurable phenomenon. 

5. A definition should not be based on meta- 
phor. A metaphorical definition—for exam- 
ple, "Calling activity at ponds sometimes is 
tumultuous, and the full chorus sounds like 
distant thunder"—has low information con- 
tent and provides no objectively measurable 
character of the item being defined. 

6. A definition should not be based on nega- 
tive or correlative terms. Although such 
statements are acceptable and even authori- 
tative in technical fields, they are frequently 
ambiguous and imprecise in nontechnical 
studies. For example, in mathematics,/"'(x) 
is unquestionably the inverse of the function 
f(x). However, in ecological studies, cold 
weather cannot be defined as the opposite of 
hot or warm weather. 

OPERATIONAL DEFINITION 

The definition of the variable, object, state, or 
individual in a scientific study must be precise 
and reproducible; it is a rule of correspondence 
between a set of constructs and the observable 

data (Torgerson 1958). A definition thus con- 
structed is termed an operational definition 
(Bridgeman 1927; Carnap 1936; Margenau 
1950; Kerlinger 1973). The alternative to an op- 
erational definition is a constitutive definition in 
which the constructs or concepts are defined 
with other constructs (Margenau 1950; Kerlin- 
ger 1973)—for example, "The weight of this 
frog is its heaviness." Constitutive definitions 
are neither appropriate nor sufficiently informa- 
tive for amphibian sampling. 

An operational definition clarifies how the 
object of study functions as a result of its spe- 
cialized nature, focusing on its observable char- 
acteristics (e.g., Bridgeman 1927; Kerlinger 
1973). Basically, this type of definition assigns 
meaning to a construct or variable by specifying 
the activities or "operations" necessary to mea- 
sure it. It connects the scientific concepts to ex- 
perimental and quantitative procedures with 
terms that have empirical meaning. In fact, this 
type of definition is a manual of precise instruc- 
tions to the investigator. 

For example, let us say that we isolate a 
breeding pond with an enclosure. Operationally, 
we could define a breeding male as a male found 
within the enclosure during the relevant season. 
This statement could be correct, but the criterion 
of definition is not unique; nonbreeding males 
might also be found within the enclosure. To 
define breeding males, we would have to include 
as many singularly observable characteristics as 
possible (e.g., calling from the water, in am- 
plexus) in order to eliminate all other males from 
consideration. 

For amphibian research, it is useful to distin- 
guish three types of operational definition: pro- 
cedural, behavioral, and structural. 

A procedural definition is an operational defi- 
nition that sets forth the manipulations or proce- 
dures required to induce or to observe the 
phenomenon or state to be studied. For example, 
for an observational experiment to be performed 
on "an abundant species," abundant could be 
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defined by a certain number of specimens ob- 
served per kilometer of transect. Within the con- 
text of the study, anyone can agree whether a 
selected species is abundant or not by noting the 
numbers found per kilometer; opinions open to 
interpretation are avoided. This type of defini- 
tion is especially useful for describing indepen- 
dent variables subject to causal or correlative 
relationships. 

A behavioral definition is an operational defi- 
nition that focuses on dynamic aspects of the 
behavior of the object, state, or individual, link- 
ing observable antecedent behavior with an 
associated change, outcome, or dependent vari- 
able. The behavioral type of definition is most 
useful for defining the dependent variable in in- 
vestigations involving behavior and is little used 
in studies of biodiversity. 

A structural definition is an operational defi- 
nition in which the demonstration of a specific 
behavior or other character constitutes the defi- 
nition. This type of definition focuses on the 
characteristics of the individual or object, speci- 
fying static rather than dynamic qualities. It is 
useful for defining any variable, independent or 
dependent. For example, a breeding male frog 
could be defined as "a male frog found calling at 
the breeding pond." 

Operational definitions set precise, concrete 
preconditions (e.g., operations, procedures, 
events, behaviors) that are observable and that 
lead invariably to the phenomenon under study. 
Such definitions satisfy the requisite of quantita- 
tive study, which is the specification and mea- 
surement of variables and their relationships. 
When the sex of an amphibian or the species is 
the variable, measurement is usually straightfor- 
ward. When assemblage structure, calling activ- 
ity, diversity, association, or dominance are 
being investigated, measurement is not so sim- 
ple, and peak precision is mandatory for suc- 
cessful study. Although an entire theory or 
sampling plan cannot be laid out in operational 
terms, such terms must be used to define the 

quantitative, measurable, and testable aspects of 
the study. 

In an inventory or monitoring study, the in- 
vestigator is concerned with nonmanipulated, or 
naturally occurring, variables rather than with 
the manipulated and carefully controlled vari- 
ables that characterize a laboratory study. Classi- 
cal statistical experimental designs must be 
modified to deal with this reduced control, with 
minimal loss to the quality of inference. For such 
observational or field studies, the aim is to de- 
scribe the procedures used to identify the state of 
a variable already characterizing each individ- 
ual, locality, or habitat in the target population. 
Operational ism in this context simply indicates 
how the variable states are to be identified and 
the situations in which they are to be observed 
and recorded. 

Formulating the Research Hypothesis 

Development of a research project requires the 
statement of the research question or problem 
and then its restatement in terms of a testable or 
working hypothesis. The research question may 
first be formulated in theoretical terms that link 
concepts, but then it must be translated into op- 
erational terms, which requires the researcher to 
consider measurement in precise terms. Unless 
the hypothesis is stated in a testable form, one 
cannot distinguish positive from negative evi- 
dence. For example, an investigator may believe 
that "Plethodon cinereus prefers deep litter in 
eastern United States deciduous forest" or that 
"Phrynohyas resinifictrix prefers tree holes in 
lowland rain forest," but these ideas are not test- 
able as stated. Is "preference" to be defined in 
terms of correlation, association, or depen- 
dence? And what does it mean in operational 
terms, only that P. cinereus will be found in deep 
leaf litter, or, in addition, that it will not be found 
in other substrates? Definitions that are too 
vague may preclude generalization because con- 
ditions cannot be replicated. In contrast, extreme 
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precision (e.g., patch sampling using logs only 
25 cm by 1.5 m or less) may be too restrictive, 
limiting a study to just one log or one tree, and 
not allowing for any generalization. 

A hypothesis should be the proposed answer 
to the research problem or one facet of the prob- 
lem. The hypothesis must contain a statement of 
the relationship between two or more quantities, 
species, or measurable variables and must con- 
vey clear implications for testing that relation- 
ship. Legitimate hypotheses exist that do not 
provide criteria of relationship between vari- 
ables (see below). These types of hypotheses are 
not appropriate for inventory and monitoring 
studies but may be useful for study of ancillary 
variables collected with the basic sampling data. 

The actual purpose of the test of a hypothesis 
is to ascertain the probability that the hypothesis 
is supported by fact. Strictly speaking, empirical 
evidence can never be said to prove or disprove 
a hypothesis, but it can support or "confirm" the 
hypothesis under suitable conditions of repeti- 
tion (e.g., Braithwaite 1955). 

The object of a hypothesis test is the relation- 
ship among the variables. These relationships 
are identified by propositions, statements that 
can be either true or false. There are several 
types of propositions: 

1. Simple qualitative proposition. A has char- 
acteristic B. Such a statement does not es- 
tablish a relationship between the (two or 
more) factors or variables, and, therefore, is 
not testable. Nevertheless, it may contribute 
to the development of theory by (a) serving 
to specify antecedent conditions under 
which certain affinities among the variables 
may be expected; (b) suggesting other re- 
lated propositions and providing a basal 
amount of knowledge; or (c) becoming a 
component of more-developed and testable 
propositions. An example of this type of 
proposition is "Bromeliads are the unique 
habitat of Osteopilus brunneus in Jamaica." 

2. Consequent proposition. If A, then B. This 
type of statement establishes that B is al- 
ways a consequence of A. Such statements 
can indicate a causal relationship. It is quite 
often possible to convert a simple qualita- 
tive proposition into a consequent proposi- 
tion. For example, in order to provide 
testability, the statement from proposition 1 
above becomes, "If O. brunneus is found, 
then the habitat is a bromeliad." 

3. Positive correlational proposition. The 
more A, the more B. For example, "The 
greater the structural diversity of aquatic 
vegetation in ponds, the greater the species 
diversity of tadpoles." The obverse of this 
type of proposition may also be used: The 
less A, the less B. 

4. Negative correlational proposition. The 
more A, the less B. For example, "As eleva- 
tion increases from 1600 m to 2500 m in 
tropical Peru, the number of species of pond 
breeding frogs decreases." 

5. Null proposition. A and B are unrelated. A 
null proposition indicates that no relation- 
ship between variables will be detected. For 
example, "There is no associative relation- 
ship or interaction (other than geographic as- 
sociation) between Hyalinobatrachium 
valerioi and Smilisca sordida along streams 
in lower Central America." The disconfirma- 
tion of the statement does not include a pre- 
ferred direction, so this is a nondirectional 
hypothesis. In contrast, proposition types 1 
through 4 are directional hypotheses. Direc- 
tional hypotheses relay more information 
about the testable relationship and may form 
the basis for more powerful statistical tests. 

Validity 

TYPES AND DEFINITIONS 

The most important consideration in problem 
formation, operational definition of variables 
with their attendant relationships, and formula- 
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tion of testable hypotheses is the maintenance of 
balance between specificity and generality. In 
this regard, the investigator must be keenly 
aware of the validity of the research design. 

Validity is conformation to declared purpose 
and is used with reference to propositions, in- 
cluding causal propositions (e.g., see Cook and 
Campbell 1979). For observational studies, it is 
a measure of the degree to which the research 
design will actually produce the results or mea- 
sure the variables that it says it will. High valid- 
ity implies close approximation to intended 
purpose, and low validity suggests poor approx- 
imation or larger "error." In ecological work, 
error is used to describe all departures from rep- 
resentativeness regardless of their cause. Alter- 
natively, in statistical work, error is used only to 
refer to nonrepresentativeness caused by inap- 
propriate sampling methods; all other problems 
are called biases. The source of any compromise 
to the validity of a study is called a threat. 

In designing sampling studies for amphibians, 
the investigator must be concerned with two 
major categories of validity. Internal validity is 
the extent to which differences detected in a 
dependent variable can be ascribed direcdy to 
changes in an independent variable in a specific 
sampling instance. External validity is the extent 
to which results obtained and statements in- 
ferred from a specific sampling situation apply 
or can be generalized to individuals, popula- 
tions, objects, or settings not directly participat- 
ing in the study. 

THREATS TO INTERNAL VALIDITY 

To achieve internal validity in a research investi- 
gation, one must be able to rule out all extrane- 
ous causative variables as explanations for the 
observed result. When a rival variable is elimi- 
nated, it is said to be controlled; uncontrolled 
variables are threats to internal validity. 

A controlled variable is not associated with or 
related to the independent variable, so its effects 
cannot be confused or confounded with those of 

the independent variable. Internal validity must 
be ascertained for each study by asking if a 
given (independent) variable really has a pri- 
mary associative relationship with another (de- 
pendent) variable and, if so, if the independent 
variable actually produced a change in the de- 
pendent variable. Before validity can be evalu- 
ated, the investigator must be sure that no 
extraneous variables have affected the result or 
been mistaken for the variable of prime interest. 

When a team has only a few days to obtain a 
species count and list of the target fauna at a 
remote site, the study usually is poorly con- 
trolled and has poor internal validity. Thus, 
when results of such a sampling study are used 
to evaluate faunal change or to design a manage- 
ment program, conclusions may be misleading 
or inappropriate. Sampling in this manner often 
involves "misplaced precision," in which exces- 
sive care is taken in the collection of data about 
which conclusions can be, at best, impres- 
sionistic and imprecise and, at worst, indefensi- 
ble. Because this type of one-shot study design is 
frequently used (particularly to evaluate the po- 
tential impact of environmental modification), 
we have included it as a technique (see "Com- 
plete Species Inventories" in Chapter 6), but 
with as much standardization as possible. Data 
obtained in this way may be used at least as a 
comparative base for more-intensive studies or 
as a preliminary estimate of the composition of a 
species assemblage. 

There are several potential threats (selectively 
adapted from Campbell and Stanley 1963) to 
internal validity for amphibian studies: 

1. Historical threat. A historical threat is an ex- 
traneous or unexpected event occurring in 
the environment at the time the observations 
are made (especially between the first and 
subsequent observations) that may confound 
the data on the selected relationships be- 
tween variables. Confound is used here in a 
statistical sense to indicate that an obtained 
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effect can be attributed to two or more vari- 
ables, and the unique portion due to each 
cannot be disentangled. For example, con- 
sider a study design in which night driving 
along selected roads is used to sample am- 
phibian presence and activity. The investiga- 
tor carefully identifies the two samples to be 
compared and controls for time, date, 
weather conditions, seasonal factors, speed, 
and vehicle. On the first night several spe- 
cies are encountered, but the second night 
yields many fewer. Further checking shows 
that on the second night a herpetology class 
collected amphibians along the road 30 min- 
utes before the investigator appeared. Com- 
parison of sample results is impossible. 

2. Maturation threat. Maturation threats are 
changes (e.g., in age, breeding status, fa- 
tigue level, seasonal activity) in the individu- 
als in the population during the period of 
observation that may affect the final out- 
come of the study. Maturation can be a con- 
sequential threat when organisms are sampled 
at time intervals of considerable length rela- 
tive to the length of their life cycles. 

3. Instrumentation and observer threats. These 
threats result from differences in measure- 
ment calibration that may lead to differences 
in results. The problems encompass not only 
laboratory and field instruments (e.g., weak 
batteries can affect the quality and accuracy 
of frog recordings) but also differences 
among observers or observations, which 
may be even more of a threat. For example, 
a novice and an experienced person likely 
would record different values for the dis- 
tance a frog call can be detected or for the 
number of frogs calling along a transect in a 
tropical forest. Likewise, a person who 
hears a species-specific call in two distinct 
microhabitats, or before and after observa- 
tion of another variable of interest, may 
judge the calls differently because of in- 
creased experience and discrimination, in- 

creased fatigue, or plain carelessness. Such 
variation can be minimized with standardiza- 
tion of methods and checks of inter-observer 
uniformity prior to fieldwork. 

4. Statistical regression threat. These threats 
result when amphibians or other organisms 
are selected for study on the basis of the ex- 
treme of any character. For example, it is in- 
appropriate to draw a conclusion about 
abundance based only on visible frogs if 
their typical inclination is to remain hidden 
in leaf litter. If frogs are selected for 
strength of call (i.e., the louder the call, the 
higher the probability of selection) or other 
character, the effect of statistical regression 
can be mistaken for the effect of the variable 
under study. The more deviant or extreme 
(in either direction) the first measurement, 
the more the second set of measurements 
will vary. This phenomenon is especially 
pronounced with variables subject to unreli- 
able measurement. If two large samples are 
drawn randomly from two different popula- 
tions, or from the same population at differ- 
ent times, without any matching, then 
regression threats are not a consideration. 

5. Interaction with selection effects. Selection 
effects occur when samples are selected non- 
randomly and the resulting groups of am- 
phibians differ in size, variability, or type. 
Such differences jeopardize group compari- 
sons and may be a threat to internal validity. 
The extent to which randomization assures 
group equality is shown by tests on the sam- 
pling statistics (e.g., means and variances). 
The chance that the assumption of group 
equality is not tenable increases for small 
samples. 

Interaction may occur between sample selec- 
tion and any of threats 1 through 4, above. Selec- 
tion-maturation interaction is possible when two 
groups (e.g., two species of anuran larvae in a 
pond) mature at different rates or in different 
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proportions (e.g., more males than females). Se- 
lection-historical threat interaction can result 
when groups have distinct local histories. Such 
effects are especially likely when a known 
source of variability is ignored. For example, if 
males and females of a particular species have 
different behaviors or habitat distributions, then 
random sampling may be inappropriate. Block- 
ing or stratifying the sampling on the basis of 
sex, prior to random selection within each sex, 
will increase sampling precision and decrease 
the interactive threat to internal validity. 

THREATS TO EXTERNAL VALIDITY 

Because investigators are almost always inter- 
ested in the relevance of their work beyond the 
confines of the selected sample (i.e., generaliza- 
bility), concern about external validity is import- 
ant. External validity can be strengthened by 
describing the population, settings, and variables 
to which the results will apply, before the study 
is initiated. The representativeness of these fac- 
tors will determine how extensively the results 
can be applied. 

The following factors may threaten external 
validity if they are not evaluated prior to data 
gathering: 

1. Interactive effect of selection. The character- 
istics of the sample selected from the avail- 
able population determine how extensively 
the findings can be generalized. External 
factors (e.g., weather, environmental condi- 
tions) as well as internal characteristics 
(e.g., breeding status, age) of the particular 
group selected may contribute to an atypical 
finding. The diversity found in artificial 
pools, for example, may not be representa- 
tive of diversity in natural ponds. 

2. Reactive or interactive effect of preselection 
methods. A treatment or method used in a 
study influences subsequent results through 
its effect on the behavior of the subject. For 
example, an animal captured and marked 

prior to a sampling effort may be more 
likely to avoid capture than a naive animal. 
Likewise, the presence of an observer in the 
immediate area may affect normal amphib- 
ian behavior in unregulated ways. This may 
not, in itself, limit generalizability, if stan- 
dard preconditions are met, because all in- 
ventories and monitoring efforts to some 
extent are observational studies. 

3. Multiple effects interference. Measurements 
taken from individuals subjected to more 
than one procedure may be representative 
only of measurements taken from other indi- 
viduals that have experienced the same se- 
ries of procedures. 

SUMMARY 

For any inventory or monitoring study, the inter- 
nal and external validity of each stage of the 
study design must be evaluated in detail, and the 
presence and extent of any threat determined. 
The frequency and importance of each threat 
will vary within and among studies, and particu- 
lar threats are not inevitably correlated with par- 
ticular sampling designs. I have listed here only 
those threats that I consider to be plausible in 
field biodiversity studies. The list is not exhaus- 
tive (see e.g., Wright 1991), but it may help the 
investigator to recognize threats and to minimize 
or eliminate them from the study plan. 

Field observation and 
statistical design 

Data Accuracy 

A fundamental assumption underlying any am- 
phibian study is that the data have been accu- 
rately recorded and processed. As emphasized in 
Chapter 6, observations should be recorded in 
the field and later coded (if necessary) and en- 
tered into a computer (if available or desirable) 
for analysis, to reduce the likelihood of introduc- 
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ing errors. Confidence in the analytical results 
cannot exceed confidence in the accuracy of 
each observation. 

If computers are used, the data should be 
checked as they are entered. Spreadsheet and 
database programs allow limits to be placed on 
each column of input in order to prevent errors 
of excess. For example, if season is coded as an 
integer between 1 and 4, the program can be set 
to prevent other digits from appearing in that 
column. Even with such precautions, it is wise to 
check the data a second time against a hard 
(paper) copy of the completed file. 

Despite careful checking, input errors may re- 
main undetected. One of the most common 
problems is that of extreme values, or outliers— 
that is, patently unrealistic observations. Both 
the computer data and the original field notes 
should be checked. Only when a source of error 
is clearly identified (e.g., a code of 4 for sex or a 
species count of 100 incorrectly copied as 1,000) 
should the extreme observation be corrected. 

Other situations that may affect data accuracy 
are accidents (e.g., rain gauge tipped over) and 
mechanical or personnel problems (e.g., weak 
batteries on data recorder, investigator sick). 
Any decision to ignore observations because of 
possible data contamination must be made be- 
fore the data are examined, so that the actual 
value of the observation cannot influence the 
decision. All contaminated data must be either 
discarded or retained. Quite frequently in field 
studies, values representing genuine biological 
effects cannot be reliably distinguished from ac- 
cidental irregularities or input errors. If the in- 
vestigator cannot be certain that an extreme 
value is the result of a problem, the value should 
be retained. 

Even if there is an obvious reason to discard 
an observation, internal or external validity may 
be threatened. It is possible that extreme values 
or measurement errors are more likely to occur 
under one set of study conditions than another. If 
so, and if these values are discarded, then the 

remaining data may not be representative of the 
study population. For example, the set of quadrat 
observations from certain microhabitats in a 
study area may be faulty because of high ob- 
server error or patchiness of species occurrence. 
If these observations are edited or eliminated, 
the remaining quadrats may not be representa- 
tive of the target area's true heterogeneity, and a 
statistical estimate then could be severely biased. 
Care must be taken to examine extreme observa- 
tions within the frame of reference of the study 
before any value is discarded. This possible 
source of bias should be clearly mentioned in the 
final report or publication. It may be of value to 
compare the results of analyses made with and 
without the suspect values. 

Measurement Scales and 
Statistical Analysis 

Numbers that result from an inventory or moni- 
toring effort may have one or more of three 
cardinal features: intrinsic meaningful ordering; 
ordered differences between number pairs; or a 
unique "zero" point, or natural origin, indicating 
absence or deficiency. Stevens (1946) named 
four numerical scales based upon the number of 
these features observed and the amount of 
information represented about the measured 
property: 

1. Nominal scale. Numbers on this scale are 
used to name categories in a classification, 
but they do not measure any property and 
have no intrinsic order. In this case, numer- 
als are actually unnecessary; word descrip- 
tions such as male and female, or letters 
such as m and/, can be used. When the clas- 
sification is subjected to statistical analysis, 
numerals without an underlying order rela- 
tionship may be used. For example, sex may 
be coded i or 0, and a male can be desig- 
nated as either value with no sacrifice in 
meaning. 
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2. Ordinal scale. Ordinal numbers are those as- 
signed to the amounts of a property, so that 
the order of the numbers corresponds to the 
order of magnitude of the amounts (Torger- 
son 1958). Ordinal scales may have a natu- 
ral origin (Torgerson 1958) or not (Stevens 
1946). On an ordinal scale, objects can be 
arranged in a meaningful serial order with 
respect to some property, showing that some 
individuals or objects have more of a partic- 
ular attribute than do others. For analytical 
purposes, any order-preserving (i.e., mono- 
tonic ally increasing) transformation of the 
numbers will serve as well as the original set. 

3. Interval scale. An interval scale denotes 
equal incremental amounts of a property of 
an individual with equally valued numerical 
increments. In addition to the order of the 
numbers corresponding to the order of mag- 
nitude of the various amounts of the prop- 
erty, the size of the difference between the 
pairs of numbers corresponds to the distance 
(in a generalized sense) between the corre- 
sponding pairs of amounts of the property. 
Any set of numbers satisfying the require- 
ments of such a scale is not affected by a lin- 
ear transformation (of the familiar form 
y = ax + b) of the set. An increase in one 
unit from any region of the scale is identical 
to a unit increase from any other region. 

4. Ratio scale. A ratio scale is formed when 
the requirement for a unique natural origin 
is appended to the rules for forming the in- 
terval scale. Any set of numbers satisfying 
the requirements is insensitive to a linear 
transformation (of the form y = ax). 

Baker et al. (1971) provided at least a partial 
answer to the question of how to relate the mea- 
surement scale for data to computational proce- 
dures and statistical tests. They showed that 
probabilities estimated from the sampling distri- 
butions of so-called strong statistics, such as the 
/-test, are almost unaffected by the type of mea- 

surement scale used. In general, therefore, an 
inferential statistical test can answer the research 
question it was designed to answer, regardless of 
the original scale of measurement. 

Randomness 

The basic statistical tests used with observa- 
tional data from inventories or monitoring stud- 
ies require that the initial selection of subjects or 
localities or the application of field techniques 
(e.g., quadrat placement) be random. The term 
random is used in a technical sense in research 
design; it does not describe the data in the ob- 
served sample but the process by which the data 
were obtained. Sampling is random if each pos- 
sible sample or combination of n selections of 
individuals in the population has the identical 
chance of becoming the sample actually drawn. 
Random sampling does not mean, as is often 
stated, that each individual in the population has 
an equal chance of being in the sample. In prac- 
tice, a sample is drawn individual by individual, 
and each has an equal chance of selection at the 
time of selection. This procedure is also called 
simple random sampling in the sense that it is 
sampling without further restriction (Kemp- 
thorne 1955; Cochran 1963). Implicit in this dis- 
cussion of procedures for simple random 
sampling is selection from a finite population. If 
the population is of infinite size, random sam- 
pling procedures do not apply, and a sample is 
selected randomly only by assumption. 

Many people believe that any sample drawn 
randomly from a population is highly represen- 
tative of that population or equivalent to it in all 
essential characteristics. A second widely 
accepted notion is that chance events are self- 
correcting. Both of these assumptions are untrue 
and can affect the validity of a study. 

REPRESENTATIVENESS OF SAMPLES 

The law of large numbers predicts that very large 
samples will be representative of the populations 



Research Design       31 

from which they are drawn, but it does not speak 
to the medium and small samples obtained dur- 
ing the course of most fieldwork. Five tosses of 
a coin can yield 4 heads and 1 tail, or 80% heads, 
whereas the proportion of heads in 5,000 tosses 
is likely to be close to the theoretical value of 
50%. In a similar manner, 5 quadrats randomly 
placed in a forest with 95% canopy cover might 
fall in the open over 4 small ponds and 1 trail; 
locations of 100 or 1,000 quadrats would likely 
be more representative of the area's true habitat 
profile. 

The comparability of random assignments to 
groups is probabilistic, not deterministic. Indi- 
vidual samples can vary greatly, but the distribu- 
tion of samples will depend upon the nature of 
the population from which they were selected. 
For a given sample size, one will obtain more 
heterogeneous samples from populations in 
which the individuals are more variable among 
themselves. Averages and proportions will vary 
less in large samples than in small samples from 
the same population. The value of random selec- 
tion does not emanate from fairness or lack of 
bias with which any selected samples portray the 
population, but lack of bias is an important con- 
sideration in large samples. Among R. A. 
Fisher's greatest contributions was furtherance 
of the idea that random processes can be used to 
achieve group equivalence prior to an experi- 
ment or study. No test of significance requires de 
facto that all confounded, uncontrolled extrane- 
ous variables be removed, that is, that random- 
ization be effected (McGinnis 1958). However, 
the process of randomization assures that condi- 
tions of equivalence of samples will be met 
within reasonable limits; failure to randomize 
does not guarantee, however, that such condi- 
tions will be violated. 

SAMPLING METHODS 

All methods of sampling have some attached 
pattern (distribution) of variability. Knowledge 
of this pattern is a basic tool of statistical infer- 

ence and can be obtained only through the laws 
of mathematical probability, which are applicable 
only to samples obtained under random processes. 

Other sampling methods are available. Some 
rely in part on random procedures, and some 
exploit certain features of random processes. 
Convenience sampling is a generic term for a 
type of sampling used for convenience rather 
than for formal representativeness. Sampling of 
a certain fauna by an expert herpetologist might 
well approximate the true proportion of species 
in the area. The numbers obtained, however, are 
still subject to sampling variability, but of an 
unspecified amount, and the possibility of scien- 
tific replication is diminished. There are three 
common types of convenience sampling; acci- 
dental, grab, and haphazard. Accidental sam- 
pling occurs when the data on a species or genus 
are obtained peripherally as part of a larger or 
unrelated study and are not randomly selected. 
Such sampling does not guarantee that the 
achieved observations are representative of the 
population, nor is it clear how to specify the 
target population. 

Cochran et al. (1954) discussed grab sam- 
pling, in which an investigator, in effect, just 
"grabs a handful." Whether the sample units be 
individuals in the available population or cards 
with random numbers, the ones in the handful 
almost always resemble one another more, on 
average, than those from a simple random sam- 
ple; variability is underestimated. These authors 
showed that even if the grabs are randomly 
spread such that each one has an equal chance of 
entering the sample, they do not share the char- 
acteristics of a randomly obtained sample. 

Haphazard sampling heightens the implica- 
tion of chance and, unfortunately, can pass for 
random sampling in some ecological applica- 
tions (e.g., quadrat sampling). However, unless 
investigators employ a device, such as a random 
number table or generator, to select localities, 
microhabitats, or sites for the placement of quad- 
rats or transects, they may create a halo effect. A 
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halo effect occurs when an investigator selects 
the "best" or the "good" sites or individuals for 
sampling. For example, the frog just outside the 
actual study area boundary is selected because 
the frog displays the desired characteristic. Such 
a selection method certainly may allow for 
larger samples or species abundance limits. 
However, haphazard sampling threatens exter- 
nal validity and can influence the results of sub- 
sequent statistical testing. 

In contrast to convenience sampling, proba- 
bility sampling is a process wherein randomness 
is a requisite. Randomness can enter the sam- 
pling procedure at any stage. A few such sam- 
pling methods are of interest for inventory and 
monitoring studies. With stratification {strati- 
fied random sampling) a target population is di- 
vided into relatively homogeneous groups or 
strata prior to sampling, based on factors (e.g., 
sex, size, breeding condition, life history state) 
known to influence variability in that popula- 
tion. Subsequent selection within each stratum is 
random. Factors are selected on the advice of 
amphibian experts. Such expert judgment may 
be inappropriate as a basis for statistical sam- 
pling, but it is vital for controlling variables ex- 
traneous to the phenomenon being studied and, 
thereby, for increasing internal validity. Strati- 
fied random sampling is also a useful opera- 
tional strategy for screening individual 
specimens, events, or microhabitats for possible 
exclusion from the study and for reducing study 
variability. 

Randomization within stratified groups adds 
precision to a study by ensuring that the sample 
contains the same proportional distribution of 
amphibians, events, or microhabitats as in the 
target population. It increases the likelihood that 
the research will be representative of the popula- 
tion. Stratified random sampling is appropriate 
for populations that tend to be patchy (Seber 
1986). In such a case, each sample of size n in 
each stratum has a known probability of being 
selected for the study. The actual probability of 

selection does not have to be known; only the 
relation of this probability to the proportion of 
such samples in the population is necessary. 

In sampling, a major effort must be made to 
reduce any large or important threat and any 
random sampling error. After this reduction, the 
easiest way to increase sample accuracy is to 
increase sample size. Other things being equal 
(Yates 1981), the random sampling error is ap- 
proximately inversely proportional to the square 
root of the number of units included in the sam- 
ple. The accuracy attained will depend on the 
sample size as well as on the variability in the 
population of subjects that contributes to the 
sampling error. 

Methods other than simple random sampling 
and stratification that do not introduce further 
bias but substantially reduce variability and, in 
turn, reduce the sample size required to attain 
the level of accuracy desired are of considerable 
benefit. One method is systematic sampling with 
a random start point in which a sample is ob- 
tained by a systematic, not random, method 
(e.g., sampling at equal intervals in space or 
time). For example, one might choose among 
localities on a list by selecting every fifth entry. 
Another method, cluster sampling, uses groups 
or clusters (e.g., ponds, tree holes), not individu- 
als, as the basic (multistage) sampling unit; this 
approach may be preferred in ecological situa- 
tions that require even area coverage (Scherba 
and Gallucci 1976; Seber 1986). Many authors 
(e.g., Seber 1986) have noted the need for more 
sample designs that use sampling approaches 
with higher efficiency, that is, that provide for 
reduced variability. Both Yates (1981) and Krebs 
(1989) provided readable discussions of this 
problem. 

It is important to realize that random assign- 
ment of individuals or objects to groups only 
minimizes but does not eliminate all threats to 
validity. Random assignment does not guarantee 
a productive research design or a testable hy- 
pothesis. It provides a proper environment for 
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inference but does not guarantee the infallibility 
of the inferences; assumptions of comparability 
are merely assumptions and must be examined 
for plausibility. Randomization is the best way to 
avoid accidental bias, but if group sizes are 
small, then large intrinsic differences that bias 
the estimated effects can still occur between 
groups by chance (Gilbert 1989). Alternatively, 
the judicious selection of control variables 
(McGinnis 1958) and the use of the more sophis- 
ticated sampling plans discussed above can re- 
duce required sample sizes and add to both the 
internal and the external validity of the research. 

USE OF A RANDOM NUMBER TABLE 

We include in this book a table of edited random 
numbers (Appendix 7). Use of such a table in 
designing sampling studies is probably the most 
widely accepted method of obtaining random 
samples and is recommended in many of the 
techniques, but it must be properly used. 

For purposes of inventory and monitoring 
studies, the first step is to list the objects, habi- 
tats, quadrats, or transects to be subjected to the 
random assignment process. Individuals, al- 
though the primary objects of concern, are not 
randomized in a field study; the sites at which 
they will be studied or trapped are. Each item on 
the list is assigned a unique numeral. The next 
step is the selection of the tabled numbers for use 
in selecting the sample. Let us assume we want 
to place 10 one-meter-square quadrats randomly 
throughout a specified habitat that is 25 x 25 m, 
or 625 m2, in area. A map of the area could be 
subdivided into 25 equal-sized (5 x 5 m) plots, 
with each assigned a unique consecutive nu- 
meral, from 1 to 25. We then would need to 
select, at random, the 10 plots in which to place 
one each of the 10 quadrats. To do so, we would 
use the table of random numbers (Appendix 7) 
to select 10 numbers, each representing a spe- 
cific plot in the set of 25. Use of this table, which 
was devised for this book, is explained in detail 
in Appendix 7. 

At times a second application of the random 
sample procedure may be required to ensure that 
the selected sites are observed in random order. 
We also could select a "control" group in the 
same manner. The purpose would be to create 
two groups that are equivalent in a probabilistic 
sense. The two sets of quadrats would be located 
in areas representative of the total 625 m2 of area 
selected for study. The use of such a control group 
does not necessarily mean that the target popula- 
tion under study has some unifying characteristic 
or forms a biological population of interest. 

In some circumstances it may be desirable to 
employ an alternative form of probability sam- 
pling. For example, if the target population were 
stratified by microhabitat before sampling, plots 
within each of the strata would be selected sepa- 
rately using the random number table. 

Stratifying, or blocking, prior to study is pref- 
erable to adjusting initial random assignment to 
groups (Cook and Campbell 1979). Neverthe- 
less, if new information on the fauna indicates 
that microhabitat differences may be important 
in the study, the location of each randomly 
placed quadrat can be checked for noncompara- 
bility. The investigator might find, for instance, 
that 7 quadrats include parts of streams, 2 in- 
clude small ponds, and 1 is covered with a deep 
layer of dry litter. If such a bias were noted prior 
to actual field observation, rerandomization (the 
selection of 10 new values) would be a possibil- 
ity. However, in this case, stratification or block- 
ing should be given serious consideration. To be 
maximally effective, the research design should 
determine the point at which randomization 
should enter. 

Another common procedure for making ran- 
dom assignments of sampling units is to write 
numbers representing the sampling units avail- 
able (e.g., 1, 2,... 25) on slips of paper, put them 
into a container, shake it thoroughly, and select 
slips until the sample size is reached (e.g., 10). 
This method can involve unforeseen bias (e.g., 
the slips of paper stick to the container or each 
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other). Computer-generated tables of random 
numbers can also be used, but each program must 
be checked because many authors have identified 
inaccuracies with particular generators. 

Connor (1977) suggested the following proce- 
dures as aids to reliable randomization: 

1. The individual or individuals who design 
the study and best understand the rationale 
for sampling make the random assignment. 

2. The investigators control the assignment, 
not an agency's operating personnel. 

3. One person makes the assignments, not a 
group. 

4. Investigators do not use "loopholes," in 
which random assignment is circumvented 
for a small number of individuals or objects 
(e.g., the investigator includes a subject 
slightly outside the quadrat because of desir- 
able characteristics). 

Another point may be added to this list: 

5. Randomization is carried out before entering 
the field. This practice eliminates uninten- 
tional as well as conscious bias in selection 
and prevents direct substitution of one unit, 
specimen, or plot for another that is less con- 
venient or less apt to provide information. 

A sample will be sufficiently representative 
of a population only if errors introduced by the 
sampling process in the field are adequately 
minimized. Even so, bias that affects wholly 
objective conclusions does not necessarily in- 
validate the total study. Many times, constant 
or small biases are inconsequential. For exam- 
ple, when limited bias is constant from species 
to species, inventories designed to look across 
species at one site are little affected. Investiga- 
tors must avoid attaching exaggerated import- 
ance to minor sources of bias that, in fact, can 
only produce errors that are trivial relative to 
random sampling error (Yates 1981). Ascer- 

taining the relative importance of bias and 
sampling error is a vital concern in statistical 
inference. 

Independence 

Statistical tests may lack validity if research 
events are not independent. Events are said to be 
statistically independent when the probability of 
occurrence of one event remains constant re- 
gardless of the occurrence of another. Succes- 
sive samples from a population are independent 
if the probability of selecting any one sample is 
independent of the selection of the others (Mar- 
riott 1990). Samples of amphibians removed 
from a plot one by one (see "Quantitative Sam- 
pling of Amphibian Larvae" in Chapter 6 and 
"Removal Sampling," in Chapter 8) can be as- 
sumed to be independent if the population is 
large. Observations of amphibians along a tran- 
sect are also independent as long as the individ- 
uals are not highly mobile and not likely to be 
recorded in more than one sample. In contrast, 
removal of males from a chorus probably affects 
the calling activity of other males and, thereby, 
makes their location and removal difficult. Like- 
wise, samples from night driving at short time 
intervals may lack independence. 

Transects at a study site must be placed far 
enough apart to make overlap of aural or vi- 
sual encounters unlikely. When working with 
a small population, for example, larvae from a 
tree hole or a very small pond (e.g., one dip 
with a net), the initial sampling affects subse- 
quent sampling by drastically reducing num- 
bers. In this instance, the remaining larval 
population may take on a character different 
from those in the initial intact population. An- 
other example in which dependence is possi- 
ble involves sampling frogs from ponds within 
easy walking distance on successive days. Un- 
less the frogs are marked, at least a few, and 
possibly many, individuals may be included in 
both samples. 
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Sample Size 
In the design stage, it is common to raise ques- 
tions about the sample size necessary for both 
testability and generalizability. Factors of time, 
money, and personnel act to keep the size small, 
whereas statistical and biological considerations 
call for larger samples. The prime concern is 
determining the minimal biological sample size 
needed to provide statistically credible findings. 

Consideration of statistical tests, degree of 
sample comparability, and representativeness 
achieved by randomization persuades most in- 
vestigators that bigger is always better. Explana- 
tions and apologies for small samples abound in 
the ecological literature. However, "the bigger 
the better" as a maxim is neither invariably true 
nor always a mandate for statistical analysis. 

For inventory and monitoring projects we 
need to consider at least two aspects of sample 
size: (1) the numbers of quadrats, transects, or 
trips to the site and (2) the numbers of specimens 
collected and species sampled. Suggestions for 
the former are provided in the sections on sam- 
pling techniques, but with two caveats. First, for 
simple random sampling of quadrats, transects, 
or patches, suggested sample sizes are based on 
the number that experts have found necessary to 
achieve biological or ecological representative- 
ness of the target area. Second, if stratification is 
involved, it is optimal to select judiciously one 
to three variables upon which to stratify and to 
achieve comparability of groups through ran- 
dom sampling within strata. This methodology 
will eliminate problems of missing or unattain- 
able specimens in a large, multifaceted array. 

Determining numbers of replicates in field- 
work is troublesome, especially because cost 
may dictate numbers of site visits. Although an 
investigator can specify a model, formulae to 
predetermine sample sizes usually are at best 
asymptotic rather than exact, and at worst im- 
possible to achieve under study limitations. For 
our purposes, expert guidance should prove 
more reliable. In fact, revisiting a site according 

to a standard timetable is probably more vital to 
success than making a predetermined number of 
visits. 

The number of specimens collected or species 
to be sampled presents a different problem. In 
field observation studies of the type we discuss 
in this book, predetermined numbers of speci- 
mens are not the norm; investigators find what 
they can. Likewise, in the realistic biological 
situation of inventories and monitoring, speci- 
mens and species are the topics of study but not 
the sampling unit and, unlike the transect or 
quadrat, they are not the direct object of the 
random selection. Nevertheless, it is possible to 
ascertain after sampling has been completed 
whether the sample size gives the null hypothe- 
sis a reasonable chance of being confirmed. 

Investigators often are pleased to obtain a 
small sample and delighted with a moderate one. 
Field studies do not require the a priori use of 
formulae to determine sample sizes but rather 
the post hoc determination of the observed 
power of the fieldwork. Some authors (e.g., 
Rotenberry and Wiens 1985) have discussed the 
use of power and sample size formulae in the 
design of field studies. I focus on use of the 
concepts of power and sample size as they relate 
to interpretability. 

Testing Errors 

Both the null hypothesis, that the variable under 
investigation has no effect or the relationship has 
no meaning, and the alternative hypothesis, that 
the variable does have an effect or the relation- 
ship is meaningful, are under consideration 
when a statistical test is run. Statistical work in 
biology focuses on the null hypothesis. It also 
emphasizes the type 1, or alpha, error. The alpha 
error is usually called the significance level cho- 
sen for the study; it indicates how likely one is to 
reject a hypothesis when it is true and should not 
be rejected. This level, when allowed to range 
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over the interval (0,1), actually may be seen as a 
random variable or as a statistic that measures 
the consistency of the data under the null hy- 
pothesis. The type 2, or beta, error of a particular 
test refers to how likely one is not to reject a 
hypothesis when it is false and should be re- 
jected (a null hypothesis cannot be "accepted"); 
this type of error cannot be controlled simply by 
selecting a significance level. It is usual to preset 
the level of type 1 errors and to minimize the 
probability of type 2 errors. 

Either of the two errors can be costly; circum- 
stances of testing determine which has the more 
deleterious effect. It is simple to conjure up ex- 
amples involving life or death in which the cost 
of committing a type 1 error is decidedly more 
than the cost of making a type 2 error. In this 
case, the significance level (alpha) could be set 
at 0.01 or even 0.001 for decision making to 
offset the seriousness of the possible error. When 
there is no life-threatening aspect to the re- 
search, a type 1 error is usually less costly than a 
type 2, This is especially true in exploratory 
studies or studies involving innovative features 
or elusive species effects. Toft and Shea (1983), 
however, have pointed out circumstances in 
basic research in which the cost of a type 1 error 
could exceed that of a type 2 error. 

THE 0.05 CONVENTION 

In order to make a rational choice for the levels 
of error, there should be some specification of 
the loss involved. Such specification is practi- 
cally impossible in a general inventory or in a 
monitoring effort, which is a problem when test- 
ing hypotheses with such amphibian data. Gen- 
erally, biologists have resolved the problem by 
adopting the conventional but arbitrary level of 
0.05 (or occasionally 0.01) for alpha for all re- 
search, thereby ignoring effectively the second 
type of error, and the power of the test. The 0.05 
level of alpha, which is listed as if it were indis- 
putable truth (and even may determine publi sua- 
bility), is but convention. Use of a constant value 

(0.05) for alpha introduces an impartiality into 
the test procedure, but it can be a serious impedi- 
ment to interpretation because it is a conve- 
nience that ignores other important aspects of 
the inference process. In addition, it addresses 
the question of error, not the utility or impor- 
tance of the obtained result. A decision to use a 
fixed alpha error is not always the best strategy 
for observational work. The selection of paired 
values for alpha and beta errors, based upon the 
complexity of the sampling design, may well 
serve biodiversity purposes better. Alpha should 
equal beta to provide an equal chance of detec- 
tion as a standard for observational field work, 
unless circumstances make one error more 
costly or more difficult to detect than the other. 

POWER, EFFECT SIZE, AND SAMPLE SIZE 

The probability of making a type 2, or beta, error 
(failing to reject a false hypothesis) and the 
probability of correctly rejecting a hypothesis 
(power) are necessarily related (1 - beta error = 
power). Therefore, a powerful test is one that 
allows for a high probability of claiming there is 
a real difference when such a difference actually 
exists in the population. Summaries of research 
findings commonly report sample sizes as well 
as alpha error or observed probability (p) level 
but not type 2 error or power. In addition, the 
observed p value is often the only criterion used 
in making decisions about the correctness of a 
hypothesis, with no reference to sample size, 
research design, or the potential costs of the 
decision (Yoccoz 1991). 

Interpretative remarks in amphibian literature 
reveal the attitude that significant results ac- 
quired with large samples are more compelling 
and meaningful than those based on small sam- 
ples. In addition, when an investigator concludes 
that a statistically significant relationship exists, 
generally he or she is confident not only that a 
biological or ecological relationship exists in the 
target population, but also that the degree or size 
of that affinity or effect is worthy of further 
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consideration. However, the size of the effect 
(relationship or difference) is not a product of 
the size of the sample. 

It is certainly true that the smaller the values 
of alpha and the observed probability, p, the 
surer one can be that the obtained result is not 
attributable to sampling error. However, neither 
alpha nor p indicates how far apart the parame- 
ters (e.g., means) are or how large an effect 
actually is being discussed. The effect size 
(Cohen 1977) is a relative measure, in popula- 
tion standard deviation units, of the difference 
the investigator desires to detect. It is not possi- 
ble in many observational studies, however, to 
specify the effect size a priori. This difference 
may be estimated after the data have been ob- 
tained; the observed effect size (i.e., a standard- 
ized difference between the two observed 
parameter estimates) estimates this separation 
for a given procedure or test (Cohen 1977; 
Lipsey 1990). If the null hypothesis is rejected, 
then some real differences may exist between 
the situations specified by the two hypotheses. 
The magnitude of this difference will have a 
considerable influence on the likelihood of 
attaining significance. For equivalent-sized het- 
erogeneous samples, the larger the effect (rela- 
tionship), the more likely it will be determined 
statistically significant, and the greater the statis- 
tical power of the test. Likewise, any variable, 
regardless of how inconsequential, will manifest 
a statistically significant difference in large 
enough samples. But would one really accept 
that a statistically significant difference between 
means of 0.343 frogs/km transect and 0.341 
frogs/km indicates a real change in species abun- 
dance? This type of issue must be resolved. With 
large samples the difference being tested may be 
tiny and still be called statistically significant; 
with small samples this difference would have to 
be quite large (but, as we shall discuss, still not 
necessarily substantive) to be detectable. For a 
reported difference to be evaluated, not only its 
significance, but also its size must be known. 

When sample sizes are about the same, the 
maximum observed difference (in terms of an 
appropriate measure of effect size) between the 
groups of results termed nonsignificant and the 
difference between those that have been called 
statistically significant should be evaluated. The 
observed effect size for the first group should 
never be larger than any effect size in the second 
group. A moment's reflection should reveal this 
standard to be the basic minimum for avoiding 
problems of illogical summary interpretation. 

In experimental settings and even some sur- 
vey studies it is possible to set a minimum effect 
size or smallest detectable difference before the 
work begins. This value, determined a priori ei- 
ther by expert opinion (Cohen 1977) or from 
previous research results (e.g., Ferrari and 
Hayek 1990), is used in formulae to make power 
and sample size determinations. 

An opinion not often presented is that tests of 
null hypotheses are not actually the most appro- 
priate for field work. However, in many in- 
stances interpretative problems and ambiguities 
could well be relieved or eliminated by an alter- 
native approach. If the size of the effect of inter- 
est were specified in the statement of the 
scientific hypothesis, simple statistical tests 
would become only one aspect of the total statis- 
tical inferential picture. For example, a re- 
searcher could test whether the population sizes 
of Ambystoma tigrinum dropped by at least 10% 
over time, or whether the SVL (snout-vent 
length) of Rana limnocharis differed by less than 
one standard unit across two localities. In this 
way, the accumulated knowledge of the expert is 
drawn into play, and the exact situation to be 
tested has biological significance. The level of 
statistical significance clearly would refer to the 
confidence a person has in the final decision, and 
confidence interval estimation would play a 
more integral role. More important, the result 
would no longer be confused with the size of the 
effect itself, and an unrealistic effect would not 
be tested. 
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In correlational studies, workers commonly 
report a measure of effect size called the coeffi- 
cient of determination (square of the correlation 
coefficient). In this setting, researchers appar- 
ently recognize that the correlation coefficient, 
its significance, and the probability level do not 
provide a measure of the size of the relationship 
under study. The value of a measure of the size 
of a relationship goes unappreciated in observa- 
tional (and experimental) studies when tests of 
null hypotheses are the sole method used for 
statistical inference. 

When the question of how large a sample is 
necessary arises, it is commonly stated that 25 (or 
30 or 50 or 100) is the correct number to use to 
provide for statistically reasonable results. Usually 
the number is chosen to provide for relatively nar- 
row bounds on the error about the mean; it is not 
related to any power considerations. Choosing a 
number on that basis can be a serious problem. 

Because inventory and monitoring efforts are 
concerned primarily with uncovering important 
changes (particularly declines) in biodiversity 
over time, the most powerful tests possible 
should be used. Recommendations for addi- 
tional study of areas, faunas, or species will 
depend upon the reported power levels. Non- 
significant findings (possibly contrary to in- 
formed perceptions) from a well-designed study 
with large sample sizes that minimize threats to 
internal and external validity do not necessarily 
require that the study be terminated. The best 
recommendation would be to revisit and resam- 
ple with a higher-powered study before the in- 
vestigative avenue is abandoned. Borenstein and 
Cohen (1988) provided a program for calculat- 
ing power and determining requisite sample size 
for increasing power. 

If the observed effect size is large and the 
sample size is sufficient to detect it, then confi- 
dence in nonsignificant results (based on alpha 
level) may well be justified. If the observed ef- 
fect size is small and/or the sample size is insuf- 
ficient to detect such a value, then investigation 

should be continued. If both power and observed 
effect size are calculated, the reader can make an 
informed decision about the population, and the 
investigator will know what limits to place on 
interpretations and recommendations. 

Any statistical test procedure involves consid- 
erable subjectivity that usually is ignored by 
conventional methods of amphibian data analy- 
sis. Consideration and reporting of the values of 
observed power, observed effect size, and alpha 
level, as well as sample size, should lessen the 
tendency to accept the result of a statistical test 
of a hypothesis as a definitive research conclu- 
sion. The subjectivity inherent in statistical 
inferential procedures demands that the investi- 
gator consider whether the biological story that 
the statistics tell makes sense. Gilbert (1989) 
emphasized that the size of the biological effect 
must be worth bothering about or the story worth 
pursuing. A probability level indicating hypothe- 
sis rejection cannot provide that information. A 
statistical test answers the question asked; it is 
up to the investigator to be sure that this question 
bears a relationship to biological reality. 

Statistical versus Substantive 
Significance 

Strictly speaking, classical statistical inference 
provides valid answers in the context of long- 
term outcomes only, but individuals investigat- 
ing amphibian biodiversity often need an answer 
as soon as the monitoring is complete. For exam- 
ple, when the findings, with 95% confidence, are 
that one habitat harbors significantly fewer spe- 
cies than another, statistical inference allows the 
researcher to say only that if the same habitats 
were randomly sampled over and over, in only 
5 times out of 100, on the average, would differ- 
ences as large or larger than those actually ob- 
served occur purely as a result of chance. 
Unfortunately, there is no way of knowing 
whether or not a particular set of results repre- 
sents one of those cases. 
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Exclusive reliance on tests of significance 
without incorporation of other forms of infer- 
ence (e.g., confidence interval estimation) ob- 
scures the relationship between the observations 
themselves and the magnitude of the effects to 
be examined. Null hypotheses of no difference 
are usually known to be false before the data are 
collected (see e.g., Savage 1957). No amphibian 
worker could actually believe in the possibility 
of a sharp null hypothesis—that is, that two 
means are absolutely equal. In field biology, sys- 
tems are too noisy to allow for such absolute 
equality. Even though biologists know this intu- 
itively, they still treat the test of such a null 
hypothesis as if it expressed a realistic and 
meaningful difference (zero), and many books 
present the null test as the only choice (see e.g., 
Siege! 1989). 

A statistical test reflects only the size of the 
sample and the power of the test, not the biolog- 
ical question raised by the hypothesis. The exis- 
tence of a specific effect must be demonstrated 
across settings or times to be biologically signif- 
icant; it must be large enough to matter and 
therefore must be examined with a test powerful 
enough for detection. Mere graphical procedures 
often can show the proposed relationships to be 
less than meaningful. It is interesting that most 
people would accept that about 5 (the 0.05 level) 
of 100 coin-tossing experiments would show 
that the proportion of heads is significantly dif- 
ferent from 0.50. Turn this situation into a test of 
the existence of an interesting ecological effect, 
and most would interpret those few of the 100 
tested showing significance as affirmation of the 
original hypothesis and publication. Among the 
alternative hypotheses in any study is that of 
having discovered an improbable random event 

through sheer diligence—that is, if you look 
hard enough for a difference, you will find it. 

Consider the problem when four articles on 
the same frog species indicate a relationship be- 
tween certain microhabitat conditions and frog 
abundance, and two articles report no relation- 
ship. How can the results be evaluated? This is 
an example of a situation in which statistical and 
biological significance must be distinguished. 
The statistical test questions whether the vari- 
ability in the sample indicates that one can place 
confidence in the result. That is not the primary 
interest of the amphibian biologists conducting 
inventory or monitoring projects. Rather, they 
wish to know whether the relationship shown is 
of biological importance because of its size and 
its intrinsic nature. Investigators who use statistical 
tests must keep in mind that the test itself merely 
asks if the relationship is large enough to require 
explanation (because it is not chance fluctuation). 

Simple tests of significance should be de- 
emphasized in favor of examination of the mag- 
nitudes of effects in all tests of hypotheses. 
Doing so would help eliminate noncomparabil- 
ity of results. The size of an effect can be mea- 
sured as a function of the difference between 
means or the proportion of variance explained, 
or it can be measured by, for example, a biserial 
correlation (Cohen 1977; Lipsey 1990). For in- 
terpretation of the results, investigators should 
always publish the sample size, significance 
level, and power (see, e.g., Cohen 1977) of the 
specific statistical test used (and the observed 
probability level, if desired), and the size of the 
effect encountered in the variable studied. The 
types 1 and 2 error rates and calculated measures 
will serve as a basis for comparison of study 
outcomes across samples of different sizes. 




