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Variation in the leaf optical properties imposed by variation in genetics and location has been addressed in
recent literature, but those stemming from forest seasonality and phenology have been less well explored.
Here, we explore the effect of inter-seasonal spectral variation on the potential for automated classification
methods to accurately discern species of trees and lianas from high-resolution spectral data collected at
the leaf level at two tropical forest sites. Through the application of a set of data reduction techniques and
classification methods to leaf-level spectral data collected at both rainforest and seasonally dry sites in Pan-
ama, we found that in all cases the structure and organization of spectrally-derived taxonomies varied sub-
stantially between seasons. Using principle component analysis and a non-parametric classifier, we found
at both sites that species-level classification was possible with a high level of accuracy within a given season.
Classification across season was not, however, with accuracy dropping on average by a factor of 10. This study
represents one of the first systematic investigations of leaf-level spectro-temporal variability, an appreciation
for which is crucial to the advancement of species classification methods, with broad applications within the
environmental sciences.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Remote sensed analysis of tropical forest environments has until re-
cently been conducted along two separate lines: The first encompasses
moderate-to-coarse resolution, multi-spectral analysis of forest cover,
addressing natural and anthropogenic change or disturbance (Coppin
and Bauer, 1996), and its properties (ex. forest phenology (Huemmrich
et al., 1999; Xiao et al., 2005; Zhang et al., 2003), composition (Castro-
Esau et al., 2003), and landcover classification (Adams et al., 1995)).
The second relies on leaf- and canopy-level, high spectral resolution
data to investigate the relationships between optical characteristics and
physiological (Sims and Gamon, 2002), biochemical (Asner, 1998), and
structural variables (Sanchez-Azofeifa et al., 2009). One of the promises
of the increasing quality and availability of hyperspectral data and ac-
companying advances in analytical techniques is the potential for inves-
tigation not just of species richness and variation, but also of the
interrelated biochemical and physiological processes which impact can-
opy function and productivity at spatial scales which bridge these two
lines of inquiry (Asner, 2008).

Classification of plant species at the leaf level has been most
commonly attempted using direct spectral–taxonomic relationships
(Cochrane, 2000). Variations of this concept have been applied in

boreal (Fuentes et al., 2001) and chaparral (Ustin et al., 2004) environ-
ments, though the increased complexity and variability of tropical sys-
tems suggest some need for caution in their application. An approach
has been put forth to aid in species-level mapping of tropical forest en-
vironments coupling hyperspectral reflectance measurements with
chemical signatures developed using the relationship between leaf
traits and species (Asner and Martin, 2008).

High-resolution leaf spectral reflectance has the potential to allow
for estimation of leaf traits (Gamon and Surfus, 1999; Gamon et al.,
2005; Sims and Gamon, 2002) aswell as for discrimination of structural
groups (Castro-Esau et al., 2004; Kalacska et al., 2007) and species type
(Clark et al., 2005; Zhang et al., 2003). The fundamental prerequisite to
identification of tree and liana species from leaf reflectance data is that
spectral variation within species is lower than the variation between
species. That this condition can be met has been demonstrated by the
above studies, but typically with classification restricted to a single
site, and using a dataset collected within a narrow temporal window
(Asner and Martin, 2008; Cochrane, 2000).

While exploration of temporal variation in leaf traits across plant
genera and families in the tropics has been minimal (Asner et al.,
2009), Roberts et al. (1997) have addressed leaf reflectance as a func-
tion of leaf age, and Schwartz and Reed (1999), and Zhang et al.
(2003) have all used leaf optics to track forest phenology. Investigating
spectral variation within species, Castro-Esau et al. (2006) found suffi-
cient difference in the optical properties of species sampled acrossmul-
tiple sites that accurate automated classification was impossible.
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Conversely, Asner et al. (2009) found in a study of 162 canopy species
across a wide climatic gradient in Australia that, although biophysical
variables were strongly related to leaf reflectance, variation in leaf
chemical signatures varied far more in response to taxonomy and spe-
cies richness than to changes in climate. They did, however, find the
greatest chemical variation in lowland sites with warm temperatures
and moderate precipitation levels, which echo Townsend et al.
(2007), who foundmaximal N:P variation according to rainfall in highly
seasonal sites in Costa Rica. Martin et al. (2007) found strong
genetically-attributable variation in pigment and optical characteristics
among samples of M. polymorpha grown from seed sources collected
from a wide environmental (soil type and altitude) gradient. Most re-
cently, Sanchez-Azofeifa et al. (2009) evaluated variation in optical
and biophysical leaf traits between structural groups (trees and lianas)
and forest types (wet and dry tropical forests) at two sites in Panama.
Their results indicate significant differences in pigment content, leaf
thickness, and specific leaf area, dry-to-fresh mass ratio, and leaf
water content between trees and lianas collected at a dry forest site,
but not at a rainforest site. This validates earlier work by Castro-Esau
et al. (2004) and Kalacska et al. (2007).

While researchup to the present has addressed leaf properties (Asner,
1998) and variability between environmental (Asner et al., 2009;
Sanchez-Azofeifa et al., 2009) and structural groups (Castro-Esau et al.,
2004; Kalacska et al., 2007), the question of temporal variation in leaf
traits has been largely unexplored at the leaf scale. It is clear from previ-
ous research (Castro-Esau et al., 2004; Kalacska et al., 2007) that inter-
seasonal spectral variation is a major limiter to our ability to accurately
classify forest species in an unsupervised or automated setting, and that
a better understanding of the nature and extent of this variation will be
critical in the refinement of existing classification techniques and the
development of new ones. Our objective, therefore, is to evaluate the
nature and extent of seasonal spectral variation at both wet and dry
tropical forest sites. Specifically, we test whether the clustering of data
from the same site yields similar patterns during the wet and dry
seasons, then address the effect that seasonal spectral variation has on
the accuracy of unsupervised classification of these data.

2. Methods and data collection

2.1. Site description

Data for this study were collected at two sites in Panama, taking
advantage of canopy cranes operated by the Smithsonian Tropical Re-
search Institute (STRI) to obtain access to the top of the forest canopy.
The first site, Parque Natural Metropolitano (PNM) is located just out-
side of Panama City. The crane has a height of 42 m with a boom ra-
dius of 51 m. Annual rainfall averages approximately 1800 mm,
more 90% of which falls between May and December (Gamon et al.,
2005). Liana species represent a sizable proportion of canopy species
at the park. Avalos and Mulkey (1999) estimated that contributions
made by lianas to the canopy area surveyed by the crane were vari-
able between 14.0% during the dry season and 30.9% during the
rainy season. The full complement of canopy species considered in
this study is detailed in Table 1.

A second STRI crane is located in the rain forest at Fort Sherman
(FS), along the Caribbean coast near Colón. Annual rainfall at this
site is approximately 3300 mm. The crane is 56 m high with a boom
radius of 54 m (Castro-Esau et al., 2004). While liana species are im-
portant contributors to biodiversity at this site as well, it is to a lesser
extent than at PNM (Table 1).

2.2. Data collection and analysis

Leaf spectral data were collected twice at each site: once during the
peak of the rainy season (May 2005), and once at the beginning of the
dry season (March 2007), but before complete leaf loss. A total of 17

species were analyzed for FS, and 30 for PNM, with collection and sam-
pling protocols according to Kalacska et al. (2007) and Castro-Esau et al.
(2004, 2006), Sanchez-Azofeifa et al. (2009). Leaves were collected
from the top of the canopy (all sun-leaves) and selected such that
galls and visible epiphytes were avoided. Spectral data were collected
using the ASD FieldspecFR spectrometer using the ASD Leaf Clip device
(Analytical Spectral Devices, Boulder CO). The spectral range of the in-
strument is 350–2500 nm with a 3 nm resolution from 350 to
1000 nm and 10 nm from 1000 to 2500 nm. All data was resampled to
1 nm resolution in post-process. Typically, 10 leaves per species were
collected with three spectra per leaf measured per sample. A third
data set, collected using the same protocols, was gathered during a
rainy transitional period (February 2011). These data, as well as those
from 2007 (our dry season data), also include leaf area and wet/dry
weight measures for calculation of specific leaf area (SLA).

Principal components analysis (PCA) was applied to the hyperspec-
tral signatures to reduce the dimensionality and redundancy inherent
in these data (Schowengerdt, 1996). PCA reduces the data to a set of or-
thogonal eigenvectors, which maximize variation and greatly reduce
autocorrelation (Kalacska et al., 2007). The first 4 components in each
resulting transformation were retained such that >97% of the
expressed variation in the raw data was represented. Because leaf
chemical and biophysical characteristics were not available, spectral
vegetation indices (SVIs) were calculated from each input spectra to
complement the PCA decompositions and stand as proxy for these bio-
physical variables. Merzylak et al.'s (1999) plant senescence reflectance
index (PSRI) increases proportionate to the caratenoid/chlorophyll
molar ratio, and serves in comparison of the balance of these key pig-
ments across seasons (Eq. 1). Penuelas et al.'s (1993) water index
(WI) stands as proxy for direct leaf water content (Eq. 2).

PSRI ¼ R678−R500ð Þ
R750

ð1Þ

Table 1
Species included in study. Codes beginning with L indicate liana species while those
beginning with T indicate tree species.

Fort Sherman (rainforest) Parque natural metroploitano (dry)

Species Code Species Code

Doliocarpus multiflorus L27 Aristolochia maxima L1
Arrabidaea verrucosa L28 Stizophyllum riparium L2
Pleonotoma variabilis L29 Serjania atrolineata L3
Odontadenia punticulosa L30 Stigmaphyllon hypergyreum L4
Dioclea wilsonii L31 Gouania lupuloides L5
Forsteronia myriantha L32 Mikania leiostachya L6
Tontelea ovalifolia L33 Bonamia trichantha L7
Maripa panamensis L34 Jacquemontia sp. L8
Pouteria reticulate L41 Passiflora vitifolia L9
Lonchocarpus longifolium T11 Doliocarpus major L11
Carapa guianensis T12 Prionostema aspera L12
Matayba apetala T14 Doliocarpus dentatus L13
Cordia bicolor T17 Amphilophium paniculatum L14
Manilkara bidentata T19 Pithecoctenium crucigerum L15
Aspidosperma cruenta T21 Trichostigma octandrum L16
Brosimum utile T23 Hiraea reclinata L17
Ficus nymphaeifolia T25 Forsteronia spicata L18

Arrabidaea patellifera L19
Hippocratea volubilis L21
Serjania mexicana L22
Phryganocydia corymbosa L23
Tetracera portobellensis L24
Anacardium excelsum T1
Luehea seemannii T2
Astronium graveolens T3
Cordia alliodora T4
Annona spraguei T5
Castilla elastica T6
Ficus insipida T9
Chrysophyllum cainito T10
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WI ¼ R900

R970
ð2Þ

Two resulting spectral datasets were used in subsequent analyses.
Thefirst contained leaf spectra, averaged to the species level. The second
contained the retained principle components as well as the two SVIs,
this time at the level of the individual sample. Each datasetwas repeated
for each season (dry and rainy) at each site (FS/wet and PNM/dry). The
flowdiagram in Fig. 1 outlines the paths these two datasets take through
the subsequent analyses.

Seasonal variation was tested using a set of two classification proce-
dures to separately evaluate both the structure of data classified during
different seasons, and the effect of cross-season classification on the over-
all accuracy. First, to visualize the effects of seasonal spectral variation, the
raw spectral data was classified using an agglomerative hierarchical clus-
tering algorithm implemented in Matlab (V. 7.8, The Mathworks 2009).
The resulting dendrograms not only illustrate the impact of seasonality
on species-level clustering, but allowevaluationof the difference between
clustering of spectral data collected during opposing seasons, directly
addressing a fundamental requirement for automated species identifica-
tion: that each species’ spectral “fingerprint” is insensitive to seasonal var-
iation. To address the impact of the mixing of the two principle plant
structural groups (trees and lianas), data were clustered first with trees
and lianas mixed, and again with trees and lianas considered separately.

Evaluation of seasonal variation in the structure of the dendrograms
was by comparison of the bifurcation ratio (Rb). This ratio was estab-
lished by Horton (1932, 1935) to describe the branching pattern of
drainage networks as they progressed toward a confluence, and is
used here to quantify the structure of the dendrograms in a way that
can be compared across seasons. Rb, has been used to quantify not
only the complexity of river systems, but also variation in the branching
of vegetative shoots as a means of evaluating genotypic plasticity
(Oohata and Shidei, 1971; Whitney, 1976). To calculate, branches are
ordered according to Strahler's streambed organization of the tribu-
taries of a trunk stream channel (Strahler, 1952). The value for Rb at a
given order μ is the ratio of the number of branches at that order (N)
to the number at the next order higher (Eq. 3) and is proportionate to
the complexity of the network. This ratio may also be averaged across
all orders for a general measure of dendrogram complexity (Fig. 2)

Rb ¼ Nμ

Nμþ1
ð3Þ

As well as variation in the branching structure of the dendrograms
generated from the clusteringprocedure, changes in the species compo-
sition of each cluster were evaluated. Each species’ nearest neighbors
were compared for each season and each site, and the consistency be-
tween seasons was calculated as the percentage of species with the
samenearest neighbors in each season. Thismetric of consistency quan-
tifies the tendency for spectrally similar species to cluster together at
the lowest level of the dendrograms. If reflectance is similar between
seasons, the same species will be found clustered together resulting in
a high level of consistency. Greater seasonal spectral variation will re-
sult in lower consistency between dendrograms generated for different
seasons at a given site.

Second, to quantify the impact of seasonal variation on classification
accuracy, we adapted the method of Kalacska et al. (2007). As inputs,
weused the four retained principal components and the 2 SVIs, aggregat-
ed to the sample level. For the classifier,we chose the non-parametric de-
cision tree classifier See5 (Rulequest Research 2008). See5's cross-
validation function, which allows for a quick and direct evaluation of
the overall accuracy of within- and between-season classification, was
used to evaluate the effect of inter-seasonal spectral variation on
overall classification accuracy. The classifier was applied twice to the
data from each site: First, the dataset from each season was split in half,
with one half used to train the classifier and the other half used to test its
accuracy. Second, to test the impact of seasonal variation on the accuracy
of the classifier, the entire dataset from the wet season was used as the
training set, then tested on the entire dry season dataset, and vice
versa. Classification accuracy was calculated as the percentage of data
in the testing set classified correctly.

3. Results

3.1. Inter-seasonal differences in spectral reflectance

The average spectral signatures of all species included in the in-
vestigation are shown in Fig. 3a and b for the wet and dry seasons, re-
spectively. Spectral features in the visible region (400–700 nm) are
reflective of leaf chemistry and pigment content, specifically chloro-
phyll content, which results in strong absorption features both
above and below the 550 nm green peak (Boyer et al., 1988). Features
in the near-infrared (700–1100 nm) range most related to leaf struc-
ture (Woolley, 1971), with weak water absorption features at ~1000
and 1200 nm (Gao and Goetz, 1995). Reflectance in the shortwave re-
gion (1500-2400 nm) is controlled largely by water absorption (Gates
et al., 1965). Where Fig. 3a and b demonstrates spectral variability
among the species examined, Fig. 3c details the seasonal difference
in reflectance at each wavelength for each of the species tested.
There is a difference here in the regions of greatest seasonal spectral
variation between the wet and dry forest sites. At FS, the greatest
spectral variation is found occur along the red edge (~720 nm). This
spectral range is important in this study as we employ SVIs as proxy
for measured leaf biophysical properties, and this region is sensitive
to leaf chlorophyll content (Curran et al., 1990). At PNM, the differ-
ence in this spectral region was muted in comparison to the short
wave infrared region (1350–2300 nm), which is governed largely by
water absorption. This general pattern in the seasonal variation is
found in both tree and liana species at both sites.

3.2. Variation in classification structure

Dendrograms resulting from hierarchical clustering of the full-range
spectra from both sites show marked variation between wet and dry
seasons (Fig. 4a–d). The values for Horton's bifurcation ratio (Rb) at
both sites and seasons are presented in Table 2.While themean Rb (cal-
culated across all orders of μ) shows some variation between wet and
dry seasons at each site (0.12 and 0.19 difference at FS and PNM respec-
tively), these differences are muted in comparison to the differences

Fig. 1. General workflow of analysis showing the progress of Dataset 1 through hierar-
chical clustering and dendrogram analysis, and Dataset 2 through unsupervised
classification.
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found at each level of μ. Difference in Rb betweenwet and dry seasons at
the level of each order (μ) ranges between Rb 0.2 and 1.0, with the ex-
ception of the value for μ=2 at FS site of Rb 2.2 (Table 2).

Seasonal variation in the organization of species within the den-
drogram, as demonstrated in Fig. 4, was also noted at both study
sites. Similar groupings are uncommon at both sites, with consistency
found to be lower at PNM, with a value of 6.7%, than at FS, where just
under one quarter of species shared at least one neighbor between
seasons.

While differences in Rb are found at all levels of μ (including the over-
all mean) at both sites when the entire datasets (all tree and liana spe-
cies) are included, these differences are greatly muted when only the
liana species were considered. Tree species were not considered inde-
pendently as the number of species in this group did not provide an ad-
equate sample. The resulting dendrograms are presented in Fig. 4e–h.
Inter-seasonal variation in Rb was found only in the data from PNM,
while the smaller FS sample showed no measurable difference between
dendrograms calculated for the wet and dry seasons (Table 3). The
absolute difference in Rb between seasons also shows a relationship to
the sample size taxonomic complexity of the data being processed. The
liana group from FS showed no difference in Rb between seasons
(Table 3), indicating that there may be a sample size threshold below
which Rb comparisons are not a realistic method of analysis. The
consistency of species composition at the lowest dendrogram level was
also lower at PNM than FS, though these results are not substantially
altered from those found when all species were considered together,
with lianas at PNM having a consistency of 4.6% and trees a consistency
of 22.2%.

3.3. Effect of seasonality on classification accuracy

Figs. 5 and 6 explore the spectral vegetation indices used in the
See5 classification, separating by functional group (lianas and trees)
as well as by site and season.

Higher plant senescence reflectance index (PSRI) values were ob-
served at the dry forest site and lower values at the rainforest site
(Fig. 5). The effect of seasonality on this index seems to be inverted at
the two sites, however, with the dry season having generally higher
PSRI values than the wet season at PNM and the reverse at FS, with
the exception of tree species at FS. This seems to echo the influence of
moisture-induced senescence on spectral response reflected in Fig. 3.
Differences among PSRI values (Evaluated using Student's t-test)
tended to be significant between sites (Table 4) but not between sea-
sons at a single site. Water index (WI) values are unsurprising at the
structural group level, though the variation in water content between
trees and lianas masks the effect of seasonality at each when all species
are taken together (Fig. 6). Values here showed little trend toward sig-
nificant difference, either between sites or seasons (Table 4).

Fig. 7 shows the impact of seasonal variation in spectral properties
on species-level classification accuracy. Using the PCA transformed
data PSRI, and WI, accuracy was evaluated as the percentage of cor-
rect classification, splitting the data 50/50 for training and testing.
In all cases, accuracy was dramatically higher where the classification
was tested using a classification trained on data collected during the
same season as the test data. The rainforest site (FS) showed accuracy
of 80.4–83.5% when training and testing data were from the same
season, but dropped to 8.6–10.9% when opposing seasons were
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evaluated. This decrease was more pronounced at the dry forest
(PNM) site, where within-season accuracy was between 80.7 and
83.0%, but between-season accuracy fell by more than a factor of 10,
to 4.6-7.7%.

Classifying each structural group separately yielded similar re-
sults, though the smaller input datasets returned slightly higher accu-
racies in almost all cases. Considering only lianas, the classifier
returned average accuracies of 84.2% for within-season classification
at FS, and 19.3% for between-season classification, with results of
85.5% and 11.6% for within- and between-season classification at
PNM. Accuracy for trees only was higher still, with average accuracies
of 89.5% and 16.3% for within- and between-season classification at FS
and 91.2% and 16.6% at PNM.

3.4. Specific leaf area

While no biophysical data were collected along with our wet sea-
son (2005) spectral data, we were able to compare specific leaf area
(SLA) data from the dry season with unpublished data from the
same sites collected during a rainy period during the wet–dry transi-
tion in February 2011. SLA is relevant, as it has been shown to be an
important predictor of other traits in the leaf economics spectrum
(Wright et al., 2004) as well as a linkage between chemical and spec-
tral signatures (Asner et al., 2009). A paired t-test comparing SLA be-
tween these growing periods showed a strongly significant difference
(Pb0.001).

4. Discussion

Throughout this investigation, we found consistent evidence that
leaf spectral properties vary between seasons to a sufficient extent
that the results of spectral clustering for wet and dry seasons were
measurably dissimilar and classification accuracy was dramatically af-
fected. Methodologies using only spectral data for the classification of
species and assessment of biodiversity are still a subject of explora-
tion and development and this evidence of the impact of seasonality
on leaf spectral response suggests that an understanding of the
spectro-temporal domain is an essential step in their refinement.

4.1. Variation of leaf spectral reflectance with season

Variation in leaf spectra between seasons indicates a fundamental
difference in plant function between wet and dry forest environments,
also noted in Sanchez-Azofeifa et al. (2009). Rather than the actual re-
flectance or spectral signature of a given species, we are concerned
with the extent and location of the greatest variation in the signature
between seasons. At Fort Sherman, our wet forest site, this variation
was most pronounced along the red edge, between 550 and 750 nm.
This spectral region encompasses the wavelengths typically used in
the estimation of chlorophyll (Boyer et al., 1988, Gates et al., 1965), in-
dicating that the primary driver to spectral variation in this ecosystem is
likely variation in the relative abundances of leaf pigments. Conversely,
the dry site, Parque Natural Metropolitano, showed substantially less
variation in this spectral region, with the greatest sources of variation

Fig. 3. Reflectance by wavelength of liana and tree species at both forest sites. a. Wet season; b. Dry season; c. Absolute difference between wet and dry reflectance. Species labels
correspond to the codes in Table 1.
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found at longer wavelengths in the near- and shortwave-infrared re-
gions, where reflectance is governed largely by absorbance by water.
This is perhaps unsurprising in a drier forest environment where spe-
cies are particularly sensitive to moisture variation (Murphy and Lugo,
1986), but it indicates that spectral variation cannot be simply tied to
a common source, and should be considered in the context of local-
scale ecology.

While our results are based strictly on spectral data, the inclusion
of two spectral indices is intended to impart a component to the

classification procedure that has a more direct ecological interpreta-
tion. Of the two indices used, PSRI values more clearly indicate a rela-
tionship between seasonality and leaf spectral response. The
inversion in response to seasonality at the two sites indicates a funda-
mental difference in the composition and functional ecologies of wet
vs. dry forest environments. Notably, the seasonally dry site at PNM
carries a much higher liana load than does the wet site at FS (73%
vs. 53% of species accessible by the crane in our sample). Schnitzer
(2005) suggests that the evolution of a more efficient vascular system
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Fig. 4. Dendrograms resulting from hierarchical clustering of Dataset 1: All species (a. FSwet, b. FS dry, c. PNMwet, d. PNMdry); Lianas only (d. FSwet, e. FS dry, f. PNMwet, g. PNMdry).
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and deeper root network impart a competitive advantage to liana
species in dry environments that they don't enjoy in wetter ecosys-
tems where water stress is less prevalent. The implication for classifi-
cation is that their drought adaptation allows lianas to respond
differently to seasonality in precipitation than trees, with later leaf
loss following the onset of the dry season (Kalacska et al., 2005),
and generally higher leaf water content (Andrade et al., 2005;
Schnitzer, 2005). Sanchez-Azofeifa et al. (2009) propose a liana syn-
drome, referring to a distinct set of plant traits exhibited by liana spe-
cies in dry forest environments. They found that the drought
adaptations noted by Schnitzer (2005) and Andrade et al. (2005)
manifest in lianas as higher spectral reflectance, higher transmittance,
and lower absorbance, producing reduced heat load, leaf-to-air vapor

pressure difference and potential for water stress. These traits are
revealed in dry forest environments, where they confer an advantage
to lianas relative to the surrounding tree species (Sanchez-Azofeifa
et al., 2009). More efficient resource allocation in these drier environ-
ments results in lower susceptibility to drought and a longer growing
season than the surrounding trees. This has led to a general increase
in liana load in tropical dry forests (Schnitzer et al., 2011). As well
as registering at the leaf level, this syndrome potentially affects re-
mote monitoring of forest phenology where a positive shift in the
liana/tree ratio causes an apparent increase in greenness during the
onset of the dry season. This variation is reflected in the estimated
leaf water content (from spectral water index values) when the two
structural groups are considered independently, though it is masked
when the groups are merged.

4.2. Classification structure

Our results indicate that the variation imposed by seasonality on
leaf optical properties is more than sufficient to affect the results of
clustering and classification processes applied to the spectral data.
Dendrograms resulting from agglomerative clustering of the full spec-
tral dataset (Fig. 4) were analyzed for variation between seasons in
both the composition of the clusters produced and the branching
structure of the dendrograms themselves.

If seasonality were unimportant, the same type of spectral data,
clustered in the same manner, would yield clusters where the same
species were found in close association to each other in both seasons.
Our results indicate that this is seldom the case, with consistency be-
tween the seasons not exceeding 25%, and as results as low as 6.6% at
the dry forest site. That consistency should be lower at the drier of our
study sites is generally consistent with Asner et al. (2009), who found
stronger associations between biological and spectral properties in
wetter, cooler forest environments. There is, however, some inconsis-
tency in the literature on this count. Both Castro-Esau et al. (2004)
and Kalacska et al. (2007) found that classification at a structural
group level (separating tree and liana species) was more accurate in
dry forest environments. It's possible that this seeming contradiction
is a function of the level of analysis (structural group vs. species) re-
lated to differing adaptive strategies of lianas and trees. In Castro-
Esau et al. (2004) lianas were found to have lower overall chlorophyll

Table 2
Bifurcation ratios—complete species set considered.

μ Rb

Wet season Dry season Difference

PNM 1 1.43 1.58 0.15
2 3.5 2.72 0.78
3 6 7 1
Mean 3.64 3.76 0.12

FS 1 1.89 1.42 0.47
2 1.8 4 2.2
3 5
Mean 2.9 2.71 0.19

Table 3
Bifurcation ratios—only liana species considered.

μ Rb

Wet season Dry season Difference

PNM 1 1.83 1.47 0.36
2 2 3.75 1.75
3 3 4 1
Mean 2.61 3.07 0.46

FS 1 1.5 1.5 0
2 6 6 0
3
Mean 3.75 3.75 0
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concentration which, when coupled with and offset phenological
cycle and a greater tendency towards deciduousness (Avalos and
Mulkey, 1999), may help explain why lianas were more easily distin-
guished from trees during the dry season. This ecophysiological dis-
tinction between liana and tree species in tropical dry forest has
since been expanded upon by Sanchez-Azofeifa et al. (2009).

The changes imposed on clustering results imposed by seasonal
spectral variation were addressed in this paper using Horton's bifurca-
tion ratio (Strahler, 1957). This approach allows for comparison of
both the internal and overall structural variability of the dendrograms
generated by the clustering process with time as the independent vari-
able. In comparing Rb between seasons at our two sites, wefind that not
only are the final clusters affected by inter-seasonal variation (wet vs.
dry), but also the internal structure of the dendrograms. The absolute
difference in Rb between seasons also shows a relationship to the
sample size and taxonomic complexity of the data being processed.
While differences in Rb are found at all levels of μ (including the
overall mean) at both sites when the entire datasets (all tree and liana
species) are included, these differences are greatly muted when only
the liana species were considered.

4.3. Effects of seasonality on classification accuracy

Classification was successful at each site, with accuracies ranging
from 80.43% to 93.48%, provided that both training and testing data
were drawn from the same season. This is consistentwith the accuracies
reported by Clark et al. (2005), with an accuracy of 92.0% in classifying a
set of 7 tree species in Costa Rica, and Castro-Esau et al. (2006), who
reported accuracy of better than 80% at each of six sites in Costa Rica,
Panama, and Mexico. Certainly sample size has an influence on overall
accuracy. Castro-Esau et al. (2006) report a decreasing trend in classifi-
cation test accuracy from approximately 85% for 20 species to approxi-
mately 80%, projecting a linear decrease to 69% with 100 species, with
accuracy eroding beyond that. Our results show a similar relationship
between sample size and accuracy, though our sample size is smaller
overall and the decrease in sample size when structural groups are con-
sidered separately is accompanied by a decreased taxonomic complexi-
ty, which may also influence the accuracy of the classification. Our
highest classification accuracies, both within-season and between-
season, are found where the sample size is smallest. Where only trees
are considered, dropping the overall sample to 8 species at both sites,
we achieve an average within-season accuracy of approximately 90%,

in line with Clark et al. (2005). Where the sample is largest, accuracy
drops to values similar to Castro-Esau et al. (2006), with an average of
82% found for a sample of 30 species of mixed trees and lianas.

Recent work has made it clear both that liana species differ at the
leaf trait level from tree species (Castro-Esau et al., 2004, 2006;
Kalacska et al., 2007)) and lianas exhibit a different set of traits and
adaptations that seem to be tied to the local environment and mani-
fest both physiologically and spectrally (Sanchez-Azofeifa et al.,
2009). In the context of this study, this implies that not only an un-
derstanding of within-species inter-seasonal variation, but the
effects of environment (particularly the contrast between rainforest
and dry tropical forests) are essential for the implementation of
accurate automated classification on a broad scale. This issue is
exacerbated by what appears to be increases in overall liana
abundance in American tropical forests (Schnitzer et al., 2011).

While the contributions of liana species to the mix of spectral re-
flectance were found at the leaf level, the unique characteristics of li-
anas suggest a greater need for caution in the process of scaling these
leaf-level results to the canopy and landscape scales. Sanchez-
Azofeifa and Castro-Esau (2006) noted two impacts of increased
liana abundance at the canopy scale: First, that overall reflectance
near the green peak (550 nm) was higher in canopies with higher
levels of liana infestation and; Second, that liana infestation reduced
the difference in spectral between tree species. They note in particu-
lar the difficulty that this implies for the potential use of SVIs in differ-
entiating tree species. This complication may be added to the issue of
seasonal spectral variation addressed in this paper. Not only are the
leaf-level spectra of trees and lianas highly variable between wet
and dry seasons, but these two structural groups respond to seasonal-
ity differently in changing environments and further variability in
liana infestation can obscure spectral characteristics at the canopy
(and coarser) scales.

5. Conclusions and directions for expansion

Our results confirm that inter-seasonal variation in leaf optical
properties is measurable and sufficient to preclude automated classi-
fication of species at the leaf level using a “database” approach. Anal-
ysis of dendrograms derived from an agglomerative clustering of full-
range spectra shows strong differences in the arrangement of species
when spectral data is collected in the wet versus the dry season, and
that neither clustering seems to follow any pattern consistent with
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species taxonomy or structural group. Further, even using the moder-
ate sample size of the current study, we found differences in the in-
ternal structure of the dendrograms, quantified by comparison of
Horton's bifurcation ratio. The effect that these seasonal differences
in spectral properties has on the potential for automated species clas-
sification is reflected in the dramatic decrease in accuracy found
when comparing within- and between-season classification accuracy
using a non-parametric classifier. Our results here indicate a general
ten-fold decrease in overall accuracy when a classifier trained using

data from the wet season is applied to data from the dry season, or
vice versa. This result reinforces previous work, which found a strong
influence of environment on classification accuracy (Castro-Esau
et al., 2004; Kalacska et al., 2007).

We recognize, however, that our results here are based on analysis of
purely optical data, with spectral indices standing in for measured bio-
chemical data. The promising results of Asner and Martin (2008) and
Asner et al. (2009) build on relationships between leaf optical properties
and leaf chemistry, but exploration of the strength and consistency of

Table 4
Significance values for differences between sites and seasons for the two SVIs used as inputs to classification. Strongly significant (Pb0.05) differences in bold. Weakly significant
(Pb0.10) differences indicated with *. Cases where t-test assumptions were not met and Mann–Whitney used in place indicated with †.
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these relationships across temporal and geographic gradients must be a
priority of research to come. Our findings using purely spectral data
point to the value of further study, expanding the seasonal data collec-
tion to include a biochemical survey of the leaves collected to comple-
ment the spectral analysis. Such an expanded analysis would allow for
the exploration of not just the extent of seasonal spectral variation, but
also the sources and drivers to this change.
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