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INTRODUCTION

Cultural eutrophication has steadily increased over
the last 50 yr, resulting in declining water quality and
shifts from benthic-dominated to pelagic-dominated
primary production in many estuaries throughout the
world (Nixon 1995, Cloern 2001, Kemp et al. 2005).
Efforts to reduce or reverse this trend have generally

focused on reducing the input of new nutrients and
organic material to the system (Jordan et al. 2003,
Fear et al. 2004, Neumann & Schemewski 2005). In
some of these same systems, biomass of bivalve sus-
pension feeders was greatly reduced prior to major
increases in anthropogenic nutrient loadings, primar-
ily as a result of overharvesting (Mackenzie et al.
1997). Declines of many stocks continued throughout
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the 20th century as a consequence of multiple stres-
sors, including fisheries exploitation, disease, and
habitat degradation. Many studies have suggested
that bivalve suspension feeders may serve as a means
for reducing concentrations of phytoplankton and
other suspended particulates and for restoring the
ecosystem to one with higher rates of benthic primary
production (Newell & Ott 1998, Nakamura & Kerciku
2000, Cressman et al. 2003). As a result, the restora-
tion of benthic suspension-feeder biomass has been
proffered as a potentially important way to supple-
ment curbing nutrient inputs as a means to reverse
cultural eutrophication (Officer et al. 1982, Newell et
al. 2005).

Both reducing nutrient loading and the restoration of
benthic suspension-feeder populations can decrease
phytoplankton biomass in the water column and, in
this respect, these can be considered complementary
management strategies. However, just as alternate
approaches for reducing point and non-point source
nutrient inputs vary in efficacy, the water-quality ben-
efits derived from increased biomass of benthic sus-
pension feeders may depend on restoration strategies
and characteristics of the specific target species and
ecological system. These factors need to be examined
to assess the benefits of benthic suspension-feeder
restoration as a viable complement for other restora-
tion actions.

Chesapeake Bay is the largest estuary in the United
States, and represents a valuable reference system for
assessing the role of benthic suspension feeders for
improving water quality. Chesapeake Bay has suffered
from a long history of cultural eutrophication, resulting
in increased phytoplankton biomass (Kemp et al.
2005), decreased water clarity (Gallegos 2001),
increases in the severity and extent of seasonal
hypoxia (Breitburg 1990, Boicourt 1992, Hagy et al.
2004), and decreases in the biomass of submerged
aquatic vegetation (Kemp et al. 1983, Orth & Moore
1983, Orth et al. 2002). Chesapeake Bay has also been
subjected to direct impacts on its living resources
through overfishing and disease. In particular, the
abundance of eastern oysters Crassostrea virginica has
declined dramatically as a result of overharvesting,
disease, and siltation of oyster reef habitat (Jordan et
al. 2002).

Recognition of these problems has led to an exten-
sive effort to reduce the delivery of nutrients into
Chesapeake Bay (Correll et al. 1999, 2000, Jordan et
al. 2003), as well as research and public interest in oys-
ter population restoration (Brumbaugh et al. 2000,
NRC 2004, Newell et al. 2005). Prior to commercial
exploitation, the oyster population in Chesapeake Bay
was at least 2 orders of magnitude higher than its
present levels (Newell 1988, Jordan & Coakley 2004).

The intense filtration activity associated with this large
oyster population is thought to have made a major con-
tribution to the control of phytoplankton abundance
under historic conditions of nutrient and sediment
delivery (Newell 1988, Newell & Ott 1998). This
removal of phytoplankton and suspended inorganic
particles would have increased water clarity in the
summer (Newell 2004, Newell & Koch 2004). If these
historical abundances of oysters were still present they
may have made Chesapeake Bay more resilient to
anthropogenic nutrient inputs (Newell et al. 2005). It is
difficult, however, to predict the restorative role of a
particular factor, such as an oyster biomass increase, in
a system like Chesapeake Bay that has been affected
by multiple anthropogenic stressors and is character-
ized by substantial temporal and spatial variation in
factors that can influence the magnitude of benefit
derived from restoration efforts.

Both mesocosm experiments (Olsson et al. 1992) and
field data (Cloern 1982, Officer et al. 1982, Dame 1996,
Souchu et al. 2001) from other systems suggest that
increased biomass of suspension-feeding bivalves can
reduce phytoplankton biomass and increase water
clarity. Prins et al. (1998) did observe that bivalve feed-
ing may actually increase phytoplankton production
close to the oyster beds due to nutrient recycling and
size-selective clearance efficiency. However, this
observed increase in primary production may result
from a localized concentration of excreted nutrients in
the vicinity of the bivalve population that is out-
weighed by filtration effects at somewhat larger spatial
scales (Newell et al. 2005).

The ability of a restored oyster population to remove
large amounts of phytoplankton biomass from the
water column will be influenced by seasonal patterns
of oyster clearance rates, as well as phytoplankton
biomass, production, and size-composition. Malone
(1992) observed that ‘seasonal imbalances’ between
phytoplankton production and consumption by grazers
generate the seasonal peak in phytoplankton biomass
in the spring, when grazing is lowest. In summer,
high grazing controls biomass, but rapid nutrient
recycling sustains maximum rates of phytoplankton
production. Oysters typically achieve maximum filtra-
tion rates at times of maximum summer water temper-
atures (Newell & Langdon 1996). As a result, increased
oyster grazing pressure resulting from increased
oyster biomass would be greatest during the summer,
when grazing pressure from other suspension feeders
is already high. Further, oyster particle retention is a
function of cell size, with efficiency declining sharply
for particles smaller than 2 µm (i.e. picoplankton;
Langdon & Newell 1990). Under present-day eutrophic
conditions in the bay, the relative biomass of pico-
plankton, which are largely unavailable to oysters,
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increases to around 20% of total phytoplankton bio-
mass during the warmer summer months (Ray et al.
1989, Lacouture et al. 1990). The resulting seasonal
matching between maximum oyster filtration and max-
imum relative biomass of small-celled phytoplankton
may limit the effect of oyster filtration on phytoplank-
ton biomass.

Established management plans for Chesapeake Bay
call for a bay-wide 10-fold increase in oysters over the
low abundances present in 1994 (Chesapeake 2000
agreement; www.chesapeakebay.net/c2k.htm). This
restoration effort is designed to both improve water
quality and provide a harvestable resource for the
public oyster fishery. At present, it is unclear what
gain in water quality will occur if this goal is
achieved, or how the spatial pattern of restoration or
the combination of restoration and harvest restrictions
might contribute to improving water quality. In this
analysis we take a relatively simple comparative
approach, focusing on spatial and temporal aspects of
estimated filtration for alternative oyster restoration
strategies. We recognize that restoration trajectories
are likely to be non-linear and difficult to predict for a
complex ecosystem like Chesapeake Bay, which is
simultaneously affected by multiple stressors (Suding
et al. 2004, Kemp et al. 2005). We focus on oysters
because they are a restoration priority for Chesapeake
Bay and because the relative ecological value of dif-
ferent oyster restoration strategies has not received
extensive attention. Within this comparative frame-
work we then draw inferences about how restoration
of bivalve suspension feeders in general may be
designed to achieve maximum ecological benefit. Our
goal was to provide both insight into the potential
benefits increased oyster biomass might yield and to
develop a flexible computational tool for exploring
alternative management strategies.

Our specific objectives were: (1) to estimate sea-
sonal and spatial patterns in oyster removal rates for
phytoplankton under present conditions in Chesa-
peake Bay; (2) to examine the probable change in the
impact of oysters on phytoplankton abundance result-
ing from various restoration scenarios; and (3) to inter-
pret these data with respect to maximizing the eco-
logical benefits of oyster restoration on phytoplankton
removal. Phytoplankton removal is used here as an
index of effect for comparative purposes. It is widely
recognized that water filtration is but one of a suite of
ecological services provided by benthic suspension
feeders. We do not consider here other ecological
benefits provided by oysters, such as altering pro-
cesses of inorganic nutrient regeneration (Newell et
al. 2005) and providing habitat for fish and other
invertebrate species (Harding & Mann 1999, Breit-
burg et al. 2000).

MATERIALS AND METHODS

Data and approach. We estimated the trophic effects
of oysters at various scales within a spatially and tem-
porally explicit oyster filtration model that estimated
phytoplankton biomass removed daily by oysters. Our
calculations expand on the approach of Newell (1988)
by taking into account the spatial and temporal distrib-
ution of phytoplankton biomass and size distribution;
spatial and temporal patterns in temperature, salinity,
dissolved oxygen, and seston concentration as they
affect oyster filtration; and spatial patterns in current
oyster biomass. Input data were organized by Bay
Monitoring Segment (hereafter ‘segment’; EPA Chesa-
peake Bay Monitoring Program) so that oysters in each
of the 36 segments (Table 1; www.chesapeakebay.net/
pubs/maps/1998-002.pdf) that are estimated to cur-
rently contain oysters could be treated as spatially dis-
crete regions, with no transfer of materials between
adjacent segments. This assumption means that our
analysis cannot address the impacts of an increase in
oyster biomass in one region (e.g. a particular tribu-
tary) on phytoplankton biomass in other areas (e.g. the
mainstem bay near the tributary mouth). We address
the implications of this assumption in the ‘Discussion’.
Although some of the major rivers flowing into Chesa-
peake Bay can be considered estuaries in their own
right, we refer to all systems flowing directly or indi-
rectly into Chesapeake Bay as tributaries to distinguish
them from the mainstem bay.

We estimated daily oyster-specific clearance rates
(m3 kg–1 C d–1) within each segment for each month
and converted the specific clearance rate to the total
water cleared per day (m3 d–1) by multiplying the spe-
cific rate by the total oyster biomass in each segment.
We defined clearance rate for modeling purposes as
the total volume of water cleared of suspended parti-
cles per day by a given biomass of oysters. In most
model scenarios we assumed a homogenous oyster
population comprised of individuals of 1 g dry weight
(DW; shell height 7.6 cm, 0.5 g C; see Table 2 for
exceptions). Oysters filter particles larger than 4 µm at
near 100% efficiency (Langdon & Newell 1990), but for
smaller sized particles clearance rates were adjusted
by a filtration efficiency term described below.

We estimated daily phytoplankton removal by oys-
ters by multiplying total daily clearance rate estimates
for each segment and month by estimates of available
phytoplankton biomass per cubic meter in each seg-
ment and month. We converted this estimate to the
proportion of phytoplankton removed daily by oysters
by dividing total phytoplankton biomass removed by
total phytoplankton biomass in a respective segment
and month. A bay-wide average daily proportion of
phytoplankton removed in each month was calculated
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by taking the unweighted mean proportion of phyto-
plankton removed daily across all segments. This
mean can be thought of as the mean local effect of oys-
ter filtration on phytoplankton biomass across all
segments, and provides a number that can be com-
pared to phytoplankton growth rates in order to esti-
mate net oyster effect on phytoplankton density. This
unweighted mean was calculated separately for the
mainstem of the bay and for the tributary segments
combined in order to minimize segment size bias.
We calculated an annual average of the proportion of
phytoplankton removed daily by taking the mean of
the 12 monthly values within each segment. A bay-
wide annual average was estimated by taking the
unweighted mean of the annual averages for the main-
stem of the bay and for the tributaries as described
above for the monthly bay-wide average. We also com-

puted a segment volume-weighted mean phytoplank-
ton removal, but this measure was relatively insensi-
tive to the restoration strategies tested because of the
influence of several bay segments with large water
volumes and low oyster biomasses.

Phytoplankton biomass estimates. Total phyto-
plankton biomass in each segment was based on esti-
mates of total integrated chlorophyll a (µg chl a l–1) col-
lected at specific monitoring stations in each segment
and interpolated to produce an estimate of total chl a
for an entire segment (D. Jasinski, EPA Chesapeake
Bay Program, unpubl. data). The estimate of total chl a
was converted to kilograms of carbon assuming a
carbon:chl a ratio of 40. The ratio of carbon to chl a
will vary depending on changes in light, nutrient con-
centration, and temperature (Cloern et al. 1995). The
value used in our model is the geometric mean
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BMS name Total volume SML volume Temp. DO Salinity TSS Oyster biomass 
(106 m3) (106 m3) (°C) (mg l–1) (mg l–1) (103 kg C)

BIGMH 43.6 25.9 15.72 8.97 15.61 16.60 4.62
CB2OH 1240.0 1130.0 14.31 8.84 4.53 19.15 2.75
CB3MH 2390.0 1860.0 14.61 8.19 10.81 11.58 22.2
CB4MH 9240.0 7190.0 14.72 7.75 14.17 7.35 38.3
CB5MH 15400.0 12000.0 15.08 8.27 16.73 9.13 89.7
CB6PH 6500.0 4170.0 15.36 8.94 18.86 15.42 93.7
CB7PH 13500.0 8670.0 15.06 8.64 21.81 21.23 0.28
CHOMH1 945.0 562.0 14.73 9.32 12.73 12.46 29.9
CHOMH2 267.0 159.0 15.09 8.58 10.43 17.55 5.65
CHOOH 45.1 29.6 15.90 8.41 0.58 53.54 0.0296
CHSMH 455.0 271.0 14.51 8.78 10.21 13.51 7.76
CRRMH 65.7 39.1 16.17 8.28 14.88 7.23 36.4
EASMH 997.0 593.0 14.63 8.41 12.58 10.36 18.4
FSBMH 143.0 85.0 15.15 8.87 13.26 33.03 9.46
HNGMH 186.0 110.0 15.15 8.87 13.26 33.03 15.3
JMSMH 977.0 581.0 16.26 8.34 14.82 26.63 724.0
LCHMH 208.0 124.0 14.29 8.01 13.76 14.40 4.33
MAGMH 76.5 45.5 14.96 8.57 8.74 10.01 0.997
MANMH 89.5 53.2 15.61 8.76 14.07 26.60 10.2
MOBPH 1340.0 944.0 15.85 8.88 20.07 17.29 3.31
NANMH 97.3 57.8 15.57 8.59 8.32 59.86 0.502
PATMH 452.0 268.0 15.06 8.02 9.53 11.72 0.0211
PAXMH 561.0 334.0 15.17 8.13 12.65 10.85 7.23
PAXOH 27.2 17.8 15.87 8.18 10.37 43.56 0.0084
PIAMH 201.0 120.0 15.74 9.68 16.25 11.94 121.0
POCMH 355.0 211.0 15.53 9.22 17.12 24.36 3.97
POCOH 18.0 11.8 15.53 9.22 2.28 24.36 0.0047
POTMH 5790.0 3440.0 15.53 8.54 12.55 13.85 19.5
POTOH 852.0 559.0 15.53 8.75 2.79 42.49 0.707
RHDMH 20.3 12.1 15.82 9.29 10.11 14.15 0.128
RPPMH 1480.0 881.0 15.67 8.48 14.23 25.24 90.1
SEVMH 113.0 67.5 15.06 8.09 10.18 12.66 1.82
SOUMH 67.0 39.8 15.32 7.31 10.38 11.36 2.18
TANMH 4020.0 2390.0 15.19 8.31 16.16 22.05 87.1
WICMH 56.4 33.5 15.88 7.99 7.73 33.99 0.811
WSTMH 20.4 12.1 15.21 9.02 10.52 16.10 0.562

Table 1. Physical characteristics and oyster biomass estimates by Bay Monitoring Segment (BMS). Water volume is given for the
total segment and for the surface-mixed layer (SML) only. The annual mean is given for water temperature (Temp.), dissolved 

oxygen concentration (DO), salinity, and seston concentration (TSS)
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carbon:chl a ratio used in a previous model analysis to
estimate the amount of phytoplankton carbon in
Chesapeake Bay (Gallegos 2001). Analysis of phyto-
plankton biomass was limited to segments that contain
oysters, which includes polyhaline, mesohaline, and
lower oligohaline segments. Therefore, results and
analysis of phytoplankton data do not include upper
oligohaline or tidal fresh segments.

Total phytoplankton biomass was divided into 3 size
classes (<2 µm, 2 to 4 µm, >4 µm). These size classes,
used for phytoplankton, were based on published esti-
mates of oyster clearance efficiency as a function of
phytoplankton cell size (Langdon & Newell 1990).
Allocating phytoplankton to size classes allowed us to
examine the relationship between oyster feeding
activity and seasonal patterns in the size composition
of phytoplankton biomass. The estimate of size-spe-
cific phytoplankton biomass in each segment was
reduced to account for phytoplankton biomass esti-
mated to be beneath the pycnocline. Oysters do not
reside in the deep waters below the pycnocline, and
we assumed that the surface layer, defined as the vol-
ume of water between the pycnocline and the surface,
is well mixed horizontally, so oysters have access to all
phytoplankton biomass in the surface layer. This
assumption may result in an overestimate of oyster
access to phytoplankton, particularly in the mainstem
bay, and is considered in the ‘Discussion’.

Total phytoplankton biomass was allocated to size
class and adjusted to account only for biomass above
the pycnocline, based on estimates of relative abun-
dance calculated from mean cell count data collected
in each segment and month as a part of the Bay Moni-
toring Program (1986 to 2001; www.chesapeakebay.
net/data/index.htm). Mean cell count data (no. l–1)
were converted to biomass (g C l–1) with a conversion
value (pg C cell–1) specific to phytoplankton taxonomic
groups, provided by the Maryland principal investiga-
tor of the phytoplankton monitoring program and used
by the Chesapeake Bay Program (R. Lacouture, Mor-
gan State University Estuarine Research Center, EPA
Chesapeake Bay Program, unpubl. data). These bio-
mass estimates were then converted to the proportion
of phytoplankton biomass in each size class above the
pycnocline by dividing biomass from cell counts in
each size class above the pycnocline by total biomass
from cell counts for the whole water column. These
proportions were then used to allocate total phyto-
plankton biomass from chl a data into the respective
bins (above vs. below the pycnocline; size class).
Phytoplankton relative abundance by size and vertical
location were calculated separately for each segment
and month.

Cell count data for picoplankton were available only
for a subset of the segments. Mean picoplankton abun-

dance was calculated by month and salinity zone and
used to estimate picoplankton relative biomass in seg-
ments where no picoplankton data were available. The
biomass conversion (pg C cell–1) for picoplankton was
set at a nominal value of 0.2 pg C cell–1 based on an
observed mean cell diameter of 1 µm (R. Lacouture,
Morgan State University Estuarine Research Center &
H. Marshall, Old Dominion University, pers. comm.).

Oyster biomass estimates. Estimates of oyster bio-
mass for each segment were based on surveys con-
ducted in Virginia sections of the bay by the Virginia
Institute of Marine Sciences and in Maryland sections
of the bay by the Maryland Department of Natural
Resources (Chesapeake Bay Oyster Population Esti-
mation Project, www.vims.edu/mollusc/cbope/index.
htm). Data from the Virginia portion of the bay were
based on patent tong surveys collected from 1998 to
2002 (Southworth et al. 2005). Data for the Maryland
portion of the bay were based on the total recent bio-
mass estimated by Jordan et al. (2002) and historical
records of spatial distributions (Yates 1911). Data from
both surveys were compiled and made available for
use in our model by the Army Corps of Engineers
Water Quality Modeling Group (Cerco & Noel 2005).
The variability of these biomass estimates is quite high
(coefficient of variation > 100%). However, these data
are the best available and provide a viable starting
point for an examination of oyster restoration. Oyster
biomass was expressed as total oyster tissue (kg C) in
each segment, and was converted to the equivalent
number of 1 g DW oysters. Jordan et al. (2002) reported
that in Maryland mean individual oyster weight was
1.18 g DW, and the mean ranged from 0.82 to 1.42 g
DW across sites.

Oyster clearance model. Oyster clearance rate was
estimated in the model based on 4 environmental
variables measured by the EPA Chesapeake Bay Mon-
itoring Program: water temperature, salinity, seston
concentration (TSS), and dissolved oxygen (DO) con-
centration. Data used were 10 yr means (1991 to 2001)
for each month in each segment. Oyster clearance rate,
defined as the volume of water swept clear of particles,
was calculated with functions based on existing
knowledge of oyster physiology (Newell & Langdon
1996, Shumway 1996).

Daily maximum oyster clearance rate (CRmax; m3 g–1

oyster C d–1) was calculated based on mean monthly
water temperature (Fig. 1A, Cerco & Noel 2005):

(1)

where T is mean water temperature (°C). Maximum
oyster clearance rate reported by Newell & Langdon
(1996) was 0.55 m3 g–1 C d–1 and occurred at a temper-
ature of 27°C. The temperature-based maximum clear-

CR
T

max
.

.= × − −( )( )0 55
0 015 27 2
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ance rate was calculated in the model, converted to
cubic meters per kilogram C per day and then adjusted
for non-optimal conditions of the other 3 physical vari-
ables salinity, TSS, and DO:

CR = CRmax × ƒ(salinity) × ƒ(TSS) × ƒ(DO) (2)

via multiplication by the respective coefficients.
Maximum clearance rate was adjusted for mean

monthly salinity in a given segment using a discrete set
of rules based on laboratory observations of oyster
clearance across a salinity range (R. I. E. Newell
unpubl. data; Fig. 1B). Oyster clearance has been
observed to cease at salinities <5. Further, oyster clear-
ance rate has been observed to be unaffected by salin-
ities >12. In a given segment, if mean monthly salinity
was <5 then oyster clearance rate was zero in the
model for that segment in that month. If mean monthly
salinity was >12, oysters in the model cleared water at
their temperature-based maximum rate in that month.
In segments and months with a mean salinity between
5 and 12, oyster clearance was adjusted based on a lin-
ear function:

ƒ(salinity) = (0.0926 × S) – 0.139 (3)

where S is the segment- and month-specific mean
salinity and ƒ(salinity) is the proportion of maximum
clearance rate realized at the specified salinity. Maxi-
mum clearance rate was adjusted for mean DO con-

centration (mg l–1) in a given segment with a logistic
function relating mean DO concentration in a given
segment and month to the critical DO concentrations
for oyster feeding activity (Fig. 1C):

(4)

where DOhx(1.75 mg l–1) and DOqx(1.5 mg l–1) are the
DO concentrations at which the oyster clearance rate is
50 and 25% of its maximum value, respectively. These
equations were developed from generalized responses
of bivalve mollusks to declining oxygen tension (Bayne
1971a,b).

Oysters do not feed actively at low seston levels, but
clearance rates increase rapidly as seston concentra-
tions rise above 4 mg l–1 (Newell & Langdon 1996), and
for this response we used a step function (Fig. 1D).
Oyster clearance rate was 10% of the temperature-
adjusted maximum rate at seston concentrations
<4 mg l–1, increased to 100% of the maximum rate at
seston concentrations between 4 and 25 mg l–1, and
decreased as seston concentrations increased to
>25 mg l–1 (Loosanoff 1962, Newell & Langdon 1996).
Loosanoff (1962) reported that oysters can feed at
seston concentrations as high as 1000 mg l–1. We mod-
eled clearance rates at higher seston concentrations
as a power function derived from the data relating oys-
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Fig. 1. Relationship between oyster clearance rate and: (A) mean water temperature; (B) salinity; (C) dissolved oxygen (DO), and
(D) seston concentration (TSS). Relationships for salinity, DO, and TSS represent a proportion of the temperature-mediated
maximum clearance rate. Functions used in the model are described by solid lines and data used to develop the function for
salinity are provided for justification of the piecewise linear approach. The x-axis in Panel B crosses the y-axis at –0.2 to improve
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ter clearance rate to seston concentrations >25 mg l–1

(Fig. 1D):

ƒ(TSS) = 10.364 × log(TSS)–2.0477 (5)

where log(TSS) is the natural logarithm of seston con-
centration for a given segment. This function describes
a decrease in oyster clearance rate that is initially
rapid, but slows for seston concentrations >100 mg l–1.
Oyster clearance rate was predicted to be about 43%
of the temperature-adjusted maximum rate at a seston
concentration of 100 mg l–1.

Oyster clearance rates in each segment and month
were calculated based on mean values for the 4 physi-
cal variables. The specific clearance estimate (m3 kg–1

oyster C d–1) was multiplied by oyster biomass (kg C)
in a segment to estimate total volume cleared daily
(m3 d–1). Total volume cleared was converted to phyto-
plankton removed daily (kg phytoplankton C d–1) by
multiplying the total volume cleared in each segment
and month by the total available phytoplankton bio-
mass per unit volume in each segment and month
(kg C m–3). Total phytoplankton removed daily was
then converted to proportion of total phytoplankton
biomass removed daily by dividing the biomass
removed by the total phytoplankton biomass in the
respective segment and month.

Model scenarios and sensitivity analyses. We used
the model to estimate the daily removal of phytoplank-
ton by oysters in each segment based on the mean data
described above for current oyster and phytoplankton
biomass and under a range of scenarios for increasing

oyster biomass and altering oyster biomass distribution
in Chesapeake Bay (hereafter ‘restoration scenarios’;
Table 2). The management oyster restoration target for
the bay is a 10-fold increase over the low values in
1994. We used the model to predict the change in daily
phytoplankton removal by oysters resulting from a
10-fold increase in oyster biomass with current oyster
distribution (Fig. 2A). In addition, we used the model to
predict change in phytoplankton removal resulting
from a 10-fold increase in oyster biomass combined
with a targeted redistribution focused largely in 3 local
areas (Tangier Sound, Choptank River, and the Rappa-
hannock River; Fig. 2B). The local areas chosen for the
‘redistribution’ scenario are areas with historically
high oyster abundances.

The final 2 scenarios, designated as limited harvest
scenarios, were designed to test the effects of oyster
size distribution on phytoplankton removal. Oyster
restoration strategies are often linked to fisheries
regulations designed to restrict removal of oysters, at
least for some period of time. The way in which fish-
eries regulations are implemented can simultaneously
affect oyster biomass, numbers, and sizes. Our inten-
tion was not to simulate detailed size structure of
oyster populations, but rather to explore the conse-
quences of an increase in mean oyster size by using
2 simple scenarios in which the abundance of cur-
rently harvestable oysters >7.6 cm shell height would
increase. Maximum oyster clearance rate is a function
of oyster size (Newell & Langdon 1996). Larger indi-
viduals have higher clearance rates on a per individ-
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Restoration Δ Oyster Individual Details
scenarios biomass oyster size

Current biomass n/a 1 g DW Current biomass and distribution

In place 10×
25× 1 g DW Oyster restoration with current distribution

Redistribution 10×
25× 1 g DW Oyster restoration with redistribution focused in 3 tributaries

Limited harvest with 10× 50/50 1 g and Oyster restoration with redistribution and limited harvest with total 
redistribution 25× 3 g DW within-segment biomass the same as in the redistribution scenario
(biomass target)

Limited harvest with 20× 50/50 1 g and Oyster restoration with redistribution and limited harvest with number 
redistribution 50× 3 g DW of individual oysters per segment (based on 0.5 g C oyster–1) the same 
(numerical target) as in the redistribution scenario

Historic biomass 100× 1 g DW Oyster restoration to biomass levels prior to 1870

Table 2. Summary of the oyster restoration scenarios being compared, based on results of the seasonal oyster filtration model. The
3 tributaries receiving most of the increase in oyster biomass under the ‘redistribution’ scenario were Tangier Sound, the Chop-
tank River, and the Rappahannock River. Changes in individual oyster size were treated in the model as changes in the maximum 
clearance rate (see ‘Materials and methods’ for details) and are given here as grams of dry weight (DW) to aid interpretation
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ual basis, but the allometric exponent is less than
unity, and larger individuals have lower clearance
rates per unit biomass.

These ‘limited harvest’ oyster populations were
assumed to have the same spatial distributions as oys-
ters in the ‘redistribution’ scenario, but were com-
prised of a mixture of 0.5 g C (1 g DW) and 1.5 g C
(3 g DW) oysters. This altered size distribution is
based on the assumption that a portion of the oyster
population achieves an additional year of growth prior
to harvest. ‘Limited harvest/biomass-target’ simula-
tions were assigned the same total biomass as used in
the redistribution simulations (i.e. current biomass
and 10- and 25-fold current biomass), with biomass
evenly split between 1 g (50% total biomass) and 3 g
DW (50% total biomass) individuals. The limited har-
vest/biomass-target scenario simulates a management
strategy that utilizes harvest restrictions to meet bio-
mass restoration goals. In addition, a limited harvest/
numerical-target scenario was developed to simulate
a management strategy that utilizes harvest restric-
tions to meet a goal of increasing oyster numbers.
Simulations of this scenario were assigned the same
number of oysters as in the redistribution simulations,

with oysters evenly split between 1 g (50% total num-
ber) and 3 g DW (50% total number) individuals. The
limited harvest/numerical-target scenario results in a
25/75 split in biomass between 1 and 3 g DW individ-
uals and a doubling of total biomass relative to other
comparable (i.e. current conditions, 10× and 25×)
simulations. Together, the 2 limited harvest scenarios
bracket a range of population responses to an in-
crease in size distribution. The maximum filtration
rate for the limited harvest populations (CRpop) was
0.48 or 0.44 m3 g–1 oyster C d–1 for the biomass target
and numerical target scenarios, respectively. The dif-
ferent CRpop values are based on the functions:

CRpop = (CR*max(1) × P1) + (CR*max(3) × P3)

CR*max(i) = 0.55(W)–0.28
(6)

where CR*max(i) is the biomass-dependent maximum
clearance rate of an oyster weighing i g DW, Pi is the
proportion of total population biomass comprised of i g
DW oysters, and W is individual oyster biomass (g DW)
(Newell & Langdon 1996).

We also compared model estimates of the ecological
effect of a 10-fold increase in oyster biomass to a
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Fig. 2. (A) Current oyster biomass distribution in kg oyster carbon; (B) oyster biomass distribution for the ‘redistribution’ model
scenario in kg oyster carbon, and (C) in mean phytoplankton biomass (tonnes phytoplankton carbon), in each bay monitoring
segment. Points on the figure represent the integrated biomass for the entire segment rather than data from a particular moni-
toring station. Locations of points on the figure within a particular segment are arbitrary. Major tributaries are labeled in 

Panel A for reference. See Table 1 for details on individual segments
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25-fold increase in oyster biomass for all restoration
scenarios described above, and to the estimated effect
of oysters at the 100-fold present day biomass levels
estimated to be present in the bay prior to 1870
(Newell 1988). We included data on a 25- and 100-fold
increase in oyster biomass to provide a useful range of
values for comparison. The results from each restora-
tion scenario were compared to estimates of phyto-
plankton maximum growth rate on an annual basis
and by month as a measure of the effect of oyster filtra-
tion on phytoplankton concentration.

Model sensitivity to our estimate of picoplankton
biomass was tested because of uncertainty in temporal
and spatial variation in mean cell size of cells <2 µm
in diameter within Chesapeake Bay (R. Lacouture &
H. Marshall pers. comm.) and because these <2 µm
cells are largely unavailable to oysters due to low
clearance efficiency (Langdon & Newell 1990, Newell
& Langdon 1996). Model output was generated at 3
levels of picoplankton relative biomass (low, medium,
and high), corresponding to mean cell diameters of 0.8,
1, and 2 µm and biomass conversions of 0.11, 0.2, and
0.4 pg cell–1, respectively. The medium relative bio-
mass level is the nominal model input value based on
observations of mean cell size (R. Lacouture pers.
comm.). Retention efficiency was estimated as 5% for
mean cell sizes of 0.8 and 1 µm (≡0.11 and 0.2 pg
cell–1), and increased to 50% for a mean cell size of
2 µm (≡0.4 pg cell–1).

RESULTS

Spatial patterns

Recent studies (Jordan et al. 2002, Southworth et al.
2005) indicate that Chesapeake Bay eastern oyster
populations are ~1% of the pre-exploitation levels esti-
mated by Newell (1988). The spatial distribution of
current oyster biomass is strongly skewed, with 49% of
current biomass located in the mesohaline section of
the James River (Fig. 2A). The mesohaline sections of
the Rappahannock River, Tangier Sound, and the
mainstem waters in Virginia each contain >6% of the
total oyster biomass, respectively. No other segment
contains >3% of the oyster biomass at present (Cerco
& Noel 2005).

Under average annual climatic conditions, 63% of
the phytoplankton biomass is currently concentrated
in the mesohaline mainstem bay (Fig. 2C). The meso-
haline sections of the Potomac River, as well as the
mesohaline section of Tangier Sound, contain 5.4 and
3.1% of the total phytoplankton biomass, respectively.
No other segment contains >2% of the total phyto-
plankton biomass.

We estimated that, on an annual basis, oysters cur-
rently remove 6.94 × 104 kg phytoplankton C d–1, which
represents 0.03% of total available phytoplankton car-
bon in Chesapeake Bay based on a volume-weighted
average across all segments. Mean daily phytoplankton
removal was highest in July (3.4% d–1) and lowest in
February (0.001% d–1).

In the James River, mean daily phytoplankton re-
moval by oysters was 3.2 × 104 kg C d–1 (13.5%) annu-
ally and peaked in July at 11.5 × 104 kg C d–1 (36.7%;
Fig. 3). Oyster populations in only 2 other segments
had a mean daily clearance estimate >2% phyto-
plankton C d–1: the mesohaline sections of the Corro-
toman River (11.1% d–1), which is a tributary of the
Rappahannock River; and the Piankatank River
(10.8% d–1), located just to the south of the mouth of
the Rappahannock River in Virginia.

Spatial patterns in the daily oyster clearance of
phytoplankton were largely controlled by mean salin-
ity and oyster biomass (Fig. 3). Annual averages in
oligohaline areas that contain oysters were affected by
months with oyster filtration rates at or near zero,
because of low salinity. Highest annual filtration rates
occurred in segments with highest oyster biomass and
mean salinity >10 in all months.

Temporal patterns

Oyster daily clearance rate exhibited a distinct sea-
sonal pattern predominantly mediated by mean water
temperature (Fig. 4). Removal of phytoplankton by
oysters was lowest during the winter months (Decem-
ber through March) and highest during the summer
(June through September), when mean water tem-
perature was highest. Daily oyster clearance rate
began to rise rapidly in response to the seasonal tem-
perature increase in May, but in most segments,
including the James River, high oyster clearance rates
did not occur until well after the spring peak in
phytoplankton biomass, which occurred in March
and April.

Phytoplankton size distribution also followed a dis-
tinct seasonal pattern (Fig. 5A). Phytoplankton ≤2 µm
in diameter (picoplankton) comprised a minor portion
of total phytoplankton biomass from November
through April. Relative abundance of picoplankton
rose rapidly in May and peaked in August at an aver-
age of 22% of the total phytoplankton biomass in
mesohaline segments for which data were available.
This trend in the abundance of picoplankton follows an
inverse pattern of the seasonal increase in oyster clear-
ance rate and reduces the proportion of phytoplankton
available to oysters during the season of peak oyster
filtration (Fig. 5B).
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Model sensitivity to picoplankton cell size estimates

Variation in the estimate of picoplankton cell size,
which affected both predicted relative biomass of
small cells and oyster filtration efficiency, had only a
minor effect on estimates of the proportion of phyto-
plankton biomass cleared by oysters. On an annual
basis the low value for picoplankton-relative biomass
(based on a 0.8 µm cell diameter) resulted in an
increase of 3.7% in the proportion of phytoplankton
removed from the whole bay relative to the nominal
value (based on 1 µm cell diameter). An increase in
picoplankton-relative biomass to the high value (2 µm
cell diameter) resulted in a decrease of 0.63% above
the nominal value in the estimate of phytoplankton
removed daily from the whole bay. The direction and
magnitude of the response to a change in picoplankton
cell diameter reflected both the effect of picoplankton
size on the percent of total phytoplankton biomass
comprised of picoplankton-size cells, and the effect of
cell size on oyster retention efficiency. These changes
in model response peaked in July at 7.9 and 0.89%,

respectively. The response of model estimates of total
oyster clearance in individual segments did not differ
substantially from the bay-wide effect.

Modeling alternative oyster restoration strategies

We did not explicitly consider phytoplankton growth
in our model analysis, so our model does not predict
the effect of changing oyster biomass on phytoplank-
ton concentration. We can, however, compare our
model predictions of phytoplankton removal to esti-
mates of phytoplankton daily growth as a qualitative
assessment of whether oysters are removing phyto-
plankton biomass at or above replacement levels.
Depth-integrated estimates of daily specific primary
productivity in the euphotic zone expressed as net
maximum carbon fixation (g C g–1 phytoplankton
C d–1) for phytoplankton in Chesapeake Bay range
from 0.006 d–1 in February to 1.36 d–1 in July, with an
annual mean of 0.35 d–1 (Bay Monitoring Program Data
2002 to 2003, R. Lacouture unpubl. data; Harding et
al. 2002). These primary production estimates do not
account for costs of production, but they can be consid-
ered an estimate of maximum growth rates for phyto-
plankton in Chesapeake Bay.

In the mainstem of the bay, 10-, 25-, and 100-fold
increases in oyster biomass without redistribution
resulted in 10-, 25-, and 100-fold increases in the pro-
portion of phytoplankton removed daily by oysters
(Fig. 6A). Removal rates with even the highest
increases in oyster biomass were low in comparison to
our estimate of annual mean phytoplankton produc-
tion in the mainstem Chesapeake Bay. The redistribu-
tion and limited harvest scenarios resulted in no
change in the mainstem as these scenarios did not in-
crease oyster biomass in these areas.

Both the average percent of phytoplankton cleared
by oysters in tributaries (not weighted by tributary
volume), and the number of tributary segments in
which phytoplankton removal was predicted to exceed
production, varied among the restoration scenarios
tested. The increase in the amount of phytoplankton
removed daily by oysters in the tributaries in response
to a 10-fold increase in oyster biomass varied by a factor
of 3 among the different approaches to achieving this
restoration goal based on the un-weighted average
across all tributary segments (Fig. 6B). An increase in
oyster biomass without a change in distribution re-
sulted in an increase in daily phytoplankton removal
from 1.5 to 15% d–1 averaged across all tributary seg-
ments, and phytoplankton removal exceeding replace-
ment in 3 segments — the James, Corrotoman, and
Piankatank Rivers (Fig. 7). A 10-fold increase in oyster
biomass combined with redistribution focused in
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Fig. 5. Seasonal patterns in: (A) phytoplankton-relative bio-
mass by size category; and (B) oyster daily clearance rate (m)
estimated with the oyster filtration model, and relative bio-
mass (h) of phytoplankton ≥2 µm for the mesohaline segment
of the Rappahannock River. Size categories in Panel A are
arranged in descending order from top to bottom (>100,

50–100, 10–50, 4–10, 2–4, <2 µm)
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Tangier Sound, as well as the Choptank and Rappa-
hannock Rivers, resulted in an increase in the un-
weighted average daily phytoplankton removed to
29% d–1 across all tributaries. Under this restoration
scenario, the number of segments in which phytoplank-
ton removal was predicted to exceed replacement in-
creased to 5, with removal in 2 segments predicted to
be twice the replacement level or higher (Fig. 7).

The 25-fold increase in oyster biomass was consis-
tent in pattern with the 10-fold increase across restora-
tion scenarios, with the exception that phytoplankton
removal was predicted to exceed the maximum phyto-
plankton growth rate averaged across all tributaries
(Fig. 6B). Predicted removal exceeded phytoplankton
replacement in 5 tributaries for ‘in place’ restoration
and 10 for the redistribution scenario.

The effect of altering the size distribution of oysters
differed depending on whether numerical density or
biomass was held to levels comparable to scenarios
that modeled uniformly sized 1 g DW oysters. Oyster
biomass in the limited harvest/numerical-target sce-
nario increased 20-fold at numerical densities equal to
those in the 10-fold increase in 1 g DW oysters in the
redistribution scenario. As a result, phytoplankton
removal increased to 46% d–1 across all tributaries,
and the number of tributary segments in which
removal was predicted to exceed replacement in-
creased to 6 (Fig. 7). In contrast, an increase in average
individual size with the oyster biomass limited to a 
10-fold increase (limited harvest/biomass-target sce-
nario) resulted in phytoplankton removal of 25.5% d–1

averaged across all tributary segments, which is less
than the predicted increase in the redistribution sce-
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nario with uniformly sized oysters. This reduction in
total phytoplankton removal occurs because weight-
specific filtration decreases as individual oyster bio-
mass increases, and the limited harvest/biomass-target
scenario does not allow for a compensatory increase in
total population biomass. At numerical densities equiv-
alent to those in the 25-fold biomass increase of 1 g DW
oysters, phytoplankton removal was predicted to
exceed replacement in 10 tributary segments.

The seasonal pattern of the oyster filtration rate
closely matched the seasonal pattern of net maximum
primary productivity reported in the literature for the
mainstem of the bay and for the Patuxent River (Fig. 8;
Bay Monitoring Program Data 2002 to 2003, R. Lacou-
ture unpubl. data; Harding et al. 2002). Removal of
phytoplankton by oysters was highest in the summer in
both the mainstem and the Patuxent River, but even at
the highest oyster biomass levels examined in this
analysis (100-fold current biomass, i.e. pre-1870 bio-
mass) at maximum summer clearance rates, oysters
were predicted to remove phytoplankton above the
phytoplankton replacement rate in the Patuxent River
(Fig. 8A), but not in the mainstem of the bay (Fig. 8B).
Model results also suggested that oyster removal of
phytoplankton in the mainstem and Patuxent River at
100-fold current oyster biomass in March and April is
~1% d–1, which is still below the  maximum net

replacement rate for phytoplankton (17.6% d–1) during
these months under current nutrient-enriched condi-
tions in Chesapeake Bay.

DISCUSSION

Predicted removal of phytoplankton under a range
of oyster restoration scenarios

The influence of oyster feeding on phytoplankton
biomass in Chesapeake Bay is severely limited at pre-
sent by low oyster abundance caused by over a century
of over-harvesting and more recent disease epizootics
(Rothschild et al. 1994, Jordan & Coakley 2004). At the
scale of the entire bay, the mean daily estimate of max-
imum phytoplankton growth rate (35% d–1) is 1 to 2
orders of magnitude above our calculated annual
mean estimate of the rate at which the current oyster
population removes phytoplankton (non-volume-
weighted; mainstem 0.07% d–1, tributaries 1.4% d–1).
Our results indicate that a 10-fold increase in oysters
will have little discernable effect on phytoplankton
biomass bay-wide. It should be noted that as ambitious
as a restoration goal of a 10-fold increase in oyster bio-
mass may seem, it would still only return oysters to
<10% of their pre-exploitation abundance. A higher
restoration target on the order of 25-fold current bio-
mass may be required to achieve a meaningful reduc-
tion in phytoplankton biomass under the current nutri-
ent-enriched conditions in Chesapeake Bay.

Our model predicted that at near-historic oyster bio-
mass levels (100-fold increase) oysters would filter a
water volume equal to the entire volume of the bay in
about 27 d, as an annual average, and in about 9 d at
peak summer clearance rates, which is consistent with
previous estimates of water filtration by oysters
reported by Newell (1988). This historical biomass
comparison does not imply that such a level of restora-
tion would return Chesapeake Bay to its original pris-
tine condition. Rather, it is intended to provide a useful
benchmark for evaluating other restoration scenarios.
These high predicted filtration rates translated to a
removal of phytoplankton averaged across all seg-
ments examined of 31% d–1, and averaged across all
tributary segments (mainstem excluded) in excess of
100% d–1. Such a high historical biomass of oysters
may have been more dependent on other sources of
food such as allochthonous detritus, higher organic
content of resuspended sediment, or on a higher pri-
mary production rate resulting from much tighter
nutrient recycling and increased light penetration than
is present today (Newell et al. 2005). The actual
amount of phytoplankton removed by such an abun-
dant oyster population is also likely lower than our
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model calculations suggest due to spatial constraints
and the refiltration of water (see below).

An important implication of our analysis is that large-
scale ecological benefits of increasing oyster biomass,
as indexed here by phytoplankton removal, are depen-
dent on local conditions and decisions about where and
how oysters are restored. Increasing oyster biomass in a
limited number of areas increased the number of tribu-
tary segments in which oysters were predicted to re-
move phytoplankton at or above replacement levels.
The pattern of oyster redistribution used in this analysis
was focused in areas of Chesapeake Bay that contained
historically large oyster populations, but there are
many possible variants on this basic theme for planning
oyster restoration. The model used in this analysis is
highly flexible and can easily be applied for assess-
ments other than those presented here. The number of
local areas predicted by our model analyses where
restoration goals were achieved is also a useful index
for gauging the regional benefit of restoration based on
multiple local restoration efforts.

A recent review of the potential effect of oyster pop-
ulation recovery on hypoxia in Chesapeake Bay dealt
qualitatively with many of the same issues we raise
here regarding the importance of spatial and temporal
coincidence of oysters and phytoplankton for maximiz-
ing the ecological impact of increasing oyster biomass
(Pomeroy et al. 2006). While we agree with some of the
issues raised by Pomeroy et al. (2006), our more quan-
titative analysis indicates that increasing oyster bio-
mass can lead to substantial reductions in phytoplank-
ton abundance under certain conditions. Furthermore,
our model provides a rational basis for assessing alter-
native oyster restoration strategies.

Our predicted minimal effect on phytoplankton bio-
mass that would result from a 10-fold increase in oyster
biomass is consistent with the findings of another
recent model on the water-quality benefits of oyster
enhancement in Chesapeake Bay (Cerco & Noel 2005).
Results of a network model analysis of oyster recovery
in Chesapeake Bay (Ulanowicz & Tuttle 1992) agree
with our findings in direction, but predict a stronger
effect of oysters on phytoplankton biomass. Ulanowicz
& Tuttle (1992) referred to their modeling approach as
a ‘rough approximation’ of the effects of oyster recov-
ery. In particular, their approach involved both spatial
and temporal averaging and did not address the mis-
match issues we have pointed out as potentially impor-
tant (discussed below). Another model analysis similar
to ours on the ecological value of restoration of bivalve
populations in Rhode Island indicated that different
restoration actions such as limiting harvest or seeding
the population with new juveniles resulted in different
benefits based on the bivalve species targeted for
restoration (McCay et al. 2003). Their findings suggest

that comparative studies of different plans for restora-
tion can also be highly beneficial in more diverse
bivalve communities than the one under study here,
and our model is highly adaptable to such general
analyses.

Our results also indicate that restoration strategies
that affect size distributions of oysters can affect total
phytoplankton removal, as well as the number of seg-
ments in which phytoplankton removal exceeds re-
placement. In the scenarios presented here, a change
in the size distribution of oysters, resulting in an in-
creased mean size and the same numerical density of
oysters in the model, determined whether phytoplank-
ton removal by oysters was below or above replace-
ment levels in the Rappahannock River. It is also note-
worthy that the number of local segments in which
oysters were predicted to remove phytoplankton at or
above replacement levels increased when the size dis-
tribution increased and numerical density was held
equal to a 10-fold biomass increase in 1 g DW oysters.
No increase in this metric was evident, however, when
numerical density was held equal to a 25-fold increase,
suggesting a potentially important trade-off between
total population biomass and the value of protecting
larger individuals.

Oyster size distribution is dealt with simply in this
model analysis as a homogenous population of 1 g DW
individuals in 3 scenarios and a limited harvest sce-
nario with a mixture of 1 and 3 g DW individuals in an-
other scenario. Although total oyster biomass was cal-
culated based on observed size distributions at stations
throughout Chesapeake Bay, our computed total filtra-
tion rates do not account for spatial/temporal variations
in population size distribution. This simplification al-
lowed us to calculate a more straightforward compari-
son among locations and restoration strategies without
the potentially confounding and poorly documented
effects of spatial variation in the influence of disease,
harvest, and other factors on oyster size distributions.

The primary objective of many oyster restoration
activities along the Atlantic coast and the Gulf of Mex-
ico is enhancement of the commercial fishery rather
than an enhancement of ecosystem services (Mack-
enzie et al. 1997, Soniat et al. 2004). The importance of
an increased oyster population for reducing phyto-
plankton biomass and improving water quality may be
enhanced in Chesapeake Bay by high public aware-
ness of the issue of nutrient over-enrichment, and the
historical precedent for the importance of eastern oys-
ters. This dual emphasis on the economic and ecologi-
cal importance of oysters has created multiple interest
groups for oyster restoration in Chesapeake Bay with
seemingly disparate objectives. However, the impor-
tance of oysters as ecological and fishery resources
need not be mutually exclusive. Effective planning of
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restoration that involves partial harvest protection to
provide a steady larval supply has been suggested as
an effective strategy to accomplish both restoration
objectives (Breitburg et al. 2000). Our analysis sug-
gests that this strategy will require a larger total bio-
mass of oysters to gain equivalent phytoplankton
removal benefits if harvest protection results in a
larger mean oyster size. The important point is that
there are trade-offs to consider between oyster restora-
tion for economic and ecological purposes, and an
analysis of these trade-offs should occur earlier rather
than later in the restoration planning process to reduce
user-group conflicts.

Constraints on oyster filtration of phytoplankton

The influence of oysters on phytoplankton biomass is
limited in most bay areas by low present-day oyster
biomass, but it is also limited by spatial and temporal
mismatches between oysters and phytoplankton in the
Chesapeake Bay system. Increasing oyster biomass
will increase phytoplankton removal and increase
water clarity. Yet, on a bay-wide basis, the effects of
oysters on phytoplankton are constrained by 3 factors:
(1) the bulk of present-day oyster biomass is in tribu-
taries, while the bulk of phytoplankton is in the main-
stem Chesapeake Bay; (2) maximal rates of oyster fil-
tration occur at temperatures higher than those at
which phytoplankton biomass peaks in the spring; and
(3) maximal rates of oyster filtration coincide tempo-
rally with maximum relative abundance of picoplank-
ton, which are not efficiently retained by oysters.

The present-day patchy distribution of eastern oys-
ters is quite different from their more even distribution
when they were at their historic peak biomass (Smith
et al. 2001, 2003). The current spatial mismatch
between oyster populations and phytoplankton bio-
mass can be minimized to some degree through tar-
geted restoration. However, the spatial mismatch may
limit oyster effects even more strongly than our calcu-
lations suggest. Oysters are benthic animals, and they
are predominantly located on the shallow flanks of the
mainstem bay and its tributaries. Considerable phyto-
plankton production occurs in the pelagic zone, away
from nearshore littoral areas, and so this biomass is
only available to benthic grazers as a result of tidal-
and wind-generated mixing processes. There is some
level of uncertainty concerning exactly how much of
the phytoplankton over the central channel of the bay
will be made available through wind and tidal mixing
to oysters, and therefore how effective oysters will be
in removing phytoplankton from the water column. In
our model we assumed that oysters had access to all
phytoplankton in the surface mixed layer. Surface-

layer phytoplankton biomass, which does not move to
where oysters are located due to distance or absence of
physical forcing, will be unavailable to oysters and will
not be grazed.

The importance to model predictions of the assump-
tion that oysters have access to the entire surface
mixed layer will vary spatially and temporally based
on oyster filtration activity, water movement, and with
depth and width of the surface mixed layer. Gerritsen
et al. (1994) estimated that the percentage of the sur-
face mixed layer available to suspension-feeding ben-
thic organisms varied between 100% in the Potomac
and Patuxent Rivers to 16% in the mesohaline main
bay. Hagy (2002) estimated this proportion at between
43 and 51% bay-wide. Because most of the oyster bio-
mass is located today in the tributaries, access to the
surface mixed layer should not greatly affect our esti-
mates of current bay-wide oyster filtration effects; the
importance of access to the surface mixed layer for
estimates on the effects of increased oyster biomass
will depend on the locations in which oyster biomass
increases.

Although it may be possible to focus oyster restora-
tion efforts in the mainstem bay, where most phyto-
plankton biomass is located, oyster access to phyto-
plankton would still be limited by the relative size of
the pelagic zone and local hydrodynamic conditions.
Choosing areas with a high ratio of littoral to pelagic
habitat for local restoration will result in a greater local
improvement in water quality by increasing oyster ac-
cess to phytoplankton. Larger oyster reefs will also
serve to increase bottom roughness and increase water
column mixing of phytoplankton to deep waters
(Newell 1988, Lenihan 1999). Nevertheless, even if
oyster distributions shifted, the bay-wide water-quality
effect of oyster restoration will still be limited by the
fact that most phytoplankton is concentrated in the
mainstem of the bay, where lateral mixing may be in-
sufficient to deliver all of the phytoplankton biomass to
oysters in nearshore, shallow waters (Gerritsen et al.
1994, Hagy 2002). Oyster restoration in the bay’s tribu-
taries may also affect phytoplankton biomass in the
mainstem of the Chesapeake Bay by intercepting
phytoplankton biomass, and thereby reducing trans-
port of associated nutrients and organic carbon from
tributaries to the mainstem (Boynton et al. 1995). Al-
though our model is not designed to address such indi-
rect effects, they may be important at regional scales.

There is also a temporal mismatch between oyster
activity and the spring peak in phytoplankton biomass
in most bay regions. The period of maximum phyto-
plankton biomass occurs in March or April, prior to the
period of maximum oyster clearance that occurs from
June through September. The spring peak in phyto-
plankton biomass is thought to result from a general
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lack of grazing pressure on phytoplankton in the
spring (Malone 1992). The importance of this temporal
mismatch is that any increase in oyster biomass may
have a limited effect on size of the spring phytoplank-
ton bloom or the contribution of the spring bloom to
bottom-water hypoxia in the summer (Malone 1992).
The temperature-mediated constraint on oyster filtra-
tion may also lead to important differences in the ben-
efits of oyster restoration and nutrient-reduction strate-
gies that reduce springtime nutrient delivery to
Chesapeake Bay as management tools for improving
water quality.

Our use of monthly mean temperatures may, how-
ever, have resulted in an underestimate of oyster graz-
ing of phytoplankton during late winter and early
spring.  Oyster clearance rates increase exponentially
with increasing water temperature between 5 and
17°C (Newell & Langdon 1996), which represents the
range of mean seasonal temperature increase from
February to April. Our use of monthly mean tempera-
tures may result in us underestimating phytoplankton
removal in months when water temperatures are in-
creasing rapidly because the non-linear bias on clear-
ance rate estimates increases with increasing within-
month temperature range.  Higher removal during late
winter and spring than we estimated from monthly
means, when phytoplankton replacement rates are at
their lowest, could result in removal exceeding re-
placement under more scenarios than the current
model predicts. The importance of the seasonal mis-
match between maximum oyster clearance rates and
maximum phytoplankton biomass is also dependent on
realized phytoplankton production rates in the spring,
as well as the influence of other consumers.  We are in-
vestigating these complex seasonal interactions more
fully in an ongoing analysis of possible changes in food
web dynamics associated with oyster restoration. 

The potential impact of oyster clearance on phyto-
plankton biomass in our model was also influenced by
the seasonal patterns in phytoplankton size composi-
tion. Oysters can efficiently filter phytoplankton cells
and detritus >4 µm in diameter (Langdon & Newell
1990). For cells smaller than <4 µm, clearance effi-
ciency drops rapidly and is near zero for cells smaller
than 2 µm. Therefore, the portion of the phytoplankton
biomass represented by cells 1 µm or smaller is largely
unavailable to oysters.

Our analysis indicates that the mean relative bio-
mass of picoplankton peaks in the summer at 22% of
total phytoplankton biomass, but this value has been
reported to be as high as 50% of total phytoplankton
biomass in some areas (Lacouture et al. 1990). Data on
the spatial and temporal variation in the peak seasonal
abundance of picoplankton in Chesapeake Bay are
limited. Values for peak summer abundance for vari-

ous locations in the bay and its tributaries range from
8 to 53% of the total phytoplankton biomass (Ray et al.
1989, Lacouture et al. 1990, Youngsik et al. 2000,
K. Sellner, Chesapeake Research Consortium, unpubl.
data). Our conversions of Bay Monitoring Program
picoplankton count data resulted in a range of 7 to
48% in July and August across all segments for which
data are available, and these data are in general
agreement with literature reports.

This seasonal pattern in picoplankton abundance
results in a decrease in phytoplankton biomass avail-
able to oysters during the time of year characterized by
highest oyster clearance rates. This size-selective oys-
ter filtration may result in increasing the relative bio-
mass of picoplankton during summer (Newell 2004).
The production rate of picoplankton is the highest of
all size classes, and they may have more access to
nutrients than their larger-celled competitors, thereby
increasing their production (Malone 1992).

Influence of physical variability on model
predictions

Seston concentration and salinity also had large
effects on our predictions of phytoplankton removed
by oysters. Data suggest that oyster feeding increases
rapidly with increasing seston concentration, and a
value between 4 and 25 mg l–1 is optimal for oyster
clearance (Jordan 1987), but the effect of higher seston
concentrations on oyster clearance is not completely
clear. If oysters continue to filter water at close to the
maximum rate at seston concentrations between 45
and 100 mg l–1, as our nominal function predicts, then
the amount of phytoplankton removed by oysters
will be higher than predicted by other modeling
approaches that constrain oyster feeding at high seston
loads (Cerco & Noel 2005). This influence is confined
to the higher turbidity segments (e.g. James River)
and, in other segments, to periods of above-average
freshet events.

Oysters were not predicted to remove significant
amounts of phytoplankton biomass from the water col-
umn in areas where mean monthly salinity was <5.
The effect of salinity on oyster filtration was most evi-
dent in the oligohaline regions of the bay. Eastern oys-
ter populations do exist in low-salinity areas, although
they grow at about half the rate of oysters living
in higher salinity waters (M. Tarnowski, Maryland
Department of Natural Resources, unpubl. data).
Within-month variation in salinities in oligohaline
areas will result in some days during which oysters can
feed during months when mean salinities were below
the threshold for oyster filtration in our model. As a
result, our model underestimates oyster filtration dur-
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ing some months in these segments. Nevertheless, the
qualitative prediction of our model is sound; phyto-
plankton removal in oligohaline areas will be substan-
tially lower than in mesohaline areas at comparable
biomass levels.

Our model predictions are also based on the assump-
tion that oysters do not re-filter the same parcel of
water. Gerritsen et al. (1994) developed a probalistic
model that indicated that at present-day low oyster
densities the re-filtration of a parcel of water is low.
The Gerritsen et al. (1994) model also suggested that
as oyster density, and the volume cleared per day, in-
creases, the amount of water re-filtered also increases.
The values estimated from their probability-based
model are unlikely to reflect the actual physics of water
movement in the bay. Generally, oyster beds are con-
centrated in areas of high water flow and scour, such as
occur along the edges of channels, where water move-
ment is sufficient to bring in food and remove biode-
posits (Lund 1957). Further, the large reefs that
develop with enhanced oyster biomass will protrude
up into the water column and thereby enhance turbu-
lent mixing and create changes in the local water cur-
rents (Lenihan 1999). The resulting increases in water
circulation will likely enhance the ability of oysters to
filter large amounts of particulate material and in-
crease their access to a greater proportion of phyto-
plankton biomass (Newell 1988).

CONCLUSIONS

Our findings suggest that the ecological value of an
increase in oyster biomass may only be accurately
assessed by considering how variation in spatial, tem-
poral, and size distributions of phytoplankton align
with oyster densities, filtration rates, and retention effi-
ciencies. Oyster restoration will make the greatest con-
tribution towards reducing local phytoplankton bio-
mass where oysters have access to surface-layer chl a,
where picoplankton comprise a modest proportion of
summer phytoplankton biomass, and where the contri-
bution of the spring bloom to total annual phytoplank-
ton biomass is low. In general, bay-wide effects of oys-
ter restoration may be more readily achieved by a
strategy of maximizing the spatial distribution of suc-
cessful local restoration efforts in smaller, shallower
bay segments. Management strategies that increase
the mean size of oysters can provide substantial eco-
logical and fishery benefits because of habitat provi-
sion and broodstock protection, but will ultimately
require higher oyster biomass to achieve equal filtra-
tion capacity.

Despite the fact that oysters currently have a negligi-
ble effect on bay phytoplankton biomass, our 100-fold

simulations of putative pre-exploitation abundances of
oysters indicate that oyster may once have made an
important contribution to maintaining water clarity and
controlling phytoplankton biomass. While our present
model analysis does not provide a comprehensive pre-
diction of ecological effects, our focus on reductions in
phytoplankton biomass provides a useful basis for com-
parisons among alternative plans for oyster restoration.
Whether or not a particular oyster restoration target can
be achieved, the cultural and ecological benefits of in-
creasing oyster biomass in Chesapeake Bay are consid-
erable and make oyster restoration an important objec-
tive for improving the bay ecosystem. To be successful,
restoration plans need to consider local conditions, but
aim for a bay-wide effect. The modeling approach pro-
vided here can be a valuable tool for assessing the
benefit-to-cost ratio of various restoration scenarios and
thus maximizing the use of resources for achieving
oyster restoration goals. Model analyses, such as this
one, that are flexible and accessible to a large user
group (e.g. management planners) can also be highly
useful for evaluating the specific benefit of increasing
the biomass of benthic filter-feeding populations in
other similar systems and provide a basis for compari-
son of the value of benthic filter feeders for the remedi-
ation of cultural eutrophication in coastal estuaries.
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