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INTRODUCTION

Conservation of exploited populations requires
knowledge of variation in the features of the spawning
stock that dictate population persistence (Rothschild

1986). Key demographic variables and parameters of
the spawning stock include population abundance at
Time t (Nt), recruitment relationships, size structure,
and mean size at maturity (Lm). Recruitment and
demographic parameters such as Nt and Lm may
covary with the spawning stock, which alters expected
population trajectories and persistence compared to
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expectations generated when considering each para-
meter separately (Beverton & Holt 1957, Polovina 1989,
Hilborn & Walters 1992, Pollock 1995). The disparity in
population trajectories due to covarying versus inde-
pendent parameters may make the difference between
population persistence and collapse.

Many exploited species display a reduction in mean
size or Lm with Nt (Beverton & Holt 1957, Pollock
1995). Examples include the cod Gadus morhua
(Hansen 1949, Beacham 1983, Jorgensen 1990), the
hake Merluccius capensis and M. paradoxus (Payne
1989), and the pilchard Sardinops ocellata (Shelton &
Armstrong 1983). The importance of deviations in
mean size or Lm with Nt is related to the effects of these
parameters on annual and lifetime egg production
(Pollock 1995). When size-selective exploitation is
high, it may cause selection of heritable traits such as
mean size or Lm (Policansky 1993). Furthermore, when
demographic parameters vary with abundance, appli-
cation of static yield-per-recruit (YPR) models may be
misleading (Polovina 1989). For instance, in the
Hawaiian spiny lobster, Panulirus marginatus, the
minimum size that maximizes YPR varied considerably
with population abundance from 41 mm carapace
length (cl) at high abundance to 67 mm cl at low abun-
dance (Polovina 1989). Estimates of YPR would be
reduced by 20% when using the 41 mm cl size rather
than the correct 67 mm cl size at low population abun-
dances. Thus, the identification of significant covaria-
tion between demographic parameters such as Lm with
Nt is essential to the wise use of sustainable resources.

Measurement of covariation between demographic
parameters such as Lm and Nt rarely has been docu-
mented in populations of exploited species such as
crabs and lobsters (Pollock 1995, Jamieson 2001). A
relationship between Nt and mean size has been
demonstrated for the Dungeness crab Cancer magister
(Jamieson et al. 1998), and Lm was shown to covary
with Nt in Hawaiian spiny lobster Panulirus margina-
tus (Polovina 1989). In the American lobster Homarus
americanus, high exploitation can produce smaller lob-
sters and lowered larval output (Campbell & Robinson
1983). In addition, size-selective exploitation of marine
crustaceans, often removing the largest individuals, is
a common management goal that increases the likeli-
hood of alterations in demographic parameters or life-
history traits (Jamieson 2001). 

Similarly, recruitment may covary with spawning
stock abundance (Rothschild 1986), although the rela-
tionship is characteristically variable for marine spe-
cies (Hilborn & Walters 1992). In marine invertebrates,
definition of a significant spawning stock-recruitment
relationship (SSR) has been elusive, whether for unex-
ploited (Hughes et al. 2000) or exploited (Hancock
1973) species. In those species exhibiting a significant

SSR, the relationship has often been weak or depen-
dent on environmental and biotic conditions (Lipcius &
van Engel 1990, Caputi et al. 1995, Hannah 1999).
However, the empirical evidence is mounting for the
importance of the SSR for various marine inverte-
brates, including acroporid corals (Hughes et al. 2000),
penaeid shrimp (Garcia 1996, Rothlisberg et al. 1996,
Condie et al. 1999, Ye 2000), pandalid shrimp (Hannah
1999), spiny lobster (Caputi et al. 1995, Medley &
Ninnes 1997), clawed lobster (Ennis & Fogarty 1997),
and king crab (Zheng et al. 1995). For the blue crab,
Callinectes sapidus, the SSR has been measured using
various indices of abundance for the spawning stock
and recruits (Tang 1985, Lipcius & Van Engel 1990,
Kahn et al. 1998, Rugolo et al. 1998, Uphoff 1998),
although none of these measured both the spawning
stock and postlarval recruitment directly. Hence, we
provide an analysis of yearly variation and the rela-
tionships between spawning stock abundance, postlar-
val recruitment, larval abundance, female size, and
size at maturity of the blue crab population in Chesa-
peake Bay.

The blue crab is ubiquitous and heavily exploited in
shallow coastal and estuarine habitats of the North-
west Atlantic, Gulf of Mexico and Caribbean Sea
(Williams 1984). In late spring through early fall,
newly-fertilized adult females make pre-spawning
migrations to the lower reaches of estuaries, such as
the Chesapeake Bay mouth (Van Engel 1958). In
Chesapeake Bay, maximum egg extrusion and larval
release occur in summer, principally from July through
mid-September either as a single mid-summer peak or
as bimodal early-summer and late-summer peaks
(Jones et al. 1990, Prager 1996). Females hatch up to
8 × 106 larvae (Prager et al. 1990) near the mouth of the
estuary. Larvae are transported to the continental shelf
where they develop through 7 to 8 zoeal stages (Cost-
low & Bookhout 1959, McConaugha et al. 1983,
Provenzano et al. 1983) before metamorphosis to the
megalopal (postlarval) stage, which reinvades estuar-
ine nursery grounds such as seagrass beds (Costlow
1967, Epifanio et al. 1989, Mense & Wenner 1989, van
Montfrans et al. 1990, 1995). The seasonally synchro-
nized and spatially localized abundance of spawning
females, larvae, and recruiting postlarvae presents a
unique opportunity to define the relationships be-
tween female size, spawning stock abundance, larval
abundance, and postlarval recruitment.

Interannual variation in population abundance of the
blue crab is substantial throughout its range, including
Chesapeake Bay (Lipcius & Van Engel 1990, Abbe &
Stagg 1996, Rugolo et al. 1998, Uphoff 1998), Delaware
Bay (Kahn et al. 1998), the Gulf of Mexico (Guillory &
Perret 1998, Hammerschmidt et al. 1998, Perry et al.
1998) and the Atlantic coast (Whitaker et al. 1998).
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However, the relationships between adult female size,
spawning stock abundance, larval abundance, and
postlarval recruitment have not been documented,
usually because the spawning stock, larval abundance,
and recruitment were not directly sampled or because
adult female size was neither measured nor reported.
For instance, adult female size and abundance varied
independently in the upper and middle reaches of
Chesapeake Bay (Uphoff 1998), which is outside the
main spawning grounds. In 2 Gulf of Mexico locations,
abundance of adults and mean size in the population,
including juveniles, declined concurrently over 1 to 2
decades, but this pattern was interpreted as an in-
crease in the relative abundance of juveniles in the
population, and not as a decline in adult female size
(Guillory & Perret 1998, Hammerschmidt et al. 1998).
This pattern may actually have been due to a simulta-
neous decline in female size rather than to the relative
abundance of juveniles. The average size of large male
blue crabs has decreased significantly over the past
decade in the middle and upper reaches of Chesa-
peake Bay (Abbe & Stagg 1996), suggesting that a sig-
nificant alteration in demographic features of the adult
segment of the population has occurred. This investi-
gation represents the only documented analysis of
female size, spawning stock abundance, larval abun-
dance, and postlarval recruitment for the blue crab,
and one of the few for marine invertebrates.

METHODS

Field sites and sampling. Females, larvae and post-
larvae were collected as follows: 

Adult females: Adult female Callinectes sapidus
were sampled both within the spawning grounds over
a 13 yr interval (1988 to 2000) and within lower-bay
tributaries (James, York and Rappahannock Rivers)
over 20 yr (1979 to 1998) with a stratified, random trawl
survey in lower Chesapeake Bay (Fig. 1). Details of
sampling are given by Lipcius & Van Engel (1990) and
Hata (1997). Each value from a single tow served as an
independent datum (i.e., number of adult females
tow–1 or size in mm carapace width [cw]). Average
sample sizes in the spawning grounds were 40 mo–1

(minimum = 33) and 120 yr–1 (minimum = 99), while in
the tributaries they were about 60 mo–1 in all tribu-
taries combined and approximately 180 yr–1. The trawl
survey has undergone minor changes in sampling pro-
tocol since 1979 (Hata 1997), requiring use of gear-
conversion factors to standardize abundance values.
For the lower bay samples where we measured the
spawning stock, only data from July 1988 to Septem-
ber 1990 required standardization, whereas in the trib-
utaries the data from 1979 to 1990 required minor cor-

rections (Hata 1997). Although analyses with uncor-
rected data yielded nearly equivalent statistical
results, all analyses herein use the standardized data.

Adult female blue crabs release larvae in the lower
reaches of Chesapeake Bay each year from late June
or early July through late September (Van Engel 1958,
Jones et al. 1990). Hence, an accurate measure of the
spawning stock requires sampling of adult females in
the spawning grounds of lower Chesapeake Bay from
July through September. Our lower-bay samples were
taken monthly in the spawning grounds (Fig. 1) from
July through September during a 13 yr time period
(1988 to 2000), and therefore provide a direct estimate
of the spawning stock.

Sampling in the lower bay began in 1988. To provide
a longer time series, we utilized trawl survey data for
1979 to 1998 from the James, York and Rappahannock
Rivers (Fig. 1). Although this series extends back
before 1979, the data set prior to 1979 is characterized
by various gear changes, necessitating further assess-
ment before standardization. Hence, we limited our
analyses to trawl survey data from July through Sep-
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Fig. 1. Representative sampling stations of the Virginia Insti-
tute of Marine Science (VIMS) trawl survey in lower Chesa-
peake Bay spawning grounds and tributaries (James, York
and Rappahannock Rivers) for 1997. Stations were sampled 

monthly from July to September
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tember in the James, York and Rappahannock Rivers
during a 20 yr time period (1979 to 1998) as a surrogate
measure for the Chesapeake Bay spawning stock. Data
sets from the lower bay and the 3 tributaries were cor-
related to test the validity of using the tributary data as
a surrogate measure of spawning stock abundance in
the lower bay spawning grounds.

Larvae and postlarvae: Data on concentrations of
blue crab larvae and postlarvae in the plankton were
derived from plankton samples (Table 1) collected
under the auspices of the Chesapeake Bay Monitoring
Program (http://www.chesapeakebay.net/monprgms.
htm) by R. Birdsong and K. Carpenter (Department of
Biological Sciences, Old Dominion University, Norfolk,
Virginia) from 1985 to 1999. Larval samples were col-
lected from June through September, while postlarval
samples were from June through December, the times
when these stages were found in the plankton. The
sampling stations were located either in the Chesa-
peake Bay mainstem or near the
mouth of each of the major tributaries
in the lower Bay (Rappahannock,
York, and James Rivers), which delim-
its the spawning grounds of the blue
crab (Lipcius et al. 2002b).

Plankton samples were collected
and processed according to estab-
lished methods (Alden et al. 1982,
Birdsong 1992), and involved a
stepped oblique tow (5 to 10 min, de-
pending on zooplankton abundance)
through the entire water column at
each station with paired bongo nets.
Steps were taken in 1 to 4 m incre-
ments, depending on station depth,

with 5 step-levels station–1. Each net had an attached
flow meter, which was used to calculate water volume
as follows. The distance traveled by the bongo net dur-
ing a tow was calculated as (stop revolution number –
start revolution number) × blade constant, where stop
and start revolution numbers were the number of rev-
olutions recorded on the flow meter at the end and
beginning of each tow, respectively, and the blade
constant was 26 873. The sample volume was calcu-
lated as the product of the distance traveled by the
bongo net and area, where area = 0.18776 m2. The
mean of each set of samples was used in analyses as
the number of larvae or postlarvae 100 m–3.

Abundance and size. Abundance is presented as
the arithmetic mean because it portrays proportional
changes in abundance. In parametric analyses, abun-
dance was analyzed as the log-transformed (log [10x +
1]), standardized number of adult females tow–1 to nor-
malize the data and reduce heterogeneity of variance
(Underwood 1997). The data were increased by a fac-
tor of 10 to minimize the effect upon the remaining
data of adding 1 to 0 values. In all cases, variances
were either not heterogeneous (Cochran’s C statistic),
or the F test in analyses of variance was rejected at an
α level lower than that used in the test for homogene-
ity of variance (Underwood 1997).

To analyze the effect of year on abundance, we first
determined the degree of correlation between the
monthly abundances within each year. These monthly
abundance values were significantly and positively
correlated (Table 2), but without apparent pattern
between the 3 months (paired t-tests, Bonferroni ad-
justed p > 0.05). For the analysis of abundance, we
lacked 1 data point (August 1998). Given the signifi-
cant correlations between months, we used the mean
of the values for July and September as the value for
August 1998, and reduced the error degrees of free-
dom by 1 in the analysis of variance (Underwood
1997).
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Station No. Location

CB6.1 Main channel, mid-Chesapeake Bay
CB6.4 Main channel, mid-Chesapeake Bay
CB7.3E Chesapeake Bay eastern shore channel, 

southern end
CB7.4 Chesapeake Bay mouth, Baltimore channel
LE5.5 James River mouth
WE4.2 York River mouth
LE3.6 Rappahannock River mouth

Table 1. Sampling sites for Callinectes sapidus larvae and
postlarvae in plankton samples collected by R. Birdsong and
K. Carpenter (Department of Biological Sciences, Old Domin-
ion University, Norfolk, Virginia) under the auspices of the
Chesapeake Bay Monitoring Program. Larval data included
samples from June through September, while postlarval data
were from June through December, the periods when these 

stages were found in the plankton

Variable Comparison

July-August July-September August-September

Abundance 0.89 (p = 0.001) 0.70 (p = 0.023) 0.84 (p = 0.004)
Size 0.84 (p = 0.004) 0.79 (p = 0.011) 0.85 (p = 0.004)
Weight 0.86 (p = 0.002) 0.79 (p = 0.006) 0.85 (p = 0.002)
Biomass 0.95 (p < 0.001) 0.80 (p = 0.005) 0.89 (p = 0.001)
Larval production 0.92 (p < 0.001) 0.76 (p = 0.012) 0.87 (p = 0.001)

Table 2. Callinectes sapidus. Matrix of Pearson cross-correlations for annual
adult female abundance by month. Significance levels are indicated parenthet-
ically. In all cases, the correlations were conducted for 1989 to 1997 when sam-
pling was conducted each month. In 1998, there were no samples for August, 

precluding the use of 1998 data in this analysis



Lipcius & Stockhausen: Blue crab spawning stock and recruitment

Mean size per month was used in size analyses
rather than all individual crab sizes because mean size
provided an independent data value for parametric
analyses (e.g., analysis of variance), whereas individ-
ual crabs were not independent of tow and could not
be considered replicates in parametric analyses.
Monthly values of mean size per tow and mean size of
all individual crabs were highly correlated (r2 = 0.94,
df = 1,26, p < 0.0005). Hence, we have utilized the
mean size per mo as an independent datum in our
analyses. These size data did not require transforma-
tion to meet assumptions of normality and homogene-
ity of variance. Patterns between size and abundance
were analyzed with non-linear regression.

As with abundance, we analyzed the effect of year
on size, and determined the degree of correlation
between the monthly abundances within each year.
These monthly sizes were significantly and positively
correlated (Table 2), without apparent pattern be-
tween the 3 months (paired t-tests, Bonferroni-
adjusted p > 0.05). As before, we used the mean of the
values for July and September as the value for August
1998, and reduced the error degrees of freedom by 1 in
the analysis of variance (Underwood 1997).

Weight and biomass. The mean weight of adult
females and spawning stock biomass were calculated
from the abundance and size data, as well as ancillary
data on the size-weight relationship for adult females.
The size-weight relationship was derived from an
independent survey (Rothschild & Ault 1992, Lipcius et
al. 2002a), and analyzed with a least-squares linear
regression. Although the size-weight relationship was
measured for adult females in the winter, these
females had mated and were characterized by mature
or actively developing ovaries (R. N. Lipcius pers.
obs.), and therefore serve as a surrogate for adult
females during the reproductive period. Monthly mean
weight of adult females per tow was calculated using
monthly mean size per tow in the power function that
described the size-weight relationship. Monthly values
of mean spawning stock biomass were computed as
the average of the product of crab weight and abun-
dance per tow. We assumed that the residence time of
females in the spawning grounds was constant
between years (Prager 1996).

Size structure and mean size at maturity (Lm). The
size structure of females on the spawning grounds was
characterized in 2 ways. First, we graphed size fre-
quencies and calculated the fractions of females in
smaller size categories (i.e., cw <140 and <110 mm).
Second, we derived Lm (size at which 50% of females
were mature) by calculating the mature fraction of all
females (juveniles + adults) in the spawning grounds
as a function of size, and estimating the inflection
using the non-linear logistic regression:

where the proportion of adult females per 10 mm cw
intervals was the dependent variable, size (in mm cw)
was the independent variable, and α, β, and Lm were
parameters of the function. Estimates of Lm were cor-
related with spawning stock biomass, abundance and
female size.

Larval and postlarval abundance. Given the rela-
tively low proportion of zooplankton samples with non-
zero values for larvae and postlarvae, we used monthly
mean concentrations summed over the sampling sta-
tions (Table 1) in parametric analyses. We determined
the internal consistency of continuous and discrete
measures of larval and postlarval abundance by corre-
lating the annual number of non-zero samples (dis-
crete variable) with the annual mean concentration
(continuous variable). For both larvae and postlarvae,
these correlations were positive and highly significant
(larvae: r2 = 0.96, df = 1,13, p < 0.0005; postlarvae: r2 =
0.90, df = 1,13, p < 0.0005). We therefore concluded
that it was appropriate to use the mean concentrations
of larvae and postlarvae as measures of abundance in
statistical analyses. Values were log-transformed (log
[100x + 1]) to normalize the data and reduce hetero-
geneity of variance (Underwood 1997). In all cases,
variances were either not heterogeneous (Cochran’s C
statistic) or the F-test in analyses of variance was
rejected at an alpha level lower than that used in the
test for homogeneity of variance (Underwood 1997).

Larval and postlarval abundances did not exhibit a
consistent pattern between years, such that high or low
values occurred in all sampling months (paired t-tests,
Bonferroni-adjusted p > 0.05). For 2 missing sets of
data points (June 1985, August 1998), we substituted
the mean of the values for July in those years, and
reduced the error degrees of freedom accordingly in
the analysis of variance (Underwood 1997). In addition,
there were 2 extreme outliers (>3 SD of the mean) out
of the 735 data points (1 before and 1 after 1991),
which caused heterogeneous variances; these were
replaced by the next highest values in the data set to
equalize variances. Inter-relationships between larval
abundance, postlarval recruitment, and spawning
stock abundance were analyzed with non-linear re-
gression using annual mean values for each phase. For
the spawning stock (S)-recruitment (R) and spawning
stock-larval abundance relationships, a Beverton-Holt
model was also analyzed using the non-linear regres-
sion:
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We estimated larval production using the mean size
and abundance data with a function describing the
fecundity-size relationship for blue crab adult females
(Prager et al. 1990):

which yields egg production in 106 eggs using cara-
pace width in centimeters. Mean monthly fecundity
per female was calculated by the above equation and
our monthly mean size. Then, we estimated larval pro-
duction as the product of mean female abundance and
mean fecundity per female.

RESULTS

Abundance

Adult female abundance in the spawning grounds
varied significantly by year (Fig. 2a, ANOVA, F =
16.89; df = 12, 25; p < .0005). Annual abundances in
1988 to 1991 did not differ from each other, but these
were significantly higher than those in 1992 to 2000,
except in 4 of 36 comparisons; abundance was lower
and relatively stable during 1992 to 2000 (Tukey’s mul-

tiple comparisons, family α = 0.05, individual test α =
0.0012). The 4 non-significant comparisons involved
1991 with 1992, 1993, 1996, and 1997; 1991 seemed to
be a transitional year in terms of abundance (Fig. 2a).
Spawning stock abundance declined by 81% between
1988–1991 (mean = 7.63) and 1992–2000 (mean =
1.43).

To determine whether the decline in spawning stock
abundance was symptomatic of a long-term pattern,
we examined abundance of adult females in the tribu-
taries from 1979 to 1998 (Fig. 3a). Adult female abun-
dances in the tributaries (Fig. 3a) and in the spawning
grounds (Fig. 2a) correlated significantly (Fig. 4). We
used the relationship between abundance of adult
females in the tributaries and spawning grounds to
extend the historical pattern of spawning stock abun-
dance back to 1979. Examining the data in this histori-
cal context, the low numbers of adult females during
1992 to 2000 represent at least a 20 yr minimum.

Size

The mean size of adult females varied significantly
by year (Fig. 2b, ANOVA, F = 7.96; df = 12,25; p <
0.0005). In comparisons between years (Tukey’s multi-

 

Estimated larvae
Female

Carapace width= ⋅( ) −0 38 2 25. .
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Fig. 2. Annual arithmetic mean abundance (a) and size (b) of
adult females in Chesapeake Bay spawning grounds. Vertical 

bars = 1 SE

Fig. 3. Annual mean abundance (a) and mean size (b) of adult
females in the tributaries (James, York and Rappahannock 

Rivers). Vertical bars = 1 SE
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ple comparisons, family α = 0.05, individual test α =
0.0012), sizes from 1988 to 1991 were significantly
larger than those from 1994 to 2000 in most compar-
isons. Size in 1992 was only greater than 3 of the
7 years from 1994 to 2000, while size in 1993 was tran-
sitional and not significantly different from size in any
year. Mean size in the spawning grounds decreased by
8% between 1988–1991 (mean = 144.1 mm cw) and
1994–2000 (mean = 132.5 mm cw). Similarly, mean size
in tributaries (Fig. 3b) decreased by 5% between
1979–1991 (mean = 147.3 mm cw) and 1994–1998
(mean = 139.7 mm cw).

Correlation of abundance and size

The mean size and abundance of adult females in
the spawning grounds were significantly and posi-
tively correlated (Fig. 5a: r2 = 0.73; df = 2,10; p =
0.0015). In addition, the relationship was asymptotic at
approximately 146 mm cw. Similarly, the mean size
and abundance of adult females in the tributaries cor-
related significantly and positively (Fig. 5b: r2 = 0.44;
df = 2,17; p = 0.0075), with an upper asymptote of
approximately 150 mm cw.

Weight and biomass

Weight (g) of adult females was significantly related
to size (mm cw) by a power function (Fig. 6: r2 = 0.87,
df = 1,387; p < .001). Spawning stock biomass was cal-
culated as the product of weight and abundance, and
compared with the interannual pattern of abundance
in the spawning grounds (Fig. 2a). Spawning stock
biomass and abundance were highly correlated (least-
squares linear regression, r2 = 0.998, df = 1,11; p <
0.0001), precluding the need to represent both mea-

sures of the spawning stock. The interannual pattern in
spawning stock biomass mirrored that for abundance
(Fig. 2a), and displayed an 84% reduction in mean
spawning stock biomass from 1047 g tow–1 between
1988 and 1991 to 166 g tow–1 between 1994 and 2000.
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Fig. 4. Correlation between mean abundances of adult
females in Chesapeake Bay spawning grounds and tribu-
taries (James, York and Rappahannock Rivers) from 1989 

to 1998

Fig. 5. Correlation between mean size and abundance of
adult female blue crabs in (a) Chesapeake Bay spawning
grounds from 1988 to 2000, and (b) tributaries (James, York
and Rappahannock Rivers) from 1979 to 1998. Function for
the spawning grounds is y = 127.1 + 18.0(1 – e–0.40x), and for 

the tributaries y = 136.6 + 13.2(1 – e–0.86x)

Fig. 6. Relationship between size and weight of adult females
in Chesapeake Bay during winter. Females are characterized
by nearly ripe or developing ovaries, and therefore serve as a 
surrogate for adult females during the reproductive period
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Size structure and mean size at maturity (Lm)

There was a distinct reduction in the mean size of
adult females in the spawning grounds between 1992
and 1994 (Fig. 7). The proportion of adult females less
than average size (<140 mm cw) doubled, increasing
from 0.35 between 1988 and 1991 to 0.70 between
1994 and 2000 (Fig. 7). The proportion of small adult
females (< 110 mm cw) increased dramatically, from
0.005 between 1988 and 1991 to 0.057 between 1994
and 2000 (Fig. 7). This alteration in size structure was
reflected in the appearance of smaller adult females in
the 80 to 110 mm cw size range, and in the loss of
larger adult females greater than 140 mm cw (Fig. 7).
Mean size at maturity (Lm) decreased 9% from approx-

imately 118.4 mm cw between 1988 and 1991 to
107.9 mm cw between 1992 and 2000 (Fig. 8: r2 = 0.74,
df = 2, 10; p = 0.0012). Mean size at maturity also covar-
ied significantly with spawning stock biomass (Fig. 9a:
r2 = 0.61, df = 2, 10; p = 0.009), female size (Fig. 9b: r2 =
0.68, df = 1, 11; p = 0.0005), and spawning stock abun-
dance (Fig. 9c: r2 = 0.57; df = 2,10; p = 0.014).

Larval and postlarval abundance

Larval abundance in the spawning grounds varied
significantly by year (Fig. 10a, ANOVA, F = 5.74; df =
14,45; p < 0.0005). We tested the main conclusion
derived from the results for spawning stock abun-
dance, specifically that larval abundance between
1985 and 1991 would be greater than that between
1992 and 1999, which was confirmed (ANOVA, F =
65.19; df = 1,13; p < 0.0005). Larval abundance was an
order of magnitude higher between 1985 and 1991
than between 1992 and 1999 (Fig. 10a).

Given the very high proportion of zero data points
for postlarval abundance, we did not analyze postlar-
val abundance using monthly data. Instead, we used
the annual means to test the hypothesis that postlarval
abundance between 1985 and 1991 was greater than
between 1992 and 1999 (Fig. 10b), because the annual
means (1) were approximately normally distributed,
and (2) did not suffer from heterogeneous variances
(Levene’s test, p = 0.329). To assess the consistency of
the results, we also tested this hypothesis using the
number of annual non-zero samples, which correlated
with the abundance data (see ‘Methods’) and also did
not display heterogeneous variances (Levene’s test, p =
0.722). In both cases, postlarval abundance was signif-
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Fig. 7. Size structure of adult
females and percentages of
small adult females in the
Chesapeake Bay spawning
grounds from July to Septem-
ber, 1988 to 2000. cw: carapace 

width

Fig. 8. Annual mean size at maturity (Lm, mm carapace width)
of adult female blue crabs in the Chesapeake Bay spawning
grounds. Function between mean size at maturity and time is 

y = 99.8(e0.99/(x – 1983))
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icantly higher between 1985 and 1991 than between
1992 and 1999 (Fig. 10b, ANOVA, postlarval abun-
dance: F = 10.26; df = 1,13; p = 0.007, number of non-
zero samples: F = 14.20; df = 1,13; p = 0.002).

Spawning stock, larval abundance, and postlarval
recruitment

Larval abundance (Fig. 10a) was significantly and
positively correlated with the spawning stock (Fig. 2a),
both in the spawning grounds and in the tributaries
(Fig. 11, Table 3). Since fecundity scaled linearly with
female size (see ‘Methods’), the relationship between

predicted larval abundance (based on egg production)
and observed larval abundance was equivalent to that
between larval abundance and spawning stock abun-
dance (Fig. 11a).

Postlarval recruitment also correlated significantly
and positively with spawning stock abundance in the
spawning grounds (Fig. 12, Table 3). The degree of
association with the spawning stock diminished
between the larval (r2 = 0.63) and postlarval (r2 = 0.35)
stages. Postlarval recruitment correlated significantly
and positively with larval abundance, whether with or
without 1 outlier for postlarval recruitment (Fig. 13).
The outlier for recruitment occurred during 1991
(Fig. 13), when spawning stock abundance (Fig. 2a)
and larval abundance (Fig. 10a) were high, yet post-
larval recruitment was lower than the long-term aver-
age (Fig. 10b).

We also examined the relationships between larval
or postlarval abundance and the subsequent spawning
stock lagged in the future 1 or 2 yr (Fig. 14). Although
the relationships using both lags were similar, those
lagged by 1 yr displayed the lowest variability and are
presented herein (Fig. 14). There were no significant
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Fig. 9. Correlation between mean size at maturity (Lm, mm
carapace width) and (a) spawning stock biomass (y = 104.0 +
0.22x0.59), (b) adult female size (y = –7.49 + 0.86x), and
(c) spawning stock abundance (y = 103.6 + 4.0x0.59), in Chesa-

peake Bay spawning grounds from 1988 to 2000

Fig. 10. Annual larval abundance (a) and postlarval abun-
dance (b) measured as mean of the monthly log-transformed
concentrations (100x + 1) per m3 from lower bay stations
(Table 1). Vertical bars = 1 SE. *Zero values (samples taken as 

in other years, but no larvae or postlarvae present)
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regression models that adequately fit the relationships
between larval (Fig. 14a) or postlarval (Fig. 14b) abun-
dance and the subsequent spawning stock (non-linear
regression, p > 0.2), although there was a distinct asso-
ciation between both measures of recruitment and the
spawning stock (Fig. 14). Except for the indicated sin-
gle outliers in each relationship, all high values for the
abundance of larvae, postlarvae, and the spawning
stock were from 1985 to 1991, whereas all low values
were from 1992 to 2000 (Fig. 14), suggesting an abrupt
transition between high and low phases in abundance
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Fig. 11. Relationships between larval abundance and spawn-
ing stock abundance in spawning grounds (a) and tribu-
taries (b). Values are annual means (Figs 2a, 3a & 10a). Lar-
val abundance correlated significantly and positively with
spawning stock abundance in the spawning grounds (a: y =
–6.15 + 6.34x0.11, Table 3) and in the tributaries (b: y = –2.53 +
3.40x0.21, Table 3). The fit of the Beverton-Holt model [y =
(3.68x)/(9.05+x), Table 3] to the spawning stock-larval abun-
dance relationship in the spawning grounds was nearly
equivalent to the power function (a), but displayed non-
random residuals so the power function was retained. (Crab 

illustrations by K. Forrest)

Relationship Model r2 df p

SSA–larval abundance Power function 0.63 2,90 0.011
Beverton-Holt 0.62 1,10 0.002

SSA–larval abundance (tributaries) Power function 0.48 2,11 0.026

SSB–larval abundance Beverton-Holt 0.65 1,10 0.002

SSA–postlarval recruitment Power function 0.40 1,10 0.027
Beverton-Holt 0.35 1,10 0.043

SSB–postlarval recruitment Power function 0.39 1,10 0.030
Beverton-Holt 0.32 1,10 0.057

Table 3. Callinectes sapidus. Non-linear regression analyses for the relationships of larval abundance and postlarval recruitment
with spawning stock abundance. SSA: spawning stock abundance; SSB: spawning stock biomass. All analyses used SSA and SSB
in the spawning grounds, except for SSA–larval abundance (tributaries), which used abundance of adult females in the 3 tribu-
taries (James, York, and Rappahannock Rivers) as SSA. Power functions were of the form y = αxβ or y = δ + αxβ; the Beverton-

Holt model was of the form y = αx/(β + x)

Fig. 12. Relationship between postlarval recruitment and
spawning stock abundance in spawning grounds. Values are
the annual means (Figs 2a & 10b). Postlarval recruitment cor-
related significantly and positively with spawning stock
abundance (Beverton-Holt model: [y = (0.16x)/(5.63+x)],
Table 3). Relationship between postlarval recruitment and
spawning stock biomass, rather than abundance, was nearly
equivalent in form and significance (Table 3). (Crab illustra-

tions by K. Forrest)
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rather than proportional relationships between recruit-
ment and the spawning stock. The single outlier in the
larval abundance-spawning stock relationship was in
1991 (Fig. 14a), when larval abundance was high
(Fig. 10a), but subsequent spawning stock abundance
was low (Fig. 2a) after poor postlarval recruitment in
1991 and 1992 (Fig. 10b). The single outlier in the post-
larval recruitment-spawning stock relationship was in
1993 (Fig. 14b), when postlarval recruitment was high
(Fig. 10b), but subsequent spawning stock abundance
was low (Fig. 2a).

DISCUSSION

Over the past decade, the blue crab population in
Chesapeake Bay has endured a concurrent, persistent
and substantial reduction in the spawning stock, post-
larval recruitment, larval abundance, female size, and
size at maturity. The decrease in these variables was
rapid and occurred over 1 to 2 yr, which is indicative of
a phase shift in the spawning stock and recruitment,
rather than a progressive diminution. In addition, the
relationships between spawning stock abundance
(SSA) and larval abundance, SSA and postlarval
recruitment, and SSA and female size were positive
and significant. Although prior investigations with
marine invertebrates have shown decreases or associ-
ations in some variables (Levitan 1991, Grosberg &
Levitan 1992, Hilborn & Walters 1992, Peterson & Sum-

merson 1992, Caputi et al. 1995, Eckman 1996, Garcia
1996, Honkoop et al. 1998, Hughes et al. 2000), these
findings are unique in that they demonstrate a near-
simultaneous decrease and significant association in
all these variables. Covariation in these population
characteristics merits further investigation in crus-
taceans and other marine invertebrates, especially
concerning the implications of a reduced spawning
stock and recruitment for conservation and sustainable
exploitation.

Simultaneous decrease in spawning stock 
abundance, recruitment, and female size

The depression of the blue crab spawning stock in
Chesapeake Bay during 1992 to 2000 was significant in
both magnitude (81%) and duration, which so far has
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Fig. 13. Relationship between postlarval recruitment and lar-
val abundance in lower bay. Values are annual means
(Fig. 10). Postlarval recruitment correlated significantly and
positively with larval abundance, whether without (y =
0.019 + 0.063x, r2 = 0.63, df = 1, 12, p = 0.0007) or with (y =
0.031 + 0.043x, r2 = 0.38, df = 1, 13, p = 0.014) the 1991 outlier
for recruitment. Regression line shown is without the outlier, 

although regression line with the outlier was similar

Fig. 14. Relationships between larval abundance (a) or post-
larval recruitment (b) in Year t-1 and spawning stock abun-
dance during Year t in the spawning grounds. There were no
significant non-linear regressions between larval abundance
or recruitment and subsequent spawning stock due to step-
wise nature of the relationships. Shaded boxes encompass
periods of high or low recruitment and abundance, except for
the 2 outliers (1991 for larval abundance, and 1993 for post-

larval recruitment)
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included a 9 yr period through 2000. At the same time,
a comparable baywide reduction (~70%) has occurred
in blue crab population size, as measured indepen-
dently in winter by a dredge survey of all 1+ males and
females (Lipcius et al. 2002a). We believe that these
reductions reflect a substantial and persistent erosion
of the spawning stock, recruitment, and the popula-
tion. Furthermore, fishing mortality rates are at or near
overexploitation (Miller & Houde 1998) and are depen-
satory (Lipcius et al. 2002a), indicating a need to scru-
tinize the sustainability of current fishery exploitation
rates.

The decline in spawning stock and recruitment was
not progressive, but rather a shift from a higher level in
1979 to 1991 to a lower level in 1992 to 2000. Such a
sizeable and lasting downturn is uncommon for the
blue crab. Although crab abundance fluctuates
greatly, often with rapid drops or ascents (Jones et al.
1990, Lipcius & Van Engel 1990, Abbe & Stagg 1996,
Rugolo et al. 1998), the extended decrease in the
spawning stock and recruitment since 1992 appears
unique, and is similar to patterns characterizing popu-
lations that have experienced a phase shift (Steele &
Henderson 1984, Hilborn & Walters 1992, Hughes
1994, Holbrook et al. 1997, Hughes & Tanner 2000).
Comparable phase shifts have occurred in diverse
taxa, including temperate reef fish (Holbrook et al.
1997), sea urchins and corals (Hughes 1994, Hughes &
Tanner 2000), and pelagic fish (Steele & Henderson
1984, Hilborn & Walters 1992).

We propose that the cause of the decrease was poor
recruitment in 1991, despite high spawning stock and
larval abundance, and that this poor recruitment, in
concert with high fishing and natural mortality, subse-
quently led to a diminished spawning stock in 1992.
Thereafter, the spawning stock, larval abundance and
recruitment have remained at low levels, except for
1 year in 1993 when recruitment was high, but the
subsequent spawning stock and larval abundance re-
mained low, probably due to high fishing and natural
mortality. The mechanism producing poor recruitment
in 1991 has not been identified, although it probably in-
volved an alteration in environmental or biotic condi-
tions necessary for successful larval survival and rein-
vasion of the Bay by postlarvae from the continental
shelf. In the case of other population phase shifts,
the postulated mechanisms have included stochastic
environmental variation (Steele & Henderson 1984),
disease, catastrophic disturbance and overfishing
(Hughes 1994, Hughes & Tanner 2000), and altered
climate regimes and primary productivity (Holbrook et
al. 1997). We further suggest that the spawning stock,
larval abundance, and recruitment are unlikely to
rebound to former high levels without significant re-
ductions in fishing and natural mortality along with -

enhanced environmental conditions conducive to suc-
cessful recruitment.

Consequences of reduced spawning stock 
abundance, recruitment, and female size

Two key consequences of a small spawning stock are
the increased probability of a diminished supply of
recruits to the population, and reduced resilience to
demographic and environmental stochasticity (Hilborn
& Walters 1992). Given appreciable drops in larval pro-
duction, the likelihood of recruitment failure is height-
ened, particularly when the population decrease per-
sists more than a few years. In concert with high
exploitation rates during decline (Miller & Houde 1998,
Rugolo et al. 1998, Lipcius et al. 2002a), the probability
of recruitment overfishing is exacerbated, even in a
resilient species such as the blue crab (M. Fogarty
pers. comm.), which can hatch an average of 3.2 mil-
lion eggs per egg mass (Prager et al. 1990) at least 1 to
2 times annually (Jones et al. 1990). Heavy exploitation
and degraded environmental conditions can drive
even the most fecund of species either to collapse or to
a lower population level (Steele & Henderson 1984,
Hilborn & Walters 1992, Hughes 1994, Holbrook et al.
1997).

The impact of covariation in female size and spawn-
ing stock abundance upon population persistence
depends on the underlying mechanism (i.e., genetic,
phenotypic or size-selective exploitation). If size-selec-
tive exploitation underlies the covariation, then the
pattern in covariation is symptomatic of a depensatory
process (i.e., inversely density-dependent), whereby
the recovery potential of a reduced population is fur-
ther lessened at low population abundance. Depen-
satory mortality exacts a proportionally higher mortal-
ity at low population abundance, which increases the
likelihood of local extinction and population collapse
(Hassell 1978, Hilborn & Walters 1992). In blue crabs,
larval production of the spawning stock is decreased
disproportionately to population abundance due to the
simultaneous reduction in adult female size and fecun-
dity. Reduced female or male size may also have mini-
mized mating opportunities with appropriately sized
mates, and thus lowered fertilization rates (Smith &
Jamieson 1991, Abbe & Stagg 1996, Jamieson et al.
1998).

Alternatively, compensatory fecundity during peri-
ods of low abundance could offset the impact of a
diminished spawning stock (J. McConaugha pers.
comm.). Using published information, we examined
the likelihood of a compensatory increase in size-
specific fecundity at low abundance by calculating
size-specific fecundity during 2 yr when population
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abundance varied significantly. We used empirical
estimates of size-specific fecundity in 1986 and 1987
(Prager et al. 1990), for which 1 year (1987) had a 60 to
71% reduction in spawning stock abundance (Jones et
al. 1990), which is comparable to that which we
observed. In 1987, when spawning stock abundance
was low, size-specific fecundity was 1.33 × 106 eggs
higher than in 1986 when abundance was high, which
is consistent with the compensation hypothesis. Using
this information, we estimated that fecundity was 2.5 ×
106 eggs female–1 for 1988 to 1991 (fecundity = –2.92 +
0.38 [carapace width]) when the average size was
about 144 mm cw, and 3.4 × 106 eggs female–1 for 1994
to 2000 (fecundity = –1.59 + 0.38 [carapace width])
when the average size was 133 mm cw. The product of
these values and the corresponding abundances
yielded estimates of the decrease in larval production
as 81 to 85% without compensation and 75% with
compensation. Thus, even with a compensatory re-
sponse, larval production would drop substantially due
to the dominant effect of reduced abundance on the
spawning stock.

Potential mechanisms of covariation in female size
and abundance

Genetic alterations

Reduction in female size with increasing blue crab
abundance may have resulted from directional selec-
tion of demographic characters such as Lm, or propor-
tionally greater increases in larval survival and recruit-
ment of the offspring of smaller adult females. In
recent years when the stock was at low abundance, the
percentage of the spawning stock composed of smaller
adult females (e.g., <140 mm cw) rose from 35 to 70%.
Adult females of 80 to 100 mm cw were rare when the
spawning stock was high in 1988 to 1991, but much
more common from 1992 to 2000 when the spawning
stock was low. Females may have matured at a
younger age and smaller size to optimize mating
opportunities when larger potential mates were sparse
(Smith & Jamieson 1991, Jamieson et al. 1998) or to
maximize lifetime reproductive output when mate-
competition with other adult females was low (Lipcius
1985).

A genetic basis for covariation between female size
and abundance could have resulted from directional
selection (Policansky 1993) due to size-selective ex-
ploitation of large females (Jamieson 2001) or to a life-
history response at low abundance (Charnov et al.
1978, Charnov 1979, Hannah & Jones 1991, Wellborn
1994, Sparkes 1996). Size-selective exploitation might
have increased the relative contribution of smaller

females to subsequent generations (Jamieson 2001),
whereas a life-history response may have involved
various compensatory responses such as decreases in
the mean size, age, or instar at maturity (Charnov et al.
1978, Charnov 1979, Hannah & Jones 1991, Wellborn
1994, Sparkes 1996). For instance, protandrous pan-
dalid shrimp apparently responded to heavy exploita-
tion by lowering the age at which males become
females (Charnov et al. 1978, Charnov 1979). Freshwa-
ter amphipods reduced mean adult size and size at
maturity at high predation rates, while concurrently
increasing size-specific reproductive investment, and
thereby compensating for reduced female size (Well-
born 1994). In pink shrimp (Pandalus jordani), the frac-
tion of younger shrimp that matures was inversely pro-
portional to population abundance; younger adults
may have increased size-specific fecundity as a com-
pensatory response to low abundance (Hannah &
Jones 1991). Although genetic selection has been de-
monstrated in some crustaceans, primarily short-lived
planktonic species (e.g., Gliwicz & Rykowska 1992, see
review by Jamieson 2001), it has not been documented
for longer-lived, larger species such as lobsters and
crabs (Jamieson 2001). In the blue crab, the rapid alter-
ation in size and the lack of significant covariation
between female size and abundance in the middle and
upper portions of Chesapeake Bay (Uphoff 1998),
which is outside the spawning grounds, are inconsis-
tent with a genetic mechanism.

Phenotypic plasticity

Phenotypic plasticity involves responses to environ-
mental or biotic conditions by temporary and rapid
alterations of specific vital rates or demographic vari-
ables (Pollock 1995). In contrast to a genetic alteration,
phenotypic plasticity is usually of short duration (i.e.,
no less than years to decades) and reversible. For
example, Lm and growth rate were inversely related to
population abundance in the western rock lobster Pan-
ulirus cygnus, most probably due to intraspecific com-
petition for food (Chittleborough 1976, 1979).

Covariation in female size and abundance of the
blue crab may have been due to phenotypic plasticity
in demographic variables when the population was
heavily exploited and therefore at low spawning stock
abundance. Proximate cues such as a low abundance
of adult females (i.e., competitors for mates) or of suffi-
ciently large males (i.e., potential mates) may have
stimulated immature females to initiate their pubertal
molt at an earlier age or instar (Polovina 1989,
Jamieson et al. 1998), and therefore at a smaller adult
size. In addition, a population at low abundance may
have greater per capita food availability, which can
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either accelerate sexual development and stimulate
sexual maturity at a smaller size (Rothschild 1986), or
increase the size-specific fecundity of females (Han-
nah & Jones 1991, Wellborn 1994). In contrast,
enhanced food availability may increase growth rates
and Lm, if Lm is determined by age or the number of
instars to maturity (Hartnoll 1985). Such plasticity in
reproductive and growth patterns is common in other
decapod crustaceans (Lipcius 1985), and may be adap-
tive given variable abundances of mature males and
females.

Covariation between female size and abundance,
the increase in the fraction of the spawning stock com-
posed of smaller adult females in 1992 to 2000, and the
compensatory increase in size-specific fecundity were
consistent with a phenotypic response to low abun-
dance. However, the absence of covariation between
female size and abundance elsewhere in the bay
(Uphoff 1998) was inconsistent with a mechanism
involving phenotypic plasticity. The role of phenotypic
plasticity in the covariation of female size and abun-
dance remains unresolved.

Size-selective exploitation

Size-selective exploitation, usually of larger individ-
uals, may alter demographic variables and vital rates
rapidly without a genetic foundation (Jamieson 2001).
For instance, the smaller size of adult male blue crabs
in the middle and upper reaches of Chesapeake Bay
(Abbe & Stagg 1996) probably resulted from fishery
removal of large males. For female blue crabs, size-
selective exploitation in combination with a terminal
molt to maturity probably contributed significantly to
the decrease in Lm and mean size. A terminal molt to
maturity produces a relatively stable size distribution
across age classes, so that alterations in size structure
due to growth after maturity are precluded. Size-selec-
tive exploitation of larger females has been facilitated
since 1994 through the use of cull rings (i.e., size-
specific escape gaps) in crab traps throughout the
lower Chesapeake Bay and its tributaries, and in the
upper and middle portions of the Bay outside the
tributaries (R. O’Reilly, Virginia Marine Resources
Commission, and H. Speir, Maryland Department of
Natural Resources, pers. comm.). The typical cull ring
allows many smaller adult females (i.e., <140 mm cw)
to escape, while concurrently retaining a higher frac-
tion of larger individuals (Guillory & Hein 1998). Under
intensive exploitation, a greater proportion of smaller
adult female blue crabs would escape crab traps and
constitute the spawning stock, producing both a
smaller Lm and mean size of adult females in the
spawning grounds. Furthermore, Lm and mean size of

adult females did not correlate with abundance in the
tributaries of the upper and middle Chesapeake Bay
(Uphoff 1998), where crab traps were prohibited and
cull rings were not in use. In the same middle region of
Chesapeake Bay, but in the mainstem where traps
with cull rings have been used since 1994, female size
and abundance correlated positively (Abbe & Stagg
1996), as observed on the spawning grounds. Con-
versely, small adult female size co-occurred with low
population abundance in 2 years between 1979 and
1988 before the extensive use of cull rings, suggesting
phenotypic plasticity in demographic characters. We
conclude that release of smaller adult females by cull
rings is at least partly responsible for the reduction in
female size with spawning stock abundance, although
the benefit of increased escapement of mature females
outweighed the negative effect of a reduction in
female size upon spawning stock larval production. A
combination of genetic, phenotypic and size-selective
exploitation mechanisms probably acted in concert to
produce covariation in female size and abundance of
the blue crab spawning stock.

Conservation of the blue crab spawning stock

The utility of marine protected areas in sustaining re-
newable resources is acknowledged worldwide, and
viewed as one of the most powerful management tools
for conserving exploited species (Botsford et al. 1997,
Roberts 1997, Allison et al. 1998, Guenette et al. 1998).
The blue crab spawning stock in Chesapeake Bay has
been partially protected from exploitation by a sanctu-
ary in the spawning grounds (Lipcius et al. 2001,
2002b). However, the sanctuary and various exploita-
tion controls have apparently not protected a suffi-
ciently large fraction of the population (Seitz et al. 2001)
to avert the observed reduction in the spawning stock.
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