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1. INTRODUCTION

The atmospheric CO2 concentration has been in-
creasing since the end of the 18th century, but at a rate
that is substantially lower than the rate of new carbon
inputs to the atmosphere from fossil fuel combustion
and deforestation (Schlesinger 1997). The increase rate
of atmospheric CO2 has been slowed by an increase in
the sink function of oceans and perhaps terrestrial

ecosystems. Efforts to balance the global atmospheric
CO2 budget indicate that there is an enhanced terres-
trial sink of 1.4 ± 1.5 Gt yr–1 (90% confidence interval)
in the Northern Hemisphere due to forest regrowth
(Lambers et al. 1998, Chen et al. 1999, Schimel et al.
2000). An increase in net primary productivity (NPP) in
North America has also been suggested by remote
sensing data sets and carbon cycle models (Keeling et
al. 1996, Myneni et al. 2001, Hicke 2002). 
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One of the causes of enhanced terrestrial uptake of
CO2 may be a stimulation of photosynthesis by elevated
atmospheric CO2 concentration (Melillo et al. 1993).
There is substantial evidence from controlled experi-
ments that elevated CO2 will stimulate future terrestrial
photosynthesis (Curtis 1996, Körner 2000). In such ex-
periments, net primary production often increases by
30% or more in response to a doubling of the atmo-
spheric CO2 concentration (DeLucia et al. 1999). How-
ever, it is far less certain whether the so-called ‘CO2 fer-
tilization’ will persist or diminish over time due to
nutrient limitation (Oren et al. 2001, Hungate et al. 2003),
or whether the enhancements last only a short period of
time (Oren et al. 2001). Another uncertainty is whether
rising CO2 has already influenced the metabolism of con-
temporary terrestrial ecosystems (e.g. Gill et al. 2002).

Unlike a controlled experiment, it is difficult to
establish a direct relationship between contemporary
changes in atmospheric CO2 concentration and vegeta-
tion growth through observation because of the simulta-
neous influence of many other climatic, geographical
and anthropogenic factors. However, contemporary ob-
servations offer means to investigate such relationships
at large scales using the normalized difference vegeta-
tion index (NDVI) derived from the advanced very high
resolution radiometers (AVHRR). NDVI/AVHRR is a re-
liable index for describing the surface vegetation green-
ness, which reflects the condition of the biomass in a
given area (Asrar & Myneni 1991). Using CO2 and NDVI

data sets, the relationship between changes in atmo-
spheric CO2 concentration and vegetation development
can be examined in natural environments. The goal of
our study was to complement investigations on the influ-
ence of atmospheric CO2 content on vegetation growth
in controlled experimental environments to contempo-
rary natural environments at regional and global scales
using remote sensing data sets.

2. THEORETICAL BASIS

One of the difficulties in investigating the influence of
atmospheric CO2 on vegetation development is the
strong seasonal oscillation in both time series (Fig. 1).
CO2 and NDVI oscillations are both driven by photosyn-
thetic CO2 consumption (Keeling et al. 1996), such that
the correlation between the vegetation development and
atmospheric CO2 concentration is negative. Thus, a di-
rect correlation of NDVI and atmospheric CO2 concen-
tration does not provide a proper criterion to understand
how changes in atmospheric CO2 concentration may or
may not influence vegetation foliage development. 

Examining the interannual variation in NDVI and
atmospheric CO2 concentration for the same month
(i.e. performing a climatology analysis) alone does not
clarify how atmospheric CO2 concentration influences
vegetation development, as vegetation growth also
depends on interannual climate anomalies in tempera-
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Fig. 1. Annual and seasonal trends in precipitation (mm d–1), surface temperature (°C) and normalized difference vegetation index
(NDVI) for Region H3, and CO2 concentration at Point Barrow, Alaska, from February 1985 to August 1988. YYMM: year 

and month



Lim et al.: CO2 fertilization effect

ture, precipitation, and the El Niño South-
ern Oscillation (ENSO) (Myneni et al.
1996, Lambers et al. 1998, Lim & Kafatos
2002, Gurgel & Ferreira 2003). Thus, it is
desirable to examine the correlation
between the atmospheric CO2 concentra-
tion and NDVI within the same year, as
well as inter-annually.

Both atmospheric CO2 concentration and
NDVI are time-dependent variables. As
the vegetation assimilates CO2 from
the atmosphere, the rate of change in
the atmospheric CO2 concentration should
track the rate of change in the amount of
foliage (Keeling et al. 1996, Idso et al.
2000). When there is a large increase in
foliage, the vegetation will consume more
CO2 from the atmosphere, and a relatively
large decrease in atmospheric CO2 con-
centration will follow. Hence, changes in
CO2 concentration driven by changes in
vegetation growth are expected to pro-
duce a negative correlation between NDVI
change in a given month and CO2 concen-
tration change in the following month.
Such a correlation can be interpreted as
the influence of vegetation development
on the atmospheric CO2 concentration.
On the other hand, if a change in atmo-
spheric CO2 in a given month precedes a
change in NDVI the following month, and
the correlation is positive, this will suggest
(but not prove) a possible CO2 fertilization
effect. 

The increase or decrease in the values
of variables such as NDVI and atmos-
pheric CO2 concentration can be expressed as a rate
of change, which is a measurement of the variables’
fluctuation (Kent 1960). We examined the correla-
tions between the rates of change in NDVI and
atmospheric CO2 concentration to investigate a pos-
sible CO2 fertilization effect (Fig. 2). The overall
study period was from 1982 to 1992, based on data
availability.

To simplify the relationship between atmospheric
CO2 and plant growth we assumed a 1-way influence
at a time between atmospheric CO2 and plant growth
only, without considering how this relationship
changes year-to-year due to specific climate anom-
alies. Finally, we compared how temperature, precipi-
tation, and atmospheric CO2 correlate with vegetation
canopy condition interannually for each month, includ-
ing the annual minimum vegetation greenness indi-
cated by the original NDVI values (not the rate of
change).

3. METHODS

3.1. Data

Correlations were calculated between NDVI, atmos-
pheric CO2 concentration, and temperature and pre-
cipitation in a time-delayed or time-advanced order
over the growing season. Time lag conditions have
been used for examining relationships between vege-
tation and climate factors such as precipitation (Gurgel
& Ferreira 2003) or climate anomalies such as ENSO
(Lim & Kafatos 2002).

NDVI is an index describing relative vegetation green-
ness based on the fact that the first AVHRR channel is in
a part of the spectrum where chlorophyll causes consid-
erable absorption of incoming radiation, and the second
channel is in a spectral region where spongy mesophyll
leaf structure leads to considerable reflectance. NDVI is
(Ch2 R – Ch1 R)/(Ch2 R + Ch1 R), where R is reflectance
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(Asrar & Myneni 1991, ftp://eosdata.gsfc.nasa.gov/data/
avhrr/Readme.pal). To minimize influences of atmo-
spheric particles on the reflectance from the ground to
the instrument, atmospheric correction is applied after
reflectance is calibrated. NDVI can be lower than the
true vegetation greenness when there is continuous
snow cover during a month. However, the monthly
NDVI composites use the maximum reflectance of the
month, and since our study excluded wintertime data
and used monthly composites, the possible underesti-
mate is minimal.

We used TIROS Operational Vertical Sounder
(TOVS) 1 × 1 degree surface skin temperature data,
Global Precipitation Climatology Project (GPCP) 1 × 1
degree global combined precipitation data, Carbon Di-
oxide Information Analysis Center (CDIAC) Trends ’93
CO2 data measured at Barrow, Alaska, and NDVI/
AVHRR (8 × 8 km) data. GPCP data are spatially aver-
aged by weighted mean to quantify the error associ-
ated with each pixel; pixels with smaller errors are
given more weight using reciprocals of the errors. All

the data are in the public domain and available elec-
tronically from the National Aeronautics and Space
Administration (NASA) Goddard Earth Sciences (GES)
Distributed Active Archive Center (DAAC) site (http://
daac.gsfc.nasa.gov).

3.2. Ecological regions

NDVI values are based upon radiation reflected by
the canopy surface (Kidwell 1994). Because different
vegetation types have different characteristic leaf area
indices (Running & Nemani 1988), the same NDVI
value may represent different levels of photosynthetic
activity for different vegetation types. Thus, to prop-
erly utilize NDVI it is necessary to divide the region
investigated into zones of an optimum size that cap-
tures the vegetation type. We adopted a zonal division
according to Rand McNally Goode’s World Atlas
Ecoregions (Espenshade 1995), which closely agrees
with the USGS-NASA North America Land Cover
Characteristics Data Base Version 2.0 (http://lpdaac.
usgs.gov/glcc/glcc.asp). The longitude and latitude
coordinates were modified to use pixel coordinates of
remote sensing data sets (Lim & Kafatos 2002).

We applied a large-scale eco-region classification
and divided North America into 3 different zones: Arc-
tic and Sub-Arctic Zone (A), Humid Temperate Zone
(H), and Dry and Desert Zone (D). 

In the eco-zones in North America, maximum vege-
tation greenness occurs around August and the mini-
mum is around February. Zones were subdivided ac-
cording to vegetation types: 7 subdivisions in Zone A,
8 in Zone H, and 1 in Zone D (Fig. 3). There is rela-
tively greater diversity in vegetation types in the
Humid Temperate Zone than in the other zones.
Although all the sub-regions were studied for relation-
ships of NDVI to CO2, we focused on the Humid Tem-
perate Zone for a more detailed analysis to examine
how different vegetation types correlated with CO2.

3.3. Vegetation periods in each region

The seasonal pattern of vegetation development
depends on the climate and geography of a location
(Starr 1994, Miller 1996). Arctic and sub-arctic tundra
provinces have a much shorter growing season than
forests or grasslands in humid temperate regions, and
this must be taken into account when investigating
correlations between vegetation growth and atmos-
pheric CO2 concentration. The growing periods of the
vegetation were determined for each region on the
basis of monthly NDVI time series (Fig. 4). The grow-
ing periods in our study include the month of the
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annual minimum vegetation greenness, because this
provides the initial condition of the vegetation growth
in that particular growing season.

3.4. Correlation coefficient and associated error

We used a Pearson product-moment coefficient of
correlation (Hogg & Craig 1978). The calculation of the
correlation coefficient incorporates the errors of the 2
measurements, NDVI and atmospheric CO2 concentra-
tion. If µx is the mean of a value x and µy is the mean of
y, σx is the SD of x and σy is the SD of y, and E is the

expected value, the fractional SD of x and y, which are
σx/x and σy/y, in general correspond to their errors.
We assume that the errors of the variables x and y are
known, thus σxσy is a constant. The fractional SD of
their correlation coefficient r, σr /r, is approximately
determined by the term xy in E [(x – µx)(y – µy)]. That
is, (σr /r)2 = 12(σx/x)2 + 12(σy/y)2 (Young 1962). 

Therefore, the approximate error of r for an assumed
10% error of NDVI and a 10% error of CO2 measure-
ment is r = (12 0.12 + 12 0.12)1/2 = 0.021/2 ≈ 0.14 = 14%,
and for a 10% error of NDVI and a 15% error of CO2

measurement is r = (12 0.12 + 12 0.152)1/2 = 0.03251/2 ≈
0.18 = 18%.
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4. RESULTS

4.1. NDVI correlation with temperature,
precipitation and atmospheric CO2

Although temperature has a seasonal pattern similar
to those of atmospheric CO2 concentration and plant
growth, precipitation does not have a regular seasonal
pattern in North America (e.g. Fig. 1). Monthly NDVI

in Zone H was interannually correlated with precipita-
tion, temperature and atmospheric CO2 concentration
during the same month for the 11 yr from 1982 to 1992
(8 yr from 1985 to 1992 for temperature). Correlations
were found for all months (Fig. 5). The absolute values
required for a significant correlation of n = 11 sample
years is >0.52 at the 90% confidence level with a
2-tailed test, and >0.60 at the 95% confidence level
(Bendat & Piersol 2000). 
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4.1.1. Precipitation

Mostly negative correlations were found between
monthly precipitation and NDVI for Regions H7, H9,
H8 and H3 (Fig. 5a); these regions are adjacent to per-
manent water bodies (H7 to the Gulf of Mexico, H9 and
H8 to the Atlantic Ocean, and H3 to the Great Lakes).
The negative correlations were significant at the 95%
confidence level for H9 in February and April, and H8
in August. 

The inland regions, H4 to H6, have both positive and
negative correlations, between monthly precipitation
and NDVI. The correlations were positive and signifi-
cant for H6 in February and H4 in August and Septem-
ber. These mixed (positive and negative) temporal cor-
relations are different from spatial correlations trends
between precipitation and vegetation development.
For example, Lieth (1975) found a non-linear positive
correlation between mean annual precipitation and
NPP among different locations, but in that study, vari-
ation was between locations, whereas in our study
variation was interannual within particular regions. 

4.1.2. Temperature

The correlation between temperature and NDVI was
mostly positive (Fig. 5b). This agrees with the com-
monly accepted positive relationship between temper-
ature and NPP (Lieth 1975, Lambers et al. 1998). The
positive relationship between temperature and vege-
tation development was more prominent for northern
temperate regions. The correlations were positive and
significant at the 95% confidence level for: H5 in Jan-
uary and February; H4 in January, March, April and
November; H8 in January, February, April and Sep-

tember; H3 in March, April and November. The corre-
lations were negative and significant for H7 and H9 in
October, and H4 in August.

4.1.3. Atmospheric CO2

In the northern temperate regions there was also a
positive relationship between atmospheric CO2 and
NDVI (Fig. 5c). This relationship was more consistently
positive than the correlation between NDVI and tem-
perature. The correlations were positive and signifi-
cant for: H7 in February and April; H9 in February,
April and May; H6 in February and December; H4 in
January; H8 in January, February and May; H3 in
January and September. There was no a significant
negative correlation between CO2 and NDVI. 

The positive correlations that dominate Fig. 5c
appear to occur independently of the other eco-
regions. In paired comparisons among eco-regions,
>24% of the pairs have no correlation or negative
correlations in monthly NDVI averaged among the
regions interannually from 1982 to 1992; 50% had R <
0.31 or negative correlation coefficients. The substan-
tial percentage of low or negative correlations in
monthly NDVI average among eco-regions indicates
that the positive correlations between atmospheric
CO2 and NDVI are not due to correlations in NDVI
among the regions.

4.2. Case study for the Great Lakes region

We selected the Great Lakes region (H3) for a case
study of the relationship between monthly changes
in atmospheric CO2 and vegetation development,
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because it is relatively small and located near several
other ecosystems (sub-arctic zone to the north, and
prairie to the southwest). The vegetation in this region
is composed of mixed coniferous and broadleaf forest.

We examined the correlation between rate of change
in NDVI and rate of change in temperature and atmo-
spheric CO2 concentration for 6 intervals within the
period between February, when the average NDVI
begins to increase, and August, when the average
NDVI begins to decrease (Fig. 4). The seasonal pat-
terns (Fig. 1) were largely eliminated by considering
the rate of change. Fig. 6 shows the annual and sea-
sonal trends in the rate of change per month for surface
temperature (δT) and NDVI (δNDVI), and the rate of
change in CO2 concentration (δCO2) measured at Point
Barrow, Alaska, during the growing season from 1982

to 1992. We used Point Barrow CO2 data to examine
relationships between CO2 and vegetation in H3
because Point Barrow is the closest station to H3 that
measures atmospheric CO2 concentration on a global
scale. We also used the same CO2 data for all other
regions in the study, since Point Barrow CO2 data
reflect seasonal change of vegetation greenness of
these regions better than Mauna Loa, Hawaii, data.
CO2 mixes relatively well in the atmosphere; however,
the minimum atmospheric CO2 concentration at Mauna
Loa occurs 1 or 2 mo after the minimum at Point Bar-
row, and their seasonal amplitudes are also different.
Therefore, CO2 levels at Point Barrow are expected to
lag behind those existing in Region H3 less than those
at Mauna Loa.

4.2.1. Precipitation

The rate of change in the precipitation (δP) mostly
had a negative correlation with δNDVI of the same
month (Fig. 7a, center), as was the case with the inter-
annual relationship of the original values (Fig. 5a).
When δNDVI was correlated with δP in the previous
month, however, the correlations in the majority of
years were positive (Fig. 7a, left). This result is
similar to that for a northern region of Brazil, where the
vegetation increased in greenness in response to the
rainfall during the previous month (Gurgel & Ferreira
2003). 

4.2.2. Temperature

δT was positively correlated to the same month’s
δNDVI (Fig. 7b, center). It also showed positive corre-
lations with the following month’s δNDVI (Fig. 7b,
right), which may indicate a high correlation in tem-
peratures between the growing months and each pre-
vious month (average R = +0.83 for the temperature,
and +0.57 for δT).

4.2.3. Atmospheric CO2

δNDVI was positively correlated with δCO2 of the
same month, and it also had a positive correlation with
δCO2 of the following month (Fig. 7c, center and left). 

The positive correlation between δNDVI and atmo-
spheric CO2 concentration disappears or becomes a
negative correlation when the CO2 content is lagged
1 mo. This reflects the negative feedback of CO2

assimilation by the vegetation on the atmospheric CO2

concentration. This change in the correlation indicates
that the ‘rate of change’ approach we adopted to inves-
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tigate the influence of atmospheric CO2 concentration
on vegetation development is reasonable. 

4.3. Rates of change in NDVI and atmospheric CO2

concentration 

δCO2 also showed a yearly cyclic pattern, but with
much weaker regularity (Fig. 6) than the original CO2

concentration (Fig. 1). Unlike the annual cycle in atmo-
spheric CO2 concentration, the cycle in the rate of change
is irregular, and we were thus able to observe patterns
that had been obscured by the regular annual pattern of
rising and falling atmospheric CO2 concentration.

Fig. 8 shows 11 yr (1982–1992) average coefficients
between δCO2 concentration and δNDVI during the
growing season. For example, for H8 the correlation

coefficients shown are for the 7 monthly intervals from
February to September (Fig. 4). In all regions except
one, δCO2 was positively correlated with the rate of
change in vegetation greenness in the following
month, and most correlations were high. This is consis-
tent with a CO2 fertilization effect. Fig. 8c shows that
δCO2 was negatively correlated with changes in vege-
tation greenness of the previous month, which reflects
the CO2 assimilation by the vegetation. Fig. 8b shows
that there is no clear correlation between simultaneous
changes in CO2 levels and greenness.

The positive correlation in the rate of change
between atmospheric CO2 and vegetation develop-
ment is more prominent for the arctic and sub-arctic
regions A1 to A7, the west humid temperate regions
(H1 and H2) and northwestern regions of the east
humid temperate zone (H3 to H5) than in the temper-
ate desert region (D1) and the southern and eastern
regions of the east humid temperate zone (H6 to H9).
The lack of correlation between NDVI in the SE
regions and atmospheric CO2 concentration may be
due to their great distance from Point Barrow, and may
not necessarily indicate that atmospheric CO2 did not
influence vegetation growth in these regions. In fact,
all 4 regions (H6, H7, H8 and H9) show high positive
correlations between NDVI and atmospheric CO2 con-
centration interannually in the earliest months of the
growing season (Fig. 5).

The approach used in this study cannot identify the
cause of the positive correlation between δCO2 and
δNDVI in the following month, as opposed to experi-
mental manipulations, which can identify cause and
effect. However, it is difficult to scale experimental
results to large areas and there is always the possibility
of experimental artifacts, whereas our approach uses
remote sensing data sets that could be extended to a
global scale. Our interpretation of the positive correla-
tion between changes in atmospheric CO2 and green-
ness is consistent with experimental manipulations of
atmospheric CO2 (700 to 1000 ppm above ambient)
that report a stimulation of photosynthesis and above-
ground productivity at high CO2 (Curtis 1996, DeLucia
et al. 1999). 

4.4. Annual minimum NDVI increase

We observed strong positive correlations between
interannual variation in NDVI and both temperature
and atmospheric CO2 concentration for the early
months of the growing season (Fig. 5b,c). This indi-
cates the possibility of annual trends in minimum veg-
etation greenness, which normally occurs in February
in the eastern humid temperate zone. Fig. 9 shows the
correlation coefficients between NDVI values (not rate
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of change) and precipitation, tempera-
ture and atmospheric CO2 concentration
for February 1982–1992 (1985–1992 for
temperature). 

Precipitation had a positive relation-
ship with the minimum vegetation green-
ness for Region H6 and a negative one for
Region H9. Other regions did not show
strong correlations between the annual
minimum NDVI and precipitation. 

The minimum vegetation greenness
in the southern regions H6, H7 and
H9 showed a relatively high correlation
between atmospheric CO2 increase and
minimum vegetation greenness (Fig. 9).
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The northern temperate regions H4 and H8 also
showed a positive correlation between atmospheric
CO2 increase and minimum vegetation greenness. The
minimum vegetation greenness in Regions H3, H4 and
H8 were correlated with temperature as well as atmos-
pheric CO2. In Region H5 the minimum vegetation
greenness was positively correlated with temperature,
but not with atmospheric CO2. In general, the mini-
mum vegetation greenness increased over the period
1982–2001 for all the regions of the eastern humid
temperate zone in North America (Fig. 10). 

These correlations are consistent with recent trends
in temperature and atmospheric CO2, both of which
influence plant productivity. Remote sensing data has
been used to show a lengthening of the growing sea-
son in North America over roughly the same period of
time (Myneni et al. 1997), and this has been ascribed to
global warming (Walther et al. 2002). Rising CO2 could
also increase minimum greenness by stimulating pho-
tosynthesis at the beginning of the growing season
(Idso et al. 2000). 

5. DISCUSSION AND CONCLUSIONS 

Over the growing seasons from 1982 to 1992, δCO2

was positively correlated with δNDVI in the following
month in most eco-regions of North America. Even
though it does not constitute proof, these results are
consistent with a CO2 fertilization effect and are diffi-
cult to explain by other mechanisms. This result is con-
sistent with a recent report of a century-long decline in
stomatal conductance in plants across northern Eur-
asia, which was interpreted as an effect of elevated
CO2 (Saurer et al. 2004).

The positive relationship between atmospheric CO2

concentration and NDVI was significant during the
early months of the growing season for all the regions
examined, and weakened later in the growing season.
This is consistent with an experiment showing that
atmospheric CO2 enrichment induced a large but
transient increase in early spring branch growth (Idso
et al. 2000).

All the eastern humid temperate regions generally
showed significant increases in minimum vegetation
greenness over the period studied, as well as positive
correlations with temperature and atmospheric CO2

increase. Unlike atmospheric CO2 and temperature,
precipitation did not show a clear positive or negative
correlation with vegetation growth, either during the
growing season or interannually. Our study is an
example of how remotely sensed data can be used to
explore the effects of global changes at large scales in
order to complement experimental manipulations that
are performed on smaller scales of time or space. 
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