Correlation between atmospheric CO₂ concentration and vegetation greenness in North America: CO₂ fertilization effect

C. Lim^{1,*}, M. Kafatos¹, P. Megonigal²

¹Center for Earth Observing and Space Research (CEOSR), School of Computational Sciences (SCS), George Mason University, Fairfax, Virginia 22030, USA

²Smithsonian Environmental Research Center, PO Box 28, 640 Contees Wharf Road, Edgewater, Maryland 21037, USA

ABSTRACT: The possibility that rising atmospheric CO₂ concentrations are influencing plant growth in contemporary ecosystems has received little attention, and the studies that exist have been done on a small spatial scale. We correlated the monthly rate of relative change in normalized differenced vegetation index (NDVI) from advanced very high resolution radiometer (AVHRR) data to the rate of change in atmospheric CO₂ concentration during the natural vegetation growing season for evidence of a possible CO₂ fertilization effect on vegetation development. The study addressed seasonal and annual patterns in spatially averaged NDVI for 3 different ecological regions in North America from 1982 to 1992. Correlations between CO_2 and NDVI were calculated for 3 different lag conditions. Relatively high and positive correlation coefficients were found when the monthly rate of change in NDVI was 1 mo lagged to that for CO_2 , which suggests, but does not prove, a CO_2 fertilization effect on natural vegetation development. Generally, the correlation coefficients changed from relatively high and positive correlations when NDVI was lagged 1 mo behind CO₂ to relatively high and negative correlations when CO₂ was lagged 1 mo behind NDVI. A general increase in the annual maximum greenness of the vegetation was also found in most of the regions studied from 1982 to 2001. The desert and humid temperate regions in the eastern part of North America showed an increase in the annual minimum vegetation greenness, while the southern humid temperate regions showed relatively high correlations between the minimum NDVI and atmospheric CO₂ concentration in interannual comparisons. The results of this study are generally consistent with the notion of a contemporary CO₂ fertilization effect, but they also demonstrate how remotely sensed data can be used to explore the effects of global change at large scales in order to complement experimental results obtained on smaller temporal and spatial scales.

KEY WORDS: Global change \cdot Climate change \cdot CO₂ fertilization effect \cdot NDVI \cdot Remote sensing \cdot Vegetation

- Resale or republication not permitted without written consent of the publisher

1. INTRODUCTION

The atmospheric CO_2 concentration has been increasing since the end of the 18th century, but at a rate that is substantially lower than the rate of new carbon inputs to the atmosphere from fossil fuel combustion and deforestation (Schlesinger 1997). The increase rate of atmospheric CO_2 has been slowed by an increase in the sink function of oceans and perhaps terrestrial

ecosystems. Efforts to balance the global atmospheric CO_2 budget indicate that there is an enhanced terrestrial sink of 1.4 ± 1.5 Gt yr⁻¹ (90 % confidence interval) in the Northern Hemisphere due to forest regrowth (Lambers et al. 1998, Chen et al. 1999, Schimel et al. 2000). An increase in net primary productivity (NPP) in North America has also been suggested by remote sensing data sets and carbon cycle models (Keeling et al. 1996, Myneni et al. 2001, Hicke 2002).

One of the causes of enhanced terrestrial uptake of CO₂ may be a stimulation of photosynthesis by elevated atmospheric CO_2 concentration (Melillo et al. 1993). There is substantial evidence from controlled experiments that elevated CO₂ will stimulate future terrestrial photosynthesis (Curtis 1996, Körner 2000). In such experiments, net primary production often increases by 30% or more in response to a doubling of the atmospheric CO₂ concentration (DeLucia et al. 1999). However, it is far less certain whether the so-called 'CO₂ fertilization' will persist or diminish over time due to nutrient limitation (Oren et al. 2001, Hungate et al. 2003), or whether the enhancements last only a short period of time (Oren et al. 2001). Another uncertainty is whether rising CO₂ has already influenced the metabolism of contemporary terrestrial ecosystems (e.g. Gill et al. 2002).

Unlike a controlled experiment, it is difficult to establish a direct relationship between contemporary changes in atmospheric CO₂ concentration and vegetation growth through observation because of the simultaneous influence of many other climatic, geographical and anthropogenic factors. However, contemporary observations offer means to investigate such relationships at large scales using the normalized difference vegetation index (NDVI) derived from the advanced very high resolution radiometers (AVHRR). NDVI/AVHRR is a reliable index for describing the surface vegetation greenness, which reflects the condition of the biomass in a given area (Asrar & Myneni 1991). Using CO₂ and NDVI data sets, the relationship between changes in atmospheric CO_2 concentration and vegetation development can be examined in natural environments. The goal of our study was to complement investigations on the influence of atmospheric CO_2 content on vegetation growth in controlled experimental environments to contemporary natural environments at regional and global scales using remote sensing data sets.

2. THEORETICAL BASIS

One of the difficulties in investigating the influence of atmospheric CO_2 on vegetation development is the strong seasonal oscillation in both time series (Fig. 1). CO_2 and NDVI oscillations are both driven by photosynthetic CO_2 consumption (Keeling et al. 1996), such that the correlation between the vegetation development and atmospheric CO_2 concentration is negative. Thus, a direct correlation of NDVI and atmospheric CO_2 concentration how changes in atmospheric CO_2 concentration may or may not influence vegetation foliage development.

Examining the interannual variation in NDVI and atmospheric CO_2 concentration for the same month (i.e. performing a climatology analysis) alone does not clarify how atmospheric CO_2 concentration influences vegetation development, as vegetation growth also depends on interannual climate anomalies in tempera-

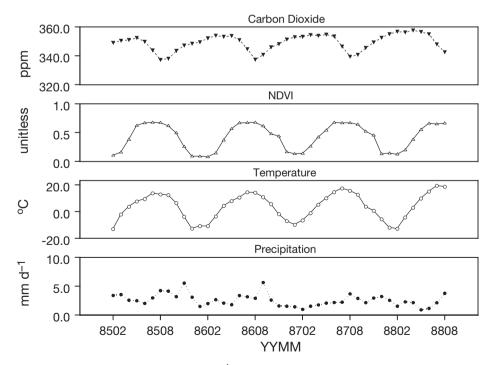


Fig. 1. Annual and seasonal trends in precipitation (mm d⁻¹), surface temperature (°C) and normalized difference vegetation index (NDVI) for Region H3, and CO₂ concentration at Point Barrow, Alaska, from February 1985 to August 1988. YYMM: year and month

ture, precipitation, and the El Niño Southern Oscillation (ENSO) (Myneni et al. 1996, Lambers et al. 1998, Lim & Kafatos 2002, Gurgel & Ferreira 2003). Thus, it is desirable to examine the correlation between the atmospheric CO_2 concentration and NDVI within the same year, as well as inter-annually.

Both atmospheric CO₂ concentration and NDVI are time-dependent variables. As the vegetation assimilates CO₂ from the atmosphere, the rate of change in the atmospheric CO₂ concentration should track the rate of change in the amount of foliage (Keeling et al. 1996, Idso et al. 2000). When there is a large increase in foliage, the vegetation will consume more CO_2 from the atmosphere, and a relatively large decrease in atmospheric CO₂ concentration will follow. Hence, changes in CO₂ concentration driven by changes in vegetation growth are expected to produce a negative correlation between NDVI change in a given month and CO₂ concentration change in the following month. Such a correlation can be interpreted as the influence of vegetation development on the atmospheric CO₂ concentration. On the other hand, if a change in atmospheric CO_2 in a given month precedes a change in NDVI the following month, and the correlation is positive, this will suggest (but not prove) a possible CO₂ fertilization effect

The increase or decrease in the values of variables such as NDVI and atmos-

pheric CO_2 concentration can be expressed as a rate of change, which is a measurement of the variables' fluctuation (Kent 1960). We examined the correlations between the rates of change in NDVI and atmospheric CO_2 concentration to investigate a possible CO_2 fertilization effect (Fig. 2). The overall study period was from 1982 to 1992, based on data availability.

To simplify the relationship between atmospheric CO_2 and plant growth we assumed a 1-way influence at a time between atmospheric CO_2 and plant growth only, without considering how this relationship changes year-to-year due to specific climate anomalies. Finally, we compared how temperature, precipitation, and atmospheric CO_2 correlate with vegetation canopy condition interannually for each month, including the annual minimum vegetation greenness indicated by the original NDVI values (not the rate of change).

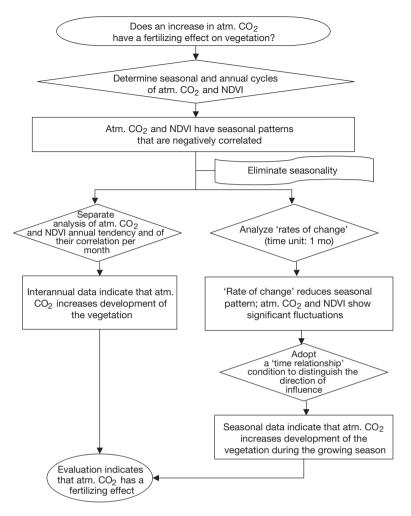


Fig. 2. Approach to investigate the relation between changes in atmospheric CO₂ and changes in vegetation greenness

3. METHODS

3.1. Data

Correlations were calculated between NDVI, atmospheric CO_2 concentration, and temperature and precipitation in a time-delayed or time-advanced order over the growing season. Time lag conditions have been used for examining relationships between vegetation and climate factors such as precipitation (Gurgel & Ferreira 2003) or climate anomalies such as ENSO (Lim & Kafatos 2002).

NDVI is an index describing relative vegetation greenness based on the fact that the first AVHRR channel is in a part of the spectrum where chlorophyll causes considerable absorption of incoming radiation, and the second channel is in a spectral region where spongy mesophyll leaf structure leads to considerable reflectance. NDVI is (Ch2 R – Ch1 R)/(Ch2 R + Ch1 R), where R is reflectance (Asrar & Myneni 1991, ftp://eosdata.gsfc.nasa.gov/data/ avhrr/Readme.pal). To minimize influences of atmospheric particles on the reflectance from the ground to the instrument, atmospheric correction is applied after reflectance is calibrated. NDVI can be lower than the true vegetation greenness when there is continuous snow cover during a month. However, the monthly NDVI composites use the maximum reflectance of the month, and since our study excluded wintertime data and used monthly composites, the possible underestimate is minimal.

We used TIROS Operational Vertical Sounder (TOVS) 1×1 degree surface skin temperature data, Global Precipitation Climatology Project (GPCP) 1×1 degree global combined precipitation data, Carbon Dioxide Information Analysis Center (CDIAC) Trends '93 CO₂ data measured at Barrow, Alaska, and NDVI/ AVHRR (8×8 km) data. GPCP data are spatially averaged by weighted mean to quantify the error associated with each pixel; pixels with smaller errors are given more weight using reciprocals of the errors. All

Fig. 3. Subdivisions of 3 ecological regions in North America, and location of 2 CO₂ measuring stations (Mauna Loa, Hawaii and Barrow, Alaska). (A) Arctic and Sub-Arctic Zone-Tundra altitudinal zone, polar desert: (A1) Alaska North; tundra province, Arctic Ocean moss-grass tundra: (A2) Hudson Bay North, (A3) Hudson Bay East; sub-arctic altitudinal zone: open woodland and woodland-tundra: (A4) Klondike; subarctic province: (A5) Great Slave, (A6) Hudson Bay South, (A7) Mid-Canada East. (H) Humid Temperate Zone-Marine altitudinal zone: (H1) Alaska south, (H2) Pacific coast; moderate continental province: (H3) Great Lakes; warm continental province: (H4) Indiana-Illinois; Prairie province: (H5) Inland Prairie; humid subtropical province: (H6) Southern Appalachia, (H7) Mississippi Delta; warm continental altitudinal zone: (H8) Mid-Atlantic North; humid subtropical province: (H9) Mid-Atlantic South. (D) Dry and Desert Zone: (D1) Temperate desert province

the data are in the public domain and available electronically from the National Aeronautics and Space Administration (NASA) Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) site (http:// daac.gsfc.nasa.gov).

3.2. Ecological regions

NDVI values are based upon radiation reflected by the canopy surface (Kidwell 1994). Because different vegetation types have different characteristic leaf area indices (Running & Nemani 1988), the same NDVI value may represent different levels of photosynthetic activity for different vegetation types. Thus, to properly utilize NDVI it is necessary to divide the region investigated into zones of an optimum size that captures the vegetation type. We adopted a zonal division according to Rand McNally Goode's World Atlas Ecoregions (Espenshade 1995), which closely agrees with the USGS-NASA North America Land Cover Characteristics Data Base Version 2.0 (http://lpdaac. usgs.gov/glcc/glcc.asp). The longitude and latitude coordinates were modified to use pixel coordinates of remote sensing data sets (Lim & Kafatos 2002).

We applied a large-scale eco-region classification and divided North America into 3 different zones: Arctic and Sub-Arctic Zone (A), Humid Temperate Zone (H), and Dry and Desert Zone (D).

In the eco-zones in North America, maximum vegetation greenness occurs around August and the minimum is around February. Zones were subdivided according to vegetation types: 7 subdivisions in Zone A, 8 in Zone H, and 1 in Zone D (Fig. 3). There is relatively greater diversity in vegetation types in the Humid Temperate Zone than in the other zones. Although all the sub-regions were studied for relationships of NDVI to CO2, we focused on the Humid Temperate Zone for a more detailed analysis to examine how different vegetation types correlated with CO₂.

3.3. Vegetation periods in each region

The seasonal pattern of vegetation development depends on the climate and geography of a location (Starr 1994, Miller 1996). Arctic and sub-arctic tundra provinces have a much shorter growing season than forests or grasslands in humid temperate regions, and this must be taken into account when investigating correlations between vegetation growth and atmospheric CO_2 concentration. The growing periods of the vegetation were determined for each region on the basis of monthly NDVI time series (Fig. 4). The growing periods in our study include the month of the annual minimum vegetation greenness, because this provides the initial condition of the vegetation growth in that particular growing season.

3.4. Correlation coefficient and associated error

We used a Pearson product-moment coefficient of correlation (Hogg & Craig 1978). The calculation of the correlation coefficient incorporates the errors of the 2 measurements, NDVI and atmospheric CO₂ concentration. If μ_x is the mean of a value x and μ_y is the mean of y, σ_x is the SD of x and σ_y is the SD of y, and E is the

expected value, the fractional SD of x and y, which are σ_x/x and σ_y/y , in general correspond to their errors. We assume that the errors of the variables x and y are known, thus $\sigma_x \sigma_y$ is a constant. The fractional SD of their correlation coefficient r, σ_r/r , is approximately determined by the term xy in $E[(x - \mu_x)(y - \mu_y)]$. That is, $(\sigma_r/r)^2 = 1^2(\sigma_x/x)^2 + 1^2(\sigma_y/y)^2$ (Young 1962).

Therefore, the approximate error of *r* for an assumed 10% error of NDVI and a 10% error of CO₂ measurement is $r = (1^2 \ 0.1^2 + 1^2 \ 0.1^2)^{1/2} = 0.02^{1/2} \approx 0.14 = 14\%$, and for a 10% error of NDVI and a 15% error of CO₂ measurement is $r = (1^2 \ 0.1^2 + 1^2 \ 0.15^2)^{1/2} = 0.0325^{1/2} \approx 0.18 = 18\%$.

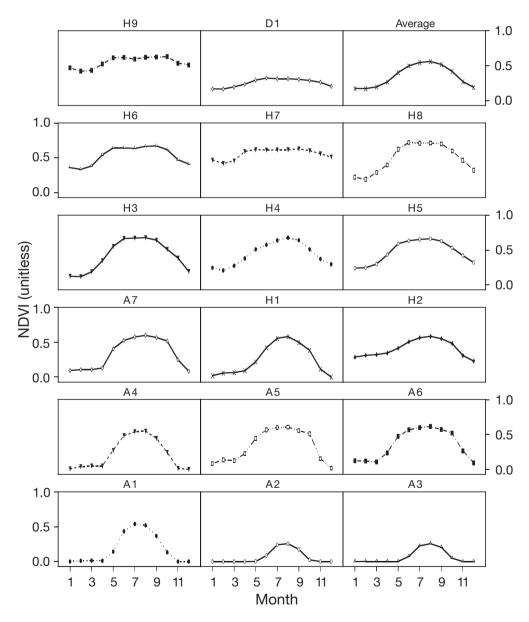


Fig. 4. Monthly vegetation greenness index (NDVI) averaged over 11 yr for January to December 1982–1992. See Fig. 3 for description of regions

4. RESULTS

4.1. NDVI correlation with temperature, precipitation and atmospheric CO₂

Although temperature has a seasonal pattern similar to those of atmospheric CO_2 concentration and plant growth, precipitation does not have a regular seasonal pattern in North America (e.g. Fig. 1). Monthly NDVI

in Zone H was interannually correlated with precipitation, temperature and atmospheric CO_2 concentration during the same month for the 11 yr from 1982 to 1992 (8 yr from 1985 to 1992 for temperature). Correlations were found for all months (Fig. 5). The absolute values required for a significant correlation of n = 11 sample years is >0.52 at the 90% confidence level with a 2-tailed test, and >0.60 at the 95% confidence level (Bendat & Piersol 2000).

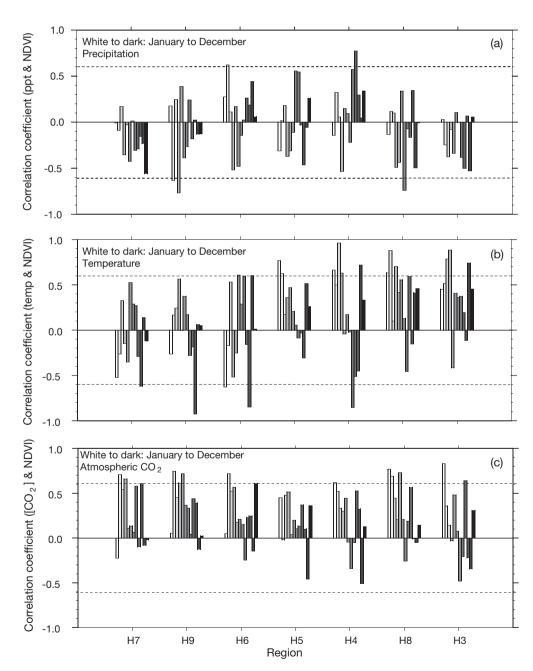


Fig. 5. Correlation coefficients between NDVI and (a) precipitation, (b) surface temperature (°C), and (c) atmospheric CO_2 concentration at Point Barrow, Alaska. Data are for 1982–1992 (1985–1992 for temperature). See Fig. 3 for description of regions

4.1.1. Precipitation

Mostly negative correlations were found between monthly precipitation and NDVI for Regions H7, H9, H8 and H3 (Fig. 5a); these regions are adjacent to permanent water bodies (H7 to the Gulf of Mexico, H9 and H8 to the Atlantic Ocean, and H3 to the Great Lakes). The negative correlations were significant at the 95% confidence level for H9 in February and April, and H8 in August.

The inland regions, H4 to H6, have both positive and negative correlations, between monthly precipitation and NDVI. The correlations were positive and significant for H6 in February and H4 in August and September. These mixed (positive and negative) temporal correlations are different from spatial correlations trends between precipitation and vegetation development. For example, Lieth (1975) found a non-linear positive correlation between mean annual precipitation and NPP among different locations, but in that study, variation was between locations, whereas in our study variation was interannual within particular regions.

4.1.2. Temperature

The correlation between temperature and NDVI was mostly positive (Fig. 5b). This agrees with the commonly accepted positive relationship between temperature and NPP (Lieth 1975, Lambers et al. 1998). The positive relationship between temperature and vegetation development was more prominent for northern temperate regions. The correlations were positive and significant at the 95% confidence level for: H5 in January and February; H4 in January, March, April and November; H8 in January, February, April and September; H3 in March, April and November. The correlations were negative and significant for H7 and H9 in October, and H4 in August.

4.1.3. Atmospheric CO₂

In the northern temperate regions there was also a positive relationship between atmospheric CO_2 and NDVI (Fig. 5c). This relationship was more consistently positive than the correlation between NDVI and temperature. The correlations were positive and significant for: H7 in February and April; H9 in February, April and May; H6 in February and December; H4 in January; H8 in January, February and May; H3 in January and September. There was no a significant negative correlation between CO_2 and NDVI.

The positive correlations that dominate Fig. 5c appear to occur independently of the other ecoregions. In paired comparisons among eco-regions, >24% of the pairs have no correlation or negative correlations in monthly NDVI averaged among the regions interannually from 1982 to 1992; 50% had R < 0.31 or negative correlation coefficients. The substantial percentage of low or negative correlations in monthly NDVI average among eco-regions indicates that the positive correlations between atmospheric CO_2 and NDVI are not due to correlations in NDVI among the regions.

4.2. Case study for the Great Lakes region

We selected the Great Lakes region (H3) for a case study of the relationship between monthly changes in atmospheric CO_2 and vegetation development,

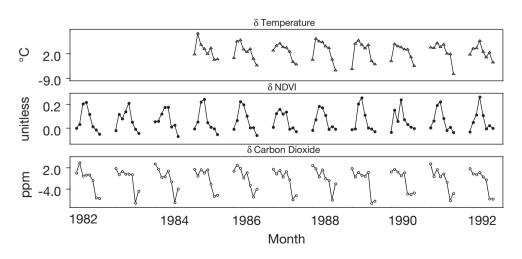


Fig. 6. Annual and seasonal trends in rate of change (δ) per month in surface temperature (°C) and NDVI for Region H3, and in CO₂ concentration at Point Barrow, Alaska, during the growing seasons (February) 1982–1992

because it is relatively small and located near several other ecosystems (sub-arctic zone to the north, and prairie to the southwest). The vegetation in this region is composed of mixed coniferous and broadleaf forest.

We examined the correlation between rate of change in NDVI and rate of change in temperature and atmospheric CO₂ concentration for 6 intervals within the period between February, when the average NDVI begins to increase, and August, when the average NDVI begins to decrease (Fig. 4). The seasonal patterns (Fig. 1) were largely eliminated by considering the rate of change. Fig. 6 shows the annual and seasonal trends in the rate of change per month for surface temperature (δ T) and NDVI (δ NDVI), and the rate of change in CO₂ concentration (δ CO₂) measured at Point Barrow, Alaska, during the growing season from 1982

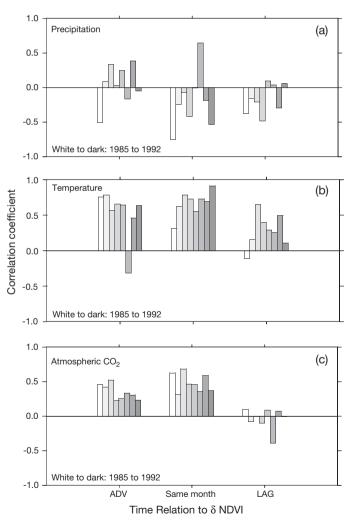


Fig. 7. Correlation coefficients between the rate of change per month in (a) precipitation, (b) surface temperature (°C), and (c) atmospheric CO₂ concentration at Point Barrow, Alaska, and the rate of change (δ) per month in NDVI over the growing season for Region H3. ADV: 1 mo advanced; LAG: 1 mo lagged

to 1992. We used Point Barrow CO_2 data to examine relationships between CO_2 and vegetation in H3 because Point Barrow is the closest station to H3 that measures atmospheric CO_2 concentration on a global scale. We also used the same CO_2 data for all other regions in the study, since Point Barrow CO_2 data reflect seasonal change of vegetation greenness of these regions better than Mauna Loa, Hawaii, data. CO_2 mixes relatively well in the atmosphere; however, the minimum atmospheric CO_2 concentration at Mauna Loa occurs 1 or 2 mo after the minimum at Point Barrow, and their seasonal amplitudes are also different. Therefore, CO_2 levels at Point Barrow are expected to lag behind those existing in Region H3 less than those at Mauna Loa.

4.2.1. Precipitation

The rate of change in the precipitation (δP) mostly had a negative correlation with $\delta NDVI$ of the same month (Fig. 7a, center), as was the case with the interannual relationship of the original values (Fig. 5a). When $\delta NDVI$ was correlated with δP in the previous month, however, the correlations in the majority of years were positive (Fig. 7a, left). This result is similar to that for a northern region of Brazil, where the vegetation increased in greenness in response to the rainfall during the previous month (Gurgel & Ferreira 2003).

4.2.2. Temperature

 δT was positively correlated to the same month's $\delta NDVI$ (Fig. 7b, center). It also showed positive correlations with the following month's $\delta NDVI$ (Fig. 7b, right), which may indicate a high correlation in temperatures between the growing months and each previous month (average R = +0.83 for the temperature, and +0.57 for δT).

4.2.3. Atmospheric CO₂

 δ NDVI was positively correlated with δ CO₂ of the same month, and it also had a positive correlation with δ CO₂ of the following month (Fig. 7c, center and left).

The positive correlation between δ NDVI and atmospheric CO₂ concentration disappears or becomes a negative correlation when the CO₂ content is lagged 1 mo. This reflects the negative feedback of CO₂ assimilation by the vegetation on the atmospheric CO₂ concentration. This change in the correlation indicates that the 'rate of change' approach we adopted to inves-

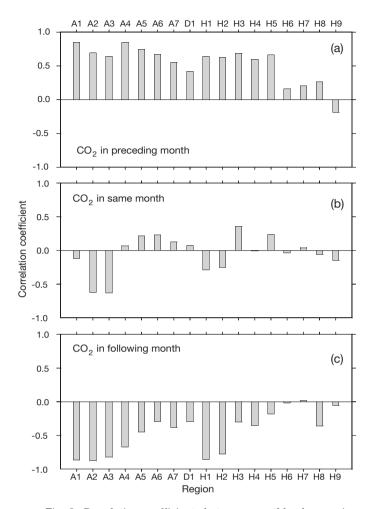


Fig. 8. Correlation coefficients between monthly changes in atmospheric CO_2 concentration (δCO_2) measured at Point Barrow, Alaska, and monthly changes in NDVI ($\delta NDVI$). δCO_2 is (a) 1 mo advanced to $\delta NDVI$, (b) the same month as $\delta NDVI$, and (c) 1 mo lagged to $\delta NDVI$. See Fig. 3 for description of regions

tigate the influence of atmospheric CO_2 concentration on vegetation development is reasonable.

4.3. Rates of change in NDVI and atmospheric CO₂ concentration

 δCO_2 also showed a yearly cyclic pattern, but with much weaker regularity (Fig. 6) than the original CO_2 concentration (Fig. 1). Unlike the annual cycle in atmospheric CO_2 concentration, the cycle in the rate of change is irregular, and we were thus able to observe patterns that had been obscured by the regular annual pattern of rising and falling atmospheric CO_2 concentration.

Fig. 8 shows 11 yr (1982–1992) average coefficients between δCO_2 concentration and $\delta NDVI$ during the growing season. For example, for H8 the correlation

coefficients shown are for the 7 monthly intervals from February to September (Fig. 4). In all regions except one, δCO_2 was positively correlated with the rate of change in vegetation greenness in the following month, and most correlations were high. This is consistent with a CO_2 fertilization effect. Fig. 8c shows that δCO_2 was negatively correlated with changes in vegetation greenness of the previous month, which reflects the CO_2 assimilation by the vegetation. Fig. 8b shows that there is no clear correlation between simultaneous changes in CO_2 levels and greenness.

The positive correlation in the rate of change between atmospheric CO₂ and vegetation development is more prominent for the arctic and sub-arctic regions A1 to A7, the west humid temperate regions (H1 and H2) and northwestern regions of the east humid temperate zone (H3 to H5) than in the temperate desert region (D1) and the southern and eastern regions of the east humid temperate zone (H6 to H9). The lack of correlation between NDVI in the SE regions and atmospheric CO_2 concentration may be due to their great distance from Point Barrow, and may not necessarily indicate that atmospheric CO₂ did not influence vegetation growth in these regions. In fact, all 4 regions (H6, H7, H8 and H9) show high positive correlations between NDVI and atmospheric CO₂ concentration interannually in the earliest months of the growing season (Fig. 5).

The approach used in this study cannot identify the cause of the positive correlation between δCO_2 and $\delta NDVI$ in the following month, as opposed to experimental manipulations, which can identify cause and effect. However, it is difficult to scale experimental results to large areas and there is always the possibility of experimental artifacts, whereas our approach uses remote sensing data sets that could be extended to a global scale. Our interpretation of the positive correlation between changes in atmospheric CO_2 and greenness is consistent with experimental manipulations of atmospheric CO_2 (700 to 1000 ppm above ambient) that report a stimulation of photosynthesis and above-ground productivity at high CO_2 (Curtis 1996, DeLucia et al. 1999).

4.4. Annual minimum NDVI increase

We observed strong positive correlations between interannual variation in NDVI and both temperature and atmospheric CO_2 concentration for the early months of the growing season (Fig. 5b,c). This indicates the possibility of annual trends in minimum vegetation greenness, which normally occurs in February in the eastern humid temperate zone. Fig. 9 shows the correlation coefficients between NDVI values (not rate

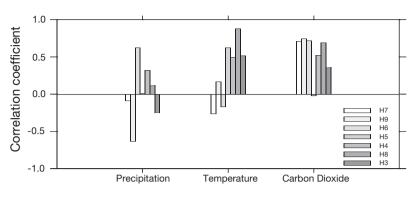
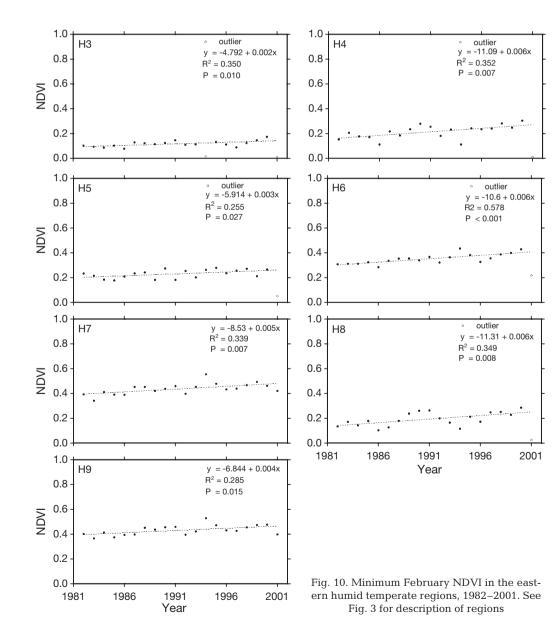



Fig. 9. Correlation coefficients between NDVI and precipitation (mm d⁻¹), temperature (°C) and atmospheric CO₂ concentration measured at Point Barrow, Alaska, for February 1982–1992 (1985–1992 for temperature). See Fig. 3 for description of regions

of change) and precipitation, temperature and atmospheric CO_2 concentration for February 1982–1992 (1985–1992 for temperature).

Precipitation had a positive relationship with the minimum vegetation greenness for Region H6 and a negative one for Region H9. Other regions did not show strong correlations between the annual minimum NDVI and precipitation.

The minimum vegetation greenness in the southern regions H6, H7 and H9 showed a relatively high correlation between atmospheric CO_2 increase and minimum vegetation greenness (Fig. 9).

The northern temperate regions H4 and H8 also showed a positive correlation between atmospheric CO_2 increase and minimum vegetation greenness. The minimum vegetation greenness in Regions H3, H4 and H8 were correlated with temperature as well as atmospheric CO_2 . In Region H5 the minimum vegetation greenness was positively correlated with temperature, but not with atmospheric CO_2 . In general, the minimum vegetation greenness increased over the period 1982–2001 for all the regions of the eastern humid temperate zone in North America (Fig. 10).

These correlations are consistent with recent trends in temperature and atmospheric CO_2 , both of which influence plant productivity. Remote sensing data has been used to show a lengthening of the growing season in North America over roughly the same period of time (Myneni et al. 1997), and this has been ascribed to global warming (Walther et al. 2002). Rising CO_2 could also increase minimum greenness by stimulating photosynthesis at the beginning of the growing season (Idso et al. 2000).

5. DISCUSSION AND CONCLUSIONS

Over the growing seasons from 1982 to 1992, δCO_2 was positively correlated with $\delta NDVI$ in the following month in most eco-regions of North America. Even though it does not constitute proof, these results are consistent with a CO_2 fertilization effect and are difficult to explain by other mechanisms. This result is consistent with a recent report of a century-long decline in stomatal conductance in plants across northern Eurasia, which was interpreted as an effect of elevated CO_2 (Saurer et al. 2004).

The positive relationship between atmospheric CO_2 concentration and NDVI was significant during the early months of the growing season for all the regions examined, and weakened later in the growing season. This is consistent with an experiment showing that atmospheric CO_2 enrichment induced a large but transient increase in early spring branch growth (Idso et al. 2000).

All the eastern humid temperate regions generally showed significant increases in minimum vegetation greenness over the period studied, as well as positive correlations with temperature and atmospheric CO_2 increase. Unlike atmospheric CO_2 and temperature, precipitation did not show a clear positive or negative correlation with vegetation growth, either during the growing season or interannually. Our study is an example of how remotely sensed data can be used to explore the effects of global changes at large scales in order to complement experimental manipulations that are performed on smaller scales of time or space.

LITERATURE CITED

- Asrar G, Myneni RB (1991) Applications of radiative transfer models for remote sensing of vegetation conditions and states. In: Myneni RB, Ross J (eds) Photon-vegetation interactions: applications in optical remote sensing and plant ecology. Springer-Verlag, Berlin, p 537–558
- Bendat J, Piersol A (2000) Random data analysis and measurement procedures. John Wiley & Sons, New York
- Chen W, Black TA, Yang P, Barr AG and 6 others (1999) Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biol 5(1): 41–53
- Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19(2):127–137
- DeLucia EH, Hamilton JG, Naidu SL (1999) Net primary production of a forest ecosystem with experimental CO₂ enrichment. Science 284:1177–1179
- Espenshade EB Jr (ed) (1995) Goode's World Atlas, U.S.A. Rand McNally, Chicago, IL
- Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO₂. Nature 417:279–282
- Gurgel HC, Ferreira NJ (2003) Annual and interannual variability of NDVI in Brazil and its connections with climate. Int J Remote Sens 24:3595–3609
- Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C (2002) Trends in North American net primary productivity derived from satellite observations, 1982–1998. Global Biogeochem Cycles 16(2):2
- Hogg RV, Craig AT (1978) Introduction to mathematical statistics. Macmillan, New York
- Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513
- Idso CD, Idso SB, Kimball BA, Park H, Hoober JK, Balling RC Jr (2000) Ultra-enhanced spring branch growth in CO_2 enriched trees: can it alter the phase of the atmosphere's seasonal CO_2 cycle? Environ Exp Bot 43:91–100
- Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO₂ measurements. Nature 382:146–149
- Kent JRF (1960) Differential and integral calculus. Riverside Press, Cambridge, MA
- Kidwell KB (1994) Global vegetation index user's guide. US Department of Commerce, Washington, DC
- Körner C (2000) Biosphere responses to CO₂ enrichment. Ecol Appl 10:1590–1619
- Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer-Verlag, New York
- Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer-Verlag, New York, p 237–263
- Lim C, Kafatos M (2002) Frequency analysis of natural vegetation distribution using NDVI/AVHRR data from 1981 to 2000 for North America: correlations with SOI. Int J Remote Sens 23(17):3347–3383
- Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240
- Miller GT (1996) Living in the environment. Wadsworth, Belmont, CA
- Myneni RB, Los SO, Tucker CJ (1996) Satellite-based identification of linked vegetation index and sea surface temperature anomaly areas from 1982–1990 for Africa, Australia and South America. Proc Am Geophys Union Lett 23: 729–732

- Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702
- Myneni RB, Dong J, Tucker CJ, Kaufmann RK and 5 others (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci (USA) 98(26): 14784–14789
- Oren R, Ellsworth DS, Johnson KH, Phillips N and 7 others (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO_2 -enriched atmosphere. Nature 411: 469–471
- Running SW, Nemani RR (1988) Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens Environ 24:347–367
- Saurer W, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years.

Editorial responsibility: Otto Kinne, Oldendorf/Luhe, Germany Global Change Biol 10:2109-2120

- Schimel DS, VEMAP participants, Braswell BH (1997) Spatial variability in ecosystem processes at the continental scale: models, data, and the role of disturbance. Ecol Monogr 67(2):251–271
- Schimel D, Melillo J, Tian H, McGuire AD and 11 others (2000) Contribution of increasing CO_2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006
- Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego
- Starr C (1994) Biology: concepts and applications, 2nd edn. Wadsworth, Belmont, CA
- Walther GR, Post E, Convey P, Menzel A and 5 others (2002) Ecological responses to recent climate change. Nature 426:389–395
- Young HD (1962) Statistical treatment of experimental data. McGraw-Hill, New York

Submitted: March 15, 2004; Accepted: November 16, 2004 Proofs received from author(s): December 21, 2004