Vol. 385: 127-135, 2009
doi: 10.3354/meps08055

MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Published June 18

Facilitation, interierence, and scale: the spatial

distribution of prey patches affects predation
rates in an estuarine benthic community

Anson H. Hines'*, W. Christopher Long!, Jeifrey R. Terwin''2, Simon F. Thrush?

ISmithsonian Environmental Research Center, 617 Contees Wharf Road, Edgewater, Maryland 21037, USA
2North Shore Country Day School, 310 Green Bay Road, Winnetka, Illinois 60093, USA
3National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand

ABSTRACT: The interaction of prey distribution patterns and predator behavior can mediate preda-
tor-prey dynamics. Inter-patch distance (lag) may be especially important in the interacting effects
of aggregation and interference among predators on their search and prey-handling ability. Interac-
tions of blue crabs Callinectes sapidus preying upon thin-shelled clams Macoma balthica in Chesa-
peake Bay provide a test of how the opposing forces of aggregation and interference interact with the
spatial distribution of prey patches to influence rates of prey consumption. Blue crabs can detect clam
patches from up to 15 m away using chemosensory cues, and they aggregate on them, thus facilitat-
ing predation, but exhibit agonistic behaviors when closer than 5 m to another crab, thus reducing
feeding efficiency. We used these patterns of aggregation and interference to modify a generalized
functional response model to describe individual crab foraging efficiency as a function of distance
between patches. The model predicted highest predation rates at an intermediate lag of 6.6 m. We
tested this a priori hypothesis with a set of field experiments wherein prey patches were established
with lags of 1, 7, 10, and 50 m. Predation rates were highest at intermediate lags, as predicted. This
work highlights the importance of the interaction between spatial scales and ecological processes,
demonstrating that spatial heterogeneity is not noise that obscures processes, but an active compo-
nent of the predator—prey dynamic.
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INTRODUCTION
Spatial dynamics in predator-prey interactions

Predator-prey dynamics can be mediated by the
interaction of prey distribution patterns and predator
behavior and mobility (Schwinning & Rosenweig 1990,
Schneider 1992, Hines et al. 1997). Predation can
restrict the distribution and abundance of prey and
affect overall community structure (Krebs 1985) in both
terrestrial (Wiens 1989) and aquatic (Hines et al. 1990,
Thrush et al. 1994) systems. Conversely, a predator's
success in feeding on patchily distributed prey de-
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pends on both its ability to locate patches of prey and
its ability to select, capture, and consume prey within a
patch (Schneider 1978, 1982, 1992, Cummings et al.
1997).

Some predators respond to variations in prey density
through an aggregative response to maximize foraging
efficiency (Hassell 1978); mites (Nachman 2006), rays
(Hines et al. 1997), wading birds (Goss-Custard 1980),
and crabs (Clark et al. 1999b) all demonstrate an
aggregative response that facilitates foraging. Some
predators benefit by foraging in larger groups, leading
to predator aggregation in high-density prey areas
(Master et al. 1993), or use foraging cues from other
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predators to locate and aggregate on prey patches
(Weissburg & Zimmer-Faust 1991, Zimmer-Faust et al.
1999).

However, aggregation can also reduce a predator's
foraging efficiency, as interference between predators
reduces the time and energy available for foraging
(Ens & Goss-Custard 1984, Smith & Taylor 1993, Clark
et al. 1999a,b). Interference includes behaviors such as
agonistic threat, predator displacement, and predator
fighting (e.g. Smallegange et al. 2006), and results in a
decrease in foraging efficiency with increasing preda-
tor density (Mansour & Lipcius 1991, Clark et al.
1999a).

Thus, the spatial arrangement of prey results in 2
opposing factors influencing the predator-prey dy-
namics: facilitation and interference. For many preda-
tors these processes are likely to operate over different
spatial scales. Although the interaction between pre-
dator aggregation and interference is well understood
(Hassell 1978, Turchin & Kareiva 1989), its effect on
predation rates in the context of heterogeneous prey
distribution is not (Vahl et al. 2007). The importance of
prey spatial distributions will be crucial where the
mechanisms driving predator aggregation and preda-
tor interference operate at different spatial scales.

The spatial scale is composed of 3 aspects: (1) grain,
the area of a patch; (2) lag, the distance between
patches; and (3) extent, the total area encompassed by
the study (see Wiens 1989, Thrush et al. 1997a). Multi-
scale approaches in predator-prey research have
focused mainly on the estimate of the grain over which
aggregative responses occur, and the extent over
which predators affect prey. The influence of lag has
received little attention in the literature, even though
patchy distributions of prey imply that predators must
travel between patches (Nachman 2006).

Distance among prey patches may be especially
important for the interacting effects of predator aggre-
gation and interference. Predators may aggregate on
prey patches at one scale, yet interact with other
predators at a different scale. Oyster-catchers Haema-
topus ostralegus, for example, aggregate on patches
over large scales (km), yet interference between forag-
ing birds occurs over small scales (<1 m; Ens & Goss-
Custard 1984). In one of the few experiments to vary
lag, interference among turnstones Anenaria inter-
pres, another shorebird, decreased sharply when the
lag was greater than the predator size (Vahl et al.
2007). Predator efficiency (or prey mortality) may vary
with lag due to differences in aggregation strength
and interference intensity over a range of inter-patch
distances.

In the present paper, we modify a general functional
response model to account for predator aggregation
and interference as a function of lag. We test the

model's predictions by experimentally manipulating
lag in prey patches of clams Macoma balthica fed upon
by blue crabs Callinectes sapidus.

Blue crab/clam system of Chesapeake Bay

In the mesohaline portion of Chesapeake Bay, blue
crabs Callinectes sapidus are the dominant predators
on the benthic macrofauna, and their diet is composed
primarily of bivalves (Hines et al. 1990). The tellinid
clam Macoma balthica is the biomass dominant in the
system, and comprises up to 55 % of the blue crab diet
(Hines et al. 1990). Blue crabs aggregate on high-
density patches of M. balthica (Clark et al. 1999a)
using odor plumes from actively pumping clams or
clam exudates caused by predation by other crabs
(Weissberg & Zimmer-Faust 1993). Blue crabs use
chemosensory cues to detect clam patches at a dis-
tance of up to 10-15 m (Clark et al. 1999a). Although
other predators in the system may nip M. balthica
siphons or prey on juvenile clams, the blue crab is the
only predator to feed on whole adult clams (Hines et
al. 1990).

Blue crabs are cannibalistic and exhibit strong ago-
nistic behaviors that reduce feeding efficiency (Man-
sour & Lipcius 1991, Smith 1995, Clark et al. 1999b).
Adult crabs exhibit threat displays, such as a ‘'meral
spread,” when in the presence of other adult crabs
(Jachowski 1974), and fighting between crabs can lead
to injury or death (Mansour & Lipcius 1991). In the
field, crabs detect and respond to the presence of other
adults at distances of up to 4-5 m (Clark et al. 1999b).
Interference among foraging crabs decreases feeding
efficiency by up to 80 %, due to increased non-feeding
interactions with other crabs (Mansour & Lipcius 1991,
Clark et al. 1999a, 2000).

MATERIALS AND METHODS

The lag model. Functional response models describe
the per capita foraging rate of a predator as a function
of prey densities (Holling 1959, Hassell 1978). We start
with a Holling Type II functional response (Holling

1959):
CN

E=—7_
1+CHN

where E is the per capita prey consumption, N is the
prey density, C is the capture rate, and H is the han-
dling time.

This model applies to the dynamics of a predator
feeding within a patch. To apply the function to a
system with discrete prey patches, we define C as
the product of C,, the capture rate within a patch, and
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C, (between patches), as the probability of patch
discovery: _ CC,N ,
1+C,C,HN @

Both C},, and H are defined as functions of lag. The
ability of a predator to locate patches (C,,) decreases
with increased lag, as predators are better able to
aggregate on closer patches. Interference among
predators also decreases with lag, and an increase in
interference will increase the handling time. Within
this modeling framework, changes in C, have a
larger impact than changes in H because C, is inde-
pendent of H (i.e. a predator can locate a patch
regardless of handling time), but H is dependent on
Cy, (i.e. to incur handling time the predator must first
locate a patch). C, ranges from 1, where a predator
always discovers a patch, to 0, where a predator
never discovers a patch. Likewise, H ranges from 1,
meaning it takes the entire time available to eat 1
prey item, to 0, meaning prey consumption is instan-
taneous. A predator benefits by having a high value
of ¢, and a low value of H. We model G, and H as
exponential decay functions:

C‘b = (1 - Cmin )eirCL + Cmin (3)

H = (1_Hmin)e_rHL+Hmin (4)

where L is the lag, rc is the rate constant for patch
detection ((y), and ry is the rate constant for handling
time. The decay functions both have lower asymptotes
>0. The lower limit for Cy,, Cu,, is the probability of
predators discovering a prey patch in the absence of
cues from aggregation (i.e. from other predators). The
lower limit of H, Hp;, is the handling time in the
absence of interference. The magnitudes of r- and ry
determine the effect of lag on predation rates.
Changes in r- and ry lead to different predicted
responses in aggregation and interference across lag
distances. Exponential decay is appropriate because
the rates of change in parameters related to lag are
likely to be nonlinear (Hassell 1978). Although both
interference (Skalski & Gilliam 2001) and facilitation
(Nilsson et al. 2007) have been incorporated into func-
tional response models, they are usually a function of
predator density. No study we know of incorporates
lag as we do here. In the present model we have
assumed that the predator density is constant and high
enough that both aggregation and interference are
significant. Although this is a simplification, it allows
us to examine the effects of spatial dynamics without
making the model overly complex.

Substituting Eqgs. (3) & (4) for G, and H into the
modified generalized functional response model
(Eq. 2) defines the functional response as a function
of lag,

_ [1-Cpin)e ™" +Crin JCW N
1+[(1-Cpy)e el + Cpin 1C [(1— H e ™ + H o, [N

®)

Model simulation: blue crabs feeding among clam
patches. The Callinectes sapidus-Macoma balthica
system provides an excellent test of how the opposing
forces of aggregation and interference influence rates
of prey consumption because they operate at different
scales. We parameterized the model presented above
(Eq. 5) using data from previous laboratory and field
experiments. The discovery (r¢) and consumption (ry)
rate constants were based on the largest values for the
detection distances (other prey patches: 10 to 15 m;
conspecifics: 4 to 5 m; Clark et al. 1999a,b). We used
values for rc and ry that yield asymptotes at approxi-
mately these lags (rc = -0.17; ry = -0.50). We used the
functional response of the blue crab to M. balthica in
muddy sediment from laboratory experiments to calcu-
late C,, = 0.34 at a clam density of 60 clams m~2 (Eggle-
ston et al. 1992). We used the averaged handling time
of isolated blue crabs feeding on M. balthica in the lab-
oratory as our estimate of the handling time in the
absence of interference: H,,;, = 0.17 d (Eggleston et al.
1992). As lags increase, the probability of finding a
patch decreases substantially, but is unlikely to dimin-
ish to O at biologically relevant distances, so we set
Chin = 0.10. Thus, parameterized, the model predicts
that prey will suffer the highest mortality at lags of
6.5 m, and prey mortality rates will diminish rapidly at
both shorter and longer lags (Fig. 1A). As we were
uncertain of our estimate of C.;, we examined the
effect of varying Cy,;, from 0 to 0.3 (Fig. 1B). Maximum
mortality varied from lags of 5.8 m at C,;, = 0 to lags of
8.3 m at Cpy;, = 0.3, and increasing C,, increased mor-
tality rates at long lags. We designed a field experi-
ment to quantify the effect of varying lag on prey
mortality rates due to blue crab predation based on this
a priori prediction.

A field test of the lag model. A field experiment was
carried out in the Rhode River, a sub-estuary of the
Chesapeake Bay (USA), in July and August 1994. Sta-
tions in a small embayment, Canning House Bay
(38°52'34" N, 76°31' 30" W), were established at 50 m
intervals parallel to shore, in approximately 1 m of
water (tidal depth range: 0.75 to 1.25 m). Canning
House Bay has uniform sediment composed of muddy
sand in shallow water (<1 m depth) and mud in deeper
areas (>1 m depth). Preliminary surveys indicated low
and relatively homogeneous density of Macoma balth-
icain the area (A. Hines unpubl. data). For each exper-
imental run, lag treatments of 1, 7, 10, or 50 m were
randomly assigned to each station, and 2 stations were
established as controls. We picked 1 m, where interfer-
ence should be intense, and 50 m, where neither inter-
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Fig. 1. Callinectes sapidus preying on Macoma balthica.
(A) G, (probability of a blue crab finding a patch), handling
time, and number of clams eaten as predicted by the lag
model (Eq. 5) when parameterized based on the blue
crab—clam system in the Rhode River, USA: ro = 0.17, 1y =
0.50, Cppip = 0.10, Hyyin = 0.15, C,, = 0.34, N = 60. Lags at which
interference (int) and aggregation (agg) become negligible
are indicated with arrows. Maximal clam mortality is
expected at 6.6 m. (B) Effect of varying Cy;, from 0 to 0.3 on
the model outputs. Other parameters are: rc = 0.17, ry = 0.50,
Hpi, =0.15, C,, = 0.34, N =60

ference nor aggregation should have any effect, as 2
extremes predicted by the model. We also used 7 m,
where the model predicts maximum predation rates,
and 10 m, where the model predicts intermediate pre-
dation rates. The study was unbalanced, with 4 repli-
cates over time at 1, 10, and 50 m, and 3 replicates at
7 m. At each station, 0.25 m? plots were placed at the
apices of an equilateral triangle, with the length of the
sides equal to the assigned lag (Fig. 2). We selected a
patch size of 0.25 m? because it is unlikely that >1 blue
crab would forage at any given time, thus effectively
eliminating intra-patch interactions (Clark et al. 1999b).
The 2 control stations each had one 0.25 m? plot. In
each plot, we placed 15 marked adult M. balthica, cre-
ating a high-density clam patch of 60 clams m~2, which
represented a significant increase over the ambient
clam density in Canning House Bay, but was well
within naturally occurring densities within the Rhode

River (Seitz et al. 2001). Clams, 17 to 27 mm shell
length, were collected at nearby sites in the Rhode
River, marked with an indelible marking pen, and
transplanted within a 0.25 m? frame, siphon edge up,
approximately 4 cm below the sediment surface. Two
opposite corners of each plot were marked with small
floats attached with monofilament line to large nails,
which were buried beneath the sediment surface to
avoid any enhancement in structural complexity.
Cages were then placed over each plot, and clams
were given 24 h to acclimate and bury to natural depth.
After the acclimation period, cages were removed from
all lag treatment plots. The control plots remained
caged. After 6 h exposure to predators, marked clams
were recovered by placing a steel caisson over the plot
and pressing it approximately 15 to 20 cm into the sed-
iment. A suction sampler was then used to remove sed-
iment, clams, and shells down to a sediment depth of
40 cm, which is beyond the burial depth of M. balthica
(Hines & Comtois 1985). The samples were collected
in 7 mm mesh bags. Marked clam recovery and un-
marked (ambient) clam densities were recorded, and
proportional clam mortality was calculated. The ex-
periment was performed on 4 dates (7, 17 July; 9,
16 August), within the seasonal peak of crab abun-
dance in the Rhode River (Hines et al. 1990). Crabs
were sampled 3 times each month from March to
December using a 2 m wide otter trawl pulled 900 m at
2 stations in the Rhode River (see Hines et al. 1990 for
details on trawl methods).

Statistical analysis. We analyzed ambient clam den-
sity with a 2-way analysis of variance (ANOVA) with

A Station
Iso m
A

Plot
WIosm
H

0.5m

Lag
| ey r—-we |
1,7,10 or 50 m

Fig. 2. Diagram of experimental design. Stations were established
at 50 m intervals in Canning House Bay, USA (38°52'34" N,
76°31' 30" W). Each station was comprised of 3 experimental
plots arranged in an equilateral triangle (inset). Lag was varied
by changing the length of the triangle’s side at each station
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Fig. 3. Macoma balthica. (A) Mean (+SE) ambient clam den-

sity and (B) mean (+SE) clam mortality (square-root arcsine

transformed) both averaged over the 4 dates (in 1994) of the

experiment. Means with like letters are not significantly dif-

ferent by protected least-squares differences; n = 3 for 7/17
and n = 4 for all others

date and station as factors. In this, as in all general
linear model (GLM)-type analyses, we checked the
assumptions of homogeneity of variance and normality
and, in the cases noted, transformed the data to
achieve it. To test whether the experimental results
were consistent with our prediction that intermediate
lags would have the highest predation rates we ex-
plored a series of GLMs and selected the best model
using the Akaike's information criterion corrected for
small sample size (AIC.) for each model (Burnham &
Anderson 2002). We assumed an exponential rate of
loss and calculated the predation rate using:

S = Ne? (6)

where S is the number of recovered clams, Nis the ini-
tial number, p is the instantaneous predation rate per
day, and t is the time elapsed (Long & Seitz 2008). In all
models, date was included as a fixed effect. In 1 model,
lag was simply considered a categorical factor; in all
others, it was considered a covariate. Because our
model predicts a humped shaped response (Fig. 3), we
considered models that included lagZ. Additionally,
because our model predicts a sharp increase in preda-
tion at low lags, with either a more gradual decrease
after the peak predation rate or an approximate

asymptote (depending on the C,,;, value; Fig. 3), we
also considered models with the lag log-transformed.
Ambient clam density was included in the set of mod-
els as a covariate due to its temporal and spatial varia-
tion (see ‘Results’). We also considered potential inter-
active effects between lag and date and lag and
ambient clam densities (see Table 2).

RESULTS

The retrieval rate of marked clams Macoma balthica
from the caged control patches was high, 93.6 + 1.6 %
(mean + standard error), indicating that clam losses
due to handling mortality and sampling inefficiency
were negligible. Before considering the effect of
experimental treatment on clam mortality, we tested
for temporal and spatial patterns in the density of
ambient clams; variation in density could affect preda-
tor perception of our experimental plots, and thus
influence predator behavior and predation rates on
experimental clams in the study area. Ambient clam
density varied significantly among trial dates and
among station locations throughout the study area
(Table 1), and was higher on 7 July than on any other
date (Fig. 3A). Thus, our experimental plots with 15
additional clams per 0.25 m? represented a 3-fold
increase in prey densities on 7 July and a 7-fold
increase on the other trial dates. There was a general
trend for higher clam densities at the northern side of
the bay; however, ambient clam densities did not vary
among lag treatments (1-way ANOVA, F5,,=0.33,p=
0.80). We controlled for the spatial and temporal varia-
tion in ambient clams by including them in some of our
GLM models as a covariant.

Both lag and date affected the mortality rates of
marked clams, while neither ambient clam density nor
either of the interaction terms did (Table 2). Four mod-
els had an AAIC of <2 and were considered to best
explain the data (Table 2). All of them included data as
a factor and lag, lag and lag?, log(lag), or log(lag) and
log(lag)®. In general, including lag? and log transform-
ing the lag values decreased the AIC,. Clam predation
rates increased during the course of the study, with

Table 1. ANOVA table for the effect of date and station on
ambient clam Macoma balthica densities

Source df SS MS F p
Date 3 89.67 29.89 7.1 0.02
Station 1 52.20 5220 124 <0.01
Date x Station 3 49.26 16.42 3.9 0.06
Error 7 29.47 4.21
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Table 2. Ranking of GLMs of predation rate on clams Macoma balthica using Akaike's information criterion with small sample

size correction (AIC.). Models include the factors indicated in the model column. Lag.: lag as a categorical factor; Lag: lag as a

covariate; Ambient: ambient clam densities. The 4 most likely models are shown in bold font; the most likely model, presented
in Fig. 5, is also underlined

Model Parameters AIC, AAIC. Likelihood AIC,
weights
Lag., Date 8 -50.17 10.00 0.01 0.00
Lag, Date 6 -59.48 0.69 0.71 0.21
Lag, Lag?, Date 7 -59.51 0.65 0.72 0.22
Log(lag), Date 6 -59.87 0.30 0.86 0.26
Log(lag), Log(lag)? Date 7 -60.17 0.00 1.00 0.30
Log(lag), Log(lag)?, Date, Ambient 8 -51.08 9.09 0.01 0.00
Log(lag), Log(lag)? Date, Date x Log(lag) 10 -21.68 38.49 0.00 0.00
Log(lag), Log(lag)?, Date, Ambient, Ambient x Log(lag) 9 -38.05 22.12 0.00 0.00
Log(lag), Log(lag)?, Date, Ambient, Date x Log(lag), Ambient x Log(lag) 12 82.05 142.21 0.00 0.00
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Crabs trawl!™

40 1

20 1

Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 4. Callinectes sapidus. Monthly mean (+SE) blue crabs
per 900 m trawl in the Rhode River, USA, during 1994; n = 6
for each month

highest predation rates during the August 9 sampling
(Fig. 3B). The peak of blue crab Callinectes sapidus
abundance in the vicinity of the experimental site coin-
cided with our trial dates (Fig. 4). We present the GLM
table for the best fitting model (Table 3) and show the
predicted predation rates based on this model (Fig. 5).
Mean predation was highest at an intermediate lag of
7 m; percent mortality at a lag of 7 m was 9% higher
than at 50 m.

DISCUSSION

Experimental results supported our model-based
a priori predictions about predator aggregation and
interference over different inter-patch distances; high-
est clam Macoma balthica mortality occurred at inter-
mediate lags (Fig. 5). The lag model predicted the
peak clam mortality at a lag of 6.5 m, and we observed

Table 3. GLM table for best fit model of clam Macoma balth-
ica mortality including the linear and quadratic Log(lag)

variables
Source df SS MS F P
Log(lag) 1 0.002 0.002 6.77  0.029
Log(lag)? 1 0.001 0.001 6.14  0.035
Date 3 0.010 0.003 14.61 0.001
Error 9 0.002 0.0002
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Fig. 5. Callinectes sapidus preying on Macoma balthica. Pre-

dation rates across the 4 lags with the quadratic curve fit

(solid line) for each of the 4 sampling dates. Predicted clam

mortality = 0.115 + 0.052[log(lag)] — 0.028[log(lag)]? R? = 0.85
(GLM)

maximum mortality at lags of 7.0 m, which was the
closest lag tested. At lags of 7 and 10 m, facilitation,
due to the crabs' Callinectes sapidus aggregative
response, likely increased feeding efficiency, while
inter-patch agonistic crab interactions did not reduce
feeding efficiency. We thus demonstrate that inter-
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patch distance can be an important factor in determin-
ing the predator functional response across heteroge-
neous seafloor landscapes. The net effect on clam den-
sities can be substantial; in our experiment the 50 m
lag plots had a final marked clam density that was 20 %
higher than that of our 7 m lag plots.

Both patch size and predator density likely have an
interactive effect with lag on predation rates. Increas-
ing the size of a patch most likely increases intra-patch
predator aggregation and interference. Likewise,
increasing predator density increases both the ability
of predators to aggregate or otherwise facilitate preda-
tion (Nilsson et al. 2007) and the potential for interfer-
ence among predators (Clark et al. 1999b, Skalski &
Gilliam 2001). In the present experiments we tried to
minimize the intra-patch effects by keeping our patch
size small enough that blue crabs were unlikely to use
them simultaneously (Clark et al. 1999b). However,
investigating the effects of patch size in isolation or in
combination with lag should be explored in future
experiments.

The discrepancy between the model prediction and
the field estimate was low, given the number of factors
present in the field, but not accounted for by the
model. Although data relating to the maximal detec-
tion distances were used to estimate the rate constants,
the shape of the response was unknown. The negative
exponential function is a reasonable first approxima-
tion of the processes. The model also predicted a more
pronounced difference in predation rate between the
intermediate and extreme lags than we observed. This
could be partially due to underestimating Cpy, or
because our modeling framework and experimental
approach assumed discrete patches. Prey is seldom
distributed in such sharply delineated patches; prey
densities are more often graded from high- to low-
density areas. This model and conceptual framework
also apply to situations where gradients exist, as is the
case with Macoma balthica, but the importance of lag
will decrease as the gradient between high- and low-
density regions becomes more gradual (Seitz et al.
2008). The ‘background density’ of prey surrounding a
patch can have significant effects on prey survival
(Kuhlmann & Hines 2005), as well as other ecological
interactions (Thrush et al. 1997b, Lohrer et al. 2004).
Nevertheless, it is common for larvae of benthic inver-
tebrates to settle in distinct, often sharply defined
patches that attract predators (Dubois et al. 2007,
Nestlerode et al. 2007); similarly, benthic algae and
seagrasses also grow in well-delineated patches that
attract herbivores (Heck & Valentine 2006).

Although we tested the predictions of our model in a
crab—clam predator-prey system, the model is suffi-
ciently general to apply it to any system where prey
are patchily distributed and predators display an

aggregative response or mutual interference. Alter-
ations in the rates of decay for C, and H can be
adjusted based on the mobility and behavior of the
predator; as with most scaling problems, natural his-
tory information is important to determine the rele-
vance of spatial heterogeneity of prey patches.

There are many cases in which highly mobile preda-
tors aggregate at larger scales than the scales of inter-
ference, including shorebirds feeding on infauna (Ens
& Goss-Custard 1984) and rays feeding on bivalves
(Hines et al. 1997). In these systems, interference
occurs at very small spatial scales, usually due to direct
contact between predators as they forage, so H decays
quickly and G, decays slowly. In these instances, our
model predicts that the effects of lag will only be
apparent when the lag < animal size. This is the case
for ruddy turnstones Anenaria interpres feeding on
experimental patches (Vahl et al. 2007).

The effect of these small-scale spatial and temporal
processes is the relative homogenization of prey-item
distribution. Over 50 % of the clams transplanted in the
present study were consumed by predators within 6 h.
This indicates that predators are capable of reducing
the density of clams in a small high-density patch to
the ambient densities within a few days. When these
processes are scaled up, both spatially (to 10s of kilo-
meters) and temporally (to months), predation on
Macoma balthica homogenizes large-scale clam densi-
ties (Seitz et al. 2008). At these larger scales, bivalve
density is probably driven by factors that increase (e.g.
physiological stress; Long & Seitz 2008, Long et al.
2008), or decrease (e.g. predator access; Beal 2006) pre-
dation risk independently of clam density, or by bot-
tom-up factors (Seitz & Lipcius 2001). A similar pattern
of large-scale equalization of prey densities also occurs
with shorebirds feeding on infauna (Schneider 1978).

CONCLUSIONS

One of the strengths of the present study was the use
of natural history information to frame an a priori
hypothesis and model. This enabled us to perform the
experiment at the appropriate spatial scale, both
increasing the power of the study and avoiding miss-
ing important aspects of the system (Cummings et al.
1997, Hewitt et al. 2007); had we only examined lags
from 1 to 10 m, we would have underestimated the
importance of aggregation. In this system, we ob-
served a predictable pattern of predation rate within a
heterogeneous landscape of prey densities that was
most likely caused by 2 predator behaviors, aggrega-
tion and interference, operating on different scales,
thus highlighting the interaction between scale and
ecological processes (Thrush et al. 1997a).
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