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Abstract: We developed relationships for estimating wetland condition from remotely sensed data and

digital maps. Assessment methods relying on maps rather than field sampling (level 1 assessment) are

often expert systems summarizing the best professional judgments of wetland scientists. We instead

developed level 1 assessment relationships by statistically analyzing results from field sampling. The field

campaign applied the hydrogeomorphic (HGM) functional assessment approach to sample 143

freshwater flat and riverine wetlands in the Nanticoke River watershed, Maryland and Delaware,

USA. Functional condition index (FCI) scores for five wetland functions were calculated from the field

observations. We used geographic information system (GIS) analysis of digital maps to derive candidate

landscape indicators for the sampled points. We tested which indicators correlated strongly with the field

condition scores, and then we used stepwise multiple regression and regression tree analysis to identify the

most effective combinations of landscape metrics for predicting the condition measurements. The best

multiple regressions combined information from land-cover, road, and stream maps, especially a stream

map resolving natural stream reaches from channelized or ditched reaches. For riverine wetlands, we

obtained statistically significant regressions explaining 63%–85% of the variance of measured FCI scores

for all five HGM functions (hydrology, biogeochemistry, habitat, plant community, and landscape).

Comparable models for flat wetlands were also statistically significant but explained less (48%–54%) of

the variance. Regression tree analysis produced more parsimonious models than did stepwise multiple

regression. A tree model explained the same amount of variability as the multiple regression model for

two flat and two riverine functions, but the tree model explained less variability for two flat and three

riverine functions. Our level 1 relationships can be applied to estimate condition scores for unsampled

wetlands and to provide confidence limits for those estimates. The uncertainty in predicting a condition

scores for individual assessment points is high for most HGM functions, but the models can still help

prioritize field visits to select sites for management action. Confidence limits are narrower for predicting

mean scores across many wetlands, so the relationships are more powerful for predicting average wetland

condition across an assessment area, such as a watershed.
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INTRODUCTION

Wetland or watershed management efforts often

rely on assessments of wetland function to prioritize

wetlands for protection or restoration (DNREC

2002, Brooks et al. 2004, Thomas and Lamb 2004,

Tiner 2004). Available assessment methods have

been categorized into three ‘‘levels’’ (Brooks et al.

2004, Fennessy et al. 2004). The most detailed (level

3) assessments collect intensive field observations at

each assessment site, while rapid (level 2) methods

require less field data that can be collected in briefer

visits of more sites (Fennessy et al. 2004). Level 1

assessments use information from maps and re-

motely sensed data rather than field measurements,

so level 1 methods can be used when there are no

resources to support field data collection, or a pre-

liminary level 1 analysis can help target field efforts

on critical sites within the assessment area (Brooks

et al. 2004). Level 1 assessments are typically expert

systems based on review of the scientific literature

and the best professional judgments of wetland

scientists (Abbruzzese and Leibowitz 1997, Suter et

al. 1999, CBP 2004, Tiner 2005) rather than on data

from a specific set of wetlands. As such, most level 1

models include no objective estimate of model

quality and cannot provide confidence limits for

predicted assessment scores.

We used the Nanticoke River watershed of

Maryland and Delaware, USA (Figure 1) as a model

system to develop and test three methods for

evaluating wetland function: the HGM field assess-

ment method (Whigham et al. 2007), a level 1

assessment method (this paper), and a comparison

of HGM results to direct measures of nitrogen

processing (Jordan et al. 2007). The Nanticoke River

is a tributary of Chesapeake Bay and has a 2211 km2

watershed (USGS 2000, 2004a). Once mostly

forested (Tiner 2005), the watershed is now 38%

forest, 38% cropland, 18% grassland, 3% developed

land, and 3% other (NLCD 2001 land cover, Homer

et al. 2004). Wetland area has decreased from 45%

of the presettlement watershed to 28% in 1998

(Tiner 2005). The remaining wetlands contain many

rare and endangered species, and the watershed has

been designated as a bioreserve by the Nature

Conservancy (TNC 1998). The watershed is also

a focus of state conservation efforts (DDA 2003,

MD DNR 2003).

In this paper, we use data from HGM field

assessments (Whigham et al. 2007) to identify and

calibrate statistical models for level 1 relationships

that predict wetland condition from landscape

variables derived from land-cover, stream-distur-

bance, road, and wetland maps. Univariate correla-

tion was used to identify the best landscape

indicators for each HGM function of two wetland

classes. Multiple regression and regression trees were

applied to identify the best combinations of

indicators. We tested the ability of multiple re-

gression models to predict average wetland condi-

tion in a watershed by comparing level 1 assessment

results with HGM field results for three subbasins of

the Nanticoke watershed. We explored the advan-

tages and disadvantages of our approach and its

possible application within and beyond the Nanti-

coke River watershed.

METHODS

HGM Field Assessment

We calibrated our indicator models to results

from a field assessment of freshwater non-tidal

wetland condition in the Nanticoke watershed

(Figure 1). The hydrogeomorphic (HGM) approach

(e.g., Brinson et al. 1993, USACE 2005) was applied

to assess two classes of wetlands, flat and riverine,

which together comprise more than 99% of the non-

tidal wetlands in the Nanticoke watershed (Tiner

2005). Consultations with local experts helped

identify degraded wetlands and reference standard

wetlands representing the best possible conditions

currently achieved in the Nanticoke watershed. Field

teams visited each wetland to measure likely

Figure 1. Location of the Nanticoke River watershed

(hatched area) in the states of Maryland (MD) and

Delaware (DE), USA, near the Chesapeake Bay.
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indicators of wetland condition, and then expert

workshops selected the subset of candidate variables

most useful in resolving degraded from reference

conditions. The experts also scaled each variable to

range from 0 (completely degraded) to 1 (reference

condition), and then developed scoring models to

combine the scaled variables into Functional Ca-

pacity Index (FCI) scores, which were also scaled

between 0 and 1. For flat wetlands, scoring models

were developed for four functions: Hydrology,

Biogeochemistry, Plant Community, and Habitat

(abbreviated here HYDROL, BIOGEO, PLANT,

and HABITAT). The same functions were devel-

oped for riverine wetlands, along with a Landscape

function (LANDSC).

The scoring models were applied to field measure-

ments from a representative sample of assessment

points for each wetland class. Probability sampling

(Stevens and Olsen 1999, 2000, Stevens and Hornsby

2007) was used to select a list of sampling points

(post-stratified by class) from a wetland map

combining information from the National Wetland

Inventory (Tiner 1985, Tiner and Burke 1995, USGS

2005) and from the states of Maryland and

Delaware (State of Delaware 1994, MD DNR

2005) Candidate sites that were not accessible or

that were not actually in a riverine or flat wetland

were eliminated, yielding a final sample of 89 flat

and 54 riverine wetlands where field data were

collected in 1999 and 2000. The field methods, the

data collected during assessments, the calculation of

FCI scores, and our interpretations of the results are

detailed in Whigham et al. (2007).

Geographic Data and Spatial Analysis

We derived potential geographic indicators from

digital maps of land-cover data, streams, roads, and

wetlands (Table 1). We used the ArcGIS/ArcINFO

geographic information system (GIS, Environmen-

tal Systems Research Institute, Inc., Redlands, CA)

to summarize the digital geographic data into

candidate independent variables describing areas

near assessment points or distances from assessment

points to landscape features. We used statistical

analyses to identify the strongest predictors of

wetland function.

Land Cover. The National Land Cover Database

(NLCD 2001) provides land cover (Figure 2) at the

resolution of 30 m2 pixels classified from satellite

imagery (Landsat 7 ETM+) and ancillary informa-

tion (Homer et al. 2004). The satellite images used

for the Nanticoke watershed were acquired in July

1999, September 1999, and April 2001 (USGS 2004).

Thirteen NLCD land-cover types occurred in the

Nanticoke watershed. There were four categories of

developed land: developed open space (NLCD code

21) developed low intensity (code 22), developed

medium intensity (23), and developed high intensity

(24). These were combined into one category, total

developed land, called DEVTOT here. Variable

names (Table 1) were assigned to eight other NLCD

categories as follows: BARE, barren land (NLCD

code 31); FORDEC, deciduous forest (41); FOR-

EVER, evergreen forest (42); FORMIX, mixed

forest (43); GRASS, pasture/hay (81); CROP,

cultivated crops (82); WOODWET, woody wetlands

(90); and HERBWET, emergent herbaceous wet-

lands (95). Two additional measures were also

derived: undeveloped, unforested land, CLEAR 5

GRASS + CROP and total forest, FOREST 5

FORDEC + FOREVER + FORMIX + WOOD-

WET. The NLCD water category (code 11) was not

used in our analyses. GIS analysis was used to

quantify the percentages of the 11 land-cover

categories in concentric circles (with 100-m and

1,000-m radii) around each assessment point.

The NLCD 2001 data set also provides estimated

percentages of impervious surface and tree canopy

coverage within each pixel (Huang et al. 2001, Yang

et al. 2003, Homer et al. 2004). These data (see insets

in Figure 2) were summarized for the whole

watershed and for 100-m and 1,000-m-radius circles

around assessment points to estimate four addition-

al measures: IMPMEAN, the average percentage of

impervious surface; TREEMEAN, the average

percentage of tree canopy coverage; IMPZERO,

the percentage of area with zero impervious surface;

and TREEZERO, the percentage of area with zero

tree canopy coverage.

Streams and Stream Condition. We analyzed dig-

ital stream maps (Figure 3, left) developed by the

NWI for the Nanticoke watershed (Tiner et al. 2000,

2001) to derive variables describing the proximity of

wetland assessment points to streams and the

possible hydrologic disturbance of wetlands by

channelizing streams and ditching. The NWI stream

maps were based on USGS 1:24,000 topographic

maps with additional stream lines, including man-

made ditches, added from 1998 aerial photographs

(Tiner et al. 2000, 2001). Each stream reach was

assigned to one of 12 categories: natural tidal

(data code R1UBV), excavated tidal (R1UBVx),

natural perennial (R2UBH), excavated perennial

(R2UBHx), natural intermittent (R4SBC), excavat-

ed intermittent (R4SBCx or R4SBEx), impounded,

centerline, outline, natural polygon, and excavated

polygon (Tiner et al. 2000, 2001). The last two types
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represented wide stream reaches that were mapped

as polygons rather than lines (H. C. Bergquist,

personal communication). Other wide reaches were

mapped with both a centerline and outline repre-

senting the banks of the reach. These reaches were

classified as natural reaches, and only the centerline

was used in our spatial analyses to avoid multiple

accounting for the same reach. Unclassified reaches

were dropped. For analysis, the classification was

simplified to two categories by lumping all the

disturbed reaches (excavated, ditched, and im-

pounded) into one category (here called ‘‘excavat-

ed’’) and all the natural reaches into another

category, called ‘‘natural’’ (Figure 3, left). GIS

software was used to find the straight line distance

from each assessment point to the nearest stream

(STRDIS), and the condition of the nearest stream

was recorded in the variable STRCOND (0 5

excavated, 1 5 natural). We quantified stream

density in 100-m and 1,000-m-radius circles around

each assessment point to get three measures of

stream density in km/km2: TSTRDEN, total stream

density; NSTRDEN, density of natural streams; and

XSTRDEN, density of disturbed streams (excavated

and impounded).

The high-resolution National Hydrography Da-

taset (1:24,000 scale; USGS 2000, 2004) lacks the

NWI information on stream channel disturbances

(Tiner et al. 2000, 2001) but provides detailed stream

maps for the entire U.S. The high-resolution NHD

Table 1. Potential landscape indicators of wetland condition. Asterisks denote variables describing the distance from an

assessment point to a road or stream. The remaining variables are percentages or densities quantified for the areas in 100-m

and 1,000-m-radius circles around assessment points and for the entire Nanticoke watershed.

Variable Name Description

Land-cover categories from NLCD 2001

FORDEC Deciduous forest %

FOREVER Evergreen forest %

FORMIX Mixed forest %

WOODWET Wooded wetland %

FOREST Total forest %

DEVTOT Total developed land %

CROP Cropland %

GRASS Grassland %

CLEAR Cropland % + grassland %

HERBWET Herbaceous wetland %

BARE Barren land %

Pixel percentages from NLCD 2001

IMPMEAN Mean % impervious

IMPZERO % with zero impervious

TREEMEAN Mean % tree cover

TREEZERO % with zero tree cover

Nanticoke watershed stream and ditch map

XSTRDEN Excavated stream density (km/km2)

NSTRDEN Natural stream density (km/km2)

TSTRDEN Total stream density (km/km2)

STRCOND* Condition of nearest stream (0 5 excavated, 1 5 natural)

STRDIS* Distance (m) from assessment point to nearest stream

STRDISMIN* Minimum of STRDIS and STRDISNHD

1:24,000 National Hydrography Dataset (NHD)

TSTRDENNHD Stream density (km/km2)

ORDER* Strahler order of nearest stream

STRDISNHD* Distance (m) from assessment point to nearest stream

Roads from census TIGER files

ROADDEN Road density (km/km2)

ROADDIS* Distance (m) from assessment point to nearest road

Wetlands from NWI and states of MD and DE

WETPERC Wetland %
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dataset also includes topological information for

connecting stream reaches into a network. These

‘‘flow relations’’ were used to assign the Strahler

stream order (Gordon et al. 1992) to each reach in

the Nanticoke watershed (Figure 3, right). GIS
analysis was used to calculate the density of streams

(in km/km2) within 100-m and 1,000-m-radius circles

(TSTRDENNHD), the distance from each assess-

ment point to the nearest stream (STRDISNHD),

and the Strahler stream order of that stream

(ORDER).

Roads and Wetlands. To represent the possible

disturbance of wetlands by roads and associated

Figure 2. Land-cover map for the Nanticoke River watershed. Land-cover categories were aggregated from the NLCD

2001 data base (Homer 2004, USGS 2004b). For the area framed in the center of the map, the upper left inset shows the

percentage of tree cover per pixel (Huang et al. 2001), with darker green indicating greater tree canopy cover. The upper

right inset shows the percentage of impervious surface per pixel (Yang et al. 2003), with darker red indicating

a higher percentage.
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activities, we analyzed the U.S. Census Bureau’s

map of roads prepared for the 2000 census (USDC

2001, ESRI 2005). We calculated the distance from

each assessment point to the nearest road (ROAD-

DIS, in m) and the density of roads (ROADDEN,

km/km2) within 100-m and 1,000-m-radius circles

around each point and for the entire watershed. We

used the same wetlands map from which assessment

points were chosen to estimate the prevalence of

wetlands around sampling points. The map was

simplified to a binary classification (wetland or

upland) and analyzed to estimate the percentage of

wetland (WETPERC) within 100-m and 1,000-m

radii of each assessment point and for the entire

watershed.

Statistical Analysis

Descriptive Statistics. For each wetland class, we

summarized the geographic indicators to describe

how landscape properties near wetlands (within 100-

m and 1,000-m radii) differed from the properties of

the whole watershed. Means and standard errors

were tabulated by wetland class. Two sided T-tests

were used to test for significant differences between

the areas within 100 or 1,000 m of assessment points

and the whole watershed, and ANOVA was used to

test for differences between the 100-m and 1,000-m-

radius circles.

Univariate Correlations. To test how landscape

characteristics relate to wetland condition, we

calculated the univariate correlations of the field-

measured FCI scores with all of the landscape

metrics for each wetland class. We report the

squared correlations (R2) to quantify amount of

variation in an FCI score that can be explained by

a landscape indicator, along with the sign of the

original correlation to show the direction of

association. We used the sequential Bonferroni

correction (Holm 1979) to guard against false

positives and ensure an overall significance level of

Figure 3. Stream maps of the Nanticoke River drainage network. The left panel shows stream reaches mapped and

categorized by stream condition (natural, excavated, or impounded) by the NWI (Tiner et al. 2000, 2001). The right panel

shows the NHD high-resolution (1:24,000) digital stream map (USGS 2000, 2004) with streams colored by Strahler stream

order. In each panel, the corner inset shows an enlarged view of the framed area.
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P , 0.05 when evaluating simultaneous tests for 48

independent variables.

Multiple Regression Models. We used multiple

regression analysis to identify models that combine

more than one landscape indicator to yield better

(higher R2) predictions of the field measured FCI

scores for each wetland class. Stepwise multiple

regression (Sokal and Rohlf 1981, SAS Institute Inc.

2004) was applied to decide how many independent

variables (landscape indicators) to use. We chose

a conservative value of P 5 0.05 for the stepwise

parameters ‘‘P to enter’’ and ‘‘P to remove’’ (SAS

2004) to favor parsimonious models with lower

mean square errors (Sokal and Rohlf 1981). Step-

wise regression may not identify the best model

(highest R2) for a given number of independent

variables (Sokal and Rohlf 1981), so we sub-

sequently applied the SAS RSQUARE model

selection method (SAS 2004) to identify the best

model (highest R2) with that number of independent

variables. We also developed a separate set of

regression models omitting variables derived from

the NWI stream maps (Tiner et al. 2000, 2001),

which are only available for the Nanticoke basin.

Regression Tree Models. Regression tree analysis

requires fewer assumptions than linear regression

analysis and can work well with non-normal

variables, non-linear responses, and non-continuous

variables (De’Ath and Fabricius 2000). We used the

RPART statistical library (Therneau and Atkinson

1997, Venables and Ripley 2002) with a minimum

split of 5 to identify a regression tree for predicting

each FCI score for each wetland class. Each tree was

subjected to a 10-way cross validation, which was

then used to prune superfluous nodes from the tree

using the (1-SE) rule (Therneau and Atkinson 1997,

Venables and Ripley 2002). This process yields the

simplest tree in which all the branches produce an

improvement in prediction (higher R2) that is

discernable against the background variability in

the data (Therneau and Atkinson 1997).

RESULTS

Descriptive Analysis

The environmental indicators we summarized

revealed extensive human modification of the

Nanticoke watershed and also documented differ-

ences between the wetland classes and the entire

watershed (Tables 2 and 3). There were differences

in land-cover proportions between the areas near

wetland sampling points and the entire landscape,

between the two classes of wetlands, and between

the two sizes of neighborhoods (100 m and 1,000 m)

around sampling points (Table 2). Measures of

forest cover showed significantly higher forest

percentages near wetlands than throughout the

watershed, and higher percentages of forest occurred

nearer assessment points (within 100 m) than farther

away (within 1,000 m). Measures of undeveloped

cleared land (CLEAR, GRASS, CROP, and TREE-

ZERO) showed opposite patterns. There was little

developed land in the whole watershed and near

assessment points, and the patterns with respect to

assessment points were less clear. Impervious surface

percentage was slightly but significantly lower near

flat wetlands or within 100 m of riverine wetlands

than throughout the watershed, while developed

land within 1,000 m of riverine assessment points

was slightly (but not significantly) higher than the

entire watershed.

The NWI stream map documents the extensive

alteration of the Nanticoke watershed drainage

network that has occurred. Of the 4,014 km of

non-tidal stream length mapped in the Nanticoke

watershed, only 12.8% was characterized as natural

stream channel, while 86.6% consisted of channel-

ized streams or ditches added to the original

drainage network. A small fraction of the stream

length (0.6%) was characterized as impounded.

Not surprisingly, riverine assessment points were

generally much closer to streams than were flat

assessment points (Table 3). The difference was even

greater when measured with the high-resolution

NHD stream network because, compared to the

NWI map, the NHD stream map includes fewer of

the ditches that are often the drainage feature closest

to flat wetlands. The average Strahler order of the

nearest stream was higher for riverine points than

for flat points. The nearest stream reach was in

natural condition for 57% of the riverine assessment

points, but the nearest reach was excavated for 94%

of the flat assessment points. Total stream density

was higher near riverine points than near flat points

(Table 2). For riverine wetlands, stream density was

higher within a 100-m-radius circle than within

a 1,000-m circle, while the reverse was true for flat

wetlands.

Riverine assessment points tended to be closer to

roads than flat points (Table 3), and road density

(ROADDEN) was higher near riverine points than

near flat points (Table 2). For both classes, road

density within 100 m of assessment points was lower

than road density in a 1,000-m circle. Wetland

percentage was higher for flat points than for

riverine, and nearby wetland percentage (within

100 m) was higher than the percentage in a larger

circle for both classes.
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Univariate Correlations

FCI scores for each of the HGM functions in both

wetland classes were significantly and strongly

correlated with several landscape indicators (Ta-

bles 4 and 5). Between 20% and 60% of the

variation among scores for any function was

explained by the best single indicator, and more

variation was explained for the riverine class (26% ,

R2 , 60%) than for the flat class (20% , R2 ,

40%). Most of the top predictors for flat functions

described the landscape very near the wetland

(within 100 m), while more of the top riverine

predictors were based on data from a larger

neighborhood (within 1,000 m).

Variables describing stream density and stream

disturbance were the top predictors for three riverine

functions (HYDROL, BIOGEO, and HABITAT)

and two flat functions (HYDROL and BIOGEO).

In contrast, land-cover variables were the top

predictors for the HABITAT and PLANT functions

of flat wetlands and for the riverine LANDSC

function. Stream variables and land-cover variables

had similar explanatory powers for the riverine

PLANT function. Predictors based on roads or

Table 2. Means and standard errors of potential wetland condition indicators for 100-m and 1,000-m-radius circles

around assessment points and for the entire Nanticoke watershed. * indicates assessment point means that are significantly

different from the watershed value (T-test, P , 0.05). 1 indicates that the mean for 100-m-radius circles is significantly

different from the mean for 1,000-m circles (ANOVA, P , 0.05).

Variable Name

Wtsd.

Value

Flat (n 5 89) Riverine (n 5 54)

100-m Circle 1,000-m Circle 100-m Circle 1,000-m Circle

Mean 6 SE Mean 6 SE Mean 6 SE Mean 6 SE

FORDEC 24.9 49.6 6 3.7*1 35.2 6 1.5* 62.3 6 3.4*1 31.2 6 1.6*

FOREVER 6.5 18.2 6 3.1* 13.4 6 1.5* 3.8 6 1.3*1 8.1 6 1.5

FORMIX 2.7 5.4 6 1.1* 3.6 6 0.3* 5.3 6 1.3 3.4 6 0.4*

WOODWET 4.2 9.7 6 2.1* 7.6 6 1* 13.2 6 3.1*1 4.9 6 0.7

FOREST 38.3 82.8 6 2.7*1 59.8 6 2.1* 84.6 6 2.9*1 47.6 6 2.9*

DEVTOT 2.8 1.0 6 0.6* 1.8 6 0.5 1.9 6 1.3 5.5 6 2

CROP 38.3 8.4 6 1.6*1 23.9 6 1.6* 8.8 6 1.71 31.5 6 2.1*

GRASS 17.5 4.6 6 1.4*1 11.4 6 0.9* 2.9 611 15.1 6 1.1*

CLEAR 55.9 13 6 2.1*1 35.3 6 2.2* 11.7 6 2.2*1 46.5 6 2.6*

HERBWET 1.9 0.3 6 0.3* 0.8 6 0.2* 0.9 6 0.6 1.2 6 0.3*

BARE 1.2 3.2 6 1.3 2.9 6 0.5* 0.7 6 0.6 1.0 6 0.2

IMPMEAN 0.83 0.3 6 0.2* 0.4 6 0.1* 0.1 6 0.1*1 1.0 6 0.4

IMPZERO 97.3 99.3 6 0.4* 98.8 6 0.3 99 6 0.8* 96.7 6 1.2

TREEMEAN 28.3 67.2 6 2.5*1 46.7 6 1.8 64.3 6 2.7*1 35.7 6 2.3*

TREEZERO 61.3 15.2 6 2.6*1 40 6 2.1 14.5 6 2.8*1 51.7 6 2.7*

XSTRDEN 1.71 1.34 6 0.281 1.97 6 0.12* 2.36 6 0.431 1.46 6 0.13

NSTRDEN 0.25 0.06 6 0.06* 0.06 6 0.02 2.67 6 0.46*1 0.72 6 0.08*

TSTRDEN 1.96 1.4 6 0.291 2.04 6 0.12 5.03 6 0.44*1 2.18 6 0.1*

TSTRDENNHD 1.47 1.04 6 0.24 1.23 6 0.09* 5.03 6 0.44*1 2.18 6 0.1

ROADDEN 1.82 0.5 6 0.16*1 1.15 6 0.08* 0.88 6 0.29*1 1.63 6 0.16

WETPERC 23.8 84.5 6 2.1*1 48 6 2.2* 53.8 6 4.4*1 20.1 6 1.7*

Table 3. Means and standard errors of potential wetland condition indicators for assessment points and means for the

entire Nanticoke watershed. *indicates assessment point means that are significantly different from the watershed mean (T-

test, P , 0.05). Distance measures are not defined for the entire watershed (NA).

Variable Name Wtsd. Mean

Flat (n 5 89)

Mean 6 SE

Riverine (n 5 54)

Mean 6 SE

STRCOND 0.13 0.06 6 0.02 0.57 6 0.07

STRDIS NA 289 6 33 73 6 12

STRDISNHD NA 276 6 32 71 6 12

ORDER 1.84 1.34 6 0.07* 3.19 6 0.19*

STRDISMIN NA 381 6 39 77 6 13

ROADDIS NA 438 6 34 321 6 31
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wetland percentage were not among the top

indicators for any function.

For the flat class (Table 4), the HYDROL and
BIOGEO function scores were most strongly related

to stream density near the assessment point and to

distance to the nearest stream. Being closer to the

nearest stream or having greater drainage density

within 100 m were both associated with lower

condition scores. The flat HABITAT and PLANT

scores were most strongly related to land-cover

variables. For these two functions, variables reflect-
ing less land-cover disturbance (greater FOREST or

TREEMEAN) were associated with better condition

scores. The percentage of evergreen forest was

negatively associated with flat PLANT condition

scores.

The riverine HYDROL, BIOGEO, and HABI-

TAT functions were most strongly predicted by

measures of stream disturbance (Table 5). The
condition of the nearest stream was the best

predictor for HYDROL and HABITAT and the

Table 4. Univariate correlations of flat wetland FCI

scores with potential landscape indicators (only

correlations significant after applying a sequential

Bonferroni correction for 48 simultaneous tests). Values

are squared correlations expressed as percentages and

augmented with the sign of the correlation.

Variable 6R2

BIOGEO

TSTRDEN100 219.6

XSTRDEN100 218.8

STRDISNHD 16.0

TSTRDENNHD100 213.8

STRDIS 13.5

HABITAT

FOREST100 36.0

TREEMEAN100 29.9

TREEZERO100 228.3

FORDEC100 25.1

CLEAR100 221.7

BARE100 220.3

CROP100 214.7

FORDEC1000 14.5

HYDROL

TSTRDEN100 239.8

XSTRDEN100 237.3

TSTRDENNHD100 232.5

STRDISNHD 16.9

STRDIS 14.8

PLANT

FORDEC100 21.8

FOREVER100 216.6

FOREVER1000 214.4

Table 5. Univariate correlations of riverine wetland FCI

scores with potential landscape indicators (only

correlations significant after applying a sequential

Bonferroni correction for 48 simultaneous tests). Values

are squared correlations expressed as percentages and

augmented with the sign of the correlation.

Variable 6R2

BIOGEO

NSTRDEN1000 45.5

NSTREAM 43.3

XSTRDEN100 241.9

XSTRDEN1000 231.5

HABITAT

NSTREAM 45.9

XSTRDEN1000 241.6

NSTRDEN1000 40.6

XSTRDEN100 236.7

NSTRDEN100 19.4

HYDROL

NSTREAM 60.0

NSTRDEN1000 58.2

XSTRDEN100 250.2

XSTRDEN1000 239.5

NSTRDEN100 26.6

WOODWET1000 21.1

PLANT

GRASS100 226.0

XSTRDEN1000 226.0

CLEAR100 222.2

XSTRDEN100 220.8

FOREST100 20.4

TREEMEAN100 20.1

LANDSC

FOREST100 46.9

FOREST1000 37.5

TREEMEAN1000 37.2

XSTRDEN1000 236.3

FORMIX1000 35.9

TREEMEAN100 35.3

CLEAR100 234.4

TREEZERO1000 234.1

TREEZERO100 229.7

NSTRDEN1000 28.7

IMPMEAN1000 228.5

NSTREAM 27.4

ROADDEN1000 227.4

IMPZERO1000 25.8

XSTRDEN100 225.6

FORDEC1000 25.6

DEVTOT1000 225.4

CROP100 224.0

WOODWET1000 22.7

GRASS100 220.2
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second best for BIOGEO. Measures of the density

of disturbed streams were negatively associated with

all riverine functions, while greater density of

natural streams was positively associated with all

five functions. Greater coverage by forest vegetation

was associated with higher scores for all riverine

functions, while more disturbed vegetation (e.g.,

higher CLEAR, CROP, or TREEZERO) was

associated with lower scores.

Multiple Regression Models

Combining indicators in multiple regression

models yielded better predictions (higher R2) of

FCI scores than could be achieved by any single

indicator. Among the final models selected for all

functions in both classes (Appendix A), all were

highly significant (P , 0.0001), and all but one

model (flat BIOGEO) explained at least 50% of the

variability in field measured assessment scores when

stream variables from the NWI stream maps were

considered as possible predictors. Two of the

regression models (riverine HYDROL and

LANDSC) explained more than 80% of the

variability (Table 6). The number of independent

variables ranged from four to eight. Figure 4

illustrates the performance of the regression models

for two of the weaker models (R2 near 50%, flat

BIOGEO and PLANT) and for two of the stronger

models (R2 . 80%, riverine HYDROL and

LANDSC). All four cases demonstrate a strong

and significant (Table 6) correspondence between

the field assessment scores (y axis) and the model

predictions (x axis), and all predictions are centered

on the solid 1:1 line representing equality of

predicted and observed FCI scores. The outer

dashed lines in each plot show the 95% confidence

limits for predicting the FCI score of an individual

assessment point. In contrast, the inner dashed lines

show much narrower 95% confidence limits for

predicting the mean condition across the set of

assessment points (n 5 89 for flat and n 5 54 for

riverine). Regression models omitting variables from

the NWI stream maps were not as good (lower R2)

as those including NWI stream predictors, and the

loss in predictive power was greater for riverine

wetlands than for flat wetlands (Table 6). However,

the regression equations for all HGM functions of

both classes were still highly significant (P #

0.0002).

Regression Tree Models

For both wetland classes, regression tree analysis

produced significant models for predicting FCI

scores from landscape indicators (Figure 5). The

final regression trees after cross validation and

pruning to remove spurious branches all involved

between one and four independent variables in 1-4

splits. All the trees, including those using only one

independent variable, gave better predictions (higher

R2) than any single univariate correlation (Tables 3

and 4), except for the riverine HYDROL regression

tree, which had the same R2 value as the best single

correlation. Figure 4 shows regression tree predic-

tions (open squares) of field-measured FCI scores

and contrasts them with the corresponding predic-

tions from multiple regression models.

DISCUSSION

Calibrated Level 1 Assessment Models

We succeeded in our central objective to calibrate

statistical models for level 1 assessment of wetland

functional condition. Many of the landscape in-

dicators derived from land-cover, stream, road, and

wetland maps (Table 1) were strongly and signifi-

cantly correlated with Functional Condition Index

(FCI) scores derived from HGM field assessments

(Tables 4 and 5). For all HGM functions in both

wetland classes, multiple regression and regression

tree models could explain much of the variability in

field-based assessment scores. The multivariate

models were better (higher R2) for riverine than

for flat wetlands (Table 6, Figure 5), so level 1

assessment based on the multivariate relationships

will be more precise for riverine than for flat

Table 6. Variance explained (R2) by regression models

predicting HGM FCI scores from landscape indicators.

Models were fit with and without variables from the NWI

stream disturbance maps (Tiner et al. 2000, 2001).

Regression equations are in Appendix A.

Function

With NWI Stream

Vars.

Without NWI Stream

Vars.

No. Vars. R2 No. Vars. R2

Flat

BIOGEO 5 47.5% 4 36.7%

HABITAT 4 54.4% 2 47.9%

HYDROL 4 50.0% 1 32.5%

PLANT 4 50.3% 4 50.3%

Riverine

BIOGEO 4 66.5% 2 28.0%

HABITAT 5 72.8% 4 38.4%

HYDROL 6 80.2% 2 31.3%

PLANT 4 63.3% 6 58.8%

LANDSC 8 85.0% 5 71.4%

Weller et al., LANDSCAPE INDICATORS OF WETLAND CONDITION 507



wetlands, but even the poorest regression model

explained almost 50% of the variability among field
assessment points (Figure 5, Table 6).

Our analyses supported general expectations of

how landscape factors affect wetland function (e.g.,

Brooks et al. 2004, Houlahan and Findlay 2004,

Tiner 2004, 2005, Whigham et al. 2007). We found

that greater drainage (higher density of all streams

or excavated streams) is associated with lower

wetland condition, while less drainage (higher
density of natural streams or greater distance to

a stream) is associated with higher condition

(Tables 3 and 4). Similarly, wetland condition was

negatively associated with land clearing (higher

cropland, grassland, developed land, land with no

trees, bare land, impervious surface) and positively

related to forest variables (proportions of total,

deciduous, or mixed forest; tree cover; zero imper-
vious surface). Evergreen forest was negatively

associated with the condition of flat wetlands, which

are often disturbed by replacing native deciduous

forest with pine plantations (Whigham et al. 2007).
Measures of developed land and impervious surface

were not as negatively associated with wetland

condition as we expected, possibly because the rural

Nanticoke watershed lacks major cities and in-

dustrial areas so that the primary disturbances are

associated with agriculture (TNC 1998, Tiner 2004).

Road variables were also only weakly related to

wetland condition, possibly because of time lags in
detecting road effects on biotic communities (Fin-

dlay and Bourdages 2000) or failure to account for

some roads, which could be remedied by developing

a more detailed road map. Also, the measurements

we took during one-time visits to the assessment

points (Whigham et al. 2007) may simply not

provide good indicators of impervious surface

effects.
Because they are all statistically significant, any of

the level 1 regression models (Table 6, Appendix A)

Figure 4. FCI scores predicted from landscape indicators by the fitted models. The solid dots and the lines show

predictions from multiple regression models including variables from NWI stream maps (Table 6). The solid line is the 1:1

line (predicted FCI score 5 measured FCI score). Dashed lines are 95% confidence limits for regression predictions. The

outer dashed lines are confidence limits for predictions of individual assessment points and the inner dashed lines are

confidence limits for the predicting the mean given the sample sizes in the field assessment effort (89 for flat, 54 for

riverine). Open squares are predictions from regression trees (Figure 5). Passing through the open squares, the thinner

vertical line and whiskers show 95% confidence limits for predicting individual wetland condition, while the heavier line

and whiskers show the mean and 95% confidence limits for predicting mean condition given the number of wetlands at

each predicted value (see Figure 5).
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can be used to make an interpretable FCI score

prediction for a particular wetland assessment point.

However, the confidence intervals for individual

predictions are wide (Figure 4). Given that un-

certainty, the level 1 predictions alone should not be

used to make management decisions about partic-

ular wetlands. One would always want to verify and

refine the level 1 predictions for a site with field

observations. However, the level 1 predictions can

target the fieldwork more effectively. For example,

field visits to prioritize wetlands for preservation

could be focused on wetlands that the level 1 models

predict to be in good condition. Conversely, the level

1 models could identify wetlands likely to be

degraded, helping to target field visits aimed at

selecting restoration sites.

The level 1 models are even more useful for

predicting average wetland condition across broader

regions, such as a county or a watershed. This

application uses the mean condition score for many

assessment points rather than the score for a single

point. The confidence limits for the mean score of

many points are much narrower than the confidence

limits for individual point predictions (Figure 4).

Therefore, the level 1 models can provide fairly

precise estimates of average condition within an

area. Further field verification would always be

desirable, but one could reasonably use the level 1

predictions alone to identify areas, perhaps water-

sheds, where restoration, preservation, or other

management efforts should be focused.

Our method unites two assessment levels by

‘‘scaling up’’ field results with relationships that

can estimate wetland condition across broad

regions. Applications of our level 1 models at the

individual point scale and the watershed scale are

consistent with other visions of how level 1 tools

can be used (Brooks et al. 2004, Fennessy et al.

2004), but both applications are enhanced by the

information on model quality and prediction

uncertainty that our approach provides. Also,

many other level 1 methods only provide a very

Figure 5. Regression trees predicting flat and riverine FCI scores from landscape indicators, along with the overall

variance explained (R2 in %) by each tree. For each branch of a tree, the number of assessment points, the mean FCI score,

and the standard deviation of FCI score are given in that order. For each split, the splitting criterion and partial R2 (%) are

given. Sites that meet a splitting criterion follow the lower branch of the split, and sites that do not meet the criterion follow

the upper branch.
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general estimate of ability to perform a function

(Whigham et al. 2007), but like the underlying field

assessments, our level 1 models index functional

capacity relative to that of a reference, undisturbed

wetland of the same class. Tools that objectively

scale up field results to provide cost-effective

predictions for whole watersheds are needed to

meet the current strong emphasis on planning and

managing resources at the watershed scale (e.g.,

USEPA 2001).

A Sample Watershed Assessment

We used our multiple regression equations

(Table 6, Appendix A) to predict riverine FCI

scores for three subwatersheds of the Nanticoke

River basin. Analysis of the HGM field scores had

already shown that FCI scores for the PLANT

function were significantly higher in the Broad

Creek basin than in the two other basins, while the

Nanticoke River subwatershed (upstream from the

confluence with Broad Creek) had significantly

lower average FCI scores for the other four HGM

functions than did wetlands in the Broad or

Marshyhope drainages (see Figure 2 and Table 5

in Whigham et al. 2007).

Predictions from the level 1 regression models

including stream variables mapped by NWI (Ta-

ble 6) correctly represented the observed differences

among subbasins (Figure 6). For the BIOGEO,

HABITAT, and HYDROL functions in the Broad

Creek basin, the mean predicted FCI scores were

slightly lower than observed, but all the other

comparisons (LANDSC and PLANT for Broad

Creek, and all five functions in both the Marshy-

hope Creek and Nanticoke River basins), the mean

predicted FCI scores were very close to the observed

means. For all 15 comparisons (5 functions 3 3

subbasins), the 95% confidence limits for the mean

from regression predictions were similar in width to

the 95% confidence limits for the mean of field

observations. Most important, the level 1 predic-

tions clearly match the HGM field results in

representing the lower FCI scores for four functions

in the Nanticoke River subbasin and the higher

scores in the Broad Creek basin for the PLANT

function. The agreement between the level 1 models

and field-based results would have been even closer

if we had adjusted regression predictions exceeding

one back to one and predictions less than zero up to

zero (Figures 4 and 6). Because the FCI scores are

defined to range from zero to one (Whigham et al.

2007), we recommend this adjustment in any real

application of the level 1 regression models.

Generality of Our Models and Methods

Our level 1 models (Table 6, Figure 5) have been

developed for flat and riverine wetlands in the

Nanticoke River watershed and can certainly be

applied to assess additional wetlands or groups of

wetlands in that watershed. The models could also

be useful elsewhere on the Chesapeake Bay’s eastern

shore where the predominant wetland groups and

settings are similar to those in the Nanticoke basin.

However, the NWI stream disturbance variables

were only available for Nanticoke streams, so

applications outside the Nanticoke basin would

have to rely on the somewhat weaker, but still

highly significant models that omitted the NWI

variables (Table 6, Appendix A). Because informa-

tion on stream disturbance mapped by NWI (Tiner

et al. 2000, 2001) provided some of the most useful

predictors of wetland condition, we recommend that

similar information should be collected elsewhere.

Stream disturbance maps may also inform other

assessment needs, such as understanding the factors

affecting biotic integrity in streams.

The need for field assessment results to calibrate

the level 1 models may sometimes limit the use of

our method. Level 1 models are sometimes needed

Figure 6. A test of the multiple regression models

predicting FCI scores for riverine wetlands. Results for

five HGM functions are shown for assessment points in

three subbasins of the Nanticoke drainage: Marshyhope

Creek (MC), Broad Creek (BC), and the Nanticoke River

upstream from Broad Creek (NR). Each pair of bars

represents an HGM function in a subbasin, and the pair

contrasts field-based FCI scores (left bar) with level 1 FCI

predictions (right bar) from a multiple regression model

including variables from NWI stream maps (Table 6,

Appendix A). Each bar shows individual FCI scores (X),

the mean FCI score 6 2 standard errors of the mean

(heavy black lines), and 6 2 standard deviations

(gray lines).
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because there are no resources available to do field

assessments (Brooks et al. 2004). In such cases,

relationships derived from literature review and

expert judgment may be the only choice, but our

results on which landscape variables are most

important (e.g., Tables 3 and 4) can help inform

the design of those models. We do not advocate

doing costly field assessments for the sole purpose of

developing models like ours. However, we strongly

advocate that understanding of wetland condition

should ultimately rest on a sound base of field

observations from appropriate samples of sites. By

providing objective, statistically based tools for

extrapolating field observations to new sites and

broader areas, our method of calibrating level 1

models provides a strong, value-added component

to the field assessments. Our method could be

applied wherever a large group of field assessments

(say 50 or more) can be matched with appropriate

digital geographic data (e.g., Table 1). When new

assessment efforts are planned, considering a model-

ing component like ours up front could help to

maximize the value and use of the field assessment

data.

Improvements in Calibrating Level 1 Models

The regression relationships for predicting FCI

scores (Table 6) are better (higher R2) than pre-

liminary results that we reported earlier (Whigham

et al. 2003). Some errors in analyzing the field data

were corrected, and the HGM models used to

calculate FCI scores from the field data were

improved (Whigham et al. 2007). Our present

analysis also added landscape indicators not avail-

able in our earlier efforts, including percentages of

tree cover and impervious surface (Huang et al.

2001, Yang et al. 2003) and stream metrics derived

from the high-resolution national hydrography

dataset (USGS 2000, 2004a). The current analysis

also used circa 2000 land-cover data from NLCD

2001 (Homer et al. 2004), while our previous

analysis relied on circa 1990 land cover (EPA-

EMAP 1994, Vogelmann et al. 1998). The newer

land-cover map more closely matches the time of the

1999–2000 field-assessment campaign and is based

on improved methods for classifying land-cover data

from satellite imagery (Homer et al. 2004).

All the digital data we used to derive landscape

metrics (Table 1) still have inaccuracies as de-

scribed in their metadata files (e.g., USDC 2001,

USGS 2004a,b, USGS 2005). For example, cross-

validation analysis of the NLCD 2001 land cover

suggests an overall classification accuracy of 77%

across the zone that includes Delaware, most of

Maryland, and parts of four other states (USGS

2004b). Positional and classification errors contrib-

ute to the ‘‘noise’’ in analyses relating field-

condition measurements to landscape variables, so

that the analyses detect fewer significant relation-

ships with lower explained variance than might be

achieved with more accurate landscape data. The

results we report are robust relationships that

emerge above that noise. Still better relationships

might be achievable by incorporating higher

resolution spatial data, such as land cover derived

from high-resolution imagery (Goetz et al. 2003) or

topographic variables derived from precision LI-

DAR instruments (Lefsky et al. 2002).

Multivariate Modeling Methods

We explored stepwise multiple regression and

regression tree analysis as alternate ways to fit level 1

prediction models. Neither method was clearly

better than the other. In four cases of the nine

functions considered across both wetland classes, the

regression tree models had similar R2 values to the

multiple regression models, even though the re-

gression trees required fewer independent variables

(Table 6, Figure 5). However, regression trees for

the remaining five cases had much lower R2 values

than the multiple regressions. In all cases, the

variables used for splits in the regression trees were

among the variables that have strong univariate

correlations with condition (Tables 3 and 4), and the

directions of the splits agreed with expected effects

of landscape disturbances. In contrast, some of the

independent variables in the stepwise multiple

regressions (Table 6) are not among the top

univariate predictors (e.g., ROADDIS in the river-

ine LANDSC equation), and some of the multiple

regression coefficients differ in direction of associa-

tion from the univariate correlations and from

expected effects of landscape disturbances (e.g.,

FORDEC100 in the riverine BIOGEO function).

Thus, the regression trees have the advantages of

parsimony and interpretability, but at some cost of

predictive power for the majority of functions

considered across both classes. Regression trees

have been recommended for responses that are

non-linear, non-normal, and not continuous (Ther-

neau and Atkinson 1997, De’Ath and Fabricius

2000). Such advantages may be less important for

predicting HGM FCI scores because HGM models

are typically normalized to provide relatively mono-

tonic responses in FCI scores across reference

wetlands ranked from degraded to pristine condition

(Brinson 1993, Whigham et al. 2007).
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CONCLUSIONS

Field assessment results can be used to calibrate

statistical models that predict wetland condition by

using landscape indicators derived from digital

maps. Unlike level 1 relationships based only on

best professional judgment, the statistically cali-

brated models provide an objective measure of the

quality of the model, and the statistical method

allows the estimation of confidence limits on

condition predictions. For flat and riverine wetlands

of the Nanticoke River basin, the most useful

landscape indicators came from maps of land cover

and stream condition (natural or excavated). The

correlations of the landscape indicators with wetland

condition agreed with expectations based on scien-

tific literature on the processes leading to wetland

degradation. The statistical models for predicting

wetland condition worked better (higher R2) for

riverine wetlands than for flat wetlands. The

confidence limits on predicted functional condition

index (FCI) scores for individual wetlands were

broad, but the models could still be used to prioritize

field visits needed to select sites for preservation,

restoration, or other management actions. The

confidence limits for predictions of average condi-

tion in a group of wetlands were much narrower, so

the level 1 models can provide fairly precise

predictions of mean condition in an assessment

area, such as a watershed or subwatershed.

Our level 1 models could be applied for further

assessment of wetlands within the Nanticoke water-

shed, but our best models use information from

stream maps that have only been developed for that

watershed. We also developed models that are less

predictive but use landscape indicators from maps

available for broader areas. These latter models

could be applied to other areas on the Coastal Plain

that have flat and riverine wetlands in settings like

those in the Nanticoke River watershed. Our

approach to developing level 1 models could be

implemented wherever a reasonable number of field

assessments can be matched with relevant landscape

data. Level 1 modeling should be considered when

new field assessment programs are planned.
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Appendix A. Multiple regression equations for

predicting HGM FCI scores from landscape indica-

tors. Models were fit with and without variables from
the NWI stream disturbance maps (Tiner et al. 2000,

2001). Regression summary information is in Table 6.

Including stream variables from NWI stream

disturbance maps

Flat
BIOGEO 5 0.38 + 0.000588.STRDISMIN -

0.0465.TSTRDENNHD100 - 0.00667.FOREV-

ER1000 + 0.00347.TREEMEAN100 - 0.000294.

STRDISNHD

HABITAT 5 0.28 + 0.00380.FOREST100 +
0.00272.FORDEC100 - 0.0558.TSTRDEN1000 +
0.00522.FORMIX100

HYDROL 5 1.04 - 0.0616.TSTRDEN100 +
0.000251.STRDISMIN - 0.00626.WOODWET1000

- 0.00274.WETPERC100

PLANT5 -1.04 + 0.00597.FORDEC100 +
0.0147.TREEMEAN100 + 0.0142.TREEZERO100

+ 0.00998.FORMIX100

Riverine

BIOGEO 5 0.06 + 0.431.STRCOND +
0.00107.STRDISNHD + 0.00535.TREEMEAN100

- 0.00347.FORDEC100

HABITAT 5 0.27 + 0.00149.STRDISNHD +
0.321.STRCOND + 0.0101.FOREVER100 +
0.0169.HERBWET100 + 0.0308.NSTRDEN100

HYDROL 5 0.26 + 0.188.NSTRDEN1000 +
0.328.STRCOND + 0.000850.STRDISNHD -

0.0301.HERBWET1000 + 0.00500.FOREVER100 -

0.00366.CROP100

PLANT 5 1.04 - 0.0270.XSTRDEN100 -
0.00524.WETPERC1000 - 0.00397.CLEAR100 +
0.00436.FOREVER1000

LANDSC 5 1.57 + 0.156.STRCOND -

0.00512.CLEAR100 - 0.00536.DEVTOT1000 +
0.0160.FORMIX1000 + 0.000361.STRDISNHD -

0.00925.IMPZERO100 + 0.000138.ROADDIS -

0.000855.WETPERC100

Without stream variables from NWI stream

disturbance maps

Flat

BIOGEO 5 0.487 - 0.0570.TSTRDENNHD100 +
0.00438.FOREST100 - 0.00344.FOREVER100 -

0.00238.WETPERC100

HABITAT 5 0.196 + 0.00605.FOREST100 -

0.00284.FOREVER100

HYDROL 5 0.824 - 0.0742.TSTRDENNHD100

PLANT 5 -1.039 + 0.00597.FORDEC100 +
0.0147.TREEMEAN100 + 0.0142 TREEZERO100

+ 0.0100.FORMIX100

Riverine

BIOGEO 5 0.337 + 0.00649.WOODWET100 +
0.00124.STRDISNHD

HABITAT 5 0.954 + 0.0441.WOODWET1000 -

0.0101.WETPERC1000 - 0.0663.ORDER - 0.0048.

CLEAR100

HYDROL 5 0.522 + 0.0283.WOODWET1000 -

0.0539.HERBWET1000

PLANT 5 -2.796 - 0.00586.WETPERC1000 +
0.0394.FOREST1000 - 0.00765.GRASS100 +
0.0224.HERBWET100 + 0.0373.TREEZERO1000 -

0.0205.HERBWET1000

LANDSC 5 0.299 + 0.0039.FOREST100 +
0.0198.FORMIX1000 + 0.0116.WOODWET1000 -

0.00144.WETPERC100 + 0.000168.ROADDIS
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