Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Agricultural and Forest Meteorology 151 (2011) 1462-1470

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia

Lucas A. Cernusak^{a,*}, Lindsay B. Hutley^{a,b}, Jason Beringer^c, Joseph A.M. Holtum^d, Benjamin L. Turner^e

^a School of Environmental and Life Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia

^b School of Environmental Research, Charles Darwin University, Darwin, Northern Territory 0909, Australia

^c School of Geography and Environmental Science, Monash University, Clayton, Victoria 3800, Australia

^d School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia

^e Smithsonian Tropical Research Institute, Balboa, Ancon, Panama

ARTICLE INFO

Article history: Received 30 July 2010 Received in revised form 11 November 2010 Accepted 4 January 2011

Keywords: Carbon-isotope discrimination Leaf mass per area Photosynthetic capacity Rainfall gradient Savanna

ABSTRACT

Leaf-level photosynthetic parameters of species in the closely related genera *Eucalyptus* and *Corymbia* were assessed along a strong rainfall gradient in northern Australia. Both instantaneous gas exchange measurements and leaf carbon isotope discrimination indicated little variation in intercellular CO₂ concentrations during photosynthesis (c_i) in response to a decrease in mean annual precipitation from ~1700 mm to ~300 mm. Correlation between stomatal conductance and photosynthetic capacity contributed toward the maintenance of relatively constant c_i among the sampled leaves, when assessed at ambient CO₂ concentration and photon irradiance similar to full sunlight. Leaf mass per area was the most plastic leaf trait along the rainfall gradient, showing a linear increase in response to decreasing mean annual precipitation. The maximum Rubisco carboxylation velocity, V_{cmax} , expressed on a leafarea basis, showed a modest increase in response to decreasing rainfall. This modest increase in V_{cmax} was associated with the strongly expressed increase in leaf mass per area. These results suggest that variation in ecosystem-level gas exchange during the dry season in north-Australian savannas will likely be dominated by changes in leaf area index in response to increasing aridity, rather than by changes in photosynthetic performance per unit leaf area.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Understanding physiological responses of plants to environmental resource gradients is important for predicting spatial variation in ecosystem processes and for predicting ecosystem responses to climate change (Koch et al., 1995; Schulze et al., 1996). A strong rainfall gradient exists in northern Australia (Table 1 and Fig. 1), with highest mean annual precipitation (MAP) occurring near the coast and decreasing from north to south, roughly at a rate of 1 mm km⁻¹ (Bowman and Connors, 1996; Cook and Heerdegen, 2001; Koch et al., 1995). This precipitation gradient is associated with structural and floristic changes in locally dominant vegetation communities (Bowman and Connors, 1996; Hutley et al., 2011; Williams et al., 1996). North of the 500 mm yr⁻¹ isohyet, dominant vegetation communities tend to be savannas, with a discontinuous tree canopy overlying a grassy understory. Eucalypts, comprising species in the closely related genera Eucalyptus and Corymbia, dominate the over-stories of these savannas. The height and abundance of the over-story eucalypts decrease with declining MAP from north to south (Hutley et al., 2011; Schulze et al., 1998; Williams et al., 1996). Where MAP declines to less than about 500 mm, the eucalypt-dominated savannas tend to give way to *Acacia*-dominated shrublands (Bowman and Connors, 1996). Eucalypts are still found in these communities, but generally occur as scattered individuals, rather than canopy-dominant components.

Previous investigations of leaf-level responses of eucalypts to variation in MAP in the Northern Territory of Australia have focussed on measurements of stable carbon isotope discrimination (Δ^{13} C) in leaf dry matter (Miller et al., 2001; Schulze et al., 1998). Leaves were collected at sites ranging from approximately 12°S to 25°S latitude, encompassing MAP ranging from approximately 1800 to 200 mm. Over most of this range, little variation was observed in leaf Δ^{13} C, with a marked response only becoming apparent when MAP declined to below about 400 mm (Miller et al., 2001; Schulze et al., 1998). A similarly flat response of eucalypt Δ^{13} C to variation in MAP has also been observed in south-western Australia (Schulze et al., 2006a; Turner et al., 2008). These results contrast with a recent global meta-analysis of tree leaf Δ^{13} C, which showed an approximately linear increase in Δ^{13} C with increasing MAP between 200 and 2000 mm. Over this range, the average Δ^{13} C of evergreen angiosperms increased by more than 5% (Diefendorf

^{*} Corresponding author. Tel.: +61 8 8946 7630; fax: +61 8 8946 6847. *E-mail address:* lcernusak@gmail.com (L.A. Cernusak).

^{0168-1923/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.agrformet.2011.01.006

Table 1

Summary data for the six study sites. Mean annual precipitation estimates are based on the years 2000 to 2007, and were computed from interpolated rainfall surfaces. Mean annual temperature estimates are averages of mean minimum and mean maximum temperatures for the years 1981–2009, using data from the long term weather station nearest to each study site (http://www.bom.gov.au/index.shtml).

Site	Location	Species	Elevation (m)	Mean annual precipitation (mm)	Mean annual temperature (°C)
Howard Springs	12°29′07′′S 131°08′46′′F	Eucalyptus miniata Eucalyptus tetrodonta	37	1714	27.8
Adelaide River	13°04′37′′S 13°07′04′′F	Eucalyptus tectifica Corympia latifolia	75	1532	27.0
Daly River	14°09′33′′S	Eucalyptus tetrodonta Commbia latifolia	73	1170	27.2
Dry Creek	15° 15′ 25′ 17′ E 15° 15′ 32′′S	Eucalyptus tetrodonta	167	958	27.1
Sturt Plains	132°22′14″E 17°07′59′′S	Eucalyptus pruinosa	228	672	26.8
Boulia	133° 19'44''E 22° 59'40''S 139° 56'43''E	Eucalyptus coolabah Corymbia terminalis Corymbia aparrerinja	151	291	24.9

et al., 2010). Notably, this meta-analysis did not include data for any trees sampled in Australia.

Analysis of Δ^{13} C of leaf dry matter provides a convenient method for investigating leaf physiology because it relates to the ratio of intercellular to ambient CO₂ mole fractions (c_i/c_a) during photosynthesis (Farquhar et al., 1982, 1989). Thus, the Δ^{13} C provides a proxy measurement of an important leaf gas exchange characteristic. Analysis of dry matter Δ^{13} C has the further advantage that leaves can be collected, dried, and stored for measurement at a later time. In C₃ plants, the Δ^{13} C relates to c_i/c_a according to the following equation (Farquhar et al., 1982; Farquhar and Richards, 1984):

$$\Delta^{13}C = a - d + (b - a)\frac{c_i}{c_a},$$
(1)

where *a* is the ${}^{13}C/{}^{12}C$ fractionation that occurs during diffusion of CO₂ through the stomata (4.4‰), *b* is the discrimination against ${}^{13}C$ by carboxylating enzymes (29‰ for Rubisco), and *d* is a composite term that includes fractionations caused by dissolution of CO₂, liquid phase diffusion, photorespiration, and day respiration

Fig. 1. A map showing the locations of the study sites in northern Australia. Additional information about each site is provided in Table 1.

(Farquhar et al., 1989). The d was previously estimated to have a mean value of about 3‰ in 15 tropical tree species (Cernusak et al., 2008), with other estimates in the literature ranging from about 0 to 4‰ (Cernusak et al., 2007; Hubick, 1990; Hubick and Farquhar, 1989; Hubick et al., 1986).

The c_i/c_a is controlled by the balance between photosynthesis (A) and stomatal conductance (g_s) . For a given g_s , an increase in A will cause a decrease in c_i/c_a . Similarly for a given A, a decrease in g_s will cause a decrease in c_i/c_a . Thus, while the relatively flat response of leaf Δ^{13} C to MAP in eucalypts in northern Australia suggests relatively constant c_i/c_a , this pattern does not indicate whether A and g_s are relatively constant along the precipitation gradient, or whether the two decline in concert as MAP declines. A further ambiguity associated with interpreting the Δ^{13} C of leaf dry matter is that the signal recorded is likely dominated by the canopy c_i/c_a at the time when the leaf dry matter was synthesized. Therefore, it is unclear whether the observed pattern in leaf dry matter Δ^{13} C in north-Australian eucalypts might provide information about c_i/c_a only during favourable conditions in the wet season when canopy photosynthesis is most active, or whether it provides information about year-round variation in c_i/c_a along the precipitation gradient, including during the dry season when drought stress is most severe. Although they represent only a snapshot in time, instantaneous measurements of leaf gas exchange can help to resolve these ambiguities by providing complementary information to that provided by leaf Δ^{13} C.

Leaf photosynthetic capacity is an important parameter in biogeochemical models that predict canopy C and water exchange (Baldocchi and Amthor, 2001). Leaf-level photosynthesis can be predicted according to the biochemical model of Farquhar et al. (1980). A key parameter in this model is the maximum Rubisco carboxylation velocity (V_{cmax}). Thus, V_{cmax} provides a measure of photosynthetic capacity that can be readily incorporated into canopy process models. Maximum leaf photosynthesis rates (A_{max}) are generally related to leaf N concentrations (Field and Mooney, 1986), although the relationship between the two can vary among taxa and among regions (Wright et al., 2005). Establishing global relationships between photosynthetic parameters like V_{cmax} and Amax and more easily measured leaf traits like N concentration and leaf mass per area (LMA) offers a promising avenue toward parameterization of global biogeochemical models (Reich et al., 2007). To prevent regional or taxon-specific biases in such global relationships, it is important to include measurements from regions and vegetation types that are under-represented to date (Domingues et al., 2010). Photosynthetic capacity has not previously been assessed by leaf gas exchange analysis in north-Australian eucalypts along the approximately 1500 km north to south gradient in MAP.

Rainfall in our study region of northern Australia is highly seasonal, with a pronounced dry season extending from May until September/October. In savanna communities near Darwin, at the northern end of the precipitation gradient, the soil water that accumulates during the wet season is sufficient to maintain transpiration rates at constant, or even higher, rates in savanna eucalypts throughout the dry season compared to rates in the wet season (Eamus et al., 1999, 2000; Hutley et al., 2000, 2001; O'Grady et al., 1999). Measurements of predawn water potential suggested that these trees have access to available water even at the end of the dry season, presumably from roots that extend to several meters depth in the soil profile (Eamus et al., 2000; Hutley et al., 2000). On the other hand, predawn water potential became more negative during the dry season with increasing distance from the coast (Eamus et al., 2000), suggesting that latitudinal variation in seasonal drought stress along the gradient in MAP in northern Australia should be most pronounced toward the end of the dry season.

In this study, we measured leaf gas exchange in *Eucalyptus* and *Corymbia* species at six sites in northern Australia ranging in MAP from about 1700 mm to about 300 mm. Measurements were carried out as part of a larger campaign to investigate biogeochemical cycling in north-Australian savannas (Beringer et al., 2011). Most measurements took place in September, when we expected latitudinal variation in drought stress to be most pronounced. Our objectives were (1) to investigate the apparent lack of variation in c_i/c_a along the precipitation gradient, as suggested by previous measurements of leaf gas exchange and (2) to assess variation in leaf photosynthetic capacity along the precipitation gradient.

2. Materials and methods

Leaf gas exchange measurements were made at six sites along a sub-continental rainfall gradient in northern Australia (Fig. 1). The sites covered a latitudinal range from approximately 12°S to 23°S, with corresponding MAP ranging from approximately 1700 mm to 300 mm (Table 1). Two canopy tree species characteristic of each site were selected for measurements. All of the selected species were from the genus *Eucalyptus*, or the closely related genus *Corymbia* (Table 1). Two individuals of each of the two species at each site were selected for measurements. A total of six leaves were sampled from each species at each site. Canopy access was achieved with a 16 m elevated work platform at the four more northerly sites, and with ladders or from the ground at the two more southerly sites where trees were shorter.

Two portable photosynthesis systems (Li-6400, LiCor Inc., Lincoln, NE, USA) were used to measure the response of photosynthesis to intercellular CO_2 concentration (A- c_i curve) and to light (light response curve). The two systems were cross calibrated, and gave unbiased results with respect to each other. The measurement sequence for each sampled leaf started with the $A-c_i$ curve and then proceeded to the light response curve. The CO₂ concentration $(\mu mol mol^{-1})$ entering the leaf gas exchange cuvette was altered in the following sequence: 400, 280, 230, 150, 70, 40, 230, 400, 640, 980, and 1200. A measurement of photosynthesis was logged approximately 2 min after each step change in CO₂ concentration entering the cuvette. Irradiance during the $A-c_i$ curve measurements was set at 2000 µmol photosynthetically active radiation $(PAR) m^{-2} s^{-1}$, supplied by an artificial light source (6400-02B LED, LiCor Inc.). At the conclusion of the $A-c_i$ curve, the light response curve was measured on the same leaf. The CO₂ concentration of air entering the cuvette was maintained at 1200 µmol mol⁻¹, and irradiance (μ mol PAR m⁻² s⁻¹) was altered in the following sequence: 2000, 1500, 1000, 500, 200, 120, 70, 40, 20, and 0. A measurement of photosynthesis was logged approximately 2 min after each step change in irradiance.

We endeavoured to maintain the leaf-to-air vapour pressure difference (D) and the leaf temperature (T) constant across sites and within a site for each sample leaf during $A-c_i$ and light response measurements. The target D was 2.5 kPa and the target T was 33 °C. Mean site values (mean ± 1 SD) for T during measurements ranged from 32.3 ± 0.6 °C at the Howard Springs site to 33.9 ± 2.0 °C at the Boulia site. Mean site values during measurements for *D* ranged from 2.1 ± 0.2 kPa at the Howard Springs site to 3.1 ± 0.7 kPa at the Boulia site. Measurements at all sites except the Boulia site took place between 2 and 15 September 2008. Measurements at the Boulia site took place between 5 and 8 December 2008. Precipitation at the Boulia site does not show as highly pronounced a seasonal variation as the more northerly sites. A cumulative precipitation of 56 mm was recorded at the Boulia Airport in the nine months preceding the measurement campaign (http://www.bom.gov.au/index.shtml). Gas exchange measurements were taken between 0800 h and 1700 h local time at each site.

At the conclusion of the gas exchange measurements, each leaf was collected and leaf area was determined with an image analysis system (Delta-T Scan, Delta-T Devices, Cambridge, UK). Leaves were dried at 70 °C to constant mass, and leaf dry mass was determined to the nearest mg. Leaves were then ground to a fine, homogeneous powder. The nitrogen concentration and leaf carbon isotope ratio a subsample of approximately 3 mg leaf material were determined using a stable isotope ratio mass spectrometer (Delta XP, Finnigan MAT, Bremen, Germany), coupled to an elemental analyser (ECS 4010, Costech Analytical Technologies, Valencia, CA, USA). These analyses were performed in the Stable Isotope Core Laboratory, Washington State University, Pullman, WA, USA. Carbon isotope discrimination (Δ^{13} C) in leaf dry matter was calculated as $\Delta^{13}C = (\delta^{13}C_a - \delta^{13}C_p)/(1 + \delta^{13}C_p), \text{ where } \delta^{13}C_p \text{ is } \delta^{13}C \text{ of leaf dry}$ matter, and $\delta^{13}C_a$ is that of atmospheric $CO_2.$ We assumed a value of -8% for $\delta^{13}C_a$. Phosphorus concentration was determined by ashing 100 mg of leaf dry matter at 550 °C, followed by dissolution in 1 M H₂SO₄ and phosphate detection by automated molybdate colorimetry (Lachat Quickchem 8500, Hach Ltd, Loveland, CO, USA).

The $A-c_i$ curves were analysed using the spreadsheet utility (version 2007.1) provided by Sharkey et al. (2007). The spreadsheet utility fits the photosynthesis model of Farquhar et al. (1980) to the observed CO₂ response curve. Estimates are generated of the maximum Rubisco carboxylation rate, V_{cmax} (µmol CO₂ m⁻² s⁻¹); the electron transport rate, J (µmol electrons m⁻² s⁻¹); triose phosphate use, *TPU* (µmol triose phosphate m⁻² s⁻¹); day respiration, R_d (µmol CO₂ m⁻² s⁻¹); and mesophyll conductance to CO₂, g_m (µmol m⁻² s⁻¹ Pa⁻¹). The spreadsheet utility provides estimates of these parameters normalized to 25 °C to facilitate comparisons with measurements made at other leaf temperatures.

The light response curves were analysed by fitting the observed data to a non-rectangular hyperbola:

$$A = \frac{\phi I + A_{\max} - \sqrt{(\phi I + A_{\max})^2 - 4\theta \phi A_{\max} I}}{2\theta} - R_{\rm D}$$
(2)

where ϕ is the apparent quantum yield (mol CO₂ mol⁻¹ PAR), *I* is the irradiance (µmol PAR m⁻² s⁻¹), A_{max} is the light-saturated gross photosynthetic rate (µmol CO₂ m⁻² s⁻¹), θ is the slope of the curve (dimensionless), and R_{D} is the dark respiration rate (µmol CO₂ m⁻² s⁻¹). Values for ϕ and R_{D} were fitted first by linear regression for measurements made at *I* of 0, 20, and 40 µmol PAR m⁻² s⁻¹. The θ and A_{max} were then estimated by fitting Eq. (1) to the light response curve using the non-linear regression routine in Systat 12 (Systat Software Inc., Chicago, IL, USA). Because the light response curves were measured with

the CO_2 concentration in air entering the leaf gas exchange cuvette set at $1200 \,\mu\text{mol}\,\text{mol}^{-1}$, we assume that the A_{max} values estimated from Eq. (1) represent both CO_2 and light saturated photosynthesis.

We tested for variation among sites and between species within a site in photosynthetic parameters using a nested analysis of variance. Post hoc tests for pair-wise differences between species were carried out by Tukey's method. Relationships between continuous variables were tested using least-squares linear regression analyses. Results were considered significant at P < 0.05. Statistical analyses were performed in Systat 12 (Systat Software Inc.).

3. Results

Leaf mass per area, LMA, increased with decreasing MAP along the rainfall gradient (Fig. 2A). The MAP explained 60% of variation in LMA in a linear regression analysis ($R^2 = 0.60$, P < 0.001, n = 81). There was also variation in LMA between species within several of the sites (Fig. 2A). Thus, species nested within site was a significant term in the analysis of variance (P < 0.001, n = 81). There was significant variation in mass-based leaf N concentration (N_{mass}) among sites and between species within some of the sites, but there was no overall trend in this parameter with MAP (Fig. 2B). Leaf N concentration expressed on an area basis (N_{area}) increased with decreasing MAP ($R^2 = 0.35$, P < 0.001, n = 81), due to the strong trend in LMA with MAP. Mass-based leaf P concentration (Pmass) decreased significantly with increasing MAP ($R^2 = 0.06$, P = 0.02, n = 81), and varied between species at some of the sites (Fig. 2C). The decreasing trends in P_{mass} and LMA with increasing MAP also resulted in decreasing area-based leaf P concentration (P_{area}) with increasing MAP ($R^2 = 0.40$, P < 0.001, n = 81). Leaf dry matter Δ^{13} C was not related to MAP (P = 0.36, n = 81). Analysis of variance indicated that there was significant variation among some of the sites and between species within some sites for leaf Δ^{13} C, but this variation showed no overall trend with MAP (Fig. 2D). Leaf Δ^{13} C did not correlate with N_{mass} (P = 0.38, n = 81) or N_{area} (P = 0.87, n = 81), but did correlate significantly with both P_{mass} ($R^2 = 0.14$, P < 0.001, n = 81) and P_{area} ($R^2 = 0.20$, P < 0.001, n = 81).

Instantaneous measurements of stomatal conductance (g_s) , made at c_a of approximately 380 μ mol mol⁻¹ and irradiance of 2000 μ mol PAR m⁻² s⁻¹, tended to decrease with decreasing MAP, but the trend was not statistically significant (P = 0.08, n = 76). Mean values for g_s for each species at each site are shown in Table 2. Net photosynthesis measured under the same conditions showed a similar trend, with a weak dependence on MAP ($R^2 = 0.06$, P = 0.03, n = 76). Species within a site differed from each other at two of the sites for net photosynthesis under these conditions (Table 2). Variation in net photosynthesis was closely correlated with variation in g_s when measured at c_a of 380 μ mol mol⁻¹ and irradiance of 2000 μ mol PAR m⁻² s⁻¹ (Fig. 3). A linear relationship between net photosynthesis and g_s would imply a constant c_i/c_a across the set of measurements. Accordingly, c_i/c_a was relatively constant across the sampled leaves, with only Eucalyptus tetrodonta at Daly River and Corymbia aparrerinja at Boulia differing from each other in the pairwise comparisons (Table 2). The c_i/c_a was independent of variation in MAP (P = 0.67, n = 76).

The c_i/c_a showed a linear and relatively weak dependence on g_s for gas exchange measurements made at c_a of 380 µmol mol⁻¹ and irradiance of 2000 µmol PAR m⁻² s⁻¹ (R^2 = 0.11, P = 0.003, n = 76), as shown in Fig. 4. The dashed line in Fig. 4 shows the predicted relationship between c_i/c_a and g_s if V_{cmax} , J, g_m , and other parameters in the Farquhar et al. (1980) photosynthesis model were to remain constant across the range of g_s encountered in the study. The departure of the solid regression line in Fig. 4 from the predicted dashed line suggests that c_i/c_a declined less at low g_s than

Mean annual precipitation (mm)

Fig. 2. Leaf mass per area (A), leaf nitrogen concentration (B), leaf phosphorus concentration (C), and carbon isotope discrimination in leaf dry matter (D) plotted as functions of mean annual precipitation. Each symbol represents the mean of six to eight leaves. Error bars are one standard error.

irradiance of 2000μ irradiance of 2000μ shown are the mean	umol photosynthetically a mol PAR m ⁻² s ⁻¹ from CO ₂ ¹ t of six to eight leaves for ea	ctive radiation (PAR) m ⁻ response curves. Apparei ach species at each site ±	² s ⁻¹ and c _a of approxint quantum yield (ϕ) and 1 standard deviation.	kimately 380 µ.mol mi nd maximum photosy Values within a colun	ol ⁻¹ . The maximal Kubisco carbox /nthetic rate (A _{max}) were determine nn not followed by a common lette	ylation velocity (V _{cmax}) and ϵ ed from light response curves i er differed from each other at <i>l</i>	electron transport rate (at c _a of approximately 11 P<0.05.	/) were determined at 70 μmol mol ⁻¹ . Values
Site	Species	Stomatal conductance (mol m ⁻² s ⁻¹)	Net photosynthesis (µmol m ⁻² s ⁻¹)	c _i /c _a	V_{cmax} at 25 $^\circ$ C ($\mu mol m^{-2} s^{-1})$	J at 25 °C (μ mol m ⁻² s ⁻¹)	Apparent quantum yield, ϕ (mol mol ⁻¹)	A_{max} (µmol m ⁻² s ⁻¹)
Howard Springs	Eucalyptus miniata Fucalvatus tetrodonta	0.170 ± 0.062 a 0.085 + 0.028 a b	16.2 ± 5.5 a 8.0 + 2.3 h c	$0.54 \pm 0.06 a, b$ $0.53 \pm 0.03 a, b$	77.6 ± 6.4 a,b 62 8 + 12 4 b	85.0 ± 14.8 a,b,c 696 + 94 b c	0.067 ± 0.017 a 0.059 + 0.013 a b	34.0 ± 7.2 a,b,c 23.6 + 5.7 h c
Adelaide River	Eucalyptus tectifica	0.160 ± 0.032 a	14.4 ± 3.0 a,b	$0.57 \pm 0.03 \text{ a,b}$	84.1 ± 15.9 a,b	103.3 ± 20.3 a,b	0.057 ± 0.012 a,b	$39.5 \pm 9.2 \text{ a,b}$
	Corymbia latifolia	0.078 ± 0.034 a,b	$7.4 \pm 3.0 \text{ b,c}$	0.55 ± 0.07 a,b	$64.4 \pm 20.0 \mathrm{b}$	83.4 ± 22.8 a,b,c	0.049 ± 0.013 a,b	29.3 ± 7.8 a,b,c
Daly River	Eucalyptus tetrodonta	0.151 ± 0.049 a	$11.9 \pm 3.2 \text{ a,b}$	$0.59\pm0.04\mathrm{a,b}$	93.4 ± 14.3 a,b	98.0 ± 12.0 a,b	0.060 ± 0.013 a,b	44.0 ± 8.9 a
	Corymbia latifolia	0.133 ± 0.056 a	9.3 ± 2.8 a,b,c	0.63 ± 0.06 a	$73.2 \pm 14.9 \text{ b}$	$80.2 \pm 14.1 ext{ a,b,c}$	0.049 ± 0.012 a,b	$29.8 \pm 4.0 a,b,c$
Dry Creek	Eucalyptus tetrodonta	0.107 ± 0.061 a	9.3 ± 5.2 b,c	$0.59\pm0.05\mathrm{a,b}$	$84.6 \pm 22.2 ext{ a,b}$	$85.3 \pm 22.0 ext{ a,b,c}$	0.047 ± 0.015 a,b	$28.9 \pm 16.8 { m a,b,c}$
	Corymbia terminalis	0.081 ± 0.039 a,b	$7.7 \pm 3.1 \text{ b,c}$	$0.54\pm0.04\mathrm{a,b}$	$94.1 \pm 34.1 a, b$	$95.0 \pm 32.2 \text{ a,b}$	0.059 ± 0.009 a,b	42.3 ± 8.1 a
Sturt Plains	Eucalyptus pruinosa	0.135 ± 0.056 a	10.9 ± 2.8 a,b	$0.59 \pm 0.07 \mathrm{a,b}$	82.1 ± 12.2 a,b	$91.1 \pm 15.5 ext{ a,b,c}$	$0.041 \pm 0.018 \mathrm{b}$	$31.7 \pm 7.6 \text{ a,b,c}$
	Eucalyptus coolabah	$0.042 \pm 0.019 \mathrm{b}$	$3.3\pm0.8~{ m c}$	0.59 ± 0.1 a,b	$65.0 \pm 9.1 \text{ b}$	$58.4 \pm 7.6 \mathrm{c}$	$0.051 \pm 0.006 \text{ a,b}$	$18.8 \pm 2.9 \text{ c}$
Boulia	Corymbia terminalis	0.125 ± 0.080 a	$10.7 \pm 5.7 ext{ a,b}$	$0.57 \pm 0.03 \mathrm{a,b}$	109.6 ± 24.1 a	113.1 ± 27.7 a	0.063 ± 0.009 a,b	39.2 ± 14.3 a,b
	Corymbia aparrerinja	0.083 ± 0.011 a,b	8.7 ± 1.1 b,c	$0.51\pm0.02~{\rm b}$	77.1 ± 9.7 a,b	100.1 ± 11.1 a,b	0.059 ± 0.004 a,b	31.0 ± 2.7 a,b,c

Fig. 3. Net photosynthesis plotted against stomatal conductance for eucalypt leaves sampled along a rainfall gradient in northern Australia. Measurements were made at external CO₂ concentration of 380 μ mol mol⁻¹ and irradiance of 2000 μ mol photosynthetically active radiation m⁻² s⁻¹.

would be expected in the case for invariant photosynthetic capacity and $g_{\rm m}$.

The V_{cmax} normalized to 25 °C and expressed on an area basis showed a weak increasing trend with decreasing MAP ($R^2 = 0.07$, P = 0.02, n = 79). This relationship was the result of increasing LMA with decreasing MAP; when expressed on a mass basis, V_{cmax} showed an opposite trend of increasing with increasing MAP $(R^2 = 0.10, P = 0.004, n = 79)$. The V_{cmax} was not related to leaf N concentration, neither with the two parameters expressed on an area basis (P=0.34, n=79), nor on a mass basis (P=0.78, n=79). Similarly, $V_{\rm cmax}$ was not related to leaf P concentration, neither for mass-based (P = 0.86, n = 79) nor area-based (P = 0.44, n = 79) comparisons. However, area-based $V_{\rm cmax}$ was positively correlated with LMA (Fig. 5). Area-based V_{cmax} also correlated with g_s measured at c_a of 380 µmol mol⁻¹ and PAR of 2000 µmol m⁻² s⁻¹ (R^2 = 0.15, P < 0.001, n = 76). The electron transport rate, J, correlated positively with $V_{\rm cmax}$. The regression equation with the two parameters normalized to $25 \circ C$ was $J = 0.91 V_{cmax} + 14.4$ ($R^2 = 0.76$, P < 0.001, n = 79). Mean values of V_{cmax} and J for each species at each site are given in Table 2.

The apparent quantum yield, ϕ , estimated from the initial slope of the light response curves, showed little variation across the sampled leaves (Table 2). The light-saturated gross photosynthetic rate, A_{max} , was positively correlated with V_{cmax} (Fig. 6), suggesting that the two measurements provided consistent indications of variation in photosynthetic capacity. Area-based A_{max} was unrelated to MAP (P=0.90, n=74), whereas mass-based A_{max} increased with increasing MAP (R^2 =0.16, P<0.001, n=74). The A_{max} showed no significant relationship with leaf N concentra-

L.A. Cernusak et al. / Agricultural and Forest Meteorology 151 (2011) 1462–1470

1466

Lable 2

Gas exchange parameters for eucalypt leaves along a rainfall gradient in northern Australia. Stomatal conductance, net photosynthesis, and the ratio of the internal to ambient CO₂ mole fractions (c₁/c₂) were measured at

Fig. 4. The ratio of intercellular to ambient CO_2 mole fraction plotted against stomatal conductance. The solid line is a linear regression through the data ($R^2 = 0.11$, P = 0.003, n = 76). The dashed line is the predicted relationship between the two parameters if the maximum Rubisco carboxylation velocity, the electron transport rate, and mesophyll conductance were assumed constant over the observed range of stomatal conductance.

tion or with leaf P concentration. The A_{max} correlated with g_{s} measured at c_{a} of 380 µmol mol⁻¹ and PAR of 2000 µmol m⁻² s⁻¹ ($R^2 = 0.39$, P < 0.001, n = 69). The parameter, θ , representing the slope of the light response curve, did not vary among sites or between species within a site. The mean value across all sampled leaves was 0.17 ± 0.06 (mean ± 1 SE, n = 74). The dark respiration rate measured during the light response curves varied as a function of A_{max} according to the regression equation $R_D = 0.028A_{\text{max}} + 0.61$ ($R^2 = 0.19$, P < 0.001, n = 74). The gross photosynthetic rate at irradiance of 2000 µmol PAR m⁻² s⁻¹ was on average 81% of A_{max} , suggesting that photosynthesis at 2000 µmol PAR m⁻² s⁻¹ was not light-saturated. Mean A_{max} for each species at each site is given in Table 2.

4. Discussion

Measurements of leaf dry matter Δ^{13} C for savanna eucalypts in this study were similar to previous observations, showing little variation in response to a strong rainfall gradient in northern Australia (Miller et al., 2001; Schulze et al., 1998). This pattern contrasts with relatively strong relationships between leaf dry matter Δ^{13} C and MAP for trees sampled in North America and Asia (Diefendorf et al., 2010), and in Africa (Midgley et al., 2004). In the present study, we were able to confirm, using instantaneous gas exchange measurements, that c_i/c_a was nearly constant in savanna eucalypts along the strong rainfall gradient in northern Australia. This observation took place at the end of the dry season, when we expected latitudinal variation in drought stress to be

Fig. 5. The maximum Rubisco carboxylation velocity plotted against the leaf mass per area for eucalypt leaves sampled along a rainfall gradient in northern Australia. The solid line is a regression line: $V_{\text{cmax}} = 0.17 \text{LMA} + 45$ ($R^2 = 0.11$, P = 0.003, n = 79).

most pronounced. The nearly constant c_i/c_a observed in this study resulted at least partly from a correlation between photosynthetic capacity and stomatal conductance. A close coupling between photosynthetic capacity and stomatal conductance has been previously observed in a range of C₃ and C₄ plant species (Brodribb and Feild, 2000; Cernusak and Marshall, 2001; Hubbard et al., 2001; Wong et al., 1978, 1979, 1985).

We found three lines of evidence suggesting that photosynthetic capacity in the leaves that we sampled was linked to stomatal conductance. Firstly, estimates of V_{cmax} correlated with gs measured at ambient CO₂ concentration and irradiance of 2000 μ mol PAR m⁻² s⁻¹. Secondly, the A_{max} estimated from light response curves conducted at saturating CO₂ concentration correlated with gs measured at ambient CO2 and irradiance of 2000 μ mol PAR m⁻² s⁻¹. And thirdly, the observed c_i/c_a decreased less with decreasing g_s than was expected theoretically for the case of invariant V_{cmax} , J, and g_{m} (Fig. 4). These observations suggest that modelling approaches for predicting photosynthesis in north-Australian savanna trees may benefit by linking photosynthetic capacity to g_s . Several authors have formulated models that apply this concept (Ball et al., 1987; Buckley et al., 2003; Farquhar and Wong, 1984; Jarvis and Davies, 1998; Leuning, 1990; Leuning, 1995), although the mechanistic basis for coupling between photosynthetic capacity and gs is still uncertain (von Caemmerer et al., 2004).

A correlation between g_s and mesophyll conductance, g_m , could have also contributed to the apparent correlation between photosynthetic capacity and g_s , if g_m were lower in leaves with low g_s than in leaves with high g_s . Although the spreadsheet utility that we used to estimate V_{cmax} also provides estimates of g_m (Sharkey et al., 2007), this method for estimating g_m was found to be less reliable

Fig. 6. Maximum gross photosynthesis determined from light response curves plotted against the maximum Rubisco carboxylation velocity determined from CO_2 response curves. Both parameters are expressed on a mass basis. The solid line is a linear regression: $A_{max} = 0.46 V_{cmax} - 21 (R^2 = 0.63, P < 0.001, n = 72)$.

than methods that apply chlorophyll florescence or on-line $\Delta^{13}C$ measurements (Pons et al., 2009). We did observe a correlation between the estimated $g_{\rm m}$ and $g_{\rm s}$ measured at ambient $\rm CO_2$ concentration and 2000 μ mol PAR m⁻² s⁻¹, but the relationship was weak ($R^2 = 0.09$, P = 0.01, n = 76). The mean estimate of g_m across all leaves in the study was $10 \,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}\,\text{Pa}^{-1}$. This estimate is considerably higher than values determined previously for a range of Australian plant species with sclerophyllous leaves (Niinemets et al., 2009). Consistent with previous observations (Flexas et al., 2008; Hassiotou et al., 2009), we also observed a negative correlation between g_m and LMA ($R^2 = 0.26$, P < 0.001, n = 79). This suggests that g_m should decrease with decreasing MAP due to the increase in LMA. A more detailed investigation of variation in gm in savanna eucalypts along the north-Australian rainfall gradient using chlorophyll florescence or on-line Δ^{13} C methods in combination with gas exchange would be helpful to verify this trend.

The relatively flat responses of leaf dry matter Δ^{13} C and instantaneous c_i/c_a to a strong rainfall gradient in northern Australia observed here and previously (Miller et al., 2001; Schulze et al., 1998) contrasts with results of two studies in eastern Australia (Stewart et al., 1995; Wright et al., 2001). The studies in eastern Australia investigated variations in Δ^{13} C and c_i/c_a of broader vegetation communities in response to MAP, whereas our study only investigated species within the closely related genera of *Eucalyptus* and *Corymbia*. However, the north-Australian transect study of Schulze et al. (1998) included a broad taxonomic range of woody plant species, and these authors still only observed a weak community-level response of Δ^{13} C to MAP. Seasonality of rainfall could be a feature contributing to these contrasting results for responses of Δ^{13} C and c_i/c_a to MAP in northern versus eastern Australia (Miller et al., 2001; Schulze et al., 1998). Rainfall in monsoonal northern Australia shows a much stronger seasonal distribution than rainfall in eastern Australia. Within eucalypts more generally, some species appear to show no response of Δ^{13} C to variation in MAP, whereas other species show a more plastic response, with Δ^{13} C increasing in response to increasing MAP (Cernusak et al., 2005; Miller et al., 2001; Schulze et al., 2006a,b; Turner et al., 2010; Warren et al., 2006).

The most plastic leaf trait in response to MAP assessed in our study was the leaf mass per area. The LMA decreased with increasing MAP at a rate of 70 g leaf dry mass m² leaf area m⁻¹ mean annual precipitation. Because leaf N_{mass} was independent of MAP, leaf N_{area} increased as MAP decreased due to the variation in LMA. The V_{cmax} , expressed per unit leaf area, also increased as MAP decreased, although the increase was not as pronounced as that for leaf N_{area} . This change in LMA, leaf N_{area} , and photosynthetic capacity with decreasing MAP is consistent with theoretical predictions (Farquhar et al., 2002), and with previous observations in this and other ecosystems (Midgley et al., 2004; Mooney et al., 1978; Schulze et al., 1998; Wright et al., 2001).

Leaf photosynthetic capacity is often observed to correlate with leaf N concentration (Domingues et al., 2010; Field and Mooney, 1986; Wright et al., 2004). This has been explained on the basis of the proportionally large allocation of N to photosynthetic enzymes and light-harvesting pigments in leaves (Evans, 1989). In the present study we did not observe a significant relationship between leaf N concentration and V_{cmax} , A_{max} , or photosynthesis at ambient CO₂ concentration. This lack of correlation most likely resulted from the relatively narrow range of leaf N concentration encountered in the study (Fig. 2B). Leaf N concentrations in the leaves that we sampled were low compared to the range of values typically observed in angiosperm trees (Reich and Oleksyn, 2004), but similar to observations for other eucalypts (Bell and Williams, 1997; Prior et al., 2003; Schulze et al., 1998).

In order to cover a larger range of leaf N concentrations, we combined V_{cmax} data from the present study with observations recently reported for seedlings of north-Australian tree species grown in a shade house on the Charles Darwin University campus (Orchard et al., 2010). Mean values for each species at each site were taken as data points. A significant correlation resulted between V_{cmax} at 25 °C (nmol g⁻¹ s⁻¹) and leaf N_{mass} (mg g⁻¹): $V_{\text{cmax}} = 41.2N_{\text{mass}} + 151 \ (R^2 = 0.67, P < 0.001, n = 22)$. In the dataset, leaf $N_{\rm mass}$ ranged from 5.7 to 33.7 mg g⁻¹, and $V_{\rm cmax}$ at 25 °C from 301 to 1380 nmol $g^{-1} s^{-1}$. This demonstrates that even though we did not observe a relationship between V_{cmax} and leaf N_{mass} in the present study, leaf N_{mass} is still a useful predictor of V_{cmax} when a larger range of leaf N_{mass} is taken into account. The V_{cmax} -N slope of the relationship obtained from this combined analysis of 41.2 μ mol CO₂ g⁻¹ N s⁻¹ is in the middle range of V_{cmax}-N slopes observed in a range of previous studies (Kull, 2002).

It has been previously observed that leaf photosynthetic capacity correlated with leaf P concentration in some P-limited tropical ecosystems (Domingues et al., 2010; Meir et al., 2007), and that leaf photosynthesis-N slopes can be influenced by leaf P concentrations (Reich et al., 2009). We did not observe any strong relationship between leaf gas exchange rates and leaf P concentrations in our dataset. In common with the N comparisons, this likely resulted from a limited range of variation in P concentrations among the experimental leaves (Fig. 2C). We did, however, observe a significant correlation between leaf Δ^{13} C and leaf P_{area} , which hints at the possibility that leaf Parea could have been influencing photosynthetic capacity in the leaves that we sampled. The average N:P ratio across the dataset was 16.4 g s^{-1} . According to a simple interpretation of leaf N:P ratios, this would be consistent with co-limitation of productivity in over-story eucalypts along the rainfall gradient by both N and P (Aerts and Chapin, 2000; Güsewell, 2004; Koerselman and Meuleman, 1996; Reich and Oleksyn, 2004). However, some observations suggest that interpretation of leaf N:P ratios may be more complex (Ågren, 2008; Cernusak et al., 2010; Craine et al., 2008; Garrish et al., 2010). Thus, further investigation is required to determine the relative extents to which N and P availability constrain photosynthesis and growth of eucalypts in savannas of northern Australia.

The light response curves that we measured suggested that photosynthesis was not yet light saturated at 2000 μ mol PAR m⁻² s⁻¹ in eucalypt leaves in northern Australia. The gross photosynthetic rate measured at this irradiance was on average 81% of the rate estimated from the asymptote of the light response curves. This explains why the slope between *J* and *V*_{cmax} for our dataset determined at 2000 μ mol PAR m⁻² s⁻¹ was low in comparison to *J*_{max}-*V*_{cmax} slopes reported in other studies. The *J*-*V*_{cmax} slopes reported by others range from about 1.3–1.7 (Meir et al., 2007; Midgley et al., 2004; Wullschleger, 1993). If we assume that *J* estimates at irradiance of 2000 μ mol PAR m⁻² s⁻¹ in our study were 81% of *J*_{max}, we would obtain a *J*_{max}-*V*_{cmax} slope of 1.1. This value is the same as the *J*_{max}-*V*_{cmax} slope recently estimated for West African woodlands (Domingues et al., 2010).

Previous observations of leaf gas exchange in E. tetrodonta growing at three sites in the Northern Territory with MAP ranging from 1650 to 950 mm suggested modest adjustment of area-based leaf gas exchange rates in response to declining MAP (Prior et al., 2005). In that study, increases in area-based photosynthetic capacity at the drier sites were associated with increases in LMA. We observed a similar trend for multiple eucalypt species at sites spanning a wider range of MAP. In our study, the area-based V_{cmax} showed a modest increase with decreasing MAP in association with increasing LMA. Comparative data for wet season gas exchange rates would be helpful to determine whether a similar pattern holds when soil moisture availability is uniformly high along the north to south transect. Furthermore, there is likely a suite of traits related to hydraulic architecture and desiccation tolerance that allows the eucalypt species with more southerly distributions to maintain similar rates of areabased leaf gas exchange to the northerly species during the late dry season. Identifying such traits would provide valuable insight into eucalypt ecophysiology. For the dry season at least, our results suggest that variation in ecosystem-level gas exchange in north-Australian savannas will be largely driven by leaf area index, rather than by marked variation in gas exchange rates per unit leaf area.

5. Conclusions

In conclusion, we observed relatively subtle variation in leaflevel physiological processes along a strong rainfall gradient in northern Australia at the end of the dry season, when we expected the north to south variation in drought stress to be most pronounced. Leaf dry matter Δ^{13} C and instantaneous measurements of c_i/c_a did not vary as functions of MAP. The LMA was the trait that showed the most plasticity along the rainfall transect, increasing in response to decreasing precipitation. The photosynthetic parameter V_{cmax} also showed a modest increase in response to decreasing MAP. This increase in V_{cmax} was apparently modulated by increasing LMA. Stomatal conductance, gs, showed a weak tendency toward decreasing with decreasing MAP. Although g_s did not show a strong systematic response to MAP, it did vary among leaves in the study, and this variation was correlated with variation in photosynthetic capacity. Our results suggest that variation in ecosystem level gas exchange during the dry season in north-Australian savannas will likely be dominated by changes in leaf area index in response to increasing aridity, rather than by changes in photosynthetic performance per unit leaf area.

Acknowledgments

Financial support for this research was provided by two Discovery grants from the Australian Research Council (DP0344744 and DP0772981). Lucas A. Cernusak was supported by a Postdoctoral Fellowship provided by the Australian Research Council (DP0771427). We are grateful to the NT Government and landowners who kindly provided access to their properties and resources (Theona Station, Newcastle Waters Station, Nenen Station, and the NT Governement's Douglas Daly Research Farm). We thank David Ellsworth (University of Western Sydney) for the loan of a portable photosynthesis system for use during the measurement campaign.

References

- Aerts, R., Chapin, F.S., 2000. The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Advances in Ecological Research 30, 1–67. Ågren, G.I., 2008. Stoichiometry and nutrition of plant growth in natural communi-
- ties. Annual Review of Ecology Evolution and Systematics 39, 153–170. Baldocchi, D.D., Amthor, J.S., 2001. Canopy photosynthesis: history, measurements
- and models. In: Roy, J., Saugier, B., Mooney, H.A. (Eds.), Terrestrial Global Productivity. Academic Press, San Diego, pp. 9–31. Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance
- and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, I. (Ed.), Progress in Photosynthesis Research. Martinus Nijhoff Publishers, The Netherlands, pp. 221–224.
- Bell, D.T., Williams, J.E., 1997. Eucalypt ecophysiology. In: Williams, J.E., Woinarski, J.C.Z. (Eds.), Eucalypt Ecology: Individuals to Ecosystems. Cambridge University Press, Cambridge, UK, pp. 168–196.
- Beringer, J., Hutley, L.B., Hacker, J.M., Neininger, B., Paw, K.T., 2011. Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: from point to region. Agricultural and Forest Meteorology 151, 1409–1416.
- Bowman, D.M.J.S., Connors, G.T., 1996. Does low temperature cause the dominance of Acacia on the central Australian mountains? Evidence from a latitudinal gradient from 11 degrees to 26 degrees south in the Northern Territory, Australia. Journal of Biogeography 23, 245–256.Brodribb, T.J., Feild, T.S., 2000. Stem hydraulic supply is linked to leaf photosynthetic
- Brodribb, T.J., Feild, T.S., 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell and Environment 23, 1381–1388.
- Buckley, T.N., Mott, K.A., Farquhar, G.D., 2003. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment 26, 1767–1785.
- Cernusak, L.A., Farquhar, G.D., Pate, J., 2005. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, *Eucalyptus globulus*. Tree Physiology 25, 129–146.
- Cernusak, L.A., Marshall, J.D., 2001. Responses of foliar δ¹³C, gas exchange, and leaf morphology to reduced hydraulic conductivity in *Pinus monticola* branches. Tree Physiology 21, 1215–1222.
- Cernusak, L.A., Winter, K., Aranda, J., Turner, B.L., 2008. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ¹³C and δ¹⁸O) of seedlings grown in a tropical environment. Plant Physiology 148, 642–659.
- Cernusak, L.A., Winter, K., Aranda, J., Turner, B.L., Marshall, J.D., 2007. Transpiration efficiency of a tropical pioneer tree (*Ficus insipida*) in relation to soil fertility. Journal of Experimental Botany 58, 3549–3566.
- Cernusak, L.A., Winter, K., Turner, B.L., 2010. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytologist 185, 770–779.
- Cook, G.D., Heerdegen, R.G., 2001. Spatial variation in the duration of the rainy season in monsoonal Australia. International Journal of Climatology 21, 1723–1732.
- Craine, J.M., Morrow, C., Stock, W.D., 2008. Nutrient concentration ratios and colimitation in South African grasslands. New Phytologist 179, 829–836.
- Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L., Freeman, K.H., 2010. Global patterns in leaf ¹³C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America 107, 5738–5743.
- Domingues, T.F., Meir, P., Feldpausch, T.R., Saiz, G., Veenendaal, E.M., Schrodt, F., Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J., Lloyd, J., 2010. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell and Environment 33, 959–980.
- Eamus, D., Myers, B., Duff, G., Williams, D., 1999. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiology 19, 665–671.
- Eamus, D., O'Grady, A.P., Hutley, L., 2000. Dry season conditions determine wet season water use in the wet-dry tropical savannas of northern Australia. Tree Physiology 20, 1219–1226.
- Evans, J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C₃ plants. Oecologia 78, 9–19.
- Farquhar, G.D., Buckley, T.N., Miller, J.M., 2002. Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36, 625–637.
- Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503–537.

Author's personal copy

- Farquhar, G.D., O'Leary, M.H., Berry, J.A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121–137.
- Farquhar, G.D., Richards, R.A., 1984. Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. Australian Journal of Plant Physiology 11, 539–552.
- Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149, 78–90.
- Farquhar, G.D., Wong, S.-C., 1984. An empirical model of stomatal conductance. Australian Journal of Plant Physiology 11, 191–210.
- Field, C., Mooney, H.A., 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish, T. (Ed.), On the Economy of Plant Form and Function. Cambridge University Press, New York, pp. 25–55.
- Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmés, J., Medrano, H., 2008. Mesophyll conductance to CO₂: current knowledge and future prospects. Plant, Cell and Environment 31, 602–621.
- Garrish, V., Cernusak, L.A., Winter, K., Turner, B.L., 2010. Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, *Ficus insipida*. Journal of Experimental Botany 61, 3735–3748.
- Güsewell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164, 243–266.
- Hassiotou, F., Ludwig, M., Renton, M., Veneklaas, E.J., Evans, J.R., 2009. Influence of leaf dry mass per area, CO₂, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany 60, 2303–2314.
- Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S., 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell and Environment 24, 113–121.
- Hubick, K.T., 1990. Effects of nitrogen source and water limitation on growth, transpiration efficiency and carbon-isotope discrimination in peanut cultivars. Australian Journal of Plant Physiology 17, 413–430.
- Hubick, K.T., Farquhar, G.D., 1989. Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant, Cell and Environment 12, 795–804.
- Hubick, K.T., Farquhar, G.D., Shorter, R., 1986. Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (*Arachis*) germplasm. Australian Journal of Plant Physiology 13, 803–816.
- Hutley, L.B., Beringer, J., Isaac, P., Hacker, J., 2011. A continental-scale living laboratory: observations of environmental and vegetation change across the north Australian savannas. Agricultural and Forest Meteorology 151, 1417–1428.
- Hutley, L.B., O'Grady, A.P., Eamus, D., 2000. Evapotranspiration from eucalypt openforest savanna of northern Australia. Functional Ecology 14, 183–194.
- Hutley, L.B., O'Grady, A.P., Eamus, D., 2001. Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia 126, 434–443.
- Jarvis, A.J., Davies, W.J., 1998. The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany 49, 399–406.
- Koch, G.W., Vitousek, P.M., Steffen, W.L., Walker, B.H., 1995. Terrestrial transects for global change research. Vegetatio 121, 53–65.
- Koerselman, W., Meuleman, A.F.M., 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33, 1441–1450.
- Kull, O., 2002. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133, 267–279.
- Leuning, R., 1990. Modelling stomatal behaviour and photosynthesis of *Eucalyptus grandis*. Australian Journal of Plant Physiology 17, 159–175.
- Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for C₃ plants. Plant, Cell and Environment 18, 339–355.
- Meir, P., Levy, P.E., Grace, J., Jarvis, P.G., 2007. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology 192, 277–287.
- Midgley, G.F., Aranibar, J.N., Mantlana, K.B., Macko, S., 2004. Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Global Change Biology 10, 309–317.
- Miller, J.M., Williams, R.J., Farquhar, G.D., 2001. Carbon isotope discrimination by a sequence of *Eucalyptus* species along a subcontinental rainfall gradient in Australia. Functional Ecology 15, 222–232.
- Mooney, H.A., Ferrar, P.J., Slatyer, R.O., 1978. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of *Eucalyptus*. Oecologia 36, 103–111.
- Niinemets, U., Wright, I.J., Evans, J.R., 2009. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany 60, 2433–2449.
- O'Grady, A.P., Eamus, D., Hutley, L.B., 1999. Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiology 19, 591–597.
- Orchard, K.A., Cernusak, L.A., Hutley, L.B., 2010. Photosynthesis and water-use efficiency of seedlings from northern Australian monsoon forest, savanna, and swamp habitats grown in a common garden. Functional Plant Biology 37, 1050–1060.

- Pons, T.L., Flexas, J., von Caemmerer, S., Evans, J.R., Genty, B., Ribas-Carbo, M., Brugnoli, E., 2009. Estimating mesophyll conductance to CO₂: methodology, potential errors, and recommendations. Journal of Experimental Botany 60, 2217–2234.
- Prior, L.D, Bowman, D.M.J.S., Eamus, D., 2005. Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Australian Journal of Botany 53, 323–335.
- Prior, L.D., Eamus, D., Bowman, D.M.J.S., 2003. Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Functional Ecology 17, 504–515.
- Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101, 11001–11006.
- Reich, P.B., Oleksyn, J., Wright, I.J., 2009. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212.
- Reich, P.B., Wright, I.J., Lusk, C.H., 2007. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications 17, 1982–1988.
- Schulze, E.-D., Mooney, H.A., Sala, O.E., Jobbagy, E., Buchmann, N., Bauer, G., Canadell, J., Jackson, R.B., Loreti, J., Oesterheld, M., Ehleringer, J.R., 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511.
- Schulze, E.-D., Turner, N.C., Nicolle, D., Schumacher, J., 2006a. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of *Eucalyptus* species across a rainfall gradient in Australia. Tree Physiology 26, 479–492.
- Schulze, E.-D., Turner, N.C., Nicolle, D., Schumacher, J., 2006b. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of *Eucalyptus* growing in a common garden compared with along an aridity gradient. Physiologia Plantarum 127, 434–444.
- Schulze, E.-D., Williams, R.J., Farquhar, G.D., Schulze, W., Langridge, J., Miller, J.M., Walker, B.H., 1998. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25, 413–425.
- Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L., 2007. Fitting photosynthetic carbon dioxide response curves for C₃ leaves. Plant, Cell and Environment 30, 1035–1040.
- Stewart, G.R., Turnbull, M.H., Schmidt, S., Erskine, P.D., 1995. ¹³C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Australian Journal of Plant Physiology 22, 51–55.
- Turner, N.C., Schulze, E.-D., Nicolle, D., Kuhlmann, I., 2010. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of *Eucalyptus*. Tree Physiology 30, 741–747.
 Turner, N.C., Schulze, E.D., Nicolle, D., Schumacher, J., Kuhlmann, I., 2008. Annual
- Turner, N.C., Schulze, E.D., Nicolle, D., Schumacher, J., Kuhlmann, I., 2008. Annual rainfall does not directly determine the carbon isotope ratio of leaves of *Eucalyptus* species. Physiologia Plantarum 132, 440–445.
- von Caemmerer, S., Lawson, T., Oxborough, K., Baker, N.R., Andrews, T.J., Raines, C.A., 2004. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. Journal of Experimental Botany 55, 1157–1166.
- Warren, C.R., Dreyer, E., Tausz, M., Adams, M.A., 2006. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old *Eucalyptus* at two common gardens. Functional Ecology 20, 929–940.
- Williams, R.J., Duff, G.A., Bowman, D.M.J.S., Cook, G.D., 1996. Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. Journal of Biogeography 23, 747–756.
- Wong, S.-C., Cowan, I.R., Farquhar, G.D., 1978. Leaf conductance in relation to assimilation in *Eucalyptus pauciflora* Sieb. ex Spreng. Plant Physiology 62, 670–674.
- Wong, S.-C., Cowan, I.R., Farquhar, G.D., 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424–426.
- Wong, S.-C., Cowan, I.R., Farquhar, G.D., 1985. Leaf conductance in relation to rate of CO₂ assimilation. Plant Physiology 78, 821–825.
- Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M., 2005. Assessing the generality of global leaf trait relationships. New Phytologist 166, 485–496.
 Wright, I.J., Reich, P.B., Westoby, M., 2001. Strategy shifts in leaf physiology, structure
- Wright, I.J., Reich, P.B., Westoby, M., 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15, 423–434.
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827.
- Wullschleger, S.D., 1993. Biochemical limitations to carbon assimilation in C₃ plants—a retrospective analysis of the *A*/*C*_i curves from 109 species. Journal of Experimental Botany 44, 907–920.