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Abstract. The realms of rare species conservation and metapopulation biology theory
are often interrelated, and hence share several basic challenges. Two of the most important
are the critical and frequently difficult tasks of distinguishing a priori between habitat and
nonhabitat, and then delimiting suitable habitat patches in a study area. We combined
classification tree analysis, a subset of classification and regression tree (CART) modeling,
with digital data layers of environmental variables in a geographic information system
(GIS) to predict suitable habitat and potential new population occurrences for turkeybeard
(Xerophyllum asphodeloides), a rare liliaceous understory herb associated with southern
Appalachian pine–oak (Pinus–Quercus) forests, in northwestern Virginia. Sample values
from eight environmental data layers and population survey data were used in the modeling
process to produce a cross-validated classification tree that predicted suitable habitat in the
study area. Elevation, slope, forest type, and fire frequency were the four main explanatory
variables in the model. Approximately 4% of the study area was classified into five suitable
habitat classes, with a misclassification error rate of 4.74%. The final 13-leaf tree correctly
classified 74% of the known presence areas and 90% of the known absence areas, and
ground-truthing surveys resulted in the discovery of eight new occupied habitat patches.
Results of this study are important for conservation and management of X. asphodeloides,
as well as for the applicability of the habitat modeling techniques to enhancing the study
of metapopulations and disturbance regimes in Appalachian forests. In addition, they con-
firm the potential and value of CART and GIS-based modeling approaches to species
distribution problems. Our model was successful at defining suitable habitat and discovering
new populations of a rare species at the landscape scale. Similar application to other rare
species could prove very useful for addressing these and other ecological and conservation
issues, such as planning transplantation or reintroduction experiments, identifying meta-
population fragmentation thresholds, and formulating conservation strategies.
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INTRODUCTION

The realms of rare species conservation and meta-
population biology theory are often overlapping and
mutually reinforcing, yet they share several basic chal-
lenges. Two of the most important are the critical and
frequently difficult tasks of distinguishing a priori be-
tween habitat and nonhabitat, and then delimiting suit-
able habitat patches in a study area (Hanski and Sim-
berloff 1997). As large environmental data sets in dig-
ital format have become increasingly available in ecol-
ogy in recent years, the ability to analyze
landscape-level variables and to include the influence
of deterministic agents in modeling of population oc-
currences at regional scales has become feasible. In
addition, the need for statistical methods less restricted
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by parametric assumptions and with greater capacity
for handling nonlinear interactions has grown. Such
analytical techniques would be particularly useful for
addressing a variety of pattern and process questions
in ecology.

One particularly promising analytical method is clas-
sification and regression tree (CART) modeling (Brei-
man et al. 1984). First used in ecology by Verbyla
(1987), this technique was utilized sparingly in the en-
suing decade (Borchert et al. 1989, Lees and Ritman
1991, Moore et al. 1991, Baker 1993, Michaelsen et
al. 1994, Lynn et al. 1995). More recently, CART mod-
els have proven to be powerful alternatives to tradi-
tional multiple regression-based models in a number
of studies. Iverson and Prasad (1998) used regression
trees to replicate successfully the current distributions
and predict potential future distributions of 80 eastern
U.S. tree species following climate change. In a study
of the distribution of three species of California oaks
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FIG. 1. Range map for turkeybeard (Xerophyllum asphodeloides) at the county occurrence level in the eastern United
States, including current Natureserve subnational/state natural heritage program conservation status rankings (Natureserve
2005).

(Quercus spp.), Vayssieres et al. (2000) took advantage
of an extensive historical data set to compare the pre-
dictive ability of CART models and polynomial logistic
regression models, and found that CART models per-
formed significantly better in four of the six cases con-
sidered, and equally well in the remaining two cases.
De’ath and Fabricius (2000) employed regression tree
models to explain from 34% to 67% of the variances
in the abundances of several soft coral taxa, and com-
pared their tree results with mixed effects ANOVA and
linear regression analyses of their data. In both com-
parisons, they found that the tree models explained
nearly identical amounts of the total sums of squares,
were much better at revealing patterns in the data, and
were far easier to interpret due to multiple significant
higher order interactions in the parametric analyses.
On the other hand, Kintsch and Urban (2002) found
that CART models based on environmental (physical)
variables were not as effective at capturing rare species
occurrences as a focal (indicator) species approach
based on data from intense field surveys. Nevertheless,

the CART method did provide an important means for
reducing the number of sites requiring intensive work
and finer scale analysis. Finally, McKenzie et al. (2000)
determined that while their regression tree models ex-
plained 20–33% more of the variation in their original
data than their multiple regression models, the tree-
based models were more prone to extrapolation errors
when applied to broader spatial scales.

In this study, we combined CART modeling with a
geographic information system (GIS) to build a pre-
dictive model of suitable habitat for turkeybeard (Xe-
rophyllum asphodeloides: Liliales, Melanthiaceae;
Zomlefer et al. 2001) in the Appalachians. X. aspho-
deloides is a perennial forest understory herb that oc-
curs in discrete mountain populations from Virginia to
Alabama, as well as disjunctly in the Pine Barrens of
southern New Jersey. Turkeybeard is endangered or
rare in portions of its range and is in the U.S. Center
for Plant Conservation’s National Collection of En-
dangered Plants (CPC 2004; Fig. 1). Despite this spe-
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cial status, its spatial distribution on the landscape is
inadequately known, as is the extent of suitable habitat.

No published studies exist addressing detailed as-
pects of turkeybeard’s habitat preferences or distribu-
tion; however, our preliminary field observations sug-
gested that a number of environmental landscape var-
iables might correlate well with turkeybeard population
occurrences. These included: (1) elevation—although
present to some extent over the elevational range of
the study area (168–1360 m above sea level [asl]), oc-
currences predominated either at high elevation sum-
mits or mid-elevation slopes; (2) slope—populations
were located mainly on either nearly flat terrain or on
slightly to moderately steep slopes and spur ridges; (3)
aspect—populations tended to occupy predominantly
west- and north-facing sites, becoming sparse to absent
as one moved onto southerly and easterly aspects; (4)
forest type—most populations occurred in pine, mixed
pine–oak, and xeric oak forest types; (5) fire history—
visible evidence of past fires were observed in most
populations; and (6) perimeters—populations were dis-
crete and appeared to be delimited by an inability to
span stream drainages and rock fields.

In addition to our observations, turkeybeard is often
referred to as being a fire-adapted species dependent
on disturbance by fire for its long-term population per-
sistence (WVNHP 1994, 1995a, b, Farnsworth 2003).
Anecdotal support for this assertion comes from its
frequent association with fire-adapted pines in New Jer-
sey (pitch pine, Pinus rigida), the Appalachians (P.
rigida and table mountain pine, P. pungens), and even
at its southern range limit of north-central Alabama,
where its sole occurrence is in rare mountain longleaf
pine (P. palustris) forest (Thurmond and Oberholster
1996). Its only congener, beargrass (X. tenax), occurs
abundantly in Montana, portions of the Pacific North-
west and northern California, and southwestern Canada
(Hitchcock and Cronquist 1973). There are few pub-
lished studies of X. tenax, but Maule (1959), Franklin
and Dyrness (1973), and Hunter (1988) mention that
it is often dominant in burned forest areas. Maule
(1959) also concluded that the major factors influenc-
ing the distribution of X. tenax on Mount Rainier,
Washington, were elevation, slope, and aspect, the last
of which particularly affected soil temperature, where-
as soil water content had no apparent influence. Last,
our results from a previous fire and canopy alteration
field experiment on a long-term marked X. asphode-
loides population and assessment of fire histories at a
number of population sites have shown that turkey-
beard flowers massively in response to fire and that fire
has occurred repeatedly in populations in recent history
(N. A. Bourg, D. E. Gill, and W. J. McShea, unpub-
lished manuscript).

Based on these observations and findings, we hy-
pothesized that such environmental variables could be
used in classification tree statistical analysis to identify
important distributional explanatory variables, predict

suitable habitat, and discover new population occur-
rences of X. asphodeloides. A lack of readily available
fine-scale temperature or moisture GIS layers for the
study area precluded their inclusion in our modeling
effort; nonetheless, previous researchers have shown
that our other variables could serve as reasonable prox-
ies for underlying variation due to temperature or mois-
ture gradients (Whittaker 1956, Burnett et al. 1998,
Nichols et al. 1998, Kintsch and Urban 2002).

STUDY AREA AND METHODS

The study area consisted of the three northernmost
ranger districts (Deerfield, Dry River, and Lee) of the
George Washington National Forest (GWNF) in west-
ern Virginia and eastern West Virginia (378589180 to
398079020 N; 788189040 to 798329320 W; USDA 1993).
The total land area was 227 216 ha, all within the Ridge
and Valley Physiographic Province (Harvill et al.
1977).

Population surveying and mapping

Known turkeybeard populations in the study area
were surveyed by placing replicate 50 3 2 m strip
transects spaced at least 100 m apart on the ground.
Three transects were done in each population except
for two sites, where only two transects were surveyed
due to time and size/shape constraints, respectively.
This resulted in areal samples of 200–300 m2 in each
population. Plants were counted in 5-m sections along
each transect, and the number of flowering individuals
and inflorescences was also tallied. In addition, total
direct counts of plants were conducted in two popu-
lations of small areal extent.

Mapping of the perimeter of each population was
achieved by recording the surveyor’s exploratory walk-
ing path with the track and waypoint functions of a
Trimble Pathfinder Basic global positioning system
(GPS) unit. Digital perimeter files were then down-
loaded and converted into polygon shapefiles for use
in ArcView GIS 3.3 (ESRI 2002).

Production of fire frequency layer

Historical fire records were collected from GWNF
ranger district offices for 158 wildfires that occurred
on the study area from 1983 to 2000. Exact perimeters
were mapped whenever available. For those records
with a known size or size range and location but lacking
specific perimeter maps, circles with an area corre-
sponding to the fire acreage or mean range size were
used for mapping. Only fires at least 2 ha in size were
used, and both human- and lightning-caused wildfires
were included in the data set. All records were digitized
onto U.S. Geological Survey digital elevation models
(DEMs) of the study area.

A grid consisting of 2000 3 2000 m cells was over-
laid onto the study area using the Coordinate Grid Mak-
er extension of ArcView and a center point was placed
in each cell. The number of fires/cell/year was then



2796 NORMAN A. BOURG ET AL. Ecology, Vol. 86, No. 10

calculated for each point by summing the number of
fires with any part of their perimeters entering the cell,
and dividing the total by 18 years. Kriging, an advanced
interpolation procedure that generates an estimated sur-
face from a scattered set of points, was then performed
on this data set (Isaaks and Srivastava 1989, Stein 1999,
Maclean and Cleland 2003). Ordinary kriging with a
2000-m lag distance was used to estimate the semi-
variogram, with an exponential model yielding the best
fit. A 30-m cell size output grid was then interpolated
with the Kriging Interpolator 3.2 extension to ArcView
Spatial Analyst (Boeringa 2003) to yield a continuous
raster layer for the study area that was suitable for use
with our other data layers (Appendix A). The resulting
fire frequency index values ranged from a low of zero
fires/10 years to a high of nearly one fire/10 years.

Other GIS layers

U.S. Geological Survey 30-m resolution DEMs were
gathered for the study area and merged to produce the
elevation layer (USGS 1993). This layer was then em-
ployed to derive the slope, aspect, planar curvature
index, and profile curvature index layers using their
respective command functions in ArcInfo (ESRI 2002).
The aspect layer was transformed to recalculated values
aligned on a northeast–southwest axis to accord with
the environmental moisture gradient, similar to the
standard transformation of Beers et al. (1966). The pla-
nar curvature index describes the concavity/convexity
of the land surface measured perpendicular to the as-
pect of the slope, while the profile curvature index
describes the same phenomenon but measured parallel
to the slope’s aspect. Their values are unitless, with
positive values indicating convexity and negative in-
dicating concavity.

The forest type layer was a modified and condensed
version of the USFS continuous inventory of stand con-
dition (CISC) digital data set (USFS 1996). A total of
44 CISC forest types were condensed into nine types
by grouping into broader categories, based on combin-
ing similar CISC types and grouping under the coarser
scale Southern Appalachian Assessment old growth
forest types classification scheme (Appendix B; SA-
MAB 1996).

Modification and condensation of soil types from
Soil Survey Geographic Database (SSURGO) digital
county soil maps (NRCS 2003) were also undertaken
to arrive at the final soil type GIS layer. Soil types were
grouped into seven final classes based on their simi-
larity in six relative criteria gathered from county soil
survey publications: described composition, depth,
drainage, pH, fertility, and available water capacity
(Appendix C).

CART model production

A data set for use in modeling was obtained by plac-
ing 90 m diameter sampling circles randomly across
the study area, both within and outside of mapped tur-

keybeard population occurrences. After elimination of
those circles that either overlapped or had the majority
of their area located outside the study area boundary,
the final data set consisted of 633 sample locations,
132 of which were known occupied suitable circles and
501 of which were probable absence (unsuitable) cir-
cles. Given the discrete nature and abrupt boundaries
of turkeybeard populations observed in the field, as
well as the fact that we had mapped all of the known
locations identified either during our fieldwork or from
consultations with natural resource managers and bot-
anists, we felt justified in categorizing the absence sam-
ples as such. We subsequently tested this categorization
by evaluating the model’s classification accuracy on
smaller known absence areas and the known presence
areas. Mean data values of each circle for each of the
eight environmental variables were extracted from their
respective GIS layers with the GIS utilities function of
the ERDAS Imagine image processing software pro-
gram (ERDAS 1997). Distribution of the data values
with respect to the dependent variable for each of the
GIS layers showed that there were significant differ-
ences between classes for all continuous variables ex-
cept the landform indices, and that they represented the
actual proportions of the categories of the dependent
variable well (Appendix D).

Classification tree analysis was then performed on
this data set in the S-PLUS 6.0 statistical package (In-
sightful Corporation 2001) using the RPART version
3 (Recursive PARTitioning; Therneau and Atkinson
1997, Mayo Foundation 2002) library addition. RPART
allows one to conduct v-fold cross-validation runs on
the data to enable the determination of the optimally
sized tree, a process called pruning. We performed 10-
fold cross-validation, where each run consisted of 10
random divisions of the data into 90% learning and
10% test sets, using the default ‘‘Gini’’ index impurity
measure as the splitting index and the following control
parameter settings for the fitting function: minimum
number of observations in a node before attempting a
split 5 5, minimum number of observations in a leaf
(terminal node) 5 2, and the default threshold com-
plexity parameter value 5 0.001. Output from the sum-
mary function of RPART was examined to evaluate
competitor and surrogate split variables. In all cases,
the variable that yielded the greatest improvement to
deviance was chosen as the splitting variable at a given
node, and surrogate variable splits were not employed
because there were no missing values for any of the
data set observations.

RPART employed the learning set to construct 10
classification trees, and each test set was then perco-
lated through its respective tree to calculate a table of
cross-validation error values for various tree lengths.
We conducted 100 of these 10-fold cross-validation
runs for a total of 1000 simulations and then tallied
the optimal tree size values from their cross-validation
error tables based on the two evaluation criteria of Brei-
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FIG. 2. Cross-validation relative error for the classifica-
tion tree modeling of X. asphodeloides habitat. The plot is
for a single representative 10-fold cross-validation and in-
cludes SE estimates for each tree size. The bar chart at the
top of the plot shows the numbers of trees of each size selected
under the 1 SE rule (gray) and minimum rule (white) from a
series of 100 cross-validations. The dashed line indicates the
1 SE cutoff above the minimum error value. The bottom x-
axis indicates the complexity parameter values associated
with each tree size.

man et al. (1984): the 1 SE rule and the minimum cross-
validation error rule. The 1 SE rule states that the best
tree is that which is smallest where its estimated error
rate is within one standard error of the minimum. The
minimum cross-validation error rule states simply that
the optimal tree is that which minimizes the cross-
validation error in a given run. Under either rule, the
modal tree size over all the simulations is then selected
as the optimal tree (Breiman et al. 1984, De’ath and
Fabricius 2000). This final classification tree model was
then entered into the Knowledge Engineer function of
ERDAS Imagine, and pixel assignment to classes for
the entire study area was performed by using the re-
sulting classification tree file along with the eight dig-
ital raster environmental layers in ERDAS Imagine’s
Knowledge Classifier utility.

Model evaluation

We evaluated the classification of the study area in
two ways: (1) by calculating the percentage of known
turkeybeard presence and absence areas classified cor-
rectly (i.e., included as suitable and unsuitable habitat
respectively), and (2) by ground-truthing a subset of
the predicted habitat patches. We digitized 23 small to
large-sized (2700–524 700 m2, mean area 5 108 117
m2) known absence areas that we had traversed during
terrain explorations in the population-mapping phase
of the fieldwork to use along with the mapped known
population occurrence areas for the first evaluation. For
the second evaluation, we selected only those patches
at least 5 ha in size as potential ground-truthing sites,
and included patches that contained known mapped
turkeybeard populations. A ‘‘naı̈ve but competent’’
field technician was then employed to conduct walking
transect surveys through as many of these patches as
possible from November 2002 to January 2003, with
time, road, and weather conditions permitting. By ‘‘na-
ı̈ve but competent’’ we mean that we selected a person
who was experienced in plant surveys, plant identifi-
cation, and GPS use but had no prior experience either
with turkeybeard or in the study area, and did not know
which patches contained mapped turkeybeard popula-
tions beforehand.

RESULTS

Twenty-three known turkeybeard populations were
surveyed and mapped during the summer of 2000, with
one additional population assessed in the summer of
2001, for a total of 24 populations. We found consid-
erable range in the mean plant density, areal extent,
and estimated population sizes among the populations,
although the density of plants in flower was uniformly
low across all sites (Appendix E).

Compilation of the results of the cross-validation
runs yielded a five-leaf tree as the modal size under
the 1 SE rule while the minimum cross-validation error
criterion produced a 13-leaf tree as the optimum (Fig.
2). The 13-leaf tree, however, was the most frequently

represented size overall, achieving moderate frequency
under the 1 SE rule and scoring as the best tree in 77
of the 100 runs under the minimum cross-validation
error rule. Additionally, the 13-leaf tree yielded an
overall misclassification error rate of only 4.74% when
applied to the full model data set, whereas the five-leaf
tree misclassified 7.90% of this data set. Sensitivity
(i.e., true positive rate 5 the proportion of observations
correctly identified as suitable) of this tree size, at 0.811
6 0.03, was also considerably greater than that of the
five-leaf tree (0.652 6 0.04), while specificity (i.e., true
negative rate) of both tree models was high and vir-
tually identical (0.990 6 0.004 for 13-leaf tree, 0.992
6 0.004 for five-leaf tree). Finally, use of the larger
tree to classify the study area resulted in correctly clas-
sifying 74.4% of the total known presence area and
89.7% of the total known absence area, while the small-
er tree was less accurate at classifying the known pres-
ence area (66.3% correct) and no better at classifying
the known absence area (90.2% correct). Given these
performance differences and the richer information
content of the 13-leaf tree, we chose it as the optimal
tree size and used it to perform the final classification
of the study area (Fig. 3). Using the misclassification
error terminology of De’ath and Fabricius (2000), the
4.74% misclassification error rate of this tree compares
very favorably with a 50% error rate for classification
of the data based on ‘‘blind guessing’’ and a 20.9%
error rate using the ‘‘go with the majority rule’’ of the
null model, which in this case would constitute clas-
sifying none of the sampling circles as having X. as-
phodeloides present in them.
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FIG. 3. Final cross-validated classification tree that served as the basis for the model of predicted habitat for turkeybeard
(X. asphodeloides) on the George Washington National Forest study area in northwestern Virginia, USA. Splitting variables
at each decision node of the tree are enclosed in ovals, and the values for each variable in the upper portion of the tree are
labeled on the left and right branches emanating from each split. Values for the splits in the lower portion of the tree are as
follows. Forest type: left branch 5 COSO, DMO, HWPNH, MM, and RW; right branch 5 XPO, OC, and BLB (see Appendix
B). Slope: left branch, $4.558; right branch, ,4.558. Elevation: left branch, ,664 m; right branch, $664 m. Planar Index:
left branch, ,20.025; right branch, $20.025. Elevation: left branch, ,742 m; right branch, $742 m. Profile Index: left
branch, $20.30; right branch, ,20.30. Elevation: left branch, $876 m; right branch, ,876 m. Branch lengths below each
split are proportional to the amount of variance explained by the classification variable at the split. The end nodes or ‘‘leaves’’
of the tree are labeled with the two classes of the dependent variable: U, unsuitable habitat; Su, suitable habitat. Numbers
below the end node labels refer to the number of sample points classified into that node; the first number indicates the number
of U samples placed into that leaf, and the second indicates the number of Su samples in the leaf. The five Su habitat classes
are in bold type and are numbered (Su1–Su5) to correspond to the predicted suitable habitat classes in Fig. 4 and Appendix F.

Application of this 13-leaf tree model to the study
area resulted in placing 3.9% (8753 ha) of the terrain
into five suitable habitat classes (Figs. 3 and 4). This
tree size was most successful at achieving the multiple
goals of: (1) producing a moderately sized tree con-
taining ecologically meaningful explanatory variables
while obtaining a low misclassification error rate for
the model data set; (2) placing the highest proportion
of known population areas into the suitable habitat clas-
ses while at the same time minimizing the total amount
of the study area categorized as suitable; and (3) main-
taining high fidelity in known absence area classifi-
cation.

The final classification tree model identified the fol-
lowing four variables as major determinants for ex-
plaining the distribution of turkeybeard populations
and identifying suitable habitat patches: elevation,
slope, forest type, and fire frequency index (Fig. 3).
One hundred of 633 sampling circles in the model data
set (15.8%) occurred at high elevation (.1023 m asl),
and turkeybeard was found almost exclusively on fairly
gentle slopes (,13.78) here. This high elevation cate-
gory contained 50% (66 of 132) of the known presence
sampling circles, and only three of these were mis-
classified. The remaining 533 sampling circles were

split into two major groups by the forest type and fire
frequency index variables. While only 7.9% (42 of 533)
of these samples fell into pine-dominated forest types,
18.2% (24 of 132) of the known presence samples oc-
curred here, with only one misclassified and located on
more steeply sloped terrain ($11.48). The fire fre-
quency index variable was able to split out 285 of the
final 491 samples (58%) into the very low to nil fire
frequency category. Three of these were misclassified
known presences, representing only 2.3% (3 of 132)
of these data. The rest of the known presence data (39
samples or 29.5%) occurred in areas of higher fire fre-
quency ($0.14 fires/10 years). In addition to elevation
reentering into the lower branches of the tree as a clas-
sifying variable, the two measures of topographic cur-
vature at the local scale also appeared as important
factors. Suitable habitat classes in this portion of the
tree model were characterized by mainly convex planar
topography ($20.025; 18 of 132 presence samples, or
13.6%), with a small subset of these (4 of 132, or 3.0%)
occurring at lower elevation sites (,742 m asl) with
some additional concavity in their profile topography.
Last, the greatest number of misclassified samples (14
of 132 presence samples, or 10.6%) appeared in the
classification node that was mainly defined as more
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FIG. 4. Predicted habitat model map for turkeybeard (X. asphodeloides) on the George Washington National Forest study
area in northwestern Virginia, USA (227 216 ha, inset upper left) produced from the classification tree model. Suitable habitat
grayscale-coded categories in the magnified view correspond to the Su1–Su5 leaves in the classification tree in Fig. 3. Ovals
encircle new population patches discovered during ground-truthing; triangles with their corresponding arrows indicate un-
occupied ground-truthed patches, and diamonds with their associated arrows indicate prior known population ground-truthed
patches. See Appendix F for a color version of this figure.
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than gently sloped areas ($4.558) in predominantly de-
ciduous forest types, where species such as Quercus
prinus, Q. coccinea, Q. rubra, Q. alba, and to a lesser
extent Acer rubrum were most common.

Forty-six predicted suitable habitat patches were sur-
veyed during the ground-truthing exercises. Total dis-
tances covered in the walking transects were 54 and
69 km in unsuitable and suitable habitat, respectively.
Our ground-truthing technician was 100% successful
(6 of 6 patches) in finding turkeybeard in those patches
harboring known, previously mapped populations that
were covertly included in his search list. These surveys
also resulted in the discovery of eight new, occupied
suitable habitat patches, equal to a 20% occupancy rate
for the remaining 40 ground-truthed patches (Fig. 4,
Appendix F). All of the five suitable habitat classes
were represented at least twice in these new popula-
tions, although suitable habitat class 2 covered only a
small portion (,5%) of their total area. Additionally,
six false negatives were found, but these all occurred
near to predicted suitable habitat harboring known or
new populations (mean distance from nearest suitable
habitat 5 171 m).

DISCUSSION

Our modeling effort was successful at defining suit-
able habitat for and discovering new populations of a
rare species in a topographically complex environment
at the landscape scale. The results of our approach
compare favorably with the performance achieved by
CART models in several recent studies (Iverson and
Prasad 1998, De’ath and Fabricius 2000, McKenzie et
al. 2000, Vayssieres et al. 2000, Kintsch and Urban
2002). In addition, the model’s identification of ele-
vation, slope, and fire as three of the four main ex-
planatory variables is consistent with the findings of
Maule (1959) and Franklin and Dyrness (1973) for tur-
keybeard’s western congener, X. tenax. Regardless of
whether elevation and slope may have served as proxies
for underlying causal factors in our study, they, as well
as fire frequency and forest type, played an important
role in yielding a predictive model that performed well.
Further investigation, GIS layer production, and model
redevelopment would be needed to assess whether in-
clusion of other variables more directly related to fac-
tors such as temperature or moisture would improve
the outcome we obtained (Vayssieres et al. 2000,
Kintsch and Urban 2002).

Although we do not present evidence herein to char-
acterize X. asphodeloides as having a metapopulation
structure, the results are pertinent to questions of hab-
itat definition at the metapopulation level (Husband and
Barrett 1996, Freckleton and Watkinson 2002, Murphy
and Lovett-Doust 2004). Over the past decade interest
in the influence of spatial structure on the ecological
and evolutionary dynamics of populations has in-
creased markedly. Indeed, advocacy for a metapopu-
lation approach to addressing this issue has become

extremely popular in both ecology and conservation
biology (Husband and Barrett 1996, Hanski and Sim-
berloff 1997, Hanski 1999:1–21). This is a powerful
and justifiable approach because it encourages process-
and scale-oriented research and conservation strategies
that focus attention on among-population processes
(Thrall et al. 2000). Such processes, the main examples
of which are environmental stochasticity and deter-
ministic threats like natural disturbance and succession,
are the most likely ultimate causes of local population
extinction (Thomas 1994, Harrison and Taylor 1997).
Plants are particularly vulnerable to deterministic ex-
tinction threats due to their immobility and restricted
capacity for dispersal.

In their review of 44 recent papers on the regional
population dynamics of more than 33 plant species,
Freckleton and Watkinson (2002) listed only two stud-
ies where potential suitable habitat was defined quan-
titatively (Lesica 1992, Giles and Goudet 1997). The
remainders were either easily delimited (e.g., aquatic
plants in transient pools), used qualitative or subjective
definitions, or did not define potential habitat patches.
This is not a trivial issue, as the occurrence of suitable
habitat in discrete patches that may be occupied by
local reproducing populations is one of the four nec-
essary conditions for characterizing the regional dy-
namics of a species as a metapopulation (Hanski 1997).
Our effort demonstrates a powerful and readily inter-
pretable GIS-compatible modeling approach for sat-
isfying this requirement in regional-level population
investigations. In cases where a species does not con-
form as readily to suitable/unsuitable habitat delinea-
tions, predictive habitat gradient models, as advocated
by Murphy and Lovett-Doust (2004), can still be un-
dertaken using CART modeling in combination with
grid-based GIS data layers.

Our findings also have significant conservation and
management implications for the role of fire in the
Appalachians as well as in the life history of X. as-
phodeloides in particular. Research on fire ecology in
Appalachian forest communities has traditionally fo-
cused on effects on overstory trees and their regener-
ation (Zobel 1969, Barden and Woods 1973, 1976, Ko-
marek 1974, Harmon 1982, Van Lear and Waldrop
1989, Williams and Johnson 1990, Abrams 1992, Suth-
erland et al. 1993, Delcourt and Delcourt 1997, Harrod
et al. 1998, Shumway et al. 2001); little research has
been done on the understory plant component. Fire,
however, may have a major influence on the population
ecology of understory species in fire-influenced com-
munities (Bond and van Wilgen 1996, Curtis 1998,
Quintana-Ascencio et al. 2003, Menges and Quintana-
Ascencio 2004). Additionally, studies of understory
species such as X. asphodeloides are valuable, given
that the Appalachian forest cover of today is almost
entirely mature secondary regrowth from the extensive
deforestation of the 18th and 19th centuries (Shands
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1992), which obliterated much of any historical fire
evidence contained in the canopy trees.

No detailed ecological studies of X. asphodeloides
had been undertaken until this research effort. Addi-
tionally, the full extent of turkeybeard population oc-
currences in the Appalachians is currently unknown,
constituting a critical information gap that our mod-
eling approach can now begin to fill. X. asphodeloides
is broadly distributed within the larger forest matrix in
isolated patches across a range of drier forest types
(hardwood to pine-dominated) that may be subject to
natural succession and human-induced habitat loss.
This raises the question of whether population occur-
rences in turkeybeard are the result of a dynamic pro-
cess of individuals tracking rare patches of suitable
habitat in a metapopulation context (Harrison and Tay-
lor 1997) or whether their distribution is a relict of
ancient fragmentation processes independent of edaph-
ic and ecologically induced patchiness (Whittaker
1956). Insights into these issues and their relation to
fire occurrence are particularly relevant for conserva-
tion and management of mountain populations of tur-
keybeard because most occur on national forest and
park lands, where fire suppression policies have been
in place for much of the past century (USDA 1993).

Equally important, the predictive habitat modeling
effort described herein has the potential for linkage to
regional genetic studies through its ability to efficiently
delineate and identify areas harboring new populations.
Cruzan (2001) used stepwise regression models and
genetic diversity data from multiple populations to es-
timate the critical number of neighboring populations
(fragmentation threshold) and metapopulation diameter
needed for the regional maintenance of genetic diver-
sity in the large-flowered skullcap (Scutellaria mon-
tana). However, this was possible only because of the
availability of population occurrence information from
extensive and time-intensive prior field survey data col-
lected by state resource managers. Applying our mod-
eling approach could substantially enhance the feasi-
bility of estimating such fragmentation thresholds for
other species whose spatial distributions are poorly
known. The results of this study are thus important not
only for conservation and management of X. aspho-
deloides in the Appalachians, but also as confirmation
of the potential and value of CART and GIS-based
modeling approaches for addressing species distribu-
tion problems and related questions in ecology.

There are some limitations to our current habitat
model. First, as one would expect, its classification
accuracy decreased as population occurrence area de-
creased. Fifty-three percent of the known mapped small
(,5 ha) turkeybeard populations were missed by the
13-leaf tree model. Adding additional sample points
from other small populations to the model data set
would likely improve classification accuracy for such
areas. Second, the inclusion of more and better fire
history data would improve the fire frequency layer

and potentially lead to fire appearing as an even stron-
ger explanatory variable in the tree model. This asser-
tion is supported by the fact that fire frequency was
the predominant splitting variable used to classify the
major remaining group of misclassified presence sam-
ples (14) in the next largest tree model (15-leaf tree).
We were limited to using only the most recent 18 years
of fire records because of a lack of older records cov-
ering a longer coincident time period on two of the
districts of the study area. However, it appears evident
that many X. asphodeloides sites have experienced re-
peated fire over at least the past 200 years, based on
analyses of fire-scarred tree cross-sections collected
from a subset of our turkeybeard populations on the
GWNF (N. A. Bourg, D. E. Gill, and W. J. McShea,
unpublished manuscript). It is interesting to note that
even with the short time period of the available fire
history data, the highest value of the fire frequency
index (nearly 1 fire/10 years) corresponds well with
longer term fire frequencies (8–13 years) that have been
reported for Appalachian pine and oak forest types
(Harmon 1982, Abrams 1992, 2000, 2003, Sutherland
et al. 1993, Shumway et al. 2001). Additionally, the
entry of the fire variable into the tree model at ele-
vations below 1023 m agrees with the known patterns
of lightning-caused fires on the GWNF, which occurred
predominantly in the mid-elevation range (610–914 m;
USFS 1997). Finally, application of the model to other
potential study areas must be restricted to those having
similar topographic, forest, and soil type ranges and
categories, such as those found in other parts of the
southern Appalachians. The basic modeling approach
would be valid in other regions but would by necessity
require testing and reevaluation in the new multivariate
space.

Even though X. asphodeloides is a long-lived peren-
nial and one of only two species in its genus, its dis-
tribution throughout the elevational range of the central
and southern Appalachians and its relationship with fire
argues against it being considered a relict species sim-
ilar to a number of other Appalachian plants (Whittaker
1956, Godt et al. 1995, 1996, Kintsch and Urban 2002).
Recent work on X. tenax in Oregon by Vance et al.
(2004) has shown that this species has an early-acting
self-incompatibility system, and our own pollination
studies of X. asphodeloides have documented a similar
self-incompatible breeding system (N. A. Bourg, un-
published data). This suggests that in the longer term,
populations may be vulnerable to deterministic extinc-
tion brought about by natural succession and persistent
low flowering levels in the absence of fire, given the
present altered fire regimes in the Appalachians. If pe-
riodic fire enables population maintenance and en-
hances the potential for occasional gene flow among
populations, then there may be validity in character-
izing turkeybeard’s population dynamics as a ‘‘habitat-
tracking metapopulation’’ (Harrison and Taylor 1997).
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Additional research is needed to fully evaluate this hy-
pothesis.

Our modeling effort was successful at defining suit-
able habitat and discovering new populations of a rare
species at the landscape scale. The model is relevant
to metapopulation-level questions, and has potential for
linkage to population genetic studies. Application of
similar modeling efforts to other rare species could be
very useful for defining suitable habitat, discovering
new populations, planning transplantation or reintro-
duction experiments, identifying metapopulation frag-
mentation thresholds, and addressing a variety of other
ecological and conservation questions.
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APPENDIX A

A map showing the study area location on the George Washington National Forest (inset) and kriged fire frequency raster
layer for the study area, created from 158 wildfire occurrences during the period of 1983–2000, used in the classification
tree and GIS-based predictive habitat modeling is available in ESA’s Electronic Data Archive: Ecological Archives E086-
151-A1.

APPENDIX B

A table showing condensed forest types used in the habitat modeling effort and the corresponding continuous inventory
of stand condition (CISC) type codes included in them is available in ESA’s Electronic Data Archive: Ecological Archives
E086-151-A2.

APPENDIX C

A table showing condensed soil classes based on SSURGO data used in the habitat modeling effort and their descriptive
rankings for the six relative county soil survey grouping criteria is available in ESA’s Electronic Data Archive: Ecological
Archives E086-151-A3.

APPENDIX D

Box–whisker plots (top three rows) and bar graphs (bottom row) showing the distribution of the modeling data set values
for the eight environmental GIS layers with respect to the dependent variable (unsuitable [U] and suitable [Su]) are available
in ESA’s Electronic Data Archive: Ecological Archives E086-151-A4.

APPENDIX E

A table showing plant density, areal extent, and population size estimates for the 24 mapped and surveyed populations of
X. asphodeloides in the study area, in descending order of areal extent is available in ESA’s Electronic Data Archive: Ecological
Archives E086-151-A5.

APPENDIX F

A color version of Fig. 4 is available in ESA’s Electronic Data Archive: Ecological Archives E086-151-A6.


