Halicystus californiensis, a “new” species of stauromeda (Cnidaria: Staurozoa) from the northeast Pacific, with a key to the species of Halicystus

AMANDA S. KAHN1, GEORGE I. MATSUMOTO2, YAYOI M. HIRANO3 & ALLEN G. COLLINS4,5

1Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039. E-mail: akahn@mlml.calstate.edu
2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039. E-mail: mage@mbari.org
3Department of Biology, Graduate School of Science, Chiba University, I-33 Yayoi-cho, Inage-ku, Chiba, 263-8522. E-mail: yakko@earth.s.chiba-u.ac.jp
4NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012. E-mail: collinsa@si.edu
5Corresponding Author. E-mail: CollinsA@si.edu

Abstract

We describe Halicystus californiensis, a new species of stauromedusa from the northeast Pacific. Halicystus californiensis differs from other species within the genus primarily by its horseshoe-shaped anchors, but also by the presence of prominent glandular pads at the base of its outermost secondary tentacles and by geographic range. It has been found from southern to northern California in coastal waters, 10 to 30 m depth. A single specimen of the species was originally described in an unpublished dissertation; nine additional specimens have been found since that time. We provide an annotated key to the known species of Halicystus.

Key words: Halicystus, Staurozoa, stauromedusa, Cnidaria, H. auricula, H. octoradiatus, H. californiensis, H. tenuis, H. stejnegeri, H. borealis

Introduction

Stauromedusae are stalked, benthic medusozoan cnidarians distributed mostly in shallow, temperate and polar waters. They may be locally common but are often highly cryptic. Only about 50 species have been described worldwide (Mills 1999; Daly et al. 2007). Until recently, Stauromedusae was considered part of class Scyphozoa, but phylogenetic analyses based on genetic and morphological data suggest that the group represents the earliest diverging clade of extant medusozoan cnidarians (Collins & Daly 2005; Collins et al. 2006; Van Iten et al. 2006). The establishment of Staurozoa as a new class highlights the importance of the systematics of stauromedusae. Its basal position within Medusozoa offers insights into the early evolution of Cnidaria (Collins 2002; Collins & Daly 2005; Collins et al. 2006).

Within class Staurozoa, the genus Halicystus Clark, 1863 has the greatest number of species—10 described—with the most recent addition in 1961 (H. monstrosus (Naumov, 1961)). An additional species widely known under the nomen nudum H. sanjuanensis exists within the genus as well. A survey of stauromeda species in the eastern north Pacific revealed an additional species of Halicystus. This species was described in detail in a Ph.D. thesis (Gwilliam 1956) as H. californiensis, but the account was never published. In spite of the lack of a formal description, references to this species have been made in the literature as H. californiensis (Hirano 1997; Mills & Larson 2007; Miranda et al. 2009). Another species described by Gwilliam, Stenoscyphopsis vermiformis, has not been found during any later surveys.
Stauromedusae within the genus *Haliclystus* have four longitudinal planes of symmetry. Individuals have eight adradial arms tipped with clusters of secondary tentacles, and eight interradial and perradial marginal anchors. The muscle lining the rim of the calyx is not continuous; it is broken into eight parts by the arms (Kramp 1961). Species within the genus vary primarily in the shape of eight large pads called anchors located on the interradii and perradii, but also by geographic range and location of white nematocyst clusters. Miranda et al. (2009) reviewed the different species of the genus in their recent redescriptions of *H. antarcticus*. Members of the genus have been found in the Pacific, Atlantic, Indian, Arctic, and Southern ocean basins, with most species found along the coasts of the northern Pacific Ocean. Here we describe a beautiful and uncommon new species from the northeastern Pacific, known from southern to northern California.

**Methods**

Stauromedusae were either collected by hand while scuba diving or found on recovered settlement brushes. Subsamples from the arms of the holotype (USNM 1106657) and from one paratype (USNM 1106654) were stored directly in ethanol for molecular analysis, while live specimens were photographed, relaxed in isotonic MgCl₂, then fixed in buffered 10% formalin. Smash slides were prepared for cnida measurements from preserved specimens. Cnidae were photographed under 1000x magnification and measured using ImageJ software (Rasband 1997).

A thorough series of permanent transverse- and longitudinal-sections of *H. californiensis* was prepared by G.F. Gwilliam in 1956 using half of one of the paratypes (CAS#98108). Serial longitudinal-sections along the calyx, transverse sections through the calyx, and transverse sections through the stalk were studied for internal structures, and are stored at the California Academy of Sciences. Generally, 10-micron sections were prepared from tissue mounted in paraffin, bulk stained in Grenacher’s borax carmine, then stained with picro-indigo-carmine. Alum hematoxylin and eosin stains were used on sections where greater resolution was needed (Gwilliam 1956). Terminology largely follows that of Hirano (1997).

**Results**

*Haliclystus californiensis*, new species


**Holotype.** Smithsonian Institution, National Museum of Natural History (USNM) 1106657, northeast Pacific, off Pacific Grove, CA (Otter Point), 36°38′4″N, 121°55′13″W, 12 m depth, on a blade of red alga attached to rock, July 2006, coll. A. Kahn.


**Diagnosis.** *Haliclystus* with conical calyx, slightly longer than wide. Calyx tapering towards stalk, becoming nearly tubular; overall shape resembling a martini glass. Gonads extending from base of calyx to tips of each of eight arms (Fig. 1); 40 to 50 gonadal sacs comprising each gonad, with three or four abreast at the widest. Each arm tipped with a cluster of 60 to 80 capitate secondary tentacles (Fig. 2B); with up to five basal tentacles on exumbrellar side possessing a prominent swollen glandular pad (Fig. 2B and 2D). Eight primary tentacles lining coronal margin on interradial and perradial axes, alternating with the eight adradial...
arms (Fig. 2A and 2C). Large, horseshoe-shaped anchors, roughly as wide as tall, wrapping around each primary tentacle with open side up (Fig. 2A and 2C). Perradial marginal notches between arms about twice as wide and deep as interradial notches (Fig. 1). White nematocyst clusters lining subumbrellar margin (Fig. 1). Exumbrellar surface grainy with nematocysts (Fig. 2A and 2E); subumbrellar surface smooth. Pigment stripes along calyx absent. Stalk 1/4 length of calyx in adults.

FIGURE 1. Haliclystus californiensis, a new species of stauromedusa from the northeast Pacific, photographed alive. Visible features include large, horseshoe-shaped anchors, white nematocyst clusters lining the subumbrellar margin, large reddish-brown gonadal sacs, interradial notches about one half as deep and wide as perradial notches, and the nearly transparent ground color of the calyx and stalk. The stalk is contracted to about half its relaxed length in this photo of the holotype – see Fig. 2G for relaxed stalk. Scale bar: 5 mm.
Description of holotype. Height 21 mm; calyx 17 mm tall, 15.5 mm wide; stalk 4 mm tall, 2.0 mm diameter. Arms united in interradial pairs, with perradial marginal notches twice as wide and deep as interradial ones (Fig. 1). Stalk narrow and short—about 1/4 length of calyx—but well-developed with four chambers and four longitudinal muscle bands extending from base through mesoglea (Fig. 2F, 2G, Gwilliam 1956). Four muscle bands continuing through calyx along interradii, then bifurcating in upper third of calyx and extending to base of secondary tentacles (Fig. 1). Before splitting, each muscle band lying exterior to gonads; in upper 1/3 of calyx, bifurcated muscle bands lining interradial margins of gonads and extending up to bases of clusters of secondary tentacles.

TABLE 1. Dimensions of cnidae found in the gastric filaments and secondary tentacles of Haliclystus californiensis. Measurements provide the minimum, mean (in bold), and maximum length of each type of cnida sampled. The number of cnidae measured corresponds with the number found in prepared squash slides; some were more abundant than others.

<table>
<thead>
<tr>
<th>Cnidae</th>
<th>Length</th>
<th>Width</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euryteles (ovoid)</td>
<td>26.86-30.58-34.74 μm</td>
<td>15.00-16.85-19.35 μm</td>
<td>11</td>
</tr>
<tr>
<td>Euryteles (round)</td>
<td>8.30-13.22-19.68</td>
<td>8.80-10.32-13.11</td>
<td>40</td>
</tr>
<tr>
<td>Isorhizas</td>
<td>15.21-23.71-29.13</td>
<td>4.98-6.61-9.26</td>
<td>50</td>
</tr>
</tbody>
</table>

TABLE 2. Comparison of Haliclystus species. References for H. tenuis followed by * indicate those that discuss the species as H. auricula.

<table>
<thead>
<tr>
<th>Geographic range</th>
<th>Gonadal sacs</th>
<th>2” Tentacles</th>
<th>Stalk:calyx length</th>
<th>Anchor shape</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. antarcticus</td>
<td>Southern Ocean: Antarctica, S Argentina, S Chile</td>
<td>50–150</td>
<td>Usually 100 or more, but as few as 30</td>
<td>1/2 to 2/3 length</td>
<td>Biscuit-shaped</td>
</tr>
<tr>
<td>H. borealis</td>
<td>N Pacific</td>
<td>50, ranging from 30 to 100</td>
<td>20–30, &lt;1/3 length</td>
<td>Large, round, with longitudinal furrow</td>
<td>Uchida (1933), Ling (1937), Kramp (1961), Hirano (1986)</td>
</tr>
<tr>
<td>H. californiensis</td>
<td>NE Pacific</td>
<td>40–50</td>
<td>60–80</td>
<td>1/4 length</td>
<td>Horseshoe-shaped</td>
</tr>
<tr>
<td>H. kerguelensis</td>
<td>S Indian</td>
<td>?</td>
<td>50</td>
<td>Twice as long</td>
<td>Small, oval, with tentacular knob</td>
</tr>
<tr>
<td>H. monstrosus</td>
<td>NW Pacific</td>
<td>Unknown; 4–8 rows at widest</td>
<td>About 100</td>
<td>1/2 length</td>
<td>Large, flattened, margins incurved</td>
</tr>
<tr>
<td>H. octoradiatus</td>
<td>N Atlantic</td>
<td>10–70</td>
<td>30–120</td>
<td>Equal length</td>
<td>Large, round</td>
</tr>
<tr>
<td>H. salpinx</td>
<td>NE Atlantic, N Pacific</td>
<td>40–120</td>
<td>60–70, may be up to 250</td>
<td>Much longer</td>
<td>Large, trumpet-shaped</td>
</tr>
<tr>
<td>H. sinensis</td>
<td>NW Pacific (China)</td>
<td>17–20</td>
<td>20–25</td>
<td>1/2 length</td>
<td>Globular, slightly wider than tall</td>
</tr>
<tr>
<td>H. stejnegeri</td>
<td>N Pacific (Alaska to Japan)</td>
<td>100–150, but as many as 250</td>
<td>70–100, but as many as 200</td>
<td>1/2 length</td>
<td>Egg-shaped, taller than wide</td>
</tr>
</tbody>
</table>
FIGURE 2. All images of the live holotype unless noted otherwise. A. Interradial margin. B. Clump of secondary tentacles on one arm, with enlarged glandular pad visible on aboral side of the outermost tentacle. C. Large, horseshoe-shaped anchor surrounding a well-developed primary tentacle. D. Close-up of outermost tentacle of a tentacle cluster, showing an enlarged glandular pad at the base. Photo from preserved holotype. E. Gastric filaments visible through outer calyx wall in live specimen. F. Transverse-section through the stalk of CAS#98108. m – mesoglea, mb – muscle band, ch – chamber, from a collection of permanent slides prepared by Gwilliam (1956). G. Close up of stalk. Scale bars: 0.5 mm, except for that shown on D, which represents 0.2 mm.

Gonads comprising gonadal sacs, beginning at base of calyx and extending to base of secondary tentacles (Fig. 2A). Gonads paired in lower 2/3 of calyx, but pairing ends at same point that muscle bands bifurcate.
Each gonad with 40 to 50 reddish-brown gonadal sacs (Fig. 2E). Gonadal sacs ovoid, relatively large (up to 1 mm along longest axis) compared to many other members of the genus (*H. auricula*, *H. octoradiatus*, *H. sanjuanensis*; Hirano 1997, personal observation). At the widest, just above bifurcation of muscle bands, three to four gonadal sacs lie abreast.

Exumbrella finely granulated with small nematocyst clusters (Fig. 2A and 2E); subumbrellar surface smooth. Five to 10 white nematocyst clusters, each with a diameter of about 0.5 mm, lining subumbrellar margin between each arm (Fig. 1). Cnidæ examined from gastric filaments and secondary tentacles composed of two size classes of microbasic euryteles and one size class of isorhizas (holotrichous or atrichous; Table 1). Tentacles with ovoid euryteles and isorhizas; gastric filaments with smaller, rounder euryteles.

Tip of each arm with 60 to 80 tightly clustered secondary tentacles (Fig. 2A and 2B). All tentacles short, capitate. In each cluster, up to five of outermost tentacles with swollen glandular pads at base of tentacular stalk (Fig. 2B and 2D).

Eight primary tentacles and anchors lining subumbrellar margin, one between each arm in the interradii and perradii (Fig. 1). Part of primary tentacle retained and well-developed in adult; the anchor surrounding it comprising a large yellow pad with a cleft on upper radius, forming a horseshoe around the tentacle (Fig. 2C). Anchors approximately same diameter as largest gonadal sacs of this species.

Color in life red, cryptically matching color of its algal substrate. The alga, presumably a rhodophyte, was not identified. Gonads reddish-brown; nematocyst clusters along subumbrellar margin vivid white; tentacles red. Muscles in stalk and along subumbrellar margin red, but colorless in calyx.

**Description of additional material.** Adult specimen (USNM 1139484) from Pt. Piños 15 mm in height; calyx 12 mm tall; stalk 3 mm tall, 2.3 mm diameter (alive). Arms, stalk, muscle bands, and nematocyst clusters as in holotype. Secondary tentacles 40 to 50, clustered; in each cluster, up to three of outermost tentacles with swollen glandular cushions at base of tentacular stalk. Tentacular stalk varying in length, and may be rather long near subumbrellar side of arm. Anchors similar to those of holotype, although one anchor of this specimen was smaller than the others and without the primary tentacle. This may be due to a developmental defect, since all other anchors were similar to each other and to the holotype. Gonads as in holotype, but differing in number of gonadal sacs or follicles. Each gonad with 20 to 30 gonadal sacs. Largest sac about 0.5 mm along longest axis. At the widest, two gonadal sacs lie abreast. Color similar to holotype although ground color of both calyx and stalk almost transparent with slight red tint. Pad of anchor whitish-yellow.

The original adult specimen described by Gwilliam (1956), found off of Christy Cove on Santa Cruz Island, is stored at the California Academy of Sciences (CAS#98108). Half of the specimen was prepared into thin sections, and the remaining tissue has degraded. Still, two intact anchors and the swollen glandular pads of the outermost secondary tentacles were visible on portions of the specimen, allowing us to verify its identity.

The young adult specimen (USNM 1106654) from Monterey Bay, 8 mm in height, is similar in body shape to the adults. Gonads are partially developed, with distinct gonadal sacs occurring only in the upper 1/3 of the calyx. Anchors are of a similar shape as those in the adult, but the primary tentacle appears a bit larger in proportion as compared to the surrounding anchor.

Six additional specimens (USNM 1139485), including five juveniles, were collected from Bodega Bay. The juvenile specimens cannot be definitively identified as *H. californiensis*. We infer them to be the same species because of the co-occurrence of a young adult specimen that can be diagnosed as *H. californiensis*, but some caution is warranted. In juveniles, approximately 1.8-2.5 mm in height (preserved), the stalk is almost 1/2 the length of the calyx height. Outermost tentacles of these specimens were without obvious pads. The anchors were only poorly developed so that the primary tentacles were proportionately longer than in adults. The number of tentacles for each cluster was 4 to 5 (1.8 mm specimen in total height), 5 (1.9 mm specimen), 5 to 6 (2.5 mm specimen), 7 to 8 (2.0 mm specimen). A larger juvenile specimen (4.9 mm in total height) appeared to have more than 10 tentacles for each cluster, however, this specimen was too heavily damaged for more detailed observation. This large juvenile may have glandular pads on outermost tentacles, but that part was also too damaged to see this character. A single specimen (USNM 1139485) from Bodega Bay was mature, measuring 8.5 mm in total height; calyx 5.9 mm tall; stalk 2.6 mm tall in preserved condition. This
mature specimen was with about 30 tentacles for each cluster, of which the outermost three were with glandular pads. It was difficult to locate white nematocyst spots for sure in small preserved specimens, but one small specimen in good condition appeared to have them.


One distinctive feature of *H. californiensis* is the presence of prominent glandular pads on up to five of its outermost secondary tentacles. Glandular pad swellings are encountered in other *Halicystus* species, including *H. auricula* and *H. “sanjuanensis”*, but they are much slighter than those observed in *H. californiensis* and are variable in occurrence (Gwilliam 1956; Hirano pers. obs.). Outside *Halicystus*, glandular pads associated with secondary tentacles are fairly widespread, occurring for example in species of *Depastromorpha* (Carlgren, 1935), *Kyopoda* (Larson, 1988), *Manania* (Hirano, 1986).

The most distinctive character of *Halicystus californiensis* is the unique shape of the marginal anchors. The anchor forms a large, yellow horseshoe around the primary tentacle, with the cleft pointing up (Fig. 2C). Morphologically, the anchors of this species most closely resemble those of *H. auricula*, *H. borealis*, and *H. tenuis* (Clark 1878; Hirano 1997). As in *H. californiensis*, many specimens of *H. auricula* have anchors that surround a rudimentary primary tentacle (Clark 1878; Hirano pers. obs.). Although the anchors of both *H. auricula* and *H. californiensis* curve and are open at the top, the anchors of *H. californiensis* nearly complete a circuit around the primary tentacle and are approximately as wide as long. The coffee bean-shaped anchors of *H. auricula* curve gently, wrapping only about halfway into a circle, and are distinctly longer than wide. Unlike *H. californiensis*, the marginal anchors of *H. borealis* and *H. tenuis* are round and without a cleft. In addition, the remnant of the primary tentacle is not retained in adults of either of these two species. The geographic range differs as well; *H. borealis* and *H. tenuis* are found in the northwest Pacific, whereas *H. californiensis* is thus far known only from the coast of California. The gonadal sacs of *H. californiensis* are ovoid and relatively large (up to 1 mm along the longest axis) compared to many other members of the genus (*H. auricula*, *H. octoradiatus*, *H. “sanjuanensis”*; Hirano 1997, personal observation). The number of secondary tentacles, gonads, and other differences are summarized in Table 2.

Other species within the genus differ in both morphology and geographic distribution (see Miranda et al. 2009 for further discussion of ranges of the species of *Halicystus*). Two species are found only in the southern hemisphere: *H. antarcticus* from Antarctica, and probably southern Chile and Argentina (Miranda et al. 2009), and *H. kerguelensis* from the southern Indian Ocean. *Halicystus sinensis* has been found only off the coast of China, and *H. monstruosus* is only known near Russia. *Halicystus octoradiatus* has been reported from the northeastern Atlantic, near Iceland and Europe. *Halicystus stejnegeri*, restricted to the boreal Pacific (Miranda et al. 2009), differs from *H. californiensis* in the number of gonadal sacs, with 90 to 240 versus 40 to 50 (Hirano 1986). The anchors of *H. stejnegeri* are egg-shaped rather than round, and have a cleft only when there is still a remnant of the primary tentacle. *Halicystus auricula* is found in the north Pacific and north Atlantic Ocean. *Halicystus salpinx* has a somewhat surprising distribution, with specimens reported from the north Pacific [in bays near the San Juan Islands and southern Vancouver Island (Mills & Larson 2007), and in Alaska and the Russian coast of the Japan Sea (Mills 2001)] and north Atlantic (Mills & Larson 2007, Miranda et al. 2009). It differs from *H. californiensis* by having a long stalk—longer than the height of the calyx—and trumpet-shaped anchors (Kramp 1961).

**Etymology.** The specific name refers to the state of California, the first and thus far only region where the species has been found.

**Distribution.** Specimens have been found in shallow (10-30 m), wave-exposed kelp forests along the California coast from the Channel Islands in the south to Bodega Bay in the north.

**Gene sequences.** Mitochondrial 16S rDNA and COI were amplified and sequenced from the holotype and young adult specimen (USNM 1106654; GenBank accession numbers GU201828-GU201831).
Discussion

Haliclystus is presently assigned to family Lucernariidae Johnston, 1847 and suborder Eleutherocarpidae Clark, 1863, but available data suggest that both taxa are polyphyletic (Collins & Daly 2005; Daly et al. 2007). More detailed systematic study of Staurozoa is necessary to establish a stable classification that mirrors evolutionary history.

Haliclystus californiensis, discussed as a nomen nudum in numerous works (Gwilliam 1956; Hirano 1997), is herewith formally described and named. That it took nearly 50 years to find 10 specimens reflects the rarity of this species; its addition brings the number of species in the genus Haliclystus to 11 in four ocean basins (plus one nomen nudum: H. “sanjuanensis”). A current dichotomous key to species of the genus is given below. Note, however, that in their redescription of H. antarcticus, Miranda et al. (2009) documented considerable variability in many features of that species, and stressed that variation of Haliclystus features, several of which we employ in the key, need better documentation in most species. We include annotations in the key, highlighting issues of ambiguity that need further attention.

Annotated key to known species of Haliclystus

1. Found in southern hemisphere .......................................................................................................................... 2
2. Found in northern hemisphere ............................................................................................................................ 3

II. This character appears to be variable in many features, and stressed that variation of Haliclystus features, several of which we employ in the key, need better documentation in most species. We include annotations in the key, highlighting issues of ambiguity that need further attention.

I. The genus has an anti-tropical distribution and no species have thus far been found in both the northern and southern hemispheres. The specimen of H. californiensis from Santa Cruz Island in southern California appears to be among the closest thus far known to the equator ("off Christy Cove", 34° 1.5' N, 119° 52.7'W, approximated using Google Earth). A record of H. tenuis from Gogoshima, Seto Inland Sea (Uchida 1929) appears to be a bit farther south (33°55'N, 132°40'W).

II. This character appears to be variable in H. auricula, which has arms that are usually arranged rather equidistantly. However, Mayer (1910) described the arms of H. auricula from New England as “United as pairs. Interradial clefts, only half or two-thirds as wide as perradial” (description and table on p. 532). The figure (after Clark 1878) on the next page shows the opposite pattern of pairing. The oral view of the top, right of the figure shows a pattern where interradial clefts are smaller than perradial ones, while the one of the bottom, right, shows the opposite (perradial clefts are smaller than interradial ones). Although a figure given in Clark (1878) (Plate II, Fig. 22) shows the pattern of pairing that Mayer (1910) gave in the description and the table (and Clark himself mentioned it was the most frequent pattern in the paper), Clark wrote “Viewed from the front, it presents an octolateral outline, with eight strongly projecting corners. Of these eight sides four alternate ones are usually shorter than the others, and they are those which lie directly opposite the four flanks of the proboscis. Frequently, however, the proportions are reversed and the longer four become the shorter ones, or they are all alike. The first case, though, is the one which is most generally met with...” Clark (1863) did not give details of the arrangement of arms, but mentioned, “The disc shallow umbellaeform, strongly octangular; the arms as broad as long...” The figures by Rathke (1809) do not show clear pairing of arms. There may be a slight difference between perradial clefts and interradial clefts of H. auricula, but the difference is probably not obvious enough to diagnose this species.
inner subumbrella smooth. NW Pacific .......................... 8 
- Anchors horseshoe-shaped, each surrounding a primary tentacle. With 60–80 secondary tentacles in each tentacle cluster; outermost tentacles with a prominent glandular pad at their bases. With 40–50 gonadal sacs in each gonad. Stalk about 1/4 length of calyx. Large white nematocyst clusters line bell margin (Fig. 2A). NE Pacific, California .......................................................... Haliclystus borealis

Haliclystus californiensis

6. With 17–20 gonadal sacs in each gonad, arranged in single file. Calyx equally as tall as wide, or slightly taller than wide. Anchors ovoid, slightly wider than tall. Each tentacle cluster with 20–25 secondary tentacles. Stalk half the length of calyx. White nematocyst clusters few in number along subumbrellar surface near margin. Coast of China near Tsingtao .......................................................... Haliclystus sinensis
- With 30-50 gonadal sacs in each gonad, arranged in 2 rows. Calyx slightly taller than wide. Anchors ovoid, wider than tall. Each tentacle cluster with 20-60 secondary tentacles. Stalk half the length of calyx. White nematocyst clusters scattered on the subumbrella. NW Pacific on coasts of Japan and China (Shandong province) ......................... Haliclystus auricula

Haliclystus tenuis

7. Intertentacular lobules (see Hirano 1997, Miranda et al. 2009) absent................................................................. 8
- Intertentacular lobules present.............................................................. 9

8. Stalk about as long or longer than calyx. Anchors very large, trumpet-shaped to flattened with incurved margins. Commonly 60–70 secondary tentacles in each tentacle cluster, but up to 250. 40–120 gonadal sacs in each gonad, with 6–8 abreast at the widest. N Atlantic and in isolated bays in N Pacific (San Juan Islands and S Vancouver Island, Alaska, Russian coast of Japan Sea) .............................................................. Haliclystus salpinx
- Stalk 1/2 length of calyx. Anchors large, flattened, with incurved margins surrounding a diminutive primary tentacle. 100 secondary tentacles in each tentacle cluster. Gonadal sacs arranged 4 to 8 abreast. NW Pacific, Kurile Islands .................................................................................................. Haliclystus monstrosus

Haliclystus auricula

9. Stalk length approximately equal to calyx length. White nematocyst clusters either present in both peribradii and interradii or completely absent........................................................................................................... 10
- Stalk length less (1/2 to 2/3) than calyx length, white nematocyst clusters only in peribradii................................. 11

10. Lacking white nematocyst clusters. With 30–200 gonadal sacs in each gonad. Anchors coffee bean-shaped, longer than wide. Usually more than 100 secondary tentacles, but as little as 30, in each tentacle cluster. N Atlantic and N Pacific ......................................................... Haliclystus auricula
- White nematocyst clusters in both peribradii and interradii. With 10–70 gonadal sacs in each gonad. Anchors large, globular knobs. With 30–120 secondary tentacles in each tentacle cluster. N Atlantic, mainly near N Europe and Iceland.................................................................................. Haliclystus octoradiatus

Haliclystus auricula

11. Anchors egg-shaped, taller than wide, without longitudinal furrow. Commonly with 70-100 (possibly up to 200) secondary tentacles in each tentacle cluster. With 100-150 (possibly up to 250) gonadal sacs in each gonad. Only a few white nematocyst clusters in the peribradii sinuses near calyx margin. N Pacific........................... Haliclystus stenegeri
- Anchors coffee bean-shaped, taller than wide, with longitudinal furrow. With 100–150 secondary tentacles in each tentacle cluster. With 200–300 (but perhaps as few as 150) gonadal sacs, 10–20 abreast at widest. Gonadal margin in the peribradii sinuses fringed with a number of white nematocyst clusters. NE Pacific, from central California, N Washington (San Juan Islands) to British Columbia...Haliclystus sp. (often referred to as H. “sanjuanensis”)

Acknowledgements

We are grateful to G.F. Gwilliam for the considerable amount of work done to describe this species in his dissertation. We also thank the staff of both the National Museum of Natural History, Smithsonian Institution, and the California Academy of Sciences, for loaning specimens. We thank V. and J. Pearse for bringing the

III. H. sinensis may be conspecific with H. tenuis. Ling (1937) described H. sinensis based on four specimens collected from a single tide pool. Even in this small sample, the single row of gonadal sacs reported for the species showed variation with occasionally two gonadal sacs lying next to each other (Ling, 1937; Figs. 4 and 5). Ling (1937) also described the white spots (nematocyst clusters) as sparse for H. sinensis while they are prominent for H. tenuis. However, differences in the abundance and size of white spots appear to be slight [compare Fig. 3 for H. tenuis (as H. auricula) and Fig. 5 for H. sinensis in Ling (1937)]. The number may be smaller in H. sinensis, but this could be because the studied individuals had narrower calices than typical H. tenuis.

IV. This character is as yet unobserved for H. monstrosus, but inferred to be absent. Based on the distinctive and similar shapes of the anchors of H. monstrosus and H. salpinx, one can hypothesize that the two species are very closely related if not indistinct. The major difference between the two appears to be the proportion of the stalk length to calyx length, but these two characters may be quite variable.
specimen that became the holotype to the attention of AGC and allowing him to observe and photograph the animal alive in their basement. Thanks are due to C. Widmer and J. Mariottini of the Monterey Bay Aquarium for collecting a specimen of *H. californiensis* and graciously allowing us to study it. L. Ivanov provided a crucial Russian translation, without which the dichotomous key would have been incomplete. N.T. Pierce, L. Scheimer, T.S. Burrow, F. Sommer, J. Watanabe, K.W. Demes, T. Suskiewicz, and A. Alifano provided scuba diving and collection assistance. We are grateful to L. Miranda for providing very helpful feedback on an earlier draft. L. Miranda and C. Mills provided valuable feedback that improved an earlier draft. Finally, we thank the Monterey Bay Aquarium Research Institute and Moss Landing Marine Laboratories for use of facilities and resources. AGC acknowledges support from the US National Science Foundation Assembling the Tree of Life grant 0531779 (to AGC, P. Cartwright, and D. Fautin).

References


Halicystus californiensis, a "new" stauromeda and biodiversity of South Central Alaska. Anchorage, Alaska, pp. 23–38.


Rathke (1806) In: Müller, O.F. Zoologiae Danica seu animalium Daniae et Norvegiae rariorum ac minus notorum, descriptiones et historia. Bd. 4, Hauniae, Pp. 35–37 (with a separate plate for figures).


