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ABSTRACT 

Scientific theories seek to provide simple explanations for significant empirical regularities based on 
fundamental physical and mechanistic constraints. Biological theories have rarely reached a level of 
generality and predictive power comparable to physical theories. This discrepancy is explained through 
a combination of frozen accidents, environmental heterogeneity, and widespread non-linearities 
observed in adaptive processes. At the same time, model building has proven to be very successful 
when it comes to explaining and predicting the behavior of particular biological systems. In this respect 
biology resembles alternative model-rich frameworks, such as economics and engineering. In this paper 
we explore the prospects for general theories in biology, and suggest that these take inspiration not 
only from physics, but also from the information sciences. Future theoretical biology is likely to 
represent a hybrid of parsimonious reasoning and algorithmic or rule-based explanation. An open 
question is whether these new frameworks will remain transparent to human reason. In this context, 
we discuss the role of machine learning in the early stages of scientific discovery. We argue that 
evolutionary history is not only a source of uncertainty, but also provides the basis, through conserved 
traits, for very general explanations for biological regularities, and the prospect of unified theories 
of life. 

© 2011 Published by Elsevier Ltd. 
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1. Outline of goals 

Biology has been called "the physics of the twenty-first 
century". This remark suggests that biological data have become 
sufficiently rich and well curated, and biological mechanisms 
sufficiently wide spread and conserved, that there is a prospect 
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for the generation of new effective theories, perhaps even laws, 
for living systems. The comment also raises important questions 
about the objectives of theory in the life sciences, whether the 
grand unified goals of physics serve as the correct prequel to 
biology, or whether it might not be more fitting to view biology 
from the perspective of the information and computational 
sciences, also potent in mathematical and formal reasoning 
(Keller, 2003). Perhaps biology will be 'the computer science of 
the twenty-first century', seeking to understand the logical 
structure of life in terms of directed rules of assembly, rather 
than interactions among fundamental constituents. Others have 
argued for a grounding in economics or engineering (Jacob, 1977). 
Both of these areas have proven a rich source of models, from 
game theory through control theory, but neither have contributed 
much in the way of general theoretical frameworks. Indeed, in the 
case of economics, the classical equilibrium theory with an 
emphasis on individual utility maximization has proven to be 
both non-empirical and rather easily refuted (Arrow, 1994; 
Colander, 2000). The recent trend in economics has consequently 
been to integrate more effectively with biological (Samuelson, 
1985; Glimcher and Rustichini, 2004), physical (Farmer and 
Geanakoplos, 2009) and computational (Tesfatsion, 2001) models 
and theories. In contrast, the emphasis on practicality in engi- 
neering has created very powerful modeling frameworks, but the 
field has largely neglected synthetic frameworks (see Suh (1990) 
as an attempt to redress this imbalance). It should be acknowl- 
edged that the absence of general theories need not be seen as a 
weakness, and for some this is probably a strength. In this review 
we attempt to outline the character of theory - for good or ill - 
biological theory in particular, where we shall cover some of the 
following questions: 

1. What   is   a   scientific  theory,   and   a   biological   theory  in 
particular? 

2. What is the relationship of theory to models? 
3. What are the limitations of statistical models, or models based 

on machine learning? 
4. Why   have   effective   biological   theories   been   difficult  to 

construct? 

In what way is evolutionary history a source of difficulty or a 
source of solutions in theory construction? 
Do biological theories require new experimental, mathemati- 
cal and computational tools? 

2. Introduction to theory 

Science begins by identifying regularities within sets of obser- 
vations. The challenge of extracting patterns from complex 
empirical data is the province of statistical inference (Fig. 1A). 
But even the most parsimonious statistical representations of data 
do not constitute theories. Before we can look for patterns, we 
often need to know what kinds of patterns to look for, which 
requires some fragments of theory to begin with. For the purpose 
of our argument, we consider an explanatory theory to be a 
mechanistic-deductive model that applies in a large number of 
different situations. We might call such a theory a quantitative law 
if it defines a core set of concepts expressed as universal condi- 
tionals from which testable predictions can derive (Nagel, 1979). 

The progressive refinement of quantitative observables into a 
suite of variables that are interrelated across temporal and spatial 
scales is one critical approach to theory building. In a hierarchical 
refinement, the lowest levels are represented by the most general 
(sometimes considered as the fundamental) mechanisms and 
processes, whereas the highest levels refer to "emergent" proper- 
ties of matter that require new forms of description and explana- 
tion (Laughlin et al., 2000). By definition, the highest levels do not 
capture all of the variation present at the lowest levels. Critical 
variation at the lowest levels, however, may promote through 
frozen accidents, diversity at the highest levels of a kind that 
prevents a theory from attaining the universal character of 
physical law. We expect this to be the case in biological theories, 
largely as a result of the enduring role of initial conditions 
propagated through the evolutionary processes. Bertrand Russell 
wrote that "All exact science is dominated by the idea of 
approximation". This is an insight often missed when criticizing 
biological theories on the ground of empirical exceptions. We 
should be more worried if there were none. 

Statistics 
Machine learning 

Data/Experiment 

Conceptual Theory 

Empirical Regularity & 
Compressed 
Phenomenological Model 

Law-like, Mechanistic & 
Highly Compressed 
Mathematical representation 

J 

Constraints & 
Parameters 

Law-like, Mechanistic & 
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Mathematical representation 

Mechanistic 
Model Data 

iteration 

Fig. 1. The dual logic of model building in theoretical sciences. In Panel A we illustrate the common inductive-deductive flow of information involved in developing 
theory. Observational data are mined for regularities using inferential statistics that seek to reduce the dimensionality of a phenomenon and filter out uninformative noise. 
These regularities provide the "effective" degrees of freedom for "effective", quantitative or logical theories that further compress statistical regularities in terms of 
verifiable, mechanistic processes. In Panel B we illustrate an alternative means of deriving models through the constraining of a general theory or law of nature. A model of 
a ballistic trajectory through the parameterization of classical equations of motion or the construction of a population genetics dynamics through the application of 
Darwinian dynamics are both of this variety. In both cases the models are iteratively improved by means of comparing and reducing discrepancies with compressed, 
observational data. 
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Predictive theories that show significant degrees of generality 
in biology have tended to be based on dynamical properties of 
biological systems or derived from a logical calculus such as 
parsimony and its statistical extensions (Hennig, 1965; 
Felsenstein, 1988). The former category includes a family of 
theories in population biology (Levins and Lewontin, 1985) (such 
as ecological theories based on predator-prey interactions), 
evolutionary biology (such as multilevel selection theory and 
game theory), and neuroscience (such as learning theories based 
on neural networks of Dayan and Abbott (2001)). Theories 
that started out with a logical calculus include cladistics or 
phylogenetic systematics. Through likelihood-based extensions 
(Felsenstein, 1988), phylogenetic systematics have become the 
standard technique for reconstructing the evolutionary history of 
life and other evolving systems, such as languages. 

To ground subsequent discussion, we briefly consider three 
examples, each of which represents a formal attempt at explain- 
ing a key feature of biological systems. These examples span the 
spectrum from putative theories to simple models. Throughout 
this review we tend to neglect toy models that make only weak 
connections to empirical data. 

Scaling: Despite the diversity and complexity of organisms, key 
biological processes generate rates Y, such as basal metabolic rate 
that scale as simple power laws, Y = Y0M

b, over many orders of 
magnitude in body mass M (Y0 is a normalization constant). The 
exponents b are often multiples of 1/4. These scaling laws 
underlie and constrain many organismal time scales (such as 
growth rates, gestation times, or lifespans) as well as trophic 
dynamics. It has been suggested that the relation between basal 
metabolic rate and body mass is determined by the scaling 
relation between the volume of a hierarchical spacefilling (frac- 
tal) vascular network and the number of its endpoints (capil- 
laries) (West et al., 1997). The hypothesis then is that hierarchical, 
fractal-like branching networks were evolved by natural selection 
to minimize power loss when delivering resources to the cells of 
the body. 

Gene regulatory networks: In many cases, the development of 
complex phenotypic features is described in terms of gene 
regulatory networks, or GRNs. Networks of interacting genes 
provide a causal and partially mechanistic explanation for the 
temporal and spatial regulations of embryonic differentiation and 
the development of specific phenotypic characters, such as the 
skeleton of sea urchin larvae, the heart, or the dorso-ventral 
patterning of a Drosophila embryo (Davidson, 2006; Davidson and 
Erwin, 2006). Once cell differentiation was recognized as a 
problem of regulation and molecular mechanisms governing the 
expression of individual genes were elucidated, logical and con- 
ceptual models of ontogenetic patterning became possible. Dec- 
ades of empirical studies have brought to light dependencies 
between the expression of genes, revealing the structure of 
regulatory networks (Britten and Davidson, 1969; Materna and 
Davidson, 2007). This type of data has enabled conceptual 
theories that link the structure of GRNs to patterns of phenotypic 
evolution. Yet, recent data suggest that GRNs are but one element 
of larger class of regulatory mechanisms that includes RNA based 
and chromatin-based mechanisms. 

Neural networks: There is great interest in how architectures of 
biological systems can be used to solve computational problems. 
Perhaps the most conspicuous architecture is the brain. In an 
influential paper, McCullough and Pitts (1943) suggested that the 
brain be thought of as a distributed computing network with 
neuronal nodes implementing a boolean logic. Hopfield (1982) 
neural network builds on this idea providing a simple model of 
memory by "training" the network to associate input patterns 
with output patterns using a learning process based on the 
minimization of an energy-like function. 

2.1.  Case study summary 

These examples illustrate that the purpose of both theories 
and models is to provide unifying frameworks for measurable 
quantities, capable of generating explanatory and predictive 
statements about nature. In moving from scaling to GRNs and 
neural networks, we move from a data rich deductive framework 
to increasingly engineered models, which provide a proof of 
principle for developmental or neural function. These models 
conform to May's (1973) biological model spectrum, ranging from 
pragmatic or tactical descriptions of specific systems through 
strategic models aiming to capture widespread regularities. All 
three examples are broadly applicable, as metabolism, gene 
regulation and nervous systems are common in nature. However, 
the genetic and neural examples appeal to contingent structures 
and functions that are not always observed in biological taxa, and 
hence depend on a larger set of evolved constraints and para- 
meters (Levins, 1966). These models also illustrate a shift in 
perspective—from parsimonious systems of relations among 
macroscopic variables (scaling), towards more detailed algorith- 
mic specifications generating patterns of behavior at a micro- 
scopic level (gene and neural regulation). There are in addition 
numerous models in biology and economics exploring the logical 
or empirical implications of sets of constraints and interactions 
without application to carefully curated data sets. Indeed these 
models - such as game theory - have dominated economic 
theory. These are often powerful intermediates towards models 
with a stronger correspondence to data. Due to brevity, we do not 
consider this class of quantitative "thought experiments" in this 
review. 

3. The relationship of biological models to theory 

We can be more explicit about the relationship of models to 
theories. When general deductive and logic rule-based frame- 
works (theories) are modified to fit a specific system by means of 
the addition of constraints and parameters, or when logic rules 
are "engineered" to describe a particular phenomenon, we speak 
of models (Fig. IB). Models represent the dominant application of 
mathematics and computation in biology. Theories would ideally 
support a large number of different models and frame a broad 
range of nominally different modeling contexts. The more funda- 
mental the theory, the greater its generality. Newton's theory of 
gravitation can be applied to masses of any scale and configura- 
tion, such that a model of a solar system resembles a model of a 
billiard table. 

It is seldom the case in biology that a model is derived 
deductively from a more fundamental quantitative theory, with 
the possible exception of population genetics which has its 
foundations in evolutionary theory. But this need not be a grave 
weakness. The Hardy-Weinberg principle for alleles at equilibrium 
is not based on a general theory of inheritance, although this might 
be a realistic goal. Rather it is a model based on a set of very 
specific assumptions or constraints. The model is very useful in 
providing insights into departures from neutral expectations, i.e. 
the basic conditions for its formulation, and in establishing one 
desirable end point for a theory. In this way models can be a useful 
stop-gaps in working toward, or engineering a theory, by suggest- 
ing possible experiments and providing a testable and predictive 
re-description of a complex body of data in lower dimensions. 

Models often serve pragmatic purposes. Machine learning 
approaches and related engineering formalisms, such as neural 
networks, decision trees and support vector machines are pre- 
valent in bioinformatics and neuroscience (Bishop, 2006). This 
type of modeling of data seeks to construct computationally 
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efficient representations of data with the aim of generalizing from 
given instances and making predictions out of sample. In this goal 
these approaches have been extremely successful. In most cases, 
it is neither intended nor possible to extract from these models an 
insight into what they have learned. One of the vaunted benefits 
of machine learning is that classification and prediction tasks can 
be performed without insights into the structure and dynamics of 
the underlying system. For this reason machine learning is a 
powerful means of preprocessing data in preparation for mechan- 
istic theory building (Witten and Frank, 2005), but should not be 
considered the final goal of a scientific inquiry. There is a growing 
trend to equate the results of machine learning with the kinds of 
insights generated by algorithmic models like those described 
above applied to gene regulation. This is to confuse the implicitly 
algorithmic nature of inferential frameworks used in data mining, 
with the mechanistically principled, computational frameworks 
that have arisen over the course of evolution. 

A related approach is simulation, where computational power 
allows for a large number of variables and parameters to be 
included in the exploration of empirical regularities. Rather than 
reconstruct properties of the data by dimension reduction as in 
machine learning, one seeks to fit data based on a priori mechan- 
ical models. This is somewhat different from the straightforward 
reductionist approach (Fig. 1A), as it seeks to employ prior 
principles in order to accommodate ensembles of data (Fig. IB). 
The best known examples for this are Monte Carlo (MC) simula- 
tions and agent based models (ABM) (Bonabeau, 2002). MC 
simulation seek to solve problems where there is a lack of 
statistical power by generating large data sets compatible with 
model assumptions. ABM seek to increase the degrees of freedom 
of individual agents and in this way, represent more realistic 
models of behavior where agent rules are assumed to percolate 
into collective dynamics (Epstein, 1999). This approach often 
presupposes that coarse-graining a system is not desirable, as 
the process of abstraction can eliminate essential details required 
to fully explain, or reproduce, the system dynamics. A weakness 
of ABM in practice is that they can too easily be constructed and 
their underlying rule sets are often poorly tested empirically. 

The most recent incarnation of the model-based approach to 
biology is systems' biology, which seeks to automate, as far as 
possible, the analysis and reduction of large bodies of - most 
recently molecular - data present these in terms of parsimonious 
data structures (Alon, 2007; Hood, 2003; Kirschner, 2005). These 
structures tend to be selected on the basis of calculational 
efficiency and generality. However, in system's biology there 
has also been an effort to reconcile these structures with known 
mechanism through simulation and rule-based approaches in 
order to provide a basis for systematic logical analysis of biolo- 
gical pathways and dynamics (Danos et al., 2009). 

Thus models can be derived from a general theory - top down 
- through the application of constraints, or derived from data - 
bottom up - through the assumption of preferred data structures. 
In both cases, the model represents a structure of local cognitive 
and predictive utility. Theory provides the basis for the general 
synthesis of models, and a means of supporting model compar- 
isons and ideally establishing model equivalence. 

4. The challenges and character of biological theory 

The current absence of a strong theoretical foundation in 
biology means that there is weak guidance regarding what quan- 
tities or variables need to be understood to best inform a general 
understanding (an explanatory basis) for biological features of 
interest. An unfortunate result of the absence of theory is that 
some researchers confuse just having data with 'understanding'. 

For example there is a base for collecting and analyzing the most 
microscopic data: experimental procedures and measurements in a 
high-throughput transcriptomics study are built around the 
assumption that transcripts are the primary data to be explained, 
and in neuroscience, recording from numerous individual neurons. 
This bias reflects a rather naive belief that the most fundamental 
data provide a form of explanation for a system, as if enumerating 
the fundamental particles where equivalent to the standard model 
in physics. 

With the advent of high-throughput genomics, transcrip- 
tomics, proteomics, and metabolomics, and functional imaging 
we have witnessed a technological revolution in biology that 
went hand-in-hand with the rise of bioinformatics and the wide- 
spread use of machine learning predictions. There has been a lack 
of complementary conceptual theory that could help us organize 
the flood of facts. An emphasis on models, rather than theory, has 
led to an occasional failure to recognize as legitimate conceptual 
questions that do not yet have associated with them a set of well- 
defined modeling tools. This lack of conceptual guidance in the 
practice of technology driven research can also be seen in the 
problematic and historically derived structure of large scale 
databases, which are still static and largely sequence-based, 
whereas recent empirical discoveries strongly suggest that a 
database structure explicitly representing the multiple dynamic 
relations between relevant elements (DNA sequence, transcripts, 
proteins, etc.) would be more desirable. 

A persistent problem in biology is that regularities exist at 
aggregate levels of description. It is assumed that a qualitatively 
different theory is required to explain these emergent phenomena 
than the theory describing the underlying microscopic dynamics 
(Anderson, 1972). Chemistry, in particular synthetic organic 
chemistry, serves as a good example. It is taken for granted in 
the field that chemical reactions can be understood in terms of 
the underlying quantum mechanics. Higher-level concepts, such 
as "bonds" or "electronegativity" are used in practice to explain 
chemical reactivity. In fact, organic chemistry is taught in terms of 
rules of transformations ("reaction mechanisms" and "named 
reactions") that are much more akin to the graph grammars of 
theoretical computer science than to the many-body quantum 
mechanics alluded to as the theoretical foundation (Benko et al., 
2004). Interestingly, although we learn organic chemistry to a 
large extent as a collection of structured (transformation) rules, 
this is rarely made explicit, and even more rarely formalized at 
this level (with the exception of a few enterprises in Artificial 
Chemistry (Fontana and Buss , 1994; Benko et al., 2003; Suzuki 
and Dittrich, 2009). The rule-based representation of chemistry 
might serve as an example of a "non-physics"-type theory. 
Whereas chemical (reaction) equations again describe relation- 
ships of sets of observables (in this case the educts and products 
of a chemical reaction), the algorithmic transformation rules 
provide a means of predicting what novel entities might be 
produced. The price we have to pay for the convenient high-level 
description—for not being derailed by details of electron densities 
and nuclear movements in physical space—is twofold: First, we 
have to memorize quite a few rules, not just a single, beautiful 
and fundamental equation. And secondly, the predictive power of 
the rules is limited: For instance, to decide which of the (poten- 
tially many) applicable rules describes the chemical reaction that 
is going to take place in a certain situation requires recourse to 
the underlying physics—in this case, to determine activation 
energies and the energy balance of a reaction. 

The same logic applies to biological models in theoretical 
ecology and population genetics (Bulmer, 1994; May, 2001). 
Systems of competition equations seek to capture essential 
interaction rules among individuals and species, without includ- 
ing the energetic, physiological and behavioral bases of the 
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interactions. It is assumed that these processes, all of which in 
some fundamental way determine the nature of the competition, 
can be summarized by means of interaction coefficients. This is 
admissible if one is simply trying to ascertain the most likely 
equilibrium outcome of competition in a density regulated 
population. Historically, the simple formulation of the Lotka- 
Volterra equation as a system of linked differential equations has 
not only enabled the description of a wide range of population 
dynamics, but also allowed for a general analysis of such pro- 
cesses with regard to their stability (Kingsland, 1995). As with 
ecology, in population genetics the details of the nucleic acid 
sequences, the molecular biology of cell division and develop- 
ment, as well as those factors determining the aggregate value of 
fitness are deliberately neglected (Gillespie, 1994; Kimura and 
Takahata, 1994). The essential transmission rules of Mendelian 
inheritance are captured through simple recurrence equations 
(Gillespie, 2004). Once again, the processes of drift and selection 
acting on heritable traits are considered suitable coarse-grained 
descriptions in order to grasp the equilibrium behavior of popula- 
tions of genomes. And within these general dynamics, a family of 
more specific models has emerged that investigate the conse- 
quences of particular types of constraining assumptions, such as 
specific constraints on the underlying genetic architecture or the 
interactions between the genome and the environment. 

Shalizi, 1999; Krakauer and Zanotto, 2008; Boehm and Flack, 
2010). Building these variables is a way to buffer against mis- 
leading or erroneous information at lower levels (Boehm and 
Flack, 2010; Flack and deWaal, 2007). For example in the brain, 
individual neurons can be unreliable and population averages 
provide more reliable information through redundancy. And in 
populations of organisms, individual preferences can be mislead- 
ing of group trends. Hence system components are a product of 
and respond to system averages. 

Systems with long histories (i.e., mechanisms of long-term 
memory) allow for the "emergence", or accumulation of physical 
properties in a growing space of otherwise highly unpredictable 
states. This idea has been captured intuitively through a complex- 
ity measure - algorithmic depth - which seeks to equate com- 
plexity with historical depth (Bennett, 1988; Machta, 2006). 
Hence complex systems are systems for which a full under- 
standing requires a specification of a historical sequence. Replica- 
tion and natural selection are themselves endpoints on one or 
more of many paths along which basic physical symmetries have 
been broken, leading to sustained preferences for alternative 
configurations of matter. Finding some principled means of 
enumerating and bounding these trajectories presents a great 
challenge for theoretical biology. 

4.1.  Problems of level separation 5. Theoretical biology in relation to evolutionary theory 

So why has constructing biological theory been such a chal- 
lenge? In biology, unlike for traditional physical and chemical 
phenomena, many of the spatial and temporal scales interact. In 
physics, nuclear forces can be neglected when calculating plane- 
tary orbits as these are screened off over large distances. In 
biology, however, the lowest levels can have a direct impact on 
the highest levels (and vice versa), as in the case of genes that 
influence behavior and social structures and behavior that influ- 
ence gene expression patterns (Young and Hammock, 2007; 
Abbott et al., 2003). Levin et al. (1997) suggests that one of the 
central issues for theoretical biology is the better understanding 
of how detail at one scale makes its signature felt at other scales, 
and how to relate phenomena across scales. There is no reason to 
assume that the imperfect separation of levels of description is 
prohibitive to formulating meaningful theory, although it might 
place limits on the accuracy of prediction at any given level. 

This connects directly with the thorny question of emergence. 
How much of biological nature can be predicted from basic 
physical law? This question is simple to answer: effectively zero. 
We know, in so far as we have tested them, that all of biology is 
compatible with, or in principle derivable from, physical laws. But 
this is a different statement. Classical mechanics, quantum 
mechanics, relativity and condensed mater physics (Einstein 
et al., 1966; Kragh and Brush, 2001), to name only four classes 
of physical theory, do not in themselves predict biological evolu- 
tion or any of its products (Anderson, 1972). This tells us that 
evolutionary dynamics must be the outcome of a series of frozen 
accidents in physical dynamics, accidents that somehow have 
provided the basis for the formation of adaptive bio-molecules. 
This is called the emergence problem. There are two properties of 
interest in the emergence discussion. One might be called 
endogenous coarse-graining property. The other might be called 
the long history property. Endogenous coarse-graining is the use of 
some summary statistic, or aggregate variables, by the system or 
its components to make decisions. The idea is that the summary 
statistic, which changes relatively slowly, is a better predictor (or 
hypothesis) of the system's future state than lower-level, faster 
timescale fluctuations in component behavior (Crutchfield and 

The evolutionary history characteristic of biological systems is 
most frequently adduced - as above - as an argument against 
theory. Evolution has been called a tinkerer (Jacob, 1977), 
improving on existing biological adaptions by incremental mod- 
ification over generations. Should we expect tinkering to generate 
structures and functions comparable to those observed in abiotic 
systems, a regularity permitting the development of theories of 
great generality and predictive power (Avise and Ayala, 2007)? 
The pervasive distribution of contingencies, or accidents of 
history across the tree of life, suggests that this is not likely to 
be the case. In response, some have argued for theories of 
"contingent generality"-models of adaptive regularities restricted 
to specific clades and guilds. 

The idea of a contingent generality also alludes to the power of 
a shared history and the opportunities afforded by historically 
grounded generalities. The observation that all of life shares an 
evolutionary history, imposes enormous regularity on biology in 
the form of conserved traits amenable to general description and 
explanation (Krakauer, 2002). For example, many of the mechan- 
isms of inheritance and of development are effectively universal 
(Carroll, 2000). This also extends to the level of individual 
sequences and proteins. The conserved structure of life opens 
up a huge space for general theory that could not be developed if 
life where the outcome of multiple independent origins. 

The common phylogenetic structure of living systems forms 
the basis for a large range of powerful theoretical frameworks 
that seek to explore the ancestor-descendant relationships 
among species (Hillis et al., 1997). Cladistics, numerical taxon- 
omy, phylogenetic inference, coalescent theory and all provide 
useful generalizations that apply across many different species, 
and can claim to form a quantitative theoretical framework for 
much of biology (Hennig, 1965; Felsenstein, 1988). The founda- 
tion of these fields is the common recognition that lineages 
undergoing evolutionary diversification can be grouped into 
monophyletic groups based on shared characters or synapomor- 
phies and that the nested hierarchy of these lineages is char- 
acterized by a similarly nested hierarchy of characters. 
Phylogenetic reasoning is thus a universally applicable calculus 
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for the reconstruction of branching patterns in genealogical 
systems. 

At the level of the genome, models of gene regulation, drawing 
heavily on insights from engineering, developed in relation to a 
model system, such as the fly or sea urchin, are by virtue of the 
conserved structure of developmental regulation, likely to apply 
to most forms of multicellular life (Davidson, 2006). In this way, a 
general theory of regulation in biology becomes possible, even 
though life itself has clearly evolved as a result of a huge number 
of frozen accidents. Such a universal theory has to incorporate 
multiple competing basic mechanisms (transcriptional regulation, 
post-transcriptional silencing, chromatin modifications, DNA 
amplifications) (Materna and Davidson, 2007). Clades evolve in 
ways that emphasize different traits; some are reduced while 
others are elaborated in great detail. Is this variability really "just" 
a frozen accidents or is there a way to understand physical and/or 
logical constraints on these historical contingencies? 

The field of social evolution is another area that has had 
success in developing theories based on mid-level generalities. 
Complex social systems have evolved several times, with pri- 
mates (including humans) and eusocial insects being the most 
prominent examples. Important features of these systems include 
the full or partial division of labor, heterogeneity, learned strate- 
gies sets, novel transmission mechanisms, and the prominent role 
of ontogenetic in addition to evolutionary dynamics. These 
features have highlighted fundamental problems, such as explain- 
ing altruism within a framework of individual-based selection 
(Hamilton et al., 2001; Hamilton, 1971). Recently, progress has 
been made through the development of theories that have either 
expanded fundamental selection dynamics in a hierarchical fash- 
ion, such as multilevel selection theory (Lehmann et al., 2007a), 
demonstrating a mathematical isomorphism between kin selec- 
tion and group selection (Hamilton, 1975; Traulsen and Nowak, 
2006; Lehmann et al., 2007b; Frank, 1998), or how individual- 
based strategies in game theory might accounts for the evolution 
of behavior. This last case is particularly interesting, as we have 
subsequently seen an expansion of this concept to account for 
dynamical interactions at lower levels of complexity such as 
viral dynamics (Nowak, 2006). Hence game theory, and popu- 
lation dynamical models, has contributed to the common orga- 
nization of a large range of materially disparate phenomena, 
and might eventually assume the status of "theory" in the sense 
of providing a quantitative demonstration of principle that 
applies to dynamics at very different biological levels (Levin 
et al., 1997). 

6. Theory and the logic of experimental design 

Many natural sciences make progress through a careful choice 
of model system. Model systems in physics seek to isolate the 
crucial, causal components in system dynamics, and render them 
amenable to observation and quantification. Galileo's inclined 
plane and Newton's experiments with a prism are of this sort. The 
analysis of the giant squid axon by Hodgkin and Huxley was also 
in this tradition, as it sought to bring the properties of excitable 
cells into the purview of a controlled, laboratory experiment. 

A qualitatively different model system in physics, and one that 
is closer to traditional biological model systems, is the hydrogen 
atom. The hydrogen atom is simple enough in structure and 
properties to offer itself up as a test case for fundamental theory - 
from quantum mechanics through to chemistry. An ability to 
predict many, if not all, of the chemical properties of the hydrogen 
atom is thought to provide strong support for fundamental 
theory, and justify the extension of the theory to more complex 
atoms, and perhaps even molecules. 

The most common biological "hydrogen atoms" are the stan- 
dard model organisms, such as Escherichia coli, Saccharomyces 
cerevisae, Caenorhabditis elegans, etc. These are all species that 
represent nominally tractable and representative forms of life. 
The discovery of genetic and molecular machinery in any one of 
these is assumed to represent a reasonably plausible prior for the 
discovery of a related mechanism in an untested species. This is 
often the case, but calls for a very careful choice of model system 
in terms of our basic knowledge of phylogenetic relationships and 
identification of representative features. A uniform, or at least 
principled, distribution of species for analysis over the tree of life 
might be weighted as heavily as the more typical economic 
factors when selecting model species. There is otherwise a risk 
of providing detailed insights into idiosyncratic species. Social 
evolution is a good example in so far as there will be no 
compelling theory of social evolution if it is built on data on 
social processes at a single level. We require a set of model 
systems - from biofilms to volvox to the primates - that span a 
space of problems encountered in the evolution of aggregates. In 
this way, theoretical approaches might provide a justification and 
procedure for the choice of model species or genera. Furthermore, 
adopting a comparative model systems approach offers the pro- 
spect of testing the generality of theories as they pertain to life 
on earth. 

Even when in possession of a suitable set of model systems, 
there is a problem of establishing causality in highly inter- 
connected systems. There is rarely a single, dominant force at a 
given scale in biology. This requires novel combinatorial, experi- 
mental procedures that allow for multiple fixed or knock-out, 
interventions, with their consequences monitored in a range of 
contexts and variety of timescales. Different contexts and time- 
scale assessments are required for establishing different kinds of 
causal relations. This is becoming practical with increasing auto- 
mation of experiment, and in this way comes to resemble large 
projects in high energy physics. In addition to informing experi- 
mental methods to get at complex causal interactions in many 
biological systems, the exercise of designing knock-out protocols 
in such systems, particularly when coupled to a comparative 
model systems approach, promises to provide powerful insight 
into the problems that the system overcame over its own 
evolutionary history. 

7. Theoretical tools and formal languages 

Having identified phylogenetically widespread regularities, we 
might ask what form biological theory might take that best 
captures the essential phylogenetic sub-structure: natural lan- 
guage narrative (as in the humanities), compressed transforma- 
tion rules capturing physical interactions (as in organic 
chemistry), traditional dynamical systems (as in physics), or 
new forms of computer based logic and simulation? 

It is widely agreed that natural language plays a very powerful 
role in concept formation and in concept dissemination. However, 
in the middle stages of science, more formal approaches, such as 
mathematics and computer models, tend to provide a significant 
advantage over natural language. The reasons for this have been 
long debated in the philosophy literature. 

Wigner (i960) writes of "The Unreasonable Effectiveness of 
Mathematics in the Natural Sciences", referring to the existence of 
empirical regularities of great generality that are often physically 
continuous properties of a natural system. However, the uncer- 
tain nature of initial conditions provides an ultimate limit to law- 
like theories. In such cases we might be required to generate a 
variety of theories, each conditioned on the initial conditions. In 
this way, in a biological setting, each species might require a 



D.C. Krakauer et al. /journal of Theoretical Biology 276 (2011) 269-276 275 

different theory as each was originated in slightly different 
circumstances. This is obviously undesirable, and in all likelihood, 
unnecessary. 

There is, however, another problem discussed by Wigner: 
there is no a priori reason to believe that all phenomena will be 
unified by mathematics. Speaking of the laws of physics and 
heredity, Wigner wrote that, 'it is quite possible that an abstract 
argument can be found which shows that there is a conflict between 
such a theory [heredity] and the accepted principles of physics'. 
Wigner had in mind when writing this, the rather more "modest" 
difficulty of unifying relativity and quantum mechanics. 

If there are few standard, mathematical frameworks of com- 
pelling power for biology, might there be alternative frameworks 
that are better suited to exposing general properties of adaptive 
nature? It is frequently claimed that - like Newton's invention of 
calculus - biological theory will require 'new mathematics'. 
Cohen (2004b) has reviewed many intriguing cases where biolo- 
gical problems have lead to the development or refinement of 
areas of mathematics, from non-linear dynamics through to 
stochastic processes. There are, however, many areas of mathe- 
matics that have been neglected by theoretical biology that could 
prove to be of great value. Einstein's work on general relativity, 
for instance, made good use of mathematical ideas, in particular 
differential geometry that had previously been developed with 
completely different motivation. More likely than not, the formal 
structures have been set forth in some context, and await their 
discovery and subsequent development in representing biological 
theory. 

The analysis of regular features of natural language using 
formal grammars in linguistics is a powerful example of a formal 
theory that seeks to explain regularities in nature without adopt- 
ing the traditional mathematical approaches found in physics 
(Chomsky, 1990, 1965). This is an approach based on computa- 
tional rule systems (such as L-systems) capable of generating, 
hierarchical or recursive, tree-like outputs. In a biological context 
such as development, formal grammars seek to describe trans- 
formation rules capable of generating a set of complex pheno- 
types, such as branching morphologies, or nested sets of 
cell types. 

To-date, the problem with these algorithmic approaches has 
been their weakness in generating predictions and their limited 
ability to fit quantitative data. Unlike Newton's laws that can help 
us place a robot on the surface of Mars, formal grammars have not 
yet predicted, say, the specific details of the ras cascade. Perhaps 
this kind of detailed prediction is not the goal in biological 
examples, in which case we need to be very explicit about the 
goals of biological theory in the face of a demonstrable absence of 
fine-grained predictive power. 

8. Conclusions 

Theory in physics has succeeded in identifying effective 
degrees of freedom at multiple scales of physical organization, 
and used corresponding effective theories to both predict and 
intervene, in natural processes. Biology has achieved comparable 
success, at more modest scales, in only a few domains: best 
known of which are population biology, population genetics, and 
the theory of scaling. In each case, the relatively simple nature of 
the measured variables (population density, allele frequencies, 
and mass) has allowed that coarse-grained theory achieves a high 
level of predictive and explanatory power. When we turn to finer 
grained details, such as gene expression, or components of 
physiology and behavior, then general theories have proven more 
elusive, and system-specific or engineering or economic style 
models   have   dominated   (Keller,   2003).   As   the   volume   of 

biological data has increased, we have observed a corresponding 
shift in model preferences, towards those frameworks that 
provide increasing predictive power and a loss of compressed, 
explanatory insight. These are often computational models, and 
suggest a future in which informational and algorithmic concepts 
will come to dominate our understanding of adaptive processes. 
The great challenge will be to synthesize these high dimensional 
predictive frameworks with the kind of low dimensional effective 
theories that have proved so successful in the physical sciences. If 
this objective proves to be impossible, we shall find ourselves in a 
world not unlike that of statistical inference, where we are able to 
predict and control the biological world, but for reasons 
unknown. 

At this point there are reasons to be more optimistic. There are 
many properties of biology, including its common phylogenetic 
structure that seem to offer a powerful organizing framework for 
mathematical theories of the more traditional variety, even when 
this history imposes contingency on biology, militating against 
regularities at the most detailed levels. In this sense biology has a 
prospect of turning what would be pure modeling approaches in 
economics or sociology (restricted to a single lineage of primate), 
into more general principles by virtute of their phyletic general- 
ity. This is not a criticism of social science models, merely a 
limitation of their disciplinary application. 

There are also conceptual possibilities that have gone largely 
unexplored. Physics has grown conceptually by accommodating a 
diversity of mathematical disciplines, from dynamics through to 
group theory (Courant and Hilbert , 1962). Einstein was able to 
develop new physical theory by recognizing the crucial value of 
differential geometry in describing space time. Theoretical biol- 
ogy has been mathematically somewhat more restricted, focusing 
largely on dynamics, stochastic processes and more recently, on 
discrete mathematics (Cohen, 2004a). It will likely prove very 
profitable to explore a wider range of mathematical ideas (Cowan 
and Society, 1974), especially those connected with formaliza- 
tions of logic rules and a variety of frameworks supporting 
concepts related to information-processing, such as info-max 
assumptions, and forms of distributed decision-making. 

A few uniquely biological problems that might benefit from an 
infusion of new mathematics include unraveling the intimate 
relationship between energy and information, the origins of 
heterogeneous, hierarchical structures, the development of prin- 
cipled explanations for individuality (Krakauer and Zanotto, 
2006), the emergence of learning mechanisms, how social sys- 
tems and multicellular organisms arise from simple adaptive 
agents, and when persistence mechanisms, as opposed to replica- 
tion mechanisms, play the organizing role in evolutionary 
dynamics. In each of these cases, new ideas will be required to 
realize the ultimate goal of theory, as articulated by Mach, "the 
completest possible presentation of the facts with the least 
expenditure of thought". The least expenditure of thought, to 
imply comprehension, not the minimal representation of the data 
in silico. 
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