
vol. 159, no. 1 the american naturalist january 2002

Comparing Classical Community Models: Theoretical

Consequences for Patterns of Diversity
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abstract: Mechanisms proposed to explain the maintenance of
species diversity within ecological communities of sessile organisms
include niche differentiation mediated by competitive trade-offs,
frequency dependence resulting from species-specific pests, re-
cruitment limitation due to local dispersal, and a speciation-
extinction dynamic equilibrium mediated by stochasticity (drift).
While each of these processes, and more, have been shown to act
in particular communities, much remains to be learned about their
relative importance in shaping community-level patterns. We used
a spatially-explicit, individual-based model to assess the effects of
each of these processes on species richness, relative abundance, and
spatial patterns such as the species-area curve. Our model com-
munities had an order-of-magnitude more individuals than any
previous such study, and we also developed a finite-size scaling
analysis to infer the large-scale properties of these systems in order
to establish the generality of our conclusions across system sizes.
As expected, each mechanism can promote diversity. We found
some qualitative differences in community patterns across com-
munities in which different combinations of these mechanisms
operate. Species-area curves follow a power law with short-range
dispersal and a logarithmic law with global dispersal. Relative-
abundance distributions are more even for systems with compet-
itive differences and trade-offs than for those in which all species
are competitively equivalent, and they are most even when fre-
quency dependence (even if weak) is present. Overall, however,
communities in which different processes operated showed sur-
prisingly similar patterns, which suggests that the form of com-
munity-level patterns cannot in general be used to distinguish
among mechanisms maintaining diversity there. Nevertheless, pa-
rameterization of models such as these from field data on the

* Corresponding author. Present address: Laboratoire d’Ecologie Terrestre,

Centre National de la Recherche Scientifique, UMR 5552, 13 avenue du Colo-

nel Roche, F-31029 Toulouse cedex 4, France; e-mail: chave@cict.fr.

† E-mail: helene@eno.princeton.edu.

‡ E-mail: slevin@eno.princeton.edu.

Am. Nat. 2002. Vol. 159, pp. 1–23. � 2002 by The University of Chicago.
0003-0147/2002/15901-0001$15.00. All rights reserved.

strengths of the different mechanisms could yield insight into their
relative roles in diversity maintenance in any given community.

Keywords: density dependence, dispersal, ecological community,
neutral model, spatial ecology, trade-off model.

Many mechanisms have been proposed to explain the
maintenance of species diversity within communities, one
of the most fundamental questions in ecology (Hutchinson
1959; Levins 1970; May 1975; Pacala and Tilman 1993).
These mechanisms shape community-level properties such
as species-area curves, relative-abundance distributions,
and spatial patterns of species occupancy. However, few
studies have addressed the theoretical implications of di-
versity-maintaining mechanisms for community patterns.

These mechanisms can be broadly partitioned into “equi-
librial” or “nonequilibrial.” Equilibrial mechanisms can
maintain constant species composition over time. They are
based on functional differences among species in life-history
strategy (Grubb 1977), habitat affinity (Ashton 1969, 1998),
pests or predators (Janzen 1970; Connell 1971), and/or
other factors that lead species to differ in their competitive
ranking in differing circumstances as influenced by spatial
and/or temporal heterogeneity. This heterogeneity can be
exogenous (like topography), endogenous (the presence or
absence of a particular competitor or pest), or both (light
availability [Canham et al. 1994], soil fertility [Newbery and
Proctor 1984], or disturbance regime [Connell 1979; Salo
et al. 1986]). Nonequilibrial hypotheses, in contrast, explain
diversity as a balance between speciation (or immigration)
and extinction, with the species composition itself constantly
changing (MacArthur and Wilson 1967; Caswell 1976; Sim-
berloff 1976; Hubbell 1979; Chesson and Warner 1981). All
these factors have been extensively discussed theoretically
and tested in the field. They have all been shown to be
capable of contributing to the maintenance of species
diversity.

One way to test for the presence and importance of
these factors in a given community is to examine com-
munity-level properties such as species-area curves, rela-
tive-abundance distributions, and spatial patterns in real
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communities. Comparing them with the patterns found
in model communities containing different combinations
of the contributing factors should allow us to assess the
relative magnitude of these mechanisms. The extensive
data sets on species-area curves and relative-abundance
distributions for many natural communities make this an
appealing proposition. Yet relatively little work has been
done on what patterns are expected under different mech-
anisms (Chave 2001). Thus, there is a need for theoretical
work that clarifies which patterns are expected from which
mechanisms and, thus, whether one can distinguish among
mechanisms by looking at patterns.

Historically, most theoretical work on the species-area
curve has been in the form of phenomenological models
that are simply fit to data. This is in part because the term
“species-area curve” has been applied somewhat indis-
criminately to very different types of data (Holt 1992;
Rosenzweig 1995). The two most common models are the
Arrhenius power law (Arrhenius 1921; PrestonzS p cA
1962; May 1975), which relates the number of species S
and the area A, and the Fisher logarithmic law S p

, where r is the number of individuals pera ln (1 � rA/a)
unit area (Fisher et al. 1943; Coleman 1981). Interestingly,
the former model is well established in animal ecology
(Wright 1981; Rosenzweig 1995), while the latter is more
accepted in plant ecology (Condit et al. 1996; see Connor
and McCoy 1979 and McGuinness 1984 for a discussion).
Insofar as authors have attempted to derive the form of
species-area curves, they have usually done so from as-
sumptions about relative-abundance distributions and
spatial patterns (Preston 1962) rather than by trying to
explain all patterns from processes within communities.
A quite different approach, which we build on here, con-
sists of deriving these patterns from null models of bio-
diversity such as the models of Caswell (1976) or Hubbell
(1995, 1997, 2001; Durrett and Levin 1996). Most recently,
Buttel et al. (in press) have addressed a similar issue for
an individual-based, spatially-explicit model with a com-
petition-survival trade-off (Levins and Culver 1971; Horn
and MacArthur 1972; Tilman 1994).

Theoretical work on species-abundance distributions
has been based on deductive models. MacArthur (1960),
Preston (1962), May (1975), and Sugihara (1980) pro-
posed such models for the general form of species-abun-
dance distributions. These were based on the idea that
species partition a niche space. However, they provided
no basis for explaining or predicting differences in relative-
abundance distributions among communities. The excep-
tions, again, are studies exploring relative-abundance dis-
tributions in a null model (Hubbell 1997, 2001; Bramson
et al. 1998).

Hubbell’s (2001) nonequilibrium neutral model exhibits
patterns that are strikingly similar to those observed in

real communities. Whether these patterns are generic and
potentially shared by other models or whether commu-
nities are actually neutral and nonequilibrium has been
much debated (Connor and Simberloff 1979; Terborgh et
al. 1996; Hubbell 1997; Ashton 1998). Yet, little theoretical
work has been done to establish whether the presence,
much less the strength, of equilibrium mechanisms such
as niche differences or Janzen-Connell effects will change
these patterns qualitatively (however, see Molofsky et al.
1999). Here, we provide the first broad comparison in-
corporating niche differences and other equilibrium,
diversity-maintaining mechanisms using a framework of
community models of sessile organisms competing for
space. These models combine Hubbell’s drift model
(which is taken as the null, or neutral, model), interspecific
variation in life-history strategy (niche differentiation),
and conspecific density dependence (locally abundant spe-
cies are disadvantaged). In future work, we intend to ex-
plore the importance of exogenous spatial and temporal
variation in habitat and habitat specialization (e.g., to-
pography, climate, soil, disturbance).

In this study, we investigated the implications of these
mechanisms for community-level patterns. We tested the
influence of the dispersal distance, the presence and
strength of life-history niche differentiation, and the pres-
ence and strength of conspecific density dependence. We
examined and compared species richness, species-area
curves, relative-abundance distributions, and spatial pat-
terns of some of these model communities. In addition to
simulation results, we present exact analytical expressions
for the variation of these patterns with community size.
We also performed sensitivity analyses to establish that the
results we obtain are general and not artifacts of the man-
ner in which we implemented our simulations.

Model

General Framework

Our model is an individual-based, spatially-explicit model
of a community of sessile organisms. The nature of the
model makes it easy to change the dispersal, add life-
history differences among species, and add conspecific
density dependence. However, the addition of these dif-
ferences also makes the model too complex to allow an-
alytical treatment. Thus, most of our results are from
simulations.

Landscape. Let the total model community at time t be
composed of individuals, each belonging to a givenNt

species , with S the total number of speciess � {1, … , S}
in the community. Each individual has a specific location
in the landscape, which is a square lattice with L square
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cells on a side (thus with cells total). At most one2L
individual can occupy one square cell, and cells can be
empty. We used periodic boundary conditions, which
makes the landscape a torus; that is, sites on the right edge
of the lattice are neighbors of those on the left edge, and
cells on the bottom edge are neighbors of those on the
top edge. This choice avoids spurious edge effects and best
simulates a large community. Simulations were performed
on large lattices, up to cells in size, in order4,096 # 4,096
to avoid finite-size effects. In the context of a forest, one
cell represents the area occupied by the canopy of a single
adult tree, about m, much as in gap models such5 m # 5
as those of Botkin et al. (1972) and Shugart (1984). For
the intertidal, it represents the area occupied by an adult
mussel (approximately cm).5 cm # 5

Births and Deaths. Each simulation starts with individ-N0

uals representing species. In the absence of competition,S0

an individual of species s dies at inherent mortality rate
, with , and reproduces at rate ; that is, itsm 0 ! m ! 1 fs s s

inherent probability of death per time step is , and thems

average number of offspring produced per time step is .fs

Each offspring is immediately dispersed from its parent to
a new site according to one of the dispersal modes de-
scribed below. If the site at which this propagule lands is
occupied, it may or may not be able to take over from
(and thus cause the death of ) the current occupant. The
death of individuals due to takeover by arriving propagules
is not included in the inherent mortality rate .ms

Speciation and Immigration. There is a small but steady
input of new species in the system, which represents im-
migration of novel types and speciation; we will refer to
it as simply speciation. A constant number of new species
are introduced into the community at each time step. After
Hubbell (1995), we designate this v. Thus, the effective
per capita speciation rate per time step is . Eachn p v/N
new species starts from a single individual (much as in
macromutation), which is placed randomly on the model
landscape.

Dispersal. The distances that offspring are dispersed have
major effects on spatial patterns of species occupancy, on
the frequency with which offspring disperse onto cells oc-
cupied by conspecifics, and, thus, on the level of interspecific
competition. Dispersal distances are known to vary among
communities, with long-distance dispersal for many inter-
tidal communities (Thorson 1950; Caley et al. 1996) and
relatively local dispersal in many terrestrial plant commu-
nities (Harper 1977; Willson 1993; Ouborg et al. 1999).

We examined the effects of four different kinds of prop-
agule dispersal on community structure. At one extreme is
global dispersal, in which all seeds are dispersed throughout

the entire community. At the opposite extreme is nearest-
neighbor dispersal, in which seeds are dispersed only to the
four nearest neighbors of each cell. We also examined two
intermediate types of dispersal. In one, seeds are dispersed
according to a bivariate normal distribution, that is,

2r r
K (r) p exp � , (1)G 2 2( )j 2j

where is the probability that the propagule landsK(r)dr
between distance r and distance away from its par-r � dr
ent and j2 is the mean squared dispersal distance. This
function is a good fit to empirical seed shadows for short
distances (e.g., Dalling et al. 1998). However, it is a poor
fit far from the source (Willson 1993; Clark et al. 1999;
Nathan and Muller-Landau 2000). Thus, our final type of
dispersal employed a fat-tailed kernel (Kot et al. 1996).
For this purpose, we used the dispersal kernel suggested
by Clark et al. (1999), which takes the form

2pr
K (r) p , p 1 0, (2)2Dt 2 p�1u[1 � (r /u)]

where u and p are parameters determining the shape of the
kernel. This function combines Gaussian dispersal at short
distances with a power-law tail of long-distance dispersal.

Specific Models

Neutral Model. The first model we examine is a null, or
neutral, model in which all species are identical. Strict
neutrality, or equivalence of species, requires that all spe-
cies have equal mortality rates, equal fecundities, and equal
probability of their propagules taking over the sites on
which they land, regardless of the identity of the previous
occupant of the site, if any. For computational simplicity,
we follow Hubbell (1997, 2001) and take as our neutral
model one in which there are no empty sites, as deaths
are always accompanied by births onto the same site. This
corresponds to a system with saturating seed rain, in which
all species have an inherent mortality rate of 1, fecundity
is essentially infinite, and the probability of taking over
occupied sites is 0. In this case, in each time step, there
are successive deaths, chosen at random, each of which2L
is immediately replaced (before the next death) by a new
individual, the offspring of a neighboring site chosen ac-
cording to the dispersal kernel. This corresponds to a sys-
tem in which each time a tree dies, it is immediately re-
placed by the young of another tree in the community.

We chose the neutral model with no empty space for
most comparisons because this scenario produces the fastest
convergence to equilibrium and reduces the computational
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time needed and because it makes the model easier to handle
analytically. This neutral model is also known as the voter
model with mutation (Clifford and Sudbury 1973; Durrett
1988), and its behavior with nearest-neighbor dispersal has
been explored by Durrett and Levin (1996). If births and
deaths are not always paired, then empty space appears in
the system, and dynamics slow down. We have investigated
the effects of the resulting empty space on patterns of di-
versity by examining models in which all species have non-
zero inherent mortality rates, fecundity rates of 1, and take-
over rates for propagules of 1.

The neutral model has a very interesting property, first
pointed out by Holley and Liggett (1975): it admits a
simple, dual representation, which provides an alternative
route to understanding its behavior. The idea behind this
dual representation is to fix a time t and to look for the
“ancestors” of each site. Looking backward in time from
time t, the set of ancestors of a site defines a path that
gives the history of that site. A path ends where a speci-
ation/immigration event took place. If, at a time ,′t ! t
two paths meet at the same site, then the corresponding
sites have the same ancestor and must therefore belong to
the same species. A simple image of this process is a set
of random walks, one per site at time t, that move back-
ward in time and coalesce when they meet. Mutation cor-
responds to dead-end paths, and, if t is very large, the
number of dead-end paths is simply the number of species
in the community at time t. This method of investigating
the model is much faster than ordinary simulations (J.
Chave and E. G. Leigh, Jr., unpublished manuscript). In-
stead of running the simulations forward until an equi-
librium is reached, this method essentially starts at the
equilibrium and works backward, not to the very begin-
ning but simply to the time of emergence of the longest-
lived species present in the system at equilibrium. Because
random walkers coalesce, we do not have to keep moni-
toring every site and its corresponding random walk; we
only have to monitor the remaining walkers at time ′t !

, a number that decreases very quickly. This allows fort
rapid numerical investigation of equilibrium forms of the
species-area curve, relative-abundance distribution, and so
forth, and it also permits analytical calculations, which
prove intractable in almost any other spatially-explicit dy-
namic model. The analytical results presented here make
extensive use of the dual representation algorithm.

Trade-off Models. While the neutral model provides an in-
teresting null case, we know that there are many differences
between species within real communities. If these differences
result in a competitive hierarchy in which some species are
always better than others, then they speed competitive ex-
clusion (as modeled in Zhang and Lin 1997; Durrett and
Levin 1998; Yu et al. 1998). However, when there are trade-

offs such that no one species is best under all circumstances,
differences between species can facilitate coexistence (Til-
man and Pacala 1993). Such niche differences between spe-
cies have been the focus of extensive ecological research and
certainly influence the structure of communities. Thus, we
investigate two models in which life-history trade-offs result
in life-history niches that enhance coexistence; we refer to
these as the trade-off models.

Both of the trade-off models we investigated incorporate
an r-K trade-off between reproductive rate and competitive
ability, in which species with lower reproductive rates are
able to take over sites from species with higher reproduc-
tive rates (as in Hastings 1980; Tilman 1994). In our first
model, the competition-survival trade-off model, species
vary only in survival, while fecundity is constant at 1; thus,
species with lower survival rates have higher competitive
ability than those with higher survival. In real commu-
nities, such trade-offs between survival and competitive
ability are often mediated by herbivores or predators. For
example, fast-growing plant species are often more vul-
nerable to herbivores than slower-growing species that in-
vest more in defenses (Crawley 1997), and larger-bodied,
competitively dominant intertidal organisms experience
higher risk of death by predation (Paine 1966). Our second
model is the competition-fecundity trade-off model, in
which species vary in fecundity but not mortality; species
with lower fecundity outcompete those with higher fe-
cundity. One example of such a trade-off between fe-
cundity and competitive ability in plant communities is
the trade-off between seed size and number. Smaller seeds
can be produced in larger quantities, which increases the
reproductive rate, but larger-seeded species are better com-
petitors (Levin and Muller-Landau 2000).

These trade-off models have been the subject of extensive
theoretical work, most of it on the behavior of the models
when propagules are dispersed globally (Levins and Culver
1971; Horn and MacArthur 1972; Hastings 1980; May and
Nowak 1994; Nowak and May 1994; Tilman 1994; Kinzig
et al. 1999). Recent work shows that the competition-
survival and competition-fecundity trade-off models have
generically the same dynamic behavior under global dis-
persal (J. Dushoff, L. Worden J. Keymer, and S. Levin, un-
published results). Fewer studies have examined spatially-
explicit versions with local dispersal (but see Buttel et al.,
in press); our own simulations suggest that the competition-
survival and competition-fecundity trade-off models also
behave similarly under local dispersal. Thus, we chose to
use the competition-survival trade-off model for most of
our results on local and global dispersal because it is com-
putationally faster to implement; where not otherwise spec-
ified, “trade-off model” refers to the competition-survival
trade-off model. We present results comparing the com-
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petition-survival and competition-fecundity trade-off mod-
els to demonstrate the generality of our conclusions.

When speciation occurs in the trade-off model, repro-
ductive rates of the new species are chosen so that the inverse
of the reproductive rate is chosen from a uniform distri-
bution. In the competition-survival trade-off model, new
species are assigned a mortality drawn from a uniform dis-
tribution on . In the competition-fecundity trade-off[0, 1]
model, new species are assigned a fecundity , such thatfs

is drawn from a uniform distribution on ,1/f [1/F , 1]s max

where is the maximum fecundity possible for a species.Fmax

A finite is necessary to achieve reasonable computa-Fmax

tional times.

Models with Conspecific Density Dependence. Another im-
portant equilibrium mechanism facilitating species coex-
istence is negative conspecific density dependence, in
which an individual is disadvantaged where the density of
conspecific adults is high. This may be due to the con-
centration of species-specific pests in such sites, so-called
Janzen-Connell effects (Janzen 1970; Connell 1971), or,
alternatively, to niche complementarity across species and
thus heightened competitive effects of conspecific neigh-
bors. There is extensive evidence for Janzen-Connell effects
in tropical-forest tree communities (Condit et al. 1992;
Hammond and Brown 1998; Harms et al. 2000), and there
is some recent evidence for them in temperate forests
(Packer and Clay 2000). Such Janzen-Connell effects give
species a disadvantage when abundant and thus can pow-
erfully influence species diversity. This influence was dem-
onstrated mathematically by Armstrong (1989) for a non-
spatial model with global dispersal. Molofsky et al. (1999)
explored the effects of both negative (as here) and positive
density dependence on the coexistence of two species in
a spatially-explicit, individual-based model with nearest-
neighbor dispersal.

We examined the effects of negative conspecific density
dependence on both the neutral and trade-off models. In
the simulations with density dependence, the probability
of a propagule successfully establishing decreases in pro-
portion to the number of neighboring sites occupied by
conspecifics. We implement such effects by calculating the
proportion q of the four nearest-neighbor cells of the cell
at which the propagule lands that are occupied by con-
specifics and letting the propagule escape density-depen-
dent mortality with probability , where aw(q) p 1 � aq
varies between 0 and 1 and determines the strength of the
density-dependent effect.

Algorithms

The exact algorithms we used are given in appendix A.

Methods

Simulations Performed

To investigate the effects of trade-offs, density dependence,
dispersal mode, and their interaction, we ran simulations
for all combinations of the following: (a) full neutral model
or competition-survival trade-off model (b) with or without
density dependence for (c) nearest-neighbor dispersal,
global dispersal, Gaussian dispersal with mean distance 1,
2, 4, 8, or 16 cell widths or Clark 2Dt dispersal (eq. [2])
with , 0.5, 1.0, 1.5, or 2.0. Most simulations werep p 0.25
done on a large lattice of cells ( ),1,024 # 1,024 L p 1,024
with a speciation rate of speciation events per site�65 # 10
per time step. Some additional simulations were done on
even larger lattices ( and ) to assessL p 2,048 L p 4,096
finite-size effects. To allow time for the community to reach
a dynamic equilibrium between speciation and extinction,
we ran each model for 106 time steps. We said that the
community had reached its equilibrium when there were
no further directional changes in species number or the
forms of species-area and relative-abundance curves. In the
case of the neutral model, we checked our standard sim-
ulation results against results using the dual-representation
algorithm to insure that the equilibrium had been reached.

Since the landscape generated by the competition-
survival trade-off model contains considerable empty
space while our standard neutral model has no empty
space, we conducted additional runs to check for the in-
fluence of varying amounts of empty space in the neutral
model itself. We ran the neutral model with fecundity 1,
takeover probability 1, and inherent mortality rates of 0,
one-sixteenth, two-sixteenths, and so on up to fifteen-
sixteenths. These were done on grids with a256 # 256
speciation rate of per site per time step.�49 # 10

We compared the competition-fecundity and competi-
tion-survival trade-off models to test the influence of the
form of trade-off. We used a maximum fecundity ( ) ofFmax

100 in the competition-fecundity trade-off model after ver-
ifying that our conclusions were insensitive to this parameter
(simulations with ; results not shown). We ranF p 1,000max

the competition-fecundity model under different fixed mor-
tality rates to find one at which the proportion of space
occupied matched that in the competition-survival model;
these runs were done on a small grid ( ) and with256 # 256
a large speciation rate ( per site per time step, or�49 # 10

) to reduce computational time. We then ran largev p 64
simulations for both models using the best mortality rate
in the competition-fecundity model ( andL p 1,024 v p

for both).5
To examine how species richness and other patterns

scaled with the size of the system, we ran simulations of
the neutral and trade-off models without density depen-
dence on lattices of side to 1,024 cells. We held vL p 8
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Figure 1: Spatial patterns of species occupancy after equilibrium has been reached in the different models: neutral and trade-off, with and without
density dependence, under nearest-neighbor or Gaussian dispersal. Here, the neutral model is run with nonzero mortality rate so that the proportion
of space occupied at any given time is the same as in the competition-survival trade-off model. The images depict the lattices on which the simulations
took place, with each cell colored to match the identity of the species that occupied it most frequently over the previous 10 time steps. Each species
having 110 individuals was randomly assigned a color; all other sites were colored white. The local-dispersal case depicted here is nearest-neighbor
dispersal, while the long-distance dispersal case is Gaussian dispersal with (thus, the mean dispersal distance is 7.1 cell widths). Density dependencej p 8
was implemented with . These simulations were run on a square lattice of side , with a speciation rate of .a p 0.4 L p 128 v p 2

(the number of new species per time step) constant at 5
for these runs; this effectively varied the per capita mu-
tation rate, n. Where available, analytical results are pre-
sented and compared with simulation results.

Patterns Recorded

In the simulation runs, we recorded the state of the model
communities every 10 time steps. We focused on patterns

whose form is robust across different implementations (see
app. A) and that can be compared directly with field data,
specifically species-area curves and relative-abundance dis-
tributions. Because these vary stochastically even after the
dynamic equilibrium is reached, the equilibrium species-
area and relative-abundance curves that we report are av-
erages over at least 10 curves recorded 1,000 time steps
apart after equilibrium was attained. For the neutral
model, simulations and comparison with the dual repre-
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Figure 2: The equilibrium number of species and the fraction of sites
occupied in the neutral model under different mortality rates (open symbols)
compared with the number of species in the corresponding competition-
survival trade-off model ( filled symbols). Shown here are nearest-neighbor
dispersal with density dependence (triangles), nearest-neighbor dispersal
without density dependence (circles), and global dispersal without density
dependence (diamonds). For all simulations, and . For theL p 256 v p 64
cases with density dependence, . Mean number of species anda p 0.4
standard error (error bars) were computed from 50 simulations.

sentation algorithm revealed that equilibrium was reached
at around time steps, that is, around2 5T ≈ L /2 5 # 10eq

time steps for . We also examine the spatialL p 1,024
patterns of site occupancy, which illuminate the mecha-
nisms behind the different species-area curves and relative-
abundance distributions.

We constructed species-area curves using the bisection
procedure (Greig-Smith 1952; Whittaker 1972). Each point
on these curves represents the average number of species
in disjoint (nonoverlapping) quadrats of that area that to-
gether completely cover the simulation grid. This curve
shows how species number changes as the sample size
changes within a given community (Condit et al. 1996).

We analyzed relative-abundance distributions for the
whole community and for square subsets of it. We display
these distributions both as rank-abundance curves and as
histograms of the number of species in different abun-
dance classes (species-abundance distribution).

Robustness

Many of the features of the model could be implemented
in different ways that have somewhat different biological
parallels but arguably still represent the same general phe-
nomena. We examined whether a number of such varia-
tions affected the qualitative results that we compare across

models. The details of the tests we performed and their
results can be found in appendix A.

Results

Spatial Patterns

The models differ substantially in the proportion of sites
occupied and in the degree to which members of the same
species are clumped. These differences, in turn, drive dif-
ferences in the species-area curves and the relative-abun-
dance distributions. In the competition-survival trade-off
model, approximately half the sites are empty at any given
time because the inherent mortality rates in this model
are necessarily nonzero for most species. This contrasts
with occupancy of all sites under the neutral model with
no mortality. To illuminate the differences in species clus-
tering between the competition-survival trade-off model
and the neutral model without the additional complication
of the difference in empty space, we compared this trade-
off model with a neutral model with a nonzero mortality
rate chosen so that the proportion of space occupied was
the same in both models. We then examined the spatial
patterns when each site is assigned the identity of the
species that occupied it most frequently over the previous
10 time steps, thus eliminating empty space from the pic-
ture (the empty space makes it harder to see the patterns
in species clustering).

The equilibrium spatial patterns are most strongly af-
fected by dispersal distance and density dependence, while
they seem relatively little affected by the presence or ab-
sence of trade-offs between species (fig. 1). Distributions
of species are much more clumped and species richness
is higher under local (nearest-neighbor) dispersal than
under longer-distance dispersal, even though the long-
distance dispersal depicted here is not that long ( ,j p 8
mean dispersal distance 7.1 cell widths, median 6.7, ninety-
ninth percentile 17.2). Models with density dependence
show much smaller clumps, and higher species richness,
than those without density dependence, especially in the
neutral model. Overall, spatial patterns are relatively sim-
ilar between the neutral and the trade-off model; however,
the trade-off model is less sensitive than the neutral model
to the influence of changes in dispersal and density de-
pendence. There are also more rare species (represented
by !10 individuals and colored in white in fig. 1) in the
neutral model than in the trade-off model.

Species Richness

Species richness was much higher under local dispersal
than under global dispersal, higher with density depen-
dence than without, and higher in the competition-
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Figure 3: The equilibrium species-area curves in the different models: neutral model without density dependence (top left), trade-off model without
density dependence (top right), neutral model with density dependence (bottom left), and trade-off model with density dependence (bottom right).
To better compare these curves, we plotted the occupied area along the X-axis (i.e., the number of individuals in the community). In each plot,
the species-area curves (SACs) obtained with two extreme dispersal kernels are shown: nearest-neighbor dispersal (open circles) and global dispersal
( filled triangles). The SACs with nearest-neighbor dispersal were fitted by two power laws (for small and large scales). The fitted parameters are
given in table 1. The SACs with global dispersal were fitted by Fisher’s law, and we found the following: top left, ( ); top right,2a p 5.29 r p 0.996

( ); bottom left, ( ); bottom right, ( ). Each curve was constructed from the average of 102 2 2a p 11.0 r p 0.86 a p 49.2 r p 0.76 a p 17.4 r p 0.79
SACs recorded 1,000 time steps apart after equilibrium was reached in simulations with , , and (where applicable) .L p 1,024 v p 5 a p 0.1

survival trade-off model than in the neutral model when
controlling for differences in the proportion of space oc-
cupied. The equilibrium species richness in the neutral
model changed modestly when the mortality rate was
changed. For global dispersal, the number of species de-
clined as the mortality rate increased and the proportion
of occupied sites declined; for local dispersal, the number
of species first increased and then decreased (fig. 2). Spe-
cies richness in the trade-off model was always higher than
that in the neutral model when both systems had the same
proportion of sites occupied (fig. 2). (This occurred at a
mortality rate of approximately 0.62 for global dispersal
without density dependence, 0.44 for nearest-neighbor dis-
persal without density dependence, and 0.42 for nearest-
neighbor dispersal with density dependence.) For global

dispersal without density dependence, the difference in
species number between the trade-off and neutral models
was larger when compensating for the difference in site
occupancy; for local dispersal without density dependence,
it was smaller (but still significant). Most notable, for near-
est-neighbor dispersal with density dependence, species
number is higher in the trade-off model than in a neutral
model with an equivalent amount of empty space, whereas
it is lower than the species richness in the neutral model
with no empty space (zero mortality).

Species-Area Curves

The shape of the species-area curve (SAC) is strongly af-
fected by dispersal distances but is not much affected by
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Figure 4: Top panels, the equilibrium species-area curves (SACs) in the neutral model without density dependence for different kinds of distances
of dispersal (averages over 10 runs). Top left, the plain solid lines are the nearest-neighbor and global-dispersal SACs (cf. fig. 3). In between, the
lines display curves for Gaussian dispersal kernels with (open circles), 2 ( filled squares), 4 (open diamonds), 8 ( filled triangles), and 16 (openj p 1
triangles). Top right, SACs achieved under the fat-tail dispersal kernel (eq. [2]), with and , 0.5, 1.0, 1.5, and 2.0 (from top to bottom).u p 1 p p 0.25
Bottom panel, mean and standard deviation of the total number of species as a function of the ninety-ninth-percentile dispersal distance (p3.03j).
The dashed line shows the number of species in the global-dispersal scenario. All simulations with , , and (when applicable)v p 5 L p 1,024 a p

.0.1

other factors (fig. 3). On a log-log scale, the SACs of mod-
els with nearest-neighbor dispersal are convex, while those
of global dispersal are concave. Models with intermediate
types of dispersal have SACs with intermediate shapes (fig.
4).

The global-dispersal SACs are fairly well fit by Fisher’s
law,

rA
S(A) p a ln 1 � , (3)( )a

in all cases ( ). For the neutral model without den-N p rA
sity dependence, Fisher’s law is actually the exact solution
(Coleman 1981; Bramson et al. 1996), and our simulations
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Table 1: Best power-law fits ( ) to the species-areazS p cA
curves shown in figure 3 of models with nearest-neighbor
dispersal for small (1–103) and large (104–106) areas

Range

Neutral
model

Trade-off
model

c z c z

Without density dependence:
1–103 1.06 .23 .92 .32
104–106 .037 .60 .043 .67

With density dependence:
1–103 1.17 .43 .90 .36
104–106 .18 .62 .053 .67

Note: All the fits were highly significant ( ). The measured2r 1 0.99

slope at large scales is not 1 due to our choice of toroidal boundary

conditions; the maximal area used in our fits is one-fourth of the total

simulated area (see text).

clearly confirm this result. For all the other scenarios, the
best-fit Fisher’s law underestimates the species richness at
medium scales and overestimates it at large scales.

On a log-log scale, it appears that the nearest-neighbor
SACs are well fit by two straight lines, with one well-
defined slope up to 103–104 and another, steeper slope
beyond this scale (table 1). However, if we calculate the
slopes (z) of the log-log plots,

d ln (S)
z(A) p , (4)

d ln (A)

and plot these as a function of area, we can easily see that
the curves deviate substantially from this assumption (fig.
5). Note that the dip in the z exponent at the largest scales
of the model is a result of the toroidal landscape structure.
On a torus, as additional area is added to a subset; even-
tually, that added area becomes closer to the starting point
because the landscape wraps around. Thus, that area be-
comes more similar to the area already in the sample, and
fewer new species are added. This effect occurs at scales
beyond half the length of the system and thus beyond one-
quarter of the area. On a landscape that does not have
such periodic boundaries, this effect would disappear; the
z values would continue to increase, approaching 1 for all
local-dispersal scenarios (results not shown).

Density dependence has a very strong positive effect on
species number in the neutral model, especially when dis-
persal is local (a 10-fold increase with a density dependence
of strength ). It also affects the shape of the curve,a p 0.4
making the global-dispersal curves more concave and the
local-dispersal curves somewhat less convex (fig. 3). The
neutral and trade-off models show relatively similar
patterns.

We analyzed the variance of the SACs in detail for the
neutral model. For any particular SAC, the standard de-

viation of species in a given area varies in proportion to
the mean number of species in that area so that the co-
efficient of variation is essentially constant for all areas A
within a given SAC. Between simulations, the number of
species and the standard deviations varied depending on
dispersal distances, with smaller species numbers and
larger standard deviations for longer dispersal distances.

Rank-Abundance and Relative-Abundance Distributions

The distribution of relative abundances for the entire com-
munity is affected primarily by dispersal type and second-
arily by density dependence (figs. 6, 7). The rank-abundance
curves of nearest-neighbor models are S-shaped on log-
linear plots, while those of global-dispersal models are en-
tirely concave, with the exception in both cases of the neutral
model without density dependence; under those conditions,
the curves are nearly straight lines (fig. 6), and thus the
histogram of relative abundances is nearly flat (fig. 7). The
addition of density dependence and the presence or absence
of trade-offs greatly increases the number of species with
moderate abundances, which leads to flatter rank-abun-
dance curves (fig. 6) and to a unimodal histogram of relative
abundances (fig. 7). The addition of trade-offs has a similar,
but less pronounced, effect. When we examine the distri-
bution of relative abundances in subsets of the community,
we find that shapes remain qualitatively the same under
global dispersal, as they should. However, under local dis-
persal, the distribution of relative abundances becomes
more lognormal, and the rank-abundance distribution lin-
ear and more S-shaped, as smaller subsets are taken (shown
for the neutral model without density dependence in fig.
8). Thus, in subsets, which are closer to the kind of data
most often collected empirically, the relative-abundance dis-
tributions of all the communities are qualitatively more
similar.

For the neutral model with global dispersal, it is possible
to prove that the relative-abundance distribution for the
full community must have the observed form. Let bep (t)i

the fraction of individuals belonging to species i at time
t. The unit segment is partitioned into S domains of[0, 1]
size , which change in size through time. It is convenientpi

to look only at the boundary between two domains; they
perform random walks on the segment , and a species[0, 1]
goes extinct when two such random walks meet (when the
boundaries coalesce). The appearance of a new species is
equivalent to a “branching” of a boundary, which gives
rise to a new domain of size . This representation allows1/N
one to prove rigorously (Ben Avraham et al. 1990) that
the rank-abundance curve is an exponential function,

, and thus the histogram ofN(rank) p exp (�rank/v)/v
relative abundances is flat.

The histograms of relative abundances for all the other
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Figure 5: The z exponent of the species-area curve shown in figure 3 computed as the slope of the log-log plots for the neutral model without
density dependence (top left), trade-off model without density dependence (top right), neutral model with density dependence (bottom left), and
trade-off model with density dependence (bottom right). Open symbols depict nearest-neighbor dispersal, and filled symbols depict global dispersal.

models, as well as for subsets of the neutral model, are
unimodal and skewed toward rare species. They have more
rare species than Preston’s canonical lognormal distribution
of relative abundances (Preston 1962), which is expected to
arise in the case of a large number of sources of environ-
mental heterogeneity (May 1975). Like Preston’s distribu-
tion, they have an S-shaped rank-abundance curve.

Comparison of the Trade-off Models

The two trade-off models produced almost identical species-
area curves and abundance distributions under nearest-
neighbor dispersal after controlling for the proportion of
space occupied (fig. 9). In the competition-fecundity trade-
off model, species richness depended on the proportion of
space occupied, which varied with the mortality rate (fig.
10). Small-scale simulations showed that the competition-
fecundity model with a mortality rate of had sim-m � 0.7
ilar amounts of empty space compared with the competi-

tion-survival model; thus, this is the mortality rate that was
used for the larger run, the results of which were compared
with those previously obtained for the competition-survival
model (fig. 9).

Finite-Size Scaling

Because our model communities are small compared with
real communities and have unrealistically high speciation
rates, it is critical to understand how our results scale with
community size and speciation rate (Durrett and Levin
1996). We are particularly interested in how total species
richness S scales with the number of individuals in the
system N, the speciation rate v, and the dispersal distance
j. That is, we would like to find the form of the function

S p F(N, v, j).

We refer to this function F as a scaling function. It can
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Figure 6: Equilibrium rank-abundance curves for the different models: neutral model without density dependence (top left), trade-off model without
density dependence (top right), neutral model with density dependence (bottom left), and trade-off model with density dependence (bottom right).
Bold curves correspond to the model with nearest-neighbor dispersal, while simple lines correspond to global dispersal. All simulations with v p

, , and (when applicable) .5 L p 1,024 a p 0.1

be thought of as a species-area relationship that relates
number of species to number of individuals; however, it
has a qualitatively very different interpretation from the
standard SAC, since here it is total number of individuals
in the entire community, rather than the number of in-
dividuals in the sample, that varies.

Neutral Model. Bramson et al. (1998) obtained exact ex-
pressions for the scaling function F for the neutral model,
also known as the multitype voter model with mutation.
In appendix B, we provide their fundamental theorem,
which we use to find the function F for any N, v, and j.
This theorem relates the function to the prop-F(N, v, j)
erties of a simple random walk in two dimensions of space.
Namely, it relates with the number of distinctF(N, v, j)
sites visited by a random walk with variance j, . AV (t)j

rigorous proof of this result is given in Bramson et al.
(1998).

Under global dispersal, the random walk essentially per-

forms long jumps, visiting a new site each time step, and
thus . Making use of equation (1), we findV(t) ≈ t

F(N, v, j) � v ln (N). (5)

This result is classic in ecology (Fisher et al. 1943; Coleman
1981). It has been repeatedly derived using the Ewens
formula in the past (Ewens 1972; Watterson 1974; Caswell
1976; Hubbell 1997). In the case of nearest-neighbor dis-
persal in a two-dimensional lattice, we have V(t) p

(Dvoretzky and Erdős 1951), and thus,pt/ ln (t)

v
2F(N, v, j) � [ln (N)] , (6)

22pj

as proved in Bramson et al. (1998). In appendix B, we
provide some additional information on the variance of

.F(N, v, j)
The result in equation (6) breaks down as the variance
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Figure 7: Equilibrium species-abundance distributions for the different models: neutral model without density dependence (top left), trade-off model
without density dependence (top right), neutral model with density dependence (bottom left), and trade-off model with density dependence (bottom
right). Open bars correspond to the model with nearest-neighbor dispersal, while filled bars correspond to global dispersal. Simulation parameters
as in figure 6.

of the dispersal kernel approaches the size of the system
( ), which makes dispersal effectively global. The var-j ≈ L
iance of the fat-tail dispersal kernel of equation (2) is finite
for some parameter values but not others, and thus the
shape of the scaling function varies. For , the variancep 1 1
is finite, and equation (6) holds. For , the variance0 ! p ! 1
is infinite, although the dispersal kernel remains defined.
In this case, however, the value of is known ana-V (t)p, u

lytically (cf. Gillis and Weiss 1970 and app. B). For p !

, the scaling function behaves like that of a system with1
global-dispersal kernel, and formula (3) holds.

We verified the analytical results given in these formulas
using numerical simulations (fig. 11). Note that the scaling
function for the global-dispersal case was better fit by
Fisher’s law (3) (fits shown in fig. 11) than by the as-
ymptotic formula (5) (fits not shown).

Trade-off Models. There is no theory available for the scaling
function of the trade-off models. Buttel et al. (inF(N, v, j)

press) have found numerically, however, that the scaling
function of the competition-survival trade-off model follows
the power-law form , with for the global-zS p cA z � 0.17
dispersal case and for nearest-neighbor dispersal.z � 0.34
Our simulations confirm this intriguing result (fig. 11).

Discussion

Understanding the Mechanisms

The three mechanisms examined here—dispersal limita-
tion, life-history niche differentiation, and conspecific
density dependence—all can contribute to the mainte-
nance of species richness. Each fundamentally increases
the strength of intraspecific competition and decreases the
strength of interspecific competition, thus making each
species more limited by its own kind than by others. Yet
the mechanisms are not equivalent. The coexistence fa-
cilitated by local dispersal alone is little more than a slow-



14 The American Naturalist

Figure 8: Equilibrium relative-abundance distributions of different-sized subplots for the neutral model with nearest-neighbor dispersal and without
density dependence. The relative-abundance distribution of the total community with N individuals is compared to square subsets of the community
that are one-fourth, one-sixteenth, and one-sixty-fourth the total area. Relative abundances (proportion of all individuals) rather than absolute
abundances are presented to make their comparison easier. The mode is more marked for small subcommunities than for the entire community,
and the number of rare species is comparatively smaller. Here, and .L p 1,024 v p 5

ing of the speed with which species drift to extinction, as
they inevitably must, balanced by speciation or invasion
of new species (Durrett and Levin 1994). There is no ro-
bustness to this coexistence, no stable equilibrium value
to which the abundance of any species tends to return. By
contrast, both niche differences and density dependence
result in communities that show robustness to perturba-
tion, with equilibrium abundances for individual species
to which the populations will tend. For the density-
dependent case, these equilibrium abundances are equal
across all species when there is no dispersal limitation
(Armstrong 1989). For the trade-off model, equilibrium
abundances are determined by the array of reproductive
rates in the community and vary among species (Nowak
and May 1994; Kinzig et al. 1999).

The scale of dispersal has a huge effect on the number
of species maintained in the system in all the models (for
a similar result in the context of the neutral model, see
Hubbell 2001, chap. 7). Under local dispersal, individuals
of the same species are clumped together, which results in
patchy spatial distributions. Because a large proportion of
propagules land on sites occupied by neighbors of the same
species, intraspecific competition is stronger than inter-
specific competition, and potential rates of increase and

decrease in abundances of species are reduced (Pacala and
Levin 1997). Founder effects dominate, which determines
which species is present where. At small scales, the SAC
first rises steeply (the first individual always represents one
species) and then takes a lower slope as it saturates to
some degree on local species richness. At sufficiently large
spatial scales relative to the distance of dispersal, the curve
again rises steeply because there is complete isolation, with
essentially no exchange of propagules. Thus, at large scales,
we have locally unique species, and the SAC has a slope
of 1 (proven in the limit of infinite system size by Bramson
et al. [1996]; see also Durrett and Levin 1996). Under
global dispersal, in contrast, what is anywhere is every-
where, and thus the spatially-explicit information becomes
irrelevant. The number of species that can be packed in
the community rises only as the logarithm of the com-
munity size. The rank-abundance curve is exponential
(Caswell 1976), and the histogram of relative abundances
is relatively flat.

A decrease in the proportion of occupied cells simul-
taneously decreases the total number of individuals in the
community and decreases the effective dispersal distance.
Therefore, species richness may increase or decrease as the
mortality rate increases. The decrease in the total number
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Figure 9: Rank-abundance curves (left) and species-area curves (right) for two versions of the trade-off model: the competition-survival model
(open circles) and the competition-fecundity model with a mortality rate set to and maximum fecundity ( filled squares). Bothm p 0.7 F p 100max

models gave very similar results. All simulations with and .L p 1,024 v p 5

of individuals acts to reduce the total species richness. At
the same time, the distance to the next occupied cell in-
creases on average, which makes the scale of dispersal in
local-dispersal models smaller relative to the scale of in-
terindividual distances. This increases intraspecific clump-
ing and reduces interspecific interaction, thereby enhanc-
ing species richness. Under global dispersal, it is the decline
in community size alone that is evident (the scale of dis-
persal remains the same), and thus species richness always
declines as the proportion of empty sites increases.

Life-history niche differences decrease interspecific
competition because, on average, only those propagules
landing on sites occupied by individuals from species with
higher reproductive rates are successful. Indeed, we can
think of sites as experiencing succession from higher to
lower reproductive rates, with succession continually in-
terrupted (reset) by mortality or disturbance. Species with
a high reproductive rate do best early in succession; they
have a better chance of colonizing empty sites. Species
with a low reproductive rate have an advantage late in
succession, when they are the only ones who can take over
sites. Each species has a carrying capacity or equilibrium
abundance determined by the relative abundance of its
favored habitat and by its own reproductive rate (Nowak
and May 1994; Kinzig et al. 1999). Species richness is thus
maintained by the presence of successional niches of spe-
cies (Pacala and Rees 1998) and by the phase differences
between sites in their successional status (Levin 1976).
Nevertheless, the SACs of the trade-off models are essen-
tially identical to those for the neutral models with the

same dispersal types. The relative-abundance distributions,
however, are different. There are fewer very abundant or
very rare species, which reflects the influence of the spe-
cies-specific equilibrium abundances and the resulting di-
rectional pressures on species abundances.

With density dependence, individuals explicitly depress
the success of their conspecifics, which increases the com-
petitive effect of conspecifics relative to individuals of other
species. In a sense, space becomes a mosaic of different
habitats. For each species, the local density of conspecifics
determines suitability.

Because locally common species are at a disadvantage,
conspecific clusters are broken up, and richness—both lo-
cal and global—is elevated. This effect is particularly pro-
nounced in local-dispersal models, where clumping would
otherwise be strong. The SACs are uniformly higher than
in models without density dependence; their general
shapes remain determined by dispersal and are unchanged.
Because common species are at a disadvantage and rare
ones at an advantage and because the equilibrium abun-
dances are equal and intermediate, the relative-abundance
distribution shows a larger proportion of species at inter-
mediate abundances.

Connections to Real Communities

The simulations reported here were unrealistic in many
respects. However, we argue that the general results apply
to a wide range of more realistic—but more computa-
tionally difficult to simulate—model communities. The
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Figure 10: The species richness and the fraction of sites occupied in
the competition-survival trade-off model ( filled circle) and in the com-
petition-fecundity trade-off model under various mortality rates (open
circles) in the amount of space occupied and in species richness. All
simulations with nearest-neighbor dispersal and . Mortality ratesv p 16
in the competition-fecundity trade-off model are (from left to right)

, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.2, and 0.1.m p 0.9

trade-offs we examine here are not the only, or even the
most important, ones among species in natural commu-
nities, but we believe the patterns common to the two
trade-offs we do examine are indicative of how commu-
nities are affected by niche differences in general. The
proportion of space occupied in the competition-survival
trade-off model is low (perhaps unrealistically so), but
qualitatively, the same dynamics are observed in a com-
petition-fecundity model in which nearly all spaces are
filled (May and Nowak 1994); indeed, the dynamics are
quantitatively identical as well when system size and dis-
persal distance are properly scaled by the amount of space
occupied. Janzen-Connell effects that lead to conspecific
density dependence obviously occur on scales larger than
simply the four nearest neighbors and affect more than
just the probability of establishment. However, their effects
on community patterns will be qualitatively the same as
long as they have the same strength across all species (e.g.,
Armstrong 1989). Clearly, the simulated communities are
unrealistically small, and the speciation rate is unrealisti-
cally large. However, our simulations across a range of
system sizes and speciation rates establish that the quali-
tative patterns are the same and that the total species num-
bers scale simply. Further, our finite-size scaling analysis
shows that the number of species in the total community
of arbitrarily large size can be deduced from information
on smaller systems.

The results here suggest that the scale of dispersal is the

most important factor in determining the shapes of SACs
and the only one about which conclusions can be drawn
from the shapes of observed curves. More specifically, the
important question is the speed of dispersal relative to the
speciation rate; these together define the correlation length
of the system (Durrett and Levin 1996). Actual species-
area curves for tropical forest plots up to 50 ha in size
(Condit et al. 1996) show the concavity—and even much
the same curve for changes in z values across scales—that
we observed in models with global or fat-tailed dispersal
(figs. 3–5), which suggests that dispersal is relatively ho-
mogenizing even at the 1-km scale. However, accounting
for the clumping of conspecific individuals leads to a sys-
tematic improvement in fitting these SACs relative to mod-
els assuming random placement (effectively global dis-
persal; Coleman 1981); this implies that local dispersal is
important in shaping these patterns (Plotkin et al. 2000a,
2000b). Overall, intermediate dispersal distance distribu-
tions with median dispersal distances of 35 m produce the
best fit to the SAC, capturing the small-scale clumping
and the overall mixing within a 50-ha plot of tropical rain
forest (Hubbell 2001). On larger scales, interprovincial
species-area curves that combine data from separate bio-
geographic regions have slopes near 1, which is consistent
with the fact that they exchange virtually no individuals
(Rosenzweig 1995). As Hubbell (2001) points out and as
our results confirm, local dispersal alone can explain the
triphasic structure of species-area curves: steep at small
scales, then shallower, and finally steep again across prov-
inces. Our results with intermediate propagule dispersal
confirm this claim. This pattern holds for all models we
examined that had local dispersal, including those that are
not neutral.

Empirical relative-abundance distributions are most of-
ten approximately lognormal, with an excess of rare species
(Hubbell 2001). This pattern is present in all the models
having local dispersal and is most pronounced in the neu-
tral model. The models with density dependence show an
unusual degree of evenness in abundances, with most spe-
cies having similar intermediate abundances. This suggests
that most real communities do not exhibit the sort of
density dependence modeled here, one that is identical in
strength across all species. Future work should examine
not only the shape of abundance distributions within an
area but consistency in abundances of individual species
across regions (Rabinowitz 1981; Pitman et al. 1999). For
example, intersite similarity in species composition at the
landscape scale (Ashton and Hall 1992; Terborgh and An-
dresen 1998; Pitman et al. 1999) has recently been com-
pared with that expected under the neutral model (R. Con-
dit, N. Pitman, J. Chave, et al., unpublished manuscript).
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Figure 11: Scaling function in the neutral model (top) and in the trade-off model (bottom) under nearest-neighbor dispersal ( ; left)F(N, v, j) j p 1
and global dispersal (right). For all simulations, . All points are means of 40–400 simulations each; the brackets show standard deviations.v p 5
For nearest-neighbor dispersal in the neutral models, equation (6) predicts , while the best fit is2 2 2S p (v/2pj )[ln (N)] p 0.796[ln (N)] S p

(line, top left). For global dispersal, equation (3) predicts , while the best fit is for20.759[ln (N)] S p v ln (1 � N/v) p 5 ln (1 � N/5) S p
(line, top right). Both curves of the trade-off model exhibit power-law behavior with slope for the nearest-neighbor5.73 ln (1 � N/5.73) z p 0.325(4)

dispersal case (bottom left) and for the global-dispersal case (bottom right). Note that axes are log-linear in the top panels and log-logz p 0.169(5)
in the bottom ones.

Conclusions and Future Directions

Our results show that there are some differences in com-
munity patterns that reflect differences in the processes at
work in model communities, most important of which is
the scale of dispersal. However, most of the patterns com-
monly investigated by ecologists are surprisingly robust to
the presence or absence of niche differences between spe-
cies and even the presence or absence of conspecific density
dependence. Future work should examine whether they
are similarly robust to habitat heterogeneity and habitat
specialization, which have been hypothesized to be pri-
mary factors determining the slopes of species-area rela-
tionships at intermediate scales (Shmida and Wilson
1985). In addition, we should look for other community-
level patterns that are more sensitive to the underlying
processes; cluster size distributions of species may be such

a pattern (J. B. Plotkin, J. Chave, and P. S. Ashton, un-
published manuscript).

In this article, we restrict ourselves to drawing quali-
tative conclusions about the effects of dispersal limitation,
life-history niche difference, and conspecific density de-
pendence because the strengths of these processes in the
model are not based directly on data. Yet the most central
questions are surely the relative quantitative impacts of
these and other factors on species richness itself—how
much would species richness decline if not for niche dif-
ferences or density dependence or dispersal limitation? For
most systems, experimental answers to these questions are
impractical, if not impossible (but see Pacala and Rees
1998). The parameterization of models such as these
through field measurements of processes offers a more
feasible approach, one that has already shown promise in
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forests of the northeastern United States (Pacala et al.
1996).
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APPENDIX A

Description of the Algorithms Used and
Tests of Alternative Algorithms

Algorithms

Let A be the total number of sites in the landscape
( ), be the mortality rate of species s, be the2A p L m fs s

fecundity of species s, be a dispersal kernel giving theK(r)
probability of dispersing to a particular site a distance r
away, and v be the speciation rate. Then the following
algorithms describe what happens in one time step in each
of the models.

Neutral Model (Algorithm N )
Repeat A times: Pick a site at random. If this site is

occupied, let the occupant die without regard to its species.
The dead individual is immediately replaced by an off-
spring of one of its neighbors, chosen with probability

(where r is the distance between the two sites). TheK(r)
function is the same for all species.K(r)

Repeat v times: Pick a site at random and replace its
occupant (if any) with an individual of a new species.

In the version of the neutral model with empty space, a
site vacated by the death of an individual is reoccupied by
an offspring of one of its neighbors with a probability !1.

Competition-Survival Trade-off Model, Version 2 (Algorithm
S1)

Repeat A times: Pick a site at random. If this site is
occupied, kill the occupant with probability .ms

Repeat A times: Pick a site at random. If this site is
occupied, let the occupant reproduce. That is, choose a
neighboring site with probability (where r is the dis-K(r)
tance between the two sites) and disperse an offspring to
that site. If the neighboring site is empty, then the offspring
establishes there. If the neighboring site is occupied, then

the individual of the species with the higher mortality rate
(whether the resident or the offspring) wins the site.

Repeat v times: Pick a site at random and replace its
occupant (if any) with an individual of a new species.
Choose the mortality rate of the new species from ams

uniform distribution on .[0, 1]

Competition-Survival Trade-off Model, Version 1 (Algorithm
S2)

Repeat A times: Pick a site at random. If this site is
occupied by an individual of species s, then kill the oc-
cupant (with probability ) or let it reproduce (withm /2s

probability one-half) or do nothing (with probability
). If this individual reproduces, then choose a[1 � m ]/2s

neighboring site with probability (where r is the dis-K(r)
tance between the two sites) and disperse an offspring to
that site. If the neighboring site is empty, then the offspring
establishes there. If the neighboring site is occupied, then
the individual of the species with the higher mortality rate
(whether the resident or the offspring) wins the site.

Repeat v times: Pick a site at random and replace its
occupant (if any) with an individual of a new species.
Choose the mortality rate of the new species from ams

uniform distribution on .[0, 1]

Competition-Fecundity Trade-off Model (Algorithm F )
Repeat A times: Pick a site at random. If this site is

occupied by an individual of species s, then kill the oc-
cupant (with probability ) or let it reproduce (withm /2s

probability one-half) or do nothing (with probability
). If this individual reproduces, then it produces[1 � m ]/2s

an average of offspring. For each offspring, a neighboringfs

site is chosen with probability (where r is the distanceK(r)
between the two sites), and the offspring is dispersed to
this site. If the neighboring site is empty, then the offspring
establishes there. If the neighboring site is occupied, then
the individual of the species with the lower fecundity
(whether the resident or the offspring) wins the site.

Repeat v times: Pick a site at random and replace its
occupant (if any) with an individual of a new species.
Choose the fecundity such that a number x is drawnfs

from a uniform distribution on . The integer[1/F , 1] fmax s

is then obtained by taking the integer value of ,1/x � z

where z is a random number drawn from a uniform dis-
tribution on .[0, 1]

Comparisons among Alternatives

To establish the robustness of our results to the details of
our implementation, we compared various alternative al-
gorithms. None of the variations that we tested led to
changes in the qualitative patterns that we emphasize, al-
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though most did cause small changes in the equilibrium
number of species maintained in the system.

In the case of the neutral model (algorithm N), there
are relatively few alternative implementations because of
its very simplicity. The influence of including a death rate
in the neutral model is discussed in “Species Richness.”
Hubbell (2001) explores the effects of different types of
speciation on the neutral model and finds that speciation
by random fission of existing populations greatly increases
species richness. Dornic et al. (2001) have recently shown
that the neutral model is the simplest example of a large
class of models that exhibit the same emergent behavior,
that is, the same coarsening properties.

The trade-off models admit more alternative imple-
mentations. We examined the effects of three types of var-
iations on the competition-survival trade-off model. First,
we compared the two algorithms for the competition-
survival trade-off explained above (algorithms S1 and S2).
The results presented in the body of the article were ob-
tained using algorithm S1, which might be called a “sea-
sonal” algorithm since all deaths in a time step occur to-
gether and precede all births. An alternative is to
implement “aseasonal” dynamics, in which births and
deaths are continually interspersed (algorithm S2). When
dynamics were implemented in an aseasonal manner, such
that births and deaths were interspersed, the number of
species at equilibrium in any particular run increased.
However, the shapes of all relationships examined re-
mained the same (results not shown).

Second, we tested whether the trade-off-model results
were robust to the manner in which mortality rates are
assigned to new species. We ran additional simulations in
which the mortality rates of new species were “mutations”
on those of existing species in the system. In the usual
implementation, new species are assigned mortality rates
chosen at random between 0 and 1. Assigning new species
mortality rates similar to those of existing ones also means
that in the local-dispersal models, fewer new species have
fundamentally unviable mortality rates—rates so high that
they could not persist even if they were alone in the system.
(For the nearest-neighbor case, mortality rates above ap-
proximately 0.62 are unviable.) If mutation rates of new
species are chosen from a Gaussian distribution around
those of an existing “parent” species, a “memory effect”
is present in the model, and dynamic equilibrium is
reached after a longer transient. The equilibrium patterns,
however, remain much the same.

Third, we tested whether the results were robust to
changes in the way in which individuals of new species
are placed in the model landscape. For the main simu-
lations, individuals are placed at random in the landscape.
An alternative is to have randomly chosen new offspring
become individuals of a new species with some probability.

This means that individuals of new species show the same
biases in where they appear as do offspring of existing
species; this may, for instance, mean more new species in
areas of high occupancy and fewer in areas of low occu-
pancy. If all the sites are equally likely to have propagules
land on them, then these two mechanisms are equivalent;
this will be the case when there are no empty cells and/
or when dispersal is global. For the trade-off model and
local dispersal, however, these two formulations will not
be equivalent. We thus performed additional runs in which
new species were placed randomly among sites that would
have received a dispersing offspring, rather than randomly
among all sites. Both formulations produce equivalent
results.

APPENDIX B

The Bramson-Cox-Durrett Theorem for
the Scaling-Function Problem

We here present the main result proved in Bramson et al.
(1998).

Theorem. Let be the distribution of step sizes ofK (r)j

the random walk (i.e., is the dispersal kernel) withK (r)j

mean dispersal distance j. Let be the number of dis-V (t)j

tinct sites visited in t time steps by a random walk with
step size distributed according to on a regular latticeK (r)j

of edge L in d dimensions. For large N, the number of
species in the d-dimensional multitype voter model with

individuals and a mutation rate of v new indi-dN p L
viduals per time step, the total number of species in the
system, , is related to byF(N, v, j) V (t)j

N
1

F(N, v, j) ≈ v dt. (B1)� V (t)1 j

Note that both and are random variables.F(N, v, j) V (t)j

The mean number of species, , is also related toF(N, v, j)
the mean number of sites visited, , by equation (B1).V(t)
Further, the standard deviation of the number of species
can be deduced from the fact that :j (t) K V(t)V

N
1

F(N, v, j) � v dt,�
V (t)1 j

N
j (t)V

j (N, v, j) � v dt. (B2)F � 2V (t)1 j

(The sign “≈” in eq. [B1] means the two converge in
distribution, while the sign “�” in eq. [B2] means they
converge in probability.) The functions andV(t) j (t)V

are known for many dispersal kernels because they are
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part of classical probability theory (see, e.g., Weiss 1994;
Hughes 1995).

We can find the scaling function by finding the form
of . Under global dispersal, the random walk essen-V (t)j

tially performs very long jumps, visiting a new site each
time step, and thus, . Making use of equationV(t) p t
(B1), we find , which integrates to giveNF(N, v, j) � v dt/t∫1

. In the case of nearest-neighbor dis-F(N, v, j) � v ln (N)
persal in a two-dimensional lattice, we make use of the
result of Dvoretzky and Erdős (1951), ,V(t) p pt/ ln (t)
which yields . Further, we2 2F(N, v, j) � (1/2pj )v[ln (N)]
can use equation (B2) and the fact that j (t) pV

(Torney 1986) to find the variance:2 2cj t/ ln (t)

c
j (N, v, j) � v ln (N). (B3)F 2 2j p

Thus, the relative error decreases extremely slowly (as
).1/ ln (N)

As the variance of the dispersal kernel approaches the
size of the system ( ), the picture is quantitativelyj ≈ L
different. This is the case for the fat-tail dispersal kernel
of equation (2) for some values of parameter p. For p 1

, the variance is finite, and equation (6) holds. For1 0 !

, the variance is infinite, although the dispersal kernelp ! 1
remains defined. In this case,

t, if p ! 1
V(t) p , (B4)bt

, if p p 1{ 2ln [ln (t) ]

where b depends on the parameters p and u of the fat-tail
kernel of equation (2) (see Gillis and Weiss 1970). For

, formula (3) holds, while in the borderline casep ! 1
, a more complex formula holds, which we do notp p 1

reproduce here.
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