Habitat Fragmentation and the Demographic Structure of an Amazonian Understory Herb

(*Heliconia acuminata*)

EMILIO M. BRUNA *‡§ AND W. JOHN KRESS†‡

*Department of Environmental Science and Policy & Center for Population Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.

†Department of Systematic Biology-Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560–0166, U.S.A.

‡Biological Dynamics of Forest Fragments Project, National Institute for Research in the Amazon (INPA), C.P. 478 Manaus, AM 69011–970, Brazil

Abstract: Little is known about the demographic consequences of fragmentation for plant populations. By assessing the population structure of a common herb (*Heliconia acuminata*) in an experimentally fragmented landscape in the central Amazon, we tested the predictions that fragmentation could reduce population density, alter population structure, and reduce reproductive effort. Population density in continuous forest varied six-fold, some areas having high density and others low density. Population density in small fragments and on the edges of large fragments was often low, but it was within the range of densities found in continuous forest, and the difference between locations was not significant. *Heliconia* populations in forest fragments were skewed toward smaller demographic size classes, however. Because reproduction in *H. acuminata* is positively correlated with plant size, these shifts were predicted to result in fewer flowering plants in forest fragments. The proportion of the population flowering in forest fragments and continuous forest was not significantly different, although there was a trend toward proportionately greater flowering in continuous forest. For plants that did flower, per-individual reproductive success (measured as developing fruit set) was the same in forest fragments and continuous forests. Our results suggest that per-individual and population-level reproduction by understory herbs in tropical forest fragments may be resistant to the detrimental consequences of fragment isolation. Our study also highlights the need to consider how fragmentation influences aspects of population structure and demography beyond abundance and fruit production, because these alternative measures of population structure can be modified in forest fragments in subtle, unexpected ways.

Fragmentación del Hábitat y la Estructura Demográfica de una Hierba (*Heliconia acuminata*) del Sotobosque Amazónico

Resumen: Se conoce poco de las consecuencias demográficas de la fragmentación sobre poblaciones vegetales. Probamos las predicciones de que la fragmentación puede reducir la densidad poblacional, alterar la estructura de la población y reducir el esfuerzo reproductivo, evaluamos la estructura poblacional de una hierba común (*Heliconia acuminata*) en un paisaje experimentalmente fragmentado en la Amazonía central. La densidad poblacional en bosque continuo varió basta seis veces, con algunas áreas con alta densidad y otras con baja densidad. La densidad poblacional en fragmentos pequeños y en los bordes de fragmentos grandes a menudo fue baja, pero estaba en el rango de las densidades encontradas en el bosque continuo, y la diferencia entre localidades no fue significativa. Sin embargo, las poblaciones de *Heliconia* en los fragmentos de bosque estaban segadas hacia las clases de tamaño demográfico más pequeñas. Debido a que la re-
Introduction

Deforestation and subsequent habitat fragmentation result in the extensive disturbance of Neotropical forests (reviewed by Schelhas & Greenberg 1996; Laurance & Bierregaard 1997). Obtaining information on the consequences of fragmentation for populations persisting in fragmented tropical landscapes is necessary to derive effective conservation strategies for these species-rich regions (Bierregaard et al. 1997). Although the effect of fragmentation on tropical or subtropical tree communities has received considerable attention (e.g., Aizen & Feinsinger 1994; Turner et al. 1995; Andersen et al. 1997; Laurance et al. 1998; Cunningham 2000a, 2000b), to our knowledge no studies have examined how fragmentation in the tropics influences herbaceous understory plants.

Several studies suggest that reductions in habitat area and proximity to forest edges can influence critical life-history stages in plants, particularly pollination and other stages related to recruitment (Rathcke & Jules 1993; Bond 1995; Jules 1998). As a result, it is frequently hypothesized that plant populations in forest fragments will be reduced in size, exhibit altered population structures, and show increased probability of extinction from demographic, environmental, and genetic stochasticity (Jules 1998; Gigord et al. 1999; Eisto et al. 2000). Despite this widespread assumption, however, few studies have explicitly quantified the population structure of understory plants in fragmented landscapes (but see Jules 1998), especially in the tropics.

The quantification of demographic structure is essential for assessing long-term population viability because it is required for many of the “cornerstone” approaches to species conservation, such as population viability analysis (Gilpin & Soulé 1986) and metapopulation theory (Hanski & Simberloff 1997). The current stage structure of a population reflects prior variation in recruitment and mortality (Harper 1977) and can be the result of factors as diverse as environmental variability (Casper 1996; Kephart & Paladino 1997), gap formation (Horvitz & Schemske 1986; Alvarez-Buylla 1994), and herbivory (Doak 1992; Bullock et al. 1994). If fragmentation has influenced demographic processes, for instance by disrupting the interactions responsible for recruitment (Jules & Ratke 1999) or by causing increased mortality near fragment edges (Laurance et al. 1998), then this disruption should also be reflected in current population stage structures (Jules 1998).

Because vital demographic rates in plants are usually stage-dependent (Harper 1977), the structure of a population can also be indicative of its demographic future. In a conservation setting, where long-term demographic monitoring may not be feasible, a population’s stage structure can be the basis for immediate management decisions. In fact, Schemske et al. (1994) suggest that a good starting point for recovery of threatened plant species is an assessment of the current demographic structure of the populations of interest, with the goal of estimating limiting life-history stages and using this information to build demographic models (e.g., Olmsted & Alvarez-Buylla 1995; Ratsirarson et al. 1996). Once the life-history stages altered by fragmentation have been identified, one can begin to study how the physical and biological mechanisms that shape these stages have been modified by isolation (Schemske et al. 1994).

Much of the difficulty in assessing the effects of fragmentation results from limited information about fragment attributes such as age and isolation history (Jules 1998). Many of these issues have been addressed by the Biological Dynamics of Forest Fragments Project (BDFFP), a collaborative project administered by the Smithsonian Tropical Research Institute and Brazil’s National Institute of Research in the Amazon. The BDFFP is a large-scale experimental project designed specifically to study the effects of fragmentation in the tropics (Lovejoy et al. 1986; Bierregaard et al. 1992). It includes 1-, 10-, and 100-ha fragments of rainforest isolated 16–20 years ago by cattle ranching and several reserves embedded in over 10,000 ha of continuous forest. Studies conducted by the BDFFP have revealed how fragmentation and
Fragmentation and Plant Population Structure

Bruna & Kress

Conservation Biology
Volume 16, No. 5, October 2002

edge effects influence birds, invertebrates, amphibians, and other taxa (reviewed by Laurance et al. 2002).

We compared the demographic stage structure and reproductive success of the understory herb *Heliconia acuminata* L. C. Richard (Heliconiaceae) in the forest fragment and continuous-forest reserves of the BDFFP. Specifically, we tested the following three predictions: (1) densities of *H. acuminata* are reduced in habitat fragments relative to continuous forest, suggesting reductions in population sizes due to either episodic catastrophes or ongoing demographic decline; (2) the demographic structure of populations is altered in forest fragments, independent of any differences in population size; and (3) plant reproductive output, at both population and individual levels, is reduced in forest fragments. In testing these hypotheses, our goal is to determine which demographic size classes and interactions may be most susceptible to the effects of forest fragmentation, and to use this information as the basis for future experiments and matrix models of *Heliconia* population dynamics.

Methods

Study Site

All fieldwork was conducted at the BDFFP site, located 70 km north of Manaus, Brazil (lat. 2°30’S, long. 60°W; Fig. 1). The BDFFP reserves are located in nonflooded tropical lowland rainforest with undulating topography ranging from 50 to 150 m in elevation. Soils are nutrient-poor xanthic ferralsols that drain well (Food and Agriculture Organization & United Nations Educational, Scientific, and Cultural Organization 1971). The forests in the BDFFP reserves have a 30 to 37-m tall canopy, with emergents up to 55 m (Rankin-de Mérona et al. 1992), and are among the most floristically diverse in the world, with 1200–1300 species of trees in at least 64 families (Laurance 2001). Palms dominate the relatively depauperate understory (Scariot 1999). Mean annual temperature is 26°C (range 19–39°C), and mean annual rainfall ranges from 1900 to 2300 mm (BDFFP records). A pronounced dry season occurs from June to October.

The forest fragments at the BDFFP were all isolated between 1980 and 1984 by felling of all trees surrounding the fragment and, in most cases, burning of the downed trees once they dried. The exceptions to this treatment were reserves number 3209 and 3114 (Table 1), where felled trees were not burned because of early rains. Associated with each of these isolation treatments is a particular form of secondary growth: burned areas sprouted regrowth dominated by *Vismia* species (Clusiaceae), whereas the secondary growth in unburned areas was dominated by *Cecropia* species (Cecropiaceae). Since their original isolation, the secondary forest surrounding the fragments has been cleared one or two times.

![Figure 1](image_url). Proportion of flowers developing into fruits in forest, 1-ha fragments, and 10-ha fragments in 1998 and 1999. Plants from different plots within the same habitat type (i.e., 1-ha fragments, 10-ha fragments, and continuous forest) were pooled because of limited sample sizes in some fragments. The upper and lower limits of the box represent the seventy-fifth and twenty-fifth percentiles, respectively. The line through the box is the median value. Marks beyond the error bars represent outliers less than or greater than the tenth and ninetieth percentiles. Numbers below the boxes are the sample sizes of reproductive plants in each habitat type.

Study System

A common element of the understory of these forests is *Heliconia acuminata*, a species native to the nonflooded forests of central Amazonia. The more than 200 species of *Heliconia* and the hummingbirds that pollinate them represent one of the most widely studied plant-pollinator associations in the Neotropics (Linhart 1973; Stiles 1975; Kress 1983, 1985). *Heliconia* are often divided into two groups based on the foraging strategy of the hummingbirds that pollinate them: some species of *Heliconia* produce copious amounts of nectar each day and are pollinated by hummingbirds that establish territories to defend this resource (Kress 1985). In contrast, forest understory species of *Heliconia* are found at lower density, produce fewer flowers and less nectar, and are generally visited by hermit hummingbirds that “trapline” from one *Heliconia* plant to the next (Kress 1985). *Heliconia acuminata* falls into the second category, with the Long-tailed Hermit (*Phaethornis superciliosus*) and the
Straight-billed Hermit (*P. bourcieri*) as its primary pollinators in our study sites (Stouffer & Bierregaard 1995; Bruna 2001).

Heliconia acuminata is a self-incompatible hermaphroditic perennial with limited vegetative reproduction (E.M.B and W.J.K., unpublished data). Flowering begins in late January and continues through April. Most reproductive plants have one inflorescence with a total of 20–25 flowers (Bruna 2001). Each flower is open for 1 day, after which the perianth and the style abscise. Each fruit produces a maximum of three seeds (mean number of seeds/fruit/H11005/1.9/H11006/0.027 SE, n/H11005/873 fruits), and mature fruits are dispersed by birds (Kress 1983).

Heliconia acuminata can be long-lived (>20 years; W.J.K., personal observation), as is the case for many other tropical understory herbs (Horvitz & Schemske 1995). As a result, it is probable that many of the individuals currently found in forest fragments were alive when fragments were initially isolated. This assumption is supported by ongoing demographic censuses that indicate high survivorship of established plants (Bruna 2001).

Demographic Plots and Censuses

As part of a long-term study of the population dynamics of *H. acuminata*, we established 13 permanently marked demographic plots 50 × 100 m in size. Six plots were in continuous forest (CF 1–6), four were in 1-ha fragments (FF 1–4), and three were in 10-ha fragments (FF 5–7) (Table 1). Demographic plots in 1-ha fragments were established at random on either side of the fragment, plots in 10-ha fragments were established in the fragment center, and plots in continuous-forest sites were haphazardly placed at locations 500–4000 m from borders of secondary and mature forest.

In January 1998, we marked all the *H. acuminata* plants in the seven demographic plots in forest fragments and three of the continuous-forest plots (CF 1–3). Each plant was marked with a stake to which we attached an individually numbered aluminum tag. For each plant we counted the number of vegetative shoots and measured the height by the distance from the base to its highest point above the ground. During the 1998 reproductive season, we regularly surveyed the 10 established plots and recorded which individuals were flowering, how many flowers each produced, and the number of flowers developing into fruits.

In August 1998, we established plots in three additional continuous-forest sites (CF 4–6) and measured plants as before. Because previous research at the BDFFP has demonstrated the importance of edge effects for plants in medium-size fragments (Benitez-Malvido 1998;
Laurance et al. 1998), we also surveyed (but did not mark or measure) all the plants in identical 50 × 100 m plots on a randomly selected edge and corner of the 10-ha fragments in which demographic plots were located. In 1999 we returned to survey all 13 demographic plots and recorded reproduction as in the previous year.

Analyses of Plant Density

To test the hypothesis that plant density is reduced in forest fragments, we compared the total number of plants found in demographic plots located in continuous forest, 1-ha fragments, 10-ha fragment corners, 10-ha fragment edges, and 10-ha fragment centers. To conduct this analysis, we used the August 1998 surveys of plant density conducted in 10-ha fragment edges and corners and the January 1999 survey results from plots in the remaining locations. Because the number of plots located in the different habitat types was limited, we could not examine the distributional assumptions of parametric tests. We therefore used the nonparametric Kruskal-Wallis test for this analysis.

Analyses of Vegetative Characteristics and Demographic Structure

To compare the demographic structure of Heliconia populations in continuous forests and forest fragments, we used log-linear modeling. We first placed plants into six size classes based on height (0–15, 15–30, 30–45, 45–60, 60–75, and >75 cm). We used height because age is usually impossible to determine in tropical herbaceous taxa; furthermore, size is usually a better predictor of reproductive potential and plant fate (Horvitz & Schemske 1995). Height and shoot number were strongly positively correlated in this system (n = 4326, r = 0.716, p < 0.0001), and results were similar for analyses based on shoot number. We therefore present comparisons of population structure based on height only.

Our null hypothesis was that the number of plants in each demographic size class was independent of both habitat type (i.e., 1-ha fragment, 10-ha fragment, and continuous forest) and plot identity (i.e., FF 1–7, CF1–6). To determine the importance of habitat type for predicting the number of plants in each size class, we compared the goodness of fit to the observed data of the null model with that of models including habitat type. Two models testing the importance of habitat type were used, one that included and one that excluded plot identity. Similarly, the importance of plot identity was tested with models that both included and excluded habitat type. Finally, the goodness of fit of a saturated model was used to test the importance of the interaction between habitat type and plot location.

Analyses of Reproductive Characteristics

To determine if the proportion of the population that was reproductive differed among fragments and continuous forest, we used Kruskal-Wallis tests. These analyses were conducted on both the 1998 and 1999 survey results. We also plotted the proportion of individuals flowering in each demographic size classes for populations in each habitat type. To calculate female reproductive success for individuals that did flower, we divided the total number of developing fruits on each plant by the number of flowers it produced. The fruit-set percentages in forest plots were then compared to the values from 1-ha and 10-ha fragments with Kruskal-Wallis tests. Plants from different plots within the same habitat type (i.e., 1-ha and 10-ha fragments and continuous forest) were pooled because of limited sample sizes in some fragments. This analysis was done for both the 1998 and 1999 flowering seasons.

Results

Plant Density

Heliconia acuminata density ranged from 112 to 753 individuals per plot (Table 1). Although the rank order
of median Heliconia density in the different habitat types was consistent with the hypothesis of reduced abundance in fragments (Fig. 2), the difference between locations was not significant ($H = 1.389, p = 0.85$). Both the highest and lowest values for population density were in continuous forest (CF–1 and CF–4, respectively).

Vegetative Characteristics and Demographic Structure of Plant Populations

The null model that the number of plants in each size class is independent of plot location and habitat type was rejected ($G^2 = 365.57, 60 \text{ df}, p < 0.001$). Both habitat type (e.g., 1-ha fragment) and plot identity had a significant effect on the number of plants in each demographic stage class when each factor was evaluated independently and when for the other factor was controlled for (Fig. 3). There was also significant interaction between plot and habitat type (Table 2).

Reproductive Characteristics

Differences in the proportion of the population that flowered in 1-ha fragments, 10-ha fragments, and continuous forests were only marginally significant in 1998 ($H = 5.0, p = 0.08$) and not significant in 1999 ($H = 4.34, p = 0.11$), although in both years there was a trend toward a greater proportion of the population flowering in continuous forest sites (Fig. 4).

As might be expected, the probability that an *H. acuminata* individual would flower increased with plant size (Fig. 5). Although the proportion of individuals that flowered in each demographic size class often varied substantially from plot to plot, the proportion flowering in each size class was similar for populations in 1-ha fragments, 10-ha fragments, and continuous forest (Fig. 5).

Median fruit set was not significantly different in forests and fragments in either year (1998: $H = 2.103, p = 0.3411$; 1999: $H = 0.842, p = 0.6558$). In 1998, however, plants in 1- and 10-ha fragments produced slightly more fruit than those in forests (29.3% and 29.0% developing fruit set vs. 23.5%, respectively, Fig. 6).

Discussion

We examined the relationship between forest fragmentation and three attributes of *H. acuminata* population structure: population size, the distribution of individuals in different demographic size classes, and reproduction at the population and individual levels. Contrary to our predictions, neither *H. acuminata* population size nor reproductive output was significantly lower in the BDFFP’s forest fragments. However, the third attribute we examined—demographic size structure—does appear to have been altered, particularly in 1-ha fragments. This result suggests that although certain important population-level attributes may be resistant to the detrimental effects of forest fragmentation, the demography of plant populations surviving in forest fragments may be subtly altered in ways previously unexplored but the consequences of which could be significant.

Table 2. Results of log-linear analysis comparing the effects of habitat type (H), (i.e., 1-ha or 10-ha fragment or continuous forest), plot (P), (i.e., FF 1–7 and CF 1–6), and their interaction for predicting the number of *H. acuminata* individuals in each demographic size class (S).

<table>
<thead>
<tr>
<th>Effect</th>
<th>Contrast b</th>
<th>ΔG^2</th>
<th>Δdf</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>HP, S vs. HP, HS</td>
<td>141.25</td>
<td>10</td>
<td><0.001</td>
</tr>
<tr>
<td>Plot</td>
<td>HP, S vs. HP, PS</td>
<td>212.78</td>
<td>25</td>
<td><0.001</td>
</tr>
<tr>
<td>Habitat, given plot</td>
<td>HP, PS vs. HP, PS</td>
<td>72.01</td>
<td>10</td>
<td><0.001</td>
</tr>
<tr>
<td>Plot, given habitat</td>
<td>HP, HS vs. HP, HS</td>
<td>143.53</td>
<td>25</td>
<td><0.001</td>
</tr>
<tr>
<td>Plot \times habitat \times size class</td>
<td>PS, HS, HP vs. PSH</td>
<td>95.61</td>
<td>25</td>
<td><0.001</td>
</tr>
</tbody>
</table>

aAnalyses were conducted for densities recorded in the 1999 survey.

bNotation follows Caswell (2001) and Horvitz and Schemske (1995) for denoting hierarchical models, such that all terms containing that interaction or lower-order interactions are included. The significance of each factor is determined by examining the change in G^2 (i.e., ΔG^2) when a factor is removed from a model that includes it. A constant of 0.5 was added to all cells prior to analysis (Caswell 2001).
Heliconia acuminata Density in Forest Fragments

Given the broad range of densities in continuous forest and the lack of prefragmentation data, it is impossible to exclude the possibility that the densities observed in forest fragments reflect preexisting spatial variation. This result contrasts with the findings of several other studies, conducted at the BDFFP and in other systems, demonstrating that populations of plants on fragment edges are those most at risk from environmental perturbations (e.g., Didham 1997; Jules 1998; Laurance et al. 1998; Gehlhausen et al. 2000). For example, in a study conducted in several of the same reserves, Benitez-Malvido (1998) found that the density of seedlings of canopy trees was lower in fragments than in continuous forest. She also found that the density of seedlings on edges of large fragments was lower than in fragment interiors, although the pattern was not consistent across all fragments. Interestingly, H. acuminata density in two of three 10-ha fragments was lower on the edges or corners than in fragment centers (FF-6 and FF-7), whereas in the other 10-ha fragment density was similar in all locations (FF-5; Table 1; Fig. 2).

The density of Heliconia acuminata plants in the BDFFP’s continuous-forest reserves was highly variable, with some populations at low density (112–235 plants in CF plots 4–6) and others at much higher density (551–749 in CF plots 1–3). Interpopulation differences in abundance are not necessarily unexpected, because they are the natural result of changes in demographic and environmental conditions across sites (Horvitz & Schemske 1995). The factors responsible for the six-fold range in abundance observed in our study are unclear, however. Although none of the continuous-forest sites were noticeably different in forest structure or disturbance history, variation in both of these factors could be partly responsible for the observed differences. Variation in soil chemistry or texture may also influence Heliconia density. Plots with reduced abundance may be located in areas with sandy soils, a lower concentration of nitrogen, less organic matter, or higher aluminum saturation, all of which might influence Heliconia growth and abundance. In continuous-forest sites nearby, these chemical and textural parameters explain over 30% of the variation in the biomass of living trees (Laurance et al. 1999), indicating that even in the universally weathered...
and acidic soils characterizing our study sites, the consequences for plant populations of small-scale variation in soil chemistry can be significant.

Demographic Structure of Heliconia acuminata Populations

Although the isolation of fragments does not appear to have acted consistently to reduce density in the BDFFP fragments, there appears to have been a shift in the demographic structure of *Heliconia acuminata* populations found there. Log-linear modeling indicated that the proportion of individuals in each demographic size class was not independent of habitat type, despite the significant variation among plots. Populations in the fragments studied were skewed more toward smaller size classes, with proportionately more small individuals and fewer large ones than in continuous-forest plots. Individuals in the two largest size classes (60–75 cm and >75 cm tall) made up approximately 20% of the populations in continuous forest, whereas in 1-ha fragments these individuals comprised only about 8% of populations. *Heliconia* populations found in the interiors of 10-ha fragments also appeared to have been affected, although not to the extent of those in small fragments. In the larger isolates, the two largest size classes represented 15% of the total population (Fig. 3).

Several nonmutually exclusive mechanisms could be responsible for the observed pattern. First, large plants in fragments could have been susceptible to increased mortality following fragment isolation, causing the proportion of the population made up of the largest individuals to decrease. Second, there could be a flush of post-isolation recruitment in forest fragments, resulting in overrepresentation of the smallest size classes. This recruitment could be from either rhizomes that have lost all aboveground tissue following fragment isolation or newly germinating seeds. Finally, individuals could have survived in forest fragments but shifted from larger size classes to smaller ones following isolation.

Elevated mortality of large plants and proportionately greater recruitment in fragments are almost certainly not the mechanisms responsible for the observed demographic shift. Current mortality rates of plants with three or more shoots are extremely low in all locations, and they are almost identical in forest fragments and continuous forest (Bruna 2001). Furthermore, *Heliconia* seed germination and seedling survival are three to seven times lower in 1- and 10-ha fragments than they are in continuous forest (Bruna 1999, 2002), and the absolute number of seedlings recruited into fragments was considerably lower than in continuous forest (17.25 ± 15.0 SD vs. 38.33 ± 30.21 SD). The per capita rate of recruitment, which would include both new seedlings and re-

Figure 6. Map of the Biological Dynamics of Forest Fragments Project and location of demographic plots. White areas are continuous forest, shaded areas represent pasture and clearings surrounding fragments, and dark lines represent roads. See Table 1 for plot descriptions. Abbreviations: CF, continuous-forest plot; FF, forest-fragment plot.
crui ts growing back from rhizomes, was similar in all habitat types in 1999 (Bruna 2001).

Instead, the observed shift is probably due to past and ongoing reductions in the number of plants in larger size classes. Plants that survived the slash-and-burn techniques used to isolate these fragments may have done so by shedding shoots and leaves, a pattern seen in other long-lived perennials exposed to harsh conditions such as drought and water stress (Hsiao 1973; Wright 1996). Recent experimental evidence supports this hypothesis. One year after Heliconia plants were reciprocally transplanted between 1-ha fragments and continuous forest, plants in continuous forest grew into larger size classes, whereas plants in fragments shrank into smaller ones (Bruna et al. 2002). If these reductions in size continue over multiple seasons, then the size distribution of populations in fragments could be shifted toward smaller size classes. The strength of these effects would probably be ameliorated by the structure and species composition of the surrounding forest (Mesquita et al. 1999), which can buffer plants from adverse environmental conditions. This may explain why size structures for plots in 10-ha fragments, which were more protected from edge effects as a result of their location in the fragment’s core, were similar to those in continuous-forest locations.

Although no comparable studies have been conducted in tropical systems, at least one analysis of plant population structure has been conducted in temperate-forest fragments. By taking advantage of the ability to age plant rhizomes, Jules (1998) was able to estimate the pre- and post-isolation recruitment and mortality of Trillium ovatum found in fragments of old-growth forest in the northwestern United States. In contrast to our results, Jules found that populations that were close to clearcuts and edges had substantially fewer seedlings and juvenile plants, whereas older age classes of Trillium were not as strongly affected by edge creation.

Heliconia acuminata Reproduction in Forest Fragments

Heliconia reproduction does not appear to have been compromised in the forest fragments we studied, either at the population or the individual level. Although there was a trend toward a greater proportion of the population flowering in continuous forest than in forest fragments in both years, this difference was only marginally significant in 1998 and not significant in 1999 (when low-density continuous-forest sites were included in the analysis). The proportion of the population flowering was low in all locations, ranging in 1998 from 0.7% in FF-1 to 13.0% in CF-1. This is consistent with previous studies conducted in the region in which the density of flowering and fruiting plants was found to be extremely low (Gentry & Emmons 1987).

Heliconia of a given size are as likely to flower in forest fragments as they are in continuous forest (Fig. 5), suggesting that environmental cues used to initiate flowering are not altered in forest fragments. In addition, fruit production by plants that did flower was not significantly different in the different habitat types. Although several studies have shown that fruit production by plants can decrease in forest fragments as a result of reduced pollen deposition or decreased pollinator visitation rates (Aizen & Feinsinger 1994; Cunningham 2000a, 2000b; Parra-Tabla et al. 2000), our results are similar to those from other studies which found that fruit production remained constant or actually increased in fragmented areas (e.g., Aizen & Feinsinger 1994; Dick 2001). This is because both species of hummingbird that pollinate *Heliconia acuminata* at our sites appear to be resistant to the effects of fragmentation. Results from a 12-year study documenting the abundance of *Phaethornis superciliosus* and *P. bourcieri* in the BDFFP reserves suggest that they move easily through the secondary growth surrounding these fragments (Stouffer & Bierregaard 1995, 1996), and the more common of the two species (*P. superciliosus*) actually increases dramatically in abundance in fragments during the rainy season (Stouffer & Bierregaard 1996), when *H. acuminata* is flowering. Although hummingbirds are rarely species-specific (Feinsinger 1987), other flowering plants in the understory of these fragments are rare during the rainy season (Gentry & Emmons 1987; E.M.B. & J.W.K., personal observation). *Heliconia acuminata* is therefore the primary source of nectar for hummingbirds moving through fragments, and flowering plants in fragments probably receive frequent visits.

Despite proportionately similar levels of reproduction in fragments and continuous forest, however, populations in 1-ha fragments could still be vulnerable to reproductive failure in some years because the absolute number of plants reproducing in them was extremely low (Table 1). Demographic plots 0.5 ha in size located in 1-ha fragments had as few as one or two flowering plants in them (1998: mean = 4.00 ± 2.94 SD; 1999: mean = 4.25 ± 1.50 SD), whereas flowering plants in analogous continuous-forest plots were 5–10 times more abundant (1998 mean = 52.67 ± 32.39 SD; 1999 mean = 26.00 ± 26.96 SD).

As a result of lower absolute numbers of flowering plants in fragments and low developing fruit sets (Fig. 6), the total number of seeds produced in fragments is probably very limited. Populations in fragments may therefore depend primarily on nearby continuous-forest areas for seed dispersal. Although low-density populations in continuous-forest also had low flowering-plant abundances, and hence produced few seeds, they were not isolated from source populations by matrix habitat through which frugivores may not easily disperse (Renjifo 1999; Tabarelli et al. 1999). In addition to reductions in...
seed availability, the lower numbers of reproductive plants in fragments could also cause a substantial increase in in-breeding in these locations if pollen flow from outside the fragments is limited (Young et al. 1996).

Our results suggest that populations of *Heliconia* and other tropical understory herbs may be resistant to reductions in population density and the disruptions of reproduction predicted to follow fragment isolation. As a result, even small- to medium-sized fragments of tropical rainforest such as the ones we studied here could be important for plant conservation efforts, and their presence in a landscape could have considerable ecological value. Our results also indicate, however, that fragmentation can affect plant demographic structure in subtle ways and that testing for the effects of fragmentation at the individual level can overlook potentially critical population-level variation. Furthermore, the extensive variation in *Heliconia* density in areas of continuous forest also underscores the fact that not all areas of “continuous forest” can be considered equivalent in terms of the abundance of this, and probably other, common and geographically widespread plants. Therefore the creation of protected areas, agricultural clearing, or other forms of sampling within this single habitat type may be as likely to isolate small populations as large ones.

Acknowledgments

We thank O. Nardy, F. Marques, O. Ferreira da Silva, A. Cardosso, and P. Aldrich for assistance in the field, the staff of the Biological Dynamics of Forest Fragmentation Project (BDFFP) for logistical help, and T. Fernandes for the map. Permission to conduct the research was granted by the Manaus Free Trade Zone Authority (SUFRAMA). E.M.B. was supported by fellowships from the National Science Foundation, the Ford Foundation, University of California–Davis Graduate Studies, and grants from the Smithsonian Institution, the Center for Population Biology at UC Davis, and the National Science Foundation (dissertation improvement grant INT 98-06351). W.J.K. was supported by the National Museum of Natural History (Neotropical Lowland Research Program) and the Smithsonian Institution (Scholarly Studies Program). S. Strauss, S. Harrison, M. Stanton, K. Rice, D. Marsh, P. Delamónica, H. Vasconcelos, R. Sharitz, B. Inouye, and three anonymous reviewers made comments on the manuscript and provided statistical help. This is publication number 363 in the BDFFP technical series.

Literature Cited

Food and Agriculture Organization (FAO) and United Nations Educa-

