INDEPENDENT EVOLUTION OF TWO DARWINIAN MARSH-DWELLING OVENBIRDS (FURNARIIDAE: LIMNORNIS, LIMNOCTITES)

Storrs L. Olson¹, Martin Irestedt², ³, Per G. P. Ericson², & Jon Fjeldsá⁴

¹Division of Birds, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, U.S.A. E-mail: olsons@si.edu
²Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, P.O. Box 50007, SE–104 05 Stockholm, Sweden. E-mail: martin.irestedt@nrm.se & per.ericson@nrm.se
³Department of Zoology, University of Stockholm, SE–106 91 Stockholm, Sweden.
⁴Vertebrate Department, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. E-mail: jfjeldsaa@zmuc.ku.dk

Resumen. – Evolución independiente de dos horneros de pantano (Furnariidae: Limnornis, Limnoctites). – La Pajonalera Pico Curvo (Limnornis curvirostris) y la Pajonalera Pico Recto (Limnoctites rectirostris) son dos especies de hornero de pantano colectados por primera vez por Charles Darwin en Uruguay. Ambas tienen una distribución limitada a Uruguay, el sur de Brasil y el norte de Argentina, área en la cual ocupan hábitat muy diferentes. Descritas originalmente como congéneres debido a sus similitudes en plumaje, las dos especies han sido consideradas parientes cercanas a pesar de diferencias estructurales obvias entre ambas. Analizamos secuencias de ADN de tres genes de estas dos especies y las comparamos con una amplia variedad de otras especies de Furnariidae y varios grupos externos. Limnoctites rectirostris pertenece al grupo de especies tradicionalmente agrupadas en Cranoleuca, estando más cercanamente relacionada al Curutí Ocraeco (C. sulphurifer) entre las especies muestreadas. Estos resultados están respaldados por vocalizaciones y nidificación. Limnornis curvirostris forma un clado con el Junquero (Phleocryptes melanops); este clado tiene al Macuquiño (Lochmias nematura) como grupo hermano. Una relación cercana entre Limnornis y Phleocryptes es respaldada por el color azul de los huevos y la arquitectura del nido, la cual es apparentemente única en estos dos géneros.

Abstract. – The Curve-billed Reedhaunter (Limnornis curvirostris) and the Straight-billed Reedhaunter (Limnoctites rectirostris) are marsh-dwelling ovenbirds that were first collected by Charles Darwin in Uruguay. Each has a limited distribution in southernmost Brazil, Uruguay, and northern Argentina, within which the birds occupy very distinct habitats. Originally described as congeners because of overall similarity of plumage, the two species have been treated as close relatives through most of their history despite obvious structural differences. We analyzed DNA sequences from three different genes of these species, comparing them with a wide variety of other species of Furnariidae and several outgroup taxa. Limnoctites rectirostris belongs among the species traditionally placed in Cranoleuca, being most closely related to the marsh-dwelling Sulphur-throated Spinetail (C. sulphurifer) among the species we sampled. This is supported by vocalizations and nidification. Limnornis curvirostris forms a clade with the Wren-like Rushbird (Phleocryptes melanops), with the Sharp-tailed Streamcreeper (Lochmias nematura) as a rather distant sister-taxon. A close relationship between Limnornis and Phleocryptes is supported by the apparently unique nest architecture and blue-green egg color. Accepted 5 April 2005.

Key words: Furnariidae, Limnoctites, Limnornis, molecular systematics, nidification, ovenbirds.
INTRODUCTION

Charles Darwin was the first naturalist to collect two paludicolous species of ovenbirds that are now known to be of very limited distribution in southeastern South America. These were obtained in June 1833 (Steinheimer 2004; not 1832 as per Vaurie 1980: 211) in what is now the province of Maldonado in the Republica Oriental del Uruguay. When John Gould (1839: 80–81, pl. 25–26) identified and described the birds from the voyage of H. M. S. Beagle, he created a new genus, Limnornis, for these two species, calling the first *L. rectirostris*, for its very straight, pointed bill, and the second *L. curvirostris*, for its bill with a more typically curved tip. In English these species are now called the Straight-billed and the Curve-billed reedhaunters, respectively.

Both species were said by Darwin (in Gould 1839:80–81) to live in the same habitat “amongst the reeds on the borders of lakes” and that he was “unable to point out any differences” in the habits of the two. This mistaken impression probably colored much of the subsequent thinking about these birds. Apart from the supposedly shared habitat, the main similarity between the two reedhaunters is in general coloration and plumage pattern. This is doubtless what lead Gould (1839) to his original decision to place them both in the same genus and also why Vaurie (1980) rather vigorously defended this course. On the other hand, there are manifest differences between the two, so that they have most often been placed in separate monotypic genera (*Limnornis* and *Limnoctites*). Regardless, the two reedhaunters first collected by Darwin have long been regarded as each other’s closest relative. This also appeared to receive support from a phylogenetic analysis of nest structure (Zyskowski & Prum 1999) in which *Limnornis* and *Limnoctites* were said to form a group with the Wren-like Rushbird (*Pheucticus melanopis*).

We decided to test this hypothesis by reviewing the information on morphology, ecology, and nidification, and by comparing this with new molecular evidence.

SYNOPSIS OF MORPHOLOGY AND NOMENCLATURAL HISTORY

Both reedhaunters are plain brownish or dull rufous above, with rufous tails, dull whitish undersides, and no adornment apart from a whitish superciliary stripe. *Limnornis curvirostris* is a reasonably robust bird (26.7–33.3 g, mean 29.0 g, n = 10, according to USNM specimen data; mean of 21 eggs 24.6 x 17.9 mm, according to Narosky et al. 1983) with a longish, rounded tail and a stout, curved bill. It has very much the appearance of a drab version of one of the smaller species of *Furnarius*. *Limnoctites rectirostris* is a much slighter bird (15.6–24.5 g, mean 19.2 g, n = 5, according to USNM specimen data [the heaviest was a very fat laying female]; mean of 3 eggs 20.3 X 15.3 mm, according to Ricci & Ricci 1984) with an extremely long, straight, slender bill, and a shorter, graduated tail with very pointed, usually worn, rectrices. The nomenclatural history of the two species has revolved around whether to emphasize their similarities or their differences.

Gould (1839) did not designate a type species for *Limnornis* and Gray (1840) subsequently selected *L. curvirostris* as the genotype. Sclater (1889) overlooked Gray’s action and applied a new name, *Limnopteryx*, to *L. curvirostris*, reserving the name *Limnornis* for *L. rectirostris*. But *Limnopteryx* was preoccupied by a genus of Diptera, so Oberholser (1899) proposed *Thryoloecus* as a replacement. Hellmayr (1925) pointed out Gray’s (1840) type designation, returned *curvirostris* to *Limnornis*, and proposed the new generic name *Limnoctites* for *L. rectirostris*. Since then, most authors have maintained the two species in monotypic genera, usually placing them next to one
another.

The first exception appears to be Esteban (1949), who advocated removing *Limnocites rectirostris* to the subfamily Synallaxinae near *Certhiaxis*, presumably leaving *Limnornis curvirostris* in the Philydorinae, where both were placed by Slater (1890). Peters (1951) also dissociated the two, placing *Limnornis* immediately after *Furnarius*, with 12 genera between it and *Limnocites*, which was placed between *Certhiaxis* and *Poeplia*/*Craniocleia*. Although Meyer de Schauensee (1966) followed Peters’ sequence almost exactly, one of his few departures was to place *Limnocites* immediately after *Limnornis*. Vaurie (1971, 1980) and Sibley & Monroe (1990) returned to the original Gouldian nomenclature and combined both species in *Limnornis*. Other authors (e.g., Ridgely & Tudor 1994) have preferred to emphasize differences by recognizing two genera for the reed-haunters, although still maintaining their close association. Remsen (2003) maintained them as adjacent in his linear sequence but noted that differences in tail structure, nesting materials, and egg color called into question their proposed sister relationship.

DISTRIBUTION AND HABITAT

For nearly a century, Darwin’s original two specimens of *L. rectirostris* were the only ones known. Sanborn (1929) next obtained the species at another locality in Uruguay in 1926. Gradually, its range was extended from the provinces of Entre Ríos and Buenos Aires, Argentina, to Rio Grande do Sul and Santa Catarina, in southernmost Brazil, and the species was also found more extensively in Uruguay (Daguerre 1933, Pereyra 1938, Esteban 1949, Escalante 1956, Gerzenstein & Achaval 1967, Zorilla de San Martin 1963, Alda do Rosário 1996, Babarskas & Fraga 1998).

After Darwin’s original collection, *Limnornis curvirostris* was next collected from 1866 to 1868 at Conchitas, Buenos Aires Province, Argentina, by W. H. Hudson (Selater & Salvin 1868). Durnford (1877: 182) found the species common in the same province and was “at a loss to understand how this bird could have escaped the observation of naturalists till Mr. Darwin’s visit to South America.” Additional specimens were obtained in Uruguay (Selater & Hudson 1888, Selater 1890, Hellmayr 1925), Sanborn’s (1929) assertion that his 1926 specimens from Uruguay were the first since Darwin being erroneous. By 1899, the range of the species was extended to Rio Grande do Sul, Brazil (Ihering 1899).

Although Darwin stated (in Gould 1839) that the two reed-hunters occurred together and Vaurie (1980: 212) asserted that “*L. rectirostris* shares the same habitat [as *L. curvirostris*], but its requirements are less rigid,” this is not, in fact, the case. Ridgely & Tudor (1994: 61) note that the two species “appear never to occur together in the same marsh.” Belton (1984: 622) shows no overlap in range between the species in Rio Grande do Sul, Brazil. Olson has experience with *L. curvirostris* in Argentina, and with both species through much of Uruguay, and has not yet visited a site where both species might be expected to occur in proximity.

Limnocites rectirostris typically occurs in marshes. Although a variety of plants may occur in such sites, particularly at the edges, the bird is found only where the spiny *caraquata*, *Eryngium* spp., dominates. In the ornithological literature this plant has erroneously been referred to as a sedge (e.g., Ridgely & Tudor 1994, Remsen 2003: 226, but correctly as an “apiaceous herb” on 261) or a grass (Gerzenstein & Achaval 1967, Vaurie 1980, Babarskas & Fraga 1998). It is actually a dicot that belongs in the carrot family (Apiaceae or Umbelliferae). Ricci & Ricci (1984: 205) correctly describe the plants as growing in “bro-meliad-like rosettes,” the leaves of which are beset with sharp spines that make the pursuit of birds in this habitat a decided challenge to
the ornithologist’s flesh and clothing. The species that have been mentioned in connection with *Limnoctites* are *Eryngium borridum* (Belton 1984, Remsen 2003), *E. pandanifolium* (Gerzenstein & Achaval 1967, Babarskas & Fraga 1998, Remsen 2003), and *E. eburneum* (Ricci & Ricci 1984). The ranges of these plants are given as southern Brazil to NE Argentina, with the last two extending to Paraguay (Cabrera 1965).

That the birds are tied to the plant and not necessarily to marshy environments is shown by their occurrence at 200 to 250 m in rocky scrub forest where *Eryngium pandanifolium* occurs in 5 to 20 m wide patches along streams (Gerzenstein & Achaval 1967). That *L. rectirostris* occurs as high as 1100 m (Ridgely & Tudor 1994, BirdLife International 2000, Remsen 2003) is presumably based on the populations in Aparados da Serra National Park mentioned by Belton (1984: 621), though no substantive documentation of their occurring so high appears to exist.

Although also a marsh bird, *L. curvirostris* is found in extensive reedbeds, especially of the giant sedge or pajonal (*Scirpus giganteus*), the grass known as *espadaña* (*Zizaniopsis bona-riensis*), and also cattails (*Typha*). Although its briefly stated range from Rio Grande do Sul to Buenos Aires is the same as that of *L. rectirostris*, within that area it is much the more abundant and widespread of the two species because of the greater extent of its habitat.

In summary, although the distributions of the two reedhaunters are superficially similar, they are adapted to distinct habitats and are probably never syntopic.

NIDIFICATION

Nest structure in the Furnariidae is extremely diverse and has been used to devise a phylogeny of the family (Zyskowski & Prum 1999). In this phylogeny, *Limnornis* and *Limnoctites* were grouped with *Phleocryptes melanops* on the basis of their supposedly building a domed nest with “a small awning over the nest entrance” (p. 899). The nest of *Limnornis curvirostris* is described by von Ihering (1902) and Belton (1984); that of *Limnoctites rectirostris* by Daguerre (1933), Ricci & Ricci (1984) and Sick (1993); and those of both species in Vaurie (1980) and Narosky et al. (1983). Included here are all the references cited by Zyskowski & Prum (1999), plus some others, but none mentions an awning over the entrance of the nest of *Limnoctites*. This error came about from misinterpretation (K. Zyskowski pers. com. to Olson, June 2004) of photographs of the nest of *Phylloscartes ventralis* in the article preceding the paper by Ricci & Ricci that were erroneously captioned as *Limnoctites*. Zyskowski (pers. com. ibid.) has since found and photographed a nest of *L. rectirostris* in Uruguay and confirmed that it does not have an awning. Remsen (2003) took his descriptions of the nests of both reedhaunters as havingawnings from Zyskowski & Prum (1999).

The first mention of an “awning” being constructed by *Limnornis curvirostris* appears to be that in one of two nests of described by Narosky (in Vaurie 1980: 213). Later, Narosky et al. (1983: 36) confirmed that the nest of *L. curvirostris* “possesses, like that of the junquero *Phleocryptes melanops*, a 3 cm projection or eave above the mouth of the entrance” (our translation).

On the other hand, it does seem that the basic nest structure of *Limnornis* and *Phleocryptes* is similar, best exemplified by Narosky’s descriptions in Vaurie (1980). *Phleocryptes* presents a presumably more derived condition in covering its nest with mud.

The vast majority of species of Furnariidae have pure white eggs, although the eggs in a few species of *Synallaxis* may have a light bluish, greenish or yellowish cast (Schönwetter & Meise 1967: 12, Sick 1993: 428). In contrast, the eggs of *Limnornis curvirostris* and
TABLE 1. Specimen data and Genbank accession numbers for samples used in the study. Family and subfamily designations are given according to two alternative classification schemes. Acronyms: AMNH = American Museum of Natural History, New York; NRM = Swedish Museum of Natural History; USNM = National Museum of Natural History, Smithsonian Institution; ZMUC = Zoological Museum of the University of Copenhagen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinclodes fuscus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>ZMUC S220</td>
<td>AY590044a</td>
<td>AY590054b</td>
<td>AY590065c</td>
</tr>
<tr>
<td>Furnarius cristatus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>NRM 966772</td>
<td>AY064279e</td>
<td>AY064255f</td>
<td>AY590066d</td>
</tr>
<tr>
<td>Furnarius leucopus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>ZMUC 125590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upouertia jelskii</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>ZMUC S439</td>
<td>AY065700e</td>
<td>AY065756f</td>
<td></td>
</tr>
<tr>
<td>Anumbius annumbi (*)</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>ZMUC S220</td>
<td>AY590044a</td>
<td>AY590054b</td>
<td>AY590065c</td>
</tr>
<tr>
<td>Furnarius cristatus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>NRM 937251</td>
<td>AY590048d</td>
<td>AY590058d</td>
<td>AY590078d</td>
</tr>
<tr>
<td>Loxomias nematorea</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>ZMUC S2577</td>
<td>AY065699e</td>
<td>AY065755f</td>
<td>AY590081d</td>
</tr>
<tr>
<td>Philydrus atricapillus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Furnarinae</td>
<td>NRM 937334</td>
<td>AY065702e</td>
<td>AY065758f</td>
<td>AY590076d</td>
</tr>
<tr>
<td>Thripadectes flavomaculatus</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Philydorinae</td>
<td>ZMUC S428</td>
<td>AY065701e</td>
<td>AY065757f</td>
<td>AY590077d</td>
</tr>
<tr>
<td>Anumbius annumbi (*)</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>NRM 966903</td>
<td>AY065709e</td>
<td>AY065756f</td>
<td>AY590072d</td>
</tr>
<tr>
<td>Asthenes cactorum</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>NRM 966910</td>
<td>AY065710e</td>
<td>AY065766f</td>
<td>AY590073d</td>
</tr>
<tr>
<td>Coryphistera alaudina</td>
<td>Furnariidae: Furnarinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>NRM 966821</td>
<td>AY065708e</td>
<td>AY065764f</td>
<td>AY590069d</td>
</tr>
<tr>
<td>Cranioleuca albicapilla</td>
<td>Furnariidae: Synallaxinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>NRM 966903</td>
<td>AY065709e</td>
<td>AY065756f</td>
<td>AY590072d</td>
</tr>
<tr>
<td>Limnocites rectirostris</td>
<td>Furnariidae: Synallaxinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>USNM B14895</td>
<td>AY065707e</td>
<td>AY065763f</td>
<td>AY590068d</td>
</tr>
<tr>
<td>Limnornis curvieri</td>
<td>Furnariidae: Synallaxinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>USNM B2735</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philecypeps melanops</td>
<td>Furnariidae: Synallaxinae</td>
<td>Furnariidae: Synallaxinae</td>
<td>USNM B2734</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geositta tenuirostris</td>
<td>Furnariidae: Selerurinae</td>
<td>Furnariidae: Selerurinae</td>
<td>ZMUC S292</td>
<td>AY590043d</td>
<td>AY590053d</td>
<td>AY590063d</td>
</tr>
<tr>
<td>Selerurus scander</td>
<td>Furnariidae: Selerurinae</td>
<td>Furnariidae: Philydorinae</td>
<td>NRM 937258</td>
<td>AY065715e</td>
<td>AY065772e</td>
<td>AY590080d</td>
</tr>
<tr>
<td>Drymornis bridgesii</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>NRM 966930</td>
<td>AY065711e</td>
<td>AY065768f</td>
<td>AY590088d</td>
</tr>
<tr>
<td>Xiphocolaptes major</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>NRM 966847</td>
<td>AY065712e</td>
<td>AY065769f</td>
<td>AY590093d</td>
</tr>
<tr>
<td>Dendrocolaptes tyrannina</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>NRM 976662</td>
<td>AY065713e</td>
<td>AY065770f</td>
<td>AY590087d</td>
</tr>
<tr>
<td>Sitta zonula griesepapillus</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>NRM 967031</td>
<td>AY065714e</td>
<td>AY065771f</td>
<td>AY590092d</td>
</tr>
<tr>
<td>Chamaeza meruloides</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>ZMUC S2053</td>
<td>AY065718e</td>
<td>AY065771f</td>
<td>AY590099d</td>
</tr>
<tr>
<td>Pteroptochos tarnii</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>AMNH RTC467</td>
<td>AY065717e</td>
<td>AY065774f</td>
<td>AY590096d</td>
</tr>
<tr>
<td>Tyrannoderma spinifrons</td>
<td>Furnariidae: Dendrocolaptinae</td>
<td>Dendrocolaptidae</td>
<td>ZMUC S540</td>
<td>AY065716e</td>
<td>AY065773f</td>
<td>AY590097</td>
</tr>
</tbody>
</table>

References: 1Irestedt et al. (2001), 2Irestedt et al. (in press), 3Ericson et al. (2002), 4Fjeldhå et al. (2005).
Phleocryptes melanops are a deep greenish-blue
(Schönwetter & Meise 1967: 12; Vaurie 1980).
We reviewed the egg color of at least 32 gen-
era of Furnariidae, mainly based on the col-
clections of the British Museum (Michael
Walters, pers. com. to Olson, June 2004) and
scattered references in more recent literature
and found no exceptions to the preceding
observations. Thus, the decidedly greenish
blue eggs of Limnornis curvirostris and Phleoc-
ryptes appear to be unique within the Furnari-
idae, a similarity noticed at least as early as
Pereyra (1938).
In contrast, the nest and eggs of Limnoc-
tites rectirostris have been likened to that of
Cranioleuca. “The [white] eggs and nest more
closely resemble those of C. sulphurifera than
those of L. curvirostris, whose eggs are bluish
green and the nest [of L. curvirostris], although
spherical with a lateral entrance, is more con-
spicuous for being constructed at consider-
able height (up to 1.6 m), and is without much
differentiation between the external material
and the lining” (translated from López-Lanús
et al. 1999: 63).
Within the Furnariidae the white eggs and
less elaborate nest of L. rectirostris are proba-
bly plesiomorphic states, or relatively so in the
case of the nest, the apparently unique
awninged nest and blue-green eggs of L. curvi-
rostris and Phleocryptes are derived conditions
that argue for a sister-group relationship for
these two taxa.

MOLECULAR SYSTEMATICS

Materials and methods. Twenty species of oven-
birds and four woodcreepers were selected
for the molecular analysis. In addition to Lim-
ornis and Limnocitites, we included representa-
tives of all major clades of furnariids
identified by Fjeldså et al. (2005), as well as the
genera Sclerurus and Geositta, which form the
sister group to a clade consisting of all the
other ovenbirds (called “core ovenbirds”
herein) and the woodcreepers (Irestedt et al.
ging as outgroups are three representatives of
the proposed sister clade of Furnariidae
(Irestedt et al., 2002, Chesser 2004): Pteropto-
chos tarnii and Scytalopus spillmanni (family Rhin-
ocryptidae) and Chamaeza meruloides (family
Formicariidae). Sample identifications and
GenBank accession numbers are given in
Table 1.

We sequenced the complete myoglobin
intron 2 (along with 13 bp and 10 bp of the
flanking regions of exons 2 and 3, respective-
ly), the complete glyceraldehydes-3-phos-
phodehydrogenase (G3PDH) intron 11
(along with 36 bp and 18 bp of exons 11 and
12, respectively), and 999 bp from the cyto-
chrome b gene (see Ericson et al. 2002,
Irestedt et al. 2002, and Fjeldså et al. 2003,
2004, for primer sequences and procedures).
Positions where the nucleotide could not be
determined with certainty were coded with
the appropriate IUPAC code. Due to the
low number of insertions in the introns,
the combined sequences could easily be
aligned by eye. All gaps in the myoglobin and
the G3PDH sequences were treated as miss-
ing data in the analyses. No insertions, dele-
tions, stop or nonsense codons were
observed in any of the cytochrome b
sequences.

ModelTest 3.06 (Posada & Crandall 1998)
in conjunction with PAUP* (Swofford 1998)
was used to evaluate the fit of the data to dif-
f erent models for nucleotide substitutions.
The GTR+I+Γ model has the best fit for the
combined data set and for the cytochrome b
partition, while GTR+G was selected for
both the myoglobin intron 2 and the G3PDH
intron 11 partitions. These models were
used in the analyses of the individual genes, as
well in the analysis of the combined data set.
The posterior probabilities of trees and
parameters in the substitution models
were approximated with Markov chain
Monte Carlo and Metropolis coupling using the program MrBayes (Huelsenbeck & Ronquist 2001, Ronquist & Huelsenbeck 2003). We ran two analyses of 500,000 generations for each gene with trees sampled every 100 generation. The parameter estimates from the two separate MCMC runs for each data set were compared and found to be very similar, thus allowing an inference from the concatenated output. Posterior probabilities for the individual genes were based on a total of 9000 trees saved after discarding the trees saved during the “burnin phase” (as estimated graphically) in each analysis. The analysis of the combined data set was conducted in the same manner as for the individual genes except that the number of generations in each run was two millions. The 50% majority-rule consensus trees were identical in the runs and the posterior probabilities are based on a total of 390,000 saved trees.

Results. The concatenated sequences became 2164 basepairs long after alignment. Within the ingroup (all ovenbirds and woodcreepers) the lengths of the myoglobin sequences range from 677 in Philydor to 701 bp in Geositta, and the lengths of the G3PDH sequences range from 349 in Dendrocincla to 401 bp in Xiphocolaptes. The myoglobin intron is the least variable among the three genetic markers studied herein (Table 2). The observed substitution rate is larger in the mitochondrial cytochrome \(b \) gene, in accordance with previous studies (Irestedt et al. 2004). The alignment of the myoglobin intron 2 and G3PDH intron 11 sequences requires postulation of a few insertions and deletion events (indels) among the core ovenbirds, most of which involve only a single basepair (singletons) and/or are found only in a single taxon (autapomorphic).

The phylogenetic trees obtained from the Bayesian analyses of the individual genetic markers, as well as of the combined data set, are generally similar (Figs 1A-C and 2). The analyses also agree well on the systematic positions of Limnornis and Limnoctites, which clearly are not sister taxa. Most major groupings of ingroup taxa are recovered by all data partitions and receive generally high supports (Table 3). Monophyly of the ingroup is strongly corroborated, as is the basal position of Geositta and Sclerurus relative to the core ovenbirds and woodcreepers, which in turn are recovered as sister groups. All data partitions except cytochrome \(b \) also support a basal position among the core ovenbirds of a clade consisting of Automolus, Thripadeictes and Philydor. Although the cytochrome \(b \) data set also recognizes monophyly of this clade, it leaves the group unresolved in relation to the other core ovenbirds. The remaining core ovenbirds are divided into two clades that receive strong support in the analyses of most data partitions. Limnornis groups with Phleocryptes with 100% posterior probabilities in the analyses of both myoglobin and the genes combined. The analyses of cytochrome \(b \) and G3PDH also suggest a Limnornis-Phleocryptes clade, albeit with weaker support.

Table 2. Descriptive statistics for the observed pairwise, uncorrected sequence divergencies (p-distances) between selected groups of taxa. Larger distances suggest higher rates of nucleotide substitutions.

<table>
<thead>
<tr>
<th></th>
<th>Cytochrome (b)</th>
<th>Myoglobin intron 2</th>
<th>G3PDH intron 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Within core ovenbirds</td>
<td>12.63</td>
<td>2.4</td>
<td>15.62</td>
</tr>
<tr>
<td>Core ovenbirds vs woodcreepers</td>
<td>14.53</td>
<td>12.21</td>
<td>17.12</td>
</tr>
<tr>
<td>Core ovenbirds vs Sclerurus/Geositta-clade</td>
<td>15.57</td>
<td>13.51</td>
<td>18.12</td>
</tr>
<tr>
<td>Core ovenbirds vs Outgroups</td>
<td>17.7</td>
<td>15.84</td>
<td>20.32</td>
</tr>
</tbody>
</table>
Cinclodes, Lochmias, Upucerthia and the two species of Furnarius are the other members of this larger group of core ovenbirds. The other group consists of the three species of Cranioleuca, Limnoctites, Synallaxis, Asthenes, Anumbius and Coryphistera. Limnoctites falls well within the Cranioleuca clade, but it groups with different species of Cranioleuca depending on which genetic marker is studied.
DNA sequence data unambiguously show that *Limnornis curvirostris* and *Limnoctites rectirostris* are not particularly closely related. *Limnoctites* falls out among the species of *Cranioleuca* and within the sample we tested was closest to the Sulphur-throated Spinetail *C. sulphurifera*. This is another marsh-inhabiting species with a distribution similar to the two reedhaunters, except that it also occurs farther inland and to the south in Argentina (Remsen 2003). As
recounted above, Esteban (1949) advocated putting *Limnoctites* in the Synallaxinae. Gerzenstein & Acheval (1967), followed by Ricci & Ricci (1984), noted its general similarity in appearance to *Cranioleuca sulphurifera*. López-Lanús *et al.* (1999) concurred and also considered that the vocalizations, nest, and eggs of *Limnoctites* were more similar to *C. sulphurifera* than to *Limnornis curvirostris*.

In the straight bill and in tail and rectrix shape, *Limnoctites* agrees better with *Cranioleuca* than with *Limnornis*. The juvenal plumage of *C. sulphurifera*, which lacks the breast streaks and yellow throat of the adult, is like that of *Limnoctites* in every respect except for its rufous and black pattern in the wing.

Similarities extend to vocalizations as well. "*L. rectirostris* gives a hissing trill Ti-ti-ti-ti-ti-titrirriiiii, accelerating at the end. This is maintained at a stable frequency of between 4 and 6.5 kHz, lasting about 2.5 and 3.5 s, composed of 14 to 18 elements, varying up to 22 ...". The territorial advertising vocalization of this species is well differentiated from that of *L. curvirostris*, whose song sounds rough and faltering. On the other hand, it could be confounded by an untrained ear with that of *C. sulphurifera*, which gives a vocalization of similar length (between 2.5 and 3.5 s) but with a wider frequency range (between 1 and 6.5 kHz) and a greater and more complex quantity of elements" (translated from López-Lanús *et al.* 1999: 62).

In our molecular phylogeny *Limnornis* is well separated from *Limnoctites* and its closest relative among the taxa we sampled is the Wren-like Rushbird *Phleocryptes melanops*, with the Sharp-tailed Streamcreeper *Lochmias nematura* as the closest outlying sister group. There is nothing in the external morphology of these three genera that suggests a particularly close relationship. An obligate inhabitant of streams in dense forests (Remsen 2003), *Lochmias* differs strikingly from the other two in its habits.

Phleocryptes, like *Limnornis*, inhabits marshy reedbeds and the two may occur together in the same marsh, although *Phleocryptes* is much more widely distributed, from Pacific Ecuador to Chile and east across parts of Bolivia, Paraguay, most of Argentina, Uruguay and southern Brazil (Remsen 2003). It is a smaller bird with a much more variegated plumage than *Limnornis*. Apart from DNA sequences,
the best evidence for a relationship between these two genera comes from the nests and eggs, as outlined above.

CONCLUSIONS

The available molecular, morphological, and behavioral data all indicate that *Limnocitites rectirostris* belongs among the species currently included in the genus *Cranioleuca*, within which it appears to be most closely related to another marsh-dwelling species, *C. sulphurifera*. Thus it appears possible that *Limnocitites rectirostris* may be a large, paedomorphic (in plumage) derivative of *C. sulphurifera* that moved out of reedbeds and became adapted to marshes of *Eryngium*, where its long, straight bill is possibly an adaptation for extracting prey from the spiny rosettes of that plant, as suggested by Ricci & Ricci (1984).

It would be premature, however, to make any taxonomic or nomenclatural recommendations until the systematics of the entire genus *Cranioleuca* has been undertaken. Zyskowski & Prum (1999) indicate that there are two distinct groups within *Cranioleuca* based on nest structure, which they designate as the *albiceps* group and the *pyrrhophia* group. *Limnocitites* and *C. sulphurifera* belong to the *pyrrhophia* group. The type species of *Cranioleuca* is *C. albiceps* and there does not seem to be any previously recognized generic name available for the *pyrrhophia* group (Hellmayr 1925). Thus, if this group were to be separated generically from *Cranioleuca*, the 8 species now in it would presumably have to take the name *Limnocitites*, which would certainly be an ironic turn of events. Another possibility is that *L. rectirostris* and *C. sulphurifera* may be sufficiently distinct as to be separated in *Limnocitites*, so that the rest of the *pyrrhophia* group would require a new name.

Our molecular evidence indicates that the previous intimation of a relationship between *Limnornis* and *Phleocryptes* is correct. This hypothesis is corroborated by the similar nest structure, egg coloration, and to some extent by the similarity in microhabitat. These two taxa otherwise appear to be sufficiently distinct from one another morphologically and molecularly to justify the recognition of separate monotypic genera.

ACKNOWLEDGMENTS

For assistance in the field in Argentina and Uruguay, we are greatly indebted to Joaquin Aldabe, J. Phillip Angle, Luis Chiappe, Miguel Clara, Santiago Clarambut, Christina Gebhard, and Christopher Milensky. Jorge Cravino, Director, Departamento de Fauna, Montevideo was instrumental in providing permits and critical information as well as arranging for accommodations for fieldwork on numerous estancias in Uruguay, to whose generous owners we are most grateful. George and Janet Winter provided a sumptuous base of operations for fieldwork in Uruguay in 2002. J. V. Remsen, Michael Walters, and Kristof Zyskowski provided much useful information and references. Field work in Argentina and Uruguay was supported by the Virginia Y. Hendry Fund and the Alexander Wetmore Endowment Fund, Smithsonian Institution, respectively. Samples owned by the Swedish Museum of Natural History were collected in Paraguay in collaboration with the Museo Nacional de Historia Natural del Paraguay, San Lorenzo. The Swedish Research Council (grant no. 621-2001-2773 to P.E.) funded the laboratory work. We thank J. V. Remsen and Frank Steinheimer for many useful comments on the manuscript.

REFERENCES

