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In a plot of the logarithm of average plant mass versus the logarithm of plant 
density, measurements of crowded stands of different plant species form a linear 
band of slope -% that extends over 7 orders of magnitude of plant density and 
almost 10 orders of magnitude of average plant mass (Gorham 1979; White 1980, 
1985; Westoby 1984). The existence of such a simple relationship across plant 
species ranging from mosses to trees has been judged remarkable (Gorham 1979) 
and cited as strong support for the self-thinning rule, which states that the 
temporal progress of growth and mortality within an individual crowded, even- 
aged stand will trace a line of slope - %  in the same double-logarithmic plot 
(White 1981; Hutchings 1983; Westoby 1984). The thinning rule is considered an 
important generalization (White and Harper 1970; Westoby 1981, 1984; White 
1981), an ecological law (Yoda et al. 1963; Hutchings and Budd 1981a; Hutchings 
1983), or even the only law in plant ecology (Harper, cited in Hutchings 1983). 

However, interpretation of the intcr- and intraspecific relationships in terms of a 
single thinning law de-emphasizes some important differences. The interspecific 
band is a static relationship among stands observed at single instants of time, 
whereas the intraspecific self-thinning trajectory describes the dynamic mutual 
adjustment between growth and mortality within an individual stand. Although 
the two phenomena may yield similar slopes and positions in a double-logarithmic 
plot, this does not necessarily mean that they are different facets of the single law. 
It is not obvious a priori that the two phenomena should even be related. I seek to 
explain and interpret the interspecific relationship separate from the intraspecific 
thinning rule and to explore the differences between the two relationships. 

Advocates of the thinning rule have recently observed some important differ- 
ences between inter- and intraspecific relationships. Westoby (1984) observed that 
the interspecific relationship gives a much better fit to the hypothetical - Y 2  slope 
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than do the self-thinning lines of individual populations and warned against inter- 
preting the thinning rule in an unduly precise way (Westoby and Howell 1984). 
Althougll the interspecific band appears narrow, its width is important because a 
dynamic thinning trajectory of realistic length can vary substantially in slope from 
- Y', yet still lie within the interspecific band of overall slope -- 3/2 (Westoby and 
Howell 1986). White (1985) noted that the thinning rule has severe limitations over 
small density ranges where precise predictions are required, but still holds as a 
coarse-grained rule over the entire plant kingdom. 

Others have rejected the djlnamic self-thinning rule. Sprugel (1984) suggested 
that, for trees, the - 73 thinning slope is an exception rather than the rule. It has 
also been reported that thinning slopes change systematically with species, site, 
age, and tolerance and do not generally agree with the constant value predicted by 
the thinning rule (Weller 1985, l987a,h; Zeide 1985, 1987). Zeide (1987) concluded 
that the intraspecific thinning law fails to describe the size-density dynamics of 
forest trees and is inconsistent with other well-documented knowledge of forest 
growth. The law became accepted despite these problems because of a variety of 
statistical and interpretive errors and the uncritical acceptance accorded an estab- 
lished paradigm (Weller 1985, 1987a; Zeide 1987). 

The problems with the intraspecific thinning rule do not necessarily invalidate 
the interspecific relationship, which Zeide (1985, 1987) called an interesting regu- 
larity that should be considered separately and not confused with the self-thinning 
rule. Norberg (1988) suggested that the interspecific relationship reflects a princi- 
ple of size-related design across species, whereas the dynamic thinning line 
reflects the growth mode of individual plants. Although intraspecific thinning 
slopes differ widely from the thinning-rule prediction (Weller 1985, 1987a), most 
individual stands still lie within the interspecific band defined by Gorham (1979). 
The inter- and intraspecific relationships are indeed different and may have 
fundamentally different explanations ' ( ~ e l l e r  1985, 19870). Failure to recognize 
this dichotomy has helped to erroneously establish the thinning rule as a widely 
accepted law, and it has confused attempts to explain size-density relationships. 
The intraspecific thinning slope may be related to the way plants change shape 
dynamically as they grow (Weller 1987h; Norberg 1988); however, since the 
interspecific relationship is static, not dynamic, its explanation need not be based 
on dynamic principles that apply to individual stands. 

Gorham (1979) proposed the first explanation for the interspecific relationship, 
suggesting that the same geometric model developed by Yoda et al. (1963) for 
dynamic self-thinning in crowded stands should apply. This model predicts the 
-% slope by assuming that the plants considered are geometrically similar in 
shape (Yoda et al. 1963). To apply the model to the dynamics of a single stand, one 
must assume that growing plants maintain the same average shape (isometric 
growth; Weller 19876). To apply the model across species, one must assume that 
average plant shape is roughly constant across the plant kingdom, that is, indepen- 
dent of mass. The assumption of constant shape with growth has been judged 
untenable, thus motivating many attempts to explain dynamic self-thinning 
with non-isometric models (Westoby 1976; Mohler et al. 1978; Miyanishi et al. 
1979; White 1981; Pickard 1983; Perry 1984; Weller 1985, 19870; Ellison 1986). 
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The equivalent assumption for the interspecific relationship remains largely un- 
evaluated (but see Givnish 1986). 

Givnish (1986) derived the slope and intercept of the self-thinning equation from 
biomechanical principles with the primary intent of explaining the interspecific 
size-density relationship on a priori grounds (Givnish, pers. comm.). He invoked 
the biomechanical principle of elastic similarity, which has been tested with data 
on tree trunks and limbs (McMahon 1973; McMahon and Kronauer 1976), and 
considered plants in which a single central stem supports a massive circular 
crown. Therefore, his derivation is somewhat less general than the interspecific 
relationship itself, which also applies to plants that do not fit this structural model 
for stem and crown (e.g., grasses) and do not have woody trunks and limbs. Also, 
it still requires that plant shape, as represented by the ratio of crown radius to 
height, remain roughly constant across the plant kingdom. Norberg (1988) consid- 
ered two principles of variation in plant shape with size: geometric similarity and 
elastic similarity. He concluded that either principle could be consistent with 
observed interspecific trends if two parameters, the ratio of height to width and 
the packing density of material in the exclusive space, were appropriately con- 
strained across the plant kingdom. 

I develop here a simple model that relates the interspecific size-density band to 
static measures of plant form. I do not assume elastic similarity, isometric growth, 
or any other growth dynamic that may apply to only some groups of plants and 
thus be less general than the interspecific relationship that I seek to explain. Nor 
do I require that average plant form remain constant across the plant kingdom. I 
apply the model to the data from the first article on the interspecific relationship 
(Gorham 1979) and compare the results to a similar analysis of a larger data base 
(Weller 1985, 1987~).  I test for systematic variation in the parameters of plant 
form across the plant kingdom. The model and analyses together clarify the 
biological significance of the slope, position, and width of the interspecific rela- 
tionship; help to interpret these features in terms of constraints on plant form; and 
expose some important contrasts with the dynamic self-thinning lines of individual 
populations. I also identify a group of hypotheses about the self-thinning rule that 
actually have more relevance in the separate context of the interspecific relation- 
ship. I do not attempt to defend or explain the self-thinning "law," particularly 
the dynamic self-thinning rule for individual stands, whose foibles and explana- 
tions are considered elsewhere (Weller 1985, 1987a,h; Zeide 1985, 1987; Norberg 
1988). 

The logarithmic equation for the classic thinning law (log m = - Y2 log N + log 
K, where K is a constant) relating average mass (m in g) and density (N in plants 
per m2) is a transformed version of a power relationship between the two variables 
(m = K N ~ ' ~ ) .  By definition, average mass is total biomass density (B in g per m2) 
divided by the number density (m = BIN); thus, the mass-density relationship can 
be reexpressed as a relationship between stand biomass density and density (log 
B =  - Y2 log N + log K or B = K N1 '* )  (Yoda et al. 1963). The m-N and B-N 
relationships are mathematically equivalent, but there are statistical and interpre- 
tive reasons for preferring the B-N formulation in estimating, statistically testing, 
and interpreting size-density relationships (Westoby and Brown 1980; Westoby 
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1984; Weller 1985, 1987a,b; Zeide 1985, 1987). Therefore, the models and analyses 
presented here examine the interspecific relationship in B-N form. 

GEOMETRIC MODEL 

To  derive the interspecific size-density band from basic geometric principles, 
begin by considering the maximum stand biomass possible at any plant density. 
Biomass is maximal when the available growing surface is fully used, the stand is 
as tall as possible, and the stand packs the maximum possible amount of biomass 
into each cubic meter of space occupied. Let H be the canopy height achieved 
under these conditions. The average volume of space occupied per plant is v = 

Ha,  where a is the average ground area per plant, and the average mass is m = vd 
= Had,  where d is average biomass per cubic meter of space occupied. All plants 
face energetic and structural constraints that must ultimately limit plant slen- 
derness and biomass per unit of volume (see the Discussion). Let these two limits 
be represented by dm,, and the maximum value, T,,,,, of the dimensionless height- 
to-width ratio, where width is defined as the square root of the average ground 
area occupied (T = ~ l ( a ) " ' ) .  

For temporary pedagogical convenience, assume that the values of dm;,, and 
T,,, are approximately constant across the plant kingdom. Substituting these 
values into m = Had gives m,,lx = a3/' T,,,, dm;,,, which is equivalent to m,,;,, = 
N -- 312 

T,,,, d,,;,, because plant density and average area per plant are inversely 
related (a = 11N) when the entire growing surface is covered (Yoda et al. 1963). 
Log transformation then yields log m,,, = - % log N +  log(^,,,, dm;,,): a line in 
the plane of log m and log N that is the maximum average mass possible at any 
density. Since B = mlN by definition, these equations can be equivalently ex- 
pressed as B = T,;,, d ,,, N ' / *  and logB = - % logN +  log(^,,, d,,;,,). In reality, 
there will also be minimum values of the ranges of the ratio of height to width and 
biomass per unit of volume actually observed in crowded plant stands, and these 
minima (T,~, and dmi,) define a parallel line, log Bmi, = - 1/2 log N + log (T,,;, d,,,), 
giving the lowest biomass possible at  any density for a stand that covers the 
available growing surface. Stands below the lower boundary line are possible but 
uncrowded; stands above the upper boundary line are impossible because they 
require unrealistic values of T or  d .  Of course, in fitting the interspecific relation- 
ship of log B and log N to real data, the fitted line passes through the middle of the 
data rather than representing the upper or lower boundary line (see the Methods). 

The values of T and d for any stand can be multiplied to yield a new constant 
K = ~ d ,  which will be a composite measure of the shape and biomass per unit of 
volume of the stand. (This value is calculated for a single stand and is not the 
intercept of a self-thinning line or of the interspecific relationship.) Stands of tall, 
thin plants tend to have high values of T and K compared to short, squat plants. 
Similarly, stands that pack large amounts of biomass into the volume occupied 
have high values of d and K compared to stands with less biomass per unit of 
occupied volume. After replacing the product ~d with K ,  the equation of the upper 
boundary line becomes 

N -  112 - N-- '12 B = ~ m a x  L a x  - Krnax > (1) 



24 THE AMERICAN NATURALIST 

which can be logarithmically transformed to 

log B = - '/2 log N + log(Tm,, dm,,) = - 'h logN + log K,,, , (2) 

and the lower-boundary equation becomes log B = - '/2 log N + log K,,,. For any 
stand, K can be calculated from biomass and density measurements by inverting 
equation (1) to yield K = B(N)"~. 

The derivation of equation (2) required only two assumptions: the maximum 
possible values of both d and T are constant across the plant kingdom. No 
assumptions were required to introduce the quantities d, T, and K because these 
are simple measures defined for any plant stand. I did not consider whether 
growing plants maintain the same shape (Yoda et al. 1963; Gorham 1979) or 
change shape (Weller 1987b; Norberg 1988) or whether a growing stand maintains 
the same biomass per unit of volume (Lonsdale and Watkinson 1983; Weller 
19876). Because we are modeling a static relationship among stands observed at 
single instants of time, such consideration of growth dynamics would only un- 
necessarily complicate the model. Moreover, since different stands can and do 
show different dynamic trends of changing shape or biomass per unit of volume 
(Weller 1985, 1987b; Norberg 1988), a single dynamic would not be expected to 
govern all plant stands. 

We need not assume a particular geometric form for the volumes occupied by 
plants because T is the ratio of height to the square root of base area, regardless of 
the shape of that area. The volumes occupied might actually be cylindrical, 
columnar with hexagonal bases (as in a honeycomb), box-shaped, conical, etc. 
For each geometric solid, we could define a new variable T', which gives the ratio 
of the height to a relevant linear dimension of the base area. This variable would 
be the product of T and a constant f ,  which depends on the particular geometric 
form of the plant (Norberg 1988). The slope and position of limiting lines (eq. 2) 
would be unaffected, but the transformation would be convenient for comparing T 

values to other published ratios calculated by assuming a particular form (Givnish 
1986; Norberg 1988). For f = 1, T would be the height-to-side ratio for a square 
base, and f = .rr1I2 = 1.773 would yield the height-to-radius ratio for a circular 
base. For a hexagonal base, f = 1.140 gives the ratio of the height to the 
circumscribed radius, and f = 1.316 the ratio of the height to the inscribed radius. 

Similarly, we have defined d as the average biomass per unit of volume in a 
column of height H and base area u, and another transformation can clarify the 
comparison of d to actual measurements of biomass per unit of volume if that 
column is not uniformly filled. For example, since a conical plant would pack all 
its biomass into just one-third of the available column, a measurement d'  of 
biomass per unit of volume actually filled would be three times the d value defined 
by the equation m = Had. The transformation is again a matter of interpretive 
convenience: average mass (m = Hud = Y3 Had') and equation (2) are unaffected. 
Of course, biomass is never distributed uniformly throughout the occupied vol- 
ume. For example, trees concentrate mass in their heavy supporting boles and 
may have a large "empty" volume beneath the canopy. Nevertheless, the average 
biomass per unit of volume is easy to calculate and useful in comparisons across 
species. 
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The assumptions that the ranges of T and d are constant across the plant 
kingdom have been heuristically useful but are not necessarily true. If T and d vary 
systematically across the plant kingdom, then the constants T,,, and dm,, in 
equation (2) should be replaced with expressions for that variation. Since exten- 
sive work in forestry and ecology shows that relationships between plant dimen- 
sions are well represented by power functions (Reineke 1933; Whittaker and 
Woodwell 1968; Curtis 1971 ; Hutchings 1975), let the systematic variation of T,,, 
and dm,, across the kingdom be represented by two power relationships: T,,, = 

TO BC and dm,, = do N', where TO and do are constants. I represent T and d as func- 
tions of biomass and density, respectively, rather than as functions of the same 
variable, in order to avoid relating a derived variable to one of the measurements 
from which it was derived (see the Methods). Replacing the constants in equa- 
tion (2) with these expressions yields K,,, = TO do BC N' and 

log B = [( - '/z + 6)/(1 - $)] log N + log ( T ~  do) l(1 - $) . (3) 

The slope of the interspecific band is then 

The simpler, heuristic model (eq. 2) is now the special case of equation (3 )  when 
$ and 6 are both zero; that is, T and d are constant. The slope of the interspecific 
relationship could still be - % even if T and d vary systematically across the plant 
kingdom, as long as those variations are compensatory ($ = 26) so that K is 
constant (see also Norberg 1988). If T and d are not constant and do not vary 
compensatorily ($ # 26), then equation (3) predicts that the slope of the inter- 
specific relationship will not be - Y2. These alternatives provide a simple frame- 
work for understanding and interpreting the interspecific relationship. 

METHODS 

The geometric models are easily tested because useful estimates of T and d can 
be derived from just three measurements of each stand: density, biomass, and 
height. Since a = IIN for crowded stands, the average basal area a can be 
estimated from IIN, and the ratio of height to base width T can be estimated from 
measurements of N and H by T = ~ l ( a ) ~ / ~  = H(N)'/~. Similarly, the ratio BIH 
provides a measure of average biomass per unit of volume d because B gives the 
biomass per square meter of surface area and the volume occupied by one square 
meter of stand is simply one times the canopy height (Lonsdale and Watkinson 
1983). Even if height data are unavailable, K can always be estimated from the two 
measurements B and N by K = B(N)"'. 

1 evaluated the model with measurements of aboveground stand biomass B, 
density N,  and height H in a data base compiled from published reports of 370 
plant stands (Appendix). All the stands were considered crowded because den- 
sity-dependent mortality was under way and each stand appeared to lie on the 
dynamic self-thinning line for that population (Weller 1985, 1987a,b). For com- 
parative purposes, 1 made parallel analyses of the measurements of 65 stands of 29 
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species used by Gorham (1979), who originally reported the interspecific size- 
density relationship. 

To look for systematic changes in T, d, and K across the plant kingdom, I 
examined three correlations: log T with log B, log d with log N,  and log K with log 
H .  I did not examine the correlation of log T with log N because T is directly 
calculated from density according to the definition T = H(N)'/~ and the correlation 
therefore could be spuriously inflated (Weller 1987a) and difficult to interpret. 
Similarly, since d is directly calculated from biomass by d = BIN, a correlation 
analysis relating log d to log B would be invalid, and since K = B(N)'/~, H is 
the only one of the original three measurements B, N,  and H whose correlation 
with K would be interpretable. Principal-components analysis (PCA; Jolicoeur and 
Heusner 1971; Jolicoeur 1973, 1975; Mohler et al. 1978; Weller 1987a) was used to 
fit linear models relating log d to log B and log T to log N. I fit a double-logarithmic 
equation because the relationships between plant dimensions are well described 
by power functions (Reineke 1933; Whittaker and Woodwell 1968; Curtis 1971; 
Hutchings 1975). The log transformation also standardized variances (which were 
correlated with the mean value for all these variables) and normalized the dimen- 
sions for PCA analysis (Jolicoeur 1973). Finally, to further examine the constancy 
of T, d, and K across the plant kingdom, I divided the stands into broad plant 
groups (mosses, ferns, herbaceous monocots, herbaceous dicots, and trees) and 
looked for differences in T, d, or K among these groups. Trees were further 
subdivided into temperate angiosperms, temperate gymnosperms, eucalypts, and 
tropical angiosperms. 

I examined the interspecific relationship by estimating the strength of linear 
association between log B and log N with the correlation coefficient, and fitting the 
principal-axis equation relating log B to log N .  This resulting interspecific slope 
and intercept represent a line passing through the middle of the interspecific band. 
If the width of the band is roughly constant across the plant kingdom, then the 
upper and lower boundary lines parallel that medial line. Two problems preclude a 
more direct estimation of the boundary lines. First, we lack a priori information to 
identify a subset of stands along a boundary line that, in fact, has maximal (or 
minimal) T and d values. Second, curve-fitting methods do not fit boundary lines, 
but instead fit lines though the mean of the available data (Hutchings and Budd 
19816; Weller 1987a). Three interspecific slopes were fitted for each data base: 
stands that also had height measurements, stands that lacked height measure- 
ments, and the combination of these two subsets. Finally, I evaluated whether the 
observed slope of interspecific relationship and patterns of variation in T and 
d were consistent with the heuristic model (eq. 2) or the more complex model 
(eq. 3). 

RESULTS 

Variables T and d were not constant across the plant kingdom (figs. 1, 2; tables 
1-3). For Gorham's data, the correlation of log d and log N was negative but weak 
and not statistically significant. This result does not invalidate the assumption that 
d is constant across the plant kingdom. However, the correlation between T and B 
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FIG. 1.-Trends in the ratio of height to width (7) across the plant kingdom. Crosses, 

herbaceous monocots; squures, herbaceous dicots; x,  trees. The solid line is the principal- 
axis relationship (table 2). 

FIG. 2.-Trends in biomass per unit of volume (d) across the plant kingdom. The symbols 
and the solid line are the same as for figure 1. 

was marginally significant (P = 0.09), suggesting that T may change systematically 
across the plant kingdom. The negative correlation means that the volumes 
occupied by larger plants tend to be squatter in shape when compared to the more 
slender shapes filled by smaller plants. Among my data, both correlations were 
highly significant. The negative correlation of T with B would have the same 
interpretation given above, but the slope of the relationship in my data is more 
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TABLE 1 

SIMPLE STATISTICS FOR MEASUREMENTS (B, N, AND AND DERIVED VARIABLES (m, T ,  d, AND K) 
- - 

n 
Mean 
SD 
Percentiles* 

0 
1 
5 

10 
25 
50 
75 
90 
95 
99 

100 

n 
Mean 
SD 
Percentiles* 

0 
1 
5 

10 
25 
50 
75 
90 
95 
99 

100 

* 0, minimum; 50, median; 100, maximum 

than double the slope for Gorham's data. The positive correlation of d with N 
indicates that plants growing at higher densities tend to pack more biomass into 
each unit of volume occupied. At the gross level across the plant kingdom, higher 
density trivially entails smaller plants (Gorham 1979; White 1981); we can there- 
fore also interpret this correlation to say that larger plants pack less biomass per 
unit of volume than do smaller plants. Because T and dare not constant across the 
plant kingdom, equation (3) must be used rather than the simpler heuristic model 
of equation (2) to interpret the interspecific relationship. 

Interspecific relationships fitted to the same stands used to estimate the T-B and 
d-N relationships provide the most direct test of the models. Neither fitted 
interspecific relationship had a slope of exactly - Y2. The slope of -0.43 for 
Gorham's data was not statistically different from - Y2, but the slope of -0.23 for 
my data was different from - YZ (table 2; fig. 3). In both cases, the departure from 
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TABLE 2 

Y X 

log H vs. log N 

log d vs. log N 

log H vs. log B 

log T VS. log B 

log H vs. log m 

log K VS. log H 

log B vs. log N* 

log B vs. log N* 

log B vs. log N* 

log H vs. log N 

log d vs. log N 

log H vs. log B 

log7 vs. logB 

log H vs. log m 

log K VS. log H 

log B vs. log N* 

log B vs. log N* 

log B vs. log N* 

- Slope 
Y l2 P (95% CI) 

Intercept 
(95% CI) 

* Relationships between log B and log N were fitted three ways: for all stands with height measure- 
ments (smallest n),  for stands without height measurements (intermediate n ) ,  and for the combination 
of both groups (largest n) .  

the - Y2 slope predicted by the heuristic model can be explained when the more 
complex model is invoked to account for systematic trends in 7 and d. For 
Gorham's data, equation (3) combines the fitted 7-B and d-N equations to predict 
an interspecific relationship of log B = -0.43 log N + 3.82. The slope and in- 
tercept of this predicted equation are quite close to the actual estimates of - 0.43 
and 3.83, respectively, as fitted to the 19 stands with height data. For my data, the 
predicted equation (log B = - 0.25 log N + 3.86) is again quite close to the fitted 
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FIG. 3.-The interspecific relationship. The symbols are the same as for figure I .  
Interspecific relationships (table 2): dotted line, stands with height measurements; dashed 
line, stands without height measurements; solid line, all stands. 

equation for 154 stands (log B = -0.23 log N + 3.88). More-rigorous statistical 
analysis of the agreement between the predicted and fitted equations is not 
possible, because T and d  are both derived from H and are not independent 
measurements. 

The systematic trends in T and d  can be partly understood in terms of differ- 
ences among plant groups. For example, trees are bigger and occur at lower 
density than herbaceous plants. This truism is important because the across- 
species trends are dominated by the juxtaposition of trees and herbs. When the 19 
stands of the Gorham data for which T and d  could be estimated are divided into 
plant groups, the group sizes are too small to exhibit convincing differences 
among groups (table 3). However, differences are evident among the same groups 
in my larger data base. Herbaceous monocots, herbaceous dicots, and trees are 
resolved into three distinct clusters of stands in figures 1 through 3. The tendency 
of smaller plants to occupy volumes that are more slender than those of larger 
plants is largely due to the more slender shape of herbs. Similarly, much of the 
change in biomass per unit of volume across the plant kingdom results from the 
tendency of herbs to pack more biomass into each unit of volume than do trees. 
Herbaceous monocots tend to be the most slender (highest T values) and to pack 
the most biomass per unit of volume (highest d values). Since K = ~ d ,  the two 
trends are compounded and the monocots also have the highest values of K (fig. 4). 



TABLE 3 

MEDIAN, FIFTH, A K D  NINETY-FIFTH PERCENTILE VALUES OF THE RATIO OF HEIGHT TO WIDTH (T), BIOMASS PER UNIT OF VOLUME (d ) ,  
AND CONSTANT (K) FOR DIFFERENT PLANT GROUPS (PERCENTILES IN PARENTHESES) 

Herbs 
Mosses 
Ferns 
Monocots 
Dicots 

Trees 
Temperate 

angiosperms 
Temperate 

gymnosperms 
All plants 

Herbs 
Monocots 
Dicots 

Trees 
Temperate 

angiosperms 
Temperate 

gymnosperms 
Eucalypts 
Tropical 

angiosperms 
All plants 

CORHAM (1979) DATA 

16 16.11 (5.87-26.94) 556(303-5299) 10595(3646-31126) 
1 5.87 5299 31126 
0 

14 17.87(6.22-26.94) 540(303-1138) 9749(3646-17702) 
1 12.20 1235 15067 
3 5.91 (5.42-7.20) 1804 (792-2162) 9778 (5701-12783) 
0 
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FIG. 4.-Joint variation in T, d, and K across the plant kingdom. Diamonds, herbaceous 
monocots; squures, herbaceous dicots; circles, trees. Note that the T axis is arranged in 
descending order from left to right. 

Conversely, trees had the lowest values of T and d  and the lowest values of K = 

~ d .  Herbaceous dicots were intermediate for all three measures. The implications 
for the interspecific slope are clear. Herbaceous monocots-which inhabit the 
smallest, highest-density stands at the right side of the interspecific plot (fig. 3)- 
have higher values of T and d ,  and hence K.  Conversely, the stands of trees at the 
left side of figure 3 have lower values of T ,  d ,  and K. The variable K decreases 
systematically with plant size and increases with density. Combining this positive 
trend with density with the - Y2 slope predicted by the model if K were constant 
should produce a final trend with a slope less negative than - Y2, as observed. 

DISCUSSION 

Gorham's data base and mine verified the usefulness of the geometric model 
(eq. 3) for understanding the interspecific size-density relationship. Although the 
estimated slope of the interspecific relationship differed between the data bases, 
the interspecific slopes were still explained in terms of systematic changes in 
biomass per unit of volume and the ratio of height to width across the plant 
kingdom. Gorham's data give an interspecific slope closer to - % than do mine 
because Gorham's data more closely meet the assumptions about the constancy of 
T and d  that would necessarily yield a - Y2 slope. 

Some of the differences between the two data bases result from different 
sampling intensities among plant groups (table 3). My larger data base also 
includes more stands at the extremes of possible ratios of height to width or 
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biomass per unit of volume, such as greenhouse populations of grasses, which 
tend to pack unusually high amounts of biomass per unit of volume (Lonsdale and 
Watkinson 1982, 1983). These particular stands contributed to the shallower 
interspecific slope for my data because the sampled grasses have higher values of 
K (fig. 4) and tend to pull the right side of the interspecific relationship upward, 
producing a shallower slope. 

The differences between the two data bases in the estimates of B-N,  T-B,  and 
d-N trends (table 2) and median group values of T ,  d,  and K (table 3) reveal an 
important pitfall: the exact estimates of grand trends across the plant kingdom or 
the results of comparisons between plant groups are fairly sensitive to the sample 
of stands used. It is important to consider this sensitivity and avoid unwarranted 
overinterpretation of exact estimates from a particular data base, even if the data 
base contains hundreds of stands. For example, the -0.49 slope of the inter- 
specific relationship estimated from Gorham's data for 65 plant stands gave a 
nearly ideal agreement with the hypothetical - Y2 value, but the subset of 19 
stands that also reported height measurements gave a less ideal slope of -0.43. 
The nearly exact agreement of -0.49 with - Y2 may have been an accident of 
sampling rather than a reproducible description of the interspecific trend. For my 
data, the interspecific slope was significantly shallower than - Y2 (table 2). Since 
my data base is larger and more diverse than Gorham's, its shallower interspecific 
slope of -0.33 may be a more representative value than Gorham's -0.49 esti- 
mate. Equation (3) predicts a thinning slope shallower than - Y2 if K decreases 
with increasing size across the plant kingdom. Such a decrease is verified in table 
2, and White (1985) has also observed a decrease in log K with increasing plant 
height. If further analysis confirms that the slope of the interspecific relationship is 
indeed shallower than - %, then the - % slope may not hold even as a coarse- 
grained rule, as proposed by White (1985). It is an interesting comment on the 
history of the thinning "law" that, despite the importance attached to Gorham's 
(1979) results, this study is the first to refit the relationship to a larger, more 
diverse data base. 

Implications for Intraspec8c Self-Thinning Rule 

The interspecific relationship has been interpreted primarily as a facet of the 
self-thinning rule. The existence and slope of the interspecific band have been 
cited as evidence that (1) the model for intraspecific thinning of Yoda et al. (1963) 
also applies to interspecific mass-density relationships (Gorham 1979); (2) the 
same self-thinning law applies across the plant kingdom (Hutchings and Budd 
1981a; Hutchings 1983); (3) the slope and position of the thinning line are insensi- 
tive to plant geometry (Furnas 1981); and (4) the empirical generality of the self- 
thinning rule is beyond question (White 1981). 

The present model and results are useful in understanding the dichotomy 
between the intraspecific thinning trajectory and the interspecific size-density 
band and the resulting problems with the above interpretations. My data base is 
composed of data sets defining intraspecific thinning trajectories for single popula- 
tions that show a significant negative correlation between log B and log N (Weller 
1987~). The thinning slopes differ widely from the idealized - Y2 value and do not 
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support a self-thinning "law" (Weller 1985, 1987a,h). Nevertheless, the ag- 
gregated data still define an interspecific band (fig. 3) because thinning lines of 
very different slopes can fit within a single band if the self-thinning lines span 
realistic ranges of density change (Westoby 1984; Westoby and Howell 1986; 
Weller 1 9 8 7 ~ ) .  Therefore, it has never been justifiable to treat the slope of the 
interspecific relationship as a piece of prima facie evidence for a thinning law. 

Departures of dynamic self-thinning slopes from the slope of the interspecific 
band are consistent with the geometric model. The slope of a thinning line should 
match the slope of the interspecific relationship only if the product ~d changes 
with increasing size in the growing stand in exactly the same way that the product 
~d varies statically with size across the plant kingdom (eq. 3). In fact, since 
dynamic allometry varies considerably among stands (White 1981; Weller 1985, 
19876), thinning slopes should be expected to deviate from the average inter- 
specific slope across the plant kingdom. The interspecific relationship does not 
show that self-thinning lines are insensitive to plant geometry (as claimed by 
Furnas 1981). Instead, the width of the band accommodates considerable varia- 
tion in thinning slopes (Weller 1987a), which reflect real geometric differences 
among self-thinning stands (Weller 19876). 

The Constants K and K 

Many hypotheses about the meaning of the constant K in the dynamic self- 
thinning equation (log B = - YZ log N + log K )  can be more meaningfully applied 
to the constant K of the interspecific relationship. Values of K from different 
thinning lines are not comparable unless the slopes of those lines are identical 
(White and Gould 1965; Westoby 1984; Weller 1985, 1 9 8 7 ~ ;  Zeide 1985). The 
physical units of K also change; K is measured in grams per cubic meter only if the 
thinning slope is exactly - Yz. We can eliminate this problem and more directly 
relate position in the size-density plane to plant dimensions by interpreting K 

values for single crowded stands rather than K values from dynamic thinning 
lines. Unlike K ,  K is not confounded by variation in the thinning slope, subjective 
errors in fitting a thinning line (Mohler et al. 1978; Hutchings and Budd 1981b; 
Weller 1985, 1987a), extrapolation beyond the domain of the data (Westoby 1984; 
Weller 1985, 1987a), or dynamic changes in plant shape (Weller 1987b; Norberg 
1988). Values of K can even be calculated for stands that are not self-thinning, as 
long as the stand is crowded such that N = l la .  

Position in the plane of log B and log N, as measured by K, is related to the 
concentration of mass in space (White 1981, 1985) and another factor (Lonsdale 
and Watkinson 1983), namely, the height-to-width ratio of the exclusive space 
(Norberg 1988). The relationship between K and the biomass per unit of volume is 
not monotonic (see White 1985): a stand with a biomass per unit of volume d lower 
than that of another may actually have a higher value of K if the difference in the 
height-to-width ratio more than offsets the difference in d (fig. 4).  Information on 
the amount of tolerable overlap between the zones of influence of neighbors may 
also be contained in K (and K ;  Weller 1985; Norberg 1988). 

Grasses tend to have higher thinning intercepts ( K )  than dicot herbs, whereas 
conifers have higher intercepts than broad-leaved trees, possibly because plants 
with erect leaves or needles pack more biomass per unit of canopy volume than do 
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broad-leaved species (Lonsdale and Watkinson 1983; Westoby 1984) or because 
of differences in canopy shape (Harper 1977). Since K provides a more direct 
index of position in the plane of log B and log N than does K, it is useful to 
reexamine these comparisons for K. Monocot herbs do have higher K values than 
dicot herbs for two reasons: monocots pack more biomass per unit of volume 
(higher d )  and are more slender (higher T )  (table 3 ;  figs. 1 ,4 ) .  The difference in the 
height-to-width ratio accounts for more of the difference in K than does the 
difference in packing density (fig. 4 ;  see also Givnish 1986; Norberg 1988). For 
trees, conifer stands have higher K values than temperate broad-leaved stands, 
reflecting higher values for both T and d for conifers (table 3).  In this comparison, 
more of the difference in K was due to the difference in biomass per unit of volume 
than to the difference in the height-to-width ratio. In general, trees had lower 
values of biomass per unit of volume than herbaceous plants, possibly because of 
the relatively large amount of unfilled volume often present beneath a forest 
canopy. 

These comparisons of plant groups also illustrate the confounding effect of 
slope on the interpretation of the intraspecific thinning parameter K. Intraspecific 
thinning lines fit to stands in table 1 gave lower average values of log K for 
monocots than for dicots (Weller 1985, 1987a). In contrast, K values were higher 
for monocots, as expected from the higher values of both T and d (table 3).  The 
comparison of K values does not accurately reflect the pattern of difference in 
biomass per unit of volume and height-to-width ratio because the two groups had 
very different median thinning slopes (Weller 1985, 1987a). In comparisons of 
conifers and broad-leaved trees, the differences in K (Weller 1985, 1987a) follow 
the same pattern as K, despite significant differences in thinning slope between the 
groups. Values of K are less confounded by differences in thinning slope in the 
conifer-broad-leaved comparison because the tree data fall near log N = 0 in 
the plane of log B and log N; thus, estimation of the thinning-line intercept at log 
N = 0 requires little extrapolation beyond the domain of the data. Log K provides 
a good estimate of the mean position of the data in the plane of log B and log N. In 
contrast, since crowded stands of monocots and dicots occur at densities several 
orders of magnitude above one plant per square meter, the intercept at log N = 0 
is well outside the domain of the data and differences in thinning slope interact 
with the gross extrapolation to yield confounded K values. 

The Ultimate Thinning Line 

The ultimate thinning line, which describes the maximum average mass possible 
at any plant density, constrains all populations, even those that do not describe a 
classic self-thinning trajectory (Hutchings and Barkham 1976; Hutchings 1979; 
Mook and van der Toorn 1982; Cousens and Hutchings 1983; Pitelka 1984). For 
the equation of this line, Hutchings (1979) proposed log m = - 3/2 log N + 4.3 and 
White (1985) suggested that few plant populations exceed the size-density combi- 
nations defined by log m = - 3/2 log N + 5.0. All of Gorham's stands and 93% of 
mine fall below K = 5.0, confirming that most stands fall below the line log m = 

-3/2 log N + 5.0 (White 1985). However, since some stands do exceed K = 5.0, 
White's value is not a true upper limit. 

The ultimate thinning is simply the upper boundary of the interspecific size- 
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density band. White (1981) stated that the constraint it imposes demonstrates the 
importance of the self-thinning rule, even for species whose stand dynamics do 
not necessarily trace a line of slope - 3/2 in the plane of log m and log N. However, 
we have seen above that the interspecific band and interspecific self-thinning are 
different phenomena and that the interspecific relationship does not support the 
self-thinning rule. In fact, the term "ultimate thinning line" is a misnomer, since 
the existence and meaning of this constraint are most clearly investigated in a 
static, interspecific context, not as a dynamic mortality or "thinning" process. 
The constraint should hold regardless of how growth and mortality proceed in a 
given stand. A stand could approach this line by decreasing in average weight or 
actually increasing the density of individuals per unit of area (Pitelka 1984), rather 
than by undergoing a mortality process as implied by the term "thinning." 

Biological Signijicance of the Interspecijic Relationship 

Five features of the interspecific size-density band require explanation and may 
be of biological importance: the existence of a narrow band, and the linearity, 
slope, width, and position of that band. Crowded stands form a narrow band in the 
plane of log B and log N because the ranges of possible values of the height-to- 
width ratio (7) and the biomass per unit of volume (d) are restricted to biologically 
realistic values and vary much less across the plant kingdom than do density or 
biomass (table 2; fig. 2; Norberg 1988). Thus, the narrowness of the band is 
symptomatic of constraints on T and d. The band is linear because the volumes 
and base areas of geometric objects are related by power functions, which are 
linear after logarithmic transformation. Linearity then reflects the fact that plants 
are geometric objects and is not a symptom of any unique biological properties of 
plants. 

The slope of the interspecific relationship depends on three factors (eq. 4). If the 
ranges of the height-to-width ratio and the biomass per unit of volume are approxi- 
mately constant across the plant kingdom, then the slope of log B versus log N will 
be - % ( - 3/2 in the plane of log m and log N) because the volume of any geometric 
solid is proportional to its base area to the Y2 power. However, if these parameters 
vary systematically across the plant kingdom, then, according to equation (4), the 
interspecific slope will deviate from - Y2. The - Y2 term of equation (4) represents 
a geometric process: the packing of three-dimensional objects onto a two- 
dimensional surface. As such, it is the least interesting component of the slope. 
The deviation from - Y2 is more interesting because it represents systematic 
variations in plant shape or biomass per unit of volume across the plant kingdom. 
Even if the deviation were zero and the slope exactly - Y2, the feature of primary 
biological interest would not be the value - Y2 but the fact that T and d were either 
both roughly constant across the plant kingdom or varied in an exactly compensa- 
tory manner (6 = 24). 

Previous models for the interspecific relationship have not accommodated 
systematic trends in plant form across the plant kingdom. Gorham's (1979) 
isometric model assumes that the mass of a plant is always a function of the cube 
of an underlying linear dimension and can only predict an interspecific slope of 
- Y2. Givnish (1986) derived the - Y2 slope for idealized plants with a massive 
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circular crown supported by a single, central stem. He used the biomechanical 
principle of elastic similarity (McMahon 1973; McMahon and Kronauer 1976) to 
predict how stem mass should increase with height to maintain a margin of safety 
against buckling under the weight of the canopy. His derivation indicates that 
stem mass should be proportional to height cubed, thus supplying biomechanical 
justification for Gorham's assumption of geometric similarity and identifying 
height as the relevant linear dimension. Givnish also cited some evidence that 
plant shape, as measured by the ratio of crown radius to height, is roughly 
constant across the plant kingdom. The - '/2 slope predicted by the models of 
Gorham and Givnish is consistent with Gorham's (1979) data, but not with my 
larger data base (tables 1 ,  2) because neither model accommodates systematic 
trends in height-to-width ratio and biomass per unit of volume across the plant 
kingdom (figs. 1, 2). 

Givnish's (1986) biomechanical model provides a more mechanistic explanation 
of the - Y 2  slope than the Gorham model or equation (3) but suffers from several 
potential limitations. The theory predicts stem mass, not total plant biomass, for 
plants with a massive canopy supported by a single central stem. Therefore, its 
predictions are less relevant to plants that do not fit that structural model, such as 
grasses and some herbs. Since interspecific trends are dominated by the juxtaposi- 
tion of trees and herbs (see the Results), an inclusive explanation must accommo- 
date growth forms relevant for herbs. Even many forest stands do not show the 
predicted relationship m cc H ~ .  Estimates of the exponent in this equation for 
growing stands deviate widely from 3 (Weller 1985, 19876), and interspecific 
powers of 3.7 and 3.5 for my data and Gorham's, respectively, are greater than 3 
(table 2). These observations do not invalidate the biomechanical principles in- 
voked by Givnish, but they suggest that factors other than mechanical stability 
(e.g., root competition; Norberg 1988) also have important effects on the mass- 
height relationships of crowded stands. My results also suggest that it would be 
appropriate to modify the biomechanical model to accommodate observed inter- 
specific trends in plant shape and biomass per unit of volume. 

Norberg (1988) drew somewhat different conclusions about the implications of 
elastic similarity for size-density relationships. In his analysis, elastic similarity 
does not imply a dynamic thinning gradient of slope - ' /2 ,  but rather a variable 
gradient that would increase from - 1 to -0.33 over the life of a stand. For 
interspecific comparisons, Norberg concluded that the elastic-similarity model 
should apply, provided that all the species compared obey the elastic-similarity 
rule and are similar in height-to-width ratio and biomass per unit of volume. 
Equations (2) and (3) show that the latter condition alone would be sufficient to 
yield an interspecific relationship of slope - ' /2 ,  regardless of whether or not all the 
species obey elastic similarity. 

The width and position of the interspecific band reflect biological rather than 
purely geometric properties of plants. The existence of upper and lower limits of 
the band imply fundamental constraints on plant growth and reflect the range of 
solutions that have evolved to meet those constraints. Energetic limits are impor- 
tant, and some of the width of the interspecific size-density band is due to 
variation in light income and its interaction with the canopy and leaf shape 
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(Westoby and Howell 1981; Lonsdale and Watkinson 1982, 1983; Westoby 1984). 
Variation in nutrient availability is also important (Furnas 1981; White 1981; 
Weller 1985, 1987a). Structural requirements must also limit how tall and thin 
plants can become and still remain upright in the face of gravity, wind, and rain 
(Givnish 1986; Norberg 1988). 

Givnish (1986) considered how mechanical constraints, the physical properties 
of plant materials, and constraints on photosynthesis determine the position of 
stands in the size-density plane. In the present context, his results relate to the 
interpretation of my parameter K. Givnish concluded that requirements for struc- 
tural support play a key role in determining K (Givnish 1986) because self-support 
requires the allocation of energy to the construction and maintenance of unpro- 
ductive support tissue and the associated costs increase sharply with height. His 
model predicts that K should decrease with plant height (as in table 2) and increase 
with light and nutrient availability. Givnish suggested that the radius-to-height 
ratio of the canopy (analogous to my T) may be set by selection in order to 
maximize the rate of individual height growth and presumed competitive ability in 
crowded stands, under the biomechanical constraints imposed by the need to 
remain erect. 

Norberg (1988) concluded that variation in the local elevation in the size-density 
plane depends on differences in the height-to-width ratio, the packing density in 
the volume occupied, and the degree of overlap between neighbors, which in turn 
depends on site quality. Norberg listed four universal constraints affecting the 
range of K: the necessity of growing in height to compete for light; demands for 
structural strength against gravity; the necessity to claim ground area from which 
to draw light, water, and nutrients; and shade tolerance, which limits foliage 
packing and tolerable overlap among neighbors. The need for height growth would 
tend to increase the height-to-width ratio (my T), whereas demands for structural 
strength require packing more biomass into the occupied space; both require- 
ments force K upward and define a lower limit of observed K values. In contrast, 
the need to obtain resources decreases the height-to-width ratio, and resources 
and the metabolic cost of maintaining biomass limit packing density, thus tending 
to reduce K and defining its upper limit (Norberg 1988). 

CONCLUSION 

The interspecific size-density relationship remains biologically interesting in its 
own right, but not because its slope supports a self-thinning "law." The existence 
of a single, simple interspecific relationship in spite of the vast differences in 
architecture among plants has been judged remarkable (Gorham 1979). However, 
the interspecific relationship does not exist in spite of architectural diversity but, 
rather, incorporates that diversity as an intrinsic part of the relationship. The 
width of the band represents the complete ranges of values possible in crowded 
plant stands for two architectural parameters, shape and biomass per unit of 
volume, and accommodates a 44-fold variation in 7, 35-fold variation in d, and 
over 1000-fold variation in the product K = ~d (table 1). These ranges and their 
systematic variations across the plant kingdom are the features of the interspecific 
band that have important biological implications and demand biological explana- 
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tions. Our understanding of how basic structural and resource constraints act to 
produce these ranges remains incomplete and presents a fertile field for further 
research, although recent theories have explored some particular constraints 
(Givnish 1986; Norberg 1988). Attention should focus on identifying the energetic 
and structural limits on plants and on understanding how those limits have 
operated over the course of evolution to yield the present range of plant forms 
represented by the interspecific size-density band. 

SUMMARY 

I present a geometric model that explains the interspecific size-density relation- 
ship among crowded plant stands in terms of two descriptors of the volume 
occupied by an average individual in each stand: the density of biomass per unit of 
occupied volume and the ratio of height to base width. The model predicts that 
stand measurements form a linear band when the logarithm of aboveground stand 
biomass is plotted against the logarithm of plant density. The band appears narrow 
because biomass per unit of volume and the ratio of height to width are biologi- 
cally constrained and vary much less than stand biomass or density. In the 
absence of systematic trends in either parameter, simple geometry would fix the 
slope of the band at - Yi. Thus, the extent of deviation from - % is of primary 
biological interest, since that deviation reflects biological trends in plant shape or 
packing density across the plant kingdom. 

Aboveground biomass, density, and height data from 370 plant stands revealed 
systematic trends in both parameters across the plant kingdom. Small plants 
growing at high densities tend to be relatively more slender and to pack more 
biomass per unit of volume than do larger plants in less dense stands. These trends 
relate to differences among plant groups. Herbaceous monocots are more slender 
and pack more biomass per unit of volume than herbaceous dicots, which are in 
turn higher in both measures than trees. As predicted by the model, such trends 
yield an interspecific relationship with a slope shallower than the ideal - '/2 value. 

The interspecific band encloses dynamic self-thinning lines that differ widely in 
slope; therefore, the static and dynamic relationships can be considered indepen- 
dently and are not simply facets of a single thinning "law." Many proposed 
interpretations of the constant in the dynamic self-thinning equation can be more 
clearly applied to a new constant calculated for single stands from the product of 
biomass per unit of volume and the ratio of height to width. 
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APPENDIX 

The 370 stands of my data base are a subset of a data base described elsewhere (Weller 
1985, 1 9 8 7 ~ ) .  Stands for which aboveground biomass was not reported separately from 
total biomass were excluded, as were stands for which stem biomass was reported without 
leaves and branches. Identification (ID) codes (table 1 ;  Weller 19870) are used to identify 
the plant species and literature references for particular data sets within the data base. For 
each data set included in this analysis, three numbers are given below: the ID code; the 
total number of stands with measurements of biomass, density, and height; and the number 
of stands with measurements of biomass and density. The list is in order by plant group and 
ID code (as in Weller 1987a, table A l ) .  The stands for each ID code have also been used to 
fit one or more self-thinning lines for individual populations (Weller 1985, 1987a) and to 
investigate the relationship between the self-thinning slope and the geometry of dynamic 
plant growth (Weller 19876). 

Herbaceous monocots: 86-15115, 38-018, 91-0123, 92-0110, 7-015; herbaceous dicots: 87-121 
12, 43-0136, 89-018, 88- 15/15, 56-011 1 ,  57-0ll3, 28-017, 10-0110, 35-0113; temperate angio- 
sperm trees: 106-818, 13 1-616, 26-0127, 121-818, 123-414, 48-717, 112-313, 104.616, 133-818, 5-01 
4 ,  126-515, 41-015; temperate gymnosperm trees: 19-0126, 119-414, 114-919, 122-515, 137-121 
12, 135-015, 102-919, 80-015; Eucalyptus trees: 116-313; tropical angiosperm trees: 1 1  1-10110, 
1 13-515. 
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