ALCYONARIA OF THE CALIFORNIAN COAST.

By. Charles C. Netting, Professor of Zoology, State I'niversity of Iowa, Iowa City.

The collections upon which this report is based were obtained for the most part by the L. S. Fisheries steamer Albatross while on her cruise ofl the Californian coast during the year 1904. The collections of the University of California also furnished much interesting material. I few species were found in the collection of the Marine Biological Association of San Diego, and others were kindly placed at my disposal by Stanford thiversity. The writer is under great obligation to the management of the Marine Biological Laboratory at La Jolla and the Hopkins Laboratory at Pacific Grove for laboratory facilities and other valued courtesies during the time he was at work on these collections.

Nmost no work had been done on the Aleyonaria of the Califorman coast previous to the summer of 1905 , when the writer was commissioned be the Burean of Fisheries to investigate the alcyonarian fauna of that region.

In 1863 Prof. W. M. Gabb published descriptions of a few species in the Proceedings of the California Academy of Natural Sciences.

From 1864 to 1868 Prof. A. E. Verrill published a number of papers containing descriptions of Aleronaria of the Pacific coast, the most important being a Review of the Corals and Polyps of the West Const of America. ${ }^{a}$ This is an exceedingly important paper, but deals almost exclusively with forms occurring south of the region at present under consideration, and includes descriptions of less than half a dozen species from north of Mexico.

In 1902 Dr. Th. Moroff published his Studien über Octocorallien, in which he deseribes three new species of pennatulids ${ }^{b}$ from the Californian coast.

Aside from a few scattering references, the above are all of the papers that I have been able to find dealing with the Alcyonaria of

[^0]the region under consideration. This scarcity of literature is probably due to the fact that the region is singularly barren of alcyonarian life so far as the shallow-water fauna is concerned. Quite the contrary is true of the deeper water off the Califormian coast, and it remained for the Fisheries steamer Albatross to demonstrate this fact during the operations of that vessel in 1904, which yielded the greater part of the material upon which the present paper is based.

SYSTEMATIC LIST OF (ALIFORNIAN ALC'YONARIA IN THIS REPORT.
Order ALCYONACEA.
Family ('ornularide.
Telesto rigida. Telesto ambigua.
Sympodium armatum.
Family Alcyonide.
Anthomastus ritteri.
Order PENNATULACEA.
Family Pennatulide.
Pennatula aculeata.
Ptilosarcus quadrangularis.
Halisceptrum čstiferum.
Family Stylatulide.
Stylatula clongata.
Acanthoptilum gracile.
Acanthoptilum pourtalesii.
Acanthoptilum album.
Acanthoptilum sealpelliforme.
Acanthoptilum anmulatum.
Family Virgularide.
Balticina pacifica.
Balticina jinmarchica.
Family Funcelinide.
Funiculina armata.
Halipteris contorta.
Family 心tachyptilide.
stachyptilum superhum.
Stachyptilum quadridentatum.
Family Anthoptilide.
Anthoptilum grandiflorum.
Family (Thellulide.
Umbellula magniflora.
Umbellula huxlcyi.
I'mbellula loma.
Family Protoptilide.
Distichoptitum verrillii.
Family Renillide.
Renilla amethystina.

	Order GORGONA('EA.
	Suborder HIOIASONLA
	Family Pımmonde.
Caligorgia sertosu.	
I'lumarlla lonyispina.	
Elasmogorgin jiliformis.	
Muricella complanata.	
Eımuriera pusilla.	
	Family Pifxatrum.
I'sammogorgia arbuscula.	
I'semmogorgia simpler.	
I'semmogorgit torreyi.	
Isammogorgiu spauldingi.	
	Pamily Gorconmes.
Leptogorgia flora.	
Leptogorgia purpurea.	
Leptogorgiar caryi.	
Stenogorgia kojoidi.	

A glance at the foregoing list shows that the most striking feature of the collection is the mumber and variety of pematulids, there being 20 of these beautiful forms out of a total of 38 alcyonarians.

Remembering the large number of Muricidae and Plexauridae described by Verrill from the west coast south of the United States, it is somewhat surprising that more mumerous representatives of these groups are not included in the present list. This is probably due to the fact, before referred to, that Verrill's material was largely from shallow water, while the present collection was mostly from deep water.

The only alcyonarians that the writer saw in shatlow water while working on that coast were Stylatula gracilis and Renilla amethystina, both pematulids. So far as could be ascertained, no other alcyonarians had been collected from shallow water, either at La Jolla, where the laboratory of the Marine Biologieal Association of San Diego is located, or at Pacific Grove. The coast at both these places is rocky and furnishes many almost ideal habitats for alcyonarian life, and the reason for its almost entire absence is not evident, especially in view of its abundance along the Central American coast.

Bathymetrical and geographical distribution of Californian Alcyonaria.

Name.	Depth.	Geographical distribution.					
		West coast of America.		West Pacific Ocean.	Atlantic Ocean.		
		California to Panama	South America.			West Indies.	Eastern Atlantic Ocean.
Telesto rigida... * Telesto a mbigua	$\begin{array}{r} \text { Fathoms. } \\ \text { 1,675 } \\ 524 \end{array}$						+
Sympodium armatum	1,075					+	
* Anthomastus ritteri. .	231-638						
Pennatula aculeata.	29-1, 100				$+$		
Ptilosarcus quadrangularis	$31-200 ?$ 394						
*Halisceptrum cystiferum Stylatula clongata......	394-609						
?Acanthoptilum gracile	20-59						
Acanthoptilum pourtalesii.	44					$+$	
* Acanthoptilum album il.....	$\begin{array}{r} 40-677 \\ 30-140 \end{array}$						
* A canthoptilum annulatum..	31-291						
* Balticina pacifica.	243-1,083						
Ballicina finmarchica	60-400				$+$		+
* Funicupteris contorta.	$135-638$ $478-600$					+	
Stachyptilum superbum.....	26-524	+	...				
*Stachyptilum quadrideniatum	108-145						
Anthoptilum grandiflosum Umbellula magniflora....	500-734 $334-1,600$				+	$+$	
Unbellula huxleyi....	500-5155			$+$			
* Umbellula loma..	-330						
Distichoptilum verrillii	995-1,573	+					
Renilla amethystina. Caligargia sertosa	$1 \begin{aligned} & 1-6 \\ & 120-1,012 \end{aligned}$	+	$+$				
Plumarclla longispina	191			$+$			
Elasmogorgia filiformis	28-423			$+$			
Muricclla complanata	285-345			+			
* Eumuricca pusilla......	285						
Psammogorgia arbuscula	$12-339$ $447-448$	$+$					
*Psammogorgia torreyi	$147-448$ $26-197$						
*Psammogorgia spauldingi	(?)						
Leptogorgia florx.	(?)-80	+					
Leptogorgia purpurea Leptogargia cary	(?)-41		+		+	+	
* Stenogorgia rofoidi	60-74						

a Shallow water.
[The asterisk (*) indicates a new species.]
The most important fact brought out by the foregoing list is the entire absence of forms known from the American coast north of California. Aside from this purely negative showing, the most striking feature of the list is the remarkable diversity of the derivation of this fauma, its relationships being almost exactly equal in respect to the faumas of the Pacific coast south of California, the Western Pacific, the eastern coast of the United States, and the West Indies.

Another interesting feature is that the relationship with the Atlantic and Parific faunas is almost exactly equal.

The collection is hardly extensive enough to warrant any generalizations, and even if this were not so, this singular equivalence of relationship would signify little beyond the wide distribution of the Alcyonaria in comparatively deep water.

SYSTEMATIC DISCUSSION AND DESCRIPTION OF SPECIES.

Order ALCYONACEA.

Fixed colonial foms without an axis cylinder.

Family CORNUTARID.E.

Polyps with solenia; or branched and bearing lateral buds.

Genus TELESTO.

Axial polyps, from the walls of which hateral polyps hod forth. Walls containing spicules.

TELESTO RIGIDA Wright and Studer.

T'elesto rigida Whent and Stuner, Challenger Reports, the Alcyonaria, ISs9, p. 261.

Base of attachment not present; colony, in typical specimen, 3:3 mm. high; longest branch, 30 mm . average diameter of main stem, 2.5 mm ., widening distally.

The main stem is the elongated body of the parent body wall, from which daughter polyps branch; these also give off buds, making three generations, as it were. The stem and calyces of the daughter polyps are rather faintly corrugated, the corrugations becoming almost obsolete on distal parts of calyces. Margins with S lohes and almost translucent.

The spicules are warty, short spindles, with a few crosses and slender spindles.

Color.-Almost white in specimens preserved in formalin.
Locality.-Station 4222, east point of San Nicholas Island bearing S. $6^{\circ} \mathrm{W} ., 2.5$ miles distant. Depth, 31 fathoms.

There were also two specimens in the collection of the University of California, labeled "Sta. XXI, haul 2, June 20, 1901," ofl' Santa Catalina lsland, 43 fathoms, and "Sta. LXTI-H. I., 50 fathoms, July 17, 1903," from ofl San Diego.

These specimens agree in essential characters with the original description.

In some places the combations in the calyces are well marked, while in others they are almost ohsolete, showing that their presence or absence can hardly he a good specific character.

The Challongor secured this species at Station 71, west of the Azores, at a depth of 1,675 fathoms.

TELESTO AMBIGUA Nutting, new species.
Plate LXXXIV, figs. 1 and 2; Plate XC, fig. 1.
Colony growing from an expanded, more or less membranous base, and forming a tangled mass in which it is difficult to distinguish individual stems; longest stem attaining a height of 19 mm . The stem, or body of the mother polyp, gives off daughter calyces without any regularity whatever. In one case an individual attains a height of about 14 mm . Calycular wall with 8 longitudinal corrugations armed with spicules placed lengthwise, and ending at the margins in 8 rounded points. The corrugations are lighter in color than the intervening spaces, and somewhat broader, giving a decidedly striated appearance to the calycular walls.

The calyces enlarge slightly and gradually toward the margins; and are often curved, when lon. In some cases there are calyces of the third generation.

The polyps are all so retracted that details of their structure can not be ascertained without sectioning.

The spicules are very slender spindles, almost needle like, with their outer surfaces rather closely beset with thorn-like processes. They are most numerous in the longitudinal rugosities on the calycular walls.

Color.-Pale yellowish brown, growing lighter distally; the intervals between the rugosities are greenish.

Type-specimen.-Cat. No. 25421, U.S.N.M.
Locality.-Station 4514, Monterey Bay, Point Pinos light-house bearing S. $39^{\circ} \mathrm{E}$., 10.7 miles distant; 524 fathoms.

Genus SYMPODIUM.

Polyps arising from a thin, leathery membrane, retractile. Spicules small and disk-shaped.

SYMPODIUM ARMATUM Wright and Studer.

Sympodium armatum Wrigit and Stider, Challenger Report, Alcyonaria, 1889. p. 272.

Specimens which agree well with the original description were found at the following stations:

Station 4311, Point Loma light-house bearing N. 32° E., 8.5 miles distant: 110 fathoms.

Station 4515, Monterey Bay, Point Pinos light-house bearing S. $18^{\circ} \mathrm{E} ., 8.1$ miles distant : 495 fathoms.

Challenger Station 56, latitude $30^{\circ} 08^{\prime} 45^{\prime \prime} \mathrm{N}$., longitude $64^{\circ} 59^{\prime} 35^{\prime \prime}$ W.; 1,975 fathoms.

Family ALCYONIDE.

Genus ANTHOMASTUS.

Colony i fleshy rounded head supported by a short thick stem devoid of polyps; polyps large, scattered, and completely retractile; zooids present, seattered between the large polyps.

ANTHOMASTUS RITTERI Nutting, new species.
Plate LXNXIV, fig. 3; Plate XC. fig. シ.
Colony growing from a rounded, expanded, disk-shaped base; stem short and stont, deroid of polyps; head flattened, mushroomshaped, kidney-shaped in longitudinal section. The stem is very rugose in specimens in formalin, livid whitish in color, 52 mm . long, 22 mm . in longest median diameter. The head is 72 mm . long, 57 mm . broad, and 26 mm . deep.

The large polyps are irregularly scattered over the entire head, without any well-marked hare areas, although they are rather sparsely distributed as a rule. The polyps have the body transversely and longitudinally wrinkled; 9 mm . to base of tentacles; tentacles 8 mm . long in specimens preserved in formalin. The polyps are completely retractile, but the rerruce do not close over the retracted polyps, leaving sumken pits about 6 mm . in diameter. The founger polyps are interspersed among the older, but there seems to be no regular intergradation in size between old and young. In smaller specimens, however, this is not the case. The body cavities run down through the stem as in Renilla.

The zooids are distributed densely over the entire surface of the capitulum, covering it with their minute verruce, giving a distinctly granulated appearance to those portions not occupied by the polyps.

The spieules are of three types: 1 . Needle-like forms imbedded in the surface of the capitulum. These are the most abundant. 2. Bar-like forms which are thickly crowded in the pelyp walls. 3. Stars and double stars crowded on the surface of the capitulum between the siphonozooids. The zooids are surrounded by tufts of needle-like spicules.

The color of the polyps is deep crimson red, the lower part of the bodies lighter. The general surface of the capitulum is purplish pink. The stem is livid. One of the naturalists on the Allatross suceinctly described the appearance of this species when he said that it resembled "an carly rose potato stuck full of red cloves."

Type-specimen.--Cat. No. 25.t22, U.S.N.M., Albatross station 445.
Distrihution. -Station 4415, NE, point Santa Barbara Island N. 89° W. 4.7 miles, 438 fathoms; Station 4418 , SW. rock, Santa Barbara Island, N. 8° E. 6.9 miles, 238 fathoms; Station 4423 , E. Point Sun Nicholas Island S. 6° W. 2.5 miles, 216 -389 fathoms;

Station 4429, Gull Island N. 21° W. 2.9 miles, 506-680 fathoms; Station 4461, Point Pinos light-house S. 3° E. 9.3 miles, 28.5-323 fathoms.

This striking species is named in honor of Prof. William E. Ritter, of the University of California.

Order PENNATULACEA.

Colony free, consisting of a central stem, bearing polyps on its distal portion. Polyps either sessile, or borne on lateral leaves. A horny axis usually present. In addition to the polyps, zooids are usually found in this group.

Family PENNATCLIDE.

Colony in the form of a true feather, leaves or pimules large and evident.

> Genus PENNATULA.

Zooids on the ventral side of the rachis only. Spicules scattered over the entire surface, not confined to the borders of the leaves.

PENNATULA ACULEATA Danielssen.
Pennatula aculeata Danielssen, Forh. Vid.-Sel., Christiania, 185̈8, p. 25.
Numerous specimens collected by the Fisheries steamer Albatross seem to be of this exceedingly variable species. The following is a description of a typical colony:

Total length of colony 119 mm ; length of stem 45 mm . Stem distinctly swollen just below the rachis, the fleshy part abruptly pinching out about 7 mm . from the end, leaving bare the homy axis which expands into a terminal, transparent, greatly flattened knob or club. This is probably due to mutilation.

Leaves 23 pairs, the longest 17 mm . long by 3.5 broad, closely approximated.

There are about 10 calyces to each full grown leaf, their margins being surmounted by 8 slender acute points formed mainly by converging spicules.

Zooids densely crowded on the ventro-lateral surface, leaving a broad median band bare. Each zooid is guarded by a stockade of 5 to 10 spicules on its proximal side.

Spicules of the usual pennatulid type, the longest forming the calycular tecth and along the lower edges of the leaves, where they furnish a stifl support. They also form longitudinal bands between adjacent polyps, marking the surface of the leaf.

Color--Kooids deep carmine red, pimme yellow, streaked closely with crimson. Stem and bare portion of rachis dull brownish yellow. The general effect is at chll crimson for the colony as a whole.

Distribution.-Station 4378, Point Loma lighthouse bearing N. 57° E. 11 miles, $458-594$ fathoms: Station 4417, SW. rock, Santa Barbara Island, bearing N. $8^{\circ} \mathrm{W} .6 .3$ miles, 29 fathoms: Station 4425, E. point San Marcos Island bearing S. 7° E. 218 miles, 1,100 fathoms; Station 4432, Brockway's Point, Santa Rosa Island, bearing S. 8 miles, 275-270 fathoms; Station 443:3, Brockway's Point, Santa Rosa lsland, bearing S. 10° E. 7.5 miles, 265-24.3 fathoms; Station 44.36, ILarris Point, San Miguel Island, S. 7° E. 9.8 miles, $271-264$ fathoms.

This species is abundant and widely distributed on our North Atlantic coast, according to Verrill. It is also a common species on the eastern shores of the Atlantic and in the North Sea.

Genus PTILOSARCUS.

Calya with two teeth. Polyps without spicules.

PTILOSARCUS QUADRANGULARIS Moroff.

Plate LAX゙XIV, figs. f-10; Plate LXXXV, figs. 1-11; Plate NC1, ligs. 1-2.
Ptilosarcus quadrangularis Monoff, Zool. Jahrb.. Mbth. Sysi. (ieogr, mud biol. Thicre, IVII, 1902. 1. 385.
A rather small specimen, in ateohol, measures 200 mm. in lengeth. Stem much swollen and longitudinally wrinkled, 93 mm . long and 37 mm . in diameter at widest part, which is about 12 mm . below the rachis. Axis 150 mm . long.

Pinnat $)^{2}$ 2 on each side, the largest being 32 mm . dorso-ventrally, and 25 mm . in greatest width from stem to margin. Polyps in transverse rows on edges of pinna, there being about three rows of so each on a medium-sized leaf. Calyees immersed to their margins, each with a distinctly bimucronate margin.

Zooids: The ventral surface of the rachis is covered with a dense mass of zooids divided by a clearly defined median band. The zooids extend around haterally to the bases of the very short pectuncles on which the pinna are borne.

The spicules are of the recular pematulid type, being long spindles or needles without verruca. They occupy a band on the edyes of the pinnar about 2 to 3 mm . in width.

Color of the above-described specimen, a dult, brownish yellow. The color varies greatly, however, there being some specimens of a bright orange red, and others distinctly violet or even purple in color.

Distribution.-Station 4420, E. point San Nichotas Istand S. $77^{\circ} \mathrm{W}$. 5.7 miles, $3: 32$ fathoms; Station 4422, E. point San Nicholas lstand S. 6° W. 2. 2 miles, 31-32 fathoms; Station 4460 , Monterey Bay, Point Pinos light S. 12° E. 10.5 miles, $52-67$ fathoms.

Numerous specimens are also in the collection of the llopkins Laboratory at Pacific Grove.

Proc. N. M. vol. xxxy- 4

The abundance and excellent state of preservation of the material of this species in the collection of the Hopkins Laboratory at Pacific Grove, and the fact that this material was kindly placed at the disposition of the writer for study, and, so far as necessary, for dissection; together with the typical nature of this pennatulid and the apparent absence of any even fairly complete account of the anatomy of any member of the order published in English, haveinduced the writer to seize the opportunity to make a fairly exhaustive study of this species and a representation of its anatomy by the use of photograplyy.

One of the first facts brought to light in the study of this material is the remarkable variation in size, color, and number of leaves, as is shown in the following table:

Number.	Length in inches.		Number of pairs of leaves	Color.
	Stem.	Rachis.		
No. 1.	10, ${ }^{\frac{1}{2}}$	- ${ }^{18}$	50	Yellowish salmon.
No. 2	${ }^{51}$	$5 \frac{1}{2}$	44	Purplish violet.
No. 3.	3.9 ${ }^{7}$	$8{ }_{5}{ }_{5}$		Salmon.
No. ${ }^{\text {No. }}$	${ }_{11}^{3.9}$	5. ${ }_{\text {7. }}$ 5	42	Violet wash over orange. Salmon yellow.
No. ${ }^{\text {a }}$.	22.5	7.5	52	Do.
No. 7	6. 7	5	53	Do.
No. 8.	5.7	6.4	58	Do.
No. 9.	5. 2	4.2	42	Do.
No. 10.	5. 4	5. 3	39	Do.
No. 11.	7	6. 1	50	Violet wash over orange.
No. 12.	5. 8	6. 5	${ }_{20}$	Purplish violet.
No. 13.	2.2 .6	$\begin{array}{r}1.9 \\ \hline\end{array}$	17	Light corn yellow.

It is evident that the proportionate length of stem to rachis is exceedingly variable, one specimen having a stem 6 inches long and rachis 22.5 inches, while another (No. 7) has the rachis longer than the stem. This is doubtless due to the fact that the stem is composed largely of a tissue that is truly erectile, ${ }^{a}$ so that the length of an individual stem will vary greatly at different times. The method of killing and the state of expansion at death will largely determine the length of the specimen.

The violet color seems, at first sight, to be due to sexual maturity; but there are in the collection of the University of California three specimens taken near Pacific Grove averaging only a little over 2 inches in length, which have but 16 pairs of leaves, and which I can not diflerentiate from this species. Their color is light-pinkish purple, the stem being a dull dark red, but yellow at the end.' Two of these specimens are illustrated by fig. 9 on Plate LXXXIV.

There are two specimens showing irregularities or abnormalities.
No. 7 lats a new leaf intercalated between two old ones, and a small leaf is growing directly from the upper flat surface of a fully-developed ons.

[^1]No. 11 has a number of more or less aborted leaves springing irregularly from the mass of zooids on the ventral side, as shown in Plate LXXXIV, fig. S. The calyces on these aborted leaves appear to be quite normal. In one case there is a single calyx springing from the line of juncture of the leaf base and rachis on the ventral side. All of these abnormalities are on one side of the hare rentral space.

ANATOMICAL STUDY OF SPECIMEN NO. 1.
Stem flabby and much corrugated longitudinally, entarging immodiately below junction with rachis to a diameter of 1.9 inches and narrowing gradually to the proximal end. There is a distinct opening at the lower end.

Axis (dissected out from dorsal side), proximal end 6.7 inches from the proximal end of stem. Axis extends from this point to one 3.2 inches from distal end of feather. The axis is overlaid by a hongitudinal membrane extending across the stem cavity and adherent below to the inner surface of a similar membranous sectum on the ventral side. It is therefore situated in a separate chamber running lengthwise of the feather and adherent to the dorsal and ventral walls of this chamber, which it divides into two lateral halves. This, wheh I will call the "axial chamber," is quite small and inconspiecuous, and might readily be overlooked in certain sections. There is a similar, but larger, longitudinal chamber between the axial chamber and the dorsal wall of the stem, and another which is rentral to the axis. There are thus four chambers in all: The right axial, left axial, dorsal, and ventral.

The dorsal chamber is much the largest, the ventral next in size, and the two axials much smaller. This is the condition in a section near the distal end of the axis. Farther down, where the leaves are best developed, the four chambers change their relative size. Here the dorsal is largest, the two axials next, and the ventral smallest, as shown in the lower section illustrated in fig. 2, Plate LKXXV.

The total length of the axis is 7.9 inches and its greatest diameter 0.14 inch. It is square in section, tapering gradually at each end.

A cross section of the stem just below the rachis, but not below the proximal end of the axis, is shown in the upper left-hand figure in fig. 2, Plate LXXXV. Here the four chambers are almost equal, the axis being approximately in the center.

A similar section taken through the stem below the axis cylinder and about 3.2 inches from the proximal end of the stem is neary round and 1.3 inches in diameter. The wall is about 0.24 inch thick and is bounded by an outer and an inner membrane, as shown in the upper right-hand section in fis. ㄹ, Plate LAXXV. Between these membranes is a resiculated structure, well shown in the photograph. Here the stem cavity is divided by a longitudinal membranous par-
tition into two nearly equal chambers which are roughly half-moon shaped in section. This septum is not perforated, but the walls of the chambers which constitute the inner wall of the stem are marked by rather regularly distributed linear to ovate openings, the longest diameter of which is transverse to the long axis of the stem. These openings, on aceount of their function, may be called stomata. (Plate LXXXV, fig. 3.)

In other sections still nearer the proximal end of the stem it is seen that the membrane dividing the stem cavity into two chambers is really double, the two layers being divaricated at the ends of the partition, the spaces thus bounded by the split ends of the partition and the portion of the inner wall of the stem between them being the muchreduced right and left axial chambers.

A section taken across the rachis above the termination of the axis shows that the chambers are all much reduced in size the partitions between them being thickened into fleshy masses of considerable consistence.

The canals entirely disappear near the end of the rachis, which terminates in a little rounded knob covered at its extremity with a mass of needle-like spicules.

THE LEAVES.

There are about nine pairs of rudimentary leaves below the first pair with developed polyps. The lowest of these is extremely minute and placed on a level with the lowest of the zooids on the dorso-lateral aspect of the rachis. They are edged with a single row of rounded papillæ, which are, in fact, rudimentary calyces.

The smallest papillae are on the inner and the largest on the outer ends of the leaves. At the outer end there is a tendency toward a zigzag arrangement of these papillæ, indicating the incipiency of the formation of two rows.

In the second pair this tendency is still more marked, there being two rather well-defined rows of papillæ extending nearly to the inner ends of the leaves, and at about the sixth pair the rows extend the entire length of the leaf border.

The third leaf has three rows of papilla on its outer side, and these grow more and more complete in successive leaves until on the eighth leaf they extend along the entire border.

The bimucronation of the calyecs appears on the outer part of the seventh leaf, while the tentacles of the polyps appear first on the outer polyps of the ninth pair of leaves. Here the polyps are rosetteshaped, when viewed from above, while on the tenth pair fully developed polyps with normal tentacles are seen.

This pair can thus be considered the first pair of functional leaves. There are about 30 polyps to the row, and the leaf is narrow and scalpelliform.

The twelfth leaf begins to show signs of the frilled border which is characteristic of the species. Beyond this, going upwatd, the leaves increase regularly in size and complexity of frilling, the largest being at about the middle of the rachis. (See Plate LXXXIV, figs. 7 and 8. .)

A trpical, full-sized leaf measures 4.2 inches around the simuations of the polypiferous border, but is only 1.4 inches in greatest lengeth, measured in a straight line, and has io polyps in the onter row, or about 275 to the entire leaf. The writer estimates that there are about 25,000 polyps to the entire colony.

Each leaf nearly meets its fellow on the dorsal side of the rachis, but not on the rentral, as shown in figs. 7 and 8, Plate IAXXIV. The leaves are very dosely set and retain nearly their maximum size to near the distal end of the colony, where they diminish rapidly, forming a rosefte-shaped mass at the apex of the colony, as illustrated in fig. 1, Plate LAXXV.

THE CALYCES

The individual calyx is terete in form, about 3 mm . long, each coaleseing with its meighbors on cither side so that only the magins are exserted. The matgin is omamented with two rounded rather prominent teeth, which are opposite and situated in the upper and lower sides of the margin in the natural position of the leaf. This is well shown in fig. 5 , Plate LXXXV, which is a photograph of the edge of a leaf in a vertical instead of a horizontal position, the camera being forcussed on a single row of calyees, shown to the loft of the figure.

Owing to the erowsling of the calyees it is sometimes diflicult to make out the number and position of the teeth, particularty when the polyps are expanded.

When the polyps are retracted, the teeth are more or less approximated, those from the opposite sides of the margin closing over the calyenlar opening. When the polyps are expanded, the teeth are widely divaricated.

A cross section of a leaf just below the calyces shows that the latter are contimed downerd ber partitions that extend across the leaf, connecting its lower and upper surfaces. It thus comes about that these longitudinal chambers, which are continuous with the body cavities of the polyps, are uniserial, while the polyps on the border are in three and sometimes four series. This appears to be due to the crowding of the polyps which originally are in one row and are thown inte three rows by the fact that the edge of the leaf can not accommodate them in one row. I section taken across this polypiferous border at about the level of the ersophageal tubes of the polyps shows this rery well as will be seen on consulting the upper section of fig. 8 , Plate LAXXV. The middle and lower sections of the same figure show that the chambers which are continuations of the body carities
are in one series, but much narrower than the body cavities shown in the upper section.

The leaf, then, below the polypiferous border, is divided into a great number of quadrangular but narrow chambers, which are parallel to each other and are separated from each other by septa which connect the upper with the lower surfaces of the leaf. The chambers extend from the body cavities of the polyps on the border of the leaf to a semicircular canal yet to be described at the base of the leaf. There is thus a chamber to each polyp, and a careful examination of the sections of the leaf which cut across these chambers will show that each of the four sides of the chamber bears the continuations of two mesenteries, each septum between chambers bearing four, or two on each side. As they approach the base of the leaf these chambers become narrower until they are almost linear, and the regularity of the arrangement of the mesenteries becomes deranged. But it is still usually possible to detect eight mesenteries to each chamber.

A section across a leaf of a sexually mature colony will reveal numerous ova or spermaries, all of which seem to be attached to the mesenteries which run down the sides of the partitions between the chambers, as is shown in fig. 9, Plate LXXXV.

The ova do not extend far below the bottoms of the œsophageal tubes, however, and a section near the basal part of a leaf wili be devoid of them.

At the extreme base of each leaf these chambers open into a comparatively large canal that is inside of the leaf where it joins the rachis, and follows the curve of the line of junction of leaf and rachis for most of its length, but finally plunges into the mass of spongy tissue under the rentro-lateral aspect of the rachis and just beneath the mass of zooids. This canal terminates blindly at its other end in the basal portion of the leaf on the dorsal side of the rachis.

Fig. 6, Plate LXXXV, shows a magnified view of the side of a leaf, and the longitudinal markings made by the partitions between the chambers are plainly seen.

These are of the regular alcyonarian type, with 8 fringed tentacles. They are white in color, and are expanded, in formalin specimens, about 4 mm . above the ealycular walls. The polyp mouth is usually transverse to the polypiferous hand of the leaf. Tentacles with about 20 papille on each side.

The mesenteries show plainly through the translucent walls of the polyps. Four of these bear ova and are disposed as described under the head of "Calyces."

There are no spicules, wither in the tentacles or body walls of the polyps.

THE ZOOIDS.
The two zooid bands extend the whole length of the rachis, being over 7 inches long and 0.6 broad at the widest part, narrowing gradually distally, and ending each in a somewhat curved lobe proximally. The mass is swollen and turgid to within about $\frac{1}{2}$ inch of the proximal end, where it is suddenly contracted, the remainder being on a lower level, as seen from the ventral aspect. This proximal area on each hand seems to be occupied by undeveloped zooids, as they are much smaller and less prominent than elsewhere.

The bare streak between the lateral bands of zooids is about half an inch broad at its widest part basally, and becomes almost obliterated distally. Its width and also the extent to which it is depressed between the lateral bands depends largely on the extent to which the rachis is inflated and the method of preparation of the specimen.

Both edges of the lateral bands are perfectly even, straight, and clearly defined. The bands do not reach the leaf bases laterally by about 0.16 of an inch.

The zooids are densely crowded together over the whole surface of the bands, and are greatly distorted by mutual pressure, so that their real shape is hard to ascertain, their outline being as varied as so many cobblestones in a pavement. (Fig. 10, Plate LXXXY.)

In general they present the appearance of conical or dome-shaped papillae, inclined somewhat toward the distal end of the colony and surrounded or partly surrounded by spicules. A terminal mouth is present, but closed so tightly that nothing but a slight depression can be seen. There are no true tentacles, although a scalloped appearance around the periphery of the zooid might suggest them.

Many minute zooids are crowded between the larger ones, as if there were a succession of these structures in various stages of growth; moreover, there are many deep infoldings and convolutions of the surface which bears the zooids, so that many of the hatter are carried some distance below the surface, as is shown by transverse sections of the zooid bands. Such a section, taken across the rachis, shows that the zooids are simple, sac-like boolies with an elongated oval body eavity, the upper portion of the walls being beset with mumerous spicules. The lower end of the body eavity is contimed broadly into a canal which passes downward and opens into one of the numerons camals that are longitudinal to the rachis and form at series the openings of which, in such a section, are reqularly disposed a short distance beneath the zooids. Below this zone of longitudinal camats are seen transverse sections of numerous complicated musele bands which, like the canals, are disposed in a regular zone or layer rumning lengthwise of the rachis.

These muscle bands are the most striking feature of the section, and indicate the most powerful and highly specialized muscles of the
entire colony，their disposition indicating that they serve to power－ fully contract and shorten the rachis．The bands are immersed in connective tissue which is more or less vesicular，containing numer－ ous irregular lacunæ which may be a part of the water－vascular sys－ tem．（Plate XCI，fig．1．）

Intervening between the muscle bands and the lining of the rachis cavity is a mass of spongy tissue and a rather ill－defined layer of circular muscle bands．

To recapitulate．Passing from the surface of the rachis inward we encounter the following structures in regular order：

1．A superficial layer of zooids in longitudinal section，with the whole layer thrown into deep convolutions in places，and numerous spicules cmbedded in the upper parts of their walls．

2．A narrow zone of canals leading downward from the body cavi－ ties of the zooids．

3．A zone occupied by the cross sections of regularly arranged longi－ tudinal canals，separated by partitions of connective tissue．

4．A very conspicuous zone of sections of powerful longitudinal muscles embedded in connective tissue and with numerous lacunr．

5．A zone of loose，spongy tissue，doubtless part of the erectile tissue of the rachis．

6．An inconspicuous layer of circular muscles．
7．The lining of the cavity of the rachis．
A section taken parallel to the surface of the mass of zooids，but deep enough to include the upper part of the oesophageal tubes， shows very plainly the wall of the body cavity，the cight mesenteries in section，the endodermal lining of the œesophageal tubes and a trans－ verse section of the conspicuous siphonoglyphs with a very unusual display of strong，lash－like cilia．For details of this interesting sec－ ion see fig．2，Plate XCI．

Below the osophageal tubes the mesenteries are much reduced， and sometimes entirely wanting．Often one or two can be made out， but this arrangement does not seem to be constant．

> THE CIRCULATORY SYSTEM.

The different parts of the water system have been mentioned in the above account，but not in such a manner as to show their ana－ tomical relations as a whole．

It is possible for water to enter or leave the colony cither through the opening at the distal end of the stem，the mouths of the polyps， or the mouths of the zooids．It seems likely that the extreme disten－ sion of the erectile tissue of the stem is effected by water entering the stem cavity by means of the opening at the end of the stem，and passing into the spongy erectile tissue of the stem walls by means of the＂stomata＂shown in fig．3，Plate LXXXV．Probably this is the
main function of the water system in the stem. Water entering the mouths of the polyps would pass downward into the leaf chambers, which are continuous with the body eavities of the polyps, amd thence into the semicircular canals at the bases of the leaves. These canals conver the water to the spongy tissue immediately under the zooid bands of the rachis. Water entering the mouths of the zooids would be conducted immediately to this spongy tissue of the rachis, which freely communicates with the spongy tisste of the stem. From here it could go into the stem chambers and out through the opening at the end of the stem.

It is quite likely that these currents may be reversed periondically, as is known to be the case in some other coelenterates. The writer was told by one who had observed this species soon after it wat taken and placed in a tank that the stem alternately expanded and contracted by inhaling and exhaling water through the opening at the end of the stem, and that the amount of expansion and contraction was very remarkable. That water is taken in through the mouths of the polyps seems very probable, from what is known of the mamer of feeding of other polyps.

In mosi cases, however, where living polyps have been studied, water is both inhaled and exhated through the polyp mouth.

There is doubtless some special and important function pertaining to the zooids in relation to the water system. The great size and number of the cilia in the siphonoglyphe, the regular series of longitudinal canals immediately beneath the zooid bands, together with the highly specialized longitudinal muscle bands in that region of the rachis, are hiohle signifioment of important servion in the life of the e ' 'or,

The present writer has been umble co tud at satistactory explanawon of these interesting structures, but hopes to renew his investigations with living material at no distant time.

It might be surgested that the contraction of the great longitudinal musele bands would strongly compress the series of longitudinal water tubes by tending to shorten them, and that the water contamed in the canals would find a direct oullet through the mouths of the zooids which would thas serve as excurrent orifices to the eolony.

Jungerson, in his work on the structure and development of Pennutulu thosphoren, gives a view of the circulatory system which aseribes an excurrent function to the zooids, but believes that the water from the polyps passes exclusivety to the dorsal camal in the stem cavity. ${ }^{\text {a }}$ This latter statement will certainly not apply to Ptilosarcus qualrongularis.

[^2]
Genus HALISCEPTRUM.

Pennatulidæ in which the leaves are devoid of spicules.

HALISCEPTRUM CYSTIFERUM, new species.

Plate LXXXVI, fig. 1.
Colony attaining a height of 120 mm . Length of stem to rudimentary leaves 65 mm . The terminal bulb takes the form of a remarkable bladderlike expansion, oval to round in shape, an average one measuring 9 mm . by 6 mm . The bladder is translucent, with fine annular markings produced by muscle bands in its walls. Above this bladderlike structure is another swelling of the stem, such as usually found in this group, about 30 mm . long.

The axis cylinder terminates at about the middle of this swelling, and protrudes considerably above the distal pinne in all of the 13 specimens secured.

The ventral side of the stem has a distinet groove, and the bladder has an internal, longitudinal membranous septum which divides the stem cavity into two chambers, at least in its lower portion.

The pinnæ are very short, and so closely set that the polyps appear at first sight to be attached to the stem direct. There are about 32 pairs, counting the rudimentary ones. The fully developed pinne are nearly crescent-shaped, the concavity embracing the stem.

The polyps are 4 or 5 to each well-developed pinna, large in proportion to size of pinnæ, apparently not completely retractile, ovate in vertical section.

The margins are somewhat inflected and ornamented with 8 lobes. Some of the calyces are much longer than others.

Zooids do not seem to be present in this species.
Spicules are also apparently absent, or they are so small and scattered as to escape observation.

Color.-In alcohol, light buffy brown.
Type-specimen.-Cat. No. 25423, U.S.N.M., Albatross station 4541.
Distribution.-Station 4514, Point Pinos light-house S. 39° E. 10.7 miles, 394-524 fathoms; Station 4541, Point Pinos light-house S. 41° E. 9.3 miles, 609 fathoms.

The distinction between pinnæ and sessile polyps here seems difficult. The pinne might be regarded as groups of adherent, sessile polyps. In this case the species would have to go into another family, probably the Virgularidx, which illustrates the distance which has yet to be traveled before we have a really natural classification of the pennatulids.

Family STYLATULIDE.

Colony long and slender, with small pinnules which are supported beneath by a calcarcous plate composed of fused radiating spicules.

Genus STYLATULA Verrill．

The plate of radiating spicules very large and conspicuous，the ends of the spicules often projecting beyond the borders of the leaves or pinnules．

STYLATULA ELONGATA（Gabb）．
Plate LAXXVI．fig． 2.
Virgularia elongata Gabbs，Proc．Calitornia Acad．Nat．Sci．，I1，1863，p． 167.
Complete colony measuring about 30 em ．in lengtl，terminating basally in a round or oval translucent bulb．

All but a small median ventral strip of the rachis is concealed by the modified leaves with their calyees．The whole colony is almost exactly round in cross section．The axis is central，hard and stony， about 2.5 mm ．in diameter．

The modified leaves closely embrace the rachis to which they are extensively adherent by their inner edges，fitting around it like a col－ lar，and overlapping somewhat on the dorsal side．There are 12－16 stifl calcareous raylike stays projecting directly outward from cach leaf，and extending inward nearly to the axis．They lie on the lower surface of the leaves which they support，are transparent and thorn－ like，and about 3 mm ．in length．

There are about 10 pairs of leaves to the inch，and owing to their unusual position the polyps appear to be arranged in whorls around the rachis．

The polyps are naked，vertical in position，standing on the upper edges of the leaves．They are very closely crowded，so much so that they sometimes appear to be in two ranks．They are really in a single row，however，and there are from 20－24 in each row．The individual polyps are small，tapering considerably at distal end， greatly flattened below by mutual pressure，and about 2 mm ．long．

The zooids are very numerous and papilliform，closely packedner the whole surface of the rachis between the unattached portions of the leaves and the rachis，but not visible without dissection，as they are covered by the closely crowded leaves．

The median ventral strip of the rachis is naked and distinctly grooved．

There are no spicules，unless the thorny stays of the leaves may be called highly modified spicules，which is doubtless the case．

Color．－In life，light grayish brown，the soft swelling above the end bulb salmon color，the polyps white．In alcolol the entire colony is a very light brown，almost white．

Distribution．－Station 4448，Point Pinos light－house S． $26^{\circ} \mathrm{W} .3$ miles， 46 fathoms；Station 4451，Point Pinos light－house S． $23^{\circ} \mathrm{W}$ ． 3.2 miles， $52-54$ fathoms；Station 4491 ，Santa（ru\％light－honse ハ． 51°
W. 5.8 miles, 20 fathoms; Station 4520, Point Pinos light-house S. 28° W. 11.2 miles, 44 fathoms; Station 4562, Santa Cruz lighthouse N. 72° W. S. 1 miles, 10 fathoms. All of these stations are in Monterey Bay.

Numerous specimens were found by collectors from the San Diego Marine Biologieal Association laboratory in Whalers Bight, San Diego Bay. They were growing deeply immersed in the mud. Verrill's specimens were from Panama and Cape St. Lucas.

Other specimens are from Sausalito, California.
Verrill regards this species of Gabb's as identical with his own Stylatula elongata; the priority, however, belongs to the species named by Gabb.

For the somewhat confusing synonymy of this species, see Verrill. ${ }^{*}$

Genus ACANTHOPTlLUM Kölliker.

Colony very slender, with small, closely crowded leaves. Stem with an end bulb, and usually another swelling above this. A comparatively small plate of spicules under the base of each leaf. Spicules in catycular walls, with points projecting above the margin of calyces. Stem without radial canals.

Plate LAXXVI, figs. 3 and 4.
Tirgularia gracilis (iabb, Proc. California Acad. Nat. Sci., II, 1863, p. 167.
Colony excessively slender, total length 67 cm . Stem to beginning of rudimentary pimat 10 em . Bulb not much swollen, passing almost insensibly into the swelling above, which is about 10 cm . long. A ventral median groove is often found passing along the whole rachis `ut this feature is not constant.

Pimate excessivety numerous and closely approximated, short: the full-grown ones being 8 mm . long by $2 \frac{1}{2} \mathrm{~mm}$. broad.

Calyees short, 8 or 9 to each fully-developed pinna, each surrounded by a border of \& rather blunt points, oval in section, greater diameter transverse to the pinna owing to the crowding of the polyps.

The polyps are retractile, although most of them are partially expanded in alcoholic specimens.

Zooids in groups of 6 to 12 on lateral sides of rachis between adjacent pimm. They are more prominent than usual, showing plainly the central depression surrounded by an clevated ring.
spicules of the ordinary pennatutid type. They are mostly needlelike, practically colorless in aleeholic specimens, having but a slight yellowish tinge. There is a pateh of comparatively large spicules supporting the base of each pinna on the under side. The spicules are very sparsely distributed or absent on the stem and rachis. There are \& longitudinal hands of spicules in calycular watls.

Color.-In alcohol, a light tan brown. The swelling above the end bulb is dull purplish brown.

Distribution.-All in Bay of Monterey. Station 4464, Point Pinos light-house S. 29° W. 7.6 miles, 31-32 fathoms; Station 4492, Santa Cruz light-house N. $54^{\circ} \mathrm{W} .7$ miles, 26 fathoms; Station 4550 , Point Pinos light-house S. 6° E. 4.6 miles, $50-57$ fathoms: Station 4.5 .56 , Point Pinos light-house S. 7° E. 3.7 miles, 56-59 fathoms; Station 4557 , Point Pinos light-house S. $25^{\circ} \mathrm{W} .3 .1$ miles, $533-5+$ fathoms; Station 4558, Point Pinos light-house S. $79^{\circ} \mathrm{W} .2$ miles, $28-40$ fathoms.

The original specimens were from the Bay of Monterey, 20 fathoms.
In lis discussion of this species, which he ascribes to the genus Stylatula, Verrill expresses a doubt as to its belonging to this gemus at all. ${ }^{a}$ The specimens collected by the Fisheries steamer Albatross agree quite well with the original description of Tirgularia gracilis Gabb, and this, together with the fact that the locality is the same and the species evidently abundant at moderate depths in the Bay of Monterey, makes it quite likely that the species is correctly identified as Virgularia gracilis Gabb, which now goes into the genus Acanthoptilum.

? ACANTHOPTILUM POURTALESIl Kölliker.

Acanthoptilum pourtalesii Kölliker, Anat. Syst. Bes. Alcyonarien, Pt. 1, Die Pennatuliden, 1872, p. 231.
A specimen, without label, agrees closely with Kölliker's description, except that the spicules of the stem are not "biscuit-shaped" but of the usual rod-like type.

A very young specimen, apparently of this species, from the collection of the Cniversity of California from San Diego Bay, shallow water, has the leaves much more widely separated than the other.

The original specimens described by Kölliker were secured off the Florida reefs at depths of from 12 to 44 fathoms.

ACANTHOPTILUM ALBUM, new species.
Plate 1AXXV1, ligis. is s.
Colony very slender, attaining a height of abont 225 mm . Stem to rudimentary leaves about 87 mm . Terminal bulb not well marked, and about an inch above it is a slight swelling.

Pinna, including the rudimentary ones, about 75 pairs, 4 mm . long, regularl! curving, without any twist.

Polyps apparently nonretractile, the lobular fringed tentacles becing quite well expanded in alcoholic specimens, 4 or 5 to cach pima. The calyces are much reduced in size and quite soft, with an S-lobed

[^3]margin that is not usually well defined. The distal calyx on each leaf is produced into a point extending beyond the expanded polyp.

Zooids apparently wanting on both dorsal and ventral surfaces of the rachis, and reduced to short rows of three each between adjacent pinnæ. They are quite inconspicuous, and might readily be overlooked, being indicated in superficial view by nothing save the small groups of colorless spicules by which they are surrounded.

The spicules are colorless, of the ordinary pennatulid type, very sparsely distributed in calycular walls. There is a group of larger, spindle-shaped spicules beneath the origin of each pinna. Smaller, rod-like forms are distributed over the surface of the rachis and stem.

Color.-White, in preserved specimens, with the exception of a purple spot about 10 mm . long on the swelling above the terminal bulb.

Type-specimen.-Cat. No. 25424, U.S.N.M., Albatross Station 4473 (See below).

Distribution.-Station 4439, Point Pinos light-house S. 38° E. 6 miles, 42-40 fathoms; Station 4445, Point Pinos light-house S. 13° E. 6 miles, 66-60 fathoms; Station 4446, Point Pinos light-house S. 2° W. 5 miles, 59-52 fathoms; Station 4453, Point Pinos light-house S. 17° W. 2.3 miles, 49-51 fathoms; Station 4454, Point Pinos lighthouse S. 13° E. 8.3 miles, $71-65$ fathoms; Station ${ }^{\circ} 4457$, Point Pinos light-house S. 21° W. 6.1 miles, $46-40$ fathoms; Station 4460, Point Pinos light-house S. 12° E. 10.8 miles, $55-67$ fathoms; Station 4473, Point Pinos light-house S. 15° E. 2.8 miles, $59-65$ fathoms; Station 4482, Santa Cruz light-house N. 39° W. 8.7 miles, 43-44 fathoms.

ACANTHOPTILUM SCALPELLIFORME Moroff.

Plate LXXXVI, figs. 9 and 10.
Acanthoptilum scalpelliformis Mororf, Zool. Jahrb., Abth. Syst. Geog. und Biol. Thiere, XVII, 1902, p. 394.

An exceedingly attenuate form with true pinne. Length 97.5 cm ., length of stem to first rudimentary pinne 262 mm . Pinnæ very numerous, short, well separated, 3.5 mm . long by 1.5 mm . broad at the base.

Polyps 7 or 8 to each fully developed pinna, uniserial, the last or distal one on each pinna being widely separated from the next.

In the stem the bulb passes insensibly into the swelling, the two together being 135 mm . long.

The zooids are in lateral rows joining the bases of the pimme, about. 8 in a row. Sometimes the rows are partially double. The zooids are indieated by round white dots more or less completely surrounded by spicules.

The spicules are purplish pink in color, of two types: 1. Needleshaped forms situated on the upper parts of the calycular walls on the side toward which the pinme are directed. 2. Long, bar-shaped spicules on the lower calycular walls, sides of pimat and on the rachis. They are often aggregated in lines on the pima, making radiating streaks. They also form patches on the under surfaces of the pinnae hases.

Color.-In fresh specimens the pinne are purplish; stem, upper part of bulb whitish; swelling pinkish shading to deep purple in the middle part. Ventral part of rachis nearly white.

Locality.-University of Californial Station 956, 30-140 fathoms, off La Jolla, California.

ACANTHOPTILUM ANNULATUM, new species.

Plate LAXX1'1, figs. 11-13.
Colony very slender. Length about 156 mm .; stem 68 mm . There are about 170 pairs of pinna, counting the rudimentary ones. Full grown pinnax 5 mm . long by 1.5 mm .

Polyps usually with 6 calyces to each well-developed pinna. Each calycular margin is armed with 8 moderately acute points, composed of ecenenchyma reenforced by a few spicules. The longest (distal) polyps are about 2 mm . long to margin of calyx.

The zooids are in groups of 3 to 8 , laterally placed, between adjacent pimne. They are sometimes in a single row and sometimes in a double row.

The spicules are carmine pink in color, short rods with rounded ends, quite small. They are arranged in 8 longitudinal lines in the calycular walls, the lines ending in the points around the margin. These lines also extend downward between the extensions of the borly cavities of the polyps, or on the lines which indicate the partitions between the latter, so as to constitute superficial markings on the surfaces of the leaves, these markings radiating from the base to the border of each leaf. The under part of each leaf is marked at its base by a distinct patch of demsely agreregated spicules, bright carmine in color. These series of brightly colored spots, one on each side of the raehis, give an amulated appearance to the colony in side view and suggested the specific name " annulatum."

The spicutes are generally distributed over the stem and rachis, but are lese comspicuous on the former on aceome of the thickness of the ectoxlermal eovering.

Color. - The general color of the colone is pink, owing to the comhination of carmine spimules amd white cornosare. The middle part of the stem is purplish, the bisal pare being light pink, and the bulb whitish.

Type-specimen.-Cat. No. 25425 , LT.S.N.M.

Distribution.-Station 4420, E. point San Nicholas Island S. $77^{\circ} \mathrm{W}$. 5.7 miles, 33-32 fathoms (type-locality) ; Station 4421, E. point San Nieholas Island N. 26° W. 3.8 miles, 291-229 fathoms; Station 4422, E. point San Nicholas Island S. $6^{\circ} \mathrm{W} .2 .5$ miles, $31-32$ fathoms.

Family VIRGULARID.※.

Colony long and slender; leaves short, sometimes reduced to a mere band of polyps, and without a plate of mosdified or aggregated spicules supporting their bases.

Genus BALTICINA.
Stem short and thick, rachis proportionately very long, pinnae reduced to band-like rows of ealyees. There are spicules in the tentacles of the polyps.

BALTICINA PACIFICA, new species.

Plate LXXXVII, figs. 1 and 2.
A typical specimen measures 97.5 cm . in total length; the stem to the first rudimentary polyps 93 mm .; buib) 25 mm . long; swelling above bulb 75 mm . long.

The axis cylinder is very strong and hard, reaching to the end bull. There are 114 rows of polyps, with 2 to 5 in each row, the polyps being elosely appressed to each other. The rows are 5 to 8 mm . apart, measured on the dorso-lateral side.

The ealyces decrease in size regularly from the first (ventral) to the last in each row. Each ealyx has two broad conspicuous thorny spines on its lower margin, the outer spine being the larger. The first and largest calyx is 4 mm . high to tip of spine, and 2.5 mm . wide near the base.

The polyps appear to be nonretractile, and are of the usual aleyonarian type. The tentacles are long, and their outer surface is covered with spicules. There are also a few spicules on the body walls.

The zooids are in groups of 15 to 20 between the rows of polyps. These groups show a tendency in places to an arrangement in two or three rows. The zooids are umprotected by spieules, and appear as simple rounded gramules. There are a few seattered zooids on the dorsal surface, usually contimous with the rows spoken of above.

The spicules are bar-shaped, and apparently confined to the ealyces and polyps. They are most conspicuous in the ealyces, where they converge to form the marginal spines. There are a few tramsverse rows on the polyp walls. They are diagonally arranged on tentacular bases and longitudinally disposed on the rest of the outer surfaces of the tentacles. The spieules are much more aboudant on the sides of the polyps that are nearest the calyeular spines.

The color of the polyps and calyes is chocolate brown, the swelling yedlowish brown, and the end bull) dark reddish brown.

Type-specimen.-Cat. No. 25426, U.S.N.M.
Distribution.-Station 4.326 , soledad Hill. Point La Jolla, S. $59^{\circ} \mathrm{E}$. 5. 6 miles, $28(0-2.23$ fathoms; Station 43333, Point Lomat light-house ‥ 27° E. 12.2 miles, 301 fathoms; Station 443:3, Brockway Point,
 4.513, Point Pinos light-honses. 31° E. 9.3 miles, tish-3s9 fathoms; Station 4516. Point Pinos light-house S. 49° E. 12.5 miles, 756 fathoms; Station 4537, Point Pinos lighthouse S. it ${ }^{\circ}$ E. i. 4 miles,
 miles, sit-79.5 fathoms: Station $4.54 \overline{7}$. Point Pinos lighthouse S. $\because 2^{\circ}$ E. 10.5 miles, 1 , (0s3 fathoms (type-locality).

Hasing examined a large number of specimens of this species from the Califomian coast, and having found them constant in having not more than 5 polyps to each leaf (instead of from 8 to 15 as described by Kölliker), a lave conchuded that the species is clearly distinct and given it the name Balticinu pacifica.

Paromariu culifornicu Moroff ${ }^{b}$ is deserthed as having polyps without spicules, whike P^{\prime}. dofleini Moroff has 11-14 polyps to the leaf, with no spicules in the tentacles.

BALTICINA FINMARCHICA Sars).

Tïrgelaria finmarchica Sars. Fanmal Lit. Norvegie, II, 1s50, p. 6S.

In the collection at Stanford University there are a series of six specimens wheh were orginally taken near Pacific Grove, Califormia, by Chinese fishermen, who secoured them on their trawls in deep water. These specimens apparently belong to this species. They are much macerated and their characters ate dillieull to make out with certainty. Ther differ from the preceding species, Balticina pacifica, in having $12-1: 5$ calyces to a row and in less prominent calycular teeth.

The upper part of the rachis has anemones attached, each with a ring-like stohon clasping the rachis, exactly as described by Verrills

Two other specimens in the same collection which are labeled " Virmilliu blakif, Bamracuda Inlet, British Columbia," do mot seem to be fairly separalde from this species. They are very large, one of them being in inches long: the stem to rudimentary leare 12 inches long: terminal bulb is inches long. The calyees are in wows of 7 to 10. Ther are longe terete: margins with two low and incon-

[^4]spicuous teeth. The zooids are in rows, usually of 3 , on each side of the bare middle space on the dorsal side of the rachis. On the ventral side there are two lateral rows of zooids which are somewhat broken and irregular, there being a tendency toward the formation of double rows extending down the whole length of the rachis and stem to the end bulb.

These specimens are preserved in glycerin, and the spicules seem to have largely been dissolved.

The name Verrillia was proposed by Stearns as a subgeneric designation based on the species named originally Pavonaria blakei by the same author. ${ }^{a}$ Later Verrill republished Stearns's original description, a very complete one, loy the way, and adds, in a footnote: "A recent examination of a specimen convinces me that this species is most nearly allied to the Halipteris christri, and probably ought to be referred to this genus." ${ }^{\text {b }}$

The present writer having compared the careful description of Stearns with his own description of the specimens at Stanford University finds that the two agree quite closely. These specimens, however, can not be placed in Kölliker's genus Halipteris because the polyps are placed on rudimentary band-like pinno, instead of being seated directly on the rachis as in the original description of the genus. They can be placed, however, in Kölliker's genus Paronaria, which Verrill has shown to be a synonym of the genus Balticina Gray. ${ }^{\text {c }}$ If the species under consideration is a ralid one it should be called Balticina blakei (Stearns).

As indicated above, however, I am of the opinion that the Stanford specimens belong to the well-known species Balticina finmarchica (Sers).

Family FUNICULINIDE.

Polyps sessile, free, arranged in rows on sides of rachis and provided with calyces.

Genus FUNICULINA.

Calyces with 8 teeth and spicules in 8 vertical bands. Zooids dorsal.

> FUNICULINA ARMATA Verrill.

Funiculina armata Verrile, Amer. Journ. Sci. and Arts, NYII, 1879, p. 240.
Largest colony about 45 cm . long. The axis is distinetly quadrangular in section, and the end bulb is scarcely distinguished from the rest of the stem, the termination being curved and pointed.

[^5]The ealyces are as deseribed by Verrill, irregularly distributed on the rachis, the rows or ranks being scarcely differentiated. The calyces are usually more expanded at the top than is indicated by Verrill's figure, but some of them have the same outline. The amount of expansion seems to depend on the stage of retraction of the polyp.

The zooids are relatively the most prominent that I have seen. They extend down on the dorsal side of the stem some distance below the rachis and within about 75 mm . of the end.

The spicules are long slender needles, forming 8 longitudinal ribs on the calycular walls and projecting decidedly from the marginal teeth. They are also thickly distributed lengthwise on the rachis, although they are sparse or wanting on the stem, where the spicules, when present, are more rod-like.

Color.- The polyps are dark brown, the stem and rachis being lighter.

Distribution.-Station 4400, $30^{\circ} 50^{\prime} 20^{\prime \prime} \mathrm{N} ., 118^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{W}$., 500 fathoms: Station 4407, SE. point Santa Catalina Island N. $19^{\circ} 30^{\prime}$ E., 3.2 miles, $334-478$ fathoms; Station 4415 , NE. point Santa C'atalina Island N. $89^{\circ} \mathrm{W}$. 8.6 miles, 638 fathoms.

Also U. S. Fish Commision Stations SS0 and S81, 262-325 fathoms; off Sable Island, Nova Scotia, 300-400 fathoms; Blake stations, of Santa Cruz, 135-500 fathoms; off Guadeloupe, 163 and 769 fathoms.

Genus HALIPTERIS.

Calyces with 2 to 4 teeth; zooids lateral.

HALIPTERIS CONTORTA, new species.

Plate LXXXVI, figs. 3 and 4.

Colony much distorted, about 75 mm . long; stem 12.5 mm ., round. Bulb not distinet.

Polyps arranged in rows of 5 or 6 , passing obliquely from ventral to dorsal surface on both sides, forming erescentic rows. The calyees decrease in size from lateral to dorsal, the mid-dorsal being the smallest and measuring but 1.5 mm . in height. The rows are closely crowded together, leaving no lateral or dorsal surface of rachis free, except where the ealyces are disturbed.

Calyces with margins armed with 4 rather blunt teeth, 2 of which are much larger and more pointed than the others. The smaller teeth are often so inconspicuous that they might well be overlooked and the ealyces be described as having but 2 teeth. On the lower part of the rachis there is a short row of rudimentary polyps or calyces on the dorsal side of the stem.

The polyps are entirely retractile, and their tentacles are without spicules.

Zooids are seen in a few lateral groups of 4 to 6 between the ealyces. There are also a few scattered zooids on the dorsal surface.

The spicules are needle-like, small, eolorless, and arranged longitudinally in calycular walls. Elsewhere they are variously distributed, sparsely scattered on the stem, and apparently absent from the dorsal band of the rachis.

Type-specimen.-Cat. No. 25427, U.S.N.M.
Distribution.-Station 4409, SE. Point Santa Catalina Island SW. 2.1 miles, $88-52$ fathoms.

> Family STACHYPTILIDE.

Calyees present. free, zooids ventral.

Genus STACHYPTILUM.

Polyps in rows of four on each side of the median dorsal line; calyces with broad vertieal bands of spicules; zooids dorsal, ventral, and lateral.

STACHYPTILUM SUPERBUM Studer.

Plate XXXVII, figs. 5 and 6.
Stachyptilum superbum Studer, Bull. Mus. Comp. Zool., XXY, No. 5, 1894, p. 56.

Length of colony 175 mm .; stem 81 mm . Terminal bulb soft, slender, wrinkled. There is a slight swelling above the bulb. The ventral surface of the rachis has a deep, even, undulating groove.

Polyps almost surrounding the rachis. Calyces in 4 rows forming oblique series. They are terete in form, rather slender, 3.5 to 5 mm . long by 1.25 mm . broad.

The outer side of calycular wall is much the longer, the inner being almost obliterated, owing to its adherence to the rachis. Margin armed with a varying number of jagged slender teeth, including spicules. Sometimes there are but two very conspicuous teeth, at whers four, or even eight; but four is the most common number. two larger and two smaller.

The zooids appear as well-defined brownish dots, a row on either side of the ventral groove being particularly conspicuous on distal parts of the colony. In many places this row is reenforeed by a patch of several rows of lateral zooids. The zonids are also rather mumerons between the calyces on the dorsal side of the rachis.

The spicules are large and needle-like, placed longitudinally on the walls of the calyes, although they are often more or less oblique. The ventral furrow is devoid of spicules, in marked contrast to the rest of the rathis. Spicules are also apparently lacking in the stem.

Color.--In alcohol, dull brown, the stem and lower part of the rachis being light yellowish brown.

Distribution. -Station 4427, Point San Pedro, Santa Cruz Istand, N. 35° E. 7 miles, 447 fathoms; Station 4433°, Brockway Point, Santa Rosa Island, S. S miles, 3 it fathoms; Station 4422 , Point Pinos light-house S. 67° W. 4.6 miles, $26-31$ fathoms: Station 4435 , Harris Point, San Niguel Lstand, S. $13^{\circ} \mathrm{W}$. 7.7 miles, $287-2$ it fathoms; Station tist4, Point Pinos lighthouse S. 39° K. 10.7 miles, 52I fathoms.

Type-locality.-Station 3389, latitudr $7^{\circ} 16^{\prime}$ to" N.. longitude $79^{\circ} 56^{\prime} 30^{\prime \prime}$ W', 210 lathoms.

STACHYPTILUM QUADRIDENTATUM, new species.
Plate LXXXVIl, figs, iands
Total lengthof colong : 200 mm. : stem, fix mm. Bulh and swelling almost eontinnous, and now muth expanded. The swelling is quadrangular in seetion.

The polyps are irregutarty placed on the dorsal sturface of the rachis, with a temdency to an arrangement in tramserse rows of three or four. The larger ones are usually laterally placed, and include the smaller ones between their bases, the smaller ones usually being inserted at a higher level than the larger. On the lower portion of the rachis there is a tendency to an arrangement in subopposite pairs; higher up the smaller one or two polyps appear between the larger, while nearer the distal end there are frefuently three larger ones in the oblique series. Here, howewer, the polyps are so crowded that it is dillieult to discem any regularity.

The calyces are rather long, narrowing above, whith the margin bearing four very strong sharp teeth or spines, two larger and two shorter, on its outer side.

Length of calyees to end of longest spines, 3 mm .
The polyps are retractile, and when fully retracted the spines converge, forming a pointed calyx.

There are a few lateral zooids scattered along the sides of the rachis between the polyps, and others between polyps on the dorsal surface. The zooids vary eonsiderally in size, the dorsal ones oftom being the latger.

The spicules are needle-like, arranged longitudinally in calyoular walls, stem, and rachis.

Color--Amost white, in alcohotic specimens.
Type-specimen.-Cat. No. 25t2s, L.S.N.M.
Distribution.-Station 4360, Point Loma lighthomse N: $86^{\circ} 30^{\prime}$ E. 9.4 miles, $108-92$ fathoms (type-locality) : Station 4371, Point Lomat light-house N. 84° E. 9.5 miles, $145-89$ fathoms.

In the collection of the Thiversity of California are several specimens apparently of this species labeled "Juneau, Alaska, dredged 20 fathoms."

Family ANTHOPTILIDÆ.

Polyps free, sessile and without calyces.

Genus ANTHOPTILUM.

Polyps in numerous short rows, large. No streak of undeveloped polyps at lower end of rachis. Zooids dorsal, ventral and lateral. Spicules absent, except at end of stalk.

ANTHOPTILUM GRANDIFLORUM (Verrill).
Anthoptilum grandiflorum Yerrill, Amer. Journ. Sci. and Arts, XXIII, 1882, p. 312 .

Length of longest specimen 80 cm . The sickle-shaped stem is bare of polyps, longitudinally corrugated, and with the end bulb and swelling about equal.

The polyps are in oblique rows, about 8 to a row, maked, transversely corrugated and about 10 mm . long.

The zooids are very numerous, covering all of the rachis but a narrow ventral groove.

Color.-In alcohol the color of the polyps is chocolate brown, while the short stem and bare part of the rachis is very light brown, almost white.

Distribution.-Albatross station $4400,32^{\circ} 51^{\prime} 20^{\prime \prime}$ N., $118^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{W}$., 500 fathoms; Chaflenger station 320, off Buenos Ayres, 600 fathoms; Blake, off the coast of North Carolina, 603-647 fathoms; off Guadeloupe, 730 fathoms.

This magnificent pennatulid was first deseribed by Verrill, under the name Virgularia grandiflora. ${ }^{\text {a }}$ Afterwards it was described by Kölliker in his report on the Pemnatulids of the Challonger expedition, under the name of Anthoptilum thompsoni.

Later Verrill put it in the genus Anthoptilum of Kölliker, when it became Anthoptitum grandiflorum (Verrill).
Family UMBELLLLID.E.

Polyps very large, naked, borne in a cluster at the end of a long slenter stem.

```
                        Genus UMBELLULA.
```

Being the only gemus, its characters are the same as those of the fanily.

UMBELLULA MAGNIFLORA Kölliker.

rombellula magniflora Köllıker, Report Pennatulida, ('hallenger Expr., 1880, p. 24.

A number of specimens apparently belonging to this widely distributed and variable species were dredged by the Fisheries steamer

Albatrose ofl the coast of California. The variation in size of colonies and length and number of polyps is very great. The longest colony is nearly 2 feet in length, while one of the shorter ones is only 11 inches. This latter is in very good state of preservation and serms quite typieal, except, perhaps, in length.

The bulb is $1: \mathrm{mm}$. long; while the swelling above it is 2.5 mm . long. The stem is quadramgrular in secetion.

The polyps are 11 in number. 'The body to base of tentacles is 23 mm . long, cylindrieal and tapering very gradually above. (ireatest diameter 4 mon.. least diameter 2.5 mm . 'Tentacles, in ateohol, 1s mm. long. The body walls are transversely rugose and longitudinally marked hy the mesenteries.

The swelling oi the rachis below the polyps tapers gradually matil it merges with the stem 23 mm . below the polyps.

The zoobls cover the entire surface of the rachis below the polyps, except on small V-shaped hare spaces below the polyp bases. There is alko a definite pateh of zoolds in the center of the disk, encircled by the polyps. The zooids are provided with single, finger-like tentarles.

The spieules are apparently wanting.
Color.-The polyps are momer brown, the tentacles being more reddish. The stem is light brown, often darkening at the bulb and swolling.

Mistribution.-Station 4399, $32^{\circ} 44^{\prime} .50^{\prime \prime}$ N., $117^{\circ} 48^{\prime} 45^{\prime \prime}$ W., 245 fathoms: Station 440 . SE. Point Santa Catalina Island N. $19^{\circ} 30^{\prime} \mathrm{E} \AA$ 3.2 miles. 334 fathoms: Station 445 , NE. Point Santa Barbara Skand N. s! $)^{\circ}$ W. 4.7 miles, 438 fathoms: Station 4423 , E. Point San Nicholas Island S. \quad. 6 miles, $339-216$ fathoms.

Studer considers that this species is identical with Cmbellula encrimus (Limmens), and if he is correed in following Ciriega in this matter the distribution of the speries should be extended to the North Atlantic, and should include Station 3410 , latitude $0^{\circ} 10^{\prime} \mathrm{N}$. . longitude $90^{\circ} 34^{\prime} \mathrm{W} ., 331$ fathoms.

The type was seeured by the Challenger from south of 'Tokyon, dapan, from a depth of ofis fathoms.

UMBELLULA HUXLEYI Kölliker.
C'mbellula huxleyi K̈̈̈ltiker, Reporı Pematulida, Challenger Exp., 1sion, p. 21.
A specimen from Station 4400 agrees very well with Köllikers description, except that the polyps are not distinctly eorrugated, and that the tentacles of the zooids are well developed.
 fathoms.

[^6]The type wats secured by the Challenyer, Station 147, South Sea, east of Kerguelen Island, 1,000 fathoms.

UMBELLULA LOMA, new species.

Plate LAXXVII, fig. 9.
Total length of colony 20 cm . Terminal bulb and swelling confluent. Stem quadrangular in section, in places greatly flattened; greatest diameter, 2.5 mm . to 4 mm . ; least diameter below rachis, 1 mm . The axis ends in the base of the central polyp. The stem passes insensibly into the rachis, and the latter gradually broadens from proximal to distal ends, where it is somewhat flattened.

Polyps, in full-grown specimens, 10 in number, the arrangement being such that 9 surround a central one. Polyp borly 10 mm . long, tentacles 13 mm . The basal part of polyps is swollen, and its walls are both longitudinally and transversely corrugated.

The zooids cover the exposed portion of the rachis and are scattered over the stem as far as the proximal portion of the swelling, but with a tendency toward leaving a few bare longitudinal lined. The V-shaped bare spaces between the polyp bases, so characteristic of Cmbellula magniflora, are not found in this species. The zooids are usually without tentacles, but a few at the bases of the polyps have a single tentacle, while a few others have two. A small patch of 5 zooids on the dorsal surface between the polyps are entirely without tentacles, as are those on the stem. The zooids also invade the rentral walls of the polyps.

There are a few very minute, irregular spicules on the end bulb, but they appear to be lacking elsewhere.

Color.-Fresh specimens; polyps deep umber brown, tentacles somewhat lighter; stem much lighter brown, but with dark spots on end bulb and swelling.

A cross section of the lower part of the rachis shows the central quadrangular axis and the four longitudinal canals, one being as large as all of the others put together. The canals are divided by longitudinal partitions, and the whole system is surrounded by a membranous envelope. Outside of this are a number of radiating partitions, passing to the outer covering of the stem, and also the tubelike boolies of the zooids, which are continuous with the external portion of the zooids. The mesenteries and mesenterial filaments can be plainly seen.

Locality.-Near San Clemente Island. Taken at a depth of 330 fathoms, by the Loma, a little ressel owned by the Marine Biological Association, of San Diego. The name is given in honor of this exceedingly eflicient little eraft, which has since been wrecked on the point which bears the same name.

This species is nearest $[$. maigniflorm, from which it differs greatly in size and in the character and disposition of the zomids.

Type-specimon.-ln Musem of C'niversity of C'alifornial.

Family PROTOPTH, 1D.た

Polype with ealyees, arranged on bobla side of the rachis in a single series or in indistinct rows.

Genus DISTICHOPTILUM.

Slender forms with the axis extended thronghont. Polyps uniserial, those on opposite sides alternating. Calyere hilohed, appressed. Zooids normally three to cach polyp. Spicules mumerons.

DISTICHOPTILUM VERRILLII Studer.

Phar LAXXVII, fir. 10.

Colony very slender, having a total length of 2.5 mm . The axis extends throughout the stem and rachis, ending below in a thin, cursed, tramsparent bulb, that resembles a maple seed in outline. Distal end of axis bare. Length of stem 50 mm . There is an enlargement about halfway up the stem.

The polyps are in opposite series, hut are imphanted toward the dorsal rather than the ventral side. Callees adherent on their inner side, the outer side being straight and about 2.5 mm . long ame pasiniger insensibly into the rachis. The margin is without regular teeth, although the points of the spicules sometimes project, giving a jagred appearance. In places the polyps are nearly suboposite, and are well toward the domal aspect of the rachis. The pairs of calyees are adnate to cach other be their inner surfaces, and the alternate pairs are rotated to the right and left so that the right-hand polyp of at lower pair is under the line separating the calyees of the pair immediately above.

The zoodids are arranged in sets of three along the outer sides of the calyces, and one or two just above each calyx. They appear as mere openinges, surrounded by a fence of spicules, and are entirely immersed.

The spicules are slender needles, covering the entire surface, exeepting the central dorsal line of the rachis and small areas on the imer sides of calyeular margins.

Color.- In aleohol rery light pink, owing to the spieules. Rachis white, or nearly so. The bulb and swelling are pale sellow:

Distribution.-Etation 43s7, 3220 29' $30^{\prime \prime}$ Ň., $115^{\circ} 05^{\prime}$ W̌., 1,000 fathoms.

The types were taken from Station 3431 , latitude $2: 3^{\circ} 59^{\prime}$ N., longitude $105^{\circ} 40^{\prime} \mathrm{W}$., 995 fathoms, and Station 339 s , latitude $1^{\circ} 0 \bar{a}^{\prime}$ 入... longitude $50^{\circ} 0 \mathfrak{g}^{\prime}{ }^{\circ}$., $1,5-3$ fathoms.

Family RENILLIDE.

Rachis expanded into a flattened, heart-shaped form borne on a short smooth peduncle without axis, and with but two canals. Zooids numerous.

> Genus RENILLA.

The genus, being the only one, has the charactor of the family.

RENILLA AMETHYSTINA Verrill.
Plate LXXXY゙II, fig. 11.
Renilla amethystima \errilu, Bull. Mus. Comp. Zool., 1564, p. 29.
Numerous specimens of this beautiful species were found in shallow water in the bay of San Diego, and were kept alive in the laboratory at La Jolla.

The frond of the living colony has the power of considerable muscular contraction, giving an undulatory motion to the edges. Some of the fully expanded polyps were at least half an inch long. After they are once expanded they are quite sluggish, and will withstand handling without retracting.

Specimens left over night in small dishes of sea water were alive, and expanded readily upon the application of fresh sea water in the morning.

Mistribution-Bay of San Diego, shatlow water; Panama, Pearl 1slands, and the coast of Peru (Verrill).

Order GORGONACEA.

Colonies fixed, with a more or less distinct axis eylinder around which the cortex is disposed. In bramehed forms the axis extends throughout the ramifications.

Saborder HoldixoviA.

Axis cylinder well developed, and never consisting of fused spicules. It is composed of a horny substance more or less calcified, or of alternating homy and homogencous calcareons matter.

> Family PRIMNOHDE.

Polyps with well-developed calyees, retractile tentacles, and an s-parted operenlum composed of modified spicules attached to the calyx. Root calcareous.

Genus CALiGORGIA.

Calyces club-shaped, calyx scales ctenate with radiating ribs. Calyces regularly in wherls of more than three.

CALIGORGIA SERTOSA Wright and Studer.

Caligorgia sertosa Wricirr and Spuber, Challenger Repent, Aleynnaria, Iss9, 1. 77.

An incomplete colony is 260 mm . high, flabellate in form, consisting of a central geniculate stem eriving off regularly alternate hranches at the angles or genieulations. Some of the branches give ofl branchlets in the samo manner.

The axis shows a distinet gohlen irideseence. 'The coenenchyma is thin.

The calyces are amanged in whorls of three to six, by far the most common number being four. In plates there are simply two opposite or subopposite calyers.

They are about 2 mm . in length, and the space between whots is about 1 mm . In form the calyes are exurved spindles, curving from the base outward, upward, and inward so that their apertures are diocened towatd the stem or branch. The margins are eomposed of etenate seales, inside of which are the hases of the 8 opereular scales which form a pyramidal opereulum. The individual opereular seales are long thiangles, somewhat fwisted and bent, and overlapping at the tips when the polyp is fully retracted. The upper whorl of calycular scales are ctenate, with radiating stria, the others show these markings feebly if at all. There are six to nine whorls of seales in the calyees, the most common mumbers being seven or eight.

The spicules are seale-like, flattened, sometimes oblong or fusiform on the stem and branches. They are imbricating and fan-shaped on the collyeular walls.

Color.-In alcohol, lieght tan.
Distribution.-Station 4356 . Point Lomat light-house N. ※2. 30^{\prime} E. 5.9 miles, $120-131$ fathoms: Station 4357. Point Lomal light-
 light-house N. $82^{\circ} 30^{\prime}$ F. S.2 miles, 191 fathoms; station 4386, $30^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{N} ., 118^{\circ} 06^{\prime} 10^{\prime \prime} \mathrm{W}^{\circ}$., 1,012 fathoms: Station t391, $33^{\circ} 02^{\prime} 1.5^{\prime \prime} \mathrm{N} ., 120^{\circ} 36^{\prime} 30^{\prime \prime} \mathrm{W}^{\circ}$, 1,350 fathoms.

The type was secomed by the Challoneter at Station 1902, ofl Ked Iskand, South Pacifie, 140 fathoms.

Genus PLUMARELLA.

Colony fabellatr: calyoes small, celindrical, altmonte and opposite: usually somewhat distant. Caly spicules seale-like, thin, eycloid.

PLUMARELLA LONGISPINA Kinoshita.
Plate LXXXIIll, figs. 1 and 2: Plate XC, fig. : i.
Plumarclla longispina Kınoshita, Journ. Colì. Sci.. Imp. Univ. Tōkyō, 190s, p. It.
Colony, incomplete, flabellate in form, 106 mm . high, and 106 mm . broad. The main stem is somewhat flattened, giving forth alternate main branches at irregular distances, and between the main branches the stem gives forth regularly alternate bramehes that do not subdivide. The main branches subdivide as does the main stem. Calyces strictly alternate to strictly opposite in different parts of the colony, in two opposite series on stem and branches, the top of one ordinarily reaching to the base of the one next above. Aperture pointed upwad and a little outward. Calycular walls armed with conspicuous flattened scale-like spicules which vary greatly in size and in form in different calyces; the typical arrangement being about four whorls, the two proximal whorls being composed of broad eurved scales with their distal convex edges ctenate, and the distal whorl bearing conspicuous thorn-like processes which extend berond the end of the opereulum. These spines are usuatly two to six in number, of which two are often distinctly longer than the others. Sometimes one or two spines are borne on the whorl of scales which lies just below the distal one.

The operculum is composed of eight irregularly shaped seate-like spicules, the points of which are often produced into spine-like processes. The side of the calycular wall next the branch is reduced to a narrow band, the antero-lateral processes from the proximal whonls of spicules being the only ones that meet to complete the whorl on the cauline side. Calyces about 1.5 mm . high to the summit of the operculum.

The spicules are of such varied forms as to defy description. They are all more or less flattened scales, however, the most characteristio being in the form of a flatened basal portion bearing on its distal edge the long thorn-like process that projects alove the calycular margins. Many of the scales are ornamented with a convex ctenate margin. Surfaces of scales ornamented with evenly and closely distributed gramules.

The color of the colony as a whole is light grayish brown, the surfaces of the stem and branches being more distinctly gray.

Locality. Station 4.359, Point Loma light-honse N. 85° E. 9 miles, 191 fathoms. The type was secured from Okinoce Bank, Sagami Sea, 330 fathoms.

Family MCRICEIDE.

Spicules usually projecting from the surfaces of the cornenchyma. A colleret of spindle-shaped spicules below the tentacular hases. An S-rayed opereulum formed be spicules on the tentade bases.

Genus ELASMOGORGIA

Colonies with thin exnenchyma, not profusely branched. Calyes veruciform, their margins infolded over the retacted contades. giving an appearance of insagination to the latter. Spientes spindleshaped with verrueiform projections.

ELASMOGORGIA FILIFORMIS Wright and Studer.

Elasmoyoryin filiformis Wrutur amd Stionere (hallouger Roporl, Aleyomaria, 1859. p. 1:3.3.

The single colony secured has a single whip-like stem with a branch arising near its base. Length 275 mm .

The calyees are very low broad domes or comes, rising but slighty above the general surface on all sides of the stem and branch, separated ly about 3.5 mm ., ovate in cross section, the lomer diameter being parallel with the stem.

The spicules are heary warty spindles, often ome-sided and corered with very jagged rerruca, There are also many smatler spienles, some of which are slender spindles, clubs, cote. The largest spicules scem to be on the stem between the calyese; although they often invade the walls of the latter, where they are usimally of a distinetly more slender type and arranged transersely, forming annulations in wal marking: aromed the margins when riewed from above.

The color of the colong is clear, light gray; axis dark brown
Distribution. Etation 434!, Point Loma light-house NE. (6.5 miles, $\overline{\text { ti }}-134$ fathoms.

The type was taken be the Challenger at Station 1ss. Arafura sea, south of Papua, es fathoms. Another specimen in Chiversity of California coltection, taken off San Pedro, California.

The specimen agrees very well with the origimal deseription.

Genus MURICELLA.

Colony hanched: comenchyma thin. (alyese, short truncator cones projecting at right angles from the branches. spicules large.

MURICELLA COMPLANATA Wright and Studer.
 1. 12:

Colone imperfectly fabellate in form, 1.5 (am, high hy 23.7 (mm . broad. The main stem gives off lateral branches and umdivided branchlets, the former dividing once, twiee, or three times in a pinnate manner.

The polyps are distributed on all sides of the stem and branches, but with a strong tendency to a bilateral arrangement, especially on the ultimate branchlets where they are arranged as in typical species of Leptogorgia. Polyps with a distinct colleret.

The calyces are short truncated cones usually less than 1 mm . high and 2 mm . broad at base, about 1.5 mm . apart and directed at a right angle from the stem.

The spicules are slender, often curved, pointed spindles covered with scattered spinules and nodules. There are a few short stout forms. The spicules of the colleret are conspicuous curved spindles. At the base of each tentacle a few spicules are arranged in chevrons, and beyond these the tentacular spicules are longitudinally disposed in two or more rows. In the calycular walls the general arrangement of spicules is longitudinal, although many are transverse or oblique, as they are on stem and branches.

The color of the colony is reddish brown, the spicules having a slight reddish tinge.

Distribution.-Station 4461, Point Loma light-house S. 3° E. 9.3 miles, 285 fathoms.

The type was secured by the Challenger at Station 232, off Japan, 345 fathoms.

The specimens taken by the Fisheries steamer Albatross differ slightly from the type, particularly in having a well-marked colleret and in the arrangement of the calycular spicules.

Genus EUMURICEA.

Colony branched; calyces verruciform or tubular, showing an S-rayed figure in retraction. Spicules in the form of sharp pointed needles.

Plate LXXXVLII, figs. 3 and 4.
Colony branching in an irregular manner, a little over 37 mm . in height. The main stem gives forth roughly alternate branches at irregular intervals, the two longest being 13 mm . apart, the whole colony being roughly flabellate.

The calyces are on opposite sides of the stem and branches, altermate, 2.5 mm . from summit to summit, forming low rounded domes or cones, 8 -rayed on the summits, about 1 mm . high by 2 mm . broad.

The calyeular walls are covered with very hispid spicules, which have their edges somewhat overlapping and are, in general, disposed transversely rather than otherwise.

The polyps are completely retracted in the specimen secured. Dissection shows that they have the colleret characteristic of this family. The tentacles are heavily armed with large jagred spindle-shaped
spicules, longitudinally arranged, excep under the tentacular bases, where they are in chevrons.

The spicules are exceedingly various in form, but of the usual muriceid type. There are many unsymmetrical spindles with irregular jagged edges and processes. Clubs of various patterns are fairly common, as are small seales with jagred edges, stars, and double stars. The general arrangement of spicules is longitudinal on the stem and branches.

The color of the colony is very light gray or brownish gray: axis horn-color lightening distally:

Type-specimen.-Cat. No. 25430, L'S.N.M.
Locality.-Station 4361, Point Loma light-house s. 3° K. 9.9 miles, 97 fathoms.

Family Plexiltrid.E.

Axis horny, or horny and calcareous, not jointed: conenchyma thick: calyoes often included, placed on all sides of stem am! branches: primary radial canals well defimed.

Genus PSAMMOGORGIA Verrill.

Verrill's original deseription is as follows:
Corallum dichotomous or subpinnate, with round branches. Axis homlike. Conenchyma moderately thick, the suriace finely granulated with rough spicula. Cella seattered, somewhat flat, more frequently raised in the form of rounded verruce.

Polyps with rather large, elongated, slender, warty spindles at the bases of the tentacles. Spicula of the cœonenchyma mostly short, thick, and wery rough, warty spindles, and rough, warty clubs of moderate size."

? PSAMMOGORGIA ARBUSCULA Verrill.

Psammogorgia arbuscula Verrill, Amer. Journ. S'ci., XIV, May, 1869, p. 414.
The largest colony measures 233 mm . long and is mughly flabellate in outline, dividing into two main branches about 37 mm . above the expanded base. These main branches again subdivide two or three times. The branches are of uniform diameter throughout.

The calyces are miformly and thickly seattered throughout the cernenchyma, but are seldom actually contiguous, and are in the form of low verrucar, about 1.5 mm . in diameter.

The polyps are fairly well expanded in specimens preserved in formalin, extending about 1.5 mm . above the calycular margin. There are mumerous warty spicules on the lower part of the boty wall. and a few are placed transwersely below and ower the tentacular bases. They are found sparsely on the tentades.

[^7]The spicules of the eoenenchyma are small warty spindles of various shapes, extremely verrucose. Many of them are double spindles characteristic of this genus.

The spieules on the tentacles and body walls of the polyps are more slender and less warty than the rest.

The color of the colony is bright coral red, probably owing to the color of the spicules. The polyps are white in alcohol or formalin, but may be yellow in life.

Listribution.-Station 4421, E. Point San Nicholas Island N. 20° W. 3.8 miles, 291 fathoms; Station 4423 , E. Point San Nicholas Island S. 7.6 miles, 339 fathoms; Station 4441, Point Pinos light-house N. 87° W. 1.7 miles, 35 fathoms: Station 4451 , Point Pinos light-house S. 23° W. 3.2 miles, 52 fathoms: Station 4543, Point Pinos lighthouse S. 25° E. 5. 4 miles, 93 fathoms; Station 4550, Point Pinos light-house S. 6° E. 4.6 miles, 50 fathoms; Station 4555, Point Pinos light-house S. $63^{\circ} \mathrm{E} .3 .4$ miles, 66 fathoms.

Professor Terrill reports this species from Panama and Pearl Islands, pools at extreme low-water mark, and from the Gulf of Nicoya, where it was taken by divers.

PSAMMOGORGIA SIMPLEX, new species.

Plate LXXXVIII, figs. 5 and 6; Plate X' ${ }^{\circ}$, fig. 4.

Colony straggling, branched slighty or umbranched. Largest speeimens $13 \mathrm{~cm} . \operatorname{long}$. Stem round, slender, of unitorm thickness throughout.

Calyees uniformly distributed. not crowded, often as much as 2 mm. apart, tubular, small, about 1 mm . high, uswally higher than broad.

The polyps have red spindle-shaped spicules in their walls and near aud on the tentacular bases, where they are arranged more or less in chevrons. Otherwise they are longitudinally arranged. The comenrhyma is thin for this genus.

The spieules are mainly of two sorts: 1 . Small double spindles, rosettes, stars, and small chubs. These are found mostly in the superfeial layer of the conenchyma, and are much less numerous than the seeond kind. 2. Larger spindles, slender, pointed, often somewhat curved, covered with regularly distributed veruca. The chobe are much less numerous than the other forms.

Color--Coral red throughout.
T!pes-specimen.-Cat. No. 25481, L.S.N.M.
Localitics. -Station 4416, SWr. Rock, Santa Barbara Island, N. 49° $\mathbb{T} .4 .7$ miles, 448 lathoms; Station 427 , Point San Perlro, Santa ('ru\% Ishand, N. $35^{\circ} \mathrm{F} . \overline{\mathrm{F}}$ miles, 447 fathoms (type-locality).

This species dillers from its allies chiefly in the character of the spieules, the larger ones resembling those found in the genus Muricea.

PSAMMOGORGIA TORREYI, new species.

Colone strictly flabelliform, the branches frequently amastomosing, 150 mm, hagh ber 168 man. broad. Main stem giving forth branches on opposite sides separated by about 7 mm . on the arerage. The whole forms a loose reticulation, almost exactly such as is found in the genus Leptogorgia.

The calyees are in the form of trmeated cones about 1.5 mm . high, and the same in breadth at the base. They are distributed on all sides of the branches about 2.5 mm . apart. In front view they appear to have the arrangement found in the Gorgonida-that is, two opposite rows of calrees-but a closer examination shows the arrangement described above.

The spicules are warty spindles, those on the stem and branches being smaller than those on the ealyees and polyps. The largest appear to be the ones in the polyp walls and basal parts of the tentacles, where they are large, warty, and fusiform, sometimes curved, arranged longitudinally and extend downward in meridianal bands to near the base of the polyps. Occasional chab-shapeed spicules are secm, but nearly all are of the warty fusitorm type.

Color:- Dark, purplish red throughout. Many of them are almost black, in alcolnol.

listribution. Station 4514 , Point Pinosi light-homso S. $39^{\circ} \mathrm{E} .10 .7$ miles, ise fathoms: Station f530, Point Pinos light-house S. is E. $6 . \mathrm{S}^{2}$ miles, 26-2. fathoms (typo-locality); Station 4537, Point Pinos light-house S. 74° E. 7.4 miles, 1066^{2} fathoms; Station 4.56 , Point Pinos lighthouse S. 46° E. S.t miles, st9 fathoms. All of these stations are in Monterey Bay.

Named for Dr. Jarry B. Torrey, Lniversity of California.

PSAMMOGORGIA SPAULDINGI, new species.
Plate LAXXV'll, ligs. 3 and 4 ; Plate Nr', lig. 7.
Colony flabellate in form; branches round in seetion. The manner of ramification is shown well in the photograph. (Plate LXXXTIII, fig. 3.)

Calyees scattered closely and ewonly wor the surface, in the form of very low verruca which are searedy raised above the general surface of the colony:

Polyps completely retractile, with but few spicules and these tending to a dongitudinal arrangement in the body walls in eight rows. These rows sometimes extend part way up the outer sides of the tentacles.

Proc. N. M. yol. $\times x \times y=46$

The spicules are small, short warty spindles and double spindles. They are of small size and exceedingly warty. The spicules in the body walls of the polyps are somewhat longer, more slender spindles, with more delicate points and verruca.

The color of the colony is bright coral red. The polyps, in preserved specimens, are pure white.

Beautifully expanded colonies of this fine species are in the collection at the Hopkins Laboratory, Pacific Grove, California. They were secured in Monterer Bar, but the depth is not indicated.

Type-specimen.-Hopkins Laboratory, Pacific Grove, Califormia.
Named for Mr. M. H. Spaulding, formerly of Stanford University.
Family GORGONID.E.

Colony branched, usually flabellate. Axis horny, or horny and calcareous. Polyps completely retractile and bilaterally disposed. Impressions of the canals evident on the surface of the stem and branches, and bilaterally disposed. (ienenchyma smooth. Spicules small spindles, arranged in one layer.

Genus Leptogorgia Milne Edvards, emended by Verrill.
Colony flabellate, with often more or less anastomosis of the branches. Calyees verrueiform or included, not distributed evenly over the stirface, but leaving a broad band on front of stem and branches bare.

? LEPTOGORGIA FLORÆ Verrill.

Leptogorgia fora Verrill, Trans. Connecticut Acad. Arts and Sci., I, Pt. 2, 1867 10 1871, p. 387.
A large dried specimen in the collection of the University of California is refered with some doubt to this species. It is very much lagere than the type described by Verrill, whieh was about 6 inches high. The specimen before me is over 2 feet high. In detail, however, it agrees fairly well with the orginal description.

The locality is not stated on the label, which, however, gives the depth at so fathoms.

The type was secured hy F. II. Bradley. The species is reported by Verrill as found at Panama and Pearl Islands.

LEPTOGORGIA PURPUREA (Pallas).

Gorgonia purpurea Padas, Elenchus \%oophytorum, 1767, p. 187.
Colony flabellate, 12.5 cm . high by 16.2 cm . broad. Stem irregularly simate, scarcely flattened, 3 mm . broad, giving ofl opposite branches at intervals of 3 to $1: 3 \mathrm{~mm}$. Some of the branches agrain divide once or twice. The terminal branchlets are somewhat flat-
tened, 14 to 5.5 mm . long, 1.5 mm . Wide: somewhat widening at the terminations.

The callees are arranged in two series on cath side of the stem and larger branches and in one series on each side of the terminal branchlets. There are oecasional calyees on the fromt and back of stem and branches. The ealyces are in the form of low rounded wermear, closely crowded, about 1.5 mm, from summit to summit. Margins usually showing a temenency to a bibohed condition when the polyps are almost completely contracted. The ealyees are about ? mm . broad at base and 1 mm . or less ligh.

The polyps are small, with few spicules.
The spicules are of very uniform type, (quite small stont double spindles with crowded verrucar. They are often so stout as to he oval or even round in profile.

Color--Uniformly purplish red.
Distrilution.-Station 4431, Brockway Point, Santa Rosa Island, S. $43^{\circ} \mathrm{W}$. 5.2 miles, 41 fathoms.

The locality given by Pallas is "Mare Americanus.
The ('hallenger took this species at Bahia, 10 to 20 fathoms, and at Station 310, Sarmiento Channel, depth 400 fathoms.

The specimens secured by the Fisheries steamer Albatross agree very well with the description and figures given by Wright and Studer. ${ }^{a}$

? LEPTOGORGIA CARYI Verrill.

Lepogorgia caryi Verral, Trams. Commetiont A"ad. Arts and Sci., I, I't. 2, 1867 to $1571, \mathrm{p} \cdot 404$.
A fragmentary specimen in the collection of the University of California is hardly sufficient for identification, and is referred to this species with much doubt. It is a single umbranched stem about δ inches long, with two distant stubs indicating that it was sparsely branched. The verruces are almost entirely included and hardly evident.

The spicules are typical of this gemus, those in the polyps walls being very small and sparse.

The specimen bears the label "L-H 3." It was probably secured off San Diego, California.

The type was collected mear san Francison hy T. (i. Cary.

```
Genus STENOGORGIA Verrill.
```

Colony branched; conenchyma thin. Polyps seattered, disposed in two rows, retractile and bent inward when at rest. Calyees exserted. Spicules small warty spindles and gramules. There are spicules in the tentacles.

[^8]
STENOGORGIA KOFOIDI, new species.

Plate LXXXIX, figs. 5 and 6; Plate XC, fig. 6.
Colony flabellate, 78 mm . by 78 mm ; 15 mm . from the base the main stem divides into three main branches, a center one ascending and ahmost unbranched, the two lateral ones at first widely divaricating, then ascending and giving forth pinnate branches which tend to be opposite, but are quite irregular. Branchlets about 6 mm . apart, where regular, and somewhat flattened.

The calyces are quite prominent, conical, with broad base, forming an irregular row on each side of front and back of branch, but more numerous in front than behind, their summits 3.5 mm . apart. The calyces are 1.5 mm . high and 1.5 broad at base. Margins with 8 scallops.

Polyps with the outer sides of the tentacles crowded with spicules.
The color of the colony, including the polyps, is deep coral red. The axis is dark greenish brown, lightening distally.

The spicules are almost exclusively small thorny slender spindles, the larger ones often curved. There are a few small double spindles, and part of the larger ones have the verruce common in the genus Eunicea.

Type-specimen.-(at. No. 25432, U.S.N.M.
Distribution.-Station 4546: Station 4553, Point Pinos light-house, S. 67° E. 3.7 miles; 74 fathoms (type-locality) : Station 4554, Point Pinos light-house S. 76° E. 3 miles, 60 fathoms.

This species seems to be a Leptogorgia in general form and arrangement of calyces; but the spicules are more like those characteristic of some of the Muricide.

Named in honor of Prof. C. A. Kofoid, of the Lniversity of California.

LITERATLRE CITED.

Danielssen, D. C. Forhandl. Vidensk.-Selsk., Christiania, 1858.
Delage, Yyes, and IIérovard, Edgard. Traité de Zoologie Concrète, II, Pt. 2.
Gabb, Whllam M. Proceedings of the California Academy of Natural sciences, II, 1852.

Grieg, James A. Oversigt over Norges pennatuliden, Bergens Museum aarsberetning, No. 1, 1891.
Kölliker, Albert yon. Anatomisch-Systematische Beschreibung der Alcyonarien, Erste Abtheilung, die Pemnatuliden, 1872.

- Report on the Pematulida dredged by II. M. S. Challenger during the years 1873-1876. ('hallenger Reports, Zoology', I, I't. 2, 1880.
Moroff, Ta. Studien über Octocorallien. Zoologische Jahrbücher, Abtheilung für Systematik, Geographie und Biologie der Thiere, X VII, 1902.
Pallas, P'. S. Elenchus Zoophytorum, 1766.
Sars, M. Fauna littoralis Norvegie, II, 1856.
Stearns, Robert E. ' ' . Description of a new genus and species of Alcyonoid Polyp. Proc. California Acad. Sci., August 18, 1873.
- Verrillia blakei or Halipteris blakei. American Naturalist, January, 1882, p. 55.

Studer, Théophle. Note préliminaire sur les Aleyonaires. Bulletin of the Museum of 'omparative Zoology, XXV', No. 5, 1894.
Verrile, A. E. Revision of the Polypi of the Eastern Coast of the Thited states. Memoirs Boston soce. Nat. IIist., 1, Is6t.

- Review of the Corats and Polyps of the West Coast of America. Trans. Connecticut Acarl. Arts and sci., I, Pt. 2, 1868.

Note. Amer. Journ. Science and Arts, 3d ser., V'lI, 187.t, p. it).
Brief contributions to Zoology irom the Museum of Yale Collerge, No. XL. Amer. Journ. Sci. and Arts, XV'II, 1579.

Brief contributions to Zoology from the Museum of Yale College, No. C.I. Amer. Journ. Scic and Arts, XXIII, 1852.

- Report on the Anthozoa. Bull. Mus. Comp. Zool., XI, No. 1, July, IS83.
 II. M. S. Challenger during the years 1873-1876. Challenger Reports, Zoology, NXXI, No. 1, 1889.

ENPIANATION OF PLATEN.

The photographs were taken by the author. The drawings of the spicules and histological details were made under the camera lucita by Mr. Otto F'. Kampmeier, of the Department of Zoology, state University of lowa.

Plate LXXXIV.

Fig. 1. Tclesto ambigua, new species. somewhat reduced.
2. Telesto umbigue I'ortions of colonies, $\times 6$.
3. Inthomastus rittcri, new species. Colony, somewhat reduced.
4. Ptilosarcus quadrangularis. A young specimen, dorsal aspect.
j) P'ilosareves quadrangularis. Vientral aspect of same specimen.
6. I'tilosarcus quadrungularis. Part of ventral afpect of rachis of large specimen.
7. P'tlosareus quadrangularis. Dorsal view of same.
8. I'tilosarcus quadrangularis. Ventral view of rachis, showing abmormal growth of rudimentary pinne on zooid band to the left.
9. P'tosarcus quadrungularis. Two smatl specimens with expanded polyps.
10. I'tilosarcus quudrangularis. The smallest colony examined. Somewhat reduced.

l'late LANXV.

Fig. 1. Ptilosurcus quadrangularis. View of distal end of colony, showing the appearance oi whorls of polyp) caused by crowling of pinnee.
2. I'tilosarcus' quadranguluris. L'per leit figure, eross section of stem and axis, showing septa, stem chambers, and spongy tissue. [pper right hand, seetion of sem taken below proximal eml of axis. Lower figure, seetion across rathis with a pair of pinnte attarched.
3. Ptilosureus quadrangularis. To the leit, surfaer of stem. To the right, inner surface of stem casity showing stomata; also the spengy tissue of wall of stem.
4. P'ilosurcus quadrangularis. Two small pinnee, or leaves, showing polyp band.
5. Philosarcus quadrenguluris. Edge of polyp band with polyp retractal, showing limmeronate calyces.
6. Ptilosarmes quadrongularis. Portion of pinna, cularged, showing expanded polyps and the longitudinal chambers of the leai.
7. P'ilosurcus quadrungularis. A iew of the polyps, magnified.
8. P'tilosarcus quedranyuleris. ('ross sections of leat. Ibove, sertion just below polyp band, showing gullets and mesenterios oi polype, and the arrangement oi body eavities due tocrowding. The middle and lower figures show sections taken below the gullets.

Fig. 9. Ptilosarcus quadrangularis. Sectiou of leaf to show ova and septa between leaf chambers.
10. Ptilosarcus quadrangularis. Surface view of portion of zooid band, enlarged.
11. Ptilosarcus quadrangularis. Cross section of rachis, showing zooids and musele bands.

Plate LXXXVi.

Fig. 1. Halisceptrum cystiferum, new species, somewhat reduced.
2. Stylatula clongata. Dorsal and ventral views of distal part of colony. Photographed from living specimens, slightly reduced.
3. Acanthoptilum gracile. Dorsal view of part of rachis, eularged.
4. Acanthoptilum gracile. Ventral view of part of rachis, enlarged.
5. Acanthoptilum album, new species. Parts of colony, reduced.
6. Acanthoptilum album. Dorsal and ventral views of part of rachis, enlarged.
7. Acanthoptilum album. Lateral view of leaves.
8. Acanthoptilum album. Fragments, showing polyps.
9. Acanthoptilum scalpelliforme. Dorsal view, enlarged.
10. Acanthoptilum scalpelliforme. Ventral view, enlarged.
11. Acanthoptilum annulatum, new species. Part of colony, reduced.
12. Acanthoptilum annulatum. Ventral view of part of rachis, enlarged.
13. Acanthoptilum annulatum. Leaves, showing polyps, enlarged.

Plate LXXXVII.

Fig. 1. Balticina pacifica, new species. Parts of colony, somewhat reduced.
2. Balticina parifica. Part of rachis, showing polyps, enlarged.
3. Halipteris contorta, new species. Parts of colonies, slightly reduced.
4. Haliptcris contorta. Part of colony, enlarged, showing calyces.
5. Stachyptilum superbum. Parts of rachis showing ventral and dorsal views, and of stem, about natural size.
6. Stachyptilum superbum. Yentral and dorsal views of part of rachis, enlarged.
7. Stachyptilum quadridentatum, new species. Part of rachis, somewhat reduced.
8. Stachyptilum quadridentatum. Part of rachis, ventral aspect, enlarged.
9. Umbellula loma, new species. Two views of rachis, and one of proximal part of stem, about natural size.
10. Distichoptilum verrillii. Portions of colony, somewhat reduced.
11. Renilla amethystina. colony with expended polyps, slightly reduced.

Plate LNXXYifi.

Fig. 1. Plumarella longispina. Part of colony, somewhat reduced.
2. Plumarella longispina. Branches, enfarged.
3. Eumuricea pusilla, new species. Fragments, somewhat reduced.
4. Eumuricca pusilla. Parts of branches, enlarged.
5. Psammogorgia simplex, new species. Parts of colony, somewhat reduced.
6. Psammogorgia simplex. Parts of branches, enlarged.

Plate LXXXIX.

Fig. 1. Psammogorgia torreyi, new species. Part of colony, somewhat reduced.
2. I'sammogorgia torreyi. Ends of branchlets, enlarged.
3. I'sammogorgia spauldingi, new species. Colony with expanded polyps, somewhat reduced.
4. I'sammogorgia spualdingi, end of branch with expanded polyps, enlarged.
5. Stenogorgia kofoidt, new species. Colony, somewhat reduced.
6. Stenogorgia kofoidi. Portion of branch, enlarged.

Fig. 1. Spicules of Tclesto ambigua, new species.
2. spieules of Anthomastus ritteri, new species.
3. Spicules of Plumarella lonyispina.
4. Spicules of I'sammogorgia simplex, new species.
5. Spicules of I'sammogorgia torreyi, new species.
6. Spienles of Stenogorgia lofoirli, new :peries.
7. Spicules of Psammogoryia spuuldingi, new species.

Plate I'l.

Structural and histological details of I'tilosarens quadrangularis.
Fig. 1. Cross section of wall of rachis, throngh the band of zooids.
c, canal from gullet of zooid to large longitudinal canal of rachis.
$c m$, circular museles lining ca, ity of rachis.
ect, ectodermal lining of asophageal tube or gullet of zooid (siphonoglyph)
showing long cilia.
chd, endodermal layer of gullet wall.
gul, gullet of zooid in horizontal section taken across the siphonoglyph.
ime, involution oif surface of zoobid hand.
$l c$, cavity of great longitudinal canals of rachis.
$l m b$, longitudinal musele hands, in section.
m, mouth of zooid.
$s p$, spicules, in eross sertion.
sp t, spongy tissue below musele bands.
2. Cross section of zooid, taken across grullet.
ect, ectodermal lining of siphonoglyph.
cod, endodermal lining oi intermosenterial chamber.
$i c$, intermesenterial chamber.
m, mesentery.
spgh, cavity of siphonoglyph lined with long cilia.

alcyonaria of the California Coast.

Alcyonaria of the California Coast.
For explanation of plate see pages 725,726 .

alcyonaria of the California Coast.

Alcyonaria of the California Coast

For explanation of plate see page 726.

Alcyonaria of the California Coast.
For explanation of plate see page 726.

Alcyonaria of the California Coast.
For explanation of plate see page 726.

47* 304

alcyonaria of the California Coast.
For explasation of plate see page 727.

[^0]: "Trans. Conmerobut Mcad. Arts and sci., 1, Pt. 2.
 b Zoölogische Jahrbücher, Abtheilung für systematik, (ieographie, und Biologie der Thiere, XVII, 1902, 1. 363.

[^1]: "This fict is well known to the local chinese fishermen, who secure this spercies on their trawl lines, and have a name for the species hased on this character.

[^2]: "The present writer has not seen Jungerson's work, but finds it discussed in Traile de Zoologie concrète, Delage and Hérouard, II, p. 345.

[^3]: ${ }^{*}$ Trans. Connecticut Acad. Arts and Sci., I, Pt. ©, 1', 383.

[^4]: a Anatomisch-Ny:matische Beschroihung der Alcyonarien. Pl. 1. Die Pennatuliden, 15\%2. 1'.239.
 b \%ool. Jahrb.. Nbth. Sy:s. Grogg. und Biol. Thicre. XV11, 1902, p. B93.
 c Bull. Mus. ('omp. Zool., N1, No.], p. 5.
 lroc. N. M. vol. xxxy-45

[^5]: ${ }^{a}$ Proc. Cal. Acarl. Sci., V, 1873, p. 147.
 ${ }^{b}$ Amer. Journ. Sci. and Arts, VII, 1874, p. 68.
 ${ }^{c}$ Bull. Mus. Comp. Zool., XI, no. 1, p. 4.

[^6]: " Oversigt over Norges pennatulider, Bergens Museum Aarsberething, 1s:91, Lo. I, p. 18.
 ${ }^{6}$ Bull. Mus. Comp. Zoul., XXV, No. 5. 1894, p. 57.

[^7]: "Trans. Connecticut Acad. Arts and Sci., I, Pı. 2, 1867-1871, p. 414. Professor Verrill's description of the genus is here given entire. The genus is undoubtedly an aberrant one, and does not correspond to the family characters as given above, but tho present writer is not prepared to attempt a reconsiruction of the elassifieation.

[^8]: ${ }^{a}$ Challenger Report, Alcyonaria, p. 150, pl. xxix, fig. 1.

