A TREATISE ON THE ACARINA, OR MITES.

By Nathan Banks.
Custorlian of - I rechmida.

PREFACE.

The mites hare always attracted considerable interest, both from their minute size and becanse of the remarkable habits of many species. Athongh many have examined them in a desultory way, but few have really studied them. Consequently there is a great amount of literature by many persons, much of which is not reliable. Too often entomologists have considered that their knowledge of insectin general was a sufficient basis for the description of mites. Probably the lack of general works on mites has been responsible for many errors. For years the only work treating of the mites as a whole that has been accessible to American naturalists is Andrew Muray's Economic Entomology; Aptera. In this book, nearly 300 pages are devoted to Acarina. Unfortumately Murray's treatment is far from satisfactory and abmendatly stored with mistakes. many. howerer, taken from other writers.

Since that book was published several European specialists have been at work on the Emropean fama and produced monographs which are of great accuracy. Not only have many new facts heen discovered. but many of the old facts hare been given quite new interpretations. Such a belief as the parasitism of the Cropoda on the Colorado potatobectle seems hardly as yet to have been eradicated. To present a reliable text to the American reader is my intention. Very frequently I hare obtaned many facts of importance and interest from the Emopean literature: particularly is this true with those parasitic gromps with which I am not so well acquainted. Errors will, of course, be found. hut great care has been exercised in choosing the sources of information.

I have given tables to all the known American genera, and in some families added other well-known genera which will doubtless occur in our famna when it is more thoroughly explored.

Practically the only door through which one may enter into the systematic study of mites in general is Canestrinis Prospetto dell'Acarofanna Italiana.

[^0]
INTRODUCTION.

The Aearians form an order in the great clate Arathidat. They are thus related to spiders, daddy-long-legs. and scorpion- I few writers at various times hare clamed that the mites wore a separate clas- but the best semer of modern anthors is that they we gemne Arachmids. and in many ways closely related to solpugids and Phabangids. Althongh quite asily recognized at sight, it is not so easy to give definite eharacters wherehy to distinguish a mite from other Arachnicts. The abdomen and cephatothorax are broadly mited to each other, amt often there is no distinction between these parts. Csually: there is no trace of segmentation, hut in some forms it is quite distinct. Eyes are often present, but rarely only a modian pain as we finel in Phalangids and solpugids. The

Fitr 1.-DORGAL VIEW OF A Mite. $(t$, MANDIBLES; b, PALPI; r, IE\& $1 ; r$, EYES; e, LEG II: f, 'EPILALUTHORAX: I/, AbDOMEN; h, Leti Ill: i, LEGi ly. mouth segments have hecome united to form a heak, rostrum, or capitulum. Howerer this is not easily made out in some forms. Commonly the larra at birth has but three paiss of legs and ohtains the fourth pair only after a molt and metamorphosis. In the Eriophyide. howreve. there are but two patirs of lege in hoth adult and yomgg, and in I'teroptus. the roung have eight legs at hirth. The adult mite has (except in the Eriophyidse) four pairs of legs; often arranged in two groups, the himder pairs apparently arising from the abdomen. Howerer it is not probable that such is the case: rather the coalescence of the abdomen and cephalothorax has effaced the true outlines of these portions. It is probable that the abdomen of mites is more than the abdomen of other Aradmids. If one examines a solfmatu, he sees that the ceplatothoma is divited into several portions, and it may be that the eephalothorax of mites represents only the anterior of these. while the abdomen of mites represents the athdomen of Solpmofe plas the two posterior divisions of the rephatothorax. In Tipsememme, and some other genera, the atblomen shows on the dorsum distinct traces of segmentation. On the renter there is still less distinction between parts and in sereral groups, as Ixodida and some Gamasida, the genital regment is pushed forward between the legs so fan that the genital aperture in dose to the mouth. In other forms the genital opening is at the extreme tip of the body, and the anns is upon the dorsum.

The cephatothorax．or anterior part of the body．commonly has one or more pars of simple ocelli－like eyen．They are nsmally sessite but sometimes elevated on pedicels．

The mouth－segments form typically a truncate cone or beak．Some－ times it is partially or completely retracted into the body．The mouth parts are the mandibles and palpi．Frequently there are other parts． as a hypopharymx．a lip，or definitely separated maxillae．as will be mentioned under each family．Several investigators have clamed that there are three or fom month appendages．and there are structures in some forms that indicate three．The mandibles generally are of two joints．The last is often opposable to a projection of the preceding． so as to become chelate．Howerer．in many forms the mandibles are slender，needle－like．and suited for piereing．In ewh of the three large families（Orihatidat，Gamasidx，and Tyroglyphidx）which typi－ cally have chelate mandibles there is one gents with styliform piereing mandibles．The palpi hare never more than five joints：the last is frefuently provided with peculiar sensory hairs．In some cases the palpi hare a geniculate attitude．The various forms of palpi may he grouped into four clases．（1）Where they are simple，filiform，and have a tactile function；（2）where ther are modified for predatory pur－ poses，being provided with spines，hooks．or claws：（3）where the last joint is opposable to the preceding．so that the mite may by its palpi cling to some objeet；（4）where they hare berome obsolete，and are more or less mited to the rostrum．The hasal joints of the palpi are at times differentiated to form maxilla．

In sereral families there is a distinct lingula，tongue．or hypostome， which arises from the inner base of the beak．and may he divided or simple．It may have a groove abore，called the vomer．The hypos－ tome is usually not visible except hy dissection，but in the tieks it is very large and roughened with sharp teeth．
sometimes the hasal joints of the palpi mite to form a lip，or labium． Above the mandibles in many forms is a thin corneous plate．known as the epistoma．Its sides may he partly mited to the beak or lip below and thus form a tube．called the oral tuhe．for it is through it that the mandibles are protruded．

The pharynx．or sucking portion of the alimentary tract，is some－ times prolonged forward into a sort of cone between the month－parts．

The opening of the borly into which the mouth－parts are inserted is known as the camerostome．In one group（ Trmporla）the anterior legs are ako inserted into this camerostome．

The adnlt mite generally has four pairs of legs and the larva three pains．It has been shown that the embryo of certain forms（Gicmensus and Ixodes）has four pairs of legs before birth．hut one pair is aborted to he again developed at the nymphal stage．This is an indication that the six－legged larva is a secondary development，and lessens the
apparent difference between Acarina and other Arachnita. The lego are composed of from five to seren segments: in some forms the apical joints are subdivided, but do not form genume segments. The length and character of the joints vary in the different families, but usually there are distinguishable the following parts: coxa, trochanter. femur, patella, tibia, and tarsus. In some case the femora are divided into two parts. The legs are provided with hairs and opines. sometimes modified for some particular function. In several groups there are organs on the anterior legs which appear to have an anditory function. The last joint or tarsus is commonly terminated by from one to three elaws or magues. In some groups there is a difference in this respect hetween the roung and the adult. The claws are not often toothed. In many cases there is a median cup-shaped sucker, pubvillus, caroncle. or ambulacerum between

FIf: 2.-VENTRAL VIEW OF A MITE.
a, BEAK; , TRANSVERSE FLRROW;
FIG, 2.-VENTRAL VIEW OF A MITE.
a, BEAK; , TRANSVERSE FLRROW; c geNITAL APERTURE; d, ANAL APERTURE. -- oftell scmptured mo pital im a chatateristic mamer. Frequently there are secondary sexual differences both of color and structure, as will be noticed under each family. The male is often a little smaller than the female, hut in many cases there is no apparent difference in size.

The internal anatomy of mites is marked hy great centratization of parts, the varions organs being much more crowded together than with other Arachmids. The alimentary camal, when fully developed, consist of the pharrux or sucking-organ: the cesophagns: the stomach or ventriculus. with its cerea; the hind gut or intestine, and the Malpighian ressels which enter the latter near the rectum.

The pharynx is a partially chitinous tube, convex below, concave athove: to its upper, "rt or roof are attached the museles, which. upon contracting, elevate the roof. A series of museles, each moving junt after the one in front. produces a steady flow of food to the stomath.

The desophagus is a long simple tube: the stomach is of varied size and shape, according to the food-habits. Sometimes there is an enlargement of the cesophagus near its end, thus forming an inghries or crop. In some forms the creca are extremely long or momerons. The Malpighian ressels. when present, are two in mumber, and enter the short intestine near its end. The latter is sometimes provided with an emlargement, the colon. In many mites the digestive system is much simplified. In many. if not all, of the forms allied to Tromblidimm, and the water-mites, there is no certain comection hetween the stomach or ventriculus and the anus. The rentriculus ends blindly; the amns opens into a large tube, supposed to have an excretory function. Many of these forms feed on animal juices, so probably have no excreta.

Fiti. 3.- Palpl of variocs forms. a, bdelda: b, cheyletis; c, gamasis; d, scirte; e, histiostuma; f, ELPODES; g, sARCOPTES; h, ARRENLRU'; i, TROMBIIMUM.

The nerve ganglia are united into one mass of considerable size, pierced by a hole for the asophagus. This brain doubtless is formed of the supra and sub-cesophageal ganglia and their commisures, but so closely are the parts united that all trace of demareation is commonly lost. The principal nerves arise from this brain. There is one mpaired nerve, and nine or more pairs of nerves. Three sets of paired nerves and the unpaired one arise from the supra-esophageal ganglion and are of small size. The other six or more sets of paired nerves arise from the sub-cesophageal ganglion and are mostly of larger size. The unpared, or medium nerve, goos to the pharymx. The paired nerves of the supa-cesophageal gang'ion go to the eyes, the mandibles, and the large rertical muscles nea. the base of the rostrum. Of the nerves of the sub-cesophageal ganglion, one pair goes to the palpi, four to the legs, and one to the genital and other abdomi-
mal organs. Sometimes there are other nerves that rxtend to the posterior part of the body.

The reporductive system is often highly developed, and frequently orcopies a comsiderable part of the body. The male testes are large, lohate, and open into two tubes. the rown deferentin, which, miting, form the ductux ejoralutorins, which may open through a penis. The testes are often mited. The owiales of the female (sometimes mited) are situate in the mildle part of the body. of rarying shape, and open into two tubes- the oriduts-which unite to form the vulva. The latter may haso a spermathecat attached, and may open through an extensible oripositor. In some families the rulba is not a buras copmentrior, but there is a pecial copulatory opening near the amos. ln other forms the female organs are rery different, as will be mentioned under the fimmilies.

Fig. 4.-Legs of fariocs mites.
In the Gamasidax. Tyroglyphide, and Oribatida there are a pair of glands in eath side of the abdomen, each opening by a pore in the *kin. They contain a yellowish, oily liquid, and are considered excretory glands: Michalel has called them cirmlsory vesides. In most mites there are several glands in the head region, some of them evidently of a salivary nature. but others are often present whose fimetion is mbnown. Some of them open into the month, or pharynx, and others may open at the base of the mandibles.

In some mites there is a well-dereloped dorsal pulsating organ or heart. but in most mites it is not present. In these latter there is an irregular motion of the body-fluids kept up hy the action of the moseles in other movements. Many mites have an elaborate tracheal system for breathing. These trathea open in varions parts of the
body: in many common forms they open near the mandibles. In tick- and (iamasids they open near the hind leger. In other forms they open in the acetabula or coal cavities. The openings of the tracheae are through stigmata or spiracles which vary in different forms. Commonly there are one or two main tracheal tries in each side of the body, each giving off many branches. In some forms there is a short tracheal trunk which at its tip gives rise to a great number of fine long trachear, mach of which is mulramehed. A great many mites, however, have no internal respiratory system whatever. In the e forms the skin is soft, and they abort oxygen by osmosis through the general surface of the hods.

The muscular system of mites varies greatly in the different genera Strong muscles are attached to the mandibles for extending and moning these organs. Still more powerful ones are attached to the leg. and those for the pharynx and organs of generation are often promi-

 ANT: k, FAT CELLA: l, CLOACA; m, ANTS: n, EMBRYO; θ, HIND GLT: p, VAGINA; ε, VULVA; t, BRAIN; γ, FROPHAGI'S: x PHARYNX.
neat. There are also muscles competing various parts of the integumont and in some cases one or two pairs attached near the middle of the dorsum. These latter often produce the depressions in the dorsal surface which are commonly found in many of the soft-hodied mites.

The life histories of mites are extremely variable. and will be described under each family. There are typically four stages-egg. lara, nymph, and adult. Many miter. however. have developed a complicated arrangement of forms that almost obscures this fundmental simplicity. Most of these additional phases occur during the nymphal stage, the growing stage of the acarian.

Nearly all mites deposit eggs but there are a few forms known to be viviparous, or at least ovoviviparous, and one, ledimentredex. bringforth adult males and females.

The general plan of development is as follows: The egg is usually
deposited hy the female. Often within this egg, while the embryo is developing, an inner membrane is formed which incloses the young mite; this stage is the "deutorum." The onter shell may be cracked so as to show this membrane, or it may be wholly disarded. The larva at birth has hut six legs. It feeds for awhile, then passes into a resting stage which in time discloses the eight-legged nymph. The added pair of legs is the fometh, at least usmally. During the nymphal period the mite may molt one or more times and change its appearancr, lat is ahways destitute of true genital oritices. At the end of the nymphal stage it passes again into a quiescent condition, and in due time molts into the adult mite. During these resting stages much of the intermal anatomy of the mite may undergo histolysis, eath new stage being rebuilt from the disintegrated tissos of the preceding stage. 'The genital organs are, however, not affected by these histolytic processes.

The common impression that most mites are parasitic is entirely evroneons. About half of the known species are not parasitic in any stage, and many which are found attached to insects and other amimals are not true parasites thereon. Most mites

Fiti, 6, -Embryo of Gamasus. ordinarily move quite slowly, but when disturbed some can trapl at an astonishing pace. A rery few speries are fitted for leaping. Aquatic mites occur in both fresh and sea water. Ticks oceur on mammats, hirds, and even on snakes and turtles. The hird-mites live on the feathers and skin of birds; the itch-mites burrow within the skin of man and other mammals. Other species live in the cellular tissue of birds: a few occur in the tracheal passages of seals, and one has heen found living within the lomgs of a monkey. Many species foed on living plants, and the gall-mites produce curions deformations on leaves and twigs.

Mites are distributed throughont the globe, but appear to be most mumerous in temperate regions. Many are abundant in high latitudes. Single species are sometimes widely distributed; howerer, ats athole. mites are sulpeet to the usual rules of geographic limitation. Nost of the parasitic forms follow the distribution of the host. A few of the free mites are common in widely separated regions, but many, especially the myrmecophilous ones, are very local. Nost of the free-living speries and those parasitic on plants spread be their own wanderings. hut many have developed, for the purpose of migration, a peruliar nymphal form (the MIympens), which elings to other amimals that will risit places simikar to the mite's birthplace. Most mites are not readily destroyed hy cold or moisture, and through this hardiness can extend their distribution.

Most mites have hut few enemies ontside of their predatory relatives.

There are, howerer, varions ches of protective resemblance, especially among the immature forms. No examples of mimicry, I think, are known.

A great many mites are more or less injurions to the property of man. Three, at least, can be ranked as pests of great importance, namely, the cattle-tick, the sheep-seab, and the pear-leaf blister-mite. The classification of mites has in recent years heen developed to a considerable degree. The gronp is usually held to he an order, including about thirty natural groups. An excellent historical review of the classification of Acarians has been presented by Tronessart. " The value of these natural groups of mites has been rarionsly estimated by different anthors as tribes, subfamilies, and families. Kramer in 1877 originated an ingenions scheme. which has been extended by Canestrini, whereby the mites are arranged according to the position of the opening of the tracheal system. By this method there are six main divisions of the Acarina.

Canestrinits classification is as follows:
Astignata- Vermiformia and sareoptina.
Hydracarina - Water mites.
Prostigmata - The Tromhidoidea and Enpodoidea of this paper.
Chypontigmata--The Oribatid mites.
Metastigmata - The tieks.
Mesostigmata - The Gamasoidea of this paper.
Tronessart has modified this scheme somewhat. He divides the mites into two orders, Acarina and Vermiformia; the latter group again into Octopoda (Demodicidee) and Tetrapoda (Eriophyidet). The true Acarina he divides into three suborders, the Prostigmata (incheding the Hydracarina of Canestrini), the Metastigmata (ineluding the Mesostigmata and (ryptostigmata of ('anestrini), and the Astigmata (including only the sarcoptina). In the writer's opinion the Oribatida and Tyroglyphida are more dosely related than indicated in either of these classifications.

In the arrangement used below, the man divisions are about the same, although based largely on other chatracters. These characters will be found defined under the varions families; and although there are exceptions to the tables they are not prominent, and to have provided for them would heavily incumber the syopses. The characters used in defining genera and higher grompe rany greatly according to the group. In some cases genera are hased on very minute structures, which in other familics are of no ralue. In several groups the habitat is the hest dew to the systematic position. About three hundred and fifty species are known from this country, where there are doubtless a thousand or more, so that the student must not be surprised to

[^1]find forms that do not fit into tables. several of the families are not matural. and futme study will greatly modify existing systems.

I have not made many new genera in the American mites. I believe in keeping gemera as broad as possible. Division of a genus should be made only on gromeds of convenience or those of zoological necessity. Beratuse a group of species in a genus diflers from the other forms ly some structural character. there is not. I think, sufficient rason for a new genns. But whenerer a specien or group of species differs from the others ber speral disassociated points of structure. together with differences in life history or habits. then a new genus is adrisable. Howeyer, in using an adopted classification it is sometimes not easy to place a new form withont either making a new genme or modifying the chatacters of existing genera. The history of Acarology warrants the student in using much cation in the ereation of new genera or higher groups.

In regard to nomenclature, I have not departed. save in a few cases. from that in common acceptance among acarologists. In some families there has been mench difference of opinion, and lately Doctor Ondemans, an able Intch atarologist, has revised the nomenclature. It is clithenlt to escape some of these whanges. but others I wan not areept, nor go back of 1758 for generic mames. The larger groups I have called superfamilies, in accordance with the custom of the best zoologists, and these divisions are practically the same as I med in 189\%.

To the ordinary person mites do not exist. Oceasionally he may have painful evidence of their presence, but he has no idea of the mumber of specimens and speries around him. Yet a little careful searehing will reveal a world of these tiny creatures. Although Müller early deseribed many water-mites and Hermamn (tsot) and ron Heyden (1516) had gathered a few. yet this world of mites was practically unknown until discorered hy (. L. Koch about 1sto. Since then a momber of maturalists have partially explored its shores, and sommtimes penetrated into the interior. Now there are about a dozen persons who seriously study acarology and nearly as many more who derote themselves to the water-mites.

> Sl゙ Nolßls OF SUPERFAMHLIES.

1. Ablomen ammate, prolonged hehind; sery minute forms; often with hat four lexs.
. DEMODICOIDEA
Anlomen not ammate nor prolonged hehind; always with eight legs 2
2 . With a distinct siracle nom a stigmal phate on eath side of borly (usually below) abowe the thime or fourth coxe or a little hehind; palpi free; skin often eoriaceons or leathere; tarsi often with a sucker

3
Surnch distinct spracle in a stigmal phate on this part of bocly.................... 4
8. Hypostome large, fumished below with many recurvel teeth; venter with furrows; skin leathery; large forms, minally parasitio ICOOOIDEA
Hywstone small, without teeth; renter without furrows; bexly often with coria-

4. Bouly usually coriaceons, with few hairs; with a specialized seta arising from a pore near each posterior comer of the cephalothorax; no eyes; mouth-parts and palpi rery small; ventral openings of aldomen large; never parasitic; tarsi never with a surker ... ORIPATOIDEA
Body softer, withont such specialized reta
. 5
5. Living in water ... Y゙DRACHNOIDEA

Not living in water . 1
6. Palpi small, three-jointerl, athering for some distance to the lip; ventral suckers at genital opening or near anal opening nsually present; no eyes; tarsi often end in suckers; beneath the skin on the venter are seen rod-like epimera that suphort the legs; boly often entire; adult freguently parasitic.

SARCOPTOIHEA
Palpi usually of four or five joints, free; marely with ventral suckers near genital ur anal openings; eyes often present; tarsi never end in suckers; body usually divided into cephalothorax and abdomen; rod-like epimera ravely vivible; adults rarely parasitie . 7
7. Last joint of palpi never forms a "thmmb" to the preceding joint; palpi simple, or rarely formed to hold prey; body with hut few hairs.......EUPOIOOLDEA
Last joint of palpi forms a thumb to the preceding, which ends in a daw (a few exceptions); borly often with many hair.......................TROMBIDOIDEA

SYNOPSIS OF FAMILIES.

HEMOHCOIDEA.

With lout four legs, of five joints each; living on plants, often in galls. . Eriopmymes
With eight legs, of three joints each; living in skin of mammals. ... Demoderde

SARCOPTOIDEA.

1. With trachere; no ventral suckers; legs ending in claws; body divided into cephalothorax and abomen; the female with a clavate hair between legs I and Ilnot parasitic on birts or mammals
.Tarsonemid.e
Without tracher; no such clavate hair .2
2. Genital suckers usually present; not parasitic on hirds or mammals; skin usually without fine parallel lines.
Genital suckers alsent; parasitic on hirls or mammals; skin with fine parallel lines
.
3. Legs short, withont clavate hair on tarsi I and $I f$; living on insects. . Cinestrivin.

Legs longer, with clavate hair on tarsi I and II; not parasitic (except on bees)
TyRoglypilider
4. Possessing some specially developer apparatus for clinging to hairs of mammals

LIStROPHORIDE
Without such apparatus..

Not on phamage of birds, but in living tissues.
(6. Vulva longitudinal; in skin and cellular tissue of birds.............. Cytolenchin. .

GAMASOIDEA.

1. Parasitic on vertebrates; mandibles fittel for piercing; body sometimes constricterl Dermanysidef
Free, or attached to insects, rarely on vertebrates, never on birds 2
2 . First pair of legs inserted within the same borly-opening as the oral tube; genital apertures surrounded by the sternum

- Croponioe

First pair of less inserted at oneside of the month-opening; male genital aperture usually on the anterior margin of sternal plate.

Gamaslder
（）RIB．ATOIDEA．
Cephalothorax movablyattached to the aldomen；palpifour－jointed．．IIoplonermid．e （＇ephabothorax mot movable；palpi five－jointed ORIB．1T1ग．E
INODODIMEA．
No）soutum：no ventral shield；month－parts of adult not prominent from above； no pulvillus to tarsus in adulty． Artisuld．e
Scutum present：sometimes ventral shields；mouth－parts of adult prominent from above；pulvillus to tarsus of adults Ixodid．e
ELPOIOHINA．
Palpi often geniculate，or else fitted for grasping prey；mandibles large andshout－like；cephalothorax with four long bristles above，two in front，twobehind；last joint of leg I longer than precerling joint，often twice as long
Palpi never geniculate，nor fitted for grasing prex；leak small；cephalothorax with bristles in different arrangement；last joint of leg I shorter or but little longer than preceding joint；eyes when present near posterior border．Euronde．e
TROMBIDODDE．
I．Legs I and 11 with processes bearing spines；skin with several shields；coxe contiguons Cectlinf
Legs I and II without such processes；few if any shields \therefore
2．Palpi much thickened on lase，moving laterally，last joint often with two pecti－nate hristles；no eves；leg I ending in several long hairs，adult sometimesparasiticChey letione
Palpi less thickened，moving vertically；eyes uazly present；leg I not ending inlong hairs3
3．Coxie contiguns，radiate；legs slender，bristly；Jowly with few hairs；no dorsalgronse；tars neverswollen．Erythreide
Coxe more or les in two groups，legs less bristly 4
4．Bonly with fewer，longer hairs；often spinning threads：no doreal groove；tarsinever swollen；mamlibles styliform（for piercing）Tetranychide
Boxly with many fine hairs or short spines；mot spinning threals；often withAorsal growe；tarsi often wollen． 5
5．Mandibles chatate（for liting ） Trombidioe
Mandibles styliform（for piercing） Rhyacholophine
HYDRACHNOIDEA．
Month－parts carried upon a distinct leak；no ventral suckers；living in the sea
Halatarile e
Wouth－parts not carried upon a beak；usually suckers near the genital openings；usually in frewh water．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Ilydrachnin．e
Family ECPODID．E．

The Empodidae is a small family of small mites，several species of which are among our most common acarians．They are soft－bodied， delicate mites，with moderately long to very long legs．The body shows more or less distinctly the division into cephalothorax and abdomen；the former usually bears an eye each side：the latter carries
a few simple hairs．The palpi are short and simple．four－jointed，and with only a few hairs．The mandibles are rather small．lut distinctly chelate；in one genus they are very large．The legs are six or seven jointed and terminate in two simple claws，and often with a median plumose pulvillus．The renter has the usual openings．hat in Totn－ pleallos the amal aperture is on the dorsum of the abdomen．These mites can ron rapidly，and Euporlex can make considerable leaps． Most inhabit the ground，but some are found on the leares of trees． All are predaceots and feed on various small insects or insect egen． They seem to delight in cold，damp places．and can be found in winter still active among and under fallen leares．They are among the most common acarians in high latitudes，and are also frequent in cases，both of this comtry and of Europe，where their simple and primitire structure is well suited to the conditions．Their internal anatomy has lately been investigated hy Nordenskiöld，who finds that lilerydele，is among the most primitive of the Trombidoidea． The asophagns．which opens near the tip of lahium or underlip，is very slender，and after passing through the large＂brain，＂enters a rery large stomach．From the upper part of this arises the intestine，which soon expands into a very large colon，opening at the tip of body．The eges，as far as known，are laid upon the surface frequented by the adult．The larve resemble the parent，while the nymph differs only in size．There is no sexual dimorphism．

Fig．7．－Venter of An EUPODID． Most of the common species vary a great deal in markings，the consequence being that Koch described each of the common European species under many different names，sereral having＇ from ten to twenty synonyms．Our forms have been collected onty in the northenstern States．

Five of the described genera oremr in the United states：these may be tabulated as below：

1．Legs extremely slencler，anterior bair much more than twice as long as body Linoporles
Anterior legs much shorter ．． 2
2．Hind femora much thickened；anterior legs much longer than others ．．．Enpodes Hind femora not thickened ． 3
3．Anal opening on the dorsum；manclibles small ．．．．．．．．．．．．．．－．－．－－．Notophetlus Anal opening on renter ． 4
4．Mandibles very large；legs longer than borly ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Rhagidiat Mandibles small；legs scarcely as long as hody－．．－．．．．．．．．．．．．．．．．．－－－Tymbus
Our one species of Limporles is a very pretty pale yellowish or reddish mite，with some white marks，one on the hack is in the form
of a T . It is common on the gromm mader pieces of wood, hark, ete., that have lain there sometime. The first pair of lege is used as feelers. L'sually the mites walk slowly, lout

Fli. - LINOPODES ANTENNEPES. when disturbed run rery rapidly. We have several species of limpores. all more or less marked with red. The common one. Ex: rarriar bitis Banks, is found in the same places as Linoporles. Inother species oecurs on the seashore between tide-marks.

The species of Notophallns are blackish, with a red spot abore, and red legs. They occur in damp fields, under stones. or in moss. But one species of Tydens is known from the Cnited states, To !loneri Ashmead. It ocerurs on orange leares in Florida, and feedsom the young and eggs of scale insects ($\mathrm{M} \mathrm{y}^{-}$ tilaspicspp.). It is pale redatish or rellowish in color and has a suhpreriform body. with rather short leg's. Monicz has described aspecies of Tydens (T.molesters) as attacking man, much on the "red-hng" style. Rha!finlia is a remarkable gems. The -pecies are pale or whitish

Fig. 10.-TYUESS BEAK AND LEG 1 FROM BELOW. in color, and occur under damp, fallen leaves and on moist soil. It is much larger than the other speecies of this family, and sometimes fully one millimeter long:

Fig. 9.-Khagidia paljida. Its structure is in many Ways very similar to that of certain solpugida and suggested to Thorell its generic name, which is a diminutive of l lherer, a genus of Solpugida. It is probable that it is the most primitive of all existing mites. and points to the close relationship of the Acarinat to the colpugida. Our common species, l_{i}. prellida Banks, is fomm throughout the country, but more commonly in the north. Other species are found in Europe, Japan, Kerguelen, Chile, and the aretic regions.

A European mite of this family, Erynctes limencenm Koch, some-
times occurs upon certain specien of slugs (L immer) , and sometimes attached to a fly (Surerp, henfu). In this country a mite (Ifypopmes com(whon Haddeman) has been recorded bey Biney as found upon a smail. It may belong to this gemus, Eirgmetes. Penthroturs embraces several species, having a black body, with a red spot hehind, and red legs. Here we may also refer to the genus Alyons, which is placed in a separate family. It look- much like a minute Tromblidiam, but has simple palpi. Two forms are known in Europe.

Family BoELLID.E.

The members of this family are known an *- nout mites," from the appearance of the beak or rostrum. The hody shows distinctly the divivion into cephalotho-

Fli. 11.-VENTER OF A BDELLA.

FIr: 12.-EGG OF BuEILA. rax and abdomen. the two hind pairs of legs apparently arising from the latter. The rephalothorax is subtriangular, with a few long bristles above and usually one or two eyes on each side, commonly near the posterior comer. The mandibles are large, slender, tapering, more or less united along the median line. and together form a prominent cone in front. They are chelate in the typical gemus. but in some of the other genera end in one claw. The palpi arise apparently from near the hase of the mandibles, but really from a part of the body below them. They are either three or five jointed, the second joint being the longest. In some forms they are provided with spine-like mistles, but msually with tine hairs, the terminal oncs often of great length. The antemne are frequently elbowed between the second and third joints. The abolomen is usually broadest at the shoulders and tapering, lont rounded behind; it bears only a few hairs or bristles.

Fli. 13.—Binellat PEREGRINA. The venter has the nsual two apertures near the posterior part, the genital usually the larger. The legs are quite long and slender, with a fow soattered small hairs. They terminate in two claws with a median hairy brush beneath. The hind coxa are well separated from the interior pairs.

The intermal anatomy has heen studied by hoth Karpelles and Micharel. It is peculiar in several respects. There is a large sac or diverticulum connected to the wsophagus above. Mithael has termed it the remeptornlmm cilhi, and belieses its purpose is to store the food for a short time. 'The rentriculns ends blindly; there being no commmication to the amus. There are three pairs of
 glands in the anterion bat of the body. besides one large median gland. One pair opens at the hase of the mandibles and their function is mknown. Two paipe open into a common duct which leads to the mouth: they are probably salivary glands. The supra and sub-ersophageal ganglia wre more distinctly separated than in othermites that have been examined. The pharyogeal nerve (which in other mites is siugle) in Bedella issplit in two parts. The male orgams are remarkable for possessing two single and one pair of afeessory glands. whose function is little understood. In the female there is but one oviduct.

Mr. Traigirdh has figured the exg of B. arcticu: it is noaly spherian, and with a mumber of long spines scattered orer the surface. The larva and nymph have mach resemhlance to the adult. They are never parasitic. and there is no sexnal dimorphism.

The species are usually red in color, but some are harkish. They are predaceons in habit and Wamder about m seatreh of food - any small ereature they can find. The palpi serve as tactile organs in most genera, hut in scirns they are used to capture and hold the prer. These mites can run quite fast, and move harkward as well a- forward. Several species are known from the Aretic regions. Four genera have heen recognized in this comotry, and one more (xambla) is known in Emrope. They may be separated by the following table:

1. Mandibles ehelate; two eyes edeln sirle; palpi geniculate, and ending bluntly with two or more long bristles

2

2. No morlian rge on front margin of cephalothorax; tip of tarsus with one or two
 A merlian eye on front of (r, phatothorax; tip of tarsus without plumose bristles.

Cyta
3. P'al pi of three joints, amd without spine-like bristles, one eye eaclı side on cephabothorax

Eupulus

Tronesart ham separated the group of Nome from the Bdellidæ and placed them an a family of the Trombidoidea: this does not appear natural to me. Of creirus hut one species has been dearibed in the United states: it lives in damp places. and is very active. Of Bulla we have a number of species, and some are common. They usually inhabit moist places. moss. rotten barks, etc: One species (B. imurimu Packard) is common along the north Atlantic shore between tidemarks. B. arnmimulia and B. $P^{\prime \prime \prime} \boldsymbol{m}^{-}$ arsine are common on damp soil: B. temelln. under rotten bark. Michael has recorded finding a species of Bdella abundantly on the web

Fit. 15.-MANIMbles A NI PADPLS OE SHIRTS. of a tube-wearing spider. - 1 mantorlins, fern. The mites were not disturbed by the spider and evidently felt much at home. They doubtless fed on some of the small insects disdained boy the spider. The genus C'yt, is very similar to Boldllo: our one species ($($ C. mmerirnmen) occurs in damp fields: it was formerly known as A Ammonia. which name is not only later. but abs preoccupied.

Family CHEYLETIDE.

The Cherletide are a small family of tiny mites, differing considerably in habits and structure among themselves. The typical forms are distinguished by the enormous palpi attached to a distinct beak.

Fiti. 16.-(HEYLETTSSP. (PERGANDE).

TIti. 17.-CHEYLETLS PYRIFORMIS: BEAK AND PALPCS TIP OF LEG I, AND CLAW: (OF LEG II.

The palpi are three to fire-jointed, and frequently have a minute motable tubercle or papilla near the tip on inner side, which in some forms is tipped with one or two pectinate bristles. This papilla is evidentlyhomologous with the "thumb" of the Trombidide. The beak is plainly.
separated from the body by a deep constriction, and in front has the "ircular month-opening or "amerostome, through which the mandibles may be extended and retracted. The body in usually oval; the skin soft. occasionally with chitinous plates, and in many forms finely striate. The division between the cephalothorax and abdomen is yarely present. The body hears a few hars, sometimes in the form of sales. The legs are generally short, fire-jointed, and usually end in two claws. with a bumch of hairs or a pectinate bristle between them. In some -pecies the front legsterminate in bristles, and appear to have a tactile function; in others the front legs are transormed into clasping organs. sometimes there is an eye on each side of the cephalothorax, hat it is not often distinct. The mandi-

 bles are eommonly long and needle-like, fitted for piercing tisshes; in one gemus, however, they have two points, indicating their chelate origin. The female genital aperture is just in front of the anns. Which is at tip of the renter. The male aperture is behind the amms, and often near the midtle of the dorsmm. The penis is rery prominent, long. slender. and comvel, and is often found partially extruded. The internal anatomy of the cheyletide has not been thoroughly examined. The digestive tube is simple: the stomach is provided with four large cocal. In one genus, Surropterms, there is no anus; the food of this mite is of such a nature as to be completely digested. The rempiratory sonem is perhaps more complete than that of other familiss. There are two large tracheal trunks starting from the beak and extending back to near the tip of the body, each giving off many smaller hranches which ramify thronghont the body. From some arcoments it appears that the main trumk are composed of two or three separate trachea. These main trunks are conneeted to each other near their origins. The spiracles are at the sides of the beak, and in some cases there are two also near the median line. These spiracles are sometimes trumpet-shaped. The nervous system consists of a circle around the deophagns and ten branches from it, four in front and six behind. Two of these branches go to the beak, others to the legs, and two to the posterior part of hody.

The eggs are deposited singly or in clusters, and hy some speries a web is spun over them, or at least a few threads to hold them in place. In a few species the mother remains to guard the cluster for some time. The larva, upon hatching, has much resembance to the adult, but, of course, with only six legs. The nymph looks still more like the parent, and there are but fow differences between the sexes. sare that the male is smaller. Several authors have noted the existence of parthenogenesis in some species. Cheyletide feed on animal life, some being predaceons, others parasitic. A few may be said to belong to both groups, imasmuch as they oceur upon certain anmals only to prey on the parasites of the host.

Only a few genera are known, and of these hat fon have been recorded from this country.

1. Anterior leg fitterl to clasp hair; himel legs with but one claw; palpi small... Myohia

Anterior legs not so morlified; hind legs with two claws, or else leg I with two claws.
2. Borly elongate, at least three times as long as broad, palpi not swollen at hase, no , listinet "thumb, or papilla
.3
Body not twice as long as broad, the papilla msually present.........-. .-. 4
3. Anterior legs much larger than posterior fairs, and ending in a lomg bificl pulvillus

P'icoluiat
Anterior legs barely longer than others, without surh pulvillu*-..... . . Nympophitus
4. Bonly about as broar as long: legs very short and stout; palpi mot swollen on outer side at hase; prasitic forms.
.5
Borly plainly longer than browl; legs more slenter; palpi usinally swollen on onter side at base; hind lege with claws; not true farasites
.6
5. Ilind legs eath with two claws. Psorergutes:

Hind legs without elaws; with several long lairs Hurp!! 6. Tubercle, or papilla, of patpus with one or two pectinate hristles......... Cheyletus Tuberele, or papilla, of palpos with only simple hairs.................... . . . Chenletiollu
Cheyletus contains about one dozen species. They are very small (abont one-half millimeter in length), live freely, and prey upon other miter and small insects. They seize the prey with their hig palpi, insert the mandibles, and suck it dry. Some have thought that there must be poison glands in the palpi, since the prey ceases movement rery soon after capture. Several species have some fan-shaped hairs or scales on the body and appendages. These constitute the sulogenus Chryleter Haller. Two species, one of them. C. drarispimus Banks, have been found attached, in adult condition, to Inemiptera of the gemms Arollus. They are evidently not parasitic, hat use the insect only for tramsportation. Another of our species, ('. pyriformis, was found feeding on a scale insect on graperine, another on (icudle eggs, and a third, ('. cundux, attacking Tyroglyphids among, calbage seed.

Cheyletiella includes several species in which the palpi are not as large as in Cheyletus. They usually occur on lirds where they feed on the other mites present. They have been called auxiliary parasites. One species, C^{\prime}. perectiticorex, uses the rabbit's fur as a hunting forest,
where it destroys the L istrop) $/$ moris mites. No species have as yet been recorded from this country. Iterpyrhynchew (formerly Surcopermis) is represented ler a few speries that have a very short, broad hody. with rery short legs, the hind

 FEMALE. pairs ending in a bunch of bristles. They occur in the hair follicles of sereral hirds, where they form tumors. The eges are very large for

Fiti. 20.-Harpyrifynertes longipilts, LARVA.
the size of the mite. One species, II. Tongipitus Banks, has been taken in the United states in a tumor under the wing of a cross-bill. The

Fig. 2l.- 11 yobia mescule.

Fig. 22.-l’NORERGATES SIMPLEX.
genus Peorergates was described by Tyrrell from Canada. It lires parasitically on the honse and field monse, in cavities or little cells just bencath the surface of the skin. It has a nearly romd body,
with very short, stont legw, each ending in two stont claws. It has since been found in varions parts of Europe, and was deseribed ly Dichacl under the name of (ioniomerns musemtimns.

The gemus Myollich was based on a specios from the head of the house mouse. All the legs are reery short and thick, hat the first pair is hearier than the others and transformed into an organ fitted to grasp the hair. The eggs are fastened to the hair of the mouse. The nymph differs considerably from larra and adult in legs and beak. The palpi are atrophied. In this stage it burrows into the hair follicles, feeds there, and transforms. It is not supposed to suck hood, but to feed on matter secreted hy the skin f the host. Sereral other opecies are fom on allied mammals, and one infests hats. (Ostorn has recorded the presence of $1 /$. mnsenti in this country.

Picolian and Sypinyoplitus are closely allied. They have elongate bodies provided with long bristles. They live in the quills of the feathers of rarious birds, coming ont only for breeding and migration. One of these was recorded from Arizona by Hancork as I'icoliun cillowe, which Tronessart states is the same as S. Jipectimutus: Heller of Europe. Tronessart also clams that this is not an adult mite, but that it is a stage (which he calls "syringolial") in the life of a Cheryleticlla. Nörner, however, describes and figures the male and egg of this species.

Family ERYTHREID.E.

There are few species of mites in this family, but one is very common and beneficial. They are at once separated from all other Trombiloidea in that the coxa are close together and armaned in a radiate: manner. The hody shows no complete division between cephalothorax andalodomen, althongh in the typical genus the division is often indicated just behind the third pair of legs. The body, which is usually short and broad, is provided with many stout bristles. In front on each side are one or two simple eyes. The mandibles are quite large and prominent and taper to a point which is tipped ley a curved claw. The palpi are promisent, but slender: in Erythatues with a long "thumb," but in Anystis the last joint is terminal. The legs are large and long. gradually tapering and provided with many long hairs or bristle.

Fig. 23.-Venter of anystis. They are six or seven jointed, and terminate in two or three claws. In some species the tarsme is divided into a number of small joints. On the venter are genital and anal openings, both quite clongate. The young rescmble the adult, except in having lout six leg..

There are four genera, three of which. Lisythripns, Inystis (formerly Actimed(a) and (ichollion, are known from the United States. Anystis, and Erythrens are free and predaceous. feeding on any small insects or acari that they may come across. Their movements are excessively rapid and erratic, sometimes whirling

FIG. 24.-ERYTHPELS SPINATCS. about in a zigzag course like a particle of dunt how by the wind. In Abatis the body is triangular and the papa are four-jointed. In Fry th rents the body is more elongate, and the palpi five-jointed.

Our one species of Amystis, A. agilis banks, is commonly found running over the leases of hems and shrubs in the search for prey. It is red in color. I have seen it feed on aphids, on small caterpillars, and on the young larva of the currant sawfly. The young before transformation spins a white silken web on a leaf, or crevice of bart, and beneath it changes to the adult form.

Species of EDythe pap ns are known to over about homes, but most of them live on trees. They are usually red in color, but some are marked with white spots and stripes. They are not very common in our country, but two species have been described. (ickolkin is found attached to various reptiles, especially lizards. Three species are known from Europe. and one, G. trona, is found on scelopornes. tomertamis in this colure.
The typical species is very broad, broader than long, and the coxa all close together; in (i, terstum and one European species the body is longer than broad and the hind coxae separated from the anterior pairs. The mandibles have a peculiar structure: they conwist of a stout rod with a short, acute, stout spur near the tip. They are supposed to

FIG. 2О.—GEKOBIA TEXANA. (1, BEAKABOV゙E; O, BEAK BELOW: r, TIP OF MANIDBLEN; d, I'AIPUS; ℓ, TARSUS WITH (LAWNS. suck blood from the lizards; nothing is known of their earlier stages.

Berlese has recently changed Erythrians to Erythucurus, chaining that the type of Eirythriens is a Rilynchowlophlux.

Family TETRANYCHID.E.

The members of this family, commonly known as "red spiders," have for many years attracted attention, owing to their ravages to cultivated plants. Since many of the species can spin a silken thread. they have also been called "apinning mites." Their structure presents few remarkable characters. The body is oral or elliptical, prorided with a few. mostly long, hairs, arranged in four rows. The cephatothorax is separated from the abdomen by a furrow, and bears on each side one or two simple eyes. The palpi are short, the penultimate joint ending in a claw. The last is "thumb-like" and bears one or more appendages called "fingers." In some species the palpus of the male has a short curved spine at the tip on the upper side of the thirel joint. The mandibles have their basal joints mited in a plate; the apical joint, being rery long and flexible, is fitted for piereing plant tisules, and is known as the stylet. The legs are moderately slender, the first pair the longest, with scattered hairs, and ending in one or two claws. In many species of Tetrenychus the claw is split into four pieces, whence the name. On the under side of the abdomen are two

 simple openings, the basal the genital, the other the anal. The former in the female is usually tramserse. In the male it is longitudinal and often show the slender curved penis.

The genera reeognized in our country may be separated an follows:

1. Front margin of "ephatothorax with four scale-like projections, hooly with sealelike hairs above; leg I longer than booly \qquad Bryobia. No scale-like projections on front of cephalothorax 2.
2. All the legs much longer than body, which is short and broad; rostrum not prominent from above Neophyllohicus
Few of the legs but little longer than hody . 3.
3. Palpi ending in a "listinct "thumb;" not very slender.................................... 5 .

Palpi not ending in a distinct "thum1," ... 4 .
4. Palpi very small and slender; legs short and heary, usually rugose; eyes distinct

Tenuipulyus.
Palpi of moderate size, legs longer, not rugose; eyes indistinct or absent
Tetronychoides.
5. Body twice as long as broad; legs very short.

Stigmatus.
Body one and one-half times as long as broad; leg I longer than hody
Tetromychus.

Two somimon European gencra, ('elligomens and Roplighmethers, have not been found in this coontry. They are very small and of a bright red color. In the gemms Bromblia we have but one species, B. Joratomes (iaman, known as the clover-mite. It is very abundant in many localitios. In the West it is injurions to fruit trees: in the East

Ftif, 27.-Tetranychir, mandibilar plate, dorsal and latebal views. a, plate; b, stylet; c, sPINA; l, PALPU'S.
it more commonly affects clover and ammal phants. The eggs are laid in the antum in great numbers, attached to the branches and twigs of trees. They are red, very small, and round, and are often mistaken for the eges of plant-lice. The adults in the autumn often seek winter quarters in houses and may berome a great misance. Both

Fig. 28.-Tetranychtrs, cephalothorax from above, it, PALPLS; b, MANHBtLAR PIATE: r, FRONTAL BRISTLE: \mathcal{C}, S'BFRONTAL BRISTLE; G, EYFN. the mites and their egos can be killed by a spray of kerosene emulsion.

In Tetranyelens the body is subpyriform, and provided above with about twenty-four to thirty-six bristles arranged in four rows. The species of this genus can spin a thread. which, when they are very abundant, becomes a dense mesh or web, visible at a considerabledistance. The spiming organ is not definitely located, but the thread arises from or near the grenital or anal opening. The web does not appear to afford the miter any protection, but at times seems to serve to hold the eggs in place. It may be cither on the upper or lower surface of the leaf. The mites are supposed to hibernate under or among fallen leaves, in the spring asconding trees to start new colonies.

Eatch female may lay from tive to ten egrg a day for a period of eight to twelve days; the yomg hateh in from thee to fire days, and in about five days more are alult. A succession of broods is continued

 ! 1 , NYYOHILM: h, CLAWS.
thronghout the summer, but wet weather is apt to stop or erreatly retard their development.

The mites ordinarily move slowly, but when disturbed can rum quite rapidly. For the greater part of the time they remain in one place

Fli. 30 - TETRANYCHU's, genital organs.
sucking the juices from the leaf. In the spring some species attack the buds. Sereral of our species are very abundant and destruetive. The common greenhouse species, known as "the red-spider," and which also occurs on many outdoor cultivated plants, is T. bimaculatus

Harvey; it is probably the T. cuctmerix of Boisduval. Specimens of this species often rary greatly in coloration; the members of each colony, howerer, usually being adike. T. mytiluxpidis Riley is abme dant on orange leares in Florida. In this species the abdominal bristles arise from warts or tubercles, and the tarsus hats two simple
(laws. The most abundant species on orange is a yellowish form, T. summenlutus Riley. At times it is a very serions pest to orange colture, and an suticle upon it is found in the Report of the Ento-

Fhi. 33. Bryobia fritensig-a, Female from above; b, female from below; a ani d, tarsaj. (LLAWS: ℓ, BFAK FROM BELOW; f, BEAK FROM ABOVE: $!$, PALPL'; h, i, j, k, l, m, SAIES AND APINES OF VARYING SHADE (BUREAY OF ENTOMOJOMY).
mologist for 10s9. They occur on the under surface of the leaves: the eggs are colorless or pale greenish-yellow.

In T. licolon Banks, a species common on the leaves of oak and chestnut, the tarsus has but one claw. The form occurring on cotton is known as T. glomeri Banks: it is bright red, and greatly resembles
the common greenhouse -pecies. There are several remedies for red spider. One is to keep the plant: moist. spraying them with water once a day. But the best remedy is flowers of sulphur applied either as a dry powder. or as a spray. Bismphide of lime is also an effective remedy: and tobacco water is sometimes used. The -pecies of stigmatrs are

Fig. 34.-Bryobia Pratersis, larva BUREAU OF ENTOMOLOGY).

Fig. B5.-STIGMAELS FLORIDANTS: MITE, MOUTH PARTS, ASD CLAWs.
elongate and hare short legs. Thes are smaller than Tetramplow. hut live in the same manner. Our one species. s. tomidmme Banks. occurs upon the bases of the imbricated leares of the pineapple. It

Fig. 36.-TETRANYCHOIDES CALIFORNICA, AND PAIPL'S ENI.ARGED.
is of considerable economic importance owing to the fact that its punctures give certain destructive fungi access to the tisue of the leaf. The remedy. Prof. Rolfs found. is to place a small quantity of tobacco dust in the bud of the plant, the dew and rain washing it down upon the mites. One application is usually sufficient.

In Veophyllobius the body is short and the legs are rery long: the tarsal joint slightly swollen in the middle and ending in two claws. Our only known species was taken on oak leaves in Alabama.

In Tennipulpus the palpi are very small and slender, and end in two or fon short bristles. The species are smaller than Tetrenychows and red in color. 1 have seen one species from our comntry, mamely. Tomin恠pus. conlifurnicos. It appears

Fig. 3s.-NEOPHyLLOBICS americantr. to be very numerons on the oramges in California, and doubtless canses some injury. Inamuch as it is very small, and toes not breed very fast, it will probably mever be a pest of prime inportance. It may be destroyed by the treatment used against " red-spider."

Tetrangithedes is based upon one -pecies, T. culiformict, which occurs in small colonies on the leaver of orange. Each colony is usmally in a slight depression, and is evident to the maked eye as a snow-white pateh, this appearance being due to the fact that the molted skins are retained attachoed to the leaf. The mites, which are almo-t colorless. and their eggs, are located among these molted skins. They do not appear as yet to be numerons enongh to do any appreciable damage.
Three other genera have been recorded in Europe, Eiputopsis, Cryptognethes, and Tetranychonsis. each with but one or two species.
Red-spider damage is common in nearly all foreign countries. but the gemeric positions of the mites that "anse it are not easily disernible from the meager descriptions. In India and Ceylon one species, called Tetrmychus bioculatus, is a very serions pest to the tea plant.

Family RHYNCHOLOPHIDE.

These common mites are similar in many ways to the harvest-mites (Trombidiidee) and by may authow have been umited to them. They are much like Trombidinm in appearance, but nearly all are of more slender proportions and more rapid in motion. The hody is ustally divided, although not no plainly as in the Trombidide, into two parts. The ephalothorax is quite large and on the same plane as the abdomen. Along the middle of the cephatothorax is a tine or furrow, known the dorsal groove or crista. It is usually enlarged at the posterior and, sometimes in the middle, and also at the anterior end, where it often includes a frontal tuberele. There are one or two simple eyen on each side of the cephatothorax; they are atways sessile. In one genus (smarix) there are also two eyes close together near the middle of the anterior margin. The palpi are prominent, five-jointed, the last forming is "thumb" to the preceding, which ends in at clatw.

The mandibles are slender, needle-like, and retratile. thas differing greatly from those of Trombidiam. and forming the warrant for a separate family.

The legs are commonly quite slender, the hind pair sometimes more than twice as long as the body. They are seren-jointed and terminate in two small claws. The last joint, or tarsus. is nearly always shorter than the preceding joint, and in the first and fourth pairs often swollen. The hody and legs are densely corered with bristles or hairs, sometimes both. The hinder pair of legs are always quite remote from the anterior pairs. The genital opening is between the hind coxe: the anal opening is ustally close behind it.

They are usually found on the ground. sometimes in very hot situations, and rum orer the surface or on low plants with great rapidity. Other specias oceur in moss or under fallen leaves in woods.

Fig. 40.-Rhyneholophes mactlates.

Fig. 89.-Rhy̌acholophes. a, FALPl's; ?, MANDIBLES; c, BEAK; d, TRACHEAL POPES; e, DORSAL, GROOVE; f, TARSIS. on the ground or under stones often in elusters. The larva is a six-legged mite attached to insects. When full fed they drop to the ground and become quiescent. and after a varying time transform to the adult.

There are several genera in the family, hut only three are so far known from the L'nited states. In Smaris the mouth-parts are retractile, and so are often invisible; the palpi are four-jointed and there is commonly an extra pair of eyes near the anterior margin, making six in all. In Smarimlia the mouth-parts are less retractile than in Simaris, and there are but four eyes. The palpi are tive-jointed and the dorsal groore is sometimes swollen in the middle.

Thor', who has recently published on this and allied families, makes Smaris the type of a special family. He finds that in this gems there are no spiracles near the beak. as in other Prostigmata, and that there are no large tracheal trunks in the body. There are a great many fine
trachea in this mite and Thor believes that respiration is effected throngh the skin, the structure of which is rather peculiar. Upon these ditlerences he bases a family: howerer, in my opinion, this is but more erictence (if such is needed) of the tuselessness of a classification hased on the respiratory system.
 -TMPLEX ANO PALPC'.

In Rliynuholopluss the mandibles only are retractile; there are but four eyes, and the palpi are fire-jointed. We have many species of this gems. and several of them are common and widely distributed. They are predaceons and suck the juices from any small insect that they are able to catch. One -pecies has been fomd preying on the gloomy scale (Arperdiotns temempi(\%,s $1 /($,$) and othersare fomed$ feeding on the San Jove scale and other sale insects. In these situations they are often the prey of

Most of our species are uniform red in color, but R. cinctipes Bankes has prettily handed legr- and

Fift, t2.-Yexter of smaris. li. muculutus Banks has several large pale spots on the dorsmm. One of our species. R. Iongimex has so extremely long legs that it resmbles a minute Phalangid. The genus Eutonitum oremrs in southern Europe and northern Africa; it is remarkahle on atcoount of the plume of hairs on the hind leg..

Family TROMBIDIID.E.

The "harvest mites." an they are popularly called, are recognized hy the body heing divided into two portions. the anterior (eephalothoras) bearing the two anterior pairs of legs, the palpi,

Fis. 43.-Endio OF Trombiditm. mouth-parts, and eyes; the posterior (abdomen) is much larger and hears the two posterior pairs of legs. The mandibles are chelate, at least there is a distinct jaw or curved spine-like proces. They atso differ from the allied Rhyncholophider in that the last joint of leg IV is not or very slightly shorter than the pemultimate, and in that the last joint of leg IV is not swollen. The last joint of leg I nsually is swollen, often more so tham in the Rhyncholophide. They are always red in color, some, however, being much darker than others. The body is covered with bristles or feathered hairs according to the specier. The palpi are five-jointed, quite prominent, often swollen in
middle, the penultimate joint ending in one or two claws, the last joint (often clavate) appearing as an appendage or ${ }^{*}$ thumb" to the preceding joint. The legsare seren-jointed; the tarsi terminate intwosmall claws. The legs are elothed in the same mamer as the body. There are two eyes upon each side of the cephalothorax. quite frequently borne on a distinct pedicel. Along the median line of the cephalothorax there is commonly a crista or dorsal groore similar to that of the Rhyncholophida. This erista is enlarged at the middle or posterior end into a triangular area, called the areola, in which are two pores from which arise bristles.

Doctor Oudemans terms these psendo-

Fig. 14.-EyE of Trombidicm. stigmata and pseudostigmatic organs. The latter are sometimes clarate at or near tip. There is no proof that these are homologous with the organs of the same mame in the Oribatida, although it is possible. Sometimes these organs are present although

Fig. 45.-Claws of Trombidicm. the erista is absent, and in one species there are two pairs of the organs. The function of these organs is entirely unknown. The genital aperture is situate between the hind coxa: the amal opening is smatler than the genital and placed a little behind it.

The larvae are six-legged mites and parasitic on varions insects. They, with other larval forms, were formerly supposed to be adult and to constitute a distinct family under the name of Microphthiridar. 'Three of the genera of that family, Leptrs, Ocypetex. and Itomet (or Astomed), are now known to be larval Trombidids. Some of these larva are, in certain localities, very numerous, and will attach themselyes to man, cansing in-

Fifi. 46.-Leri I (1) Trombiditm. tense itching, soreness, and even more serions complications. They have received the popular name of " red bug." In parts of the Southern States the " red bug" is often a source of great annoyance. They burrow beneath the skin and produce

Fig. 47.-Mandible of Trombidicm. r, TrACHEAL POREs; t, TRACHEA. inflamed spots. It is an umnatural situation for the mites, and they soon die, but the waiting is not pleasant. They can be killed by anointing the affected spots with an ointment or salve containing sulphur. Some recommend sponging with a weak sohtion of carbolic acid (an ounce to a quart of water) after a soap hath. Allied npecies oceur in most warm countries. In France, where they are often very troublesome, they are called "rouget" or" "aontat," and are the
calne of the " erythema antumate." In parts of Germany a serere infestation is known as . 'starhelheerkrantheit." In England and Scotland it is called the " hamest mite" and " gooseberry bug." In Mexico red hogs are known as "'lalsahmate." in Japan as " Akammshi," and in parto of the Went Indies as the "bête-

Fiti, An.-The lapya (ieptis) of a ThomBIDICM. rouge." In all these countries they have at times heena serious annoyance to the peasantry and hindered or prerented the harresting of certain crops. The female deposits the eggs in or upon the ground. sometimes as many as foo together. They are usually brown and spherical, and were by some early writers considered to be fungi. The outer skin or chlorion soon splits, dividing the egg into halves and exposing the pale vitteline membrane. This stage is the "deutovom " of Claparede.
The newly-hatched larva is circular or ovoid in outline, with three pairs of legs, each tipped with two or three prominent claws. After becoming attached to the insect the larva becomes elongate and swollen with food. When full fed it drops oft, seeks shelter, and gradually changes in thape. but does not molt. The new parts are formed under the herval skin, which in a few weeks eracks and diseloses the adult Tiemmbidienn.

The mature mite is not parasitic, but wanders about feeding on small insects. as plant-lice, young eaterpillars, and one species. T. locustumm Riley. is known to destroy a great many grashopper eggs. A French species hats been found destroying the root-forms of the dreaded Tlygloreru. The adnlt hibernates in sheltered places. or in the soil; the eggs are latid in the spring. and there appears to be but one brood a year. Only a few forms have been bred; the larve of one of them is common on the house fly in autumn, and a similar form oecurs on mosipuitoes.

Ourspeciesareall pratically congeneric,

Fig. 49.-Trumbinicin lucustarlim MaLE. but those forms that have two claws at the tip of the palpi fall in the genns Micontrombictimm Haller. Kolenati's genera Otomyssms and l'phomysuck parasitic on hats, uppear to be larval Trombidions. The genus Trombidimm contains a great many species-in the L'nited States ahont ten. Several of our species are very common. and are often seen.
crawling about in carly spring，their bright red color and silky vestiture attracting the attention of even the most casmal observer．In the Sonth－ west there is arery large hairy－pecies．T．mombiticmm Le Conte：it appears at times in enormons numbers，and in parts of Arizonst is called ＂angelitos＂by the Mexicans．Most of the species are of good size． some among the hargest of the mites．In the Tropice there is aroup

Fig．50．－PALPC＇s of thombidity GIGANTEIM．

Fiti．51．－l＇Al．PL＇s of TRoMbiditM MAGINIFICCM
of large species．of which T．timctorium Limmeus is perhaps the best known；it attains a length of about one－half inch，and ocens in the warmer parts of Ifrica．It was supposed to be used as a dee in olden times，but does not reem to be so used now．One of onr species． T．maritimmm banks．lives under stones between tide marks on the seasinore，and feeds sometimes on a maritime Coceid（Ripersion moni－ timu（＇ockerell）．Our most common peecies in

Fig．52．－C．eculus ameri－ CANUS． the Eastern States is T．sericeum Say；it oceurs in moist woodlands，and feeds upon smatl in－ sects．fiequently mpon springtails．

The gemus Trombella is fomded on a curious Wouth American species，and Chyzeria repre－ sents a form from New（ininea which has pro－ jections along the sides of the hody．

Family（CECLLIDE．

A few mites of peculiar appearance．somewhat like Nothrus of the Oribatidie，but structurally allied to Trombinlimm，constitute this family． They are rather large mites，of somewhat rectan－ gular shape，and of a leathery texture，the legs are very rongh，and the anterior pairs provided with a row of long spines．They terminate in two clatrs．The coxa are arranged close to－ gether in a radiate fashion．The dorsom shows a transerse furmo indicating the separation of cephalothorax and atbdomen．The former is provided with a median shield，and from each posterior side arises Proc．N．M．vol．xxvii－04－3
a pedicel bearing two eres similar to those of Trombidinm. The abdomen is provided with two or more shiekls. acerding to the species. The rentral opening- are very lare and elose together, eath closed by Haps or valyes. The mouth-parts are small and obseure, but the palpus is steut, dive-jointed, the first and third joints very small, the penultimate ending in a chrved spine. the last forming a "thumb." The mandibles are stont and terminate in a comed claw. They are eoncealed in the large eonical rostrum. The species are brown in color. Very little is known regarding their habits and nothing as to life history. They occur in moss, among fallen leares, or in moist places. They move very slowly and feign death when disturbed. But one gemus, (aculns, is known. Several seecies oceur sparingly in southern Enrope and northern Africa. One, ('arrulus amuricomus Banks, was diseorered hy Hubbard in southern California.

Family HYDRACHNIDEE.

since O.F. Mïller destribed the Danish species in 17א1, the water mites have attracted more attention and stuly than any other family of Acarina. A large number of important papers have been published. particularly on the European fama,

Fig. 53.-LIMNOCHAREs: VENTER. and a recent number of ${ }^{-} D_{\text {as }}$ Tierreich" (fiscicule 13) is deroted to them. The body is commonly short. usually high, and sometimes nearly -pherical. It is entire, there being no division into cephalothorax and abdomen. The logs arise close together on the anterior part of the venter. and of ten in a radiate arrangement. They have one or two simple eyes each side; in some cases these are situate close to the median line. The tegument is often soft, but sometimes provided with florsal shields or covered with a pitted conisas. The mouth parts are often hidden under the anterion

Fig. 54.-Limnochares: EYES AND DORSAL PLATE. margin of the rephatothorax. The beak (rostrim or (apitulum) is nsually elongate pyriform, and the mandibles are twojointed, with a claw-like terminal joint; sometimes they are elongated into needle-like pieroing organs. The palpi (naxillary) are of four or five joints, the basal one often very small, the apical one sometimes folding against the penultimate. The palpi vary greatly in shape and are of great value in classification. The legs are usually of seven
joints, rather subequal in length. althongh the fourth pair is commonly the longest. The coxa are often broad and entirely united to the venter and frequently to each other. The coxae or epimerat this form coxal or epimeral platessometimes four. sometimes three, and in a few genera they are united into one plate. The tarsi often termimate hroadly, and monally have two claws. They are provided with hairs and bristles. Sometimes there are rows of hais for assistance in swimming; these are most numerous on the posterior leg.s. On the venter

Fig. 55.-Eylais sp. are the genital and anal openings; sometimes the former is rery far back, nearly or quite on the posterior margin. There is usually a group of sucking disks each side of the genital iperture, the mumber and position of which

Fig. 56.-Eye-plate of EYLAIS. are quite characterintic of each species. On the dorsal side of the rostrum (capitulum) are two spiracles that lead to the trachea: in some forms there are no trachea.

The adult mite liven free in the water as a rule, but in Ita, they are parasitic in the gills of mollusks. The young are frefuently parasitie on insects or mollusks. Many of the speries are red or bhuish-yreen in color: often they are prettily marked with yellow or black, and vary considerably in maculation. Hydrachnidsare rather above the average size of mites. some species being fully \& millimeters long and most of them over 1 millimeter.

There are frequently differences in structure between the sexes; in Arrenurus and some other genera the male has an elongated abdomen tipped with a median projection called the petiolus. In

Fig. 57.-Arrenurus sp, male. some forms the males have some of the joints of the legs erpecially modified. The female lays spherical egg's on water-plants, stones, or in the
mantle-folds of Lamellibameh mollusks. During the comse of development a membrane is separated from the embryo while yet inclosed in the eqg-shell: the egor in this eondition is the dentormm. After the exg-shell is broken the embryo continnes to develop within this deutovam. The harva on hatehing is six-legged, and

FHE 5月, - IRRENLRI'sis., ralitcs. in some cases is parasitic in the re-piratory system of mollusks or attached to angatic insects. Nemmam hat clatmed that in one species of Limmesin the form hatching from the egg is eight-legged. and therefore a nymph, as in I'toroptos. Kramer has arranged the larvae in three series, which he considers is the basis of classification. A- a whole, the larve difler greatly from the adult and many were deseribod as different creatures. Some were the basis of the genus Achlysion. The harva usually has rery small mouth-parts; it fastens to an insect be means of hooks at the tip of the short, stout palpi. inserts its jaws and proceeds to feed. Gradnally the body becomes swollen, the legs shrink, and the ereature looks like an elliptacal egeg. The peipa is formed within thin sace-like hody. and from it in time iswes the adnat mite.

Nearly all Ilydrachnida dive in fresh water, a few forms occur in brackish water, and beveral are known from the littoral zone of the sea. They are sometimes parasitic, ats aheady notived. hot usmally firee. and feed on any small amimals they ain eateh, such as shall erostaceat infusoria, and minnte insect lavie. The water mites are found throughout the globe, bat appear to be most numerous in tem

Flf. 54.-AhRENURTS SP., FEMALE FROM BELOW. perate regions. Many secoes inhabit rapid streams and fery cold water. About 60 genera and bon -pecie- hate been dearribed. The spectes ate often widely distributed and fomd amid rery diflering surroundings.

Various chassifications have been

Flef. (i0.-LARYS of AS HYHRAMHNA ATTACHED TO LEG OF AN LNSLRT: NYMPH INOILE. matle, one of which arranges them in It familic. Howerer, it maty be better in this pruer to we a less complex system. Some writers have kept the Hydrachnidae guite distinct from all other mites. but they are now gemerally recognized to be closely related to the Trombidiade. Nordenskiold helieres the family to have two separate origins, and therefore not matural.

In the following table are found weral eommon European genera which are not yet recognized from this comotry, and doubtles other

European genera will also le fond to oreur in North America. A German. Doctor Koenike, published a valuable paper on some Camadian forms, and lately Dr. R. H. Woleott, of Nehraska, has issued several excellent articles on our mative speries.

Fiti, 61.-LimiEEIA Sp., PAIPP'S ANH CONAL PLATES.

Living in fresh water \because
\therefore Eyer chose together near the mentian line :
Eyes widely separate on the sides 4
3. Hind legs far from frent legs, and without swiuming hairs; tips of tarsi ohliquelytruncate; body somewhat divided into cephalothorax and abdomen; in fact,the whole ereature is trombidiform ((Limmorhariner) LimnorheresHind legs not far from front lege, with swimming hairs; tarsi puinted; mon inti-ration of division of budy(Eylaine) Eyletis
4. Pemaltimate joint of palpus prolonged beyond lawe of last or with a twoth orpine-like projection near, or at tip.................................(Hydrachninae) 5
Penultimate joint of palpus not prongeng beymd lase of last, nor ending in asine. (I Iygrobatina-) 10
5. Mandibles, one-jointed, needte-like
Nandibles of two joints, with waw at emd ${ }^{i}$
6. Lateral eyes far apart Diphontoutus
Latera' eyes close together 7
7. Without swimming hairs to legs s
With swimming hairs !
8. Wi ha median eye on front part Thy"ts
Without median eve I'turisus
9. With a median eye on front part IIgelr!pphentes
Withont median eye Tetncognnethus:
10. Fifti joint of palpus forming a claw opposable to the apical part of the fourthjoint; males frequently have the abdomen extemded hehind11
Fifth joint of palpus not forming a claw opposable to the apmal part of fourth joint $1: 3$
11. Capitulum or mostrme elongate, of two jointe; pahi very small KrendouskiceCapitulnm short, entire12
12. Dorsum with a furrow, following somewhat the ontline of bidy; in male openlohindAremurns.
Dor:um without furrow Stegmus.mpis
13. Epimera of hoth sexes mited into one plate 14
Epinera (at least of female) not united into one plate 17
14. Fourth joint of palpus with a projeetion bedow Xystemotus
Fonrth joint of palpus without projeretion 15
15. Worsum without a bowed furrow Lebremiar
Dorsum with a bowed furrow 16
16. Seeond joint of palpus with a projection below; genital aperture at tip of lurly It"ru*.
Seromb joint of palpus withont projection; genital aperture mond before tip of berly Midreopsis:
17. Fourth tarins without elaw; a lomer bristle at tip LimmesinFourth tarsus with claw as otheres18
1s. Genital opening with lip each mate nkarly eovering the disk-; palpii with phine
llisks near genital opening fully exprsed 19
19. Epbuera of female in two groups K゙r"nikre
Epimeratof female in three gronps; genital opening usually with three disks eath side 20
Epimerat of fomale in forar gromps 21
20) Apinal jointe of lex I normal II!!grobules
Fifth and sixth joints of leg I eurved ltardictrs
*21. Genital operning with three disks eateln wide Tigneplliet
frenital opening with mere than three diske each sides 22
2ٌ2. Lexs I and II with spirally ringed hrintles. Témm"m!1ir!
Lexs without such loristles $2: 3$
23. Grnital opening at tip of loxly $2 \cdot 1$
(ienital opening mach before the tip $2 \overline{2}$थt. Withont swimming hairs on legs; fourth joint of palpus without three spurshelow; genital area large PoltriueWith a few swimming hairs; fonth joint of palpus with three spurs, or papille,leelow; genital area smaller1 to. 1
2.5. Hind epmera with a pointed projeetion below; palpi larger than legr I . . VajarlienleLlind epimerad withont a frojection; palpi smaller, and end in two or three smallrlawr; the fourth joint has two papillax below . I' Pum
The gemus Limmothres is pratetically an muatic Trombidian: thebody is of the same shape. and rad in rolor. It can not swim. lontcreeph owor the mud and plants under water.

Fif. 63.-VENTER OF LeBERTI. The young are parasitic on water-skaters (Cierriter). Our species is rery like the Enropeatr.

Wo have three species of Eylais. They are distinguished hy having four simple eyes situate close together on a plate near the median line. They are most frequently fomed in poonds. A larva of this genms has been foumd on mosiguitoes. The gemus Thyfis. of which wh have a few specier. has no swimming hairs on the legs, and beside the lateral evos there is a median ero in front. Several
 less many more occur. They are often gren in color, and have a chitinousdorsum. 'The dorsum has a circular furrow in the male open behind.

The mates have the body extended behind, and there in a small median petiolus. They live most commonly in lakes and poncls. Kimmonestiou and Steganaspis are each represented br one species.

In Aturus the epimeral plate covers nearly the entire rentral surface: one species is known from a small river in Canada. Of lystountrs and Midenpsis but one species is known in each: the latter is also at common Enropean water-mite.

The species of sperthon : are often found in cold and rapid mountain streams. Three species are known from Canada. They have the palpi enlarged at base, and the seeond joint bearsastrongspur below. The sucking disks each side of the genital opening are nearly concealed hy lateral tlaps. The legs have no special -wimming hairs.

Limmesta is a large gemu- three species have been recorded from Canada. two of them European. They have a soft hody: the hind loge are

Fiti, b4.-PIONA sP., AND PaLPt's ABOYE well provided with swimming hatirs and the fourth tarsus lack- the claws. but is provided with a bristle at tip. The patpi hare the basal joints enlarged and often with a spur below. They matully oceur in lakes.

Konenikat is represented by one species widely distributed in the northern parts of our country. The

Fig. 65.-Larya of piona species of I Iymmonter have soft bodies. the slender legs destitute of trueswimming hairs, and the palpi have a spur or tooth below. There arr three surking disks each side of the genital orifice. Four species are known from C 'anarla.

Atur is one of the largest genera, and Doctor Wrolcott has worked ont somes twelve species, and another has since heen added from Texas. The genital opening is situate at the tip of body. and the sucking disks each side are ten or more in number. The legs have swimming hairs and the first par is thicker than matal. The palpi are enlarged at hase, and the fourth joint bears threa papilte or spurs below. Most of the species ocem, for at least a time, in certain fresh-water mussels, particularly of the genera Chio and Anorlonta.

They are found on the mantle-folds or gills of the mosel. and feed on the minute animals drawn in by the mosel. The late Doctor Italdeman described a number of species under the generic name of C'mimicolu.

The genus communion is closely allied to It ene but peculiar on asoment of the spirally ringed bristles on legs I and 11.

The gems Prion" (Cuprites) is also a large genus, and about 19 -pedies are now known in North America. They occur chiefly in lakes

Fifo, fib.- It. ax :P.

Fifo, 6 in. - 'OXAL PLATES of ATAX.
and ponds. The fourth joint of the pappus usually has two papilla beneath. and the legs are well provided with swimming hairs. The genital aperture is much in front of the hind margin, and each side of it are a great number of sucking disks, often of two sizes.

Family HALACARIDAE.

This is a small family of marine mites. They have a leathery skin. frequently granulate or striate hut commonly destitute of bristles. sometimes there are coriaceous plates or shields. The body usually shows the division into cephalothorax and

Fur. (S. - 'LAWS OF HALACARIS. abdomen, both above and below. The rowstrim is often quite prominent, sometimes as large as in the Bdellida. The cephalothorax usually has three eyespots, one on the middle in front. The palpi are three or four-jointed, the last article sharp-pointed at tip. The mandibles are rather prominett. and end in a single straight, or reentered claw. The legs are moderately long, rather widely separate at base, lateral or sub -lateral in origin, and end in two chaws. They bear a few scattered bristles. The genital opening is quite large and far lack: the ants is small and at the tip of abdomen. These mites have no tracheae, hut do not appear to be related to other atracheate Acarians, but rather to the Bdellidat and Orihatidee. It is, perhaps, not a natural family. but derived from several groups. The Habacaride are found crawling slowly over alga,
frequently in shallow water. but some have been dredged at considerable depths. The adults are free, and feed on diatoms and other minute regetation. The roung of some forms foed on the eggs of Copeopods, while others are attached to various animals. One is known to oceur on a Cliton. They are from one to two millimeter in length, and their colors depend largely on the nature of their food. The young have the general appearance of the adults, and umphs sometimes possess rudimentary genital organs. The legs of the nymphs have each one less joint than in the adults. They have been

Firi, 69.-Halacarus sp.

FIG. 70.- SCAPTOGNATHUS SP. (AFTER Trotessart)
found in nearly all seas, and abont serenty speries are now known. The forms along the coasts of North America have not heen studied. The prineipal genera may be tabulated, as below.

1. Rostrum elongate and constri،ted at hase... 2 .

2. Palpi apparently three-jointed, separate. Scıptognuthus.

I'al!i, four-jointed, comnate at base . Tronessmitellu.
3. Rostrum elongate, palpi separated at hase 5.

Rostrum very short, triangular .. 4.
4. Palpi separated at hase . Rhombogmuthus.

Palpi comnate at hase - - . Simogmuthus.

Palpi plainly four-jointerl
6.
6. Third joint of palpus nearly as lome as fourth

Third joint of palpus much shorter than fourth

Mont of the specios come from the French coasts or the Atlantic Ocean: one was deseribed from fresh water. A few are from other regions, and doultless as they aremore collected, the family will be of considerable size. IInlorarns, the largent gemms. contains ahout fifty pectos, seremat of which bear some resemblance to Sentorenter in the Oribatidx. Nost of them are marked with brown, reddish, or back. Dr. E. Trouesart, of Paris, has published very largely upon
 a species of Ilolnewms from the coant of Maine: it was found on algix.

Superfamily IXODOIDEA.

The members of this group, commonly known as ticks, are of all Acarians the most familiar to ordinary people. Their body is covered by a tongh, leathery skin. which in the female is capable of great extension. The tieks (hefore distention) are of a somewhat triangular

Fig. 71. - Drgas Miniatus. From BELow.

Fig, \%-ORNITHODOROS MEGNINI: NYMPHAL FORM, AND details (Marx).
ontline. moderately flat, with prominent, slender legs and a beak-like restrum in fromt. On the anterior part of the dorsmm there is a corneous piece or shield that may represent the cephalothorax. This is known as the sentmm, and is alsent in the family Argasida. With the male this seutum eovers the greater part of the dorsmm. Artienlated to the anterior margin of the scutum, usually within an emargination. is a small, transerse piece the capituhum or head. The po-terior comers of the capitnlum project backward in spines. In the female ticks thereare on the dorsum of the capitulum two pitted arean. known as the porese areas. The capituhm bears the palpi on cach side and the mandibular sheaths. The latter include the mandibles
and the hypostome. These are sometimes called the prohoseis, haustellum, or rostrum. The hypostome is a central piece, hearing many recurved teeth or denticles. The number of rows of these denticles is used as a specific charater in classification. At the tips of the mandibles are two or three processes known as the apophyse. They also hare been used in classification, but are variable. The palpi are always very short and stont and composed of four articles, not. however, very distinetly. Some speries have eyes situate one at earh lateral angle of the sontum. The posterior margin of the bods. especially of the male, is usially some what lohate. these lobes being known as the posterior marginal festoons. The stigmata or spinacles are above and usually hehind the coxa IN: Each is surrounded by a reticulated or pitted pate of varying outlines and called the peritreme or stignal plate. It is often of large size. Upon the renter there are several furrows characteristic in position and of value in claswification. The amal opening is a small. circular hole some distames behind the coxar IV: the genital pore is situate on the front of the sternal areas. slightly behind the month-orifiee. The legs arise close together. but in the distended females the coxar berome fuite widely separated. There are six joints in the log-coxa. trochanter, femur, tibia, protarsus or metatarsur, and tarsus: the latter is sometimes divided, while the femur often presents a basal

Fig. 73.-Booriflt's ANSULATUS, FEMale distinct portion, which may be the trochantin. Upon the tarsus of the first pair of legs is a depres-ed circular area, supposed to be an organ of hearing: it is known ats Haller's organ, in honor of its discoverer. The tarsus terminates in a shomt stalk that bears the two claws and the pulvillus or caruncte. The body of a tick is usually dull colored, but some forms are mottled with brown and yellowish or reddish.

Ticks are parasitic on mammals, birds, and reptiles. But at timethey may leave their host, and are not confined to one host, although some species show a preference: Nost of them do but little damage to their hosts while sucking blood. but several closely allied speciebelonging to the gemus Bomplillist transmit an organism, the Γ 'y mosmmen ligemminmm, that causes a disease in cattle known as Texa- ferert. Southern cattle fever, red-water, heart-water, ete. As a result of her bloodthirsty mature the female tick becomes enormon-ly distended.
and is then in a mature condition. The life history of ticks has been decribed he Curtis, Morgan. Lomshory, and others. Ticke pair during paraxitiom, the male remaining beneath the femate for some datys, the latter finally dropping to the gromed to deposit her egges.
 manses in fremt of the tick. During the operation the head is withdrawn inte the body, en that the

nerk behind the capitulum is close to the genital pore. As the eggs isme they are conated with a riscons substance secreted from glands in the neck. These exges laty upon the surface of the soil. or just beneath it, and the larva hatch in a few days. The young tickn. known as "esed ticks," ascend the mearest support of graws or herb. and pationtly a wait the coming of some animal. Delay and disappointment must often ond in starvation and death. However, many serore an attachment to some amimal, often, perhaps, nut the desired one. In a few days the young tiek is rapidly distended by the bhool it has sucked from its host, and drops to the ground. Here it seek- a cavity or hiding place and rests. In three or four days the skin oplits and from the nemph iswes. and begins the same waiting proces that it experienced as a larva. As it has already had a grood meal of blood. it can wait for many days without fear of death. When it seeures hold of an animal. the abdomen distends as before, and it soon falls off again to hide and molt. After this molt the tick is adult: it waits again for a host, and when secured starts the life-cyele anew. The Texas cattle-tick and its allies do mot drop off for molting, but cast

Fig. 75.-Larya of boophiltu anytlates. the skin while upon the host.
They drop to the grombl, howerer. for the purpose of laying eggs. as the other ticks.

In the true ticks there is a considerable ditlerence in the abdomen of males and females. In the latter the dorsal shiold does not cover the contire abdomen, while in the male this shield extends to the tip. The males of some species have spines upon some of the coxie, and sometimes an extra pair of shields on the renter.

The internal anatomy of the lxodidar han been examined by Heller (15t8) and later by Pagenstecher (1si(1)). The pharyox soon contractis into a slender esophagus, which, as usual, pases through the "hrain" and into the stomach. The latter is not bery large, but has sereral diverticula or ceaca, some in front, and umally four harge ones behind and one longer on cach side. The color of the food in the cerea often shows through the integument, so that the same speceies at diflerent times exhibits different markings on the body. Upon this hasis the earlier athors often deseribed one species under several manes. The intestine is short and straght, enlarging somewhat before the amms. The breathing apertues or spiracles open into a large satc. which soon divides into a host of small trachee that spread out in the body carity. In the anterior part of the body are two large, botryoidal salivary

Fif. 7b.-StifiMal Plate of BorPHILL's ANCVLATY゙
glands. opening throngh a duct each side of the mouth. The female genital organs consist of two elongate ovaries, each with a stender oriduct, which muite shortly before the vulva. The mate organs consist of the two slender testen. each emptying into a large median sate, from which a slender duct leads to the opening.
The Lxodoidea are readily divided into two families.

$$
\begin{aligned}
& \text { No seutum; morentral shield; month-parts of alult not prominent from above; no }
\end{aligned}
$$

Scutum present; sometimes rentral shields; month-parts of alnlt prominent from
above: pulvilus to tarsus of both adults and poung; stigmal phate behind
toxit IV. - - - . . - - - - - . - .

The Argasida, contaning but few genera, are in some ways intermediate between the true ticks (Ixodidie) and the Dermanyside. The skin is. usually covered with gramulations or deeply pitted and the head and mouth-parts are hidden beneath the anterior part of the body. They are nocturnal in habit and feed on the hlood of mammats (including man) and birds. Unlike the true ticks, the femalen of this, family do not become so greatly distended with hlood. There are two genera in our fanma.

Capitulum at least its length from the anterior margin. 1 remes Capitulum moler at heak-like projection, close to anterior margin. (bmithormons

It is to the genus Arymes that the fanous Miana Bug of Persia helonge (A. persicens.). It lises in houses, and its puncture was declared bey the early travelers in those regions to produce startling results: comsulsions. delirium, and even death following its attack. Apecimens kept in Curope for experiment have failed to produce these dire comser quences, but there is such a wealth of textimony as to the dangeroneffect of the bite in Porsia that posibly in that country the Niama Bug may at times carry the germs of some disease. The buropean
species. Aretes fefterow, fommonly infests pigeons. but has been known to attack man. not however with serious results. Our species, the "chicken tick," Argus ${ }^{\prime \prime}$ invent, koch (amerri-

Fig. 77.-Clats up borophiLU'S ANNUTATt'S. com, Packard) is not uncommon in the souther parts of the United States from Texas to Califormat, and often dow s great deal of injury to poultry. (Chickens, badly infested, droop, refuse to eat, in a few days drop down, and finally die. It is of a dull reddish color. and the body granulate. The eggs are laid in masses of 30 to 100 and deposited in cracks of the chicken house. Perhaps the best remedy is to spray the inside of the chicken house with kerosene or benzine, then whitewash or dust with carbolated lime, and finally daub the ends of the roosts with coal tar. Isolating the roosts. by suspending them on stout wise. or by placing a barrier of cottonwaste soaked in oil around each end, will also be helpful.

It is now claimed that the chicken-tick in Brazil transmits the bloodparasite of a disease fatal to fowls. A simar species (.1. wenches Doges) is found in houses in New Mexico and Arizona and is there called the "adobe tick."

In the allied genus. (mrmithodrom, we have two seedies. both known to attack man. (). trrioutu Dugès is the mont dangerous. The Mexicans call it "turicata."

Fir. 78, - EgG oF BoOPHILLS ANN゙ULATUS. In southern ('alifornia they are known as "pajahmellos" to the cattle herders. Their lite will cane large swellings that remain for some days, and are very painful. The other species, (). metmimi Doges, is a serious pest to cattle

Flo. 79, -lnermacestur rariabllis, male from BELOW. and of much more common occurrene. It infests the ears of horses, cattle, sheep, and sometimes man, and has been called the "-pinose ear tick." The nymphal stage is suite unlike the adult tick :and was figured by Marx as Rhymerhenprione spinersim. It is of a brown or blackish color, and in the nymphal stage is clothed with many stout spines. It has been known to cause death in cattle. They can usually be removed by an application of linseed or olive oil. Like the preceding it is a Mexicon species. which orem only in the southern parts of our country. but is sometimes found as far north as Nebraska. The adult is known to Mexicans as the "galata," and the young are called "pinolias."

The Moubatia bug. (I) surnignii, is an African speries whose puncture is reported to produce effects almost as dangerous an those ascribed to the Miama bug. It attarks both man and beast. sometimes occurring in honses. The pain of the puncture is not felt until sereral hours after it in inflicted. but gradually the spot becomes inflamed and irritable.

The Lxodidie. or true ticks, are reprenented by a large number of species in tropical countries. lut in the temperate regions they are much less common. Howerer, there are about twenty-five species in the U'nited States ant one of these, the Texas cattle tick, is a pest of prime importance. Our tick- are ar-

Fig. : 0 , - Dermacentor variabllis shIELI OF FFMALE. ranged in about seren genera. which may be tabulated an follows:

1. Palpi short, not or only shightly longer than hroad; (apitulmm short 2

2. Dorsal surfare of capitulum hexagonal, the sides projecting in angles: male with anal plates \qquad
Dorsal surface of capitulum rectangular, sides straight; male without anal plates. t
3. Second and thirl palpal jointe extemd haterally into sharp points; stigmata nearly circular.

Pomphilu:
Second and thimp palpal jointe even; stignata comma-shaperl lihipicephulnos
4. Exes present; external border of palpi straight; coxat I hiolentate.... Itmmementro Eyes absent; external borler of palpi uneven; toxie I not bidentate. His momphsalis
5. Anal gromes surrounds amm anteriorly and opens posteriorly: eqes absent: stigmal plate nearly dircular - - - - - - - - - - - - - - Iront
Anal groose surrombls anus posteriorly and opens anteriorly; evespresent; stigmal plate reniform
is

Anal plates present in male. - . - . . . - - . - Invelom
Our one species of Bomplitus (B, cumulutus Suy) (monis Riley) is the distributer of Texas fever, a disease of cattle that canses enormons losses in the South, particularly in cattle imported there from the North. The southern cattle tick is found only in the Southern states and the (iovermment mantains a quarantine line where cattle brought North may be eleansed of their ticks. The female tick is of a dark. dull hrown color. with reddish scutum and lege: the male is reddi-h brown, the legs paler at articulations. The canse of Texas ferer is a minute Protozoan parasite. P'y/ros,m,n liyymminmm. This is taken up with the blood ly the Borphilu,w, which then inoculates bach amimal that it attacks. And eren the young that have not infereded any animal may produce the disease. The young ticke, ralled "seed tickn." are born on the ground: they climb upon grases or tonses. and anait the coning of cattle. Each attaches itself at the first oppertimity. and begins to draw blood. In abont a week it molts, remaining on the
host during this period. The male increase but little in size, but the femate becomes enormonsly swollen and in about a month she is ready to drop ofl and deporit eges.

 MaL PLATE.

Onee in the blood of wattle the parasite destrogs the red blood corpuscles, and caunes a thimess of bloot, the hamaglohin of which apperars in the urine. After death the spleen and liver are found to tre greatly enlarged. The most promising preventive semm to be the removal of cattle from pasture for ome year. 'Thispasture disinfertion maty he hastene l by cultivation for one yar. or grazing it to sherp). It has heen noticed that southerm cattle may berome immmone, and with this hint a method of racecination was devised for treating northron "attle when taken South.

There are sereral other species of ticks often found on cattle, hat nome are known to carry the parasite of Texas ferer.
()f lemmerntor there are there or fome seces in this country all with the selutum more a. less rariegated with white and brown. The
 somporbilixsay, and is our most widely distributed speredes. It in formed on cattle, doges horses. rathbits.and sometime on mann. Onthe lattere it cames no arrious comaequeners. but is a somed of muth irritation. They arre so tightly attached that it is of tou imusosible to remove them withont vither learing the head in the flesh or else tearing ont a piece of the skin. The other species are similar to the dogetick. hat are leas common. ()ne oecorson

FIG. A2.-HEAD OF IXODES. the moose, and others on attle, deer, and sheep.
/). reticulatus Limmeus, a European specios, is perhaph more frequent in (alifomia than $/$). madithilia.

Fif, B3.-Leq; I of inoines: section throngh tapslo, h Haller's URGAN.

In the genus l/iemmploysulis
 one or two species that occur on rabhitsand othersmall mammals.

In Irroles thereare several -pecies: one is a Emopean species, $/$. ricimis Limmens, that occums occa-ionally on cattle. In Scotland this species often attack- -herp) and appears to distribute the germs of a
disease similar to Texas fever, that is known by the name of "loup-ing-ill" or "trembling." The parasite is at present manown. The loss to Scottish herderwis sometimes very heary. It in said that sheep in moist meadors are not as sulject to ticks as those in drier pastures. A pale yellowish or almost white species, with a brighter yellow soutum. I. cruciurius Fitch, occurs on squirrels, gophers, rabbits, ete, In Florida a reddish species. I. sectpmlanis Say, is common.

Of Amhlyomm there are a number of species, particularly in the Tropics. 1. crmericem, Koch is often fomm on cattle, and is called the " lone-star tick" on accomnt of a prominent yellowish spot on the seutum. On some species the makings become intricate: a series of yellow and brown sinuate stripes variously interlaced. One of these, A. crenntu Say (muculutu Koch) is very common in the southern States, attacking almost any mammal, including man. One large specien, A. tmberentutn

Fig. st.-Amblyomma americana, SHIELD OF FEMALE.

Fig. *5.-AMblyomma ameriCANA, STIGMAL PLATE.

Marx occurs on the Floridan gopher. The exotic genus (1)phodes infests snakes; the varions species are handsomely marked with brown. red, and yellow. The genus Miementestor occurs on hats in Europe.

It has lately been shown that a south African tick. Hiemmpliysurlis lenchi Audouin, is the carrier of a blood-parasite that camses malignant jamudice, or distemper, in dogs in South Africa. The young stages do not communicate the disease, but if an adult tick feeds on infections blood, her descendants, when adult, may transmit the disease.

Superfamily GAMASOIDEA.

The Gamasid mites are among those hest known to collectors of insects, since many species are rery common, and others spend part of their life attached to heetles and other insects. Typically these mites have a hard coriaceons integument, hut there are many excep. tions to this rule. They are quite flat, broad, and with rather short legs. They have no eres, but the sense of touch is very highly developed through many hairs on legs and body. Some species are slow in morements, and are apt to feign death when disturbed, but others

Proc. N. M. vol. xxriii-04--4
can ran with considerable rapidity. The mouth-parts, in many species. maly be completely withdrawn into the body of the mite. The mandihles are normally chelate, and the fingers toothed. sometimes they are greatly elongate and strliform, so fitted for piercing: in a few cases the movable finger is lacking. In

FIG, \quad bi.-VENTER OF GAMASUS. a, PERITREM ; b, JUGULARIA; c, sTERNaL PLATE; d, Metapodia; ϵ, GEN. ital flate: f, anal plate. many species there is a projection or appendage arising near the base of the fingers known sometimes as the " spur," sometimes as the "flagethm." Bencath the mandibles is a large piece, the hypostoma. It in hitid. and each side ends in an elongate eorneons point. Betwern the two corneous points is a leng fleshy part, the lingula. The palpi are prominent and nsually tive-jointed. thove the mouth there is in many forms a thin plate, oftem toothed, known as the epistoma. In the E'ropodila, the palpiare scarcely visible, as the body project- so murh in front. The legs are of moderate length. usually slender, and arise close together. in a row each side. In the Uropodidic the anterior pair is separated from the others and their coxae are nearly contiguons. The body is common! provided with coriaceous plates or shields, the prosition and shape of which are characteristic of each species. These phates sometimes nearly cover the entire body. Their position and names may be observed from the accompanying illustrations. There are some small shields or pieces which are often of importance: a pair just behind the fourth coxat are called the "metapodia:": a pair just behind coxat I are known as the "jngularia." and a pair behind sternal plate, the "苼etantermalia." There are frequently differences between the sexes in the arrangement of the plates, and in the males of many apecies the rentral plates are mostly

FIG, 8 . - SIDE VIEW OF A GAMAST'S. ℓ, EPISTUME; μ, PERITREME: ℓ^{\prime}, ANAL PLATE.
 coaleseed. The female genital opening is commonly under the anterior margin of a plate (the genital) which ends near the coxa of the third legs. The mate genital aperture is usually at the anterior margin of the stermal plate, only a short distance lack of the mouth. In some groups, notably the [ropodidx, the genital aperture of the
male, or of both sexes, is situate in the middle of the sternal plate. The anal opening is small and placed near the tip of the renter: it is often surrounded by a plate. There is a spiracle or breathing pore on each side of the body, above and slightly in front of the fourth coxa. It is surromed bey a chiti-

Fig. ns.-PTEROPTCS AMERICANT'S news ring. the peritreme, which usably extends forward for a long distance, often in a slightly simmons lime. The leges are of six joints -coxa, trochanter, femur, patella, and tibia. of subequal length, and a long tapering tarsus. In some echos there are indications of a division of the tarsus. The tarsi terminate in two claws, and sometimes a sucker or ambulacrum. In sural forms the anterior legs are destitute of claws, and sere to ant more as antemme. In many apecries the males have the second pair of loge enlarged and provided with teeth and projectpions. and sometimes the hind legs are alto armed. These legs are need to hold the female during pairing.

The internal anatomy of the Gamasidax has been studied perhaps more than that of any other family. It differs in rations ways from what may be called the typical acarid anatomy. Kramer has shown that in some forms there is a tendinous framework in the middle of the boldly, a sort of internal skeleton, to which are attached many of the larger muscles. The male sexual organs are mas ally on the common plan. There is, however, a large accessory gland lying between and beneath the vas deferent. There is no intromittent organ: and sometimes there are two testes. The female generative organs usually differ much from that in other famelies. Often there is a semighobular or hotreoidal ovary, opening into one (sometimes two) oviducts, that lead to the vagina; above the vagina is a domed chamber, the spermatheca. At times there are two small glands that open into the vagina. In many forms there is no spermatheca, in which case Michael

Fifo. 49.-Venter of pteroptl's. has discovered the existence of other organs of a most curious mature. Attached to the top of the ovary are two rather clavate arms. known as the lyrate organs; and above is a large wace, the sumernlus, fomimus, connected at one end to the ovary and at the other hey two ammate tubes to the acetabula of the coxae of the third pair of logs. After
the egge are all deposited the sacoulus boromes very small. Sometimes it is wanting, but the ammata tubes are present and connect direct to the ovary. The significanee of these organs is not fully

Fig. 90.-Dermanysids galline. known. but the sacculus contains spermatocysts which are supposed to reach it through the ammate tuber.

Some, if not all. of the (iamaside have a most remarkable methorl of coition, which Michael has discovered and derribed in detail. The male, which is commonly a little smatler than the female, flasps the latter by the legs of one side and crawls under her. His abdomen extends bark berond that of the female. and he grasps her by his leg's. Then a cleal sac emerges from the genital apertme of the make, gradually enlarging until it is of full size and shape, which is constant for each species. L'sually this sac or bubble is flask-shaped, with a long nerk. It incloses the spermatozoa floating in a clear viscid liquid (sometimes within spermatocysts). The male chasps this bubble with his mandibles, which are often modified apparently for such' purpose. The mate then applies the small end of the bubble to the vulva of the female, often inserting his mandibles for some distance. Here the small end of the bubhle bursts and the liquid and sperma tozoa are discharged into the spermatheca of the female. The -bubhle is rather firm, and when empty does not collapse, but shinks somewhat. After the mate leares the female he proceeds to clean his mandibles. In those spectes in which the fomale has no spermatheca, but has ammate tubes comnecting to the acetabula of the third pair of legs, it is probable that the bobble

Fig. 91.-DERMANYMsL's GALLINE. g, CARONCLE; m, BEAK; r, ANAL plate. is applied to these apertures, and not to the volva. The spermatozon thus pasing into the sacculus femineus, from which they may pass into the ovary as oceasion demands. In
the male of one species there is a hole in the jaw, throngh which the bubble is blown, part hanging down on either side.

Tronessart has shown that in Ruillietio there is a true parthenogen-

Fig. 92.-Lipunysst's americants. esis; agamid generations are found in spring and summer, the male appearing only in the antmm or winter. He also found that this form has no nymph, the larva changing into the adult female.

Cramasids deposit eggs which hatch into pale, soft-skimed, sixlegred larva, often very different

Fig. 93.-Liponyssis; anaj, plate AND MANJIBLE.
from the adult. There is a remarkable exerption in I'teroptus and allied genera of the Dermanyssidx; the young of these mites hatch with eight legs. In time the larra molts into an eight-legged nymph.

Fig. 94.-PNEUMONY:SL's simicola, FROM BELOW.

Fig. 95.-LARVA UF PNEUMONY:SLS SIMIC(OJA.

In this stage they hare shields. the dorsal often transversely divided. The nymphal stage is often the longest and most active period of their
life - the stage of growth and development. After one or two molts in this stage some forms appoximate closely in apparance to the adult condition. Itence there are names for the various portions of the nymphal mite, the carlier part being the protonymph, then the deutonymph, and sometimes a tritonymph. These terms

FIti. 96, - INEUMONYKSK: BEAK, CLAWS, AND STIGmal plate. are applied in the true Gamanide. In the nymphal stage some (amasids are attathed to various insects for the purpose of tramportation. In fact, some genera (atis Propochen) are chiefly known to us in this migratorial nymphal condition. Various writers have clamed that the mite was a parasite of the insect, but such is not the case. The insect is used only as a means of transportation. In some rases the mite is attached to the insect by an anal pedicel formed of excretions. Such a one is known as a "nymphapedunculata." In some cases the nymph maty pair and produce eggs: these are catled "nympha pedogenica." The nymph from the larva is often more like the larva in many ways than like the adult. This first nymphal stage is called "nympha heteromorpha." The nymph after molting may look like the adult; this second nymph is the "nympha homeomorpha." These latter two terms are applied only in the Uropodide. Some Grmanids live in decalying substancer.

Flti. 97. -llalarachine amerirana. s, sternum
OF MALE; t, STIGMATA AND COXX; r, MANDIBLE.

Fig. 95.-H.EMOGAMAsUs AMERICANL's, AND ANAL PLATE.
either animal or vegetahle. It has been shown that certain Uropodide live on minute plants, bacteria, and small fungi. Most species pres on small insects, Thysummen, other mites.as Tyroglyphide and Eriophyidxe and oexasionally they will eat one another.

There are a few parasitic forms; the entire family Inmanysidae is parasitic on birds, bats, rodents, ete. Two genera of the true Ganasidax are parasitic - Marmmentmersum:

Fig. 99.-Gamases sp. on moles, and Rallietion in the ears of varions animals. A great many oceur among decasing fallon leaver. A num-

Fig. 100.- (iamastes sp., NYMPH.
ber of species have been taken in ants' nests. Some of these live attached to the ants and ohtain food from them. One species is so found on a Scolopendra. The relationship of the other forms to the ants is not clear inall cases. It has been shown by Michael that some species of Lath $p_{\text {ss }}$ feed upon the dead ants. It is therefore probable that most, if not all, of these mymecophilous forms are scavengers, and their presence useful to the health of the colony. The ants sometimes take care of the mites when the nest is disturbed, and carry them to a place of shelter. One species of Leelups, Le equitons, was frequently observed to jump up on an ant and ride about for a while, the ant taking no notice of its rider. It appears that each species of mite prefers to live with a certain species of ant, but sereral kinds of mites have been found in the same nest. The mites disappear when the ants desert the nest.

Ffi. 101-Gamaste sp., larra.

The superfamily Cramasoidea is divisible into several natural gromps, the relative importance of which has heen variously estimated by different writers. I shall consider that there are
 They are mot, howerer. as distinet as one conld wish. They may best bresparated as follows:

1. Iarasitie on bertebrates; mandibles fitted for piereine; henly sometimes conatrictcul

Itermonyssidide
Fres, or attached to inserts (rarely on vertelnates, never on birds)
\therefore
\because First pair of hase inserted within the satme bontyrening (camerostomes) as the wal tube; dor: um of bedy projecte beyom the camerostome; genital aprertures

First pair of lege inserted at one side of the month opening; doreal surface of bouly does not project in front of the camerostome, male genital aperture newally on the anterior margin of stemal phate (sometimes in the miblle).

Crimumsidia'
The trum (immaxde are divided into a great number of genera. The family has not berm "arofully studied in the United stater. so that the following table to the more prominent known genera include several not yot reeorded from the U'nited States:

1. Living in the ears of cattle, homes, ete
. İctillietive
Living upon moles, or in their nests . Hecmogrmanus
Not found on vertebrates.
. 2
2 Noperitreme, mly the spiracle; leg I withont thaws; dowal shield entire3
Peritreme present
2. Spiracle elliptieal; male genital aperture in anterior margin of sternal plate.

Ithiopis
-pirade, circular; male genital aprerture in midhle of sternmm.......... . Rpirrius
4. Peritreme very short, alnot twice as lons as wide; doral shield entire; leg I with claws; living in a savity of the abdomen of certain bees (Tyloroper).

Cirepmicllet a
Peritreme more than twice as long as broad; not paravitir on bees............... 5
5. Lag I withnut claws; dorval shieh mativided ... 6

Leer I with daw. 10
6. A Inst-anal plate; genital aperture of female between seeond and third conse, and opening ley two hinged plater; male with ventral flates united, and leg II unarmed

Celicumpsis
Supwst-anal plate; female genital opening normal, and farther back
.7
7. Ilimelfemora with reveral distinct teeth helhind; lay II of male unarmed; male genital ogening in middle of sternum Meyisthemus
Himd femora unarmed, or, if so, then lex 11 is entarged and armed in male, and male genital aperture on anterior margin of stermal plate.
. 8
\therefore Peritreme mot extending in front of cose III; borly short; legs short; male with leg II unarmed; mate genital aperture opens in midhle of sternmo attached to arthropors.

Antemophorns
Peritreme exteming much in front of coxat 11 I ; male genital aperture on anterior mangin of sternum
9. Mate with leg II enlargen and ameel with teeth; female often with meta-ternalia; peritreme often curved at hase; lowly more elongate Macrocheles.
Malo with lag II marmed; all lege very long; female without metasternatia.
P'orlocimum.
10. Midde of dorsm with two smadl shiehls each side, a larger one at tip, and a very large one in front
. Lirorrospiss
Dursm without suth arrangement of shiells, usually one, or one transersely divited
11. Male genital opening in midule of stemal plate: borly rather short amb u-nally with latirs or spines 12
Male genital opening on anterior margin of sternal plate. ;
12. I'eritreme rather short; dorsal shield divided; leg I I of male unarmed \%rom Peritreme long: dorsal shielet entire; leg II of male armed with teeth. . . . seiortis
13. Leg II of male unarmed; bouly usually egg-shaped; dorsal shithl entire -...... It

Leg I I of male armed with teeth; body nsmally longer . It
14. Male with rentral plates all united; anal flate separate in female; female genital plate not angulate in front - . - . Lirlap

Anal plate small and narrowed behind; epistoma usually with a moreromate front Myletustrose
16. In female the sternal plate reathes hehind hind coxa; the rentral and genital plates uniterd, the anal separate

Puchylalups
In female the stermal plate scarcely reables hime coxis; the rentral phate often miterl to anal, but not to genital

17
17. Female genital plate triangular, angrulate in iront - Cimmusu:

Female genital plate rounded in front. n

Dorsal shield more or less divided .

The genns Ratlietia is based on R. auris, which was found hy Leidy in the ears of cattle in this country. Of Iphiopsis and Epicrius no

Fif. 102.-Hyletastes sp, AND ANAL PLATE.

Fig. 103.-11viLETAstes ovialis |PERgaNDE
species have been found in this country; the latter often has a regular pattern of tubercles on its dorsum. A -pecies of Cili+nomsis has been
taken in Indiana and the District of Columbia on a Misterid beetle. Ihmolepta. Megistlammes includes a member of large tropical Gamasids. recognized by their large size and toothed hind femora. One species. I/. Homidimus Banks, has been taken in Florida. Antemophones has a very short, broad body, with short, stout legs. The first species was fou in Europe abmontantly attached to certain ants, and it- habits have been studied by Wrasmanand Janet. Ono species, 1. wheldor Wamamm, has men recorded, from the United states on ants. J/arpocheles includes some of our most common species, hut they have not been described, except one (II. mustus Banks) which

Fig. 104.-Seju's quadripilis.
occurs in the nest of an ant.
 is a strange form found in the northern part of the country. Several species of L atoll l s have been described, one from the

Fig. 105,-Lelaps MExicanlos, MaNdible, AND EN: LAGGED HAIR. nest of an ant, mother. L. platcirrus Banks, from wet sphagnum moss. Of Gamasus we have a number of species that occur among fallen leaver, on the ground, in rubbish, ste. The genus Itemmefemmestes is found on moles and in their nests, both in Europe and America. All stages are found at the same time, and evidently suck blood from the mole. I have taken one secedes in the United states. The other genera tabulated are known in Europe, and several others have been described from South America.

Berlese has recently divided Letups into several genera, one of them. Myrmomyssms, from forms on ants. Ribaga has also divided semblus or seine into four subgenera.

The Dermanysidae, though differing much in general appearance from the Gamaside, are closely allied hy structure, and their parat sitic habits are the best character for the separation. Probably it would be better to abandon the group. The principal genera cau be arranged as follows:

1. Anal plate present
(Dermanysinal 2
Anal plate absent
(Halarachninar) 5
2. Body short; legs very stont, hind pair reaching much beyond the tip of hody:

Pteroptus:
Body longer; hind legs not reaching beyond the tip :
3. Peritreme on the dorsum, very short; body very distinetly constricted I Ifitomyssiss

Peritreme on venter, longer; body not distinctly constricted.
4. Mandibles in both sexts chelate; parasitic on lats and mice Lipomysus. Mandibles in male chelate, in female long, styliform; parasitic on hirds.

Dermanyssus
5. Dorsal shields present; coxe close together; living in seals \qquad Hetartathe No dorsal shiells; hind coxie separated from the fore; living in monkeys.

Phetmonyssurs.
Pteroptrs, which is parasitic on bats, is remarkable on acconnt of

Flig. 106.-Lelaps Marbopilis and caroscle of tarses iv.

Flg. 107.-MACROCHELES (AROLINENSIS, FEMALE.
its curious shape, dorsal position of the stigmata, and ako on acrount of the young hatching with the full complement of legs, the larval
stage having been passed in the mother. The abdomen is pratically

Fif, 1Us.—M ACROC'HELES (AROLINENSIS; VENTER (OF FEMALE. wanting in the mate, and in the frmale it is extremely small. The short, thick, histly legs are set at ahout equal distances around the body. Altheugh the stigmata are on the dorsum, the peritreme extends down orer the sides and upon the venter. Doctor Oudemans has deseribed an atcessory momphal stage in one species of this gemes. It occasionatly issues from the second nymphal stage, and differs partioularty in the nature of the vestiture. Its use is unknown. One species has been described from our country.
 rialiselroms difform in having the dorsal shield divided, and the peritreme does not extend down on the renter. The female has a wrinkled fan-shaped expansion to tip of body, by which she retains bedk of the skin of the bat. Kolenatideseribed several allied genera, hut most, if not all of them, are stages of I termpter.

The genus I'tilongsisuse differs in having a large abdomen, separated lya constric-

Fifi. 109.-Machorheles spinaters; LEGS II AND IV OF MALE. tion from the cephathorax: it occurs on sparrows. The specien of Lipernyssaves are parasitic on mice and

Fig. 110.-MEGINTIANU's floridande. similar mammak. They are palecolored, but otherwise much like Derimanysseres. The latter genus ocfurs on hird. especially those kept in domestication. I), yallinier is a merious pest of poultry in many parts of the country. They hide in cracks and erevios be day, but at night crowd upon the fowls and suck their hood. They are more injurions in the routhern states than elsewhere. sometimes they attack man and canse itching ancl sorenes. (hickens endeavor to get rid of the mites by a dust-lath, but when the mites are numerons. it will be best to spray or Wash the hen-house with kerosene, benzine. or gasoline. Whitewashing with carbolated lime will destroy a great many of them. If the
ends of the roosts are dambed with coal-tar the mites will be mable to reach the fowls. A mixture of kerosene and sulphur plastered upon the roosts and in bottoms of the nests is aloo very useful. The sume or an allied species occurs on cage hirds. The species of Ifolurnchome are very elongate, and look some-

Fit. 111.-ANTENNOPHORUS LHLMANNI (AFTER Haller:) what like ticks: they inhabit the branchial pasames of seals. Ihermomys:sus occurs in carities in the lunge of a Javanes monker.

Doctor Trouesurt has erected a subfamily, Rhinonyssine, to include lillimomys.sus.: I'tilomy,ishis. Sternmastomm, and possibly Ihellonechore. The group is hased on the doreal position of the peritreme. The species of Rhinomys:us and sternoxtommm are fomed in the nasal canities of rarions hirds, one species. S. rlomml thrmm, thus infesting the domestic fowl. They have retractio clives, comparable to those of cats, which enable

Fig. 112.-CELENOPSIS AMERICANA.

Fit. 113.-Liroaspis amerifania
the mite to retain its position. Their feeding may canse a catarrhal inflammation, but no remedy has been suggested. I am not aware that any of thes forms have yet been taken in the United states. Berlese states that in Sternostommm and Ameystrophis the anterior cosae are contiguous above the rostrom. The latter genus was found on bats.

The Lropodide are divisible into comparatively few genera. In general appearance they are quite different from most of the Camasidx, being shorter and their legs more or less

Fifi. 1]l.-Tremroda: caroncle ANI PERITREME. hidden under the body. They are fimiliar to most entomologists when attached to beetles and other insects. Besides the charateres given in the tahbe for the separation of these forms from the Camaside, it mat be added that the mandibles are very long and slender, ending in delicate ehele. In fact the mandibles in some speries are twice the length of the body, and when retracted the bend near the middle is near the posterior walls of the body. Most of the Eropodide that are found on insects are there for the prrpose of transportation and not as parasites, lout in certain forms found on ants the mite is a true parasite. The peedes that use the inseret as an aid to migration

Fig. 116,-Uropodi sp., FROM BELOW.

Fifi. 1].5.- [rgopoda sP. ρ, PEDICEL. thereto by a pedicel of excrement: those that are true parasites are not so attached. Most of those that are attached loy this anal pedicel are not adults, but in a nymphal stage, and are called ""!!mphat feitumculata." The mite can detach itself hy a fresh excretion. They orche on insects that breed in places suitable for the mites. Therefore the mites are sure to be earried to a spot where they can drop off and find the desired breeding gromuds-decayed wood, humns, manure. or fallen leaves. Sometimes the insect is so completely covered by the mites that it cam not be seen.

The genera may be tabulated as follows:

1. Venter provided with impressed fovese for the reception of the legs............. 2

2. Body irregular, dorsum eculptured . rimphopsis

Boxy rexular in form; donsum erenly convex; nosenlpture, except punctuation. 3
3. Leq I pruvided with claws .

5．Legs with scale－like hairs；dorsal and ventral plates separate and dixtinct．．Iolyuspins
Legs without such hairs，no ventral plate ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Trospius
6．Dorsum covered by one plate fused to the rentral plate；feritreme sinuate；ante－ rior coxze contignous．．Dinyrfus
Dorsum with several plater，not fusen to the ventral plates；peritreme but little curved；anterior coxar separate．．Truchytes

Our species of the family have heen but little studied，and only three of the above genera are known in this
country．

Species of Cropoda are frequently found attached to various beetles．One of these is common on the Colorado potato beetle， and it was formerly supposed by many eco－ nomic entolomolo－

Fig．118．－DiNychus ameri－ Canus．
 claimed that some species feed on bac－ teria and small fungi．The species are very mamerons；some are smooth，others lairy； nearly all of a red－brown fawn color．The species of Cilyphopsis have usually heen found in ants＇nests，and seem to live on good terms with the ants，although their exact statns is not known．Croseins and Polymespis are besed on a few forms，and not well known．

Trechytes contains two or three preiform species found in moss：the gemus was formerly called（etarno．Gillibu（formorly known as Diseropomat is similar in appearance to 「ion）－ oth．Some species have been found in moss， but others oceur parasitically upon ants，at－ tached to the thorax or abdomen．One of our speries，（＇．circuluris Banks has been found thas fastened to the thomax of C＇rmmatoguaster limentute．Another species，C．lissutn Banks． Wat taken upon a species of Lasion in Arizona．

The relations existing between the／liserymmen and the ant has formed the subjert of several recent investigations，both by Wasmam and by danet．The mites which cling to the abdomen of the ant do not seem to be disturbed by the ant，but if a mite was placed on the gromel of the nest it was seized and destroyed by the ants．The mites bite through the soft skin situated between the segments，and thus draw blood from their bosts．

The gemus I Iomsthes is peculiar in having enormonsly long extensite, flexible mandibles. The mandibles are more than twice as long an the entire amimal, and "an be retracted so that

Fiti 119.-Leri, mandible, AND PaELDOSTIGMATIC ORGAS OF AN ORIBATID. the bend in them is clowe against the posterior wall of the abdomen. The tips of these mandibles are distinctly chelate. We have one speries in this country.

From New Chuinea, Canestrini has deseribed several pectios of a remarkabie gems-Deraion, horins. They have a pair of phate-like projections orer the heat, and from these arise long bristles, and there are also bristles at tip of abdomen. Two other genera. Trompulella and Fadrizziu, have been described from tropical countries.

Superfamily ORIBATOIDEA.

The Oribatid mites maty usally be recognized hy the presence of a single character, a hair or seta arising from a small pore near each posterior corner of the cephalothorax. This pore was formerly considered a spirade, hut it i, now known not to be such. It, function, however. is uncertain, and it is called a peoudo-stigmata, while the hair arising therefrom is known as the preudo-stigmatic organ.

With the great majority of the Oribatide the tegument is coriaceous: it is betanse of this that these mites have heen called " heetle mitus." This name is somewhat misleading. as members. of another family. the Gamasida. are often attached to beetles. and therefore sometims termed "beetle mites."

The body of an Oribatid is whort, hoad, and unally high. There is alway more or less indication, usually very platin, of the division into cephalothorax and abdomen. There is at this pointat sonstriction on the sides,

Fiti, 120.-Hoplonerma siferella. a line or suture on the renter. and a break in the continuty of the dorsal outline. The posterior pairs of leg* are apparently attached to the abdomen. The coxar of the legs
are arranged in a somewhat radiate mamer. and the hind pars ano nerer remote from the anterior pairs. Each leg is composed of six joints, namely. coxa, trochanter, fomur, patella, tibia, and tarsus. Fometimes there isa plate-like expansion near hase of coxa. known as a tertopedium. The roxa are wathly entirely united to the rentral surface of the body to form a sternal, or, more properly, a coxal plate, earh coxat manally being margined by a short furrow. In Tothrm. howerer. the coxie may be seen to be quite distinct from the body. On the first two pairs of leg's the trochanter in extremely small and usually indistinct. while this joint is of ten very large on the hind pairs. So it follows that the hind legs haye, apparently. one more joint than the front pairs. The tar-

Fig. 122.-GALUMNA sp., FROM BELOW. sus is terminated by one or three claws. but without a sucker or pulvillus. The legs bear a few hairs,

Fig. 121.-l'hthiracares sp., CLOSED LP; VENTRAL VIEW. but never many: one at the tip of the tibia is often math longer than the others. The tarsus is commonly more hairy than the other joints.

On the dorsmm of the cephalothoras there are often narrow ridges or lamellae: the position, shape and development of these being characteristic of each species. Generally there is an erect lamella eath side, extending in a point (sometimes hifid) in front of the cephalothorax. Frequently there is a trans-lamella comecting the lateral lamellar. There are also on the cephalothorax nsmally two pairs of bristles, the pair near and between the pseudostigmata are the superior bristles; the pair toward the tip and often at ends of the lamella are the inferior bristles. There is also a pair of smatler bristles at the apex of

Fig. 123.-NyMph of a GaditMia. the cephatothorax. Aromed the sides of the abdomen there is a line separating the dorsmm from the renter. In the Hoplodermidar this line is often far down on the mader side of the hody. The dorsmm of the abdomen is often devoid of haiss lout sometimes there are a few, nsually arranged in rows. On the renter are two openings, the hasal the genital one as usual. These openings are cirtular, elliptical. or rhomboidal, and are closed by folding doors opening outward,

Iroc. N. M. vol. xxviii-()4-5
and hinged to the onter marginn of the apertures. In many forms these apertures are very large and ocropy the greater part of the ronter, in other and more highly orgmized species the openings are much smaller and quite remote from adeh other.

The mouth-parts of the Oribatida
 areobseure. 'The palpi are very'small, five-jointed, and arise from the labimm. They are nsually in motion while the mite is walking. The mandibles are chelate in all sate the genus Sermpins. The limbs of the chele are commonly toothed on the imer sides. In Serverrime the mandibles are elongated and rod-like, and there is no movable limb at tip; the sides are sermate, so that the mandibles act an a saw. The maxillae have their basal joints mited into one transwre piece, the lathinm, which partly and sometimes wholly closes the month-orifice. The maxille incline shohtly toward each other: their tips are broad and toothed. 'The Oribatide deposit the rges in crevices of wood. moss. fimgi, or on the ground. The six-legged larva remains for a few weeks in this stage, when. by a molt, it beromes an right-legged nymph. The nemph pases through three molts. increasing in size at each. the third molt bringing it to

Fig. 125.-Oribatella armata.
the adult condition. In some cases the egres are not deposited, but ripen in the hody of the parent mite, the mother then dies and dries up, her old shell remaining as a protection for the eges till they hatch. In some species the egg has a hard shell; the growth of the embryo splits the shell and shows the pale vitelline membrane ts a white band around the egg.

The larvae and nymphs are always monodatyle-that is, with one claw to tarsus. Their skin is soft and

Fig. 126.—Orib.atella sp. (Pertianibei) flexible. There are few creatures more bizarre or remarkable than the nymphs of certain Oribatide. Some bear upon the back roncentriar rings of beautifully

Fit. 127.-LIdc.arts Nititur.
iridescent, membraneous, fan-shaped scales. Others carry a mollfetion of their molted skins. eggshells. hits of dirt, moss, etc. - a veritable peddler"s pack of trash. Many species have rows of serrate hairs on their backs. The skin of the hack of many nymphs is wrinkled so as to allow for growth. Many of these nymphs were described by earl writers on Acari as distinct species.

When a nymph is about to become an imago, it seeks some sheltered spot and fixing its legs firmly in the substance upon which it rests, it gradwally becomes inert and apparently dead. It remains in this condition about ten days. When about to transform to the adult the skin splits behind and shows the imago beneath; this split increases without any perceptible movement of the mite, until it is quite large, when the mite begins to back out of its old shell. It may then be seen that

Fig. 12s.-Liacaris abr, nymph. the legs of the adult are not withdrawn from the legs of the nymph, hut were folded beneath the adult.

The intermal amatomy of the Oribatide in guite well known. hatving been invetigated he Xicolet and later and more thoronghly by Michacel. The alimentary camal is composed of a pharynx, cesophat gun. stomath or pentriculus. intestine. colen, and rectum. The resophagus hats, near its posterior part. an margement or ingluvies of barying size acerding to the pereires. The stomach in a large sace in the upper part of the abdomen, provided with two large caca, one pach side. feaching batk to mear the tip of the abdomen. The small intestine is reery short and enlarges to the colon, which is separated from the rectum by a constriction. In most, if not all. forms there are two latge glands. the preventricular glamb. which open into the

 rentriculus near the ceea. Ther are supposed to secrete nome fluid useful in digestion. The male organs of generation consist of one central testic, usmally large, two rasa deferentia, uniting into a ductus ejacmlatorius, which opene through an extensile penis. In the femate there is a median orary (sometimes showing traces of divinion) opening into two oriducts which unite in a vagina: the latter opens through :a protrusible ovipositor. It is posiblle that the orary is comected by two fine tubes to an aperture near the anns. and that this is the bursa copulatrix. Coition, however, has not bern observed, so it in not certain that the male does not use the ragina.

The tracheae when present sary much in shape and size. They open at the acetabula of the legs: one or two tracheae proceed from each acetabulum: sometimes very long. and wind abont in the body; sometimes short, and again may be entarged to form air sacs. In Ifondonlom, there are no tracheae, and in Vothers, they are rudimentary and they are lacking in the larra and nympso of all forms. There are varions excetory organs: one pair. the supacoxal glands. open mear the acetalula of the second legs: others, the expulsory resicles open on the sides of the abdomen. The Oribatida have a delicate sense of touch, which resides apparently in the long hairs or setre upon the lege. particularly a very long hair on the tibia. They
have no eyes. yet have a quick appreciation of light amd darknes. and prefer the latter. It is quite possible that the prendn-stigmata

 are organs of hearing.

The food of the (Oribatida is usually of regetable nature, but a fur speries atfect decaying amimalmatter: one of our common species is usually found on bomes. Many feed on lichens and fungi, and some bore into de(aying wood. Several kinds are found on the bark of lising trees, and other undor dead hark. Many -pecies

Fif, 131.-VENTER (GF GRibata.
occur in moss, but do not necessarily feed upon it. Mout species are slow in traveling, and often, when disturbed, feign death. Many of the adult mites carry their molted skins and other rubhish on their hack.

Fig. 13:-Claw of AN onibata.

Fig. 133.-LaRVA OF AN ORIPATA.

Practically none of the Oribatide are of economic importance. A few have been recorded as damaging grass; but as a whole they prob-
ahly are slighty beneficial. There are doubless zoo species of this family in the L'nited States, but only about fifty or sixty, mainly from

FHi, 1BI. ORIRATA MINCTA.
the Fatitern states, have heen deswibed. On aceonnt of their minute size. obserore habits, and suall economic valne they are rot fororites with collectors.

The superfamily Oribatoidea includes two well-marked families. One the Ifoploter-

Fhi. 135.--iymnobates glaber. midar, are separated from the gemme Oribatide in having the cephatothorax movably attached to the abdomen. By thi means the animal is able to moll up. concealing the legs. The legs of the Hoplodermide are attarbed to the body. close together, and the whold stermal structure is soft and

Fig. 18f.-ORIPOHA ELONG.ita IEER-- .ANDE. membramous. instrad of corlaceots as in the ()ribatide. The palpiare fom-jointed. The domsal plate of the abdomen extends down upon the sides. so that the renter is bery narrow and almost wholly oecupied hy the large gonital and amal apertures. We hare two genera of this family- IIoplouldomm, with one claw to tarsus, and I Bethiractorns, with three claws to talsus. ant a marower venter. We have a few
 Derata say is one of our largest and most common forms, and is fonm on moist
 most common in decaying wood or moss. When disturbed they roll up. play " possum." and ate then mot easily diseerned. One of the speries deseribed by I octor Riley was supposed to feed on the I'hyplorerty. hat such is not the cave.

In the true Oribatida there are a great many genera, and there appears to be much dount as to the proper names of several of them. owing to the work of old authors who had no idea of the rules of modern nomenclature. The forms. as far ats known. can be grouped as follows:

1. Abdomen with wing-like expansions at the anterior siles 2
Ablomen without wing-like expansions is
2. Superior bristles sfatulate; manlibles elongate Pelons: 3
3. Tawi hroad at tip, three claws Cilmmulutis
Tarsi tapering to tip 4
4. With three claws to tareus i
With but one claw to tarsus oribetortis
5. Cephakothorax with lamelle large, and attached to cephalothorax for only partof their lengthinibutellat
Cephalothorax with smaller lamellæ, attached for nearly their whole length,
Gulemmur
6. Cephalothorax with lamellap ;
Cephalothorax without lamellee 11
7. Body smooth s
Body more or less rough 9
8. Legs II, III, and IV inserted under body Líucurus
Legs inserted more on side of horly Eremaus
9. Cephatothorax and abdomen plainly separated on dorsum 10
Cephalothorax and alrdomen more or less united Santorertor
10. Claws three; femmar I and II mot pedunculate. Tintuspis:
Claw one; femora I and II perlmoulate Cumbodes:
11. Legs slemier, longer than bouly 12
Legs short and thick 13
12. Claws three Cimmorlemitu:
Claw one कitruta
13. Abromen transversely segmented H!ypochithon, M,Abromen not transversely segmenterl14
14. Claw one: dor:um convex Iformmmin
Claws three 15
15. Dorsum very convex, with concentric ring* Teoliontes
Dorsum quite flat, without concentric rings. 16
16. Leg II with tectoperdia; dorsum coriaceons; loody elliptical Cymberematus: Leg II without tectopedia; dorsum softer; body more rectangular. Nothrus
Most of our common forms belong to either (redrumn or chitutelli".They are usually shining blaek in color, sometimes with a pale wot atbase of abdomen, and rarely with hairs or bristles alore. They havethe anterior sides of the dorsal integument extended downward in awing-like expansion. The shape of this "wing" is characteristic ineach species. Many speeies san be sifted from moss. They at firstremain quiescent, hut after a few moments start to crawl arway.
(r. pratensis Banks may he swept from meadows in great numbers. and doubtless injures grass to some pxtent. (1. aquatica Banks lires on aquatic plants. and ean readily walk on the surface of stagnant water, yet there seems to be nothing peemliar in the structure of the
tarsi. (r. "rlomon Banks and G. atimis Banks occur on the bark of trees. I_{o}. limantu Bankin is a pale yellowish form, with a bristly body, ocroming in dry sandy places.

One of our common forms and one of the largest of the family, being fully one millimeter long, is Lidrar"s mitidus Banks. It occurs on the ground mader pieces of wood. bark, stones, and fallen leaver. A speries of Etremitu, E. piltasm Banks. is common in the erevices of bark of lifing trees. There are fomm rows of bristles on the abdomen. A species of Sbatorrotere N. muerimus Banks, is not unconmon on rorks between tide

Fig. 187.-Capabodes brevin.

Fig. 13s.-Cymberemetes marginalis.
marks on the Atlantic seashore. It appears to lack the psoudostigmatie organs and is otherwise peruliar. Totrespis pumetulatus Banks is a pretty species, with a deeply pitted dorsum, and is found in decaying fungi.

Of Curabodes we have several species. some of which are found in fumgi. Our most abundant species, (t. mifor Banks, which occus in fungi, has four rows of spatulate hairs on

Fig. 189.-N゙eoliodes coscentriots. dorsuma. (: allonge Batuks was fomed boring ander the bark of a stump, and it looks much like a tiny scolytid beetle. A species of ()iblute, (). mimete Banks, ocents in moss and on decaying animal substances. It is pale yellowish-hrown in colorand appears to be widely distributed. The largest Oribatid we have is Teolimles concentrions Sas, a batck species with concentrix rings on its clevated abdomen. It occurs in crovices of bark of living trees throughont the Easterm States, and aloo in Europe. Onr one species of ('ymbertmithis. (\% margimulis Banks. occurs unds. lichens on the bark of trees in the Eastern States.

Wor have various species of liothrus. They are very rough-looking
creatures，with a squarish hotly and short，rough leges．A．trmmentis： Banks occurs in sphagnum moss and on the ground in wet fields．I．racists Banks ocemrs on the bark of spruce trees，where it is munch protected by its color．Another species．I．simple，Banks，was found among lichens on dry rocks．S．rumblesros Banks is a common form under loose hark；it can scarcely he distinguished from the hits of dirt among which it lives．

The genus Mypuchthomice has not been found in this country．It has a soft skin，which usually shows traces of segmentation．They of our in moss and damp places．The gem ms Pelops，closely related to Gulmmm，is likewise not yet known in this country．

As an appendix to the Oribatoidea may be added the genus Vionditidla Canestrini．a genus repro－ seated by two European and one Central American

Fri．140．－V゚enter：of A others． species．It differs from the other Oribatida in the large and prominent chelate mandibles，by the indefinite psendostig． matic organs，the complete mon of cephalothorax and abdomen，and by having but one large aperture on

Fig．141．－Nothrce banks． the renter near its tip，which includes both anal and genital openings．The coxae are all close together．and touch on the median line．The pali are very short and simple．Legs I and II end in two claws；legs III and IV end in three claws．The species occur on

Fig．12．－Nothris trexcatis．
the ground，under stones，dead leaves，and in moss．They have much resemblance to some Camasidx．

Family TARAONEMDD.E.

This is a suall family, lant of much biological and eronomical interest. They are soft-bodied mites. and in some ways resemble the Tyroglyphide, but the femates dif-

Fin. 11% - DFAK ANI) (DAW OF PEDICTLODDES. for from them, as well ar from all other acarians, in having between legs. I and II a prominent clatrate organ of uncertain use. The monthparts are formed for sucking. and the mandibles are very slemter and needle-like. The palpi are minute and barely visible. There are trachase which open on the rentral surfile near the hase of the rontrum. The legs are short and eomposed of five or six joints: the anterior tarsi terminate in one claw, the others usually have two claws and often a suckei. The posterior pairs of legs are quite remote from the anterior patirs; in the males of Tirsomommes they are ahmost at the tip of the bodr. In some speries the abdomen show traces of segmentation by the presence of a few transerse lines on the dorsum. The anal opening is at the end of the body: the genital opening in Tousomemux is a small. chongate aperture near the hind coxa. The body and less are provided with a few simple hairs. In sereral genera of the fanily, notably in Tinsomem, ins, there is a marked difference in the structure of the sexps. In the mathe Thrsomemmes the body is much shorter than in the female. the hind legare thick and heary and end in a wery latge elaw. In the femath the hind lege are reres slender and delicate and termimate in two long haile. one of them often an leng the the ontire leg. In the mature femate of Palionlorise the abdomen becomes mormonsly swollen so that it is en to 100 times greater than the rest of the

Fig. 144.-P'ediculoides Vextricosl's. FEMALE. borly: the whole amimal appearing as a white pherical grain, with a tiny rar on one side. The male of Prdiculoide ham ahmost no abdomen at all: the body being very short, ant angulate behind. The hosd in this genus is almost a distinct
portion of the body. Bracker has studied the anatomy of I mamentaide: there is a large stomath. ronnecting to the mouth by a slender ersophagus; to the latterisattached a blind pharyox. He found no anus (hut I beliere one exists in Tarsomemms) the intestine ending blindly near tip of body. The genital opening is at tip of the body: above it is a whort spermatheca. In the female there are a pair of air reservoirs in the front part of body: behind them are tufte of trachere. which, when the female becomes swollen by eges. extend into the swollen part.

The Tarsonemidae have not long held any one position in the srestem of Acarina. They have been associated with Oribatida and Cheyletida, and Berlese has recently elevated the family into one of the princi-

Fifi. 145.-Pediculoides pentricosis , male. pal groups of the order. The dimorphism in certain forms seems to suggest affinity to the Trroglyphidat.

The family has been divided into two groups.
Hind legs of female ending in elaw and sucker as in other pairs Pdiculontime Hind legs of female end in long hairs Tarsonemina

In the first subfanily are

 (BIREAU OF ENTOMOLOFYY). two or three genera, the most prominent is Perlicelluides.

In 1850 Newport gave the name Iheteroypus mentriensus to a mite fomed on the lanva of a watp. Since then the same mite has been found on various insects, both alive and doad. The generic name wats preorempied. amd was dhanged to Peedientodedes by TargioniTozzetti in 1875. The species has hecom of much eronomic importance since it is frequently parasitic upon injurions insects. The aldomen of the pregnant female swells to an enormons size, this heing due to the development of the rges. These not only hateh within the parent. but obtain their entire development there, and issue as sexually mature males and femakes. These may wander abont for a time on the body of the mother and soon parir.

The booly of the male end in a broad surker, wherein is situated the pronis. The tip of the female is grasped ly this sucker. I'. amtrimons oceurs commonly in this combtry, and another species las been found on the larvie of seolytid

FItr. 147.-TARNONEMTS PALLIDC'K. beetles. Professor Herrera, the Mexican putomologist. has endeavored to breed a Mexican species to kill the grubs of the cotton-holl weeril.
sereral other species have heen asigned to this genus which feed on grain and grasses. One would shapect that they would fall in a separate genus, for which the name Sitronptos Amerling is a a ailable. One is I'. tritici, found in wheat heads: another is I '. yrominis which Renter has described as partly responsible for "wilver-top" in cortaingrames.

Prigmen, lli,mons is closely allied to I'elimeluides. It has a migratorial form, which in one case was found on a mole, and in another on a tly. We hawe observed a mecties in this country attached in some numbers to a fly- Il utycmomix impror fecte. The genus

 MALE:

FIf: 114-TAISONEMUR LATES, FEMALE, /".s. The species of Tirsomemens affect varionus plants. sometimes producing galls upon them. They live in colunies upon the leaf or stem, or in the culms of granses. One specios. T. uryzar. inferts rice in Italy: another. T. "ulmiente, protuces ".silver-top" in certain grames of Finland: a similar form produces the same apparance in some grassen of New Mexion. One grasu-tem may contain several million mites. Another -percion does comsiderable damage to teri in Cieplom. Tryon has
deseribed a species. T. comser, as injuring pineapples in Anstralia. I have described one. T. lutus, which camsen galls on the main shoots of mango plants. Another species. T. pell idhix. has been found on rarions greenhouse plants in this country. Karpelles deseribed a -pecies. T. intectus (apparently identical with the (Chithopetes momumfuicmlswis. of (reber). as attacking men in the Damberegion of Hungary and Russia. The men had been handling harley and the mites spead from this to the hands. where they eansed an irritating inflammation of the skin so intense as to force the men to leave their work. Michael haw recorded a specien, T. bencerofti, as the rause of serions damage to sugar cane in Qucensland and also in Barbados. T. cenestrimii produces small, rounded galls on several European grasces: T. spirifor forms elongate swellings on oats. But few remedies have been proposed for these mites; a mixture of powdered sulphur in soap and water has heen

Fif. 150. - Pigimeophorve AMERICANUS, FROM ABONE, AND TARSC' ENLARGEI. suggested for the one on sugar canc. Probably the remedies for "red-spider" will be fonnd applicable to them.

The curions gemus, Dispuriper, hats a migratorial nymphal stage much like the H!ppopes of the Tyroglyphide. This stage has been found on

Fig. 151.-l'IGMEOPHORU'S AMERICANT'S, FROM BELOW.

Fig. 152.-DISPARIPES AMERICANTS, FROM BELOW, AND CLAW.
bumblebees and ants. The addults ownur on plants. I have seen specimens of an American species taken from a bee of the genns Itelictem. Berlese has recently described a mmber of species taken from ants, and proposes to divide the genus into three groups, the two new ones heing Dicersipes and Imperipeex; the characters. however, are very stight.

Family TYRO(iLIPHODAL
The Tyroglsphider (Symoptedes détrionles of Mégnin) are not a large family of mites, but many of them are of considerable economic importance, since sereral of them

FlG. 15\%.-TYROMLYPHTS AP. (PERGDNDEI. affect stored foods and the rootsand bulbs of living plants. They have been known to naturaiists from the time of Limmeus. In the adult condition they are usially free, but during onc stage of their life, known as the hypopial, they are attached to varions insects and sometimes small mammals. This hypopial stage, or hypopus, is a migratorial condition; the mite during this period takes no food, so it i- not :a thone parasite. Howerer, in some canes where they oceur in enormons. numbers they may injure the insect. owing to their weight or position.
The Tyroglyphide are pate-colored, soft-hodied mites. devoid of trachear, usually with prominent chelate mandibles, small palpi, moderately long legs. ending in one daw and often a sucker. The body is about twice as long as broad, and broadest behind the middle. There is commonly a distinction bet ween the cephatothorax and abdomen. There are no eyes (moless certain organs in a few Hypopi are eyes). The dorsum bears a few, mostly long hairs, and the legs have scattered hairs. One hair near the end of the penultimate joint of logs I and II is rery long, and there is usmally at clatate hair near the base of the tarsi of legs I and II. It may be a sense organ. It in always in this position although authors sometimes figure it arsising from the preceding joint. On the venter are the usualapertures. The genital is usu-

Fig. 154.-HypUPLS UF A TYROGLYPHLS, FRUM BELOW. ally elongate, and sitnate between the hind coxat: there are often two U-shaped marks each side of it, known an the genital suckers. The anal opening is usually much
before the tip; it is often but an elongate slit, with a sucking-disk each side. In bilyciphagus the openings are much larger, and the genital sometimes occupies the entire area betwern the coxae.

The intermal anatomy of the Trooglyphide has been carefully studied by Nalepa and Michatel. The digestive system is of the usual type; the ventriadus is very large, with two short caca, the colon is globose, the rectum very large, and opens close to tip of body. Behind the ants is a small opening the copulative aperture. In Gityciphorgus the bursi copulatrix projects extermally in a small come. So in the Tyroglyphide, as in the Inalgesidar, copmlation is not performed through the rulvia, but by this special opening. This opening leads to a recoptaculum seminis, which connects by a small duct to the ovaries. The nervous system is whefly concentrated in the rery large " lnain" which sumounds the asophagus. The most powerful muscles of the mite are those attached to the mandibles, the legs, and the stomach.
ds a rule there is little differener in size between the sexes. hut Michael has described one form with the make not half as large as the female. In several cases there are well-marked secondary sexual characters, such as the enlarement of the first or third pair of legs in the mate.

The transformations of the Tyroglyphidex are among the most marvelous of the animal kingdom. All Tyroglyphida (except ('arpmglyphons) appear to lay egge. sometimes of large size. The young on

Fig. 150.--histiostoma americana. hatching are six-legged, and, molting, obtain two more. Thenceforward their life-history may take the simple and direct path to the adult condition, but often it passes
 from the creature from which it has developed--the octopod nymph. Its body is hard and chitinous: there is no month-orifice and no distinct mouth-parts. The legs are short and ill adapted to walking. On the rentral surface of the hody near the tip is an area distinct from the general surface and provided with several circular marks or sucking disks. By means of these sucking disks the IYpopms attaches itself to an insect or other creature and is transported to some other locality, where it may find a suitable breeding place. The TYporpmes is $^{\text {a }}$ thus a stage in the life of Tyroglyphus for the purpose of migration. The Mypropus, on finding a suitable locality, molts into an octopod nymph, which will feed and develop into an adult mite. The causen
that will induce a nymph to transform to a /Iypopmes are not known. Megnin suppesed that the drymess of the air or the seareity of food were neressary mases. But Michatel has shown that /hypmpi are
 is the natural and normal means of elistribnting the species.

In the early days of the science of acarology this connection was unknown: therefore $I I_{y} f^{\prime \prime} \boldsymbol{p}^{\prime \prime \prime}$ s stoof for a separate

Fif. 150.—Beak 1 F HISTIOSTOMA AEERICANA.
 Dujamtin in 18.50 concluded that $/ I_{y p}$ mpus was the pupalstage of (amaside. Asinvestigation proceeded Hyp"pues was so freduently found in association with Typoglyphlus that views were advaneed as to their relationship. One was that Myp"pmes was a ferocions parasite deroming the Tyruylyphes from within: anothere, that $/ I_{y} y^{\prime \prime \prime} \boldsymbol{m}^{\prime \prime}$ was the male of Tymoylyphers, and a third, that $/$ /ypmpmes was the real atult of certain species of T!roglyphus. The " Hypopus question" disturbed ararologists for a long time. hut through the work of Mégnin and Michael it has been settled. In
 does not escape from the nymphal skin.

Most of the Tymomplybidie differ lut little in general appearance. and the charaters that sparate species are often few and minnte. The family is nsuatly considered to have atthinty to the Sarcoptide and Analgeside, but there is more resemblance to the nymphs of the Oribatide: in fact, Oribatid nymphs have been described as Tyroglyphide, and rier mosw.

The Tyroglyphide feed mostly on regetable matter: a few live on animal food. They are partial tostored foods, and so are oftem of much economic interest. A long list of articles attackerl by them conld be

Fifi. 15̄̈.-Lefi I, AND tiP uF maNidible of HISTIOSTOMA AMERICANA. compiled. It woukd inchude cheese, flour. hams, dried meats, hair in furniture, cereals, many drags, dried fruits. seeds of all kinds, bulbs, feathers, hay, and contomologival specinnens. 'Their ravages are due to the enormons number of individuals developed from a few in a short time. Materialsattarked by them are often in a fewdays swaming with millions of the tiny creatures. "How toget rid of themis oftenadifficult problem. Since they have notrachea, they are not very suscoptible to fungation, although some of them will sucrumb to such treatment. Flowers of suphur and "arbolie acid are, at times, of much nse. But in many ases destruction of the material
attacked is the only remedy. Sinee many are carried in the hypopial stage on thies, it is advisable to have the windows sereened in all factories where cereals, drugs, driod meats. and fruits are prepared. When rery aboudant the Tyroglyphids are attacked loy varions predaceous mites, chicfly (\%oyltus: and firmmerns. which greatly reduce their numbers, and in some cases entirely destroy them.

Varions species have at different times been recorded as temporarily parasitic on man. cansing itching and soreneso of skin. Persons handinge infested products are apt to become attacked.

The genera known to ocenr in the fama of the L'nited states may be distinguished as follows:

1. Dorsal tegument more or less granulate; claws rery weak, almost invisille; some hairs of hody are plainly feathered; ventral apertures large....... (it!mphengus
Dorsal tegument not gramulate; claws distinet; no prominent feathered hairs; ventral apertures smaller
$\stackrel{?}{2}$
2. Mandibles not thelate, clongate, and towthed below; body without long hairs: palpii enlarged at tip, and provided with twodivergent hristles; lxoly often rerrucose

Inistustrmun
Mandibles chelate, not elongate; body usually with some long hairs; palpi not very distinet, not enlarged at tip, now with the two bristlew
3. No suture letween the cephalothorax and abolomen; mate lacking sucking disk near anal aperture; claws arising from a membraneons plate, or else asociatenl with bees

4
A suture present; male with paranal sucking disk-......................................
4. Borly short; no clavate hair on hase of tarsi I and II, a wriaceons piece on anterior margin of cephatothoras, or with a domal shield; living on bees, or in their nestr; plimera of loges I and II not comnected............. Trichotursus
Bonly not short; with clavate hair on tarsi I and 11; no coriaceobs whelde or pieces; epimera of legs 1 and II are connerted; daws arising from tip of a

5. Bonly elongate; hind pairs of legs arising moch behind the anterion pairs; the

Boly not elongate; hind pairs of legs much nearer to anterior pairs............ is
6. No sucker at tip of tarsi; leg I never thickened; in some males lex III is thickened; tarsi with stont spiner. Rhinoyl!phus
A sucker at tips of tarsi, althongh sometimes weak; ley 111 never thickened; no pines (only bristles) on tarsi
7. Leg I of male thickened; palpi quite distinct and separate
. Ihourohius:
Leg I of male not thickened; palpi less distinct and more appressed to rostrum.

The Ityopi of the ramioms genera, as far as kown, "an be separated be the following table:

1. A pair of elasping organs on venter near tip of body, margins not sharp-edged.

Lubidtroulturts
No clasping organs, but an area of mekers... ?
2. Anterior legs end in very large elaw; margins of body mot sharp-odged. Trimotursws Claws small or of normal size.
3. An eye-like spot each sile on anterior part of loxdy...................... No such eye-like pots. 4

[^2] Nor steh creseentic plate
 Lexs much shorter, the tarsi mot slember6
 snekers mot in such arrangement. Mhizoglyphus and Tyroglyphtrs

Of the gemms Mistiostoma we haw at last two species. The hypopial stage of one ($/ I_{0}$. muscormm) is often attached to house flies; the other speries, $/ /$. (mmerictmm, was taken muder batk, which was also infested with a Rlisurflyplma. This species has a number of humps on the dorsum of the borty, and upon the summit of acach is a smatl hatir. In Europe one species lives in mushrooms, and spreads a disease that calloses the decay of the

pikns. Nearly all the species orar in deraying materiak, but Jensen hats recorded that one speries ($/ I$. berollii) lises parasitically in the "ger-apmule of a horse-leech in Demmark. Tho rege hatch into sixleged larve, which soon molt into the nymph. The latter derours the embryonic leed and then passes into a $/$ Iy/mp!!s. This escapes from the capsule, attaches itself to an insect. and. on reaching suitable locality, molts into a full-grown nymph. The latter cuts through the capsule, enters, and there tranforms to the adult mite. Here reproduction takes plater. and the life-cycle begins anew.
 combtry as in Ensope posibly owing to their minute size. Two -pecies are known to me, both of rather modest appearane One has long plumose hairs on the body, and was fomm in seeds. In Emrope sereral speries appear to be common in houses and huildings. Fome -pecios are provided with many hroad arale-like hairs. In all the forms
the skin is tinely granulate, which characterserves to distinguish it from all other Tyroglyphids. The original species of the genus (as indicated by the name) and some others haree been foumd insugar. 'The mites sometimes spread to the hands of those handling such materials, and produce a skin disease known as "grocers" itch." Michael has deseribed two remarkable forms which he discovered in the nest of the mole. The body is broad. Hat, and the margins (renulate and provided with spines. They do not occur in deserted nests. but their relation to the mole is mbnown. They may, perhaps, form a distinct genus.

Fig. lio.-Alevrobicefarine; a, tenter uf male; b, LEf I of male; f, PALPI': d. TARsC's IV GF MALE. The curious genus Lerbidrophenms has not been found in this country. The genus was based on a I I!popmes that is found attached to moles. Nichael has worked out its life history. finding that the adult is much like filyciphorfon. The male has sereral eurious comb-like projee-

Fig. 1G1.-Histioginter malds, FEMALE. tions from the under side of the tirst and second paits of legs, and some plumose bristles on the other legr.

The genus Alommbins contains one species, A. Ftrimat. which appears to be wellnigh cosmopolitan. It is the speries most commonly found in tlour, grain, and stored foods. The greatly enlarged anterior legs of the male are a unique character in the family. The body has a few rather short hairs. Cleanliness, window soreens, and frequent handling of the grain witl be the best prerentives for the protection of mills against this pest. Fumigation with hydrocranic acid gas is the best remedy.

T!/fmfly! \quad hes, the typical genus, is known in this country by three or four species. two of which are rery common. One, apecies in grain and stored foods, appears to be the true cheese mite, T. siro Limaxus. Our specimens, howerer, have rather longer hairs on the body than the European sperimens. Our other common species is the mushroom mite, T. lintneri O-born. It is rery close to the European
 is rery de-tructive to cultivated munhroms, and once in a bed it is very diflicult to eraticate. Busck" has givenan arcount

 MALIS MANDBLE ANJ, y yNTER . of experimente against it which serve to show the difliculty of dealing with the pest. Severely inferend bedw should be destroyed, and perhaps if the carth was steram-heated (as is done for rootworms), the egge would be killed. Another species has been taken by Habbard on oranges in Florida. It is found among the Mytiluspixicales, and is supposed to feed on them. Noniez has deswribed a species. T. morsmmmi, as occurring aboudantly in nests of certain ants.

The genns Mistiomerst, or was based on the European /I. (mirnios. and /I. entomophayns. Our species, IV. malus, described hy thimer and Riley. is eridently a different opecies. It is found on trees infested with vale insects. and particularly in company with the orsterwhell barlk-lonse. It feeds on the male, powilly, howerer. only after the latter is dead. The body is more clongate than in Tyroflyphomes. and the hairare quite short. In England a specios feads within decaring
 mefostor haw a glatioy, eye-like upot on cach anterior side of the bedy: it may be an organ of rision. but there is no definite evidence for this riew.
To the genus Rhizoglyphlin: belong a number of specios. fomm on the gromed. in decaying matter, on roote of phant-, and in hutbs. The body is slightly more pyriform than in mont Tyroglyphide. and the -perie- are of rather large wize. We have serema series in the United states. One of them is the R. Iymenthin Boisduval (R.

[^3]mite ${ }^{*}$ of the horticulturists, and is responsible for an enormous amount of damage. It burrows into healthy tissue. thereby giving entrance to destructive fungi and bacteria. It is especially common in hothouses, where its ravages on orchids have long been known. No one appears to have fond a successful treatment. The hest way is to burn the affected bulbs as soon as discovered. Some growers. however, secure good results hey the following treatment: The soil of the pots of infested plants is allowed to become dry. then the bulbs taken ont and washed in a solution of tobacco water and soft soap, with a small amount of washing soda. Then they are sprinkled with freshly slaked lime and left for two days. Then they are washed with the same solution as before, to which a little petrolem has been added. They are then re-potted and often do well. Mir. Woods has shown that this mite. when infesting Bermuda lilies, can not be destroyed, but much good is accomplished by the use of commercial fertilizers. and rotation of crops.

In Europe it hats lately been proved that this, or an allied -pecies, does great damage to the roots of grapevines, and that it may be destroyed by the use of carton hisulphide injected into the soil above the infested roots.

Dr. E. I'. Felt has described a species. R. heteromorphic, which called injuries to the

Fig. 164.-RHIZOGLYPHts hHIZOPHAGUS. stems of carnations grown in greenhouses. We have seen the same, or closely allied species, on the roots of asparagus. Another species has been found to eat through the grafting wax on budded plants, bore beneath the bark, and so prevent the min of graft and stock. A species described by Riley, R. phylloreric, was supposed to feed on the Ihyllorem, but it doubtless fed on the grape roots.

The typical species of ('arpoylyphus. ('. pmessularmm, has been found on dried figs in California. It infests dried fruit in Europe. In this genus there is no furrow separating the cephalothorax and abdomen. The position of the long hair on the tibia of legs I and II is different from that of any other Tyroglyphid. This hair is normally near the
tip of the tibiat, Fut in this gemus it arises near the midkle of the joint. There are only short hass on the dorem of body, but at the tipare two long hairs each side. The Ilyp"ym, of this

Fili. 1汤.-TRICHOTARSLE XYLOCOPE: NYMPH, AND CLAW EN: LARGIEI). gemus is monown. lt is clamed that the female is orovivipatons. The species of the genus Tiralotarsts: (formerly Trimbs(dect!flus) are perobliar in that they occur in hypopial form on bees. They have a broad body. without division into eephalothorax ant abromen, ant provided with a few short hatirs. 'Two speries. T. erylocopre and T. smbit, are common in Etrope, and both have been recorded from this comntry. The adult of one speries wats found in the bee's nest, and has much the appeasance of the ordinary Tifroghlyphlows.

The Emopean gemus / Iericien is allied to Trichoterswis. and is found in the sap flowing from womels on tiees. Two other
 armos. have coriateous bodies, and the month-partsare not risible fromabore. The former has heen taken in old hay and similar substances. and the latter from moles. nest. The genus Lutnmonta, foumb on marine alga in England and Heligoland, is peenliar in having a slender hook-tipped process near the tips of tarsi I and Il.

Family (A NEATRINHD).E.

This family, named in honor of the famous Italian acarologist. (ijoFammi Camestrini, comprises only a few forms of rery small size and parasitio on insects. They are related to the Sareop)tider, and also apparently to the Tyroglyphide. The body is entire, althongh there is msually an indieation of the transverse fursow on the dorsum. The legs are rather short, with few hairs, and terminate in a sucker like that of the Listrophoridae. The mouth-parts are sualland concealed in the rostrman: the mandibles generally chelate. The palpi are simple and filiform. There are sometimes two suckers on the hind part of the venter for copulatory purposes. The dorsum bears

Fig. 166.-CANEstriNia sp., female, FROM BELOW. afew hairs or hristles and some longer ons at tip. Their life history has not been investigated. Most of the speecies ocrur on beetles, some under
the elytra. One species that hat been recorded from this country. //misurcopptes coceisumes Lignières, is said to live among the eggs of Mythlosspis pomurnm. The principal genus is Cemostrinio. represented by five or six species.

> Family ANALCESIDAE.

The hird-mites (Earcopticlex phumicolox of Mégnin) form one of the largest and best-known groups of the ocarina. Sine the specimens can be found on the skins of birds, collections have been made in rations museums, so that many species occurring in tropical combtries are described - a condition not existing in other groups of mites. except the Ixodider. The species in the United states. however. have been lout little studied. The body of an Analgesid is more or less felongate; the skin is soft and transversely wrinkled; in many forms there are finely granulate dorsal shields, one anterior. and a longer posterior one; there are neither eyes nor stigmata; there is usually a distinction between cephalothorax and abdomen. In front there is a conical projection, the rostrum; the upper part of this is known as the epistoma, and is continuous with the dorsal surface of the body. Beneath the epistoma is a pair of triangular simple mandibles, which often project beyond it. The mandibles are commonly chelate, and finely toothed at the tip. Below the jaws are a pair of maxilla, which

 c, EPIMERA: d, GENITAL OPENING; f, PROCESS; f, ANAL SUCKERS: g, LOBE. bear on their outer side the simple three jointed palpi. Below this is the lower lip, and between the two is a ligula or tongue. The leg. are commonly short and stout: they are arranged in two groups. the anterior pairs close to the month-parts, the posterior pairs toward the end of body. From their insertion on the renter there extend chitinous brown rod-like pieces, the epimera, which form a framework or seeleton for the attachment of muscles and support of the legs. The legs are of five joints, the last ending in a cup or saucer-shaped sucker or ambulacrum. Sometimes there are one or two claws. The legs bear a few hairs or bristles, in a definite arrangement. The two hind pairs of legs often differ in the two sexes, and in the mate one is often enlarged or longer than the other, and used as clappers. sometimes there are projections or apophyses on the legs. In some forms there
in a hackward projection from some of the basal joints of leg I there are the oleramon processes. On the dorsmm are stiff bristles, the

 PTEROLICHIS. size and armagement of which afford good sperific eharanters. The voulsa is situated between the bases of the third and fourth patis of coxat it is usually marked hy a curved line. which is termed the lyra. In the male there is a smaller U-shaped mark. The copulatory opening of the female is, howeror, a small aperture bohind the amms. The amalapreture is a simple slit at the tip of the body. Eath side of it in the male there is a circular mark or sucking disk; these are the mating or copulatory suckers. The tip of the abdomen is frequently of a different wape in the two sexes. hamat geuerat the mate ablomen is deeply bitid or bilobed at tip, while the female has the tip entire. In some forms it is more bifid in the female. In some (anses the tip) is provided with foliaceons plates or lamellad. In a few genera there are two forms of the male; in one the mandibles and anterior legs are entarged.

The development and life history of the hird-

Fiti. 169, LeG OF ANAI. GEN: ", ロLECRANいN PROCESS: ρ, TARSALPROAESA. mites are replete with momakble facte-fato which hare puzzled investigators for years, and even now

Fig. 170.-l'terolfohls sp. (NEAR DELIBATUS), ON CONDOR. not thoromghty muterstood. The rge is connaratively large, elongate, and slightly carred. The newlyhatehed larve have six legs. but in some forms apparently hut four. It has been clamed that it is the third pair of legs that is added when the larva transforms to the nymph. The nymph has the general form of the adult, but lacks the genital organs. In certain species there is a hypopial stage dereloped from the nymph. It is distinguished from the nymph by the absence of mouth-parts, and by having long hairs, instead of a claw. at the tip of leg' IV. 'This stage has on the venter an area of sucking disks simila to that of the IYypopus of the Tyroglyphitie. The adult male is dereloped from the nymph. But in the ase of the female three is a pasage form between the nymph and the true adult female. It has
been called the nymphal or copulating female (femminu (man)phistu), for it is in this stage that pairing occurs. The male mates with the nymphal femate, but pairing is prolonged for several days or int il the true adult female is fully developerl within this nymphal female. Pating is performed throngh a small aperturo behind the annu, and not by the vulva, which latter is not developed in the nymphal female and omly appears in the adult. The oriduct opens hy the rulva. When the true female exapes from the nymphal female, an cger already of considerable size, is seen within her body.

The Analgesidie live upon birds, feeding on the feathers, epidermal sicales, etc. They rarely do any damage to the birds, but are usually of service in keeping the skin and feathers rlean. They remain on the host after death, often leaving the feathers and congregating on the skin. Athough many of the speries are now known from lout one host. there are some common forms that oceme on a considerable number of hirds, frequently of different genera. Likewise soreral species of miter sometimes occur on the same bird.

These mites were for a long time kept in the gemus Itermaleichus Koch, but this has been shown to be a synonym of Amalyis Nitzach. 181s. Many other genera have been formed in rerent years, and a revision of the family by Canestrini. in "Das Tierreich," in 1899, includes 31 genera

Fig. 171.-IIYPONERAS (0)LLMB.E, A STAME GF FAJ,('U1,IFER; a, b, c, EPIMERA (Kellicott). and \bar{i} subgenera. Several, however, are based on very slight characters, and do not appear advisable.

But few species have been recorded from this country. Mr. Tyrrell and Professor Haller deseribed several from Canada, and Doctor Tronesart has taken some from American birds in the Paris musemms.

In the following talle I have included all known from the Ithited States and Canada, and most of the larger genera that are apt to be found here.

1. Hind legs of the male not lengthened nor enlarged.................................. .
some of the hind legs larger or longer than the anterior legs.
\geq. Hind legs situate more under the loxdy, very short; the fore legs of male with proceses on some of the joints, body usually quite broad Firemtun
Hind legs more lateral; legs I and II withont projections in male. \qquad
2. Tip of the mate with foliaceons apmendages; that of the iemale bifin, and with stout bristles
Male without such appendages
3. Female with tip of ablomen bifid, and provided with stont bristles... Pterotectes Female with tip, of abdomen entire.
4. Body broad, legs very short; in male two hook-like projections from ealch vile of the rostrum; tarsi end in claws... . Mirmolichus: No such projections on rostrun; tarsi rarely end in claws:
5. Lens I and II of male longur than the othere, and end in claws; two forms of male, me with very large mandibles. Fulculifer Leges I and 11 not longer, not anding in claws; one form oi male only 7
6. Thedy wft, wakly chitinized, pale molsi -....................................... Riroltusiu Bonly harder, more strongly chitinized; more or leas brown in colne. . I'lerolirhms
7. Less I and II of male with distint spine-like poremes 9
Lags I and II without such proversor .. 12

Leg III with a sucker at til -... 10
8. Leg III larger than IV, with spines on tarsus Megninion
Lex III seareely as thick as IV ... 11
9. Leg IIl phainly longer than IV ... Irotelyes
Lex III plainly shorter than IV Iteralloptes
10. Leg IV larger than III... 13
Leve IV :maller than III ... 15
11. Tip of abmomen of female entire, and usually of male; leg IV very short..... 14 Ardomen of female amb matally of male bitid at tip, often deeply so; horly slender; log IV mather slender Illuptes
12. Suckers of tarsi small..
suckers of tarsi large
13. Ahlomen of male nowe or less bilobed at tip; leg III matly reaches beyond bexly, and has no tecth near base... Iteronyssus. Axhomen of male entire; ley III usmally does not reach the tip of body, and has one or two testl near base on inncr side.....................
la Fiegama some males have one

Fig. 172.-Alluptes midrophethon, And (Ahoncle. of the anterior legs, sometimes the left. sometimes the right. wreatly enlarged to aid in holding the female. The hind legsarise nearer the middle of the renter than in other genera, andareveryshort. Twospecieshare been recorded from this country, one. F. वnserime Koch, on the snow goose and the other. I. capme medusie Tronessart, on the booby. The latter species is sometimes orer 1 millimeter long, one of the largest species of the family. In Pterodectes the body is elongate and slender, the legsall of about equal development, and in both sexes the tip of the abdomen is bilobed, in the female with two stout bristles. There are disfinct shields upon the dorsum. The gemms Illanalyes (I'terocolns) is scarcely different. Professor Haller recorded one species, A. aracilepimututus, from C'anadar.

In Proctop? ? yllorlesthe body isalso slightly elongate. and the legs of suberpal size. The abdomen in the female is bifid at tip and with two
stont hristles：in the male it is sareely hifid and provided with two prominent foliaceous appendages．I＇，w－ ticulifir comes from California．

In Rimoltusim the species are rather short and broad，all legs of about equal size：the male body is deeply bilobed at tip，each lobe provided with a very long hair．They are very－mall species，and some oecur on domestic fowl．

In Microliches the species are similar to Fi i－ voltasie，hat the legs are shorter，and end in distinct claws，and there are two hook－like pro－ jections each side of the rostrum near its tip．

In Ptorolichus the legs are all subequal in size． There is much variation in the shape of the hody，which in the male is hilohed at tip and in the female more or less entire．It is a rery large genus．and three species are known to occur in the L＇nited States．I＇．＇quilimus Tronesart has been taken on the gotden and

Fig．173．－ANalges passeri－ NUS，FEMALE．

Fig．174．－ANALGEs Passerints，male． lould eagles：I＇．Drachholà C＇anes－ trini on the godwit and golden

Fig．175．－NEGNINIA TYRRELLI．
plover；and I＇．Imminenter Mégnin and Tronessart on the barred owl．

The gemus Fiobonlifir (formerly Forlcigor) has but few species, but one of them. Ferostratus. Buchholz, presentseseral interesting points. The adult stage diflers but little from the normal bited-mite exeept that there are two forms of the male one which has considerable resemblance to the female and the other which has several secondary sexual chatacters, the anterior pairs of legs being long and heary and the immovable finger of the mandiblen being greatly enlarged and lengthened. 'There is, howerer. an hypopial stage in the life of this mite which has been the theme of much disenssion among acarologists for many years. This hypopial form was deseribed in 1 withy Filippi
 various parts of the intermal amatomy of hirds. generally in the areolar

Fi4. 176.—MEGNiNIA AlbidA (AFter TYRRELL).

Pig. 177.-Pteronyssua tyrrelif (After Halief).
and peritracheal tisumes. It is of an elongate form, rounded in front and brhind, and with eight short legs, two pairs in front and two other pairs toward the posterior end. There are no month-organs, and slosarsky, who examined the anatomy, found no internal structures sate a few museles attached to the legs. From this it was evident that Mypordectes was a nymph in the state of histolysis. Mégnin soon made a more extended study. and found that the mite was a stage in the life-history of a Pterolichus (now placed in the genns Felmafirm. Megnin considers that when the Faculffer finds it is being deprived of shelter and food, by the bieds pulling out their feathers, certain normal nymphs tramsorm into the hypopial IIypordectes. This then "rawls into the respiratory organs, or into the hair-follicles, hurfows some distance, and there remains until normal conditions are
reestablished when it reappears on the outside. However. it is probable that more is to be learned regarding these subcutaneous forms. In this country Ifypoedectis has been taken from the pigeon and blue heron, while Mr. Beebe has recorded a similar form from various birds in the New York Zoological Park. This latter form is supposed to have caned the death of a number of birds.

In Iterollonetes the mates have the third legs but little larger than front logs, and end in a sucker. They have usually been taken from tropical birds.

In I'teromyssins the male has the third pair of legs much longer than the fourth, which is very small. The tip of the abdomen is nearly truncate in both sexes. lout in the mate there is often some indication of two lobes. Three species have been described from Canada: P': simpler, on the red-breasted woodpecker: It. spectinsux. on the sap sucker, and It. tyrrelli C'mestrini (finsen Terrell). on the whitebreasted wallow. Meqnimin is simalar to Pteromysuiss, but there are several spines near the tip of the third legrand the tip of the male abdomen is distinctly bifid. They are usually blown in color. and many species are known. Several are described from our birds, as follows:" $1 /$. "coulcatus. on the blue jay; M. tyrdeli, on the cat-liird: M. gladiator. on the wild pigeon: M. finceipectus:

Fig. 17s.-Allanalges gracilepinnatis. on sand-pipers: J. pici-mulyoris, on the big sapsucker, and M. albinus on the white-breasted swallow. In Anulyes the male has: the third pair of legs not only longer that the others. but usually very mach enlarged in the middle, sometimes enormously so. On legs I and II there are one or two spur-like projections from the tibia and tarsi, and on the base of the femur there is a refiexed spur, the olecranon process. The tip of the male aldomen is often pointed, and never deeply bilobed; the female has a rounded tip and elongate body. The tarsal suckers are smaller than in Megninin and Itoromyssws. Five species have been described from American birds: A. tyrommi, on the king-hird: A. lmmispinnsus. on the smow-hunting: A. tritentulutus, on the horned lark: A. cremidmutnis

[^4]Tronesaly from Califormia: A. digitutus Laller, on the Camadian warher: and the European A. pesserimis. Limman recorded from sereral stmall birels.

Family LINTROPIIORID)AK.

 closely related to the bird mites, hut live upon many of the smaller mammats, including hats. They are small, soft-bodied, and with short and stout legs, terminating in

 a sucker and often a slender claw. The boty momally tapers a littie hehind. and the leges are widely separate, one from the other. sometimes cach pair is at an equal distance from the adjoining ones. The dowsm han a few short hairs, with longer ones at tip. The surface is usally tramseresly striate. The rostrum or wak forms a distinct cone on the front of the body; the patpi are simple. filiform, and lie close to the monderide of the beak: they are there-jointed. The mamdibles are commonly chelate, but very mall. The genital apertures are situat o between the third and fourth coxie and the amms at the tip) of the body. The maden, which are usinally of a different -hape than the females, have a pair of copulatory suckers mar the tip, of the venter.

These mites feed on the hairs of small mammalo, and each genus has some secial apparatu* where with to hold onto the hair. In L istronplowis the under lip is expanded on "ach side into a flexible plate which curls around the hair. They oecur on rablite, suirrels. and mice. In M/yocoptes the hind pains of leg are enlarged, the apical jointe provided with a few large spurs, and those joints can fold bank on the basal jointe as a knife-hade. By this arrangement they cling to the hair of

 MALE ANい FEMSIE TMAETHFP, muce. In Trichlmeins the hind tarsal joint is thattened. curred. and provided with at spine. which emablase the mite to gratep the hair of mice. In Lerlidecorrpum, which oceurs on bats, the anterior leg- are rery thort and the lant joint marged and conare below. By these
 -imilar artagement: it occus on the bearer. In (hirmbisems the anterior legs have the apical jeints flattened and corted, but destitute of clatws and surker.

Little is known regarding their life history. In Lubichaconfus the mate mates with a nymphal female (as in the Analgesidx), which moults, and the true female issues only to deposit eggs. Some species of Listmplourlis are preyed upon ly a species of Cheyletne that wes the rabhit's fur as a hunting forest.

This family is based on the pilicolns habit and the possession of some apparatus to cling to the hair. Since this apparatus is very dif ferent in the varions gencra it has been sumised that the family is not a natural one, hat includes forms really belonging to the Analgeside, Tyroglyphide, and Sarcoptide.

The American forms. with the exception of schizocarpux mingencti on the bearer. have not heen investigated. That species is. however, very peenliar in many ways. The male has the thind pair of legs large, the fourth very small, and mates with a nymphat female, which possesses hut one pair of legs. The adult temate is of nomal appearance. It hats been taken in Texis, California, and Washington, and also occurs in Europe.

Ledridocarpms has an elongate, tapering hody. ammulate with many narrow ridges, and at once reminding one of the Eriophyidex, to which there is, doubtless, some affinity.
Fimily SARCOPTID.E.
 familiar through their disguting parasitism of the human subject. They often burrow within the skin of man and other mammals, and thereby produce intense itehing, and a diseated condition known as sabies, mange, or more properly acarianis. The mites are rery small, white, and semiglobular in shape. The body is cutire and the surface transversely striated and provided with a few bristles. ofteu short, stont. and sharp pointed. The legs are short and stout, arranged in two groups. The anterior legs are nsally larger than the others. The tarsi commonly terminate in a stout claw. There is generally a long pedicellate sucker,sometimes with a jointed pedicel. The claw or sucker may be

Fig. 1st,-sarcoptes hominis, male. absent and in its place a long bristle. The legs often show a chitmous framework of rings, both transveres and oblique. On the front of the body is a prominent beak. The pralpi are small, three-jointed, and appressed to the sides of the beak beneath.

The mandihes are chelate" and rary in length with the genus. The rentral openings are in the nomal position, and in the male there is of ten a pair of coputatory suckers near the tip. There are frequently. sexual difterences: some male have the third pair of legs very large and long. while the fouch pair is very smath. Sometimes there are phate-like lobes at the tip of male abdomen, and the tarsi may termimate differentiy in the two sexes. The Sareoptide live in the skin of mammals. inchding mam and a few binds. The female burrows into the skin, depositing egge on the way. The yomg, on hatehing, start harrows of their own, so that a hont is inferted in patchers. These harrows of cunculi are chose to the surface and sometimes result in loosming pieces of thr epidermis so as to produce a saly effect or

crust. Frequently there are resicter, papules or pustules, which may become ulecrated bascratching. The different species produce different efferts. and even the same speries when on different animals. When upon a hairy animal, the hair usually falls out in the aftected portions. The young Simeoptes, when newly hatched, has hut three pailso of legs: the last ending in a long bristle: and there are no chitinons banks. fome species monlt four times before maturity. When aldult they paire and the female wanders a little in search of a good burrowing place. At this time the mites can exist for a long period if remored from their hosts and kept in a moist situation; but if exposed to dryones, they som tie. The burrow is makle heating

[^5]the tisme, and is of the size of the mite. As the female, progresses she leaves behind her a row of from ten to forty large eggs and a considerahte amount of "frass." The female, having deposited her complement of egg's, dies at the end of her burrow. As the skin of the host is always waring off, and constantly heing renewed from below, the eggs. when ready to hatch, will he close to the sorface, so that the mites may readily escape. Ahove each burrow there is often a little pimple, containing a watery fluid. There appears to be no

Fli. IV1.-...arcoptes in her burrow. and eggs.
means of distribution from individual to individual except by contact. Many of the species that are normally contined to one host can live on other animals and on man. The eggs if kept moist may retain their vitality for a week.

There are but a few genera; the better-known ones may be tabulated as follows:

1. Anal opening on the dorsum .. Anal opening lielow 3
2. On small mammals, not bats; third pair of legs in male withont apical suckers.

Nituerties
On bats; third legs in male with suckers Prosoporlictes
3. Pedicel of suckers jointed; mandibles styliform and serrate near tip..... Psoroptes

Pedicel not jointerl; mandibles chelate
4. No suckers to legs of females; parasitic on birds...................... . . . Chemiducoptis

Suckers at least on legs I and II; parasitic on mammals 5
5. Legs very short; in male the hind pairs equal in size; boly usually short Astrentis Legs more slender; in male the thirl pair is much larger than the fourth; bonly more elongate. is
6. Female with surkers to fourth pair of legs.................................. . Chorioptis

Fenale without suckers to fouth legs..
7. Hind part of male abdomen with two lobes . .-................................. Cupmrinion

Sarcoptes includes the species parasitic on man, althongh some others may also occur'. The human species is Š. serfeci. This pest wat formerly more common than now, particularly in amies. The intolerable itching caused by the presence of these mites leads to wild and Proc. N. M. vol. xxviii-0t-7
incersant scrateling, which only serves to spread the infection and incerease the inflammation. Cleanliness is the best preventive. The best remedy is the use of an ointment con-

Fi, 145.- ('Nemidncopter mutais. FEMALE. taining suphor. If theaffected partsare freedy bathed in hoot water and soapsuds the scally portions of the skin will be removed, and then the ointment wan her applied with a certanty of reaching the mites. The application shoudd be repeated two or thre times, carh a few days apart, in order to kill any mites that may have hatcherl sime the first application. All underclothes and bedding should be washed in boiling-hot water. The Norwegian itchmite is S. scecheri-cromstosiar: it produces a coarse leprons crust infested on the imer surface with myriads of the mites. It is much less common than the other species.
Nearly all of the domestic animals may harbor a speries of Sermeronters 2 peculiar to them. The more common are those of the hog, horse. and sheep. They work like the human species. and are amenable to the same treatment, or that used for sheep-scab.

The species of the genus $/$?sor mpteshave piereing mandibles.and do mot hurrow. One species, I '. communuis var. , oris, is the calle of sheep-scal, a serions disease of this animal throughout the world. The flece of scably sheep present a rough appearance, the wool in plates being sturk together in greaty mases. The mitesare most athumitat aromed the elges of an infented patch, and inereame very rapidly: The cges. hat hin two or there days and in fiftem days they bereme mature. The female lives for sereral weelin and deposits at great mumber of "gege commonly

FHi, 18ti, -OTODECTES CYNOTL, FEMALA. in patchen of about twenty each. By rubhing against posts, trees, and fences wool containing mites and eqge is removed which may infect healthy shep rubbing against the
same plaes from other canses．The lose is matly heaviest in antum and early wintere．sheep if not treated may som bereme so conferbled throngh fatigue and lack of rest as to die．The best remedy is to dip the sheep in some poisomons solution．Varions dips are in use mostly based on tobaceo．sulphur，tar，or lime．The fa－ mous Rutherford dip，which has been very suc－ cessful，is prepared hy using one peoud of tolaceo one pound of sulphur．and four gallons of water． The tohaceo is steped for some time in the water． the sulphur is added to this tobaceo water，and then the mixture is diluted ley the reguisite amount of water．It is hest used warm．It is emstomary to give another dip about six or eight days after the first．so as to catch the mites that have hatehed wine the first dip was applied．（iillette has used atn： per cent kerosene emulsion，and considers it

Fif．18S－Psoroptes commuris，var． OVIS，FEMALE ANI CARONCLE EN： L．ARGED． choaper thamanything else．It is said that in Europe shepherds

 NotIN，TIP GF MAIEE AB IOMEN，ANI HINH LELAX apply a salve contain－ taining moreny and oil of turpentine． If the shep have heen kept in stables．these should be cleaned，the surface soil re－ moved，and the woodwork whitewashed to a height of four feet．

The species of（＇／wrimptes do not bur－ row in the skin，but procture asal）similar to sheep－sicab；but it is restricted to cer－ tain parte of the amimale as the feet，the carc．or mock．They are amenable to the
 oesur on the horse，ox．wheep．and goat． The genus Votwedres，differing from sior－ ropptos in the dorsal amus．ocents on cats and rabbits．I＇roserymelectos is limited to bates and burows in the tisenes of the ear：－（inperimin ocem：on a few wild amimals，and otonectes lives in the ears of doges and（ats：（）．ay！notis Dioring has been taken in this comtry．Animale mat be se tormented by these parasites that they hare convolsions or fits．The purulent matter should be care－ fully remover，and the ears bathed and injected with olive oil contain－ ing one－tenth part of naphthol．

The gemus（＇inemideroptes contains a mumber of species that oreme on rarions birds，including poultry．some live at the base of the
feathers. others produce a crunt of loosened tione and dead skins similar to that of Norwegian iteh. They may begin on the comb or skin of the feet. lunt gradually sprad down

Fig. 1sy.-Psoroltes commenis.
YAR. OVIS, MALE. the neck or up the legs. The species are all whort and broad. with short legs and with very few hairs above, and these small. They give birth to living six-legged larve, which, howerer. appear to have hatehed from eggs while in the body of the parent. ('. mutems Rohn is the itch mite of clomestic fowl. at times a very serious pest. The disease it produces is known as " sealy leg." since the mites are most ahmulant on the legs. The best remedy is to soak the legs in warm soapy water until the crusts are loosened: then :pply sulphar ointment. Bathing the affected portions in a 5 to 10 per cent solution of creolin is also a good remedy; the treatment shonld be repeated in a few days. The infested fowls should be isolated until cured. Anothrerspecies. (: yallinat Railliet, oceurs at the base of the feathers. where it burrows and produces a mass of loosened scales. The itching induces the hens to pluck their feathers.

Family (Y'TOLEICHID.E.

This family (Emportides cysticoles of Mégnin) contains but two species-Cytoleichls: (formerly Cytonlites) nullos and Lamimosiontes
 economic importance. They were discovered in 1870 ly Francesco Vizioli in the common fowl. Both are very small, soft-hodicd mites. much like a Sincopstes, but differiag in having the valva longitudinal and the smaller and lese prominent mouth-parts. The legs are rery sloot, the atoterior pairs the larger, and all sepatrate at hase. The tarsisis ends in a long sulaer. hut withcout claws. Lemmimeximptes sometimes ocanrs on the skin. lont often bores into the subuntaneous tisuse, where it gives rise (o) a callatreous cyst. ('ytole ichus

Fig. 190.-('yTOLELCHCN NUDL's. has been found in vaions parts of the common fowl. hut most commonly in the ais-passages and air-cells. Here its presence in
great numbers may produce a-phyxia in the hos. It has also been suspected of producing peritonitis and enteritic, hat Wilcox has hown its presence in perfectly healthy fowls, so that it is not certain that the mite necessarily produces any disease. The mites are probably taken up by the fowl with it, food. Although apparently clumsy the mite is exceedingly artive. and can penetrate most of the tisues of the borly. It is riviparous, and the young at hirth have six legs. They also orem on most of the birchs related to or associated with poultry. Both species have been taken in this combry. but (ytoleichins is the more common.

Family ERIOPIITID.E.

The members of this family, long known as Phytoptida, "are anong the most curious forms of the Acarina. They are extremely minute. but make up by their great mumber. They are strictly plant-feeders, and many of them canse galls. fuzzy spots, or other deformations on plants. These galls, unlike many insect galls, have an opening through which the mites may pass. The adnult mite hats lout four legs, all near the anterior part of the body: the pos-

Fli. 191.-Laminusioptes cysticola. terior pairs heing wholly lacking or represented by fine hatirs. The body is divided into two parts - the anterior, short and broad. is the cephalothorax; the posterior, long, tapering, and multi-annulate, is

Fifi, 192.-Eriophyes sp., side view
the abdomen. There is a pair of free threc-jointed palpi, and hetween them the rostrum, from which may project the needle-like mandible.

[^6]Near the base of the abdemen. bencath, is the genital openinge the female epigy num being quite large ant prominent; the mate epiandrum is much maller. It the apox of the abdemen is a truncate piese the fehom, from which ariw two long hairs, and sometimes other shorter ones. There are alse a few other hairs on the body. It the tip of the ahdomm in a sucker, which cam be extended or retracted at the will of the animal. The legs are fise-jointed, short,

Fifi, 143.-Efif OF AN ERIGJHYEK IN GAl.J. and end in a single tarsal claw. beneath which ina plumose hair, known as the "feather hair." The eephatothorax often hows rarions lines or ridges. The number of rings or anmulations on the abdemen varies according to the -pecies, :and in some forms there are more divisions above than Jolow. In size fow of the Eriophyide reach one-hundredth of an inch, and many are mot half as long.
The Eriophyide have had a cherkered history. The early hotanists, umable to see the mimate creatures, supposed that the galls and fuzzy spots were fungi, and so deseribed them, the gemus Ceplollonem being foumded on distinct galls. 「oblolifere on rolted edges of leaves, and Lrimenm and lhyllerimen on the fuzzy patehes.

Dugis in 1×3.3. who was the first to carrefully look into theme galls, supposed that the mites were immature. since they had hont two pairs of leg.s. He saw the eggs, but supposed that the adult mite had come in the gall to lay the eges and then went ont to deposit eggeselcewhere. In 1851 Dujarlin examined some galls. foum the mites, and notired within some of these, objects which he took to be egges. Therefore he believed these mites to be adults. and named them Ihytontus. A few rears later scheuten examined the pear-leaf blister. fomed the mitere, and decided that they were immature forms. and that the full-grown creature was an eight-legeed mite that he found associated with them. This supposed adnlt he

 TERIOR PART OF BUDY. figured and proves to be a Camasid, which was dombthes ferding on the Crion, hyes. Since then many observers haterexamined theor mites and contirmed Dujardin, that they are adult and comstitute a separato group of Acari.

The deformations produced be mites on phant- have heen called
 of this family. The relation of the mite to the gall or arineum is mot fully known. An erinemm is practically a dense mase of deformed
hairs. These hairs are nemally thickened and twisted, and the whole mass is of an even height. The mites live among these deformed hairs, sucking the juices of the leaf. As the juice beromes exhausted the erineum becomes reddish or rusty brown in color, and is a tery prominent object. At this stage. when the erimem is most easily noticed, one is apt to find few if any mites, as they have left for fresh pastures.

The galls may be on either surface of the leaf. thongh commonly above. The form is quite characteristic of the species, though there is usually some variation. These galis ahways have an opening through which the mites can pass. This character will distinguish these galls: from those of Diptera and Hymenoptera, hut not from Ilomopterous galls. The opening is often very small and concealed by tufte of hairs. Within, the gall is often partly filled up

FIr. 195.-N゙AIL-GALLA UF AN ERIOPHYES. with folds and projections, and sometimes with hairs. In color the gall is at first like the leaf, but gradually turns sellow or reddish, and then hrown or hack. fometimes the gall corers a great deal of space, hut does not swell up much, in appearance much like a blister.

Galls are formed while the leaf is growing rapidly. It is supposed that the puncture of the plant-cells by the mite

Fit. 196.-liIb-GAJIS OF AN ERIOPHVES. induces an increased flow of sip in that direction. which calses the spot to grow faster than the surface around it, so that this spot must swell up in the form of a gall. This, however, does not aceome for the diversity of form of the galls. and why each gall is characteristic of the mite that made it. Some species of Eriophyide live in plant-buds, and their feeding prevents the opening of the bud. which after a time dries up and dies. With other spercies the buds swell to a great size, but never open. Other mites produce a curling or rolling of the edge of the leaf. or a slight folding of the surface. Some live on the surface of fruits, the the orange-rust mite. A few species produce galls or excrescences on twigs, especially near the base of terminal huds. The diseased condition produced hy these mites has been termed phytoptose or erinose.

The eggs of the Eriophyide are laid upon the surface of the leaf.

They are attached ingly, are nearly spherical in shape, and pale yellowish or grayish in color. The egge are quite large as compared with the mite. The young, at lirth, are helpless and without tarsal appendages. but soon molt and obtain them. The mites can more quite swiftly, considering their size, and sometimes they spead orer a tree with wonderful rapidity. The anal sucker aids them in holding on to a surface, lout not in locomotion. They molt four times, it is arid. before becoming adult, but pass through no changes in structure, except the development of the genital apertures. At each molt there is a resting period when the mite is within its old and now loose skin. With the drying up of the food-phant in the fall the mites seek winter quarters within the buds or bensath the bud-scales. Sometimes. doubtless. they winter under pieces of lark. When in a lond they hegin to feed on the leaf. and produce the gall hefore the hud is fully open.

The Eriophyidx have usmally been supposed to have some atfinity with the Surcoptidat; however, ithink they show far more relation to the Tarsonemider and Tyroglyphida. There is not much diversity of form in the family, and generic classification is based on few and rather simple characters. Quite a number of galls have been collected in the Lnited states, but the mites have not been studied except by Profesor Gaman, who described a few species. Several European acarologist. hare carefully studicd these mites in recent years, but the work of Alfred Nalepa, of Linz, has been preeminent.

The better-known generat maybe separated as follows:

1. Number of abdominal rings on dorsum and venter nearly equal........ Eriophyes

Number of abdominal rings on renter nearly twice as many as on dorsum..... 2
2. Dorsum with the middle area highly arched... 4

Dorsum of an even curve.. 3
3. Fnd piece of abdumen phainly separated..................................

End piere of aldomen not plainly separated Ihyllocoptes
4. Some of the dorsal abdominal rings extem backward spine-like on the side oxyplembites
borsal rings mot wn.. 5

Dorsum without furrow: Tegonotns
The species, so far known from the Cuited States, have been referred to licionllyse. but several of the other genera occur here.

Most notable of all our species is the pear-leaf bister-mite, Eriopleyes p!yri, an European species whose iutroduction into this country seems to have been aceomplished before 1870. It is now widely distributed throughout mont of the pear-growing region, and ako occurs in Anstralia. It appeare to be more injurions in this comery than in Enrope and in some cases it is an abundant that the tree sheds nearly all its leaves before the fruit is ripe. The mites patss the winter in the buds. and hegin to feed before the leaves are
unrolled. They form red blister-like spots nearly one-fourth inch across. These spots become green by June, and then turn hrown, and the tisue becomes hard and rorky. The opening is on the

Fig. 199.-Round-galls of an eriophyen.

Fig. 197.-SECTIUN OF AN ERLNEUM ON LEAf.
under side. As mites often start galls close together, they soon coalesce and form large blotehes. Professor Slingerland has found that they can he practically exterminated by -praying the trees in winter with kerosene emulsion diluted with from fice to seven parts of water. This mixture reaches the hibernating mites in the buds, and kills them there.

Another species of considerable economic importance is Erimphyes oleirorus Ashmead the rust mite of the orange and the silver mite of the lemon. It occurs in Florida and Califormia, and lives on both leaves and fruit. On the foliage the mite causes the leaves to become curled and lose their glows. On the fruit of the orange the mite produces a hardening of the rind, which becomes hrownish in color. The infested orange, although injured in appearance. is better able to stand long shipment, and more juice than the clean fruit. Upon the lemon the mites cause the rind to become whitened or silvered. The fruit is better for shipment, hat the rind is injured for commercial purposes. The circular eggs are deposited on the leaf or fruit, generally in clusters. They hateh in five to ten days. It taken about two weeks to reach maturity. Its food is the essential oil, found in the epidermal cells. Mr. Hubbard, who studied this mite more earefully than aryone else. estimated that there may be to. 000 mites and eggs on a single leaf. The

Fig. 199.-ErioPHYES VITIs. best remedy is flowers of sulphur; this may be applied dry, or mixed in with a spraying solution, as kerosene emulsion.

Another injurious species in this country is the plum-twig gall mite, Erion)hyes phlaocoptes Nalepa (also known as Cecidopeses promi Amerling').

It is an Enropeatn species that hat hem imported into this country in recent rears. The mites form small subspherical galls at the base of the buds. I chaster maty surround the twig. The mites hibernate within the galls. leaving them in the suring to form new ones. The galls are at first phompand smooth, but later become dry and wrinkled, and sometimes reack. l'ruming and burning the infested twigs in winter will kerp) the mites in check. An application of sulphur in the spring, when the mites are attive, will, dombtless, destroy many of them.
'The hask-cmrant gall mite. Erimphyes ribis, is rery injurious to the currant in England. They penetrate the buds, cansing them to swell, amd badly infested londs die before opening. The mites breed throughout the year. They

Fir. 20 O. - l'HLAEOCOPTEN SP.. NHE VIEW. migrate in the spring when the hods are opening, and may be destroyed at this time by a wash of soft soap and sulphor. It has been observed that this speries can stand upright and even jump into the air and be carried some distance by the wind.
In Califormia the Errionsloges mitis Landois often serionsly injures the leares of the grape. The mites produce an erinemm on the under suface of the leaf that causes swollings on the upper surface.

The mites pass the wintur in the buds or moder the bark of the vine. Applications of suphur will destroy this as well as other species of Eramphys. Walnut trees in California are ako affected hy an Erior phases which produces hlister gatls and erimemm on the leaves. It appears to be the E. troxtrintus Nalepa, of Enrope, which has similar habits.

One of our most common species is Eriophlyes qumedripes Shimer, which produres rommish galls on the leaves of the soft maple. The galls are at first green, but later become purplish and finally harek. There are often weveral hundred galls on one leaf.

Eriophyes !/aseypii Banks occurs injurionsly upon cotton in Montsermat and some other Wrast Indian islands. The mites produce galls which were so mumerous as to cover many leaves with a mass of irregblar. fonghened swellings, rorlet and distorted. The damage in places was so serere that the cotton had heren thrown into the seat. The galls within are densely elothed with long hairs.

Two specion are very ingmions to the laves of the tea plant in India and C'eylon, and no good remedies lave yet been devised for them.

Family l)EMODE('IL)E.

To this family helongs but one genus. It monter, found in the selatceous glands and hair-folliches of various mammals, inchuding man. The mite is very small. elongate, with cight short three-jointed legs. and in front a short. median, sucking rostrme. The palpi are appressed to the under surface of the rostrim. The abdomen is tapering, transersely striate above and below, and rounded at tip. There is a large vulva situate at hase of the abdominal renter. The egg is fusiform. and gives birth to a hexapod larra. which moultand becomes ortopol. Two more monlts hrings it to maturity. The nymphs greatly resemble the adults, and the sexes difler hut little.
I). follimentorm, Simon, the species found on man. was long supposed to be the "ause of "hbackheads." and comedomes on the face. Medical anthorities claim that the mites do not camse "blackhead.." and that they occur in healthy as well as diseased follicles. The mites migrate orer the skin to enter new glands. They occur on children as well as adults, and in all parts of the world.
D. phyllowids Cokor hats been found in Camadian swine, causing white tubereles on the skin. from the size of a pin-head to that of a pea. Within each of these absersses a mumber of the Demotror were crowded together. They did not appear to affect the health of the amimal. /). bowix stiles was resorded from hides of cattle in the United states. They formed swellings, about the size of a pea. on the skin. Within cach there were a great number of mites. The presence of these tubercles lessens the ratue of the hide to a considerathe degree. Herds could doubtless he cleaned by dipping in some liquid similar to the sheep and cattle dips now in use against other mites.

LIST OF WOREN UREFEL IN THE STUHY OF AMERICAN ACARINA.

 рए. $0.9-2=2$
——. On the Oribatoidea of the Cnited states. Trans. Amer, Entom. Anc... MIII, 1895. 11. 1-16.
——. The red Spiders of the Uniterl states. Bull. no. s, Techn. ser., Div. Entom., C. S. Dept. Agric., 1900, in. 6is-7.
A. Bemese. Acari, Myriopma et Scorpiones hucusque in Italia reperta. I'atavia, 18s0. [Lswert in mixerl favider; the parts on Prostignata (Trombididit), (Famasidar, Oribatidex, and sarcoptoillea are finished.]
（i．Cunemtasi．Prospetto dell＇Acarofauna Italiana，l’adova， 7 ［artw，1885－1897．
 P1． 193
 546， 11 11s．
1．L．Dovionmer．Recherches pour servir it lhistoire iles Títranyques．Ann．soce．

 p1．18－63．
F．Enlers．Die Kraitzmibluen der Vägel Ein Beitrag zur Kemntnisw dersurcoptiden．

11．F．Fürstenbert：Die Kriatzmilhen der Menschen und Thiere．Leipzig（Folio）． 1861，240 pp． 15 p1．
11．（inrmas．The Phytopti and other injurions plant－mites．12th Rept．State Entom．，Illinois，1853，1＇4．12：3－14．3．
I＇．（iervis．Ilistoire nat．des Insectes Apterès，III，Paris，1stt．pp．132－2ss．
（i．Habler．Zar Kenutniss der Tyroglyphilen mul Verwanden．Zeitschr．f． wiss．Zool．，工ХХIV，1880，1p．255－245， 3 phe．
＿－Die Milben ats Parasiten der Wirhellowen，inshesondere der Arthropoden． Thalle，18st，30 pp．
L．Kabpelen．Beitrigge zur Naturgenchichte der Mibhen．Berl．Entom．Zeitehr．， 1884，11．1－34．
F．Kobnke．Die Nomlamerikanisehe llydrachmilen．Dhh．Verein Bremen，XIII， 1900 ，1P． $167-276$.
P．Kramer．Beitrige zur Naturgeschichte dar Milben．Archiv．f．Naturgeseh． XLII，1876，pp．2s－45．
－＿Zur Naturgeschichte einiges（iattungen ans der Familie der（iamasiden． Archiv．f．Naturgesm．，NLII，1876，pp．46－105，ㄹ．13＊。

Die Familie der Bdelliden．Archiv．i．Naturgesch．，XLII，1876，pp．18：3－196， 11 ．
—— Cirumzäge zur Systematik der Mlilben．Archiv．f．Naturgesh．，NLIII， 1877，Pp． $215-248$.
P．Mécins．Mémoire sur l＇organization et la distribution zoologicue der Aeariens de la famille des famasides．Journ．Anat．et Physiol．，18i6，pp．2s8－336， 2 pls．
＿＿Hémoire sur les Métamorphoses des Acariens en général，et en particulier sur celles les Trombidions．Am．Sci．Natur．（if），IV，1876，1p，20，2 pls．
——．Monographie de la tribu des Sareoptides Prorique．Rev．et Mag．Zool．（3）， V，1877，pp．46－213； 7 phs．in VI， 1878.

Mémoire sur les Cheylétides parasites．Joum．Anat．et Physiol．，187s，pp． 416－441，\because－plo．
—— Les Acariens purasites du tissu cellalaire et des réservoirs aériens chezz les oiseaux．Journ．Anat．et Physiol．，1879，pr．123－153．
—— Les parasiter et les malndies parasitaires．Paris， 1 s．50， 488 pp．， 26 pls．
 pp．， 31 pls．
———The Ifypons question，or the life－history of certain Acarina．Journ．Limm． Soc．，Zool．，X Tll，1884，pp．ST1－394， 1 pl．

British Tyroglyphide．Ray Koce，I，1901，2901 1p．，12 pk．；II，190：3，183 12ヶ．， 17 pls．

Orilatilte．1as Tierreich，3．Lief．，1898， 93 mp ．
IR．Monam\％．Notes sur quelques especes de Tyrorlyphides qui vivent anx dépens des mationes alimentaires et des prownite pharmacentiques．Revoe liol．Nord France，VI，1s：94，fr． $4+2+460$ ．
 1899，pr．14，pls． 9.
A．Murbas．Eeonomic Entomology，Aptera．Kouth Kensington Mnsemm Acience Hantbooks，London，1897，1p．93－3＇3t．
A．Nabera．Beitrige zur Systematik der Ploytoptifen．Sit\％Akad．Wien，Math．－ Natur．C1．，XCV11I，1889，pp．112－156， 9 pls．
－Zur Systematik der Gallmilhen．Sitz．Akan．Wien，Math．－Natur．（ll，工CLX， 1890 ，pp．＋0－69， 7 ple．
—— Eriophyidee（I＇hytoptidee）．Das Tierreich， 4 lief．， 1 siss，it pp．
（A．Nefmans．Révision de la famille des Ixonlidés．Mém．Sire．Zool．France，18： рр．1－44；1897，1ヶ．32t－420；1899，1р．107－294．
H．Nicolet．Histoire naturelle des Acariens qui se trousent anx environs de Paris． Arehives du Muscom d＇hist．nat．de Paris，VII，18．54－ñ．
E．Nordexskıöld．Beiträge zur Kenntnis der Morphologit und Systematik der Hydrachniden．Acta Soc．Sci．Fenn．，XXIV，No． $5,1899,7 t$ pp．， 2 pls．
C．Nörner．Beitrag zur Ǩemntnise der Millenfamilie der Dermaleichiden．Verh． zool．－loot．Ges．Wien，188\％，pp．91－106， 2 pl．
H．Onborn and L．MI．Uxberwood．Preliminary list of the species of Acarina of North America．Can．Entom．，1886，pp．4－12．
A．C．Obpemans．List of butch Acari．Z parts．Tijdech．foor Entom．，NXXIX amd XL，1896－97；and supplements，XLLII to NLV＊，1900－1902．
R．Piersig und II．Lommans．Hydrachnide umt Halacaride．Dhas Tierreich， 13 Lief．，1901，1p． 336.
（．Robin et l＇．Megnin．Némoire sur lex Sareoptiter pumicoler．Journ．Anat．et Physiol．，1877，p．209－248；391－429；498－520；629－65̄t； 10 pls．
D．E．Salmon and（＇．W．Stiles．The cattle ticks of the United States．17th Rept． Burean Animal Industry，U．S．Dept．Agric．（1902），pp．380－491， 257 fige．
E．Troussamt．Revue synoptique de la famille des Halacaridte．Bull．Sid．France， Belgique，NJ，1889，1p．225－251．
－Consilérations générales sur la classification les Acariens．Revue scici．Nat． de l＇Onest，Paris，1891，p1．28！－308；1892，pp．20－54．
J．F．Tymbel．On wome Canadian ectoparasitic Sarcoptida．Jomm．Ontana Field Nat．Clul），H11，1882；11．43－48， 1 pl ．
R．II．Wolcott．On the North American species of the genns Alan．Trans，Aner． Micr．Soc．，Nざ，1899，pp．193－259， 5 phs．
——On the North American species of the genus Compripes．Trans．Amer．Mier． Soc．，1901；pp．201－256， 5 pls．
——— On the North American species of Limmesia．Trans．Amer．Micr．Sor．，190：3， 1ヶ．139－161， 2 pls．

INDEN.

throlophne $=$ Rhyncholophus.	Page.		Page.
		Camerostome....	
Acanthonotus = Oxppleurites.		Campognatha $=$ Hywrobates.	
Acarellus = Hypropus.		Canestrinia	7
Acarianis	9.	Canestrinidit	91
Acaro-cecilii	102	Caparinia	99
Achly c ia	315	Capitulum.	2
Achorolophas = Rhyneholophns.		Carabodes	72
Actineda $=$ Anysti\%.		Caroncle	
Adube tick	41	Garpais - Gamasus.	
Agatue	15	Carpoglyphus	85
Aleurobins	83	Cattle tick	47
Allanalges.	90	Cecidoptes = Eriophyes.	
Alluptes	90	Celæno $=$ Trachytes .	
Alyeus.	15	Celrenopsis	57
Amblyomma	49	Celeripes $=$ Pteropeths.	
Ambulacrum	4	Cellularia $=$ Hyporleras.	
Ameronothus - Scutovertex.		Cephaloneon	102
Ammonia $=$ Cyta .		Cepheus $=$ Notaspis.	
Analges	43	Cherletia.	19
Analgeside.	4	Cheyletidx	17
Analloptes $=$ Pteralloptes.		Cherletiella	19
Aneystropus..	61	Cheyletus.	19
Angelia $=$ Nothrus.		Chicken-mite	60
Angelitos.	33	Chieken tick	16
Antenuophorus	58	Chirodiseus.	94
Anthocoptes.	10.	Chorioptes	99
Anmrania $=$ Arrenurus.		Chortoglyphas	86
Anystis..	2	Chrithoptes	77
Apeetolophus = Rhyneholophus.		Chyzeria	33
Areola	31	Cilliba...	68
Argas.	15	Claviceps = Galumna.	
Argasida	45	Cnemidocoptes.	49
Arremurus	34	Cochteophorns = Neumania.	
Astigmata	9	Coloboceras	41
Astoma	31	Criniscansor $=$ Myomptes	
Atax.	39	Crista..	24
Atomat	31	Cryptognathus	23
Atractides	3	(ryptostigmata.	9
Aturus.	39	Curvipes = Piona.	
Bdella	17	Cymberemaus..	72
Brallide	15	Cyrtolelaps.	57
Beetle-mites	64	Cyta.	17
Bella = Oribata.		(y todites $=$ Crtoleichus.	
Birl-mites.	8	Crtoleichidx	100
Black-heads.	107	Cxtoleichus.	100
Boophilus	17	Dameus = ()ribata,	
Bradybates $=$ Thyas.		Dameosoma = Oribata.	
Brain.	5	Demodex.	107
Brevipalpus $=$ Tenuipalpus.		Demodicidx	107
Bryobia	24	Deraiophorus.	1.1
Bulb-mite	$\cdots 1$	Dermacentor	45
Bursa copulatrix	i	Dermaleichus = Analses	
Cacculidx.	33	Termanyssidæ.	59
Crerulus	31	hermanyssus.	60
Capophagus = Rhizoglyphus.		Dermatocoptes = 1'soroptis.	
Caligonus .	21	I).rmatodectes Psoroptes.	

	Page．		Page．
Fermatophagus $=$ Chorioptes．		Halaearus	42
Wermaturyetes＝Cnemidocoptes．		Hatarachne．	61
bermogtyphas．	90	Haller＇s organ．	43
］entonymult．	［1］	11：ptosoma＝Selsizocarpus．	
Iセサイがtun．．．	s	darusrbynehas．	20
Hinmplus Merginia．		darvest－mite	30
Hinyçhus．	64	Heart－water	43
Ifphorsontis．	37	Ilemialges＝Megninia．	
Discotwhat＝（illibat．		Hemisarcoptes	87
	77		86
Histigmatus $=$ Tetranychus．		Hermannia	71
1）iversipes．．．．．	77	Heteronychus＝Tetranyehus．	
Jong tiek	48	Iteteromas＝Pedieuloides	
Dorsal groove．	25	Histiogaster	84
Mrctus cjomonlatorius	6	Ifistiostoma	82
muge－－－marialia．		Holostarpis＝Wacrocheles．	
Erretirk	46	Homopus＝Glyciphagns．	
Eatoniana	30	Hoplodermit．．．．．．	70
Emens－Hylutastes．		Howhophora＝Ifoploderma．	
Entozeron Demodex．		Hoplopus＝Cxeulus．	
Epiandrum	4	Hyalomma	47
Epicrins．．．	5	Itydracarina	9
Epigynum．	4	Hydrachma	37
Epistomma ．	3	Hyyrachnidex	34
Epitrimeras	101	Hydrouromat $=$ Hydryphantes．	
Erematis．	72	Hydrogamasus	57
Erinelim．	102	flylryphantes．	37
Erinose	103	IIygroblatex	39
Eriopluyes	104	Hy letastes．	57
Eriophyiduc．	101	11 ypesaspis＝Litlaps．	
Erymetes	14	Hyjorehthonius．	73
Erythema autumnale．	32	Hypodertes．	92
Erythracaras＝Erythrivis．		Hlyporeras．	92
Erythrexde	21	Hypopus．	79
Erythrieus．	2	Hypostome	3
Exehatox ${ }^{\text {erphatus－Hicmalastor．}}$		Imparijes	7
Enpalopsis．	24	Iphiopis	57
Enamlus．	16	Fphis＝Hylctastes．	
Eupurles	14	Iteh－mites．	95
Eupurlide	12	Ixodes．	48
Elsareophtes＝Literoters．		Jxodidx	42
Expulsory vesirles．．．．．．．	6	Jugnlaria．	50
Eylais．．．．．．	35	Kunikea	35
Filculifer	92.	Krameria＝I＇terolichus．	
Fedrizzia	（i4．	Krendowskia．	39
Feltria．	35	Lahiclucarpus．	94
Fowl tick＝rhickentick．		Labidophorus．	83
Freyana．	40	Lษlalis．．．	is
Fusatearms	86	Lamella	（6）
Galumna	If	Laminosioptes	100
Gamarellus	57	Lebertia．	38
Gamasider	49	Leiognathus＝Liponyssus．	
	58	Leiosoma＝Liacamms．	
（iarrajuata	46	Lentungula．	86
（ickubia	22	Leptus．．．	31
filyoiphagus．	\cdots	Liatarus．	72
（ilyeytorus＝（ilyoiplatgrs．		Limnesia	39
（i］yphryлis．．．．．．．．．．．	63	Limnochares	38
（ioniommerus	21	Linupodes．	13
（ireeniellat	56	Lindes－Neoliodes．	
Gromer＇sitelt．	83	Lipunyssus．	60
（iymmol）ater．	71	Liroaspis	5 s
Gymmodimmix．ls．	71	ListrephoriJu．	94
Hathatlantor．．．．	49	Listruphorus．．	94
	45	Lone－star tick	49
Jlamogamatils ．	58	Louping－ill．	49
Halatcaritic．	40	Datcrocheles．	58

	Page.		Page.
Malignant jaundice	19	Peplonysins,	
Mange	95	I'eriglischrus.	
Mediolata $=$ Eupalopris.		Peritreme	
Megamerus = Eujodes.		Petrobia-Bryobia.	
Megapus = Atractides.		I'hthiracarum	70
Megisthantus.	58	Phyeohius = Carpoglyphus.	
Megninia .	93	Phyllerium.	102
Mesostigmata.	9	Ihyliocoptes	104
Metaporlia.	50	Phyllostoma $=$ Histiostomil.	
Metasternalia	50	Physugaster = t'eliculoides.	
Metastigmata	9	Platocoptes = Phyllomptes.	
Miana bug.	45	Phytoptose	103
Wichaelichus - Freyana.		Phytoptus = Erioplyes.	
Mierocheles - Zerem.		I'ienbia .	
Mierolichas	91	I'igmeophorus.	iti
Dicrospalax - Freyana.		Pinolias.	
Mierotrombidium	32	Piona. .	10
Mideopsis..	39	I'neumonyssus	61
Molgus = Bdellar		Podapolijus.	76
Monieziella = IIistiogastur.		Podocinum	
Monbata luge	17	Polyaspis	63
Murcia - Galumma.		Pontarachna	37
Myobia	21	Porose areas	12
Mrucoptes	94	Iorrhostaspis= (iamasus.	
Myrmonysus:	58	Proctophyllodes.	¢
Najadicola.	35	Promprodectes	
Nautarachna	37	Prostigmata	
Neolioders.	72	Protalges..	90
Neophyllobils.	27	Protolichus = Pterolichus.	
Neozetes $=$ Serrarius .		Protonymph.	54
Nemmannia	10	Pseudalloptex = Iterolichur.	
Niroletielta.	73	Psendo-stigmatic organ	64
Norlipalpus - Histiostoma.		Psorergates	20
Norneria - Rhagidia.		Psoroptes.	9
Notaspis.	72	Pterahoptes.	93
Nothrus	72	Pterocolus - "Trunessartia.	
Notoedres	89	Pterodectex.	90
Notophallus	14	Pterolichus	91
Nyeteridocoptes Prosoperte		Pteronyssus.	93
Nymph.	s	Pteroptus.	59
Ocypetus	31	Ptilonyssus	60
Olecranon proces	88	Raillietia	57
Oligonychus Tetranychms.		Raphignathos	24
Ophiones	49	Red bug .	31
Oppia $=$ Eremacus.		Red-spiders	23
Oral tube	3	Retl-water.	43
Oribata	72	Rhagidia .	14
Oribatella	71	Rhinonyssus	61
Oribatide	64	Rhipicephalus	47
Oribatodes.	71	Rhipistoma.	is
Oribatula = Erematus.		Rhizoglyphus	\cdots
Oripoda	11	Rhombognathus.	41
Ornithodoros	46	Rhyncholophidx	26
Otodectes	99	Rhyncholophus	30
Otonyssus.	32	Rivobates $=$ Hygrobates.	
Ottonia = Microtrombidium.		Rivoltasia	41
Oustaletia = Pterolichus.		Ronget ...	31
Oxypleurites	104	Sarcoborus = Harpy rhynehus	
I'achytalaps.	57	Sarenpterus..	20
Prajahuellos	46	Sarcoptes..	97
Panisus.	37	Sarcoptide	9.5
Faralges $=$ Dermoglyphus.		Scabies.	95
Parasitus = Gamasus.		"scaly-leg"	100
Pear mite.	104	Scaptognathu	11
Pediculoi	75	Schizocarpris	95
P'elops.	73	Scirus.	17
Penthalens.	15	Scutovertex	

	Prge.		Page.
scyphius = Rhagidia.		Tetranychns.	24
sciodes	57	Texas fever.	17
Seiulus = scins.		Thalassarachua	12
Seius	57	Theearthra = I'terolichus.	
Serrarins	6.6	Thyas.	3.
Serrator $=$ Histiostoma.		Ticks	42
Sheep-scal,	98	Tlalsahuate	32
Simognathus	41	Trachytes	63
simonea $=$ Demodex.		Trichobius = Trichtecins.	
Siteroptes.	76	Trichodactylus= Trichotarsus.	
smaridia	29	Trichoecius	94
Smaris.	29	Trichotarsus.	86
Sperchon .	39	Trimerus = Epitrimerus.	
Spermatheea	6	Tritia $=$ Phthiracarns.	
Sphærogyna = Pediculoides.		Tritonymph	5
Spinturnix $=$ Pterop,tus.		Trombella	33
Steatozoon $=$ Demodex.		Trombidida	30
Steganaspis.	39	Trombidimm.	32
Sternostomum.	61	Tronessartella	41
Stigmæorles $=$ Stigmaths.		Tronersartia = Allanalges.	
Stigmrens.	27	Turicata	16
Stilochirus = Lxaps.		Tydelus.	14
Sugar mite	$\times 3$	Tyroglyphidx	is
Srmbjotes = Cborioptes.		Tyroglyphis.	43
symplectoptes = Laminosioptes.		Tyrrellia..	38
Syringobia.	90	C'nionicola - Atax.	
Syringobial stage.	21	Uroporla.	63
Syringophilus.	21	Uropodella	64
Tanaugnathus	37	Uropodidie	62
Tarsonemidit.	74	Uroseius..	63
Tarconemus	76	Vasa deferentia	6
Tectopedium.	6.5	Vermiformia	9
Tegencranus - Carabodes.		Volvolifex.	102
Tegonotus.	104	Water-mites	34
Tenuipalyus	2 S	Xoloptes...	90
Tetranychidit	23	Xystonotus	39
Tetranyehorides.	28	Zereon..	57
Tetranyehopxis.	2	Zetes = Galumna.	

[^0]: Proceedings U. S. National Museum, Vol. XXVIII-No. 1382.

[^1]: "Revue des Sciences naturelles de l'Ouest, 1891, P1. 289-308; 1892, pp. 21-56.

[^2]: Proc. N. M. vol. xxviii- $04-6$

[^3]: a Bull. No. B_{s}, n1. s., Div. Entom., U. S. Dejpt. Aeric.

[^4]: a several of these series, namely, those described by Prof. Waller in the Zeitsehr. f. Wins. Zoologic, 1882, are not mentioned in Prof. Canestrini's treatment of the word species in Mas Tierreich, Lief. 7, 1s9.9.

[^5]: "Fürstenberg in his great work, Jite Krätzemilben dor Menschen, figmres two pais oi dhelate mandibles this is a manifest error, and weakens one's faith in his fine figures.

[^6]: aThe change of name of this well-known group of mites seems inevitable, althongh much to be dephoret. Eriophyes Sielohl has a year's priority over Phytoptus Dujardin. But siebold did not carefully study these mites at all, and supposed them to be immature creatures. Dujardin recognized their true nature aud made many careful wservations upon them. European authors, however, have recently adopteri Eriophyes.

